'commit'
This commit is contained in:
@@ -11,7 +11,105 @@ from volcengine.base.Service import Service
|
||||
from volcengine.ServiceInfo import ServiceInfo
|
||||
from volcengine.auth.SignerV4 import SignerV4
|
||||
from volcengine.base.Request import Request
|
||||
import os
|
||||
import time
|
||||
from dotenv import load_dotenv
|
||||
from volcenginesdkarkruntime import Ark
|
||||
|
||||
def initialize_services(ak=None, sk=None, ark_api_key=None):
|
||||
"""初始化记忆数据库服务和LLM客户端"""
|
||||
load_dotenv()
|
||||
# 如果参数未提供,尝试从环境变量获取
|
||||
if not ak:
|
||||
ak = os.getenv("VOLC_ACCESSKEY")
|
||||
if not sk:
|
||||
sk = os.getenv("VOLC_SECRETKEY")
|
||||
if not ark_api_key:
|
||||
ark_api_key = os.getenv("VOLC_API_KEY")
|
||||
|
||||
if not all([ak, sk, ark_api_key]):
|
||||
raise ValueError("必须提供 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 VOLC_API_KEY。")
|
||||
|
||||
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
|
||||
llm_client = Ark(
|
||||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||||
api_key=ark_api_key,
|
||||
)
|
||||
return memory_service, llm_client
|
||||
|
||||
def ensure_collection_exists(memory_service, collection_name, description="",
|
||||
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
|
||||
builtin_entity_types=["sys_profile_v1"]):
|
||||
"""检查记忆集合是否存在,如果不存在则创建。"""
|
||||
try:
|
||||
memory_service.get_collection(collection_name)
|
||||
print(f"记忆集合 '{collection_name}' 已存在。")
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
if "collection not exist" in error_message:
|
||||
print(f"记忆集合 '{collection_name}' 未找到,正在创建...")
|
||||
try:
|
||||
memory_service.create_collection(
|
||||
collection_name=collection_name,
|
||||
description=description,
|
||||
builtin_event_types=builtin_event_types,
|
||||
builtin_entity_types=builtin_entity_types
|
||||
)
|
||||
print(f"记忆集合 '{collection_name}' 创建成功。")
|
||||
print("等待集合准备就绪...")
|
||||
except Exception as create_e:
|
||||
print(f"创建集合失败: {create_e}")
|
||||
raise
|
||||
else:
|
||||
print(f"检查集合时出错: {e}")
|
||||
raise
|
||||
|
||||
def search_relevant_memories(memory_service, collection_name, user_id, query, limit=3):
|
||||
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
|
||||
print(f"正在搜索与 '{query}' 相关的记忆...")
|
||||
retry_attempt = 0
|
||||
while True:
|
||||
try:
|
||||
filter_params = {
|
||||
"user_id": [user_id],
|
||||
"memory_type": ["sys_event_v1", "sys_profile_v1"]
|
||||
}
|
||||
response = memory_service.search_memory(
|
||||
collection_name=collection_name,
|
||||
query=query,
|
||||
filter=filter_params,
|
||||
limit=limit
|
||||
)
|
||||
|
||||
memories = []
|
||||
if response.get('data', {}).get('count', 0) > 0:
|
||||
for result in response['data']['result_list']:
|
||||
if 'memory_info' in result and result['memory_info']:
|
||||
memories.append({
|
||||
'memory_info': result['memory_info'],
|
||||
'score': result['score']
|
||||
})
|
||||
|
||||
if memories:
|
||||
if retry_attempt > 0:
|
||||
print("重试后搜索成功。")
|
||||
print(f"找到 {len(memories)} 条相关记忆:")
|
||||
for i, memory in enumerate(memories, 1):
|
||||
print(
|
||||
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
|
||||
else:
|
||||
print("未找到相关记忆。")
|
||||
return memories
|
||||
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
if "1000023" in error_message:
|
||||
retry_attempt += 1
|
||||
print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
|
||||
time.sleep(60)
|
||||
else:
|
||||
print(f"搜索记忆时出错 (不可重试): {e}")
|
||||
return []
|
||||
|
||||
class VikingDBMemoryException(Exception):
|
||||
def __init__(self, code, request_id, message=None):
|
||||
|
@@ -1,11 +1,5 @@
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from dotenv import load_dotenv
|
||||
from volcenginesdkarkruntime import Ark
|
||||
|
||||
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY, VOLC_API_KEY
|
||||
from VikingDBMemoryService import VikingDBMemoryService
