diff --git a/dsLightRag/Doc/8、图数据库DozerDb.md b/dsLightRag/Doc/8、图数据库DozerDb.md index e01e23c5..6fc2bea0 100644 --- a/dsLightRag/Doc/8、图数据库DozerDb.md +++ b/dsLightRag/Doc/8、图数据库DozerDb.md @@ -1,3 +1 @@ https://dozerdb.org/ - -https://milvus.io/ \ No newline at end of file diff --git a/dsLightRag/T1_Train.py b/dsLightRag/T1_Train.py index ee1e1469..57394343 100644 --- a/dsLightRag/T1_Train.py +++ b/dsLightRag/T1_Train.py @@ -5,7 +5,7 @@ from Util.LightRagUtil import configure_logging, initialize_rag import os # 数学 -KEMU = 'Chemistry' # Chinese,Math,Chemistry +KEMU = 'JiHe' # Chinese,Math,Chemistry,JiHe # 组装文件路径 WORKING_DIR = "./Topic/" + KEMU diff --git a/dsLightRag/T2_Query.py b/dsLightRag/T2_Query.py index be89e0c8..bf91ebf0 100644 --- a/dsLightRag/T2_Query.py +++ b/dsLightRag/T2_Query.py @@ -8,10 +8,12 @@ data = [ # {"NAME": "Chemistry", "Q": "硝酸光照分解的化学反应方程式是什么", "ChineseName": "化学"}, {"NAME": "Chemistry", "Q": "氢气与氧气燃烧的现象", "ChineseName": "化学"}, {"NAME": "Math", "Q": "氧化铁与硝酸的化学反应方程式是什么", "ChineseName": "数学"}, - {"NAME": "Chinese", "Q": "氧化铁与硝酸的化学反应方程式是什么", "ChineseName": "语文"}] + {"NAME": "Chinese", "Q": "氧化铁与硝酸的化学反应方程式是什么", "ChineseName": "语文"}, + {"NAME": "JiHe", "Q": "三角形两边之和大于第三边的证明", "ChineseName": "几何"} +] # 准备查询的科目 -KEMU = "Chemistry" +KEMU = "JiHe" # Chemistry JiHe # 查找索引号 idx = [i for i, d in enumerate(data) if d["NAME"] == KEMU][0] diff --git a/dsLightRag/Topic/Chemistry/graph_chunk_entity_relation.graphml b/dsLightRag/Topic/Chemistry/graph_chunk_entity_relation.graphml new file mode 100644 index 00000000..6620de70 --- /dev/null +++ b/dsLightRag/Topic/Chemistry/graph_chunk_entity_relation.graphml @@ -0,0 +1,265 @@ + + + + + + + + + + + + + + + + + Nitric Acid + category + Nitric acid (HNO₃) is a chemical compound involved in photodecomposition and reactions with iron oxide. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Iron Oxide + category + Iron oxide (FeO) is a chemical compound that reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Hydrogen + category + Hydrogen (H₂) is a chemical element that combusts with oxygen to form water. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Oxygen + category + Oxygen (O₂) is a chemical element involved in combustion reactions with hydrogen. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Water + category + Water (H₂O) is the product of the combustion reaction between hydrogen and oxygen. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Nitrogen Dioxide + category + Nitrogen dioxide (NO₂) is a byproduct of the decomposition of nitric acid and the reaction between iron oxide and nitric acid. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Iron Nitrate + category + Iron nitrate (Fe(NO₃)₃) is a product of the reaction between iron oxide and nitric acid. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Nitric Acid (HNO₃) + category + A strong mineral acid that undergoes photodecomposition when exposed to light, producing nitrogen dioxide, oxygen, and water. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Nitrogen Dioxide (NO₂) + category + A reddish-brown toxic gas produced as a byproduct in nitric acid decomposition and iron oxide reactions. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Oxygen (O₂) + category + A diatomic gas produced in nitric acid decomposition and consumed in hydrogen combustion. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Water (H₂O) + category + A compound formed in both nitric acid decomposition and hydrogen-oxygen combustion. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Iron Oxide (FeO) + category + A chemical compound that reacts with nitric acid to form iron nitrate, water, and nitrogen dioxide. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Iron Nitrate (Fe(NO₃)₃) + category + A product formed when iron oxide reacts with nitric acid under heat. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Hydrogen (H₂) + category + A flammable gas that combusts with oxygen to form water. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Combustion Reaction + event + The chemical process where hydrogen reacts with oxygen to produce water. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Photodecomposition + event + The chemical decomposition of nitric acid under light exposure. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + Chemical Equation + category + The symbolic representation of chemical reactions described in the text. + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 8.0 + Nitric acid decomposes under light to produce nitrogen dioxide, oxygen, and water. + byproducts,chemical decomposition + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 9.0 + Iron oxide reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide. + chemical reaction,heat application + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 7.0 + Iron oxide is converted into iron nitrate through its reaction with nitric acid. + chemical transformation,product formation + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 10.0 + Hydrogen combusts with oxygen to form water. + combustion reaction,synthesis + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 9.0 + Nitric acid decomposes to produce nitrogen dioxide as a primary byproduct. + byproduct formation,chemical decomposition + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 8.0 + Nitric acid decomposition releases oxygen gas as a byproduct. + chemical reaction,gas production + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 7.0 + Water is produced as a byproduct of nitric acid decomposition. + chemical byproduct,reaction output + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 9.0 + Iron oxide reacts with nitric acid under heat to produce various compounds. + acid-base reaction,heat application + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 8.0 + Photodecomposition is the process that breaks down nitric acid. + chemical process,decomposition + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 7.0 + Reaction between iron oxide and nitric acid produces nitrogen dioxide. + chemical reaction,gas production + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 10.0 + Hydrogen combusts with oxygen in a chemical reaction to produce water. + combustion,synthesis reaction + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 9.0 + Hydrogen is converted to water through combustion with oxygen. + chemical synthesis,product formation + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 8.0 + Iron oxide is converted to iron nitrate through reaction with nitric acid. + chemical transformation,product formation + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + 7.0 + The combustion reaction is represented by a chemical equation. + chemical notation,symbolic representation + chunk-d0c3bf985a3b3b903e2fb35515fdff1e + unknown_source + 1752205395 + + + diff --git a/dsLightRag/Topic/Chemistry/kv_store_doc_status.json b/dsLightRag/Topic/Chemistry/kv_store_doc_status.json index d0ab090e..128778de 100644 --- a/dsLightRag/Topic/Chemistry/kv_store_doc_status.json +++ b/dsLightRag/Topic/Chemistry/kv_store_doc_status.json @@ -1,12 +1,12 @@ { - "doc-e4dee9f72e6c899fd70a04b77c38d8d0": { + "doc-d0c3bf985a3b3b903e2fb35515fdff1e": { "status": "processed", "chunks_count": 1, - "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/500a35d1483c4b9d934ff584073c6590/media/image1.png)", + "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png)", "content_summary": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{ov...", "content_length": 344, - "created_at": "2025-07-11T00:33:18.094744+00:00", - "updated_at": "2025-07-11T00:37:04.761470+00:00", + "created_at": "2025-07-11T03:42:25.898814+00:00", + "updated_at": "2025-07-11T03:43:17.438419+00:00", "file_path": "unknown_source" } } \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/kv_store_full_docs.json b/dsLightRag/Topic/Chemistry/kv_store_full_docs.json index 1d55ece5..5173e6d3 100644 --- a/dsLightRag/Topic/Chemistry/kv_store_full_docs.json +++ b/dsLightRag/Topic/Chemistry/kv_store_full_docs.json @@ -1,5 +1,5 @@ { - "doc-e4dee9f72e6c899fd70a04b77c38d8d0": { - "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/500a35d1483c4b9d934ff584073c6590/media/image1.png)" + "doc-d0c3bf985a3b3b903e2fb35515fdff1e": { + "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png)" } } \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json b/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json index 95ed6d65..99b72aaa 100644 --- a/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json +++ b/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json @@ -19,6 +19,26 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n硝酸光照分解的方程式\\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\\n氧化铁与硝酸的加热反应方程式\\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\\n氢气与氧气燃烧的现象如下图所示:\\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\\n![](./Images/500a35d1483c4b9d934ff584073c6590/media/image1.png)\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"Nitric Acid\\\"<|>\\\"category\\\"<|>\\\"Nitric Acid is a chemical compound involved in photodecomposition and reactions with iron oxide.\\\")##\\n(\\\"entity\\\"<|>\\\"Iron Oxide\\\"<|>\\\"category\\\"<|>\\\"Iron Oxide is a chemical compound that reacts with nitric acid under heating conditions.\\\")##\\n(\\\"entity\\\"<|>\\\"Hydrogen\\\"<|>\\\"category\\\"<|>\\\"Hydrogen is a chemical element that reacts with oxygen to form water through combustion.\\\")##\\n(\\\"entity\\\"<|>\\\"Oxygen\\\"<|>\\\"category\\\"<|>\\\"Oxygen is a chemical element that reacts with hydrogen to form water through combustion.\\\")##\\n(\\\"entity\\\"<|>\\\"Water\\\"<|>\\\"category\\\"<|>\\\"Water is the product of the combustion reaction between hydrogen and oxygen.\\\")##\\n(\\\"relationship\\\"<|>\\\"Nitric Acid\\\"<|>\\\"Iron Oxide\\\"<|>\\\"Nitric Acid reacts with Iron Oxide under heating to produce iron nitrate, water, and nitrogen dioxide.\\\"<|>\\\"chemical reaction, heating\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Hydrogen\\\"<|>\\\"Oxygen\\\"<|>\\\"Hydrogen and Oxygen react through combustion to produce water.\\\"<|>\\\"combustion, chemical reaction\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nitric Acid\\\"<|>\\\"Water\\\"<|>\\\"Nitric Acid decomposes under light to produce nitrogen dioxide, oxygen, and water.\\\"<|>\\\"photodecomposition, chemical reaction\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"chemical reactions, photodecomposition, combustion, chemistry\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "405460a53d057f938c2f74dda5548a63": { + "return": "(\"entity\"<|>\"Nitric Acid\"<|>\"category\"<|>\"Nitric acid (HNO₃) is a chemical compound involved in photodecomposition and reactions with iron oxide.