import json import os.path import shutil import subprocess import tempfile import urllib import uuid from io import BytesIO from urllib import request import fastapi import uvicorn from fastapi import FastAPI, HTTPException from lightrag import QueryParam from sse_starlette import EventSourceResponse from starlette.responses import StreamingResponse from starlette.staticfiles import StaticFiles from Util.LightRagUtil import * from Util.PostgreSQLUtil import init_postgres_pool # 想更详细地控制日志输出 logger = logging.getLogger('lightrag') logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) logger.addHandler(handler) async def lifespan(app: FastAPI): yield app = FastAPI(lifespan=lifespan) # 挂载静态文件目录 app.mount("/static", StaticFiles(directory="Static"), name="static") @app.post("/api/rag") async def rag(request: fastapi.Request): data = await request.json() logger.info(f"Received request: {data}") workspace = data.get("topic", "ShiJi") # Chinese, Math ,ShiJi 默认是少年读史记 mode = data.get("mode", "hybrid") # 默认为hybrid模式 # 查询的问题 query = data.get("query") # 用户提示词 output_model = data.get("output_model", "txt") if output_model == "txt": user_prompt = "\n 1、不要输出参考资料 或者 References !也不要标识DC或者KG!" user_prompt = user_prompt + "\n 2、资料中提供化学反应方程式的,一定要严格按提供的Latex公式输出,绝对不允许对Latex公式进行修改 !" user_prompt = user_prompt + "\n 3、如果资料中提供了图片的,一定要严格按照原文提供图片输出,绝对不能省略或不输出!" # user_prompt = user_prompt + "\n 4、资料中提到的知识内容,需要判断是否与本次问题相关,不相关的绝对不要输出!" user_prompt = user_prompt + "\n 4、根据资料回答问题,可以适当拓展一下内容进行回答!" user_prompt = user_prompt + "\n 5、如果问题与提供的知识库内容不符,则明确告诉未在知识库范围内提到!" user_prompt = user_prompt + "\n 6、发现输出内容中包含Latex公式的,一定要检查是不是包含了$$或$的包含符号,不能让Latex无包含符号出现!" elif output_model == 'html': user_prompt = """ 我需要一个专业的交互式数据可视化,数据资料我将提供,你也可以根据自己了解的信息进行补充, 注意: (1)直接输出html代码,以```html 开头, ``` 结尾。 (2)不要与用户进行二次交互,直接生成即可。 (3)不要添加参考信息等内容 (4)请确保生成的JSON数据格式完全正确,特别注意字符串内部的引号必须使用反斜杠转义。 例如:"desc": "猛将,有\"人中吕布,马中赤兔\"之称" (5)正面负面信息都要。 绘制可视化具体要求如下: 1. **技术要求**: - 使用 D3.js v7 + SVG - 实现可拖动节点和关系线分类着色 - 必须包含右侧信息面板和3D节点效果 2. **设计规范**: - 主色调:深蓝色渐变背景 - 标题:在以醒目字体字号在界面顶部中间位置显示,最好有渐变效果 - 视觉特效:3D立体节点(非平面)+ 发光选中效果 - 文字要求:使用 dominant-baseline: central 和 text-anchor: middle 确保文字垂直和水平居中 - 布局响应式:支持窗口缩放 3. **数据要求**: - 数据结构:网络关系图 - 关系分类:[至少3种关系类型] - 节点属性:[如类型/描述/重要性] - 关系线描述:需要有关系线的不同颜色描述的图例 4. **交互细节**: - 悬停:显示人物简介弹窗 - 点击:右侧面板更新详细信息+关系列表,仔细检查,确保每个节点都可以点击 - 布局切换:力导向/辐射状/环形/网格 5. **拒绝内容**: - 不要树状结构或平面2D节点 - 避免使用canvas代替SVG """ # 使用PG库后,这个是没有用的,但目前的项目代码要求必传,就写一个吧。 WORKING_DIR = 'WorkingPath/' + workspace if not os.path.exists(WORKING_DIR): os.makedirs(WORKING_DIR) async def generate_response_stream(query: str): try: logger.info("workspace=" + workspace) rag = await initialize_pg_rag(WORKING_DIR=WORKING_DIR, workspace=workspace) resp = await rag.aquery( query=query, param=QueryParam(mode=mode, stream=True, user_prompt=user_prompt)) # hybrid naive async for chunk in resp: if not chunk: continue yield f"data: {json.dumps({'reply': chunk})}\n\n" print(chunk, end='', flush=True) except Exception as e: yield f"data: {json.dumps({'error': str(e)})}\n\n" finally: # 发送流结束标记 yield "data: [DONE]\n\n" # 清理资源 await rag.finalize_storages() return EventSourceResponse(generate_response_stream(query=query)) @app.post("/api/save-word") async def save_to_word(request: fastapi.Request): output_file = None try: # Parse request data try: data = await request.json() markdown_content = data.get('markdown_content', '') if not markdown_content: raise ValueError("Empty MarkDown content") except Exception as e: logger.error(f"Request parsing failed: {str(e)}") raise HTTPException(status_code=400, detail=f"Invalid request: {str(e)}") # 创建临时Markdown文件 temp_md = os.path.join(tempfile.gettempdir(), uuid.uuid4().hex + ".md") with open(temp_md, "w", encoding="utf-8") as f: f.write(markdown_content) # 使用pandoc转换 output_file = os.path.join(tempfile.gettempdir(), "【理想大模型】问答.docx") subprocess.run(['pandoc', temp_md, '-o', output_file, '--resource-path=static'], check=True) # 读取生成的Word文件 with open(output_file, "rb") as f: stream = BytesIO(f.read()) # 返回响应 encoded_filename = urllib.parse.quote("【理想大模型】问答.docx") return StreamingResponse( stream, media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document", headers={"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}"}) except HTTPException: raise except Exception as e: logger.error(f"Unexpected error: {str(e)}") raise HTTPException(status_code=500, detail="Internal server error") finally: # 清理临时文件 try: if temp_md and os.path.exists(temp_md): os.remove(temp_md) if output_file and os.path.exists(output_file): os.remove(output_file) except Exception