import logging import warnings import hashlib # 导入哈希库 import time from Config.Config import ES_CONFIG from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool from elasticsearch import Elasticsearch from langchain_core.documents import Document from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings from pydantic import SecretStr from Config import Config # 禁用HTTPS相关警告 def disableWarning(): # 抑制HTTPS相关警告 warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') # 初始化日志 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class EsSearchUtil: def __init__(self, es_config): """ 初始化Elasticsearch搜索工具 :param es_config: Elasticsearch配置字典,包含hosts, username, password, index_name等 """ # 禁用警告 disableWarning() self.es_config = es_config # 初始化连接池 self.es_pool = ElasticsearchConnectionPool( hosts=es_config['hosts'], basic_auth=es_config['basic_auth'], verify_certs=es_config.get('verify_certs', False), max_connections=50 ) self.index_name = es_config['index_name'] logger.info(f"EsSearchUtil初始化成功,索引名称: {self.index_name}") def rebuild_mapping(self): """ 重建Elasticsearch索引和mapping结构 返回: bool: 操作是否成功 """ try: # 从连接池获取连接 conn = self.es_pool.get_connection() # 定义mapping结构 mapping = { "mappings": { "properties": { "embedding": { "type": "dense_vector", "dims": 1024, # embedding维度为1024 "index": True, "similarity": "l2_norm" # 使用L2距离 }, "user_input": {"type": "text"}, "tags": { "type": "object", "properties": { "tags": {"type": "keyword"}, "full_content": {"type": "text"} } } } } } # 检查索引是否存在,存在则删除 if conn.indices.exists(index=self.index_name): conn.indices.delete(index=self.index_name) logger.info(f"删除已存在的索引 '{self.index_name}'") print(f"删除已存在的索引 '{self.index_name}'") # 创建索引和mapping conn.indices.create(index=self.index_name, body=mapping) logger.info(f"索引 '{self.index_name}' 创建成功,mapping结构已设置") print(f"索引 '{self.index_name}' 创建成功,mapping结构已设置。") return True except Exception as e: logger.error(f"重建mapping失败: {str(e)}") print(f"重建mapping失败: {e}") return False finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def text_search(self, query, size=10): # 从连接池获取连接 conn = self.es_pool.get_connection() try: # 使用连接执行搜索 result = conn.search( index=self.es_config['index_name'], query={"match": {"user_input": query}}, size=size ) return result except Exception as e: logger.error(f"文本搜索失败: {str(e)}") raise finally: # 释放连接回连接池 self.es_pool.release_connection(conn) def split_text_into_chunks(text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list: """ 将文本切割成块 参数: text: 要切割的文本 chunk_size: 每个块的大小 chunk_overlap: 块之间的重叠大小 返回: list: 文本块列表 """ # 创建文档对象 docs = [Document(page_content=text, metadata={"source": "simulated_document"})] # 切割文档 text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True ) all_splits = text_splitter.split_documents(docs) print(f"切割后的文档块数量:{len(all_splits)}") return [split.page_content for split in all_splits] def insert_long_text_to_es(long_text: str, tags: list = None) -> bool: """ 将长文本切割后向量化并插入到Elasticsearch,基于文本内容哈希实现去重 参数: long_text: 要插入的长文本 tags: 可选的标签列表 返回: bool: 插入是否成功 """ try: # 1. 创建EsSearchUtil实例以使用连接池 search_util = EsSearchUtil(Config.ES_CONFIG) # 2. 从连接池获取连接 conn = search_util.es_pool.get_connection() # 3. 检查索引是否存在,不存在则创建 index_name = Config.ES_CONFIG['index_name'] if not conn.indices.exists(index=index_name): # 定义mapping结构 mapping = { "mappings": { "properties": { "embedding": { "type": "dense_vector", "dims": 1024, # 根据实际embedding维度调整 "index": True, "similarity": "l2_norm" }, "user_input": {"type": "text"}, "tags": { "type": "object", "properties": { "tags": {"type": "keyword"}, "full_content": {"type": "text"} } }, "timestamp": {"type": "date"} } } } conn.indices.create(index=index_name, body=mapping) print(f"索引 '{index_name}' 创建成功") # 4. 切割文本 text_chunks = split_text_into_chunks(long_text) # 5. 准备标签 if tags is None: tags = ["general_text"] # 6. 获取当前时间 timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 7. 创建嵌入模型 embeddings = OpenAIEmbeddings( model=Config.EMBED_MODEL_NAME, base_url=Config.EMBED_BASE_URL, api_key=SecretStr(Config.EMBED_API_KEY) ) # 8. 为每个文本块生成向量并插入 for i, chunk in enumerate(text_chunks): # 生成文本块的哈希值作为文档ID doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest() # 检查文档是否已存在 if conn.exists(index=index_name, id=doc_id): print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}") continue # 生成文本块的嵌入向量 embedding = embeddings.embed_documents([chunk])[0] # 准备文档数据 doc = { 'tags': {"tags": tags, "full_content": long_text}, 'user_input': chunk, 'timestamp': timestamp, 'embedding': embedding } # 插入数据到Elasticsearch conn.index(index=index_name, id=doc_id, document=doc) print(f"文档块 {i+1} 插入成功: {doc_id}") return True except Exception as e: print(f"插入数据失败: {e}") return False finally: # 确保释放连接回连接池 if 'conn' in locals() and 'search_util' in locals(): search_util.es_pool.release_connection(conn) # 添加main函数进行测试 if __name__ == "__main__": try: # 创建EsSearchUtil实例 search_util = EsSearchUtil(ES_CONFIG) # 查询"混凝土" query = "混凝土" logger.info(f"开始查询关键词: {query}") results = search_util.text_search(query, size=5) print(f"查询 '{query}' 完成,共找到 {len(results['hits']['hits'])} 条结果") # 在打印结果数量后添加 for i, hit in enumerate(results['hits']['hits'], 1): print(f"结果 {i}:") print(f"得分: {hit['_score']}") print(f"内容: {hit['_source'].get('user_input', '无内容')}") print("-" * 50) except Exception as e: logger.error(f"测试失败: {str(e)}") print(f"测试失败: {str(e)}")