\")##\n(\"entity\"<|>\"Iron Oxide\"<|>\"category\"<|>\"Iron oxide (FeO) is a chemical compound that reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide.\")##\n(\"entity\"<|>\"Hydrogen\"<|>\"category\"<|>\"Hydrogen (H₂) is a chemical element that combusts with oxygen to form water.\")##\n(\"entity\"<|>\"Oxygen\"<|>\"category\"<|>\"Oxygen (O₂) is a chemical element involved in combustion reactions with hydrogen.\")##\n(\"entity\"<|>\"Water\"<|>\"category\"<|>\"Water (H₂O) is the product of the combustion reaction between hydrogen and oxygen.\")##\n(\"entity\"<|>\"Nitrogen Dioxide\"<|>\"category\"<|>\"Nitrogen dioxide (NO₂) is a byproduct of the decomposition of nitric acid and the reaction between iron oxide and nitric acid.\")##\n(\"entity\"<|>\"Iron Nitrate\"<|>\"category\"<|>\"Iron nitrate (Fe(NO₃)₃) is a product of the reaction between iron oxide and nitric acid.\")##\n(\"relationship\"<|>\"Nitric Acid\"<|>\"Nitrogen Dioxide\"<|>\"Nitric acid decomposes under light to produce nitrogen dioxide, oxygen, and water.\"<|>\"chemical decomposition, byproducts\"<|>8)##\n(\"relationship\"<|>\"Iron Oxide\"<|>\"Nitric Acid\"<|>\"Iron oxide reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide.\"<|>\"chemical reaction, heat application\"<|>9)##\n(\"relationship\"<|>\"Hydrogen\"<|>\"Oxygen\"<|>\"Hydrogen combusts with oxygen to form water.\"<|>\"combustion reaction, synthesis\"<|>10)##\n(\"relationship\"<|>\"Iron Oxide\"<|>\"Iron Nitrate\"<|>\"Iron oxide is converted into iron nitrate through its reaction with nitric acid.\"<|>\"chemical transformation, product formation\"<|>7)##\n(\"content_keywords\"<|>\"chemical reactions, decomposition, combustion, synthesis, chemical compounds\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\n硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png)\n######################\nOutput:" + }, + "9e3c646a642e6479570a8501ad112849": { + "return": "(\"entity\"<|>\"Nitric Acid (HNO₃)\"<|>\"category\"<|>\"A strong mineral acid that undergoes photodecomposition when exposed to light, producing nitrogen dioxide, oxygen, and water.\")##\n(\"entity\"<|>\"Nitrogen Dioxide (NO₂)\"<|>\"category\"<|>\"A reddish-brown toxic gas produced as a byproduct in nitric acid decomposition and iron oxide reactions.\")##\n(\"entity\"<|>\"Oxygen (O₂)\"<|>\"category\"<|>\"A diatomic gas produced in nitric acid decomposition and consumed in hydrogen combustion.\")##\n(\"entity\"<|>\"Water (H₂O)\"<|>\"category\"<|>\"A compound formed in both nitric acid decomposition and hydrogen-oxygen combustion.\")##\n(\"entity\"<|>\"Iron Oxide (FeO)\"<|>\"category\"<|>\"A chemical compound that reacts with nitric acid to form iron nitrate, water, and nitrogen dioxide.\")##\n(\"entity\"<|>\"Iron Nitrate (Fe(NO₃)₃)\"<|>\"category\"<|>\"A product formed when iron oxide reacts with nitric acid under heat.\")##\n(\"entity\"<|>\"Hydrogen (H₂)\"<|>\"category\"<|>\"A flammable gas that combusts with oxygen to form water.\")##\n(\"entity\"<|>\"Combustion Reaction\"<|>\"event\"<|>\"The chemical process where hydrogen reacts with oxygen to produce water.\")##\n(\"entity\"<|>\"Photodecomposition\"<|>\"event\"<|>\"The chemical decomposition of nitric acid under light exposure.\")##\n(\"entity\"<|>\"Chemical Equation\"<|>\"category\"<|>\"The symbolic representation of chemical reactions described in the text.\")##\n(\"relationship\"<|>\"Nitric Acid (HNO₃)\"<|>\"Nitrogen Dioxide (NO₂)\"<|>\"Nitric acid decomposes to produce nitrogen dioxide as a primary byproduct.\"<|>\"chemical decomposition, byproduct formation\"<|>9)##\n(\"relationship\"<|>\"Nitric Acid (HNO₃)\"<|>\"Oxygen (O₂)\"<|>\"Nitric acid decomposition releases oxygen gas as a byproduct.\"<|>\"gas production, chemical reaction\"<|>8)##\n(\"relationship\"<|>\"Nitric Acid (HNO₃)\"<|>\"Water (H₂O)\"<|>\"Water is produced as a byproduct of nitric acid decomposition.\"<|>\"chemical byproduct, reaction output\"<|>7)##\n(\"relationship\"<|>\"Iron Oxide (FeO)\"<|>\"Nitric Acid (HNO₃)\"<|>\"Iron oxide reacts with nitric acid under heat to produce various compounds.\"<|>\"acid-base reaction, heat application\"<|>9)##\n(\"relationship\"<|>\"Iron Oxide (FeO)\"<|>\"Iron Nitrate (Fe(NO₃)₃)\"<|>\"Iron oxide is converted to iron nitrate through reaction with nitric acid.\"<|>\"chemical transformation, product formation\"<|>8)##\n(\"relationship\"<|>\"Iron Oxide (FeO)\"<|>\"Nitrogen Dioxide (NO₂)\"<|>\"Reaction between iron oxide and nitric acid produces nitrogen dioxide.\"<|>\"gas production, chemical reaction\"<|>7)##\n(\"relationship\"<|>\"Hydrogen (H₂)\"<|>\"Oxygen (O₂)\"<|>\"Hydrogen combusts with oxygen in a chemical reaction to produce water.\"<|>\"combustion, synthesis reaction\"<|>10)##\n(\"relationship\"<|>\"Hydrogen (H₂)\"<|>\"Water (H₂O)\"<|>\"Hydrogen is converted to water through combustion with oxygen.\"<|>\"product formation, chemical synthesis\"<|>9)##\n(\"relationship\"<|>\"Photodecomposition\"<|>\"Nitric Acid (HNO₃)\"<|>\"Photodecomposition is the process that breaks down nitric acid.\"<|>\"chemical process, decomposition\"<|>8)##\n(\"relationship\"<|>\"Combustion Reaction\"<|>\"Chemical Equation\"<|>\"The combustion reaction is represented by a chemical equation.\"<|>\"symbolic representation, chemical notation\"<|>7)##\n(\"content_keywords\"<|>\"chemical reactions, decomposition, combustion, acid-base reactions, chemical equations, gas production\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n硝酸光照分解的方程式\\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\\n氧化铁与硝酸的加热反应方程式\\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\\n氢气与氧气燃烧的现象如下图所示:\\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\\n![](./Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png)\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"Nitric Acid\\\"<|>\\\"category\\\"<|>\\\"Nitric acid (HNO₃) is a chemical compound involved in photodecomposition and reactions with iron oxide.\\\")##\\n(\\\"entity\\\"<|>\\\"Iron Oxide\\\"<|>\\\"category\\\"<|>\\\"Iron oxide (FeO) is a chemical compound that reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide.\\\")##\\n(\\\"entity\\\"<|>\\\"Hydrogen\\\"<|>\\\"category\\\"<|>\\\"Hydrogen (H₂) is a chemical element that combusts with oxygen to form water.\\\")##\\n(\\\"entity\\\"<|>\\\"Oxygen\\\"<|>\\\"category\\\"<|>\\\"Oxygen (O₂) is a chemical element involved in combustion reactions with hydrogen.\\\")##\\n(\\\"entity\\\"<|>\\\"Water\\\"<|>\\\"category\\\"<|>\\\"Water (H₂O) is the product of the combustion reaction between hydrogen and oxygen.\\\")##\\n(\\\"entity\\\"<|>\\\"Nitrogen Dioxide\\\"<|>\\\"category\\\"<|>\\\"Nitrogen dioxide (NO₂) is a byproduct of the decomposition of nitric acid and the reaction between iron oxide and nitric acid.\\\")##\\n(\\\"entity\\\"<|>\\\"Iron Nitrate\\\"<|>\\\"category\\\"<|>\\\"Iron nitrate (Fe(NO₃)₃) is a product of the reaction between iron oxide and nitric acid.\\\")##\\n(\\\"relationship\\\"<|>\\\"Nitric Acid\\\"<|>\\\"Nitrogen Dioxide\\\"<|>\\\"Nitric acid decomposes under light to produce nitrogen dioxide, oxygen, and water.\\\"<|>\\\"chemical decomposition, byproducts\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Iron Oxide\\\"<|>\\\"Nitric Acid\\\"<|>\\\"Iron oxide reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide.\\\"<|>\\\"chemical reaction, heat application\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Hydrogen\\\"<|>\\\"Oxygen\\\"<|>\\\"Hydrogen combusts with oxygen to form water.\\\"<|>\\\"combustion reaction, synthesis\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Iron Oxide\\\"<|>\\\"Iron Nitrate\\\"<|>\\\"Iron oxide is converted into iron nitrate through its reaction with nitric acid.\\\"<|>\\\"chemical transformation, product formation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"chemical reactions, decomposition, combustion, synthesis, chemical compounds\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" } }, "hybrid": { @@ -31,6 +51,16 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "氢气与氧气燃烧的现象" + }, + "d76baeceecdfd9ed35f72d4f94537986": { + "return": "{\"high_level_keywords\": [\"\\u6c22\\u6c14\\u71c3\\u70e7\", \"\\u6c27\\u6c14\\u53cd\\u5e94\", \"\\u5316\\u5b66\\u53cd\\u5e94\\u73b0\\u8c61\"], \"low_level_keywords\": [\"\\u706b\\u7130\", \"\\u6c34\\u751f\\u6210\", \"\\u7206\\u70b8\\u6781\\u9650\", \"\\u653e\\u70ed\\u53cd\\u5e94\", \"\\u5316\\u5b66\\u65b9\\u7a0b\\u5f0f\"]}", + "cache_type": "keywords", + "chunk_id": null, + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "氢气与氧气燃烧的现象?" } } } \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/kv_store_text_chunks.json b/dsLightRag/Topic/Chemistry/kv_store_text_chunks.json index 629d7475..23100f01 100644 --- a/dsLightRag/Topic/Chemistry/kv_store_text_chunks.json +++ b/dsLightRag/Topic/Chemistry/kv_store_text_chunks.json @@ -1,9 +1,9 @@ { - "chunk-e4dee9f72e6c899fd70a04b77c38d8d0": { - "tokens": 197, - "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/500a35d1483c4b9d934ff584073c6590/media/image1.png)", + "chunk-d0c3bf985a3b3b903e2fb35515fdff1e": { + "tokens": 195, + "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png)", "chunk_order_index": 0, - "full_doc_id": "doc-e4dee9f72e6c899fd70a04b77c38d8d0", + "full_doc_id": "doc-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source" } } \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/vdb_chunks.json b/dsLightRag/Topic/Chemistry/vdb_chunks.json index 5d2dc225..1820f2e0 100644 --- a/dsLightRag/Topic/Chemistry/vdb_chunks.json +++ b/dsLightRag/Topic/Chemistry/vdb_chunks.json @@ -1 +1 @@ -{"embedding_dim": 1024, "data": [{"__id__": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "__created_at__": 