import os from dataclasses import dataclass from typing import final from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge from lightrag.utils import logger from lightrag.base import BaseGraphStorage import pipmaster as pm if not pm.is_installed("networkx"): pm.install("networkx") if not pm.is_installed("graspologic"): pm.install("graspologic") import networkx as nx from .shared_storage import ( get_storage_lock, get_update_flag, set_all_update_flags, ) from dotenv import load_dotenv # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance # the OS environment variables take precedence over the .env file load_dotenv(dotenv_path=".env", override=False) MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000)) @final @dataclass class NetworkXStorage(BaseGraphStorage): @staticmethod def load_nx_graph(file_name) -> nx.Graph: if os.path.exists(file_name): return nx.read_graphml(file_name) return None @staticmethod def write_nx_graph(graph: nx.Graph, file_name): logger.info( f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges" ) nx.write_graphml(graph, file_name) def __post_init__(self): self._graphml_xml_file = os.path.join( self.global_config["working_dir"], f"graph_{self.namespace}.graphml" ) self._storage_lock = None self.storage_updated = None self._graph = None # Load initial graph preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file) if preloaded_graph is not None: logger.info( f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges" ) else: logger.info("Created new empty graph") self._graph = preloaded_graph or nx.Graph() async def initialize(self): """Initialize storage data""" # Get the update flag for cross-process update notification self.storage_updated = await get_update_flag(self.namespace) # Get the storage lock for use in other methods self._storage_lock = get_storage_lock() async def _get_graph(self): """Check if the storage should be reloaded""" # Acquire lock to prevent concurrent read and write async with self._storage_lock: # Check if data needs to be reloaded if self.storage_updated.value: logger.info( f"Process {os.getpid()} reloading graph {self.namespace} due to update by another process" ) # Reload data self._graph = ( NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph() ) # Reset update flag self.storage_updated.value = False return self._graph async def has_node(self, node_id: str) -> bool: graph = await self._get_graph() return graph.has_node(node_id) async def has_edge(self, source_node_id: str, target_node_id: str) -> bool: graph = await self._get_graph() return graph.has_edge(source_node_id, target_node_id) async def get_node(self, node_id: str) -> dict[str, str] | None: graph = await self._get_graph() return graph.nodes.get(node_id) async def node_degree(self, node_id: str) -> int: graph = await self._get_graph() return graph.degree(node_id) async def edge_degree(self, src_id: str, tgt_id: str) -> int: graph = await self._get_graph() return graph.degree(src_id) + graph.degree(tgt_id) async def get_edge( self, source_node_id: str, target_node_id: str ) -> dict[str, str] | None: graph = await self._get_graph() return graph.edges.get((source_node_id, target_node_id)) async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None: graph = await self._get_graph() if graph.has_node(source_node_id): return list(graph.edges(source_node_id)) return None async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None: """ Importance notes: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption """ graph = await self._get_graph() graph.add_node(node_id, **node_data) async def upsert_edge( self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] ) -> None: """ Importance notes: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption """ graph = await self._get_graph() graph.add_edge(source_node_id, target_node_id, **edge_data) async def delete_node(self, node_id: str) -> None: """ Importance notes: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption """ graph = await self._get_graph() if graph.has_node(node_id): graph.remove_node(node_id) logger.debug(f"Node {node_id} deleted from the graph.") else: logger.warning(f"Node {node_id} not found in the graph for deletion.") async def remove_nodes(self, nodes: list[str]): """Delete multiple nodes Importance notes: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: nodes: List of node IDs to be deleted """ graph = await self._get_graph() for node in nodes: if graph.has_node(node): graph.remove_node(node) async def remove_edges(self, edges: list[tuple[str, str]]): """Delete multiple edges Importance notes: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: edges: List of edges to be deleted, each edge is a (source, target) tuple """ graph = await self._get_graph() for source, target in edges: if graph.has_edge(source, target): graph.remove_edge(source, target) async def get_all_labels(self) -> list[str]: """ Get all node labels in the graph Returns: [label1, label2, ...] # Alphabetically sorted label list """ graph = await self._get_graph() labels = set() for node in graph.nodes(): labels.add(str(node)) # Add node id as a label # Return sorted list return sorted(list(labels)) async def get_knowledge_graph( self, node_label: str, max_depth: int = 3, max_nodes: int = MAX_GRAPH_NODES, ) -> KnowledgeGraph: """ Retrieve a connected subgraph of nodes where the label includes the specified `node_label`. Args: node_label: Label of the starting node,* means all nodes max_depth: Maximum depth of the subgraph, Defaults to 3 max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000 Returns: KnowledgeGraph object containing nodes and edges, with an is_truncated flag indicating whether the graph was truncated due to max_nodes limit """ graph = await self._get_graph() result = KnowledgeGraph() # Handle special case for "*" label if node_label == "*": # Get degrees of all nodes degrees = dict(graph.degree()) # Sort nodes by degree in descending order and take top max_nodes sorted_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True) # Check if graph is truncated if len(sorted_nodes) > max_nodes: result.is_truncated = True logger.info( f"Graph truncated: {len(sorted_nodes)} nodes found, limited to {max_nodes}" ) limited_nodes = [node for node, _ in sorted_nodes[:max_nodes]] # Create subgraph with the highest degree nodes subgraph = graph.subgraph(limited_nodes) else: # Check if node exists if node_label not in graph: logger.warning(f"Node {node_label} not found in the graph") return KnowledgeGraph() # Return empty graph # Use modified BFS to get nodes, prioritizing high-degree nodes at the same depth bfs_nodes = [] visited = set() # Store (node, depth, degree) in the queue queue = [(node_label, 0, graph.degree(node_label))] # Modified breadth-first search with degree-based prioritization while queue and len(bfs_nodes) < max_nodes: # Get the current depth from the first node in queue current_depth = queue[0][1] # Collect all nodes at the current depth current_level_nodes = [] while queue and queue[0][1] == current_depth: current_level_nodes.append(queue.pop(0)) # Sort nodes at current depth by degree (highest first) current_level_nodes.sort(key=lambda x: x[2], reverse=True) # Process all nodes at current depth in order of degree for current_node, depth, degree in current_level_nodes: if current_node not in visited: visited.add(current_node) bfs_nodes.append(current_node) # Only explore neighbors if we haven't reached max_depth if depth < max_depth: # Add neighbor nodes to queue with incremented depth neighbors = list(graph.neighbors(current_node)) # Filter out already visited neighbors unvisited_neighbors = [ n for n in neighbors if n not in visited ] # Add neighbors to the queue with their degrees for neighbor in unvisited_neighbors: neighbor_degree = graph.degree(neighbor) queue.append((neighbor, depth + 1, neighbor_degree)) # Check if we've reached max_nodes if len(bfs_nodes) >= max_nodes: break # Check if graph is truncated - if we still have nodes in the queue # and we've reached max_nodes, then the graph is truncated if queue and len(bfs_nodes) >= max_nodes: result.is_truncated = True logger.info( f"Graph truncated: breadth-first search limited to {max_nodes} nodes" ) # Create subgraph with BFS discovered nodes subgraph = graph.subgraph(bfs_nodes) # Add nodes to result seen_nodes = set() seen_edges = set() for node in subgraph.nodes(): if str(node) in seen_nodes: continue node_data = dict(subgraph.nodes[node]) # Get entity_type as labels labels = [] if "entity_type" in node_data: if isinstance(node_data["entity_type"], list): labels.extend(node_data["entity_type"]) else: labels.append(node_data["entity_type"]) # Create node with properties node_properties = {k: v for k, v in node_data.items()} result.nodes.append( KnowledgeGraphNode( id=str(node), labels=[str(node)], properties=node_properties ) ) seen_nodes.add(str(node)) # Add edges to result for edge in subgraph.edges(): source, target = edge # Esure unique edge_id for undirect graph if str(source) > str(target): source, target = target, source edge_id = f"{source}-{target}" if edge_id in seen_edges: continue edge_data = dict(subgraph.edges[edge]) # Create edge with complete information result.edges.append( KnowledgeGraphEdge( id=edge_id, type="DIRECTED", source=str(source), target=str(target), properties=edge_data, ) ) seen_edges.add(edge_id) logger.info( f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}" ) return result async def index_done_callback(self) -> bool: """Save data to disk""" async with self._storage_lock: # Check if storage was updated by another process if self.storage_updated.value: # Storage was updated by another process, reload data instead of saving logger.info( f"Graph for {self.namespace} was updated by another process, reloading..." ) self._graph = ( NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph() ) # Reset update flag self.storage_updated.value = False return False # Return error # Acquire lock and perform persistence async with self._storage_lock: try: # Save data to disk NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file) # Notify other processes that data has been updated await set_all_update_flags(self.namespace) # Reset own update flag to avoid self-reloading self.storage_updated.value = False return True # Return success except Exception as e: logger.error(f"Error saving graph for {self.namespace}: {e}") return False # Return error return True async def drop(self) -> dict[str, str]: """Drop all graph data from storage and clean up resources This method will: 1. Remove the graph storage file if it exists 2. Reset the graph to an empty state 3. Update flags to notify other processes 4. Changes is persisted to disk immediately Returns: dict[str, str]: Operation status and message - On success: {"status": "success", "message": "data dropped"} - On failure: {"status": "error", "message": ""} """ try: async with self._storage_lock: # delete _client_file_name if os.path.exists(self._graphml_xml_file): os.remove(self._graphml_xml_file) self._graph = nx.Graph() # Notify other processes that data has been updated await set_all_update_flags(self.namespace) # Reset own update flag to avoid self-reloading self.storage_updated.value = False logger.info( f"Process {os.getpid()} drop graph {self.namespace} (file:{self._graphml_xml_file})" ) return {"status": "success", "message": "data dropped"} except Exception as e: logger.error(f"Error dropping graph {self.namespace}: {e}") return {"status": "error", "message": str(e)}