|
||||
from VikingDBMemoryService import VikingDBMemoryService, initialize_services, ensure_collection_exists, search_relevant_memories
|
||||
|
||||
"""
|
||||
在记忆库准备好后,我们先模拟一段包含两轮的完整对话。
|
||||
@@ -13,96 +7,6 @@ from VikingDBMemoryService import VikingDBMemoryService
|
||||
AI 就能用刚写入的记忆来回答。
|
||||
注意:首次写入需要 3–5 分钟建立索引,这段时间内检索会报错。
|
||||
"""
|
||||
def initialize_services():
|
||||
load_dotenv()
|
||||
ak = VOLC_ACCESSKEY
|
||||
sk = VOLC_SECRETKEY
|
||||
ark_api_key = VOLC_API_KEY
|
||||
|
||||
if not all([ak, sk, ark_api_key]):
|
||||
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
|
||||
|
||||
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
|
||||
llm_client = Ark(
|
||||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||||
api_key=ark_api_key,
|
||||
)
|
||||
return memory_service, llm_client
|
||||
|
||||
|
||||
def ensure_collection_exists(memory_service, collection_name):
|
||||
"""检查记忆集合是否存在,如果不存在则创建。"""
|
||||
try:
|
||||
memory_service.get_collection(collection_name)
|
||||
print(f"记忆集合 '{collection_name}' 已存在。")
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
if "collection not exist" in error_message:
|
||||
print(f"记忆集合 '{collection_name}' 未找到,正在创建...")
|
||||
try:
|
||||
memory_service.create_collection(
|
||||
collection_name=collection_name,
|
||||
description="中文情感陪伴场景测试",
|
||||
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
|
||||
builtin_entity_types=["sys_profile_v1"]
|
||||
)
|
||||
print(f"记忆集合 '{collection_name}' 创建成功。")
|
||||
print("等待集合准备就绪...")
|
||||
except Exception as create_e:
|
||||
print(f"创建集合失败: {create_e}")
|
||||
raise
|
||||
else:
|
||||
print(f"检查集合时出错: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def search_relevant_memories(memory_service, collection_name, user_id, query):
|
||||
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
|
||||
print(f"正在搜索与 '{query}' 相关的记忆...")
|
||||
retry_attempt = 0
|
||||
while True:
|
||||
try:
|
||||
filter_params = {
|
||||
"user_id": [user_id],
|
||||
"memory_type": ["sys_event_v1", "sys_profile_v1"]
|
||||
}
|
||||
response = memory_service.search_memory(
|
||||
collection_name=collection_name,
|
||||
query=query,
|
||||
filter=filter_params,
|
||||
limit=3
|
||||
)
|
||||
|
||||
memories = []
|
||||
if response.get('data', {}).get('count', 0) > 0:
|
||||
for result in response['data']['result_list']:
|
||||
if 'memory_info' in result and result['memory_info']:
|
||||
memories.append({
|
||||
'memory_info': result['memory_info'],
|
||||
'score': result['score']
|
||||
})
|
||||
|
||||
if memories:
|
||||
if retry_attempt > 0:
|
||||
print("重试后搜索成功。")
|
||||
print(f"找到 {len(memories)} 条相关记忆:")
|
||||
for i, memory in enumerate(memories, 1):
|
||||
print(
|
||||
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
|
||||
else:
|
||||
print("未找到相关记忆。")
|
||||
return memories
|
||||
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
if "1000023" in error_message:
|
||||
retry_attempt += 1
|
||||
print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
|
||||
time.sleep(60)
|
||||
else:
|
||||
print(f"搜索记忆时出错 (不可重试): {e}")
|
||||
return []
|
||||
|
||||
|
||||
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
||||
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
||||
@@ -139,7 +43,6 @@ def handle_conversation_turn(memory_service, llm_client, collection_name, user_i
|
||||
])
|
||||
return assistant_reply
|
||||
|
||||
|
||||
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
||||
"""将对话历史归档到记忆数据库。"""
|
||||
if not conversation_history:
|
||||
@@ -168,7 +71,6 @@ def archive_conversation(memory_service, collection_name, user_id, assistant_id,
|
||||
print(f"归档对话失败: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def main():
|
||||
print("开始端到端记忆测试...")
|
||||
|
||||
@@ -211,6 +113,5 @@ def main():
|
||||
|
||||
print("\n端到端记忆测试完成!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user