1752193998, "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/500a35d1483c4b9d934ff584073c6590/media/image1.png)", "full_doc_id": "doc-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}], "matrix": "xMPsPOS9DD1q2za9rUnfuLfxkrwZ9HW9m3gVPfEXAz2DyhI8V+tKvPrINb3DRR+9zD0Vu29JC7oSMPU8zgImvLaqz7vC1jq8TopaPF7wpLxiqFG8OT7YPHF3FrofEgg9xDLRPAHd+Lv6h1y8ujTxvJYQKz1/VcQ80R1juyBAE71prau9pZgsvZwPmzzmqj48WmaDN9ZEdL1clA69ArvBuseOZz0C/Jq91Z4FPRsAyrznl3A8Y2f4OpVLmrxxnze97ol8vOvqB73Mtfi8CFG3usRLCT0S4DK8c/vNu3xcvjxC5ou9k9bLvDvbx73LNyu86XW5uoolGT2WECu9oqWQvICWnbzZLhE9WnVsPVharzyYFpW8kLsOvWdRFb3/MCA9Oe6VO+IgHb2npAC9egAou2B6RjzFoTW9NBfHPKO64zwJwBs85A3Pu/6ZGr2zIC48KkfyOwZkhT06rTw8JtYIPVTQDbvMpg+9HxKIvE/5vjxvQyG9WBlWvMoJIDqZbMG878pVvZ5DED2cD5u8wwRGulBoIz0bkeW7BdZ+O+qjxLuPjQO9aa0rvalpEbxA4CE8hnzVPHg7F73W9LE8/GWlO1lgmTzEcyo9mK0aOy3CKryz39S8OBDNvHRqMjx50hy9/ZOwPESrHLxNG3Y9i1OkvCcsNTwlj8W8h6rgO+R8Mzu9btC8yzerO+VUkrs4EM28czwnvTvbx7t5kcO7xHOquq64w7sqiMs8wiZ9PdXGpr2xxBc99j6UPHpQ6jxXqvG8lMP9PCslu72k2QU8nA+bvKhjpzyKjpM8QrgAvIlHULwS4DI8iNhrO0ZX9btRVVU9SwA5uy3Cqjyo4XS9uqNVvap+5LtTMx48BYY8vGRFwbwm1og8L8iUvdY1C7wzWCA9ntQrvS0DBL03USY9OhwhvICWnTkeiuu7RSnqvE1czzyJR9A9N6HoPCEn2zoKxoW8+CvGvPPD27yGfNW78pVQvZALUT3t3SM9nDc8vHXo/7twsgW8B/sKPVVO27vSPAW9VY+0vIvkPz16QQE9ByMsvdXGpjyk2YW7YliPvGAkGrw1RVI7+NsDPYLys7wjg3G8+ofcOofDGDy5tiO9bX4QvWcQvLucDxu9HZ25PHhjOL06bGO9ZbSlPD/thbzPgHM9p/RCPEKfSL0PVhE89rxhvYY7fLw+psI8Muk7POaqPjqlcIs9vYeIvUEw5DrLDwo9EXHOPK//hjxAsha9ZqHXPO/KVT0m/im9UGgjPe1b8byHWp47hN/lPN6QEbzfVSK9tqpPPDZz3bzAqK87D2X6PMbPQL1vAkg92Q/vPMGADj1phQq9PmVpvd1JTj3jnmo759jJvIwSSz30MsA9vfCCvC7wtbuL5L+7wMpmvdY1C71xdxY9EQJqPUsAubpYWi89N+LBOI5u4bxE+167j0wqPRl8Ejxkhho9goNPPJ0kbjyCg0+8zzCxO5sJMbyas4Q8Z+iavCqISzy5jgI+kLsOPUaYTj2+Ho47YSoEPenkHbxTM5485CaHvZfoib0omxk83bgyOx4MnjzuTAi9UVXVu2F6Rj3mqj48LoHRvPlyCT2IYAi8HgwevsNFH73lO1o8m8jXPHRqMryOr7o8rvkcvL8LwLzZv6y8Muk7veyvmL0FxxW9dLp0uzH8Cb12xkg8tI+SPFxTtbqkaqE8eZFDPUKfSLxxn7e86U0YvG9DIT0om5m6dw2MvEZIDD3YkaG7os2xu8uH7bypUFm86eSdvXhjOL28gR48ddkWvDocobu9h4i7pGohvc7BzLmOHp88ntSrvNmXiz3TulI9MN3nvEsAObz3vGG80M0gPfkJDz0s/Zk8bFCFvEOMerx5It88xxaEu0BDMr17fvU8HL/wvBxvrjxltCU8nwI3PfUf8rxINb67H3sCPabGN70EF1g88KgevXDB7joy6Ts7mlnzO2F6xrmcN7w8IECTvM9xCj0H+wo9rXfqPKVX0zudJO68eDuXPQiSkL3unEq8HLAHPS6B0b0qiEu4xz6lOzI5/juJtjQ82QAGOxtBozxatsW8ZbSlvCqIyzw+ZWk+PMj5O1RhqTxRBRO9L18avMlyGr2hPBY8QBuRPPVgS7xFakM8C9vYvJ0k7jxHdhc9dlfku2+T47pQ5vA8ZYwEvDVF0jwWGhI9O5puvNZEdLvFeRQ6Mjn+PBztezwwjaW8RphOvF5fCb0G9SA9i+S/PN24Mr0ZfBK8lmBtPAZz7jvIbDC8uXXKvOQNzzzB6Yi6GhOYuyCpjT0zWCC9bkOhNqP7vLxzPCe8RDy4u0ZIDD2WUYS8Q4x6vIW9rrw4EE09EQJqvI9MKjswuzA8TN6BvIKDz7xU0I28RRoBu375rby9rym75qo+vSGWPz2Xjni7ByMsvBRVATxzPKe8tCaYvFFujby3aXY6DJp/vVKcGD14Yzg9xz6lu9yKJz2amky8tml2PTdRpjxLALk8NbS2PKTobj3LN6u8p7Ppu6xcLb32TX288lR3vDNYoDs8Igs8hQ1xui3CqjsKxgW81camvJS0lDzO2oS8PlaAPNN5eTqKdVu8z148PCQ5mTytSV+8HoprO5VzO71QJ0o9MB5BPdNqkDuaSoo4FhoSvEbZpz1JY0m8F5hfvJj93DuXz9G8BdZ+O4Lys7zr6gc97+ONvMnqfTxxdxY9t9jaPEBxvTtmIwo9N1EmvalQWT01RdK8WDKOPMXiDjyQuw67FWrUPJj93LySZ2e83y0BuzcpBT1BcT099/06vD1labx1mD29DAnkPMOV4Ty38RI8nSRuPV7d1rsGc+48C12LPFmIOr2ROVw8/OPyu2cQPL0pyaQ88wQ1PHsuMzxiqNE8ylniu4VOyjxU0I089WBLu2mFCj1VZxO9ePTTO2SGGrwJf0K8406ovCBoNL2vJyi7psY3PPFnxbmLUyS9TC5EPBLgsjyWYO28RtknPcxltj3W9DE98Dk6vTn9/jtcUzW8C/QQvY1AVjxQJ8o8UEACPYeq4Ly0Trm8yzcrvFLEuT2ROdw8AgIFPZfP0bvlVBI9SlD7O2AL4jycpiC9kmfnvJS0FD232Nq7XvCkuw437z26NPG8qWmRvE+4ZT08yHm8hnxVPQK7QTyYFhU9UJauvAVeGz27Ejo850cuPa64Qz0JLwC9mP1cvbJhhzwQQ8O8+XIJO78LQDxbJSo8F0gdvSUgYb2zcPC7yw+KvH8nubxvGwA9BvUgPe0t5ryDyhK9StKtPK//BrpUIFC70R3jvAa0x7zTahA9r5YMvYCWHb1OyzO90jwFvI1Zjjpi6aq8Rld1PEkThzyyygE9EuAyPa+WjDz+mRo9SDU+PPe84bxCT4Y7tE65uy1A+Dx7v848ewaSvHtvDDy8gR69tjvrPMB6pDz31Rk8N6HovDYjm7wmTuw8yduUvNjhYzzZUEg72ZcLuya90LotQHi7j40DuaqXHL3dSc64nPZiPd/mvbwWKXu8gcSovasGgTobkeU8NbQ2uNiRIb35mqq8ZuKwOwyLljxPuOW8AUzdvMRLiTxWvT+85CaHvJQdjzxUOQi96LYSvTGTDzxfHjA95L0MvGqa3byURTC6hI8jvMcWBD3yldC7zwgQvUaxBrziIB29aa2rvOfYST379kA8BrRHuz5l6bw9eDc5O0osO6RqoTn84/K7kTlcvRjGarwSn1m9CBDevDcpBb0/hIu79j4UPSqIy7q1vR29YumqvIkG97y6JQi9UGgjvPjq7DzQjEc8xeKOPWWMBLwWKfs7HL/wvNY1C70DqPO8qy4ivfmaqjzGEJq8xz6lPKyKOLqcNzy8qGMnvYKDTzwnvVA8ISfbvKWYLLzunEq8zzAxPdWehb3z3BM9cg4cvcRzKj2ObmG9b0Ohu5sJsb3qo8Q9OBDNu7qj1TxCTwY86eQdvQ037zspySS8NIarPIbruTxpbFK7AyqmvCSiEzw3oei8cZ83vegfjTy98II8EPMAPVa9Pzxp/e08Oq28vJJnZ7w0F8c6hZWNvJw3PD2V4p+6j5zsOwrupjyQerW83NppvYgZRTzpNGA8jwvRu9XGJr35GPg8iUdQu4SPIzuzIK688dYpPEUp6rx62Ia8npPSvLgG5rtZiLo8NQT5vEzegTyGLBM913L/PFwSXDutSd+87d2juwruprwIEF48hGcCvk6K2jllc8y8IQUkvFWPNDwpGWc8TsuzvCBotDylmCy6SKQivICWHTzpNGC8af3tO1Anyrw+Zek7VU5bPGW0pTuOHp874iCdPFr3njsSn9k53pCRvKsuIrySZ+e8SWNJPIBVxDu6o9U3KcmkvCILDjxofyA8Of3+PPfVmTyk2QU8leKfPErSLTxUYSk96MV7PDG7MLuT1ku8A+lMPEikIj0Mmn+7aa2rvG9DITtt54o8/zCgvDOoYr0D6Uy9N1Emu3XZFr02I5u8IsTKuxNPFzwJwJs8PtRNvKTZhTyFDfG8V5uIvOKPgb0/hIu86XU5vTI5/jt6QQG9lTLivFlH4bsRsqe7JKITvYHEKD1dQGc8C2z0vJPvg7wdnTk9O9tHPItTJLz+78Y8S7/fvM2TQby38ZI7gZwHvRmksztvAsi7vIGePL4t97w3USY8hnxVPHWYPb0720e9ZYwEPOeIBzxvQ6E8InQIvTG7ML3IrQm9R3YXvKf0Qr3niAe8YliPO6P7vDxU33a7awlCvMB6pDscby46jNFxvCIFpLrTKbe8JGE6Pci88jxcUzU8UNeHPZTDfbu2O2u71Z4FvG2mMbyFlY084QF7vIwSyzvM9tE8z4DzvNEd47lGV3U6A+nMvEQ8uLy+3bS83MuAvNm/rDxxd5a6ZQRoPMoJIL3bxRa8fFw+PcMExrxCuAC9AwIFOsOV4TyAlh08JtaIvN0I9bxAshY9n9oVvWKo0bxTsWs8f2gSufkYeDsB/Bq8fFw+PH9VxLwMi5Y8ylniPAqtTTxQ5vC7zwgQvET7Xjwe+c+7WWCZPX2jAb3RjEc91yI9u0PNU72o0gu9hb2uPDgQTbxhux+9YI0UvLFCZTxgC+I7joeZPBsASrxljIQ82QCGO/7Buzvtbj88xLSDPGzI6DrBqC+9aD5HPbPf1LtclA49aD7HvA14SD2BMw08PlYAPQZkhT22O+s8cDDTOjEL87uhn6Y9nWXHPL7dtLw6HCE9pNkFPUcHMzxDDq27PXi3vOjFe7wtU0Y9ZiOKPMoJoDx50hy8dw2MOjdRpjzHjme9InQIPYPKkrwYNU+8nqyKuzlXkL0ey8Q8u2L8vDVeirzPMDE9TXUHvXGft7wVq608mWxBPKlQWbs5hRu9m3iVOwwJ5LyWUYQ9elBqvbqj1TyWocY8EIScOzZzXTySqEA82QAGvbolCL0C/Jo813J/O3HvebvXcv+8+/ZAvdiRITuVczs7dzUtPTTHhDwNuSG9QTDkOzLpuzxGmE482i4RPO5MCD3wqB483MuAPA=="} \ No newline at end of file +{"embedding_dim": 1024, "data": [{"__id__": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "__created_at__": 1752205345, "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png)", "full_doc_id": "doc-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}], "matrix": "CHjuPPSqDj11Bje9fg1Cur57lbxvCXm94nQbPbTHBj0bWRE8TkBJvIg0Mb1HYRu9Q4w6u6F5qDiig/U8zpkdvBkpu7txrC+8j8hbPBEyorwcY168M/vRPA7i57eHrwo9KuTUPJdCx7u6uHq8jaj3vMEYJz3mrr48l82Sux4GFb0Esau97CgqvSCzmDxzSUE89C+1Om1cdb2g5A+9forvuqOTZz2iiZq9GrQGPZOVw7yRVXs8rEf2OvOanLyNjji9BeGBvLZ0Cr3rhfO8TCBlu4evCj30LzW8X361u88mvTyeN4y9MU7OvNctyL15wyy8tl7zupJjGT36mS69QGKJvPZPmbyVIA890VBuPXGsrzxIcY28SyYKvYsJEr2o4yE9l9WLO2RLHb00eP+8IkA4uzUbNjy38Te992nYPGD74jx70x48OWXLuyNgHL3DxSo8R1P9O/7JhD2YUjk89LIHPZQIJLsTSg29FgeDvAKhuTyw+h69WARKvFs8GTrBpca8dpNWvXAnCT1f8ZW8VuoKu57MJD2kNp67bWxnO+PxyLvIogS9BV4vvZ7MJLykJiw8UprQPDWOFr3qa7Q8Ug2xO9FGoTxrUig94/FIO8vcJ7xVN+K8uzvNvGmlJDxUJRy9iuG0PKw9KbyAN3M9kFugvJhiKzwEPsu8vMjsO+HPEDvlnsy8c0nBO7khjrt6QNq8GIwpvSk30bvZ2su7DdJ1uuSO2rtP7cw8vmV+PRTfpb30ohU9XuGjPGcC7jwnF+28jaj3POwYuL3XHdY7gtqpvNA2rzzAKJk8BtkIvDlVWbyxChE8gbpFO83sGbyqDVM9asWIuvqZrjzaV3m9tNFTvSnU4rsPhR48ETIivE5Qu7xgCYE8fZCUvUfECbxmABo9mGIrvYFVA72bHyE9q6AXvOJkqbkdc9C7JxftvAbrzjwRr889CzXkPIA9GDvNBIW8r3fMvAQu2bx6YL67NPtRvbIkUD02Kyg9hRRNvFsu+7udPwW85zkKPUJs1rtGzAK9YH61vGkyRD2/kwA9fHAwvUdZojzILyS7UzWOvFU9B7wr5FQ75kEDPdvqvbyY3YS838cXO46+DjwzfiS9/24PvY2OuLuiiRq9qICzPPqJPL2KXmK9cB+QPFbqirwscXQ9CPtAPEuTRb3eGhQ8y0ljvY2od7zF/808fx00POv40znmOYo9LzyIvYPk9jocWRE9NrjHPDR4fzzD3RW9njngPMtZVT2YYiu99j8nPZQS8bxSHaM7QwnoPOp7JrxIWSK9jY44PBNM4bzVgMQ7NHj/PLbhRb2ls0s97TL3PG8fED2+gw69hqFsvRKvTz1g+2I7b4zLvBvGTD3GD8A9aJ9/vIrhtLv+VqS7WpFpvTA0D70x2Rk9a79jPXaD5Lq8WzE9/KP7tlxO37yYz2a7I1AqPbvOETx9iBs9zQZZPOUbejzTcFK8fYibOxd8N7wleIc85iGfvINnSTyg9AE+YPkOPfBiTT1rv2M7yKIEPSYVGbw2K6g8BdmIvdJejL3D3RU8DEXWOn8tpjzx/Qq9VEUAvJdCRz1l2Dw8c+bSvEsmCj2MGQS8bw8evo6uHL1DfEg8LpHYPNPTQLwk7bs8ZgAavO/Fu7x1Bre8bu85vX2Im72cLxO9lKU1u4QCB7200VM8Yp6ZPO21Sbs8laE8dfZEPZZCR7xjO6u8tmwRvGRLHT2Goey5q7iCvMk/Fj3Fcq67NQvEu2GY9LxFtmu8KcKcvRkpO73aXR48s7cUvNPTwLspxHC7mXIdvXTm0rqyp6I8ua6tvKywiT2IwVA9jrjpvCeaP7yyFF68Uh0jPbzWCj01jpY82Vd5vH83c7xSit48s7eUu78INb0grfM8DdL1vJQIpDyv6iw8sIc+PeNu9rwxTs678gUEPeprNL2gWUQ8WY8VvTfIOTrdl0E7ptOvO9Cz3Lkc1r48oOyIvIFNCj1irgs9BcvqPDfIuTvtMve85imYPYBFkb18cDC8GrQGPVKa0L3T8yQ523WJO9YTCTywd0w8Klc1OzJusjyqHcW8HFGYvBgpuzz5Bmo+4/HIO7RUpjyGpxG9sRIKvFiHHL2Glx882MCMPL+VVLx7UEw8ZWXcvLPB4TyAPRg9YPviu8K1uLpQavo8xe0HvNNw0jyztxQ9nSluvMcPQLsAgdU6pDD5PMiihDyL8aa88v9evKVOCb37qSA9O3W9POprNL1bNCC8NYhxPI6o9zsI+0C85Z7MvMtZ1TwKJfK65SmYu838iz1kSx29YZh0NxO/wbzHgiC8lSiIu0fECT1dVIS8Eix9vHxwsLytykg9crZ8vA9/+TqYUjk8hz5+vBRc07zBOIu8XDQgu5BLrrwQn926mf88vbfxNz0ivWW7ESIwvHpgvjuezKS8fYibvB4OjrxJg9O5UGp6vT2dGj0sBDk9l9WLu/Y/Jz0j3Um8crZ8PX8tpjzMebk8APS1PJl8aj0tFKu864Xzu+woKr15zXm8z5N4vI47vDuJXA48etOeuo0ryjseFge8rU2bvJjNkjznyH28/bNtPBtT7DqI0UK8LRQrPIPylDxVR1S8bnxZOzfIOb1Az0Q9vvhCPd4alDt4Ng26Sx4RvKmQpT1hKzm8g/RovMeM7TtVR9S8QFxkOyT9rbzbdQk9q6CXvDHLezzSVhM99aziPKuglzvbdQk9dhYpvQxFVj0vocq8RbSXPF/xFTwlDSC79rzUPLkb6bzVDWS86/hTu4e3Az2mwz09E79BvDWIcbwFTj29s8HhPOno4Tw3Oxo8dXNyPXPm0rtOvfY8Hg6OPG7vOb3vQmk8WqHbu1zBP71C76g85iEfPLNENDzLWdU8+gbqu4YUzTwO4JM8ur4fu9jADD03QxO9+6P7O0fECbyyJFC8Uh2jvJhiK70QhR67ITBGPEbMArsaSR+9jitKPPGCsTx4IPa8GIwpPbfxtz2m0y89QN82vf5Q/ztJ5kG8Sx4RvSPNVzwUXNM8z5P4PPHv7Lx7YL68LRQrvFdnuD1qv+M87KMDPR4WB7yjkRM9wkAEPGq/4zwBFBq9Ts3ovEseET187d27+hZcux4A8D2jk+e8w92VvFU3Yj2ruIK81HBSPf7TUTxsahM9dWmlvCt3GT2evDI8ZeguPbI0Qj26MQC9M+tfvR7+mzwr9Ma8G8bMOjJuMjy7vh88PJUhvVuhW72p/eC7LzyIvEujt7z+UP88VsomPTWY47y7zhG9QN+2PCi6ozkqVzW7hQTbvPh5yrz3Xws9OFMFvfDlH70+MjO9uAv3u36ghjrBGKe8o5NnPPoUiDzRQPw8nrwyPZNzizx9iBs9PjIzPICq07yBVQM7ETKiuzWmAT0fEOI8Jx2SvABvDzwuJB29mnzqPB72ojw3QxM8aa/xvAkbpbzKOfE8BdGPvDPrXzwqVzU7NyuoujnYK7s8j3y7DdL1uDc7Gr25K9u6QVxkPdk9urx2kYK8IlCqvXrN+Tmyse88NysouT9CJb1rUqi8w8WqOxX3kDxIY++8UorevD2tjDx/HTS8HGmDvNjIhTwF2Qi9CIYMvQBvDzy6ri09F/8JvO9S27wp1OI5aJUyvB8eAD0Oday7opkMveruBrxbNCC9TLOpvBvGTD3VkDY8es15u1qR6bwXjCm6kM4AO/3DXzkwRAG8BdtcvWAJgbwMRVa9doPkvKOhBb24fIO7NY4WPST9LbqOrhy9AQSovPoG6rw6AAm9Uh0jvIz78zzutUk8qPuMPdNmBbxcTAs8+fb3vJ4/Bb0N0vW8SFkivVdnuDw9rYy8yC+kPJDGh7o1C0S80/MkvUqDUzz2WWY8j8jbvMcfMryqHUW8ZeguPdRmhb0uLBY917AavTnYKz0oJ1+98oKxu3xwsL3VgMQ9OWXLu/zD3zzWoCg8sPoevdNmBTzidBu8BLGrPMYPwDzygjG76M6ivDdDEzyOuOm8Yis5vb+TgDw7CII8jBkEPcRSSjxyxu48BU69vD2fbrymVgI75ISNvOMBOz0QhZ66OWXLO32ImzxhK7m8mXxqvS0EOTxvjEs8/bPtu9PzJL1e2/48UyUcu0a26zpaJK68Qu8oPFs+7bz1soe8DEXWvJr/vLtCfMg864XzvL6DjjyGpxE95Bv6PIYkvzpVN+K8qZClu6/qrLxVR1Q8fPMCvrESijiBV9e8yS8kvGErOTzZylk8JO27vHUGtzw9pZO5mGIrvNWQNjzw72y8W6cAPN2XwbyrsAk8hRRNPPqZrjs0fqQ7BMGdPHLEmjvhZKk60laTvLS/Dbxg++K8k4VRPJnf2DsouqO5NiuovNYTCTx3o0g8xfUAPa1NmzyUEvE7CRulPG+MSzzqeyY9W6eAPLo7TbtkyEq88v9ePKw9KT0leIe7vVuxvAEEKDvjjIY8D3WsvL3YXr0H6069PBJPu+YxEb1yzJO8KTfRuyNQKjz5/Jw8iMFQvGVrgTxkVeq8fPOCvHAvgr0DJIy8jjs8vR3w/TtwLwK991nmvKOT57vhZKm7vnsVvXYWKT3vQmk8YZj0vCWAgLyYUjk92T06PPupILwYGck8d5PWvKhwQbz+RrI7/bPtvEY5vjt5w6y7cA+ePO0y97zgxxc8ZxJgPAq4Nr1kyEq9XVQEPCraBzyGl588R8QJvfqZLr1P2wa9Hg4OvIx+Rr1sXPW7qICzO27vuTxqr3G7HXNQvDcrqDtHSTA6LYFmvBX3kLo4yLm8/DZAPRbp8jwTv0E8VD2HPccPQLtxOc+7RswCvNpdHry+g448kVV7vAj7wDsvoco87TL3vEMXhro7hS878GLNvI2OuLwPday8232CvJBLrjzKOXG6KdRiPDN+JL3c+i+86VtCPeLxyLz6HAG9MtmZOnPW4DwqVzU8/LGZvJls+LzD3RU9q6AXvVVH1Lzw72w8fIAiuuc7XjtHYRu8C7g2PNvqvby6IY48kmXtPKSzSzz2vNS7WzQgvCPdSTx01uC7vMaYPZjdBL02uEc9B34Tuy2RWL38wQu9MMGuPEW2a7x3Jhu9+QQWvCCtczz1rOI7GkmfPIUUTbzyBYQ8OuidO9Ng4DtvnD08JXiHPOsYuDr6mS6909NAPd4k4bu2bBE98w/RvN6XQT0EyRY8crb8PDPxhD15MOg8PAJdOmK2BLwU36U9l0LHPB6TtLzoziI9NHj/PMVyLjznOYq7DmW6vDyPfLz3zEY97kiOPLD6njxIaRS816p1OjR+pDxMIGW9yKIEPa5djbxpIlK8rdq6uwBvj730H8M8xfUAvV1UhLzv1S09KtoHvb1bsbyaD688AqE5PHyAIrv4/By9oXkoO5/W8bwtj4Q90KNqvZjf2DzFYrw8crZ8O6yqZDzF/008XwEIvQs7Cb38uZI8q7iCO9wKIrvtMve8sjRCvamAMzu5jkk7+6kgPagDhjzGgiC97aXXO5LovzxKk0U8/LkSPDhTBT2Orhw8M+tfPA=="} \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/vdb_entities.json b/dsLightRag/Topic/Chemistry/vdb_entities.json index 546055b6..7bc4cdfa 100644 --- a/dsLightRag/Topic/Chemistry/vdb_entities.json +++ b/dsLightRag/Topic/Chemistry/vdb_entities.json @@ -1 +1 @@ -{"embedding_dim": 1024, "data": [{"__id__": "ent-28910c9747db991734c7c471be861a0e", "__created_at__": 1752194223, "entity_name": "Nitric Acid", "content": "Nitric Acid\nNitric Acid is a chemical compound involved in photodecomposition and reactions with iron oxide.