{"embedding_dim": 1024, "data": [{"__id__": "chunk-e15a8691957b59dd3670b6c8aa37636f", "__created_at__": 1753081898, "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](staticImages2de1bec230364d37980883db08c4d2cbmediaimage1.png)", "full_doc_id": "Chemistry.docx", "file_path": "Chemistry.docx"}, {"__id__": "chunk-1bbe46b1ac958d6bf8fe8d73558362fb", "__created_at__": 1753082046, "content": "长春市2025年中考各批次录取最低控制线确定如下:\n第一批次城区普通高中 689分\n第二批次城区普通高中 590分\n第三批次城区普通高中 573分\n中等职业学校的综合高中班录取不低于第三批次城区普通高中最低控制线下60分。\n来源:长春市教育考试院", "full_doc_id": "ChangChun.docx", "file_path": "ChangChun.docx"}], "matrix": "0D3hPNegCz2ACjG9J/yeuYjlkrwXdnG9mZsdPWQhBD11fxU8ibVDvBZWM72aKxm9tPQHuygsNTjHYv88o2YnvN/bGbxk2Sm8Qx1OPC/nn7xvJFe8TMjgPNnY1LpBVQk9m2vOPM5FBryTIGi8AyAFvaP2Ij2sgb48kYBNu1MLFL1KiKu92Ogsvb0vljwW9k086HYNOQ77dL121w692Cgbu/TpZD1KkJe94FMKPfyE2LyrYYA81jCHOwQwpLwE8DW9vd+IvGTpAb0f8e28yIJ2ux4ZCj1uxCq8BUDDu9C9vTyHBYq9ZjnWvGZZzb0EgDG8ZRkYOh5pFz2SUDe9ODKGvJqbnbzpPgs981lpPTDHqDyi/o68+9wKvcZyEL3Gwh09XA6gO1wOIL0GgPi8U0MWu0H9Dzy0jDa9BUDDPKM22DyaYxs8DYupux4RHr05cjs84vPrO21Ehz0NSzs8QXUAPSCh4LpuBBm9DTtjvB4hvTz7nBy9kjBAvGVpJboeIb28Q/1WvR6pBT2IFam8HfGmuhYGJj0F0L67HakFO7zXnLv7FA29OZIyvZkTDrwE0D48Qh3OPFy+Er2Jha08eM9pO8WipjwDEC09XT79OifcJ7z8hNi88mnBvOHzJDxB3Ri9gFq+PFzeCbz9JHM9SjievMfyMzzYiMe8zkUGPOCztjrzScq8/ZR3O3WfjLvqHtu8UwMovS/HqLtdPra7rFHvuhW+hLtLKMY8bxR/PR3xpr0eER49iKWkPEuI8jxM2P+8Xe7vPKuhtb1lKbc7BDCkvHcnnDxudJ0840P5uzpSRLwwhzo8Qh3OOs8FGLxD/VY9eB/3uZpbrzzr3my9BXBZvQSAsbtTYw08HhEevPvkvbx2L4g8xhqXvazxwrvoxho9H9EvvVODBL05QiU9TGj7u4lV3roy5+a7gLrqvGUptzzzSco90Y3uPPLRkjtKYIG8VIPLvK2R3bw4Moa76l5JvfSZVz3h8yQ9KCw1vEFNHbzprg+84KsDPRaGybuhjgq98lmivIglSD2Z+wI94NMtvSdMrDzgqwO74HOBvJEIFrys0Us7DOsOPfvkvbw4woG8tNzDOuHTLTyAuiO9N0oRvc9NuburkRa9tNzDPDGHOr3QzVy9kZiRPMVahbwpTHM9TAhPPNiIR72AKu87/GRhvathgLzz2cU88lkiPNmY5jmY24s9L7eJva6h/DryKQw9DXvRPM+Vkzwe+RK9eA/YPOHDVT2rMTG9iKUkPXmP+7yuwfM76h7bPIC6I7zy6R29kjBAPK3h6ryt0cs7Kbz3PLXcQ71LKEY914gAPQRwEj0wXxC9m+txvdj4Sz21fF470H3PvPw0Sz0fIb09OMKBvEPd37swV6S7mitgvWzsDb29LxY9xzJpPeHTLbtUcyw9ILH/uR8x3LytoXy7L1ckPX86ADxcDiA9tXxePG1Ehzxk2Sm8xuKUOzA3LbyuwXM8XO6ovDryXjwv1wA+MM8UPbUsUT2ktns7iF0DPUvYOLyAKqg8JgSLvUGNi70vxyg8C5OVOmaZuzzGOg69o1bPu386Rz1m6Ug8S5jKvPLREj1kOQ+8Qk0dvlwOIL3z2UU8gfrYPMbCHbw6wsg8+yQsvARgurxLaLS8VOMwvRW2mL1cLhe9W4aQuwxDCL29N0k8U9ORPDtCbLuae6Y8/FRCPV3eULx3b728FqbAu5orGT0Niym6AyCFvGVxET0wz5S7/WThuzE39LwgMVy8J/yevXf/OL3YCCQ8kbAcvEINr7t3X567FgYmvazho7qa66o8vgezvG18iT3iM1o99OnkvEuoIrw6Ela8gCooPVPzCD36RKM8U1M1vC9HhbwXtt88gCqou5LgMr0GMOs8S4jyvJoLojw5kjI8OXI7PTE39LxLqKK7ZOkBPXaPNL3PPWE8f2oWvUpgATqJ9TE7fzoAPGa5eboWxrc8OYKTvPJhDj3XEBA90d37PInl2TuKFfC8DMuXPaL+jr1VY1S8bXwJPdho0L2ibhO6moOSO+Lz6zvYSFk8bXwJO5EAqjw6Eta8FpahvGZ5xDy1XGc+f4qNO1zuqDxchhC917gWvDm6Fb21fN47OYKTPK1BULwFQEM84cPVvL/X4zxTIx89Fsa3uzmCE7u1PPA8BOAWvG9Ezjzg+xA9FhZFvPTJbbtkAY04pNbyPOsuejyj9qK8VUNdvJlrB7050iA9xiLKPPwENb29Lxa82ch8PFSjwjsoHF28m0vXvEKtyTysAWK7rDGxuyYEiz3hgyC9iAXROjDXx7y1XGe8ODKGu3+KDT0v14C80Y1uvEEtprzHIko9FrZfvKJGsLlk2Sk8U7uGvA0rxLzygYW8mnsmuTlyu7x2144516g+vYB6NT1laaW76S4zvL1PDTyIxZu8J4yavLTUkLxt7A26yGJ/vaOGHj20bD89beyNu8YyIj3h40y8VlN8PS9XpDxTU7U8dz+nPF1+az0wx6i8ZgnAu6PWK73ZmGa8H5FBvPw0yzvyuQc8SgiIuSecuTtLyOC7o96XvLzXnDya85a8ea9yPGPpAbnZ+Eu8rNFLPB2BojwW1la8MsdvO2aZO71mCUA96u5EPeluoTvQDUu6olYIvCdMrD0W1la8Xc54vDoC/jutsdS8U5OjO3f/uLx29wU9SpCXvC/XgDzfaxU9bpTbPBQOkjtkyQo9ZdkpvdkoYj2+N8m8tFygPJsbQTyktnu7ZlnNPB8R5bxCLW28iF2Du3mP+zw64j89z51GvFXjd7xLuEG9ZlnNPGY51jzGwh08KWxqPYBK5rsDsAA9k+B5PKwROr3Z2FQ8m6u8uwxLO73P3bQ8kSAhPCdsIzzGAtM8f0ofvNANyzyAuqM8XK46u1zeCT05uhW9W24FPCgsNbwwZ0O8buShvL2XLr0n7Ma6gOo5POFTUbvyWSK9kWAPPL43yTzZeO+8rMEsPbT8uj3hQzI9z709vQ170Ttk2Sm8dtcOvev+YzxMeNM8ZFkGPWbZ8LyZy7O8tAwTvJnLsz3qbug8toz9PGQhBLzg+xA9AzgQPLYM2jz7hBG9+/TcvKtZFD1D7f676QaJuwag7z2iVgi9kLiIvHhfZT3Z6HO84jNaPXdvPTyIVRc9ZSm3vM49Gj3PvT08J0wsPbVMSD2SUP68d39cvR2Bojxdbsy8F1Z6OnZfHjzobiE8f0ofvZKwY72JtcO7vW+EvBaGybx/4gY9mnsmPXd/3Lzgww69+rSnPOkeFLs5glq7TDjlvDDXx7yIrRA9mNsLvW7kIb13HzC9KBzdu0O9aDrpLrO82EhZPDA/mTxM2P88xoIvPc4NhDxlURo9kQAqPB8x3Lys4aM78rmHux6pBT2/Z988osaMvPK5BzwNqyC9krDjPGVRmjxbpgc8KYzhvJGQpbwNq+c8ZPmgvGU5VjzgGwg7DXtRu7WMNruAuqO7F7bfOX+iGL0W9s26iTVnPQ2byLzrHlu8blSmvYkVcDof0fY8BVBiOtjoLL05QqW8Xa66O/q0pzwO2/282LjdvAzTgzwNe1G8O5J5vFObjzwMQwi94PsQvZGwHDzYWDE9Dtv9u2+00rxCfbM5vNccvCYkAj3fw467dZ8Mvfq8E7zWuBa9o9arvFQzPj2kBkI8kbgIuw0b7LzP7VM68vm8Oq0hWbhmufm7F7ZfvYjNh7z0CVy94hPjvEHlBL3HYri7QcUNPZv7Sbh2Xx69xaKmvDE39Ly0nA69JnQPvAaA+DxeDmc8ziWPPYflErwe2Rs8ivX4vJnDAL1Effq8z40nvR7xpjy07Ju8DKugPDf6g7t4D1i8kSAhvXdfZTxniWM89MntvHmP+7s54j+8zx0jPS8Pg70Mewo9iI0ZvR6BIj0xB169v4dWuygstb0VFsU9d1+euzqi0TyACjE8L1ckvciC9juYawe8rMGsPKyBvjxvdOS7tHyXvB45ATyS4Pm8ZglAvVVDXTyIzYc8ZMkKPcbiWzxnaew8idW6vPIpU7z0eeA6pNZyvKO2ND0NOxy6J0ysOy/nnzzyacG8FpZovX+qSzyk9mk8xaImvCfcJ71VU/w82YhHux5RjDsx9768XE4OPKRG97zpXoK8eJ/TvPKJuLtv9MA8pNbyvB6Jjjzg+xA9ZtnwPGX5IDsxV+u8ef9/uwQwpLzr/mM8tEwBvuKD57p4T8a81/AYvEKNUjzaeG884YOgvMbSvDzG4pQ5+yQsvCZ0Dzx2h4G8eB/3O9ANy7zGwh08z31PPLTUkDsxp3g7HRGePL1PjTtcFgw6C3uKvCdsI7ykRve84XNIPB8hvTtkkQi7dx+wvDBXJDwW1lY8L9cAPenGmjx+MhQ8QU2dPJv7STyRkCU9BqBvPFMjn7plOVa8vtdjPFMjHz1CvaG7MMeovOpO8Tqi5oM8Qb2hvNkoYr3qzk296e7EukroEL1uVKa8DTtju4DqOTzFips8DitEvJCAhjw6YuO8H2FyvC+3ib3Z6HO8S0g9vZHwCjy2jP28ZvnnvPucnLsPi/C7kdATvVx+JD1lGV88xxLyvKS2e7zyaUE9HkE0PM+VE7wFIMw8v2ffvJNAX7wN+6076r71vDgyBjz7pM+7mnumPFUj5rwwXxA8eA9YPJJQN73qXkm9vifxOwTAHzxcZpk8thz5vJpbL73XaAm90R3qu+EjO70P+/S7q1GoOyjsxjzYeKi7pHZGvJvLejs5krI6m+txvK0x+Lq+F9K82RhDPRd28Two7EY8FS6JPfOpdrrsnn674GsVvDniP7wULok8kpBsvGdpbDtvtNI8TNj/vEtoNDpMOGU7o+bKvAxLu7xLiKu8AuiCvB7RrzyscR+6v4dWPAQwJL0wdxu8idU6PWYJwLz0qfa8MsdvOkKN0jzyiTg8rHGfvKOG5bxcvhI9QW0UvWY51rzRjW48gdrhus7VgTvp3iW8iDUgPOq+rrx2R5M8rjH4PF3eUDzpXgK8rOEjvCgsNTxVU/y7tOybPUPt/rx4v0o9ZCGEu6NWT70DOBC9z3WcPOHDVbyjFhq9ZJEIvBW+hDxvxPE7kWCPPNkYQ7zxSYM8gAqxO4J6/Dvpxho8JiSCPIBavjrqnje9tGw/PYglyLvO7Qw9xtK8vGZ5RD2ibhM8Maf4PJlrhz0x5+Y86JYEO/0k87vh86Q9movFPDA3rbzp3iU9Dmv5PG5UJjzXuJa7KJy5vHjvYLw6Mk09b8RxPOAzkzwfkUG8W4aQuoDquTzig2e9f6oEPSfcp7woDD684UOyu0rokL3p7sQ8Q+3+vDj6g7zGgi89DAsGvZnLs7xTA6g8S2g0PNkYQ7sn/B699HngOkMN9rzgG4g9MldrvYp11Tz7VMI8TFjcO6xxZjzhc0g8L7cJvdeIAL04Kpo8HnGDO4gFUbsDIAW94XNIvfwkczs5crs6musqPathgDw5QiW9S+jXO/P5vDy+t2w8mcMAPG0MBT0f0S88gfpYPPEqBb3H2F86AEDru91WhrzI9CQ8g2/yu7HHb7yK6sU8BIUhvIA51TwC6pK8hgWaO1uFnDo+Skq7YHd0vOaNlDyTf/G8R9/1vD5Kyju+Igi987b6vPz8IT3X6N47sZkXPSlpHzwdWhE7s8IIPIVqC7yqrCa7u8nRPW96R73/Mj+9H4OCPXNf87yOz/G75jyjvAaf+Tyg+zW9UHYOvQjIaj0nzhA8SwOAPPjGhDyqrKY8WFwrPASFobs8IVm9qv2XvL1QYDxZmZy8HtlavF9JnDyMZKg8v70WvYy1GT0MDSE8U/2cPGfyR7wlA728OxQtvJntmLzeQgY9f4rGPLv5Fr3m6zE9VjM6vNbbMj0rYss8QBWevGyiR73fwU+847WUPU6KjrzN9RW7XOM5vfw5EzzWLCQ93BmVPM7hFT3KDn080HykOz6bO73ZQRU7aL0bO7GZl72HEsY86FZ7PR/1nzwyjK08iYwoPczZUL26vKW7hTrGu9hVlbyGBZo8qqymvF4Mq7w3jR486XJAPcEoYL1nUGU6K+MBvMKVFj3kcc881znQvCEeET1qKOU8r62XvNW/7TuMZCi8JEcCvcNEJTsWUVs8lldxvN4Swbz/Mr+7gQSpvEzgZrz9Z2s9GMu9vHulGj3Xl208wPoHPcPzM722asM86iHPvBmH+DoL8ds8ismZvITcKDoQUGq8tE5+PEidnbzuc7E83VYGvYJBGjs+KZ66HcyuvB+krjvjtRS9hNwoPeO1lLxQ1Cu8ozHTu7cmfj1HMOc7tQwmPHRaDLwf9R89H6Quvei2BTzsSkA9PvlYPcpuB70ti7w66cMxu+DO+zxDS7u8TIJJvbYZUj1Oqzq9f4pGPez5zrvtV2y8aP/zPJfEJztAxCw8xilRPYfxGbzlz+y8G1LMPL2UJbxs87i8LG93PHIdG73pwzE8+XUTPbq8pTuVSsW83BmVOw3JWzr64Ny7GwFbvMHKQjzYRvy8S3WdPAH+ErsrYss7knJFPA1rvrwTN4O8fywpPcvMpDw78wA9hTrGPC7pWbvKbgc7PeysvbSf7zzR2kG9s5JDOkBzu7zFvoe8PnqPveDdFL0xwVk82UGVvPuehLqKGos6E3lbvVEySb3MiF+7RiO7vK/+iD34t+u7s5JDO+mihTwQoVu90CszPTlJ2Ty7GkM5f4rGPHNfc7zO4RW9QMSsvMejMzz3iZM9h/EZu4Xp1Dwxwdm8Ppu7PLZqQz1hk7m8sOqIOyk5Wjyu7++6KTlavERY5zxubZu8HtnaOwrkLzwSysy76n/sO71Q4LxBUo+76KdsvJ0CijsDx/k5Fq94vPadk7xBgOe7aWwqPEP6ybwuahA9I4lau0FSD7x4Hgy9VjM6vDsULb27+ZY88ZyivGB39Lwp6Oi8bKJHPDCTAT1wlgw9ozHTPKiDtby+8sK7Tqu6vD4pnrtKCGe8veUWPZ4wYjzafga7vDYIvVDUK73W2zK8xABgPYCXcryfnRi8tbs0PBPX+DwFks272bOyPGzzuLsyLpC8HG4RvQpCTT3OMoe8rMZ+OzoHAb3jtZQ99p2TvALqkjvM2VC8zuGVPEOcLL4paR89e6UaO8hFFr2KGgu8l4BivCI4ab24