'commit'
This commit is contained in:
@@ -1,140 +1,12 @@
|
|||||||
import hashlib # 导入哈希库
|
|
||||||
import time
|
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
from elasticsearch import Elasticsearch
|
from ElasticSearch.Utils.EsSearchUtil import insert_long_text_to_es
|
||||||
from langchain_core.documents import Document
|
|
||||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
||||||
from langchain_openai import OpenAIEmbeddings
|
|
||||||
from pydantic import SecretStr
|
|
||||||
|
|
||||||
from Config import Config
|
|
||||||
|
|
||||||
# 抑制HTTPS相关警告
|
# 抑制HTTPS相关警告
|
||||||
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
||||||
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
||||||
|
|
||||||
|
|
||||||
def split_text_into_chunks(text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list:
|
|
||||||
"""
|
|
||||||
将文本切割成块
|
|
||||||
|
|
||||||
参数:
|
|
||||||
text: 要切割的文本
|
|
||||||
chunk_size: 每个块的大小
|
|
||||||
chunk_overlap: 块之间的重叠大小
|
|
||||||
|
|
||||||
返回:
|
|
||||||
list: 文本块列表
|
|
||||||
"""
|
|
||||||
# 创建文档对象
|
|
||||||
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
|
|
||||||
|
|
||||||
# 切割文档
|
|
||||||
text_splitter = RecursiveCharacterTextSplitter(
|
|
||||||
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
|
|
||||||
)
|
|
||||||
all_splits = text_splitter.split_documents(docs)
|
|
||||||
print(f"切割后的文档块数量:{len(all_splits)}")
|
|
||||||
|
|
||||||
return [split.page_content for split in all_splits]
|
|
||||||
|
|
||||||
|
|
||||||
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
|
|
||||||
"""
|
|
||||||
将长文本切割后向量化并插入到Elasticsearch,基于文本内容哈希实现去重
|
|
||||||
|
|
||||||
参数:
|
|
||||||
long_text: 要插入的长文本
|
|
||||||
tags: 可选的标签列表
|
|
||||||
|
|
||||||
返回:
|
|
||||||
bool: 插入是否成功
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# 1. 初始化Elasticsearch连接
|
|
||||||
es = Elasticsearch(
|
|
||||||
hosts=Config.ES_CONFIG['hosts'],
|
|
||||||
basic_auth=Config.ES_CONFIG['basic_auth'],
|
|
||||||
verify_certs=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# 2. 检查索引是否存在,不存在则创建
|
|
||||||
index_name = Config.ES_CONFIG['index_name']
|
|
||||||
if not es.indices.exists(index=index_name):
|
|
||||||
# 定义mapping结构
|
|
||||||
mapping = {
|
|
||||||
"mappings": {
|
|
||||||
"properties": {
|
|
||||||
"embedding": {
|
|
||||||
"type": "dense_vector",
|
|
||||||
"dims": 1024, # 根据实际embedding维度调整
|
|
||||||
"index": True,
|
|
||||||
"similarity": "l2_norm"
|
|
||||||
},
|
|
||||||
"user_input": {"type": "text"},
|
|
||||||
"tags": {
|
|
||||||
"type": "object",
|
|
||||||
"properties": {
|
|
||||||
"tags": {"type": "keyword"},
|
|
||||||
"full_content": {"type": "text"}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"timestamp": {"type": "date"}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
es.indices.create(index=index_name, body=mapping)
|
|
||||||
print(f"索引 '{index_name}' 创建成功")
|
|
||||||
|
|
||||||
# 3. 切割文本
|
|
||||||
text_chunks = split_text_into_chunks(long_text)
|
|
||||||
|
|
||||||
# 4. 准备标签
|
|
||||||
if tags is None:
|
|
||||||
tags = ["general_text"]
|
|
||||||
|
|