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-25da832997a0aff5c601866819f976b6", "__created_at__": 1752194223, "entity_name": "Iron Oxide", "content": "Iron Oxide\nIron Oxide is a chemical compound that reacts with nitric acid under heating conditions.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-e4ce2ac56db8b92aa60065aee6884c25", "__created_at__": 1752194223, "entity_name": "Hydrogen", "content": "Hydrogen\nHydrogen is a chemical element that reacts with oxygen to form water through combustion.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-990bf420df89c0c6edf606be2022cbea", "__created_at__": 1752194223, "entity_name": "Oxygen", "content": "Oxygen\nOxygen is a chemical element that reacts with hydrogen to form water through combustion.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-27634ff8002b12e75d98e07ccd005d18", "__created_at__": 1752194223, "entity_name": "Water", "content": "Water\nWater is the product of the combustion reaction between hydrogen and oxygen.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-8956959f0a4b8b0cc0ec1276ff1ea096", "__created_at__": 1752194223, "entity_name": "Nitrogen Dioxide", "content": "Nitrogen Dioxide\nNitrogen Dioxide (NO₂) is a reddish-brown gas produced in both the photodecomposition of nitric acid and its reaction with iron oxide.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-f168f7b110939759992482a8fc06f229", "__created_at__": 1752194223, "entity_name": "Iron Nitrate", "content": "Iron Nitrate\nIron Nitrate (Fe(NO₃)₃) is a chemical compound formed when iron oxide reacts with nitric acid under heating conditions.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-acfe2ed2a788e873bfbf07a45e79d4d8", "__created_at__": 1752194223, "entity_name": "Photodecomposition", "content": "Photodecomposition\nPhotodecomposition is the chemical breakdown of nitric acid when exposed to light, producing nitrogen dioxide, oxygen, and water.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "ent-a51930cdea9f155af953d062552f859b", "__created_at__": 1752194223, "entity_name": "Combustion", "content": "Combustion\nCombustion is the chemical reaction between hydrogen and oxygen that produces water, typically accompanied by heat and light.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}], "matrix": "Y+XUu+imIrxhEw27IlWfu/vdPruS5Fy9x4sQPItFWT2RmH88L5MmPW+USbxVt4+90eV/vV970jy6TYk7MhSFuiQwD70OeJS88SCWPEuex7ykMtW8RaUyvKo0krvNhKU75CXEPN9v5DybFIE8OkKbPKbKjzxcVpO86oGSOTkGAL1adIm8iRDYO/cZK7ymHQc8F58QPXCGFb2CcdS8iXORPSLy5TvRSLm8bBwTPRp6gLx7j5u751pFunuPGzwgIJ47fq1Ava6V7DyGmCE82hy+uSj0Ij3kJUS8Vb6pvVyg4jvtCQu9n8jSOsIhDr30mMy8BfX4O48SlTxqhNg8WSESvMO+1LxRl1w9RA8GvX279DwBjYS8fr2CvfmovbzKA0c9FMu6OCLyZbsz/Si9EVOEvKGxdrzc96289s1NvDEiOT3RSDk8PLpRPPrtAL3JbRq9aoRYvDNXOjwiTgW9DEMTPGxfSD0B11O9IvJlPG46OLyCJwU8YMcvvLXjhjvYjSs7mhubvT+sHb34As+8WDZgO7e1TryMLv28/CB0PSOBeLvu+cg7h9vWuy8wbTylfrI8HJ+/PK1SN7zMmwE9D7vJvMxIijzRSDk9mSlPvDP9KLvsarY7J2WQvCrdRj38xmK8iXMRPYjNIrwLUUc8T8UUPXgAiT3pj8a8u9NzPYv7iT0GQda8CcK0O7mnGr0kiiA9fReUvUGHjT3fJRU9gi4fPDzKEz1LAQE9QJVBPU4Wfr0hCUK8DSy3PHd4ELu63Bu94gCFPdIxXb0kiqA7j2WMvUjD17xJaca84MuDvDDIJ70mv6G89D47PIQAZ71azpo9DhXbPGAK5TxT1YU8XosUPL5klLxN08i8GDW9vNKLbrvunzc9NEDevJ45QLwwfMo9ZsBEvU/FlL1UGLs8qx02PSu4NrzJbRq9o+Z3Om1I7DzKA8c9fgdSPEaO1rwdn7+6vHniu74Kg7wcXAq9+poJvO6fNz1H2jM9+vSavFrOGjzGmUQ8ov1Tu+ZxIbwRUwS9lrEYvUaOVroOeBQ9Z1+ZvAnCtDwt++s71BwPPS1V/bzEA5i8mwS/PCLy5bvZLIA8MhQFOz1wAryp6DS8KJFpvL4RHTxioh+9fcQcPUMNeLxTiai83uBRvS+Tpr1Es+Y7Kt1GvE3jiryk2EM6G7YbPRh4crz4As+8oVflPBl48jxqKkc9fcScOz5gwLw22Bg9TdNIO/rtAL1nDCK9wD32O+vERz3w1Di9GR5hPalCRj0Fm+c8CrSAPG7uWjqIzSK9Kt1GvKL9U73oQ2k6ep3PPG73AjyaG5s881UXvKYNxbzirQ29ekM+vcQKMj3xc408tJcpvTNXOj2xFss81lgqPFOJqDqio0I7DYbIu48JbTw7lRK909dLPYMXQz04BHK7o4zmPELKwrx7jxs95mh5O0HhHj3viFs94P72u2V9DzzDdIU8YvywvKBuwbyz/+48gxdDPAhf+zvZLIA99eQpu7uQvrscr4G80Ui5PMN0hbx8iAE8UFQnOjB8Sr0i+w08R9ozu6UkIbw4DRo8bByTvZ6FHT3jlrE8R3d6vVg/iDwVDnA8/wQMvu5FJjyo/xA9Mm6WvCdcaDy7kL48gYiwPIDyg72A8gO9nFAcvNxDi730+4W9An3CvNBfFT02wbw86Y9Gvdl2z7zkjxc9+FzgvO6ft7qZz727D2G4vfr0GrwhrzC8tTTwPOrSezvWUZA81MmXPNHl/7yPCe284VqWvSqDNb1qhNg7JDAPOjn2PTyRmP88EAenvJMwurx3ywc8uaeavLme8jrJwBG8vmSUvN/SnTzxvdy82w4KPSAgHj3F5SE8nFCcutKL7roB11O8hpihvFohkrx59+C7JYMGvUE7sDtyFag8HFyKPctPJD2IIJo7oA2WvS8wbb33Gau7SvhYvCWDBj3APXa9Kt3GOyDGDLy9ay45q7p8vSj0IrwvkyY8A8KFvU8YDDz8gy28dyWZPAWkD70NLDe92YaRvCf0or3dnZy8RFlVPaAUMD0k3Rc8d2hOO0yQEzzdlPS8r/GLvEHhnjuho0I+ru99PTpCm7zyCTq9SWnGO5S/zLy6RGE4YG0ePcySWT3Cex+82wXivNWyO7wMlgo96h7ZvKxpEztmZjM9lQsqvEzqJLpnBYg9GsTPvNeb3zwaegA8sXBcPLWQDz2lfjK8PRTjPMyS2TqtUre6c/5Lu48Jbbysw6S8kFXKPP0iArtc+vO8t8yqPL+gLz1NLVq9BkFWPGXQhj3dlHQ9cclKvSC95LsaxM88XAMcPerbIz2hup48A1iyOwRYMr2pjiO7YGT2vIlq6TzL7Go6nJNRvJ3tYjw1z/A8qP8QvQBIQb3Xm987OA2aPMSn+DyJamm7ibbGuhl48ryL+wm9ATFlvClHGrzFqQY9wEYevZiD4DsdRS481lGQPDXmTD3rJwG9MmVuPWXXoDyT1ig74q2NPGDHrz1C2gS9FqYqva0PAr3PE7i8PNGtOzwrPzxj5dQ8UK44vWQa1rsRljk8bywEPTuFUDxUGLs8C+kBPWNIjrubXtA8X3tSu/5enbz6RxI9McENvPwpnL1UGDs9QJXBvOAHH7w9cAK9Jr+hvZ/YFD1gbZ48SrUjvdUMTT076Im8cW85PYCfjLwIHMY8qoeJugPJnzsAlJ488C7KvJu44byhYI096h7ZvI4gSTzMSIq8Xt4LO9Rm3jvu+cg8xt4HvKGxdjthVsI8DSy3u6Pmd7z4Ak89eFoavBHwyrzG5SG9/RLAPC+TJj3ARh49UybvPAPJH7rlF5C8t8wqPYjE+ryVZTs8LqoCPO+RA70bEC28pNjDPB7kgrwbths8FQ7wvAgsCDyck1G8h9vWOg2GSD2OY368RLNmvNtf87xbt768ZsDEvOwQJb09d5w7A1gyPKJJMbyk2MM8OkIbPMSwoDyLqBI97a3rPN7g0TxIeQg7OjlzvHhRcrzGmcS87kUmvdu7Ejwaar68JhmzPGepaLsUy7q8Gmq+PLi1zju7Ni26uk2JvH9Trzx/PFO82dkIPTP9qDyf2JS8NtgYvZBVSj2xJg298b1cPTcbTj0OHoM7zm1JvDvoCT3VDE29Xt4LPZ3t4rxDFiA9LBLIPG2ifTyDXAa7/RJAPFjcTjyH29Y7tdpevZ2T0bt9Hq48EpY5vTSjFz2jjGY9Xey/u2k4+7zG5aG8+90+vNtoGzzwF268cIYVvCVzxLs/o/W8qitqvG+USboF9wa8GI9OvYQAZzwBOo233yWVvMQDGL1OeTe9uqCAvJMwOro9bnS8AdfTPBamKjyj7x89SlsSPTXP8Dx5UfI8XKBivDNXurkJX/s6HK+BvGMxMjy/4+Q8rZVsvKnoNLudhR08ibZGPTZ+hztaEVA9SQ+1PKmF+zxCJFQ9eLSrvNFIOTzUwG88QspCPa74Jb1om7S8pRt5vaYNRb0pR5o8ZdegPE8Iyrsi8uW8Th+mPNQcDz1TJm88AiMxvQnCNL3O0AK9uk2JO2qNgL3Tfbq8Y5uFO6zDpLxtSGw97kUmPcSwID2HgUU8bqQLvc0hbDzBL0I8gicFvNLnDbwz/Si9ThZ+PPG9XD14UXK89s1NvXNKKbsYNT29+poJvRMlzDuLRVk8qtFYPPIJujzJEXs9zYSlvKJJsbyCgZY715vfvOAVU7tki8O8prMzvHclmTwNhsg8XZIuOyu4trtw4Ca98gm6vC37a72pjiM7PW70OxUXGD1e1WO8oBSwPKToBb0jPsM774jbuzIUBb1yFSg9H3ovvAX1eLt80tA8OGervC6qgrsBOg29wOwMPUq1I73xxoS8MSI5u/0SQLu4D+C7SB1pPdnZCL2NgwK7sIc4vc17fT2CJwU9oqPCvMCZFbwZ26s8NYw7vO0JizwuqgK9tT0YvIEld7yJtsa78gm6O6V3GD2MN6W8uU0JvdHl/7yB4sG8A8mfvGbAxDsc4vS8OugJPNtoGzzbaJu6SlsSPLEmjbw/SWQ85mj5O88TuLxxb7m8dxxxvWzCAbzJEfu6RUuhvKUbebv9EkC8YMcvvWj1Rb1Gnpi7q3dHvK6V7DvMOMi8pNjDvB6IYzswjIy8p1mivfhOLLw0SYa86Y9GvRyvAb2Gj/k8vgj1u4kQ2Dsrz5K87+uUvF2SLjx9xJy6lWW7veo1tbvMSIo8dn+qPK1SN7xhEw26aJs0PKTYwzvEsKA839KdOg5hODzjM3i72dBgvPG9XLwjgfi7pg1FPLG8uTtOHya8/MbiPAxDEz2aG5u87p83O6ragLxfIcG8W/pzvPIJOrqbwYk5h4HFu6sdNrwfveS9HFwKPWneab0CfcI7BfX4PBg1vbogIB48JYMGvcpdWDz2zc267+LsPFg/CD23xRA9zxM4vdI6hTzVsrs9jHpaPAfZkL2abpK7RehnvCBzFTwZ1JE8xU3nPPIJurs2Mqq7CmEJvfOojj3zVZe9K2xZvI8J7bxe3gs9yRqjvGQaVjwgIB69OjnzvFPM3bs9cII7QeEevfhOLD0cU+I8goGWuQBIQb3Q7ic8zsdaPUpbEr0gcxU94zP4PGhBIz1j9Ra96J16u5GaDTy5+hE939IdPEQPhr0/Uow80pSWvAX+ID19FxS9qULGPM7H2rnMSIo7C1FHvYwufbw6nCy8VVtwvGXXoL1rdqQ8icYIPOTZZrxB4Z47m8EJvACUnrxEWdW8Dh4DvfhliDu2gE29mc+9PE+8bDwVtN48lgSQPeOWsTwDZmY9rZVsPPHGBL3WURA8psqPO4lzkbtomzS6bveCvWnnEb1T1YU6EVMEvbAtp7wKq1g8WRFQvMtPpDuAluS8uFs9PWQaVrqPY347kzA6PbNbDjwVDnC9u9PzvJFHlrxBO7A8qtFYPSmakbqYg+A81QxNvYY1aLxsuVm7AdfTPKrR2LwX6V+8j2UMux4+FLywJP88NjKqvM0h7DzT10s9Z7IQvWbAxDv5qD29qY6jPMblIb0mEpk8xyhXPCVzRLs2K5A7CgVqu+a01jqo/xC9ne1ivBsJk7s59r28FWoPvc0qFLwR8Mo8Oargu1koLD323Y88wnL3PFwDnLj4XGC9H9RAPXos4jwhr7C7qivqPOZqhzxZKKw83fATPT+j9TzS5w094krUPGXQhj1suVk9RaWyvL4RHb2Yg+A8KUAAvIKBFrxZKCw8EP7+PFrFcrsYeHK8YqIfvZsEP7xlzng9oBQwPKYNRTyUGV68sbw5PJoUAT373b68NxtOPNl2zznlDug6fbt0vHIVKLvfyXW8EyXMvOhMEbsiqJY6EVMEPLgYCDxNNgK9kZh/POdaRb3MmwE8PLpRvOrbIz1MkBM9P+/SOzEiOT3Mm4E8TIfrvGL8MLyMkbY7mnUsPFCuOD0cXAq9/wQMPMtPJL1Jaca8Q3CxPM59C73u+ci8AEjBO/SYTD2mZ1Y8sCT/vP0iAjyMkba7YvwwvM1ckjxcU2y74J9uvcKPBjrUkyq9LoxavcIK5jxQD5E9k3TKO9xWhLug1Li8MHqIvXbUEL2Yemy8xZKXPBVf4DwEvSi8xvQDvKk/WDxTQ5i7TfBsvQnO+zgGUAu84JEsu6piDD1pdCI7AyrGPFLaijvIZLI8ApfjvBv1UzzVxCC9wl4QvX23fjt9PJ+7A/nPPPEC7jxzELg6IrEMvYk6IT1etVg7JEuQvIsFmztJrqM8cW+TPECCvLzuIhE87LkDPKieM70k5ZO8t8kbPB5aUbxDhc08Wb34u0ingr0I6g685MUzve1s+jrrLUK9g+DUvO8w07tM2wm8Z39Tu0yxNL1OUlm9JsJfPXkImLzKBVc9GTH7vBEdF71vpJm7d9AAPUbciDxeF0W5CSImvGo/HLxq5NC6S6qTvDgocLwYVC89R30tvLxmsDwMZG+82MAQO7F2cLxnsEk9V01KvPuQwbxz38E8Io7YvIGhHDsd6iK9rC0GPLX+obxw1Y88kMwEOGTXDb2prHW7c67LvKDUuLxYrza9c65LvaFnGz3xM2S9LBysO2d/07weKds89slXvG1U/zzyh468leT4PF2nljwVICg9gaGcO56jwrltChY7UEcoO7xfDzvQ/TY9pi6FO6RqrDy8dHI7WoHRu3nXoTxzCZc8UfP9u3ENpzw94Rc92finPPzBNzwbuSy8wdlvPF61WL2aMAM9T4PPO+C7gbwosI28aVHuPFlCGT02VlW9r9XLPJlJ9jw6itw8/VQavdX1lj3Z+Ke9ylmBPb+Tlr1MgL66Pe/ZvGo/nDucmZC8+O+cO7LY3DtKEBC9PbChPTUXnbzpaWm8J1VCvFofZbxHG0E8GYUlvTb0aDzDbFI81fUWPREdF71Q5bu5Ww2TPdFfI71OdQ29Q+AYPe7O5rxvqzq9VxzUvPkuVbyzOsk8o9fJPeTFszzAy6282jfgvOONnDyMZ4c73Ql7PHmDd7wIwDk9pDk2PB5a0bz9APC7cQ2nO8zJrzwlL/27lDECvA8oSDz9IyQ8rZaTPVxFKr3mZtg7ELQJvA24mTwm89W6axVHvHCrujyJOqE8GybKPIgXbTzSwY87doDmvIIDibqOreA8JHyGvTS1sDxoEja8wjtcvSMamr34jbC9cbl8PSLigjxUWPu81XD2vFqB0TuFsu+83Ql7u8tnwzx+SmE9jt7WPASa9LybaBo9M1NEPOj5ujyqP9i8XEUqvZGw8Txxufw84IqLvMCaNz0p6KQ7DbgZPGoHBT34XLq7VrrnvDLA4Ty1qve8fnvXOrs1Oj3gu4G7HkwPPQLI2Tw2uMG8ytTgvLHKGr2LBRs9n3JMOn5KYb063gY9mGWJPUEVn7mCAwm8JWBzvMDEDL2ZzpY8gGmFvHrl4zx7BAi9c0GuO3MJFz1QFjK9Cf/xu4BN8jxt2R89h9GTPDNTxLxn4T+8TNuJPCW0Hb1ifEK85VgWPVpQ27xA5Ki7jGeHPZ7f6TyiROc8DFYtO5VpGT0lwl+8ELsqPNxWBL1nQyy9Vd2bPGyhCDtMsbQ8tMaKu5idoL3pWyc9dHIkPN/NU70wgSk81jRPPMcsG77e8Ae7tf4hPXkImDt3E8k8RxtBPOT2KT0xj2u9/jHmvHENJztOIWO97F44vajPqbwbuSw9pJQBPc2m+7y6QOu6pwvRu+NjxzwAWKu8lTgjve9hSb29l6Y8b3pEvHrl4znYx7E8+ZvyPO+8lDxMsbS8d0S/vEmuo700hDq9hKQtvM1ckjz2HYI8YaonPS6vjrx24tI7EIo0PJ4QYDzCO1w9RBGPPIjYNLw3uMG7S09IvT2wIT1Yr7Y8TUQXPfbJ17wCHAS9qQAgPbYMZLwq9mY6DsZbOszJL71/Bxk8ewSIPOOUvT1eCQO8QZD+u97wB73yuIS9K4lJOxS+O704RAM9zMkvvSRSMT1D4Jg8OBquPCdVQr0Qu6q8G1fAPPiNsLzVxCA9XrVYu5hsKj3/k9K8HIg2vSwq7rwQWb69RUmmvPuQwTwNhyM9NcNyOzTfhby8Xw+82MexPMIK5rtj3q48khJePpr/jD1GV+g77Wz6vI3QlDw9jW29z2rUvPWKnzud0ac8wdnvu784y7wx4xW8ytTgPFcc1LylzJi7mjCDPX08Hzr8wTe8DE8MPYxuKL2FgXk9xywbvcWSFz0dx+68jGeHvKc8Rzw19Og87v/cPBONRbtSGcO8T4NPvK7HCTqaMIM8inlZvVB4Hj2y2Fw9ZAiEvJrc2LuPD009Be4eu6SUAb3XZcW8nQKePBJ/gzourw48/8TIu7JrP7x6Flo8MV51ulnu7jvB/KM8h9ETPGZxETx4pis8axXHvD8g0Lxnf9O8vaXou2LpX7wd6qI8iAkrPLJrvzusEfM8rOB8vAph3ry/OEu8GhgIPSZHgL2ZSfY