kzQ8xzb9vBZRWz1AxCy52h78vLhCwzwBrSE9VdWcu6VaRDoK5K886lGUPEMqjzvTVCS9vw4IvU78K70HDLA7VRd1vTF/gbyV+dM7Tqs6Paa44Tt29Zo8sWlSvSn3gb1EB3Y8Bp/5uwfrg7sFwhI9KZd3utYsJLxLdZ29xb4HPHdTuLz/Mj89pE2YPCgsrjsnzhA7HB2gOwVBXDyZ3n889TBdPf4lk7zkwkA8TlrJvHex1bv32gQ82y2VPPqCv7y1DKY8DWu+O6pbNT07oo88Qo8APZvZmLwHXaG9Q5ysvEIv9ry5oGC90vaGvNHaQT1XQOa8rpHSvKcWf73FHCU8U6wrPfGcIj3iBga7TLKOvOGZzzqO3gq8aMpHvJwWCr1GUwC+aWwqPUAVHjwPlC+8qGIJPct7M71Rgzq9vUO0vABPBL1Qdo48dTdzPoqZVL2JjCi9ipnUvJG2CrxnodY8XOO5vNEKB7zRCoc7JTOCPEEiyrz9uFw8HauCvFTpHDyLBgs9qe7+PJZX8Tzs+c487CkUPVFiDrkumOg8bPM4PJpLNj0QUOq6kPjivMsqQrx84os8rBdwPCVULr350zC7t3fvvPqCPzzdR208hTpGvS2LvD1ckki8/KuwPOTCwLxTrCs92bMyPXgP8zs2cdm81+hevNYsJL11CZs8o2EYvK/+CL3yqc68v/9uuzfej7y8J++8g29yvUOcrLxuHCq8zeZ8u4ndmbyrCkQ7O/OAvZao4rwGrhI8UCWdu6SPcLxJ2g49tPDgvL2UJbz9uFy9NqEevLbIYDzGyzM9IgoRvGi9mzsifK68y3uzusAbNLsYqpE9K5IQPEfuDj2Vego9tpqIvMhFFr3DokK9Fq/4vHo45Lx5K7g85/hdPMW+BzsnzpA99kyiO62Epjyp7n68ZyINOr6hUTwhD/i8SyQsO5qcpzswY7w7aWwqvM7hlbsaoz29DA0hPSI46byHEka7V+/0vPeqvzxcQdc8a5UbvXIxm7sa9K48jaEZvFUmjrwP5aC9y8ykPGvmDLzWuga9MR93vLsawzwtizw9tJ/vvMijsz2HH3I8DA0hvHH0qTywCzU66+wiPNG5lTvGqoc8tpqIPPFLsbvtZoW9n0ynPEYju7pEWOe8O3LKvGdQZb3NpCS9eGBkvGi9Gz0jOOm53Udtu9TiBr0yLpC8HB2gvK0ztTxbNKs8RgIPvPuP6zzcGRU9caM4vExhnbqGBRo9MJOBu1EyyTzl3oU9FSODvKgyRLu0roi8XJJIvJCaRbyaS7Y8/2IEPLkhl7z8Z2u8/IoEPCgsLj1uvgw8mS/xPBYA6jxrRCo9ZSf0vN4SQb3HNn29+LfruxSVoLxYade8SarJvDPqyrxbNKu9/bjcvGFCyDzxnKI8EyjqPBxuEb2DwOO7S9O6vLI0Jj2Bpgu9WP6NvPuP67vD87M9n47/uzZx2bz3iZM9qT/wPN60o7w2oR69Z6FWPXU38ztoDg28ym6HvPz8obuVeoq8RAf2u1aEqzwdKky9B10hO8PShzuzcZc8z778PPFLMb3pcsC7V8EcPHzii7zYpoY7QVKPOw4neTyIwVS8nSM2O1hcq7zPD+68d+EaPH2RGj1T/Ry8zDfuPLkhl7zjtRS9YZM5PPJYXT0Akdy7vUO0O6wmiTsNyds7MoytOztySj0MvK86vtGWvIKSCzx12dW8D5QvPUoXAD1ovRu7/bhcu/Xf6zwXHC+8McHZPKfhUrw/V3Y983QivW+qDD3/4U09TvwrPZ2B0ztX73S9/bhcPQ4n+TwURC+9dMwpOw6HA720n+88Z1DlO4PAYzyF6dS8McHZvOybsbwtizw8aL0bveuOBb6KO7c7MXBovdLnbbwNNhK9vSIIOqpbNTxnUOW8mpwnvZvZGD3lz2w8PN+Au0ZTgLraHvw8fOKLvVhcK7zEAOA7qqwmPP9ihLt1CRu6gmJGvFUX9btyMZs8lfnTvBiqkTv64Nw7H0aRvEhMrLwJd/k8GHpMuzl5Hj0Huz68ZiKNvaCqRL1I+zo9WbrIvEyCSbzztno7CkLNPA4nebwiOGm9ksO2PJBJVD2q/Re9YqBlvNxqBj3vARS9hxJGvB17PTw1Q4E78gdsPFAlnTw3L4E8k39xPLALNTtUaOY8DTYSva2EJj39Cc68NPd2vLsaQz3nygW9ksO2u01NHbzPYN88lPlTveV+ezyZL3E8o+BhvHv2C71jDRy9fWFVvMKG/TygiRg9br6MO3XZ1TzYRny94M57PObrsTvYpgY9afoMvQ9zAz1DZ4C6U/0cvFySyDzLe7O8ZpSqvM4eBzxPZ/U8LM+BPAcMsLtckki9kWWZPDvzgDwWr3i8IOEfvQiakruVSkW7IWBpPbm8pb0qphC9qe7+PK3Bl7y6vCU9afqMPCWySzw8IVk9AVwwPLtrtDzsBns8KNs8PRG9ILsgMhG91zlQPfLZk7xNng69Mzu8u3GjuLy2asM7lOwnvKvplzxaGOa84IyjPJBJ1DxWEg68EFDqu/QCBb3EAGC94N0Uve1X7L1Rg7o7yKMzvaJ1GLxsoke84RqGvCIrPb2//267wXnRPGV45TpVF3U8fOILvJup0zzx+j+7ec0aPTNrgT2og7U6YeSqPP7UobsQ8kw9etrGvLjkJbpeu7k9KqYQvKsKxLxzbgy91opBvAfrAzqFmOM7u8lRvfN0oj2CYka8XgyrPNSywTye7om7Ef94PRXzPTzsKZS8GKoRPXGjOLwGn3k8I9pLOkHR2LzJsF86DUoSvYWY4zzFHCU9obfwvGlsKrz7TZM8qzoJvLKFl7yU+VO9wBu0PEGA5zx79gs91iykvNzpT70P5SA9mIDiPPyKBL2qrKY7qE4JvQI7hDyHYze83mMyPdmShjuHY7e7IwoRvT09nrvXOVC9aA6NPIVqC7idgdO8Iiu9vCJbAjwwQpA7fAM4vQtP+bkWvhG9iurFPGB39LtpG7m7ddlVva0SiT1n0Zu9dqSpO19qSDttgRu9xnrCvModFr28J++8e/aLvE5aSTzpckC9ozHTu67v7zyQSdQ8PsuAPFeR17s97Cw9Z/JHu/H6Pzxr13O8/bjcOwrkrzxm5Zs8uSEXvfaO+jsgAky87HoFPR2XAjz00r+6bhwqvWTJVr3rjoU8NPd2PFySSDwL8du8M+rKvIe0KL23QkM8NEjoPLOSQ7xD+sm8FSODvRjLPT0784C7K5IQPcLmhzsGn/m7MGM8vZqcJz3nSU898D4FPOfKhTwz6kq9aWyqPDjKD7wR/3i9cUWbvP4WejtLJCw9O8O7vS3cLT0IGdw8EV8DPNV9FT0dzK46u0qIvP1n6zxkyVa8Qu2dvH1hVbuTURm9WzSrPP05k7xDS7u7vw4IPd1H7bp0zCk9/IqEvF9JHDuNoRm7N94PPVS51zzBKGA88C/sOv1nazus1Re9WbpIO/7UoTx8Azi81X2VPYKzN7wizZ88ch0bPUgrgLtrRKq8h0KLuw1rPjxlNg09mT4KPWU2jTxZmRw8qe5+PBBQajzcmF49snZ+vI4gY7tH7o684Tsyu/kkojylq7W8Z6HWPDPqSrmcxRi8Qo8APAddIbzn+N08HasCPX8sqTw/qGe8HXu9OiWySzxk+Ru8ug2XPEj7urzxnCK9NWStvBNEL7wvVhC9iwaLPNp+Bj2Dfgs7gOjjOvyrMD16OOQ8NqEePXxUqbtcksg8BvDqPJqcJ7zVfRU8xnpCu7hCw7yxx++7BUHcvNw6QbzkEzK95KGUPMmw37yfjn88fFSpOxwdoDyZ3v88y8ykvCO5Hz3R2sG7aP/zvN8fbTxWhCu82KaGPSxvd7w="}