|
|
|
@ -1,24 +1,6 @@
|
|
|
|
|
import logging
|
|
|
|
|
import os
|
|
|
|
|
import subprocess
|
|
|
|
|
import tempfile
|
|
|
|
|
import urllib.parse
|
|
|
|
|
import uuid
|
|
|
|
|
from io import BytesIO
|
|
|
|
|
from logging.handlers import RotatingFileHandler
|
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
|
|
import uvicorn
|
|
|
|
|
from fastapi import FastAPI, Request, HTTPException
|
|
|
|
|
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
from starlette.responses import StreamingResponse
|
|
|
|
|
|
|
|
|
|
from Config.Config import ES_CONFIG
|
|
|
|
|
import warnings
|
|
|
|
|
from Util.ALiYunUtil import ALiYunUtil
|
|
|
|
|
from Util.EsSearchUtil import EsSearchUtil
|
|
|
|
|
|
|
|
|
|
from Util.SearchUtil import *
|
|
|
|
|
# 初始化日志
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
logger.setLevel(logging.INFO)
|
|
|
|
@ -42,10 +24,6 @@ logger.addHandler(file_handler)
|
|
|
|
|
logger.addHandler(console_handler)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 将HTML文件转换为Word文件
|
|
|
|
|
def html_to_word_pandoc(html_file, output_file):
|
|
|
|
|
subprocess.run(['pandoc', html_file, '-o', output_file])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def lifespan(app: FastAPI):
|
|
|
|
|
# 初始化阿里云大模型工具
|
|
|
|
@ -63,15 +41,6 @@ app = FastAPI(lifespan=lifespan)
|
|
|
|
|
app.mount("/static", StaticFiles(directory="Static"), name="static")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class QueryRequest(BaseModel):
|
|
|
|
|
query: str = Field(..., description="用户查询的问题")
|
|
|
|
|
documents: List[str] = Field(..., description="用户上传的文档")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SaveWordRequest(BaseModel):
|
|
|
|
|
html: str = Field(..., description="要保存为Word的HTML内容")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/api/save-word")
|
|
|
|
|
async def save_to_word(request: Request):
|
|
|
|
|
output_file = None
|
|
|
|
@ -122,171 +91,6 @@ async def save_to_word(request: Request):
|
|
|
|
|
logger.warning(f"Failed to clean up temp files: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def queryByEs(query, query_tags):
|
|
|
|
|
# 获取EsSearchUtil实例
|
|
|
|
|
es_search_util = EsSearchUtil(ES_CONFIG)
|
|
|
|
|
|
|
|
|
|
# 执行混合搜索
|
|
|
|
|
es_conn = es_search_util.es_pool.get_connection()
|
|
|
|
|
try:
|
|
|
|
|
# 向量搜索
|
|
|
|
|
logger.info(f"\n=== 开始执行查询 ===")
|
|
|
|
|
logger.info(f"原始查询文本: {query}")
|
|
|
|
|
logger.info(f"查询标签: {query_tags}")
|
|
|
|
|
|
|
|
|
|
logger.info("\n=== 向量搜索阶段 ===")
|
|
|
|
|
logger.info("1. 文本分词和向量化处理中...")
|
|
|
|
|
query_embedding = es_search_util.text_to_embedding(query)
|
|
|
|
|
logger.info(f"2. 生成的查询向量维度: {len(query_embedding)}")
|
|
|
|
|
logger.info(f"3. 前3维向量值: {query_embedding[:3]}")
|
|
|
|
|
|
|
|
|
|
logger.info("4. 正在执行Elasticsearch向量搜索...")
|
|
|
|
|
vector_results = es_conn.search(
|
|
|
|
|
index=ES_CONFIG['index_name'],
|
|
|
|
|
body={
|
|
|
|
|
"query": {
|
|
|
|
|
"script_score": {
|
|
|
|
|
"query": {
|
|
|
|
|
"bool": {
|
|
|
|
|
"should": [
|
|
|
|
|
{
|
|
|
|
|
"terms": {
|
|
|
|
|
"tags.tags": query_tags
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"minimum_should_match": 1
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"script": {
|
|
|
|
|
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
|
|
|
|
|
"params": {"query_vector": query_embedding}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"size": 3
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
logger.info(f"5. 向量搜索结果数量: {len(vector_results['hits']['hits'])}")
|
|
|
|
|
|
|
|
|
|
# 文本精确搜索
|
|
|
|
|
logger.info("\n=== 文本精确搜索阶段 ===")
|
|
|
|
|
logger.info("1. 正在执行Elasticsearch文本精确搜索...")