78B4BPR59BT31Z2s9/8RIveW6Aj1+SuE86FQGOyLiAj0SK9k9+b4mvVw+iTwZtps8ageFvSFPoLxxb5M6ks8VPWI9Cr2drnM8mtzYPPNSCDo7R5Q84fOYPHENJz1tCpa6Hn0FPcWSl7yV5Hg6JcJfu9/+yTyH0RO99mdrPNIASL0/5Ci9LoxavBXM/bwweog94G74O05S2bz2HQI9ShAQOzCBKT2zlZS8SrzlPOC7gTsCHAS94G54PHNBLrxcPgm9fkphPcVhITwC6408hKQtvcCaNzyNnx683FaEPPMhEjucmRC9SVp5PbM6ybydAp67g2wWPdQxvjt24tK8gBz8vGCjBj05S6Q8yUH+PGB5MT0vSZI8ewQIPHlqhD31BX+8OEQDPbLYXLxw1Y+80m3luxNcTzzLZ8M7pJQBvI7eVr0nf5c7oNQ4PIA/MDx8qbw86Vsnu23nYTyPD029yXJ0vdjHsbzW0uK8NofLO1LaijtyfdU8l6hRvCuJSbvmiQw6EU6NPEOFzTyB0hI9fKm8PGqz2rycygY7MY/rujvsSL0wH706MIEpvYWy7zzk9im9mc6WvPDtijzrLUI8aQcFvLGZpLyqkwI9HlpRvMP4kzqupFU93Ql7vF2nFr0e+GQ9IuICvVKG4DwnJEw9kdMlvIFwprwYTQ498PSrvEpBBj2hE/E7TnUNPO/DNTxTQxi8pXjuvJQxgjx/B5k8oskHvais9bzvvJS8Zk7dOxC0Cbw15iY9Q+AYPTSEOry8Xw+9GE0OvZU4Iz2EnQy9ylmBPKA2JTxwqzq7owjAvDeHyzyQcTk501uTO+mMnbsIG4W8LoxaPbljn7qOAYu9leR4vajICL0cx+46zMkvvNYmDT3OCOg7z5tKPZRpmT2Lqs+7RfV7PGewyTmeQVa8kJsOPawtBr3CO1y7mGyqOqWborsbuay8DE8MvRT9czwxwOG6tar3u0la+TyIAoo8qMiIPFd+QL27NTq89Pe8PHRrAzyEzoK8c0EuvPzyLb2VFe+8DDN5PPU2dTwgvL08oXVdvPDtCrvIZDK858jEPKPXybxt2R+9mGUJueyIDTpGiN68Hn0FvfzrjLzB/KM6gA46PVKGYD2+peg8TNuJPHMJl70VX+C8/PItPB4p27xGV+i8R0y3uz9Rxjx9nos9FSCovJBxubyPoi89PE61vIfRk7yfcsy8pv2OPCtGgTzwHgE9DZXlO9/N07z0Wak8DGRvPBBZPjw+Q4S8JyRMvSUvfbyOfGq82gZqPBTvsTvtwKQ8/PItvacLUbpE5zm9KLcuPefymbtjfEI9lACMvHMJFz1zrku90vIFu09ABzwq9ma80wDIO7ljH701kvw8w2zSPKDUuLrAmje7I/BEvcyYuTrUMT69vioJPIWy77tNRBe8FVEevBmFpT3PzEC9X0GavJDMBL25Yx89Q7bDuzIUDLxpdCI8GWJxPRNcT7u0nLU8PH8rvdZXA702h0s87zBTvL84SzsCyNk8JsJfvZ9yzDutlhO9jUv0vN3wBzyTpcC7wMSMvJ4QYLzMya+8zptKvJzKBr0sTaK8dtQQvTAtfzy8l6a54lWFvPDtCr0/UUY9p5eSPLgBM7xNRBe85omMPMU+7bvklL28RohePBaQ1rkp6CS8xT5tvdo3YDyKeVk6lssFvehbp731ih+83Qn7POC7gb1qP5y7nG87PbxfjzudAh688VaYO5ygsbzavAA8JS/9PI6t4L3w9Cu6z/YVPOBu+Dswegi8bVR/u0dMt7ynC9G8h9ETPGyhCLyYZQk7uNC8PKb9Dj2nlxK8PbAhvISkLT2Fsm+8oNS4vHaAZj0rWNM8qQCgvLGZpDxM4iq9Y0tMvNikfbye32m8IuICPAgbBbyRNZI6vHRyvefIRD0PtIm9089RPHHq8jxK7Vs9jw9NPVXdG7x7ohu9KvZmPDYl3zw0ro88yI4Huyr25rxUWHs788ZGPaVH+LzbykK98O0KPJ7f6bwg7TO8tpGEPPlqfDx82jI8j6KvO4xnhzvIMzw9Fcz9vLvTTb1thfW8hJ0MPaoO4rzYwBA8LBWLvQyAgrw8f6u8mativOyPLr15tO08KRmbPLgyKbxPtEW9AIkhvFB4Hj1ppZg7hYF5PZ2uczswegi8nG87PKHi+rxt2Z+69FmpPIjYNLxmTl29UYZgvHDVj7tKEBA9G/XTvD+zsjs2VtW7ggMJvEyAvrz2Z+u8JhaKvMyYubtubAK9vJCFPGQIhLvmNeK71DG+O+maX7z1ih+8FO+xu7sExLzqy1W7gq/evNpoVj2Gdkg9SYtvPIw9Mj0bV0A81GI0Pf0A8DwEWzy93s1TvFdNyroPKMi8RBgwPI9Aw7wZthu7qax1vCHKf72BTXK9T7TFu0inArrvMFO945Q9va8wlzxY2Yu7OShwO0Czsj0G/GC7G4GVvWUPpbwRyew86TjzPDN9GT1huOm89TZ1uqjPqb11Hvq8zo2IO6MIwDuXCr68UST0vMoF1zwGy2q74cKiPM3XcTydAp68YdudPBC7qrxapIU84LsBvctnQz2UBy29mGwqPUyAPry9pei7oP6NvIenvrvdXaU8En+DvCckzLzgkaw6TNsJvV2nlry6ceG7uwREPStGAby3+pE8twEzPacLUTxHG8G6y2fDvNXEoDyTdEo9EitZOxgjuTzEWoA9Sh5SPfOV0DwyFAw82MexPMH8ozvk7wg9KIY4PbpA67uvMJe8WRGjPOHCIrvHLBu9kTUSvT5RRrqZSXY8PVz3PK1lnbwfi8e7Lq8OPO2dcDviAVs8bVT/vHjXIT0LklQ9474SO0ziKr2X2Ue8DFatPCzrtTxXqBW85O8IvITOAr2vMBe8u2YwPLF28LvUYjS9rwZCvZbLBT3uzma9gxFLPGqzWrunl5I86VsnPR59Bb1HTLc8nmQKPYXVI73FYSG89CgzPdiWOzzezVM8089RvdMAyDu70828wS0aPNYD2Twc44G8WqSFvPcrxDxxDac7iTqhvPD0qzs8qYC5rZYTPYFwJr1/RKU880hzPKtrITqD0Vy9Qm29vC3NkL0opQW8YKvyPGt/Ijyjg+y8ss0Zvf73TL0Q5uu6TSDdvBFFr7yWQxW8NiHtO7pEKbo2IW08r5VPvG4xMLxIG4W7cSFxPDpwcbzP5FU8HmypukG5DD3maQK8UsyBvIl9gb3b9BU8+G7bu1Ydqb3Gzqy8kPjWvI7jv7yhkQi995d3O0qTpbx2bC89T9JqvGPhGb0ZRkG8s1x0vfiTMTwMRB29NiHtvAUckjuHQ5S8DlcRvNaC3jvdqMY8Nr5jPUgbhbvfvV29jAxcvD2mmL3WCBu9yh0xvY9CA71yvuc8DZfnPO4exbwIbTk8WM82PBPggj0DCR49nvp6PGlFNb0GWCK9LkUxPN8Hij35kY47sGyzPEmTJbuJHBs9jalSvB/ND70FHrW87AkuPf1/rLz+fyy8IkONu2FI6buwDXC8xZKcPDP1G72ScPe6PQmiuyEet7vLcHu87uCRPCOWV7o1RsO8RYLUvLgKvDt2bK+7xbmVPHjkT7yXXHI7DPrwvC0LxDomL4g8TUUzvfZZxDsDCZ68WKpgPc/k1bzuXHg90IHMulEM2DzW5ee7YWscPYeDaj3oQgm9kB2tOvOntryLlLs6jGsfPW2UObtoC8g7uC+SPYq5kTx8khc7KfryOyK7rbwjuYo85MyLPCvR1rkXMSo9WDAdvRQ18LtFRKG9RAo0PR30iLsjWKQ85EZPu5YePzzQQxk94OAQOwIJHryDNOY6+2qVvN2oRr1FCJE99B/XvXtYqjx+5WG8Tph9PPNtyTzpuIY895d3vLpEqTwzVoK9xs6svBt+iz0FHJK8weKxvJ76+rzWCBs8V9N8Pc0Ncr349Je6AWynu01FMz2vV5y8WgmkPDQvCT0Jaxa9r5XPvBOYeTzdapM8x8yJvSOW1zv8vd+8qZIaPZfgCz2oVoo8OPhQPE/S6rwccG+92Zd1vEHQxryFkQa9//fMPG5vYz204I28SW5PvIWRBjz05Wk8glk8PJIN7ryKuZG8xi+TvBhGQT0VHJO9yvjaPEd+jjlgSGm6T/fAORpbWLrHzAm695f3PLFH3TyPHS27ogvMPHbNFb24LxK9n/a0PORrpbzHzIk8DpMhvZovEL27H9O9/1YQvY6+aTwcVxI84lYOvcqAujztB4s5jM4ovQUetbqb5eO7BZZVPThbWj2sgDi9sM+8PBW5CTywz7y8o0U5PWaTJzvFMTa8eIHGPMDNmrprWky7TuCGvMfMCTyVB4U8jx0tvO5ceLwiHrc8Q6vwu7NDF7y1M1i7ipS7vPhuWz0bfgs9ZRsHuu9YMr3Z+n69f0QlPXgHg7x6fQC9evnmPPZZRD2fl/G8eh69vNv2OLzD90g8gfp4O0d+jjuNzAU99EQtOoXNljy55eU89/Y6vd/iM73PR1+7qc4qPTOSkjwQSfU7DH4Kvaxb4jw3gDC8hiDhu9wwpjsrNGC8PkMPPV9WBT1hbT89VvhSPKulDr2FqMA8KUQfPEEOerxsWky9vbiDvbZWizwhgcA8bjEwPX2r9LuYfYK9qqnUPHUN7DxOQ5C86s9APRJFr7lWuh++LPSJvIQwID01RkM7jqWMPCqXabzQgUw9FZSzvEBYprsk9Zo7JW27ugUetbwk0ES995f3O8hGTTxxgDS9pb3ZPE819DzhfYc9JatuPE6907wdcO+8gZfvPMbOrLwMH8e8QdDGvBBJ9bwlkpG85GulvE9ayryg9jS9QTNQPENtvbsnCA889WkDPBCoOD2EbtO6t9BOPAOBvrlqIN85LDAaPaILTD2oVoo8hoPqO5806Lx7WCo8AiL7O4P2srtpIN+7c1tePGriKz0pXXy8e5ZduR0N5rvI40O9FbmJPFVbXD095Es9bjGwPP9WkDzC4A69AA3ku0VEIT0ql+m8QbkMOw/RVL1QMa48cSHxPBFFrzx6Hr28BRwSPdKW47tNRbO8Y4LWO00HgDu1lmE9MpQ1vT8eObwr9iw9axyZvRipSjzzzAw7zkdfvBFFrzuabcO8CNBCO2mD6LyNIfO8Ih63PJINbj7ALgE9Wr93uyq8P7yEk6m6NuM5vdcf1byW+eg8AWwnvFAxLr1OmP27tvUkvZ+8Rz3DWlI8KhsDvcYvEz0opQU69aWTPHXPuDtpqD68fFYHPRpbWLpYzzY9NWsZvAnlWbxuMTC9z2qSPCGBQDrdLoO8YeVfvLGRiTps4Ai8sQmqPFEM2Lx8q3Q8AkfRPHr55rx7ll28c7ohPc9H3zwjM068OjK+O2RZujxsf6I6OPhQu7Bsszw/4AU9rIA4vYMbibwcGwI9pb3ZvP59CTwkVgG9BflePINu0zz0pza94rmXuzbjObyDbtM83M0cPD5c7Dwi4AM8fqcuPSmlBb0Yaxe93AtQvfowKD3ARTu9/tJ2PWkHAj0rNOA8A4E+uz1qCL16HBo9ouZ1PVW+ZbxuMbA77aakPem4hrynuRO8uYLcuzYh7bt9Lw67RAq0PC3m7TyO4z88vVcdPfZZRD34bts6IrstvHJCgTxr4Ag9y5VRPARc6Dslq268OnBxPBQ1cDxoSfu80IHMvFcywDxmNGS9BbsrvSz0iby0uze8GoAuPcS5FbukB4a5ch2rPGduUTvXH1U9n/Y0vNP1prtjpQk85x0zPOh+GT0V9Rk8n1k+PbS7Nz3UM9o8xvOCPQhI47u55eW8tbu3O0QIEby6H1M8E5j5vCflWz3SHkO7ekMTvHGAND0ZpYQ8euAJvfRELb3KHbE8k5GHPTh+DT2pzio9ZRsHPe9YsrzFVoy83wcKvTQxLDx+5eG8EOZrvVeVSbwfqlw83gcKPC6oOrxWHSm9mqv2vCpZNrvj84Q9qmuhPdyTr7wpvD+9qswHvf1/rLzFMba8Gr5hvd9/qjrNkYu8fPUgPWIfTTwD5Mc8neEdPESnKj2ScHc9+6hIPQZYIj2OpQy89EQtPS9qh7yoMbS8bPdCvGy5D73kRk+7bLkPvYq5Eb13Caa8TINmPFYbBj3+HKM8P7svPLAyxjw7MBu8qPMAPOm4Bj30guC8338qPWt/orwQqLg8tViuPTB/nrxLg+a8GGuXPQUetbyNRsk8DbqavKc1+jykQxY8rhuMvE1Fs7zFDOA8v5GKvJ3hHbu5zAi9PM0ROxZvXTx+5eG8X6tyPZ2C2jxXlUm84fdKvcVvaby1uRQ8VzJAveRrpbrb9BU9bwxau3imHL2bzAY9h0MUvQOBvrz/98y85x2zvJUHBbslq+48hDCgOyp+DL1UpQi6y3D7u+C93bzsCS69oub1vBW5CT0SphU9ew7+vHEIlDwMfgq9DRuBu4tv5TvnHbM7SgvGPGKlCT2X4Is89jRuOxQ1cLxH+vQ7XpZbOh30CDye+no76LqpuZvl4zyDVxm9JatuvLZYLrxpags9w/dIvEuD5jsQMJi8GgiOvIJZvDynlD08zc++O6yAOLrARTu95GulO9yRDL3w9Sg86VegvEa8wbxjQgC8FBwTPKKowr2yBwe93AvQvLFsMzpuzqY8mDPWOx30iLrtpiS99rxNvA26mjzilME6fJIXvfrNHr0NvD09PoHCPK+4gjw247m80lgwPEQKtLx89aC8FPe8O4g1+DytW2I6x2ujvK0dLz2DbtO8a0MSvGvgiDzM9JQ8x0bNPJORB7238wG7fi+OvBlGwbzzbcm8mkjtPB4wmbuf9rS8W4FEvS6oOruVgcg8oLiBPfWCYDyH4q28TSBdvexHYTwi4AM81PODOzuRAb2Dk6m8Hs8yPbOmoLzczRy9O8+0uWJEo70nglK9dQ3svHNb3jxgVoW86VegO81XHr2uuqW7Lqg6vUUfy7wZRsG8GOd9PLnlZTwBbKe8jJKYvNblZz32NO68NAxWPYP0jzvNqmi9V7qfOplWCT1J9Is7gKWLPGFtPzzP5NU8QFimvPZZRDuk4q+8vva2OkTMAL2zXHQ94Byhu7DPPL29uIO7plrQOyMzTrxkWbo6//fMPNyRDD3ka6W8dmyvPD3ky7xNIN08w1rSO5nQTDzM9JS8M9LouwPNDT0aW1i9FwxUvD3kyzvyq/w84/OEPC+mF72eRKe9TX+gPDOUtTy5pzK9yn6XPAaWVTs3gDA9u/r8OxCoOL1X0/y81oLeu2mmmzz9Wta9gKULPRxwb7wkDng8iFpOvKmpVDv49Be9NWsZvEf69LyXll+8+0W/POHS9DyEMCA7X9BIvUG5jDzG8wI9idJuvYaDary1fQQ7+ub7PMJ/qLzKfhc8ThwXvfcbEb1ZR9e7jkZJu1mRg7zPR1+9RaeqvIpWCLvI48M70/WmvUUfyzs79Io8zA3yO02YfT0EQ4s8ReVdvCFDDb0z0mg9GaUEPVOpzjxA+WK7ORsEOy2RgD3gHCE97ORXvQf1GL2FqEC8oZOrvDYhbTwVlLM8eVxwPZG4AD1ShHi8WZGDPeSpWL2efhS9Gx0lvToNaDuVBwW9dc+4OwFsJ71Cq3C988yMvBJDjDueQoQ6bs6mvITR3DzR+Wy9u/p8u3gHA70QqDg9TuKpuxFqBT24SG+8o4NsPAtEnbtBVoO87ORXvUZdfrywkQk8A79xvDL3Pj1tVgY7en0APexHYTsHWKK7PQkiPD5DDzxFH0u9I1gkvHm/+TtTCBK8dfQOve+7uzxXuh+76s/APKyAODxxRse8FZQzPFu/97rUbUe82bxLPMfMibw7qt47x2ujPPSC4Dwp+nI93DAmO9bl5zwCMBc8ceM9vRT3vDsH0MK6ZfawvDsyPr3TlmO8eAcDu/NtyTzP5FW9z7//vAAyujsagC48qyH1u6qp1LyYM1Y9KzRgPGRZujzj8wQ91x/VPFMIkr1RDFg86s/AO0uD5jwPkyE8EKi4vBXSZru5gly9338qvJkz1jwMpYO8vm7XvEFWA71Xlck8ac0UvMap1jsiuy27BfnevAgOdryW+ei8xvMCvURrGr1mNOQ9SW5PvOSpWD1B0Ea9HXDvO8JDmLwlDng5+4PyvJRssbyZ9aK7Qg76vBKmlbzYQgg8hkU3u/kwKDw5uh06KrqcuxJDDD3PapI8LG7NvBfOoLwavmE8SFeVPRlrF7wkVgE9fW3BPHOVyzy90eA8r/SSPNpZQj2cCJe8by8NPWR+kD1rNXa8+82evJvlYz0KCA296pGNvFj0jLzG8wI9sA3wu76TrTxoqL47EkMMPcIg5bxZR1e8B9BCPe99CL0d9Ig8sA1wvABwbbwKpya8A6YUvbhI77x35M88oub1vOxHYTyygUq9AWynvJVH27ppqD48h71XvOuRjbvGziw9AHDtvKkxND0RC8I7X1YFPJ80aDw7DWi8mm1DPT0i/ztU4zu8kvQQvUQKND3dapO8iH+kPFGSFL01RsM8r3B5vHfkz7xNfyA6PQkiPPiTsTtokYQ9AA3kPD5cbLxsuY885oA8PGBIabqVph682wndOpTWgDz4dd+8esBuvRe4pLxmh3y9US8DuzZP3zzLPr08cZyAvCmu/LyQkXC9bPg/PDValbz4gJW7e8Hpu7YQgTtuZJw8FLauPMg7TDyz1yG9Tfajuxp59jzJ3pG6qGNtPAuu1rvYSQY9j9MPvQmDnrxniHe9zD84PHmXrLyDapG9XGGYvAWBKL10J2S8qTqrvJKS6zvr1Py8fsTaPIdsB7yYLPG8QPeLuaekEb2Ua5+65zxtvczTW7wStLg7J1qCvIv45bzM4Ic8U4+uPH/Rhj1Vx5K8izqFvRPf8Dso8Ju9YlpOvfzjMb38TpO8HLyQPHgBkzyhyee8dGmDvCiEvzwlFm09jfpbPMjQ6jyLOgW9AOcivQQU0TyT/0I9TYtCPGHEtDuqco87VSbDPM9Brjrjexu9u5zfvJUAPj32cm68ZDIHPfPoBbqT/0K8OSeYvLFqyjx6lyy9JlmHOvdKp7t8BAQ8rdO1vNVwUrs7UlC8PunkvMo9Qrwprny7eAGTPMg8RzxuZRe82nS+vCGLibwUIZC8HnxnulbIjb3CokG7Z8kbvezW8jzS2MK8dTQQPSKA07vx5g89cJuFPKAzTj0iVhY9mCzxu9lKATq+dg48Je2qOVu/zTzh5YE8paKbOyUklD3OrA88ELM9PC0exTzlfRG99kksO1fJCDx6mKc8MrdPPV4toLyNjn+71HyDvfJv/Ty7Mf67g13lPHvB6btJHHU8PvYQPdF5ErwWt6m7dDOVuobLtzvwRUC9ARJbPfXdz73DRAw98+iFvBAenzyudQA960FUPO+vpry2BNA89d1PvTLCBb3Ad4k9N7u7vMbP77ztrTC95xOrOtZHkD0YJIG947KEujlQWjyYmM08kWguvB5TpbuXAjQ9Ah4MvZKfF733c+k8ugfBu4Bbb73Pa2u84qRdvL92Dj1HGv88h2yHPE5igDrrQVS9gDEyvbia6bvOrA+8DbBMvXgBEz2LBRI9ZTMCvZJpqTvXcsg7jDsAPNN6DTwJgx69f5uYu7oGRryu0zU9CBdCvVXHkjwDfre7u5zfOUKCbzwdUiq8XWKTPAAdET3M1NY8UiPSPPpMnTzK3hG9ZMggvYU1Hj1XJ768UCLXPFb9AL1UkCm9KBnevQgXQr3cdTk9X+32PKAzzrzgeaU8J4PEO5YBObytcwo8Wysqu26OWT2YbpA90HgXvRvlUj3v5Bm7wqLBvCyIqzy/dg47G1C0u30uwTx3AJg76hacPKs8Ib3LqZ47CKxgPA5SF7wCE9a8wg0jPYGdjrwxjBe8XJcGPI/71ryBMi09Ubf1PIY3lLpFhOW8ftCLvas8oTwphTq8V5OavKlwmTyLBZI9ojTJvJmZyLx+0Au856lEPLUCWruiNMk6x6atPB6IGL29ntU8PL6sPHgBE73feCq91twuvIjNrTz5dto8uXEnO+U78rziELo8tZjzvIPIRruSnxc9D4gFvao7Jj3NavA8Hb0LPe7XbTwwtVm8yj3CPGbJGzxx+7C86UsPvTdbkL09VMY8G/GDO2AvFj1pYLC8dGmDvcMOHj3WR5A8PunkvIjNLT374zG87RgSvgWp77w1uEo9qGNtvCvykTx9w9+8EB4fPbdvMbx/0YY8izoFPeANybkbUa+8pMtdvU0fZjz4S6I75BE1vd2gcTyMOwA9X+12Paz7fDvBDKi8bY3evPGwoTzv2Oi7KvGWvLsx/ruzDZC8Z4f8O68/Er1fZYS80NdHvYDSgbzg5Ia7F06+vDm8NjsqhjU9nwkRPJo6GDvM01u7IFSgPK7UMD3/Dmo9sQyVOojMsjubBSW9A6h0PNNu3LvCNmU8YcQ0vPZJrLyiCwc9yDvMvJaiCDqJza277Kw1vSIV8jzM4QI9tG07PQbsiTwc5s08+4MGvUL5gbwDqPQ8tdkXvfJGOzvx2l69f9GGPG5llzwg6b48Yu/svAaBKDxNH+a6OFDavMRFBz1QIle7025cPWXxYr0kFu28AKZ+O1qVkL3iDz885xOrPFKPrru7qJA8cJsFvU32o7z9UAm82UoBvYv54Dzv2Gg+uXEnPcA1aru+M/S8CLiRPPHaXr3Z3586+N/FPN3ikLxQLgi9bJgUvZou57zdF4Q9HuhDPNKvAL05Jxg97a2wO8INozt6l6w7zOECvS30