【题型】不定项选择 【题文】如图所示,固定斜面倾角为*θ*,整个斜面分为*AB*、*BC*两段,*AB*=2*BC*.小物块*P*(可视为质点)与*AB*、*BC*两段斜面间的动摩擦因数分别为*μ*~1~、*μ*~2~.已知*P*由静止开始从*A*点释放,恰好能滑动到*C*点而停下,那么*θ*、*μ*~1~、*μ*~2~间应满足的关系是(  ) ![5-40.tif](../static/Images/85927c7b95a747f9bef65fd67117d66a/media/image1.png){width="0.9847222222222223in" height="0.6979166666666666in"}A.$tan\theta\text{=}\frac{\mu_{1} + 2\mu_{2}}{3}$ B.$tan\theta\text{=}\frac{2\mu_{1} + \mu_{2}}{3}$ C.$tan\theta\text{=}2\mu_{1} - \mu_{2}$ D.$tan\theta\text{=}2\mu_{2} - \mu_{1}$ 【答案】 B 【解析】设斜面的长度为*l*,小物块从斜面顶端下滑到斜面底端的全过程由动能定理得: $$mglsin\theta\text{-}\mu_{1}mg\frac{2l}{3}cos\theta\text{-}\mu_{2}mg\frac{l}{3}cos\theta\text{=}0$$ 解得$tan\theta\text{=}\frac{2\mu_{1} + \mu_{2}}{3}$,故B正确. 【知识点】动能定理 【难度】中