|
|
|
@ -1,12 +1,20 @@
|
|
|
|
|
# 安装向量化的包
|
|
|
|
|
# conda activate rag
|
|
|
|
|
# 断开VPN后执行安装包
|
|
|
|
|
# pip install text2vec
|
|
|
|
|
'''
|
|
|
|
|
# 安装向量化的包 (# 断开VPN后执行安装包)
|
|
|
|
|
conda activate rag
|
|
|
|
|
pip install text2vec torch torchvision torchaudio
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from text2vec import SentenceModel
|
|
|
|
|
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
|
|
|
|
'''
|
|
|
|
|
- 自动下载预训练模型到缓存目录(通常是 ~/.cache/huggingface/hub )
|
|
|
|
|
- 后续运行会直接使用缓存
|
|
|
|
|
|
|
|
|
|
如果下载慢,可以设置镜像源:
|
|
|
|
|
import os
|
|
|
|
|
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
|
|
|
|
'''
|
|
|
|
|
model = SentenceModel('shibing624/text2vec-base-chinese')
|
|
|
|
|
embeddings = model.encode(sentences)
|
|
|
|
|
print(embeddings)
|