hzt5ljG9tgRQPU6MvbxoXzW8KoY1vV4toDq0bTu8hV9buzldhrtk/ZM8j5FwvFSQqTz6ggu9nAYgPN6g8TzpFSG8AegdvFAiVz0k7So7FiMGvPKyFzxBV7c88ucKu+4ZjTy3bzG8VrvhPHgrULyZcIa8Z8mbPKWiG70h67Q7L4ohvD31FTuIzS08JRZtvVbIjbvqP1681Nq4PG6NXrpcLCU9gDEyPIHGUD3iOfy8cSTzvDlQWr1GWyM979hovdnfHz2z16E8rD2cPLyd2jvtTgC95zztPHCPVD2XAjQ8rnSFPDMisT0pJoq8NbhKO85BrjyfPoS7YC+WO8zT2zuXowM9hzeUO76rAT1xkE894a8TPD7AojsOUhe6nJu+POGk3Ty6B0E7zGl1vGfJmzzs1vI7kmmpvGfz2LtbVOw8Ed16vSbuJb04Jh28sgyVvOIPPz15ljE8kWiuvHNoiDyBMq08BapqPbtznbyLz6M6S4lMugN/sjyzDRA8yNBqPIVrDDzYExg9VJCpPOZ/hz1aKi87ecBuvAoZuDwg6b47a2ErPE+2+rxKiFE9ugbGvIxkwruVoY08bZmPOgN+t7wrG9S8KIQ/PYr3aj1r9kk8/+UnPeDkBj3R2EK8kp8XvPiBEL38d9U8Cq3bvHWTQL3oPWi85xSmPAyGj7vY3am8rnUAvSSCSbyioaA7U48uPTknmD0/VUG7J4PEO5KTZr28ndq8SIbbvGRcxLzwRUC7p2PtOd12tDzUb9c89UgxPZwGIDwo8Bs9BBRRPUleFD3LPj09J1qCvGgAhT3pP167hmBWvFMkzbtxnIC9mASqvDi7O72dCBa9aQEAvYRe4DzXcsg8Hb2Lur92jjzaCV08E1YDvHgq1TvkfBY9ZvJdvKrQRD1Hkoy8XGGYO0nytz3OrA+8Z/8JvcemrT0wSf28mW8LPXNoiLzDDh49tJb9uZHUCjphWVO8sNWrPAIT1rwvH8C8SRz1vIrOKLxlXb865afOu7ZuNj344EA9iPX0vALpGL3LqZ6880c2OwYWR719w988RMUJPX/RBrtFkBa9bPdEPOB5Jb0ce2y8UiNSvF5XXb1NH+Y7lNaAPDC03rof6EO9dpS7vIc3lLuJ9m+8TyFcvWFazryrPCE9IxVyPaWjFr3M09s8rD2cvCHquTuJYsw78rEcPMs+vTuN0B49Or0xPNFDJLr4dd+8ttqSPOWmUzxoyhY8yNBqOabNUztIkwc9LokmvSAT/LwTSVe5zGn1PFu/zbyHbAc8mXCGvC+KIb0OHKm7gcZQPLyd2rts+L+7xqUyvY8IgzxxnAC9A363O0rzMr2R1Aq9OLs7PDz0mrkMGrO9kmmpvHmWsbxiMQw7RIPqO0KB9Dtvj1Q8/+Unu7IA5LuAMTI8Zof8umv2Sb0cevG8N7pAPTvn7jyDnwQ9MSE2vaxnWTwxSvi79LOSvFMkzTwoGd48pDa/Orypi7w1jwg9xs9vvD32EDxk8WI8nC/iPCZaAjuU1gC9cyZpuof1dLzXSIs7eDcBvRFUDT2opYy7xKS3vAISW7wIQf87XmOOPKiljD3L34w8lgG5vHmWMb2zbMA8H33iPMxoejypOiu9sgyVvDZaFT1BgfS8vAi8vM9BrjuoY229DbBMvaw9HL27cx09oguHvLIA5DuAMTK9HObNO2BYWL2hn6q8J4PEvCYklDwrhzA8lwOvvEXvRrsgE3w9DK/RvOIQOj1s98Q7UyRNvUnytzwzIrE85LKEPN8NSTy8Cbc8YsWvPKdi8rzuGQ08es2avHGQTzyz1yG9NCMsPQ2wTLxgLxa9S/QtObpyorzOrA+9QPcLvKHJ5zyJOI881Nq4vELtUD1bVOy8oMfxOyuHMDvBoUa8Hr6GvI+Qdbx0J+Q8aQGAveGk3bz7g4a6BesOPd2f9juT/0K9vQqyvZWVXDy7cx09nQebvc9r6zykYPw8IVUbPUJYsjsrKAC9aF81vZpwhrkCHow81G/XveI5/DyUax+8Ax+HPJoFpbwce2w7MIscvZTWgLxUJci8CbmMvJs7Ez1zaQM8DERwPIX0eb3vGog8fsRaPbPXIb0IF8K7zqyPPEOD6jyDXeW8IOk+PEeGW71wmwW9ecDuvCDpPrx2lLu7dv8cveMRtbzJ3Za7F03DPDJLc73nSZm7y2d/PHg3gTw1TmQ9+EuiPNQD+7uZmci8++I2PaPL3TwEIII8uptkO2/5urusZl49zOECPd0LU72yQoO86kwKvCeEP7wijIQ8y2f/PFxVZz1nXro8fAQEvL80bz2Kzii9paIbva7UsLxf7XY8D4gFvcg7TDudnDm979hove0YkruR1Io7+HRkO6g6KzvkfBY9lJRhvVoqr7xqzIy8iwUSPeeoybrYckg9kmmpvLPXobpj/Bi7DIaPu3Mmab32SSy6NVqVPM5As7z3Sic9hcq8vFAi1zxmXrq7U4+uPAaBqLoUIRC9m3GBvS71gry4cCw81keQu1/se7zuQ8o8Bqtlu14toDyt0ro7BanvvMg7zDwuiqG8uXGnvE61/zpLHXC8VSbDPCTsrzyyDJU8OuduPaLWEzxJHPU8aACFPOKkXb0ZeHu8bmScuxe4JL1blgu9Chm4vGuYFLx7LcY8iWJMvf55S72DMyi7QliyO24ifTuLOgW9ULZ6PZYqezoMhg88Et36PN+h7DyQaK69CboHPEeSjDw6XgE9mppDPFdRe7zOrA+7e8FpvfhLorybcQE9njHYvBAeH7u5m+S80K4FPSbupTyG9Hk8j5B1O5lvC73WBuy8KCUPvcgSirwgE3y856jJPZ0w3bwCHow9s2zAvIMzqDvXcU28u6gQvHosy7xIhtu8S/Stu3U1C73+ecu84g+/PH7EWjtZvtI7oJ4vvAisYDyFyjw99t7KPKKhoLwMRHC880c2PA9GZj3AoEs82XNDPW1jIT0zIrE8p2LyPOGjYroY49w8XVbivNwLUzwU33A9L4ohu37E2ryenTQ9flj+vLBAjbrUb1e8WCm0PFAiV7skFu08BICtOpKT5jxn/wm9jQaNvA6HCj0QHh+910gLPTUkJzw6KBO5sNWrvO6uK72Hy7e8a82HPFtU7LzadL48sw0QvWP8mLwFgK08F+FmPAXrDr1fw7m8epgnPT72EL2VAL486D1oPDYloju9ntU8q/v8uxq7FT08vqw8SF4UvAB8Qb3jexs9t9sNvH0vvDvRbOa8cWaSu+Gvk7xrl5m82xYJPH0uwTvsrLU8yKeoPX3PED16lyy8Zv6OPJsv4jv2SSy8owwCvfnwKzzSINg8ZLUhvd4EtryxhZO8Yq0TvcQOsbwxVi09Y78wPYSdFbxX0UO8dddkvdss8jqCsbO8BYBMPOmd5TyE1e08W0CsO6iVpbz1gUO7c1TePHU2sTvUDLo8OjwMvN+bWjx2pxq75oM6PUm/HLxI07q8lJGPvf7aDDyYoSu87N6EvQ7rMr2O1/i8vPgHvVE+Ib12ZPq7nyo/vflZhzzvj1S8Pds+u5KJATy+ew69R93JPA+C17y5+gi9RudYvMt7GL2pLMo7R9O6OmY4KDxvHoc9BmwuvLx9D72xob88RGRSvcCp17wgUBa9cr05u9Sj3ridPl09G0oJvV9QyLoY0ZE8E5JzPZTTdjyvv+w8pIUJvX/Z7zpoXOI47WsaPQj5w7zAqdc7z6fgvA6M5jxeWlc7Q27hvKmLlrzebZE9nAYFO6I62zsGDWI8ael3vNP6nL1q32g8/+ypvNbuDL3XHNY6AVSEvLJ7hDuNjQO8X/F7O8v2EL3vj9S8qJUlO+DwF70mXrE8VU69Os0kWrzQ/J05hJ0VPCLTHDxL7WW9J4x6u3XX5LxiKIw9DGgsvBf3TD19mYm72v6oPEA4Cj3EGMA8x5E3PRhMCrzer/i5tRCovAXfmLwYTAo9iK2xPF65oztaqYc9snsEPLkgxDzx2gI8A/1FvRsH6TxBSie8PXxyPbMImjzTFsm8MESQvLMkxr2aJDI9oZGZu0OxAT0GbC49yRS+uv2hezy6DKa7ozDMu769dbuylzC8wAikvNStbT0Z4669rTJXPD7Rr7y2PnG8tgaZPHlGTbyyOGS8SrWNPNr+KL3pneW8qBCePbQaN7wVdEa9BOknvajNfbuPi4I8/BRmvRdgqDwa2R88kMPaPG1ibzz9AMi8LnRaPZZWfbyqgQe9Km7NPELXPLzXaYW9pgiQPMBA/Lodiu887BZdPeryIjw9vxI8MEQQvdJ/pL0UftW8DfXBvIJSZ71xJhU9dRqFPT7RL72Sr7w8+fCrPNP6HD3uYQs84WEBvWClhbvGdQu8IVgkPb2Fnb1ianM88/48PPKpf7yDp6Q8FskDvY+VETwmQoU9Z6mRPIcWDbuBu0I8HZT+vDX97bynn7Q8CJr3upFafzzga5C8ghAAuMH0hb2smzK9GnrTPJUeJT0f1R29Sb8cPcWl1TwzvQe98Xu2O7+zZjw/XsU8zwYtPZKvPL0NXp07TOPWPB1Sl7zZ7Is7diyivD5o1DwJTgE935vavHrdcbxXMBC9h7dAOnNUXjwdUpe8h5EFvIijojwKfMq8Km5Nu5W/WDyjMEw7et1xPUDrWj0hYrO7Uq8KvV1k5ry5IEQ9w/yTvBp6U7z8aaM86vKiPJoIBr0/Qhm7kg4Ju0n3dDzyEtu7c1Teu29EQjzljUk84GsQPSpIkjy5IES9d8NGvTVcujvfYwI92WcEvIvH3DvZqWu6HFwmPB7DALmozf28OkYbPSdUoryhkRk9RudYu3lGTT07t4Q8ZjgovdWZz7tKOhU7SjoVvWXjar2j0X+95SRuPApgnrw9v5I8rZEju1Kvir13Wus8EQVePIoUDL0N/9A8+ofQOwrlJb66FjW5bK8ePen8sbt4UNw7CtsWvDbz3jyiRGq98ghMvEo6lbx8HpG8hcvevEXxZ73whUU8G8WBPDfpz7yuDJw7h1j0PFUogj0LE2+7jFTyvPXqHryzjSE9mZecvBnHgrxduaO8WCaBvP3kG73Rk8K8fqsmvOCRy7u3ky680DR2uzxOqTvJFD48w4EbPVLVxbugFiE8Xc3BPD3bvrx04fM8fKOYPQFwMLz4BEo9WrOWvIWThjwNlnW8LcuYPLGhv7s/XkW82HuiPMMiz7zXaYW8RudYu1LVRb3cZYM8ZKuSPRTdoT0eSIg864nHPMuXxLxvow6882cYPfP+vLt8tTU8rDxmvcQOsTyfKj89f5eIPF8qjbzGMms9IA12PJxIbLzDIk88N+lPvKI62zzh5oi9sAobvYxUcjwrw4q9TOPWO+nghbuEnRU8LcGJO2SrkryE1W06AXCwvGXjar0GbC49+ZFfPtRrBjzwJnm7UT4hvXqbijxNLgW9tp29Onda6ztDzS29Ec0FvaGRmbwTiOS8P15FPZerujk+cuO74hRSPVjHtLv/7Ck8SLcOPTBEkDw1XDo8bGx+vFfRQz3bLHI75F+AvCTRG70Gdr074hRSPMR3DLxBgn+8XlrXO1skAL316h48IpD8vBtmNbxf3V28IEYHvQ3ZFb2+ABY9ZUK3PLMkxjve6Im86Z1lPBB4SLsaEfg7wXmNu0Lhyzxf8fu8Q7EBvI1KYzvOELy8G8+QPME2bbxTYls9ybXxPGIojL3mg7o6lSi0vDN6ZzwtwYm7hJ0VPK+1XTyEGA49zm8IvWbPTL0zeue8HFwmvNkIuL3JFD49R9M6PAcD0zzUAis7zbv+vO6ZYz1sy0o9Rft2PLGhPzvGMms9BVqRPKoYrDwC4Zm8okTqvOTkhzwSWps8+KX9PMPyBLxzs6o83RhUPI7XeDwlCfQ87twDOxxcJj3R8o48Ce+0vIKxszzeDkW8K8OKPIrR67zUo968fqsmPAcDU70lxwy9zvSPOjHt0TzUo948lDLDPNnsizzljck6UtVFPKUcLj12p5q8h5EFvHkgkrycEJQ7ywCgPMIs3jxZXlm83IEvPS2IeDyfBIQ9Nf1tPEzZR7wwYLy7sAqbvIFc9jtaqYe81xxWPf6XbLx6m4o8/tqMPNN1lbysfwa9J1QiO3sooDwjRIY9P//4PHxgeD11GgU9wIOcvCfPGrtUtxi8KOE3Pdr+KL2axWW9ZySKvHRAQLyfBIS846v2vFlUyrw4uYW8wfQFPDdIHD3f+qY9sYUTva4MHL07t4S9g6ekvFNi2zuye4Q6sKtOPJ7LcjxfUMg8K1qvuoyzPj0XYCg9qrlfO58qPz0tiHg92Qi4PAmQaDyfiQs9P8cgvTTPpLzJFL475Y3JvKybMrxlJgu89WUXvCJOFb373A094wpDPI8QijzbLPI7NvPePDKE9jpkTMY85oO6PKylwbx04fM8tqfMu3lGzTsAer89j4uCvK7J+7zebZE9TS4FvfjonTzTdZU82eyLPLf8CbxEw5481xzWOy7dNT2UDAi9Pb8SvczsAb19FII7qw4dPGnp97wIWBA9Z2ZxPOIUUrzVmU+9+GOWvHEmFb3bLHK964nHu6gQnjlH3ck8qrlfvf72OD1psR+9komBvC9qy7xI0zq9j5URPU2zjDxbQKy7po2XvKGHCryuHjm8jY0DvaoYLLvEGMC8KOE3Pd4ENj23NOK7SWDQOwB6Pzr65py8p4OIvNIgWDwi05w8XSyOPUCzAjqvv2y7fkxavSPlOTyci4w8o5mnPGfFvTmE33w8/pfsPIASgbyolaU6R93JPGO/MD2BXPa89SJ3upkuQbwZ4648itHrPDeA9DsxVi083XcgPLiJH7zp4AU9PmhUvdGTQrzHh6i7b0RCvWTt+bsIWBC8jyy2vI8stryVyWe8ezIvPJKvvDsDUgO9+31BPHUahbyzLlU8M72HOkzZR7vAn8i7TDgUvUVQND1tmwA9iKOiPJynOL39oXu7wAgkvTX97btIdO48G8UBPH84PLt2pxo7ElobPUNu4bkpeNw812mFPFirCDx5pRm8KEAEvWpIxLy8fY+8CU4BvTh2Zb0KfEo9T/Pyuk0uBTx0qZu9c7MqPKg2WT1xx0g9+uYcPJxIbLzMcYm9GtmfPNRrhrx+qyY9CPlDvFw2Hbwr+2I9GO09vT61g7y0eQM8mxojvStaL72Fkwa9X/H7PMKLqryVKDS8Sb8cvdA0drxg3V292HuivJg40Lw41TE9WfV9O+x/OL3DgRu79taAPY+Lgrw7t4Q9BYBMPMMiz7x7Mq88gBIBPRZqNzp7KKA8/lUFPT/HoDs771y99VuIOwKe+bvEr+Q7glJnvH7j/jzriUc8sBSqvDtYOLzSfyS9FsmDu/IITLzl7BU9+1eGPOgQ0LrwJvk83ugJvLGhvzwUftU8gBIBPKoYLLyFy168TS4FPXOzKr3Ose87tj5xu2mxnztpsZ87azSmvIitsb22nb08oU75O8O5c72Io6I8xnULPMO5czwufmk8GhH4vPEc6rylAAK9lJEPPY1K472fKr88EQVevF3NQTyDSNi8JHxePM0k2rw9fPK8UyoDvXxg+Lzfm9o6pbPSPJ/B4zzAgxy9D4JXvMZ/mjv3Dlm9q4mVvOjqFLzUre08Ln5putmp6zt4GIS7nyAwvMfwg7zdGFS8tLvqvMm18bwC4Zm8GwfpPM4QPD2dnSm97QxOvHrd8TyONkU8749UPYKVB7ubGiM8dRoFvWSrEj0s8VM9zvSPPENuYbx+TFq83uiJPYvHXDy+vXW9A1ySvAXfGLwdUhe9lYcAPFzX0DwImnc9mxojPI+LAr1f52w9SHRuvbQaN73ycSe8U8GnOqYSn7xr1dk7C9EHvXNUXr1iKIw7iERWO7z4h7yMlxI7TOPWPDM4gL1Dza282HsiPY42RT0/vZG7IflXPDxOKb0wRJA8/BRmvNmp6zu6o0q9E5LzvELhyzx0QEA8mDjQPOnghbxdw7I8/4NOvAlOgTzuo/K6Y2DkO5M8Ur2Tm568yzj4uAdin7wj5Tm9SHRuO8O5c7wDUgM8wAgkPCjhN7ySiQE8fL9EvNRrBr1tWOC7k5sevRPxvzwjRIa6IfnXO0TDnj1MOJQ7XGRmvMyNtTtyHIa9ZExGu0h07rxXMBC83IEvvQTpJzsWaje7eSASPPVll7x/2e+8/BRmPEXx5zp7Mq88vHMAvVT5fz3QdxY7Q80tPFJs6jvtDM480n+kvf6X7Dzf+iY9/pdsPATpJz3H8IO89NiBOvZ3NL1W5WE8dEBAPZyxR7wQ1xQ5XG71vEi3jjy8mbu8qQYPvZTT9rxirZM7N8MUuYUqq7ykJj29Ve/wvELXvD1pUtO664lHPdSj3rze6Am9xpvGu7gEGL33baW86pPWu+sg7Lx+qya9uCpTvYTf/Dw7+eu8kMPaO1dydzoVarc7syTGPCTbqjwvC3+8tHkDvU1wbLwlaMA8A/M2uv1flDz2GOg8S0wyPXYsIj2MlxI9bMtKPaOZp7yWVv08vHOAPdaPQDszvQe8ccdIPfxpI7zZqWu8h7fAOw3/0Lton4K7L2pLPOqT1rkz2bM835tavN13ILzyEls98Xs2vKGHijxS1UW9tp29vKnDbr2nnzS9sQAMvKWz0jyriRW603WVPMeRt7yRUPC78nEnPNP6HLwOz4Y8C1YPu3vJUztrnQG9l6s6PX6rJrrDuXO8VjofPXhQXL3ZqWs9dKmbPNtvErzvj1S9/lUFPQZsLr3jCsO7XcMyvfJxpzwrZD68Xc3BvNgSx7wTywQ7xptGPOMKQz1aqQc9SrWNO384PLyIrTE8Iu9IPBvFAb0DR5q8lXn/uNZuxTkj1TC8Emu/vMYnurydJcu8QUBhPUtzmTzbZ5E8SSQgvaxJcL09WKG758+JOzpKSLvvzk88mhfyvOVInbvhzZC8sq/vPOEXXruIQE08ioaZuzJULz2R/vI8U2CFPGb/Nj1TxAs74WkKPVARjDo2zzs87ZmPvF8shL3lSB29OLquPF+Qijy5k668pj7Ku4T9s7x5nmg8JPgWPOrmDz384Bo9gN2AvZjZBD2CbRo8jqZMu8nRjDofWiS9RIatvM9Aubvcees8Vl3SPAJ/DbnIbYa9uZOuvGXcUL2N3j+9L0ZWvTttLryVJoU8L2APPRZBpTrgBYS80GMfvW87nD2oIJC8aXGWuofTGb0FlhO8zVXGOxuEPj1ODOC7AsnaOqnxSbzSmN+8jd4/uw0opjviMRe8a50pPUo2ejw9ou470vM4vQ3NTLy6thS9GyllPdZuRbwBXCc96cMpPfXZdb3AZuG87ePcvPhCqLwFzoa8npJ+vF1BEboTM0y9cajPvBZBJbvl5Ba9E1YyPCerFr1Lcxk9mNkEvctq0zxd5re85MpdPfNJXDt3KIg8qhSwOmrVHD1VlcW8iB3nPIljMz0QmgW9lu4RvDqlIb0NcvO8iVoGu1I9H72LTqY8uBVvPPTHGz3AZmG8etuHPAIbB70GlpM9tWJvPWiP0Lu1vUi74pUdvXGoTz3jXaq9bpp2PXFeAjt+8o08h9MZPYhAzTz3Qig9nqMKvfRsQjwisso64c2Qu3FeAr05gjs9CIozvej7HD1AC6G9+/WnO+KVnbxS4sU8D7i/OxFiEjzVnYu8QFVuvfFeaT2wH9Y8SuwsvC0RlrwHL9q6L+t8vJlP5bxBeFQ8Ns+7O9SDUjzvc/a88JZcvENjxz0GlhO9rRF9vf4DgT2hVoo7z0C5Ot62irxJqww8DpXZPIh4wD1Yays8bfVPvOO4gzsaFwu8blApO58QPr2ji8q8zngsPbw9gT0voS87tb1IvJjisTzKmZm7F2QLvV+QirytbFa9x0ogOh//Sj3jXaq7zI25OrhwSDxxAym8H/9KvCOUkLymPko6MUsCPVeAuDpM1586Cffmuw7wsrwDkee8588JPNTeq7wHZ008SclGvcHkIL04BHy9CffmvVXwHj0x1u88XgkevSn6j7rQCEY6vtbHPDHW7zuV1Ng8x0ogPOfYtj2Wv8u8ulKOPFYThbz2Toi8/LSHvGtCULy57gc9RCvUPIVq57xWAnk9d2kou7JlIrvWE+w8RzktPHUj3LxxqM+8/2cHvVZ3C71uDwk9BdczvEimYD2IQM08W/tEvZCRP70OrxK9b4VpPcr9H7qkCQq91Ch5PaK6kD2WnGU8bzscPAyqZrv8GA68JtL9unFwXLw5J+I8WSoLPU8vRjw82mE9mpUxvHQRgjuw1Qg9TgzgPNl8HrvSmN870dDSvIBBh7shj+S8WBBSPAUyDT13aai8cOBCOc54LD1yOGm6iiITvAjlDL3IXHo8UuLFO6jO47yx5+K8pRtkvYFKtDzuBsO8osM9PLJlIr2LTqa9dAD2PNpEqzyWnGW9aDR3O18b+LqYPQu+DGCZuwJ/DT0jMAq9GheLPNWmuLuLTqY8nqOKvbpbu7yTRD+9m10+vVtWHr3wlly9osM9Oka77Tw7ElW8nu1XvBNNhTz+TU49KfqPu1NP+bxB0607sediPN8sa7vrrpy6iB3nPBIQ5jzmtdA8/BiOvLAfVr16wU69/OCavKdhMDtbVp67sySCOZQmBTz8vbS8nj8EvO5hHDwISRO9jyQMuq+yojyqFLC8eneBvGzAj70iV/E8DSimPFxoeDyOpkw8RND6vMz6bDsbhD69tWLvvMYeDbxBQOG8L0bWPBNNBT0VHj89rKTJPBHtf7vkJTe