|
|
|
|
|
text_results = es_conn.search(
|
|
|
|
|
index=ES_CONFIG['index_name'],
|
|
|
|
|
body={
|
|
|
|
|
"query": {
|
|
|
|
|
"bool": {
|
|
|
|
|
"must": [
|
|
|
|
|
{
|
|
|
|
|
"match": {
|
|
|
|
|
"user_input": query
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"terms": {
|
|
|
|
|
"tags.tags": query_tags
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"size": 3
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
logger.info(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}")
|
|
|
|
|
|
|
|
|
|
# 合并结果
|
|
|
|
|
logger.info("\n=== 最终搜索结果 ===")
|
|
|
|
|
logger.info(f"向量搜索结果: {len(vector_results['hits']['hits'])}条")
|
|
|
|
|
for i, hit in enumerate(vector_results['hits']['hits'], 1):
|
|
|
|
|
logger.info(f" {i}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}")
|
|
|
|
|
logger.info(f" 内容: {hit['_source']['user_input']}")
|
|
|
|
|
|
|
|
|
|
logger.info("文本精确搜索结果:")
|
|
|
|
|
for i, hit in enumerate(text_results['hits']['hits']):
|
|
|
|
|
logger.info(f" {i + 1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}")
|
|
|
|
|
logger.info(f" 内容: {hit['_source']['user_input']}")
|
|
|
|
|
|
|
|
|
|
# 去重处理:去除vector_results和text_results中重复的user_input
|
|
|
|
|
vector_sources = [hit['_source'] for hit in vector_results['hits']['hits']]
|
|
|
|
|
text_sources = [hit['_source'] for hit in text_results['hits']['hits']]
|
|
|
|
|
|
|
|
|
|
# 构建去重后的结果
|
|
|
|
|
unique_text_sources = []
|
|
|
|
|
text_user_inputs = set()
|
|
|
|
|
|
|
|
|
|
# 先处理text_results,保留所有
|
|
|
|
|
for source in text_sources:
|
|
|
|
|
text_user_inputs.add(source['user_input'])
|
|
|
|
|
unique_text_sources.append(source)
|
|
|
|
|
|
|
|
|
|
# 处理vector_results,只保留不在text_results中的
|
|
|
|
|
unique_vector_sources = []
|
|
|
|
|
for source in vector_sources:
|
|
|
|
|
if source['user_input'] not in text_user_inputs:
|
|
|
|
|
unique_vector_sources.append(source)
|
|
|
|
|
|
|
|
|
|
# 计算优化掉的记录数量和节约的tokens
|
|
|
|
|
removed_count = len(vector_sources) - len(unique_vector_sources)
|
|
|
|
|
saved_tokens = sum(len(source['user_input']) for source in vector_sources
|
|
|
|
|
if source['user_input'] in text_user_inputs)
|
|
|
|
|
|
|
|
|
|
logger.info(f"优化掉 {removed_count} 条重复记录,节约约 {saved_tokens} tokens")
|
|
|
|
|
|
|
|
|
|
search_results = {
|
|
|
|
|
"vector_results": unique_vector_sources,
|
|
|
|
|
"text_results": unique_text_sources
|
|
|
|
|
}
|
|
|
|
|
return search_results
|
|
|
|
|
finally:
|
|
|
|
|
es_search_util.es_pool.release_connection(es_conn)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def callLLM(request, query, search_results):
|
|
|
|
|
# 调用阿里云大模型整合结果
|
|
|
|
|
aliyun_util = request.app.state.aliyun_util
|
|
|
|
|
|
|
|
|
|
# 构建提示词
|
|
|
|
|
context = "\n".join([
|
|
|
|
|
f"结果{i + 1}: {res['tags']['full_content']}"
|
|
|
|
|
for i, res in enumerate(search_results['vector_results'] + search_results['text_results'])
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
# 添加图片识别提示
|
|
|
|
|
prompt = f"""
|
|
|
|
|
信息检索与回答助手
|
|
|
|
|
根据以下关于'{query}'的相关信息:
|
|
|
|
|
|
|
|
|
|
基本信息
|
|
|
|
|
- 语言: 中文
|
|
|
|
|
- 描述: 根据提供的材料检索信息并回答问题
|
|
|
|
|
- 特点: 快速准确提取关键信息,清晰简洁地回答
|
|
|
|
|
|
|
|
|
|
相关信息
|
|
|
|
|
{context}
|
|
|
|
|
|
|
|
|
|
回答要求
|
|
|
|
|
1. 严格保持原文中图片与上下文的顺序关系,确保语义相关性
|
|
|
|
|
2. 图片引用使用Markdown格式: 
|
|
|
|
|
3. 使用Markdown格式返回,包含适当的标题、列表和代码块
|
|
|
|
|
4. 对于提供Latex公式的内容,尽量保留Latex公式
|
|
|
|
|
5. 直接返回Markdown内容,不要包含额外解释或说明
|
|
|
|
|
6. 依托给定的资料,快速准确地回答问题,可以添加一些额外的信息,但请勿重复内容
|
|
|
|
|
7. 如果未提供相关信息,请不要回答
|
|
|
|
|
8. 如果发现相关信息与原来的问题契合度低,也不要回答
|
|
|
|
|
9. 确保内容结构清晰,便于前端展示
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# 调用阿里云大模型
|
|
|
|
|
if len(context) > 0:
|
|
|
|
|
# 调用大模型生成回答
|
|
|
|
|
logger.info("正在调用阿里云大模型生成回答...")
|
|
|
|
|
markdown_content = aliyun_util.chat(prompt)
|
|
|
|
|
logger.info(f"调用阿里云大模型生成回答成功完成!")
|
|
|
|
|
return markdown_content
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/api/rag")
|
|
|
|
|
async def rag(request: Request):
|
|
|
|
|