||||||
# 5. 获取当前时间
|
|
||||||
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
|
||||||
|
|
||||||
# 6. 创建嵌入模型
|
|
||||||
embeddings = OpenAIEmbeddings(
|
|
||||||
model=Config.EMBED_MODEL_NAME,
|
|
||||||
base_url=Config.EMBED_BASE_URL,
|
|
||||||
api_key=SecretStr(Config.EMBED_API_KEY)
|
|
||||||
)
|
|
||||||
|
|
||||||
# 7. 为每个文本块生成向量并插入
|
|
||||||
for i, chunk in enumerate(text_chunks):
|
|
||||||
# 生成文本块的哈希值作为文档ID
|
|
||||||
doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest()
|
|
||||||
|
|
||||||
# 检查文档是否已存在
|
|
||||||
if es.exists(index=index_name, id=doc_id):
|
|
||||||
print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 生成文本块的嵌入向量
|
|
||||||
embedding = embeddings.embed_documents([chunk])[0]
|
|
||||||
|
|
||||||
# 准备文档数据
|
|
||||||
doc = {
|
|
||||||
'tags': {"tags": tags, "full_content": long_text},
|
|
||||||
'user_input': chunk,
|
|
||||||
'timestamp': timestamp,
|
|
||||||
'embedding': embedding
|
|
||||||
}
|
|
||||||
|
|
||||||
# 插入数据到Elasticsearch
|
|
||||||
es.index(index=index_name, id=doc_id, document=doc)
|
|
||||||
print(f"文档块 {i+1} 插入成功: {doc_id}")
|
|
||||||
|
|
||||||
return True
|
|
||||||
except Exception as e:
|
|
||||||
print(f"插入数据失败: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# 示例1:插入单个长文本
|
# 示例1:插入单个长文本
|
||||||
long_text = """混凝土是一种广泛使用的建筑材料,由水泥、砂、石子和水混合而成。它具有高强度、耐久性和良好的可塑性,被广泛应用于建筑、桥梁、道路等土木工程领域。
|
long_text = """混凝土是一种广泛使用的建筑材料,由水泥、砂、石子和水混合而成。它具有高强度、耐久性和良好的可塑性,被广泛应用于建筑、桥梁、道路等土木工程领域。
|
||||||
|
@@ -1,9 +1,16 @@
|
|||||||
import logging
|
import logging
|
||||||
import warnings
|
import warnings
|
||||||
|
import hashlib # 导入哈希库
|
||||||
|
import time
|
||||||
from Config.Config import ES_CONFIG
|
from Config.Config import ES_CONFIG
|
||||||
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
|
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
|
||||||
|
from elasticsearch import Elasticsearch
|
||||||
|
from langchain_core.documents import Document
|
||||||
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||||
|
from langchain_openai import OpenAIEmbeddings
|
||||||
|
from pydantic import SecretStr
|
||||||
|
|
||||||
|
from Config import Config
|
||||||
# 抑制HTTPS相关警告
|
# 抑制HTTPS相关警告
|
||||||
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
||||||
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
||||||
@@ -50,6 +57,128 @@ class EsSearchUtil:
|
|||||||
self.es_pool.release_connection(conn)
|
self.es_pool.release_connection(conn)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def split_text_into_chunks(text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list:
|
||||||
|
"""
|
||||||
|
将文本切割成块
|
||||||
|
|
||||||
|
参数:
|
||||||
|
text: 要切割的文本
|
||||||
|
chunk_size: 每个块的大小
|
||||||
|
chunk_overlap: 块之间的重叠大小
|
||||||
|
|
||||||
|
返回:
|
||||||
|
list: 文本块列表
|
||||||
|
"""
|
||||||
|
# 创建文档对象
|
||||||
|
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
|
||||||
|
|
||||||
|
# 切割文档
|
||||||
|
text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
|
||||||
|
)
|
||||||
|
all_splits = text_splitter.split_documents(docs)
|
||||||
|
print(f"切割后的文档块数量:{len(all_splits)}")
|
||||||
|
|
||||||
|
return [split.page_content for split in all_splits]
|
||||||
|
|
||||||
|
|
||||||
|
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
|
||||||
|
"""
|
||||||
|
将长文本切割后向量化并插入到Elasticsearch,基于文本内容哈希实现去重
|
||||||
|
|
||||||
|
参数:
|
||||||
|
long_text: 要插入的长文本
|
||||||
|
tags: 可选的标签列表
|
||||||
|
|
||||||
|
返回:
|
||||||
|
bool: 插入是否成功
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# 1. 初始化Elasticsearch连接
|
||||||
|
es = Elasticsearch(
|
||||||
|
hosts=Config.ES_CONFIG['hosts'],
|
||||||
|
basic_auth=Config.ES_CONFIG['basic_auth'],
|
||||||
|
verify_certs=False
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. 检查索引是否存在,不存在则创建
|
||||||
|
index_name = Config.ES_CONFIG['index_name']
|
||||||
|
if not es.indices.exists(index=index_name):
|
||||||
|
# 定义mapping结构
|
||||||
|
mapping = {
|
||||||
|
"mappings": {
|
||||||
|
"properties": {
|
||||||
|
"embedding": {
|
||||||
|
"type": "dense_vector",
|
||||||
|
"dims": 1024, # 根据实际embedding维度调整
|
||||||
|
"index": True,
|
||||||
|
"similarity": "l2_norm"
|
||||||
|
},
|
||||||
|
"user_input": {"type": "text"},
|
||||||
|
"tags": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"tags": {"type": "keyword"},
|
||||||
|
"full_content": {"type": "text"}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"timestamp": {"type": "date"}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
es.indices.create(index=index_name, body=mapping)
|
||||||
|
print(f"索引 '{index_name}' 创建成功")
|
||||||
|
|
||||||
|
# 3. 切割文本
|
||||||
|
text_chunks = split_text_into_chunks(long_text)
|
||||||
|
|
||||||
|
# 4. 准备标签
|
||||||
|
if tags is None:
|
||||||
|
tags = ["general_text"]
|
||||||
|
|
||||||
|
# 5. 获取当前时间
|
||||||
|
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||||
|
|
||||||
|
# 6. 创建嵌入模型
|
||||||
|
embeddings = OpenAIEmbeddings(
|
||||||
|
model=Config.EMBED_MODEL_NAME,
|
||||||
|
base_url=Config.EMBED_BASE_URL,
|
||||||
|
api_key=SecretStr(Config.EMBED_API_KEY)
|
||||||
|
)
|
||||||
|
|
||||||
|
# 7. 为每个文本块生成向量并插入
|
||||||
|
for i, chunk in enumerate(text_chunks):
|
||||||
|
# 生成文本块的哈希值作为文档ID
|
||||||
|
doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest()
|
||||||
|
|
||||||
|
# 检查文档是否已存在
|
||||||
|
if es.exists(index=index_name, id=doc_id):
|
||||||
|
print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 生成文本块的嵌入向量
|
||||||
|
embedding = embeddings.embed_documents([chunk])[0]
|
||||||
|
|
||||||
|
# 准备文档数据
|
||||||
|
doc = {
|
||||||
|
'tags': {"tags": tags, "full_content": long_text},
|
||||||
|
'user_input': chunk,
|
||||||
|
'timestamp': timestamp,
|
||||||
|
'embedding': embedding
|
||||||
|
}
|
||||||
|
|
||||||
|
# 插入数据到Elasticsearch
|
||||||
|
es.index(index=index_name, id=doc_id, document=doc)
|
||||||
|
print(f"文档块 {i+1} 插入成功: {doc_id}")
|
||||||
|
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
print(f"插入数据失败: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 添加main函数进行测试
|
# 添加main函数进行测试
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
try:
|
try:
|
||||||
|
Binary file not shown.
Reference in New Issue
Block a user