This commit is contained in:
2025-08-19 09:13:07 +08:00
parent 90f729dd44
commit f0cefdfdff
3 changed files with 131 additions and 130 deletions

View File

@@ -1,140 +1,12 @@
import hashlib # 导入哈希库
import time
import warnings import warnings
from elasticsearch import Elasticsearch from ElasticSearch.Utils.EsSearchUtil import insert_long_text_to_es
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from pydantic import SecretStr
from Config import Config
# 抑制HTTPS相关警告 # 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
def split_text_into_chunks(text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list:
"""
将文本切割成块
参数:
text: 要切割的文本
chunk_size: 每个块的大小
chunk_overlap: 块之间的重叠大小
返回:
list: 文本块列表
"""
# 创建文档对象
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
# 切割文档
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
)
all_splits = text_splitter.split_documents(docs)
print(f"切割后的文档块数量:{len(all_splits)}")
return [split.page_content for split in all_splits]
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
"""
将长文本切割后向量化并插入到Elasticsearch基于文本内容哈希实现去重
参数:
long_text: 要插入的长文本
tags: 可选的标签列表
返回:
bool: 插入是否成功
"""
try:
# 1. 初始化Elasticsearch连接
es = Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=False
)
# 2. 检查索引是否存在,不存在则创建
index_name = Config.ES_CONFIG['index_name']
if not es.indices.exists(index=index_name):
# 定义mapping结构
mapping = {
"mappings": {
"properties": {
"embedding": {
"type": "dense_vector",
"dims": 1024, # 根据实际embedding维度调整
"index": True,
"similarity": "l2_norm"
},
"user_input": {"type": "text"},
"tags": {
"type": "object",
"properties": {
"tags": {"type": "keyword"},
"full_content": {"type": "text"}
}
},
"timestamp": {"type": "date"}
}
}
}
es.indices.create(index=index_name, body=mapping)
print(f"索引 '{index_name}' 创建成功")
# 3. 切割文本
text_chunks = split_text_into_chunks(long_text)
# 4. 准备标签
if tags is None:
tags = ["general_text"]
# 5. 获取当前时间
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 6. 创建嵌入模型
embeddings = OpenAIEmbeddings(
model=Config.EMBED_MODEL_NAME,
base_url=Config.EMBED_BASE_URL,
api_key=SecretStr(Config.EMBED_API_KEY)
)
# 7. 为每个文本块生成向量并插入
for i, chunk in enumerate(text_chunks):
# 生成文本块的哈希值作为文档ID
doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest()
# 检查文档是否已存在
if es.exists(index=index_name, id=doc_id):
print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}")
continue
# 生成文本块的嵌入向量
embedding = embeddings.embed_documents([chunk])[0]
# 准备文档数据
doc = {
'tags': {"tags": tags, "full_content": long_text},
'user_input': chunk,
'timestamp': timestamp,
'embedding': embedding
}
# 插入数据到Elasticsearch
es.index(index=index_name, id=doc_id, document=doc)
print(f"文档块 {i+1} 插入成功: {doc_id}")
return True
except Exception as e:
print(f"插入数据失败: {e}")
return False
def main(): def main():
# 示例1插入单个长文本 # 示例1插入单个长文本
long_text = """混凝土是一种广泛使用的建筑材料,由水泥、砂、石子和水混合而成。它具有高强度、耐久性和良好的可塑性,被广泛应用于建筑、桥梁、道路等土木工程领域。 long_text = """混凝土是一种广泛使用的建筑材料,由水泥、砂、石子和水混合而成。它具有高强度、耐久性和良好的可塑性,被广泛应用于建筑、桥梁、道路等土木工程领域。

View File

@@ -1,9 +1,16 @@
import logging import logging
import warnings import warnings
import hashlib # 导入哈希库
import time
from Config.Config import ES_CONFIG from Config.Config import ES_CONFIG
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
from elasticsearch import Elasticsearch
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from pydantic import SecretStr
from Config import Config
# 抑制HTTPS相关警告 # 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
@@ -50,6 +57,128 @@ class EsSearchUtil:
self.es_pool.release_connection(conn) self.es_pool.release_connection(conn)
def split_text_into_chunks(text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> list:
"""
将文本切割成块
参数:
text: 要切割的文本
chunk_size: 每个块的大小
chunk_overlap: 块之间的重叠大小
返回:
list: 文本块列表
"""
# 创建文档对象
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
# 切割文档
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
)
all_splits = text_splitter.split_documents(docs)
print(f"切割后的文档块数量:{len(all_splits)}")
return [split.page_content for split in all_splits]
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
"""
将长文本切割后向量化并插入到Elasticsearch基于文本内容哈希实现去重
参数:
long_text: 要插入的长文本
tags: 可选的标签列表
返回:
bool: 插入是否成功
"""
try:
# 1. 初始化Elasticsearch连接
es = Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=False
)
# 2. 检查索引是否存在,不存在则创建
index_name = Config.ES_CONFIG['index_name']
if not es.indices.exists(index=index_name):
# 定义mapping结构
mapping = {
"mappings": {
"properties": {
"embedding": {
"type": "dense_vector",
"dims": 1024, # 根据实际embedding维度调整
"index": True,
"similarity": "l2_norm"
},
"user_input": {"type": "text"},
"tags": {
"type": "object",
"properties": {
"tags": {"type": "keyword"},
"full_content": {"type": "text"}
}
},
"timestamp": {"type": "date"}
}
}
}
es.indices.create(index=index_name, body=mapping)
print(f"索引 '{index_name}' 创建成功")
# 3. 切割文本
text_chunks = split_text_into_chunks(long_text)
# 4. 准备标签
if tags is None:
tags = ["general_text"]
# 5. 获取当前时间
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 6. 创建嵌入模型
embeddings = OpenAIEmbeddings(
model=Config.EMBED_MODEL_NAME,
base_url=Config.EMBED_BASE_URL,
api_key=SecretStr(Config.EMBED_API_KEY)
)
# 7. 为每个文本块生成向量并插入
for i, chunk in enumerate(text_chunks):
# 生成文本块的哈希值作为文档ID
doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest()
# 检查文档是否已存在
if es.exists(index=index_name, id=doc_id):
print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}")
continue
# 生成文本块的嵌入向量
embedding = embeddings.embed_documents([chunk])[0]
# 准备文档数据
doc = {
'tags': {"tags": tags, "full_content": long_text},
'user_input': chunk,
'timestamp': timestamp,
'embedding': embedding
}
# 插入数据到Elasticsearch
es.index(index=index_name, id=doc_id, document=doc)
print(f"文档块 {i+1} 插入成功: {doc_id}")
return True
except Exception as e:
print(f"插入数据失败: {e}")
return False
# 添加main函数进行测试 # 添加main函数进行测试
if __name__ == "__main__": if __name__ == "__main__":
try: try: