This commit is contained in:
2025-09-07 07:37:09 +08:00
parent 34388b5bd4
commit f27f6e0baa
2 changed files with 99 additions and 100 deletions

View File

@@ -11,7 +11,105 @@ from volcengine.base.Service import Service
from volcengine.ServiceInfo import ServiceInfo
from volcengine.auth.SignerV4 import SignerV4
from volcengine.base.Request import Request
import os
import time
from dotenv import load_dotenv
from volcenginesdkarkruntime import Ark
def initialize_services(ak=None, sk=None, ark_api_key=None):
"""初始化记忆数据库服务和LLM客户端"""
load_dotenv()
# 如果参数未提供,尝试从环境变量获取
if not ak:
ak = os.getenv("VOLC_ACCESSKEY")
if not sk:
sk = os.getenv("VOLC_SECRETKEY")
if not ark_api_key:
ark_api_key = os.getenv("VOLC_API_KEY")
if not all([ak, sk, ark_api_key]):
raise ValueError("必须提供 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 VOLC_API_KEY。")
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=ark_api_key,
)
return memory_service, llm_client
def ensure_collection_exists(memory_service, collection_name, description="",
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
builtin_entity_types=["sys_profile_v1"]):
"""检查记忆集合是否存在,如果不存在则创建。"""
try:
memory_service.get_collection(collection_name)
print(f"记忆集合 '{collection_name}' 已存在。")
except Exception as e:
error_message = str(e)
if "collection not exist" in error_message:
print(f"记忆集合 '{collection_name}' 未找到,正在创建...")
try:
memory_service.create_collection(
collection_name=collection_name,
description=description,
builtin_event_types=builtin_event_types,
builtin_entity_types=builtin_entity_types
)
print(f"记忆集合 '{collection_name}' 创建成功。")
print("等待集合准备就绪...")
except Exception as create_e:
print(f"创建集合失败: {create_e}")
raise
else:
print(f"检查集合时出错: {e}")
raise
def search_relevant_memories(memory_service, collection_name, user_id, query, limit=3):
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
print(f"正在搜索与 '{query}' 相关的记忆...")
retry_attempt = 0
while True:
try:
filter_params = {
"user_id": [user_id],
"memory_type": ["sys_event_v1", "sys_profile_v1"]
}
response = memory_service.search_memory(
collection_name=collection_name,
query=query,
filter=filter_params,
limit=limit
)
memories = []
if response.get('data', {}).get('count', 0) > 0:
for result in response['data']['result_list']:
if 'memory_info' in result and result['memory_info']:
memories.append({
'memory_info': result['memory_info'],
'score': result['score']
})
if memories:
if retry_attempt > 0:
print("重试后搜索成功。")
print(f"找到 {len(memories)} 条相关记忆:")
for i, memory in enumerate(memories, 1):
print(
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
else:
print("未找到相关记忆。")
return memories
except Exception as e:
error_message = str(e)
if "1000023" in error_message:
retry_attempt += 1
print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
time.sleep(60)
else:
print(f"搜索记忆时出错 (不可重试): {e}")
return []
class VikingDBMemoryException(Exception):
def __init__(self, code, request_id, message=None):

View File

@@ -1,11 +1,5 @@
import json
import os
import time
from dotenv import load_dotenv
from volcenginesdkarkruntime import Ark
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY, VOLC_API_KEY
from VikingDBMemoryService import VikingDBMemoryService
from VikingDBMemoryService import VikingDBMemoryService, initialize_services, ensure_collection_exists, search_relevant_memories
"""
在记忆库准备好后,我们先模拟一段包含两轮的完整对话。
@@ -13,96 +7,6 @@ from VikingDBMemoryService import VikingDBMemoryService
AI 就能用刚写入的记忆来回答。
注意:首次写入需要 35 分钟建立索引,这段时间内检索会报错。
"""
def initialize_services():
load_dotenv()
ak = VOLC_ACCESSKEY
sk = VOLC_SECRETKEY
ark_api_key = VOLC_API_KEY
if not all([ak, sk, ark_api_key]):
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=ark_api_key,
)
return memory_service, llm_client
def ensure_collection_exists(memory_service, collection_name):
"""检查记忆集合是否存在,如果不存在则创建。"""
try:
memory_service.get_collection(collection_name)
print(f"记忆集合 '{collection_name}' 已存在。")
except Exception as e:
error_message = str(e)
if "collection not exist" in error_message:
print(f"记忆集合 '{collection_name}' 未找到,正在创建...")
try:
memory_service.create_collection(
collection_name=collection_name,
description="中文情感陪伴场景测试",
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
builtin_entity_types=["sys_profile_v1"]
)
print(f"记忆集合 '{collection_name}' 创建成功。")
print("等待集合准备就绪...")
except Exception as create_e:
print(f"创建集合失败: {create_e}")
raise
else:
print(f"检查集合时出错: {e}")
raise
def search_relevant_memories(memory_service, collection_name, user_id, query):
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
print(f"正在搜索与 '{query}' 相关的记忆...")
retry_attempt = 0
while True:
try:
filter_params = {
"user_id": [user_id],
"memory_type": ["sys_event_v1", "sys_profile_v1"]
}
response = memory_service.search_memory(
collection_name=collection_name,
query=query,
filter=filter_params,
limit=3
)
memories = []
if response.get('data', {}).get('count', 0) > 0:
for result in response['data']['result_list']:
if 'memory_info' in result and result['memory_info']:
memories.append({
'memory_info': result['memory_info'],
'score': result['score']
})
if memories:
if retry_attempt > 0:
print("重试后搜索成功。")
print(f"找到 {len(memories)} 条相关记忆:")
for i, memory in enumerate(memories, 1):
print(
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
else:
print("未找到相关记忆。")
return memories
except Exception as e:
error_message = str(e)
if "1000023" in error_message:
retry_attempt += 1
print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
time.sleep(60)
else:
print(f"搜索记忆时出错 (不可重试): {e}")
return []
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
"""处理一轮对话包括记忆搜索和LLM响应。"""
@@ -139,7 +43,6 @@ def handle_conversation_turn(memory_service, llm_client, collection_name, user_i
])
return assistant_reply
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
"""将对话历史归档到记忆数据库。"""
if not conversation_history:
@@ -168,7 +71,6 @@ def archive_conversation(memory_service, collection_name, user_id, assistant_id,
print(f"归档对话失败: {e}")
return False
def main():
print("开始端到端记忆测试...")
@@ -211,6 +113,5 @@ def main():
print("\n端到端记忆测试完成!")
if __name__ == "__main__":
main()