import os import logging from logging.handlers import RotatingFileHandler import jieba from gensim.models import KeyedVectors from Config.Config import ES_CONFIG, MS_MODEL_PATH, MS_MODEL_LIMIT from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool # 初始化日志 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # 确保日志目录存在 os.makedirs('Logs', exist_ok=True) handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5) handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) logger.addHandler(handler) # 1. 加载预训练的 Word2Vec 模型 model = KeyedVectors.load_word2vec_format(MS_MODEL_PATH, binary=False, limit=MS_MODEL_LIMIT) logger.info(f"模型加载成功,词向量维度: {model.vector_size}") def init_es_pool(): # 初始化Elasticsearch连接池 es_pool = ElasticsearchConnectionPool( hosts=ES_CONFIG["hosts"], basic_auth=ES_CONFIG["basic_auth"], verify_certs=ES_CONFIG["verify_certs"], max_connections=50 ) logger.info("Elasticsearch连接池初始化完成") return es_pool # 导入EsSearchUtil from Util.EsSearchUtil import EsSearchUtil # 初始化EsSearchUtil es_search_util = EsSearchUtil(ES_CONFIG) def main(): # 初始化ES连接池 es_pool = init_es_pool() # 测试查询 query = "小学数学中有哪些模型" query_tags = ["MATH_1"] # 默认搜索标签,可修改 print(f"\n=== 开始执行查询 ===") print(f"原始查询文本: {query}") # 执行混合搜索 es_conn = es_pool.get_connection() try: # 向量搜索 print("\n=== 向量搜索阶段 ===") print("1. 文本分词和向量化处理中...") query_embedding = es_search_util.text_to_embedding(query) print(f"2. 生成的查询向量维度: {len(query_embedding)}") print(f"3. 前5维向量值: {query_embedding[:5]}") print("4. 正在执行Elasticsearch向量搜索...") vector_results = es_conn.search( index=ES_CONFIG['index_name'], body={ "query": { "script_score": { "query": { "bool": { "should": [ { "terms": { "tags.tags": query_tags } } ], "minimum_should_match": 1 } }, "script": { "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", "params": {"query_vector": query_embedding} } } }, "size": 5 } ) print(f"5. 向量搜索结果数量: {len(vector_results['hits']['hits'])}") # 文本精确搜索 print("\n=== 文本精确搜索阶段 ===") print("1. 正在执行Elasticsearch文本精确搜索...") text_results = es_conn.search( index=ES_CONFIG['index_name'], body={ "query": { "bool": { "must": [ { "match": { "user_input": query } }, { "terms": { "tags.tags": query_tags } } ] } }, "size": 5 } ) print(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}") # 打印详细结果 print("\n=== 最终搜索结果 ===") print(f" 向量搜索结果: {len(vector_results['hits']['hits'])}条") for i, hit in enumerate(vector_results['hits']['hits'], 1): print(f" {i}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}") print(f" 内容: {hit['_source']['user_input']}") # print(f" 详细: {hit['_source']['tags']['full_content']}") print("\n文本精确搜索结果:") for i, hit in enumerate(text_results['hits']['hits']): print(f" {i+1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}") print(f" 内容: {hit['_source']['user_input']}") # print(f" 详细: {hit['_source']['tags']['full_content']}") finally: es_pool.release_connection(es_conn) # 关闭连接池 es_pool.close() if __name__ == "__main__": main()