as e: logger.warning(f"Failed to clean up temp files: {str(e)}") @app.get("/api/tree-data") async def get_tree_data(): try: pg_pool = await init_postgres_pool() async with pg_pool.acquire() as conn: # 执行查询 rows = await conn.fetch(""" SELECT id, title, parent_id, is_leaf, prerequisite, related FROM knowledge_points ORDER BY parent_id, id """) # 构建节点映射 nodes = {} for row in rows: prerequisite_data = json.loads(row[4]) if row[4] else [] # 转换先修知识格式 if isinstance(prerequisite_data, list) and len(prerequisite_data) > 0 and isinstance(prerequisite_data[0], dict): # 已经是新格式 prerequisites = prerequisite_data else: # 转换为新格式 prerequisites = [{"id": str(id), "title": title} for id, title in (prerequisite_data or [])] if prerequisite_data else None nodes[row[0]] = { "id": row[0], "title": row[1], "parent_id": row[2] if row[2] is not None else 0, "isParent": not row[3], "prerequisite": prerequisites if prerequisites and len(prerequisites) > 0 else None, "related": json.loads(row[5]) if row[5] and len(json.loads(row[5])) > 0 else None, "open": True } # 构建树形结构 tree_data = [] for node_id, node in nodes.items(): parent_id = node["parent_id"] if parent_id == 0: tree_data.append(node) else: if parent_id in nodes: if "children" not in nodes[parent_id]: nodes[parent_id]["children"] = [] nodes[parent_id]["children"].append(node) return {"code": 0, "data": tree_data} except Exception as e: return {"code": 1, "msg": str(e)} @app.post("/api/update-knowledge") async def update_knowledge(request: fastapi.Request): try: data = await request.json() node_id = data.get('node_id') knowledge = data.get('knowledge', []) update_type = data.get('update_type', 'prerequisite') # 默认为先修知识 if not node_id: raise ValueError("Missing node_id") pg_pool = await init_postgres_pool() async with pg_pool.acquire() as conn: if update_type == 'prerequisite': await conn.execute(""" UPDATE knowledge_points SET prerequisite = $1 WHERE id = $2 """, json.dumps( [{"id": p["id"], "title": p["title"]} for p in knowledge], ensure_ascii=False ), node_id) else: # related knowledge await conn.execute(""" UPDATE knowledge_points SET related = $1 WHERE id = $2 """, json.dumps( [{"id": p["id"], "title": p["title"]} for p in knowledge], ensure_ascii=False ), node_id) return {"code": 0, "msg": "更新成功"} except Exception as e: logger.error(f"更新知识失败: {str(e)}") return {"code": 1, "msg": str(e)} @app.post("/api/render_html") async def render_html(request: fastapi.Request): data = await request.json() html_content = data.get('html_content') html_content = html_content.replace("```html", "") html_content = html_content.replace("```", "") # 创建临时文件 filename = f"relation_{uuid.uuid4().hex}.html" filepath = os.path.join('static/temp', filename) # 确保temp目录存在 os.makedirs('static/temp', exist_ok=True) # 写入文件 with open(filepath, 'w', encoding='utf-8') as f: f.write(html_content) return { 'success': True, 'url': f'/static/temp/{filename}' } @app.get("/api/sources") async def get_sources(page: int = 1, limit: int = 10): try: pg_pool = await init_postgres_pool() async with pg_pool.acquire() as conn: # 获取总数 total = await conn.fetchval("SELECT COUNT(*) FROM t_wechat_source") # 获取分页数据 offset = (page - 1) * limit rows = await conn.fetch( """ SELECT id, account_id,account_name, created_at FROM t_wechat_source ORDER BY created_at DESC LIMIT $1 OFFSET $2 """, limit, offset ) sources = [ { "id": row[0], "name": row[1], "type": row[2], "update_time": row[3].strftime("%Y-%m-%d %H:%M:%S") if row[3] else None } for row in rows ] return { "code": 0, "data": { "list": sources, "total": total, "page": page, "limit": limit } } except Exception as e: return {"code": 1, "msg": str(e)} @app.get("/api/articles") async def get_articles(page: int = 1, limit: int = 10): try: pg_pool = await init_postgres_pool() async with pg_pool.acquire() as conn: # 获取总数 total = await conn.fetchval("SELECT COUNT(*) FROM t_wechat_articles") # 获取分页数据 offset = (page - 1) * limit rows = await conn.fetch( """ SELECT a.id, a.title, a.source as name, a.publish_time, a.collection_time,a.url FROM t_wechat_articles a ORDER BY a.collection_time DESC LIMIT $1 OFFSET $2 """, limit, offset ) articles = [ { "id": row[0], "title": row[1], "source": row[2], "publish_date": row[3].strftime("%Y-%m-%d") if row[3] else None, "collect_time": row[4].strftime("%Y-%m-%d %H:%M:%S") if row[4] else None, "url": row[5], } for row in rows ] return { "code": 0, "data": { "list": articles, "total": total, "page": page, "limit": limit } } except Exception as e: return {"code": 1, "msg": str(e)} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)