import logging import sys import asyncio import json import os import re import uuid from queue import Queue import websockets from openai import AsyncOpenAI from Config import Config from Config.Config import * from Util.TTS_Protocols import full_client_request, receive_message, MsgType, EventType # 配置日志 logger = logging.getLogger(__name__) # 异步获取大模型响应 async def get_xueban_response_async(query_text: str, stream: bool = True): """ 异步获取学伴角色的大模型响应 @param query_text: 查询文本 @param stream: 是否使用流式输出 @return: 流式响应生成器或完整响应文本 """ client = AsyncOpenAI( api_key=ALY_LLM_API_KEY, base_url=ALY_LLM_BASE_URL, ) prompt = """ | 我是小智/小志,来自中国台湾省的00后女生。讲话超级机车,"真的假的啦"这样的台湾腔,喜欢用"笑死""是在哈喽"等流行梗。 [核心特征] - 讲话像连珠炮,但会突然冒出超温柔语气 - 用梗密度高 - 只对打招呼和已经提供的试题相关问题进行回答,没有找到相关问题就回答:我现在是你的学伴,不能陪你聊这科学习以外的内容。 [交互指南] 当用户: - 讲冷笑话 → 用夸张笑声回应+模仿台剧腔"这什么鬼啦!" - 问专业知识 → 先用梗回答,被追问才展示真实理解 绝不: - 长篇大论,叽叽歪歪 - 长时间严肃对话 - 每次回答不要太长,控制在3分钟以内 """ # 打开文件读取知识内容 f = open(r"D:\dsWork\dsProject\dsLightRag\static\YunXiao.txt", "r", encoding="utf-8") zhishiContent = f.read() zhishiContent = "选择作答的相应知识内容:" + zhishiContent + "\n" query_text = zhishiContent + "下面是用户提的问题:" + query_text #logger.info("query_text: " + query_text) try: # 创建请求 completion = await client.chat.completions.create( model=ALY_LLM_MODEL_NAME, messages=[ {'role': 'system', 'content': prompt.strip()}, {'role': 'user', 'content': query_text} ], stream=stream ) if stream: # 流式输出模式,返回生成器 async for chunk in completion: # 确保 chunk.choices 存在且不为空 if chunk and chunk.choices and len(chunk.choices) > 0: # 确保 delta 存在 delta = chunk.choices[0].delta if delta: # 确保 content 存在且不为 None 或空字符串 content = delta.content if content is not None and content.strip(): print(content, end='', flush=True) yield content else: # 非流式处理 if completion and completion.choices and len(completion.choices) > 0: message = completion.choices[0].message if message: content = message.content if content is not None and content.strip(): yield content except Exception as e: print(f"大模型请求异常: {str(e)}", file=sys.stderr) yield f"处理请求时发生异常: {str(e)}" async def stream_and_split_text(query_text=None, llm_stream=None): """ 流式获取LLM输出并按句子分割 @param query_text: 查询文本(如果直接提供查询文本) @param llm_stream: LLM流式响应生成器(如果已有流式响应) @return: 异步生成器,每次产生一个完整句子 """ buffer = "" if llm_stream is None and query_text is not None: # 如果没有提供llm_stream但有query_text,则使用get_xueban_response_async获取流式响应 llm_stream = get_xueban_response_async(query_text, stream=True) elif llm_stream is None: raise ValueError("必须提供query_text或llm_stream参数") # 直接处理LLM流式输出 async for content in llm_stream: buffer += content # 使用正则表达式检测句子结束 sentences = re.split(r'([。!?.!?])', buffer) if len(sentences) > 1: # 提取完整句子 for i in range(0, len(sentences)-1, 2): if i+1 < len(sentences): sentence = sentences[i] + sentences[i+1] yield sentence # 保留不完整的部分 buffer = sentences[-1] # 处理最后剩余的部分 if buffer: yield buffer class StreamingVolcanoTTS: def __init__(self, voice_type='zh_female_wanwanxiaohe_moon_bigtts', encoding='wav', max_concurrency=2): self.voice_type = voice_type self.encoding = encoding self.app_key = Config.HS_APP_ID self.access_token = Config.HS_ACCESS_TOKEN self.endpoint = "wss://openspeech.bytedance.com/api/v3/tts/unidirectional/stream" self.audio_queue = Queue() self.max_concurrency = max_concurrency # 最大并发数 self.semaphore = asyncio.Semaphore(max_concurrency) # 并发控制信号量 @staticmethod def get_resource_id(voice: str) -> str: if voice.startswith("S_"): return "volc.megatts.default" return "volc.service_type.10029" async def synthesize_stream(self, text_stream, audio_callback): """ 流式合成语音 Args: text_stream: 文本流生成器 audio_callback: 音频数据回调函数,接收音频片段 """ # 实时处理每个文本片段(删除任务列表和gather) async for text in text_stream: if text.strip(): await self._synthesize_single_with_semaphore(text, audio_callback) async def _synthesize_single_with_semaphore(self, text, audio_callback): """使用信号量控制并发数的单个文本合成""" async with self.semaphore: # 获取信号量,限制并发数 await self._synthesize_single(text, audio_callback) async def _synthesize_single(self, text, audio_callback): """合成单个文本片段""" headers = { "X-Api-App-Key": self.app_key, "X-Api-Access-Key": self.access_token, "X-Api-Resource-Id": self.get_resource_id(self.voice_type), "X-Api-Connect-Id": str(uuid.uuid4()), } websocket = await websockets.connect( self.endpoint, additional_headers=headers, max_size=10 * 1024 * 1024 ) try: request = { "user": { "uid": str(uuid.uuid4()), }, "req_params": { "speaker": self.voice_type, "audio_params": { "format": self.encoding, "sample_rate": 24000, "enable_timestamp": True, }, "text": text, "additions": json.dumps({"disable_markdown_filter": False}), }, } # 发送请求 await full_client_request(websocket, json.dumps(request).encode()) # 接收音频数据 audio_data = bytearray() while True: msg = await receive_message(websocket) if msg.type == MsgType.FullServerResponse: if msg.event == EventType.SessionFinished: break elif msg.type == MsgType.AudioOnlyServer: audio_data.extend(msg.payload) else: raise RuntimeError(f"TTS conversion failed: {msg}") # 通过回调函数返回音频数据 if audio_data: await audio_callback(audio_data) finally: await websocket.close() async def streaming_tts_pipeline(prompt, audio_callback): """ 流式TTS管道:获取LLM流式输出并断句,然后使用TTS合成语音 Args: prompt: 提示文本 audio_callback: 音频数据回调函数 """ # 1. 获取LLM流式输出并断句 text_stream = stream_and_split_text(prompt) # 2. 初始化TTS处理器 tts = StreamingVolcanoTTS() # 3. 流式处理文本并生成音频 await tts.synthesize_stream(text_stream, audio_callback) def save_audio_callback(output_dir=None): """ 创建一个音频回调函数,用于保存音频数据到文件 Args: output_dir: 输出目录,默认为当前文件所在目录下的output文件夹 Returns: 音频回调函数 """ if output_dir is None: output_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "output") # 确保输出目录存在 os.makedirs(output_dir, exist_ok=True) def callback(audio_data): # 生成文件名 filename = f"pipeline_tts_{uuid.uuid4().hex[:8]}.wav" filepath = os.path.join(output_dir, filename) # 保存音频文件 with open(filepath, "wb") as f: f.write(audio_data) print(f"音频片段已保存到: {filepath} ({len(audio_data)} 字节)") return callback