9Zv82vVCtBT0PJXO8B2dNPOczkLzAwbo9DvAyu7oAYjzw6Ai8TV4MPU+KHztYayu9dSPcPDssDjwF17M8eZ7ovOkeA72p8Um7T4qfvfZOiLy4Fe88/XwUPQjljDxGMAA9/qinu1YTBb2eP4S8787PvHJwXD7ilZ09t58OvfrSwbwRSNk8W1YevVx5BDyGMvQ8jHEMve5hnLy24C69ktcLPJvwij0BpvS8anrDu6Hygz2tEX28KeDWPFWVRT1r5/a8ypkZPWrVHDxmpF09iivAPM7TBbxa2N48J6sWPU5nuTtNRNM7An8NvG6a9rtUjBi6w3S6u6cGV71rXIk8YWFEPQcM9LzhaQq8yf2fPdsDizwf/8q8k+llu/6oJz3MjTk8vnvuPIEJlDuvxHw8pPj9vAq/c7tnx8O7MdZvvFzD0TzSThK8/xVbO/p3aDzla4O9VTpsvY/JMr32xOi7a1yJPLMkArz16oE885sIvTfyIb0Z9KS73HnrO7/wgD0Z9KS9FuZLPJ+15DyquVY7o4tKPcfvRr3juAM96uYPPZPpZTyspMk80rvFPe4Gw7yp8cm7E1YyO8bM4Lyz0lU7WO1rPFI9Hz2vxHy8wvb6PMsP+jwTTQU9QLBHumxltjzP5d88iitAvfTHmzwdFFg8l7/Lu/KBzzxNXgy9sUK8vOnDKT3/FVu9MdbvvGNMt7wv63y7uyNIPUZxID3C9vq8QXjUPGW+Fr3paNA8F2SLO6lMozyGjU288PE1vDExyTxCY8c6qCm9O1D30juwxPy8Cj0zOpFZzLzrrpy8ud17PCDhkDyCbRo7bYgcvF920Tzrrhw5ldRYPGb/tjzkHIq8oNjKvBuEPrzqizY9ddkOPRQVEj1DfYA9YbydPJa/S70F1zM9KqhjPOzRAjw2zzu8/OAavcdKILyziIg8jgGmOpjiMbxlgXe9itDmvDi6LrmY4jE8QZINPf9wtLwocyM8mIdYvQcdgLytNGM87qvpvD0XgTvhF148yv0fPO2ZDz2QNuY8d7N1PIvzzLvBiUc8UK0FPOow3TzkgBC9nALlPE1eDL3It1O9LtkivGW+Fr2LmPO8dw7PvAXOhryFCw281Cj5PL4xoTyYPQs8nkgxPW6adrtGu+084wJRPaoLA713s/W8+a9bPXV+tbzyJnY8bdJpPcN0Orw8NTu6V4A4PbIKSb3P5d88/8uNvHahmz2BSjQ8sq/vPD0XgbwKv3M9wvb6O/CW3DuAgie9Hbl+vF2lFz2qFDC8m5UxPRph2DzI2jk8gn90vJjiMbx3KAi9flaUvAV82jy14K47B8KmvM2wH71eU+u7hFgNvXezdbwpO7C8Xxv4u6xJ8DxIpuC8wME6vG/gQrzBLu68fc8nu7JlojxxXgI7abK2vMqZGT1c3Qo9ofuwvMl/4DzdUgS99GzCvFjt6zsLPbO7NiqVO0mrDD0wabw7ZYH3PLHn4rvWbsU8BLTNPLhwyLvvc/Y8J1C9PBh25Tyz0tW8PnuHvFqOET3SmN87X3bRuif1Y7tz7pu9RU46vWfHQzwavDE8g5CAvBbmy7wy+VW8tFAVPUN9AD2vH1a8WSoLvXZGQr2A3QA85lp3vB//yjwFfNq7k0Q/vAq/8zwumAI9fwToPF3mtzuD2k29+/WnO5gsf7wJUsC8yTUTvZwly7v+TU49VrgrPSOUkDsG+hm9WKOevDpKSL0qA728V9uRPA6V2TwjlJC86oIJPBbmSzwQgMy8npJ+O70FDjyoKb28tJpiO2lXXb0v63y8zI25u3+6Grs+ewe8z+VfPed93bukU9e57oSCvY3ePzpZa6s78iZ2PCaIMDqJvgw8nqMKvCbjiTta+0Q8dFtPvQfCpjzX7IQ636qqO6erfTwcp6S8664cvQIkNL2E/TM8fXROvIVqZ7uh+7C7nkixvG2IHLxBHXs9q4HjvNAIRrzrrhy9QLBHPZ8HkbzVpjg5d/AUvBgsGD1IAbq8d8QBPf4DAb3qggk6EzNMulhIRTzlECq8Bp9APUF4VLqwei87si0vvVijnrweNz66hjL0O5lPZb3gqqo836oqPEjAmTs0xo66B8ImvVjtazvjAlG8vOtUPPCwFTv/FVu9nxC+PLFCvDv3H8I3WKOePDvIBzyUZ6W8r1dJvWjqKbxJqwy9HPHxvHEDKTv7ms68Q2NHu+GVHbxg9JC90k4SPKAzJD3HSiC9S7Q5PIHv2jyOS/M8s9JVPC0RFr3gBYS7DecFvY3VkrymPsq9BGoAvF920bsumAI80AjGvA3nhbw9F4G8aI9QvN6/tzu2hdW8YJm3uo5L8zsm44m8v/mtvOGVHTzlkuo8BA8nvJCRv7xoj9A8Mp58PN/iHb01B6+7lve+vNNg7LyspEk8vKEHPL/wADwdbzG8DeeFu0XzYL1yy7W8sHovvTw1u7sTsYs9LbY8u7dNYj1RGjm8bvXPPMKjgLzSmN88ge/aPPI3gjzDdDq9puPwPMN0uj1M15875MpdvZH+cjvyNwK9LK0PPAxgmTyYPYs9rRH9O5Ih2bxsJBa9785PPYM1J71wOxw7J6uWO2ZaED1umna9q9OPPKaZo7x7Pw69ulu7vOZrA7mK0Ga9U2CFPXXZDrx5VBu8+tJBveczkDr8Kug8wLiNu2ciHT3JNZM8vEauPOd93bstW+O6AhuHO3HCCDzPQLm8uBVvvb0FDrwAMBS9ddmOPE2frLzNTBk9S7S5O9KYXzuWZHK8BTINvHQRAr0YLJi8Ix9+vZ7t1zy+MaG81INSu+a10DqMFrO7Wo6RPO9z9jum43C9iVoGvXOTwrvdQfg7iQjaPOtTwzwvRlY9I9UwPJiH2DxGFke8xKl6vdwvnrwqJqM8MTFJPMsP+rxmpF29tWJvvAQPpzy4cEi9F8iRvO+EgryEoto7VfAePF6uRL3Mjbk8g/SGvbdNYjsXU388z5sSux25fr0hRZe86JcWPavTjzwbhL48qrlWvMhthjyFame90SusvBuEPj18rME8ympTvPImdrv3H8I7osO9ugZE5zytEX25OkpIPVijnjwWQSW8puPwPPkBCL3WyR49CfdmvCYt1zwGROe7G2YEvKer/Tuji8q6ZBREPDZ04ryoKb28NnTiO8PPE71r5/Y77HapOjc87zxYEFI8F8iRPCV/gz2AQYc8NOTIu+5hHL0LPTM9b9cVPBdTfzzAHJS8THxGPaOLSjqk+P08UwUsPG8YtjkCGwc7RrttPQNHmj28kHu7Zr6WOvkBCD1OJpk8jySMPEhubTpmpN08BA+nvOOn9zuYPQu9tjsIuo5LczyUsfI8664cPEo2+rxGcSA91QGSPCpelrxQEQy9r1dJvFfbkbyTn5i8ql79vOKVHTvvKSm99TTPvGcinTus/6I88BScumNMt7w/jeE7BLRNvWxltjy7fiG993obPQ+ATDxpV1293hoRPROg/zz8Kmi915ErvQ7wsjwXZAs98EyPPISiWr0ynny84jEXvfImdryblbE8bxg2PFpWHjx3xAE91UvfPAXXszuvH9a7XGh4u9pEKztgPl68zLq2PPxVW7wmuvC8trGiO4ZAsLucyIi91tFLOzVYiz1gQni8IQKmu/I+Rr3aCNu8cb1zvcmIQ7y7wHY8mpuxvG+JibzTTeu8bjIAPThiw7xB84C9FONPPAfx0Lwqayi80S4aPXn3p7qE5Ao9vURXPEWrSz1RnUq83N4oPHwBYL0PA0q9nvzyvI1SKTw2New8P1qHPOTbiLyiraq8FmcwPfPs2LtYqic8NNnGPGXeljx3ytC7kgr0uolyIzogfkW8oClKvQt6zbzRmry7DlW3uibiKzx5TjG8jSruvCd2Cbv1SH69eKCePG3wj70H8dC8c5hdPFOi5jyT4ME7GpmjvLRqFr3wixc9Y0UdvMu1Gj0t7wi92rHRvIfuQrw/b6A8IascvPRD4ryxehO9cDecugifYzsi2uo6GUKavF8ODj2QBdg59gQXO9uHn7uVPGe8BW1wPApgmDzYhHq8eHjjPL7Dmzzrq5G9FWKUvCNElruWTwk8H7sZvP0D7jt1nXk8pTGLvZrK/zrccga8gY/4uy82Fb3euRK9VHg0Pf5tGbzKjV88cRR9vcoHCD0d+uS8qr+jPCc5tbyT4ME8J82SPFlYujzYrLU6Kv8Fu3WdeTwt74i7Vk6CPJfARz20hEu7cI4lPOWeNLzy5zw9JxF6PJ/SQDwoDwM83N4oPVwzJD3/WIC7dQIJu6NbPbrj8CE9nriLvfYElzxd4bY7t5wJPIFgqry9FQk9wiRdPYwlUr32cLk7twisPRlxaDyL9oM7q6qKPXlOsb2Wuys9w/qqvRFf77yMTQ29rp8pPQ3WcrwUOtm7qxYtvZmWFb17U009VCGru+lW/zo98Fu83DWyOhqZIzxt8A+7f9zJOyReS7yVZCI9IwdCvXch2jum3509QqETvd3JD703SA49FpZ+OvWtjbvQgIe8zr9Sup5hAj2F6aY9NgaePONCD7s/nm689Gudu4v2A7yWEjU7JF5LvK6fKT2i3Hg9FmcwvT2ZUrwg1U478ue8PJU8Z7yUjlS80x6dPIUY9TvVekI9YLwgvQ2nJDx1bis8aFTxPEHLxbu0LUK8L6I3PBqEirtr2FE8KZXaPAif47lHB3G9WwvpO8/EbjxH2CK9pyEOPECxEL0AXhy9+CNovYGPeL3EqL08G0e2uvEkEbkDOYY7gg69u8eDJ70RMKG8Mf7cPPGQszypERE9/68JvcsMJD1Q7zc8kYQcPD9aB7034369uYwMPcpeETyeU3y8EFpTPe8M0zzDjoi7HfrkPJSOVDwmH4C94RU4PEJ5WLy0aha5aLkAO9lAkzzbX+Q8zLq2vAJjOL3LDKQ6FmewOhEwIT3djLu7Q6avvZKJOD065qM9curKO0Pjgzwhq5y7gQ49vBQ62TsAXhy7tawGPTSCPTwNO4I8aav6POEVOL3jcd07hekmPK4g5TyQLRM8TfqYvMeDJ7yoksy8/KxkPOknsbxZr0M9fYCkvD1CyTqm3509uA1IPJS2Dz3/WIA8tjJePbLRHLwStvg8w/oqve2bFL0m4qs66SexOzkQ1ruKtJM8M9SqvURUQj2T4EE8wZ6FvZdpvjwXvrk89a0NvuCWc7tYPgU8GGzMPNUjuTzQQ7M8K1aPPLrjlb1C+By9hekmvX0Ugr1e5lK9vptgO+Qf8Dzq1cM8+NH6vKpomrtzmN082QO/O6iSzLxKOeS8VLWIvSYfAD3tBze6K/F/O32vcrnMkns8kC0TPThiwzudpWm9m/K6veFsQb023uK7iJzVPGem3jv1VoQ8UO+3vNhVrDwAXhw9uYwMvKqX6DveC4A6uYwMPJfAx7zlnrS9kok4PQ5VNzyY6AI9bAUpvTGn07vGrVk837kSPNYo1bse0LK7fdctvV04QLxyQVQ8eKCePbvAdrzQgIc71ihVvRotAb2qv6O6W9waveLDSryH7sK8fWsLPb9J8zxqqQM8CnWxvKBRhTwnOTU9d8rQvIx8WzsCY7g8vUTXPDs9Lb1/3Mm8UZ3KvJ8Plb1oJSO9ZHRrPMX/xjyam7E6WNl1PHtTzTxs3e079EPiPD9voLvqLE0+ubtaPV3htjyG1I283cmPvA3Wcr2WEjU8Q+MDO0NPJj3iGtS8eHhjurLRHLwWEKc8+fk1vco2Vrsb25M958uLvDdIDrxg62494RW4vOf6WT1btF87g40BPVDHfDyY6AK9Csy6OuC+Lj0N1vK75kzHu+jQp7wayHE4lrsrvKpomruaRCi9p3gXPROMRj3Do6G8vvJpuwHkcz3F/0Y7yjbWu2em3rs/xik9GpmjvFalCz1dOMA8bAWpvHwpm7we0DK8Z09VPGem3jztRIs8pAlQO/E5qjy48xK6F765vArMurz53wC8bjKAvHzSkTvMTpQ88OIgvA4t/DzeC4C8pAnQu3d4Yzz49Bk9KOdHvZa7Kz0Vln49Ym/PO2i5gD0uzOm8KWaMPVgw/zvwEW88ywwkPWahwj19FIK8xgRju8RRNDylYFm9uWTRu2XeFrwzaAg9mBdRvI3TZDyx+848IKaAPAfCgjxlSrk8F745OzUBgruqU4E8PJQ2va8zB73tRIs7DackPLWsBr1GgRk9QHQ8vZVkoryVPOc8rcnbOUCxkD1PcPM8bw/hvJKJuLuNKu68G0e2PKEuZrubhhg9i/YDO6d4l7z+2bs8VtTZucP6Kju+m+A8JmPnvJa7qzuKILa8y7WavDs9rby0LcK7IlmvPA5VN71oJaM9aoFIvNYoVbzKXhE9j5SZPIEJoby3RQC9YcG8PJVkIj3CJN08+NF6PXXFNDwpZgw8cSKDPalAX7wAXhw9k+DBvOjQp7yJciO6x1tsvHHlLjwYlIe7mD8MvXigHr0jsLi61/4iPHfK0Dzs7QG8W9wau40q7rzjyOa8s38vva/2Mr38rOS70/ZhvK2ajbyF6SY8XXUUvGvY0TxPcPM8r/YyPDeMdTmv9jI8t181vaKtqrysctK5TKMPvZhu2jwO/i28ZJwmPZ8PFb3PxG47rkigugEMLzxsrp+8bbO7PBM1vbqlt2I79GsdvP2CMj3LtZq9XMcBvSOIfT2FfYS6Le+IPdJwij2Z7Z68hOSKvFLFBT0jB8K8dEbwPCO11DtGKhA69EPiu4RqYrwJTXa55PChPMhujjzccoY8G0c2vZ2lab2IxBA9evzDu7fgcD3j8CE9lOVdPGUi/rxx5S69nriLvKbKBL0jB8I8yG6OPF9llzrMknu8TRTOOa/O9zzeCwA8L98Lvag7w7y5jAw9iBuaO/t9lr0Les28Wl1WOitWjzvbhx+6xFG0PCzHzTpAdLw8CnWxPN8/ajzZA788Z09VO6fkObz7z4O7UsUFvVxi8jwWlv48bmFOvCOwuDvVtxa9LzYVPdN1prx9gCS8003rPHebgj2qUwE94sNKvRY/dbmMTY08zRHAO0u4KDwCusG8Gi2BvatF+7rHgyc9FDrZPNqCg7zeYom8pmV1vJRfBruWTwk9V4Lsu3r8w7tzaQ+8IKYAvRqZI73KBwi8Xz3cvMJMGLosx808w9LvPNQJBD2ggFM8+6dIvStWD7zrg1a8VHi0O4RqYryMJVI7TOd2PDyUNj3ScIq81XpCvdLHE7zhFTi9lLYPvfk2Cr2DvM88eqW6PDImGLwgpoA77O0BvQBeHL1GWV46wc1TPAK6wbwnOTW9EQhmvd0gGTw9mdI8z23lt5UNGT1uCsW85fW9vDpn37wz1Ko8Kb0VvG+JCT1pq/q8aRCKPQ5VN70i2uq8oCnKOshujrwDEUs78BFvvVDH/DxVzz28nXabvCD9iTyDjQG9hGpiO18ODr3RLpq7eKAePJhuWry+wxs9jqmyPXl9/7tyk0G76SexvCa6cD37p8g76KhsOuIa1LzagoM9qwGUvGVKOT1596e8QAiavOwCmzw/nu68wMi3vCd2CT1K4lq7HnkpulQhK72v9rK8SF76uZa7q7w75qO8ErZ4PPYEl7ydpWm8L3p8vJz3Vrxh/hC8iiC2vBdSl7vYrLW8XGJyvdesNTz+FhC8p+Q5vHt7CDsiWa88wyn5OwL3Fb3C9Q67rp+pOWtXlrxiGEa9CR4oPOfLi7oQWlO8Ym9PvRW5HTzZWkg9/tm7vMvkaLxDpq88P57uvOD7Aryz1rg73pHXPC7Mabwj7Yw8c0HUvWd3kLzTHh286VZ/PFzHAb3ZAz+83A33O6UxC7ymZfU6f9zJPJz3VjxddZQ7P8apPAI7fTxP6ps7eM9sulwzJDt2HD69Erb4PG4KRbyql2i8w9LvOgqk/7vTdSa8oFGFvLUDkDyAily74sNKPEk0SLwHwoK9GvCsPO61Sb3Do6E8Y8bYPIbUjTyeJC48dnPHu6q/I7038YQ73mIJPeEVuDxIXnq6WVg6vXn3J7zsAps9WeyXvIpdir1EVEI8jqkyvD1CSTu5u9q7uWTRPBiUBzx5i4W8e1NNPJpz9jwNf2m94WxBvbZaGb1VJsc7qelVvdKfWDym3x29naXpOkthH72YPwy9aav6vGwFKT1Mow+8BL/dO25hTr0r8X+6Hyc8PQ5VN7vTTWs91ijVuxxMUjw+8Ns7UUbBu4CK3DycoM08mkQoPNjpib0Okos7R9iiO16PST1tszu9Oz2tPL9Jc7wCYzg8RJGWvDTZxrzHg6c7ORBWvfgjaL3bh588adM1vA2npLwiloM8JTQZvZMdFr1kdGu63xCcvAp1sbz8rGS8qmgaPRrwrD3ZWkg8xSeCPUk0SD3zlU896Vb/unzSEbyLd7+82JIAu9JwirsHmse7Q370vJrYBb09mdK8xFE0va+KELtlSrm7m/I6vEYqELwHmke9VSbHvH2AJLwunZs82VrIPelW/zqlt2K9AQyvvGqByDyw4Rk9xq1ZPHkmdr1BIs88Mf5cvS1GEr15TrE8TOf2PGH+EL1ofKy8psqEPINlRr1NFM48bmFOOgFJgzzR8cU8m/I6vEqzDD3W0cu8fFjpO6tFe7264xU9lI5UvdDXkLxmIAe8y+ToPM2QBDw8KBS9MPlAPLecCTtlSrm8U8ohvcRRNLzsAhs9BL9dvPedkLwayPE89a0NOqCAUzvctu28U/lvPBS0gTxHsOe70OypvL+g/DwyVeY8/TBFPLYyXjy97c089a0NPVg+hT2e/HI9G0e2O/nRerslNBk8aFRxO30UAjuhLua885VPvD9ahzx9Bvy6qpdou9uHn7vWKFU8sxONOzavFD2IG5q966sRPXE8uDw5ENa8PUJJvfRrnbpYAbG8Lp0bPHXFNDunjTA7fzNTvUTVfTzUzC+8B/HQunn3p7yLzki97DHpPMYsnr3hqRU92tkMvabfnTuRhBw94O38Oya68DzvNA49MPlAvAS/3btWpYs9KezjO4Dh5Tv/rwk8s1f0O/XCJr0UtAE9bK4fuje0sLzw4qC8eU4xvMz3Cj2liBS9+NH6PBof+zygUYU8Iaucu2DQszu04sm86tH8vKusZ7sVidS7Q7LWvJ6DHjzBe0Q9x9RQPS/UZzzdqDO8/impvaXDjLzUd9c83x/kPOfelTwL3EE71HLRvIPS5TzfmaE7DMOjuxLPgrzEbDI8FJPgO98fZDyYtdo8G93aPFapY7xjUXA8ybuyvOy95DvEHwW9nR35vEdMCzwMgAK9M18KuhhrsLzswmq8Vw8JvaVYYTt+6Qo9b+9wu6k1Nz3tIwq9zhnFvOpGtLt0SH277bPYu8/Hkb1oGi488U0NPTmuCj0/RTI9QrdcPIldiL2dDme8WIs/vV7pUb2/DiC9+0zTvH/pijrsN6I97PQAvQvNL7xqARC8EeOaPZmrzrt7Aik7xPL0vOkDk7zRkHW8J4ptPbTnTzzs9AC9H0r/vAERi7xzepO8V5pRvK+ENzzUbUs9fLoBPFUop7w6d248sAr6vBQImLzeKfA7fAKpu4NHnTzyi6g8cOVkvTA6jTxx5WS8j++pPE9k77yilIO8UFBXvG9anL3/tHG72juPvPpW3zw/Sjg8PG1ivPBSEz2mvoa8RB0CvKwSjbxlONI8XvNdPKTIEj1Zi7+8ZD1YPQqUmrwZ9vg6QP0KPUBKuLvY33U8eZUEOlxoFb3glBs8hr7NvMVYGrx1SH28Wi8APZY0HjyTV0g9ZilAvSOSgD0ev7Y9OAXEusP3ejz36Tq9Y0fkPH952b3Ri289tYsQvDmuijyEyFk8mqFCPDSiKz0s43m9WzQGvWK8G72YtVq8WjkMvZmrTj1rh1K9rok9Oy8/k726Mcq89+7Aughbhbw1Gdy7Vb37OroxSr2nRMm8KxWQPVPvkTyrrGc7ihzgvAnr07zyi6i8U+8RvJRINr1r/Im8527kPN5gDL1OafW7QUCsPYBgu7xpoHC995yNu9o7Dz326bo8ACWjPOvM9rxopfY811StPSUOtzvBe8S7108nvDSdJb0s6H+75uihvLPsVb3JwLg8vp5uPROi8rzq0fw8CevTPOELTLy1zjG8ldN+vYg1/rxPxY48ixfaPP++fbzzgRw90b0FPffuwDpRwIi8uEVivMiCnTzCcbg8c3oTvNAPuTzpUEC8KmdDvZc5pL3CgMq6t78fvDm4ljwDkke9nglhPG9kKL1pBpa9R0cFPQuFiLszWoQ8biGHPAYE8jy3gQS9Jv+kvNKB4zt0uC68YsYnPd+ZIbyx++c63WqYPA81TjqrIR+8ZagDvL2o+rpJBt07f3TTvIhnlD1vXyK8rphPO7H7ZzxlqAM9+cuWvaD/VDzHRIK8uqsHvWJWdjygaoA7Kh+cPPRthDtYlUu9jvk1vaRibb18iGs9HcnCPCMiz7xP1KA9pc0YPdu8SzxtJg07GHC2O5Y0nryQ76m7CGCLPHFVFj0EjUE9nEqJPE3ZJj2rp2G8rQ2HO1/pUbx4IE089fhMPfGLKD3Ktqw7KIDhPHsMtbz/vn282tDjPJ4E27usFxO8glGpPe+fQLpf5Eu9GfFyvdnQ47umRMm7iSvyO+SvDL2QcGa9FZNgPdEFrTsPOlS8ObMQvKOZCb3/5gc9sDcKPQSDNb0hNmc8xGwyO2LBIb5N3qw25uihPPKQLr3IykS70cKLvJyXtjxVs++8bHhAvbF1JbxM6Di9Ix1JvUStUL24Sug8IG2DOzGxvTr2+Ey8BI3BPNcMhjxIhSC8KuGAPOs3orwM0jW6aKX2O5Y5pDxKdo48ZD1YPMqxpjrykC69b2QoPMNnLL2SYdS8lFLCuYBvTbxifoA8nB15PDSdpbzVY7+8o9KePAqUmrzKRvs4J4XnPCf6Hr2mU1s8MbZDvUMsFD18By87DFPyPEK8YjzB9YG8vp5uu21uNL3+KSm9t1T0u7zQBL2qJiU9lc54PYLccT07cmi8MqcxPdAUvztIhSC9sXWlO0H4BL1BQCy7b+9wva2Yzzv8vAQ7ZiQ6PKntD72cHXk84rkYO4yCBb3tuN68N4SHvF7u1zwRK0K9e8QNvL4YrLslCbG9dUj9O70TJru/j9w85XPqO5obADz9M7W8KmzJvE3ZJr3P0R08XPhjPqLhMD3r+Qa9Ofs3vfGVNDxwWpy85PczPXz4HD1mJDq7s1wHvag6vbzkgvw8T9SgPPFIh7w4+ze7xV2gPFek3TmjmQk7h2KOPUr3yju4RWI7V5/XPM0y4zxL8kQ9CebNvHggzbtSQcU8JRO9PCeF57qdE228lAAPvdRyUbr36To9GXA2u+pQQLkioZI8Tt4svR7OyDyMh4s9GR6DPa2Yz7yMF1o6kwobPCOSAD3288Y8C11+vJ4E2zxmKUC9f+mKPJe64Lwl0Bs9ewy1PNjV6TyCUSk7xV2guzvsJb39OLu8fficOr0dMjy83xa8matOvDUeYjwa52a6lE08vd2os7z4ane8g9frOxpmKr0sCwQ9ExeqPP4pKT0ZHgM9l8lyvEygET1N4zI8oP/UugNAlLw3vZw9DM2vvINMo7w77CW8Wwf2vOGFCbzV4oI8+lbfPLPs1bwqdlU8ybuyvIJWLz0v1Ge9SAtjPNN83TzAita8+csWPXz4nDzPD7m65XPqPM6TAr2oP0O9vwSUPQUO/rwDRZq74I8VvDp89Lw1HmI9svHbO0h7FL0YesI8O+ylO6HrPD2kXee8ts6xPIoh5ruN/ju7NYmNPCtsSTw68au8kWtgPYbD07xf2r88h687vEZRETvpVUY7wXtEPd8f5LrWaEU8ZT3YPHuXfTxFnj68UEtRPTGxvbwY+368bnO6vCOXhjzxSIc9H3wVPdGL7zy2zrE8L8pbu/iXhz3XVK28ZS7GPMtGezwR45q9MWmWOmYkursrH5y7GmGkvI+ngrwffBW9zKygu1/fxTw0mB89qrHtvLBwn7wUAxK9+8YQveKAA71EqMq8v5RiPOlQQLzZSqG6o5mJPJY5pDzFXSA9LAsEPdCV+7tNmws94wZGPKZYYTxx1lI9GXA2vH1+X71/6Yo7VhSPvKNs+bz4b/28eJoKvYevO7wezkg9NRncO0IxmjyVSLY8jQhIvEWjRD0Hbx08t8QlvZ4J4bzigIM9J4VnvMZJiDypJqU9r3orujUZXLwS2Y49LBAKvLk7Vj1BO6a70ZD1PIohZryAHRo9FQOSOnepHDx2Q/e6KPoevNhKIb2JoCm8iiHmO55+GL3oWsw8Z9cMvLAK+rxvHIG81145u+z0AL3P0Z28gGC7PPjVoryoMDG8+WDrvESoyjth1bk6Onx0u62Ow7xA0Po72NXpPJ0T7bzlc+q8+NWivKwSDbxoGq47yrEmvMtB9bsAsOs5IyxbPZmrzjy5O1Y8ubANPcRssrzjuZi7KuaGOiBA87x9g2U8mqZIPRWO2rzgFdi8glavOvfkND1NlgU884aiPDr2MbzShuk86tH8PMs36bzm45u8VL37O8NxOD1u+fy85e2nvESoSr341aK85aWAPHekFj3CJAs8zSjXOrZZ+jt1riI9JwQrPA2+Hb2CVq+8t1R0vfIR67ku3nO80A85vSpxT7xKdg69Oa4KPdEApzyaWRs9h687PL2o+rx2qRw95LSSPBArwrz50Jw7LkkfvTmzkDzQlXs98wzlPNgHgL0QOtS8vRgsvS3Z7by8J767w2csPYilrzyOhP67Z80APWHQs7riuRg6ubANvJJczrxrgky7u+ScvEv8ULwfbQO9BQn4POT3s7zE8vQ8ZTPMu9dUrbtQUFe9TpYFvcKAyjzNLd08jrEOPPnaqLuqse28mbDUPCYON7zXFhK92jsPPZQAj7zT9pq8JgkxvEtsgrwHZRG8c8I6vVz96TsZYSS86GTYOmJ+AL1M4zI71lkzPLbJKz2NCMi8YVt8OxphJL0uSZ89smYTOdKB47yJlh29/7TxO/OBHLypMDE9ljSevPCaOrzzB1+8w3G4Ovlg67zNmIg8RZk4vOfPA7srZ0O7opkJPMTy9LxHlDI9aQaWvFUjoTy7LMQ8rzeKu2eqfLsHZZG8JgSrPJ5+mDvn3pU8h6+7uwKc07xVKKc8mqFCPKwNh7w77CU8gkyjuvfktLwHb529gRMOvP44O72B5v07qeiJPEK8Yr39M7U6otyqvP8fnb1AO6a80YvvvCrmBr2UTbw7YJIYPcXo6DoogOE8ITHhu8J7xLyZJQw4hNdrvZwd+b3jAcA8ACWjPN8f5DynREm9DrQROye8A7yBVi+84rkYOyCwpLz4avc80Qqzukr3yjk0WgS95XjwPOCFibzWXrm7VqljvL//DT1EqMo8Oa4KvGJ+ADwn+p68vCxEvQ+vi7wxMAE7Z6p8O0D9CryOuxo8Ujc5vYohZjwfxLy8cFocu/JDgTz6wYq8JgmxPPbpurw69rE7t1T0OjzThzxvHAE9+WDrPIeqNb17yRM8/UJHPaBqAD0xaZa90oHjuwKcU700I2g8j+ojPHZrAT1yRoS70BS/O9hPJ72eg549Wwd2vWmWZLzus9i8kWvgOkA7prxad6c8ESE2vSpxz7ziuZi8VqTdO1H5nbzZQBU9p7kAPWmWZLxu+Xy9BjECPQYxgj1zfxm9DFPyO3gl0zwqcU88ttg9vZ2NqjwI9d888wzlO0IxGrwgRXm9/ELHux1DAL1e6dE8w3Y+vUaPLDsn+h69bILMuiXBib2zVwG8jruaOyh727wAJaO9Ro8sPUK33LzMrCA8Q7JWvMZTlLzl7Se87bjeO9AFLb31/dI87q7SvK2OQz1fjZK8oeu8PIdijj3LN+k7ngnhPO4jCrz37kC81W1LPBnx8jx0vbQ7GSMJvepBLr3yiyi7nRhzuxphJL3kfXY8ybsyPGYkuryckrA82AeAvF5ZAz0m/6S8nYOeO5wi/ztZiz88xt5cvS/K27yxdaW6cOrqPOELTD3xSAe9ZeEYPc/Hkbz7Udm8QyeOPLwiODyP6qO85eihuz9PPjulw4w7fLoBPcXj4ry3VHQ9Cte7PFqGObwfRfk75mlevYNMIz3JwLi8qDU3PKHwwrvszHa8qSsrPKPSHj3XVC28gwmCvIa+zbxDrdC7j/k1vArmTTtQVd28agGQPIsc4LnvpEY9eRvHPLi/Hz1ubjS8XWOPvcboaDy1kJY8k1JCOwUJeDwev7Y7pV1nPJmrTj2DTCM9pr6GPWkQojwYazA9ctFMPbsnPjz4ave83x9kPZklDLsMw6M8mlkbPUeUsjyW9oI8s1wHvaNnc71opfY77x6EPGv8Cbv/4QE9SAvjvFI3uTtooHC8J4ptvDOsN7v7xhC99f1SvNrQ4zyoMLG8WJVLPEBFsryP6iO8/ji7OsCF0DwioRI9YreVOrPs1Tzyi6i8NJ2lPNrB0buE1+s8Wwf2vHuS9zpsK5M9LBqWPLZZ+rxRwAi9gGXBPB98FTwBoVk8fvOWvLwiODzktJK8BQ7+vJkbgDylvgY69qETu5mmSDzglBs9pVjhPG75/Lwn/yQ7fu6QvKntj7xOF648jwcePPXKDL1RtOC8Ki4RveR8Yb1+jba8k0EmPUNe4zy53Ta7NfLHvHOSkb0O5cA89qk8O7F0tTvAUcc8FiKGPN5jqTsphiy89n2APP4zazwig5I89p6tPHFCSDwEFlg8SFbuvBxRXD0RS6i82XatvLGVYr0ELPY7xSglOv7mgb1dIHy8Bg4GvcZJ0rzzLTe9P/ieO2s0H70JDmM8yyCwO4l9TLxBtqE8aLiZvJbTyTzhFvq8yyCwvIAJvLwJA1S93BPgvISb37t2Dpc8PS+NPQtpu7yZLiK94d8uPKhCf71mc9+8/fGQvVyDybxbeLo5iYhbPdetm7yeEI873m64Oy6qcz0bGhE90rWQPCS63bznaQC9S9JzuzHvLT1umoY7PXFnvHr7krx8Pe08bfJ+PFyOWL3Zoum79ogPPYbgmbxk91k7Zkeju+H1zLy2mPy85uJIu/kPpLxcg8m8+VF+vMxX+7qbqic843FSuxV6frzDt668iQQEvVMPubw9W0m8dL7NPK4v+7yFIpe8hva3uzhCETznaQA9ZPdZvakWQ7wlNuO8dgOIPaa7ajqp9RU9iZ75uz1bST0D6ps8Ql4GPXo9ED1e9D+7UjuYvAx0yjrjh/C7IroAPTEFTLsAhLQ7Ayx2PVHKfrwr9yI8OYRrO9SfT705j/o8Io4hPCEzyTzeeUc82+ejvMYztLyatba9GcrHPJG6Eb2uDk48O9/DPLIRizuWp408Me8tvX6YxbwhKLq8oZcjvEaYDr09W8k8ETWKvWZdQT35Uf68dUXiO6ySSDwxBUy8FP54PNN+Ij20EWi9km2FvHZQcT2mj6688y03vfI4xryuDs68TiI9Pb3r37zh9cy7kdu+PKGMFD1DJxi8PTqcvNTAfD1xY3W80rWQvK4k7Dz9Pp07i9gkve1hizx6EbG8iQQEPVGewj3TfqI8huuou/MXGb1gT5i9vb+jvJXpijvZrXi9lG1iPFG/bz3djwi9eX+NPDwA8Tv5MFE8K+EEPcAlC73StZC4S7FGvJ5S6TyhuFC91iZkPQPfjDxuxkK8BYfOu5lEwLx6SB89aPrzPDbcKT3jWzQ8+nWLPNLAH70/7Q+97mz3PFaLvjvJjgw8fD1tvDvfw7tusKS9jmpIvRslID2ZT888evuSvN8WnTzWMfM8sWkmvXZQ8Tylxhy8Me8tPCBUdj2u4hG9M2AkPdKqgTxdFZC8uehFPZkjk7uJXB88tlYiPVcdhbyzHHe7fpjFvPglwjxwNzk8ehxAO6yd17wmK9S5/6QEvXS+TbwrOX08pbsNPCVBcj1hhmM9ZnPfvMPNTL2ZGIS9W2IcPW3n77t+mMW8+RqzPA77Xj321fi8prvquyYVNjwLlfc8JLpdvAuKaDwWQ7M8c50guz1xCj1n74c84eo9vQn4RL2Esf26RpiOO2FwRTumxvk7d8EKvf0zjjwFkgC9jV+5OooEBDwhHSu8QzKnPH53mDv6whc9JMXsPC6fZL3zDAq8EWHGPBE1CrxWrGu9RpiOvfkPpDvZHhI8wu4cu/Z9gDzW75i9tksTPaaavTzof/u8huAZPeHJkDwTxy2+GbSpOQYOBj0QVjc84b4BOyh7nbwcXOs8yUEAvRFhxrx2A4g8u0OevDlNoLx3wYq9oxMpvAB5pTyLD3C80sCfPH4qjDw8AHE9dVAUO772brt7Ml48jlQqPMFcVry2VqK8aymQPC6JRrzL/wK98wwKvUaYDryz5au88lmWvEzSc7ympUw742bDPHTU6zkrAjI81DEWvEkfIz3tQLu6Mc4APZEHez3w0t46qSxhO5/OEb3Irzk8zchxvEuxRjwPd4c6qQs0vKGMFDu2ViK9W2IcvfaTnjzJxVe9mXD8POa2jD2AKmk9DBGgvEXa6Dxfhga9beeSvIAUyzz9Pvq8HosHO/G8QL2ZZW08TiK9PLZLkzwaZ528TNJzPQ0R/Tubqic7QeJdPOrlBbtxLCo9ybpIvcmkKr0lQfI8mtaGvbQG2Tw4Y746VLcdPOlezrtzhwK8CdeXu0Hi3bu/Zwi9M2szPZDxXD4ucyg9/TMOPD1bSb1eCt48JvQIvbi8CbwPgha8ZPdZvdYbVb09cee8r6CUu6khUj3C7py7k0w1vKqoCT1puJk62+ejO9OUQD3JQYA8DhH9ujbcKb3GPkM9C1OdPNYmZDyu+C+9x9CJO0aurDxEXmM7njxLvJAHe7wbXOu74zoHPfWpvLzx3e27CQ5jPIbrKL1DPTa9Me8tPY5UKjzRRPc7kAf7Oim9dzy7OA88xhKHPPk7YLx0ydw8GdVWvDUTmLwMEaA841u0vCmn2TwZyke8QPj7PGFwRTuOdVe9vQF+PEHBsLw9W0m8ITNJPDN2wjrpaV08m7U2PSYr1LwsGFC7hpMNvThjvrwd43+9GeBlPbT7yTxmUjI929wUPaalTL00ov48LxsNPdBE9zz2k567qSFSPUJIxbtGxEo5TMdkOzUIibzGHRa8fa6Gu2nOtzxjwA48JTaGPCwj3zyyHBo9eLbYvFt4OjxYKHE8iXI9O5NXxLwZ1VY82YxLO7qFmzwO+968VqFcvHfMmTwlQXK8I3iDvIl9zDxxY3U8Z+8HPVZqET1JFJS81jFzPEuxRrxRiCQ9yUEAPBfgCD3OveK8brszu3mKHD0Z4OU8RFPUu8BydD1F2ug7QMw/PZX0drwGcbA84ckQPMBc1jz2qTy7Ql4GvU44Wz2huNA77jWsuQmKCz11Dhc8jl+5vPXKjLzRGDs9XemwPYyAiTwm/xc9QycYPT1mWDtJS1+70Rg7vNbkCT3zOEa9POpSvUHBMLwO5cC61MD8u4aeHL12L0S9qSzhvKGisjxCaRU9C2m7PflG77yqqAm9sV4Xve5LyrzpU7+7/jNrvKaw2ztzkhE8cSGbPPM4RjxbbSs93m44PfaerTsun+Q842ZDPSU2hjwT8+k8nVKMPVt4urwT/vi82YG8u+dpgLz/r5O88jjGvGPhO72rhzm9UbRgPQn4xDw2E/U8iUaBPPqAGj3+Hc07k1dEvIruQjz+/J+8TgEQPbLwursOEX27XemwPSEourxe9L+8w83MPfWpvLwRQJk8hhflu2j68zz+/B860Rg7PLm8ibx1RQU9HqElvQnMiLu1gl69UwQqPSeyizsuica8Q1NUPXYZpjwWOCS8xj7DvKaaPbwr7BO5OsklvQYZlTz4JcI8WpmKuwIhir2ZT888Rrm7vL3rgry2d088ycVXvT189jy3CRa6X4YGvHocQL2DkNC8kzaXu9eiDL0BYwc7ixr/uxnrdD069YQ8JQqnOrstgDxbpPY6TUONvONbNDyrqOa81CYHu1GTMz1LvFU7oxMpvAkDVL1jAmk8QLYhPQmVmjy2d8+7lemKPL3r3zyeBYC9WR3ivINvo7zodGw9hgHHvL5nCDyleZC89oiPvEkUlDty1I67cVjmuuQDGTyPBx69R1YRPEzSc71DHIm8Q0jFvIAJvLzWJmQ7TThbPGb6lr1mc1+9FkMzvJHFIDzYa5465bYMPHfBCruWvSu943FSPOq5pjxsVUy8+6HHOzEQW7ymjy494dSfPDSM4Dy7b1q9CBnyvFnbB7wulNW8ZXOCvGGG4zw2CGY8WpkKvZ5d+DwzdsI7dS9EPMK3LjwerLS8budvvK4OzryEsf27SUBQvdEjyrsZtKm8hgFHPfbVeLxdFRC7Ev4bvVgSU7v5Uf48QxwJPURpcjtp2Ua9c6gvvSEoOj0TsQ+7odn9OzlNoLyePMu7shELPfqLKb023Cm8P+KAPIvNlb1fkZW8lfT2u3OHAj0WQ7O8Pi+NOhVkYLwJ4qa8saBxvYz50byuL/u86SeDPebtVzyzzw294QtrvE4tTD0pp1m80Q0sPXwnzzv9Pvq8K/eiPFyOWD2DerI77kvKPDSX7zx1OtM6EWHGvC8bjbseiwe9BCx2PFMl17u2ViI9fphFO5HmTbtJFBS8kAf7u/usVjwrArK8kPFcPBBhRrumpUw8dMlcPZrhFb0GUIO8wUa4PPlGbzzhvgG90feNvAEhijwrDUG9NJdvvEuFirvb0QW7zZy1O0DtbL0x+ry9gTX4OfMiqLsufje9TvaAvIoPEzzRGDs9YXDFO67tIL37rNa8ud02vZN48Tx5zPa9+nWLPH8qjLsAsHA7NQjmvJ4FADtsVcy8YgKMvB7Y8Lzm4si8pm4BPZ/DAj0LaTs9BZIAvdiiaTyhrcE8VCVXvZrhFbxCMqc7HuN/PC1+t7yxXhc89pMevZGvgr1sVcy8oYyUOqV5kLwLaTu9tBHovKcsBLzZdi09KL13vd55R7vyLbc8huuoPHYOlz09L408pyyEuk1DDTtZ8aU8g1mFPfuLqTsVb5K8CRlyu/Ho/DyZIxM8w8I9vcw2zryGAce5ZALpvFn8NLx6BiI9g3oyPfuLqTvAXNa8wGdlPevPRL0zSga9IoOSu5bp5zxPv5K80sCfPMPYW70U3Uu9Vou+O6XGHLyiCBq8Fm9vunwnTz2Mixi9XgrevC6U1TyDZJQ8kngUuj1byTyR2z69lG1iO01DarzWMXM8EIJzvFtXDb1mUrK7Qfj7OwMAujx9rga9nVIMu3YZJr3v0oG8yK+5OyBJZ7yoQn+9zpy1vMVfkzsU82m8Bp1svfMiqDxhRIm8po8uPK4Ozjq6hZu8tY0QvBBWNzyOgGa8wWflO0k1wbxQtGC7A/UqPFah3Dw9Ras9SR+jPIz50Tyqs5g7gCppvJDbvjtBq5I8hRflvOKHE73uQLs7yNt1uUumtzzkfOG8xiglvROmADtzsz67vtXBO4oEBLlAwTA9u0Meu1Wsjjxpw6i6IFR2PCvsk73cE2A78yIoPbndtjoFnew8PUUrvQBjhztBtqG85QOZO64ZXT3xx0+80nOTuaDDX7wbO7483k2Lu+M6B7zs5eK8ss8NuxFWN712UHG7vHrpvNvyMr3AUcc99pOeu7F/RD3LKz+9heAZvLnz1Ls86lK8RFNUuwCa0jvb0YW8fZhFvXOoL71fkRU9w6GQvGZSMjwbGpG81LXtO2ZSMj0LaTs9yaSqvD189rz+5oG8VDDmPHvwA7wRd+Q8QxyJPHxI/DxJKjI9d8EKPY6AZj2pLGG7JLpdPebMKj2DbyO7M3bCuUHBsDyW3tg66V7OuwIsGbxt8v47Io6hu/dGEjvWBTe8+7dlPEHtbDzZVQC83Cn+PL2/I73mA3Y8vb+jvLQG2bztbBq9prBbvV+GBjx6PZA7eZUrvebMqjxsYNu8wGflvAmKCz3+/J88eYqcu4vYJLzFX5M8xj7DvPgw0Tx+d5i8UhpIPA0GkbnZax69FP54PTSM4DwAu3+8mVpevfMiKD0Wb++86WndO0G2obwsOf07KL33N0XaC732ymk7Rq6sOwBuljzjWzQ9XsgDPYvYpDwJ4iY8KbLoOzlYLz0tfre8"} \ No newline at end of file +{"embedding_dim": 1024, "data": [{"__id__": "ent-28910c9747db991734c7c471be861a0e", "__created_at__": 1752205395, "entity_name": "Nitric Acid", "content": "Nitric Acid\nNitric acid (HNO₃) is a chemical compound involved in photodecomposition and reactions with iron oxide.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-25da832997a0aff5c601866819f976b6", "__created_at__": 1752205395, "entity_name": "Iron Oxide", "content": "Iron Oxide\nIron oxide (FeO) is a chemical compound that reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-e4ce2ac56db8b92aa60065aee6884c25", "__created_at__": 1752205395, "entity_name": "Hydrogen", "content": "Hydrogen\nHydrogen (H₂) is a chemical element that combusts with oxygen to form water.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-990bf420df89c0c6edf606be2022cbea", "__created_at__": 1752205395, "entity_name": "Oxygen", "content": "Oxygen\nOxygen (O₂) is a chemical element involved in combustion reactions with hydrogen.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-27634ff8002b12e75d98e07ccd005d18", "__created_at__": 1752205395, "entity_name": "Water", "content": "Water\nWater (H₂O) is the product of the combustion reaction between hydrogen and oxygen.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-8956959f0a4b8b0cc0ec1276ff1ea096", "__created_at__": 1752205395, "entity_name": "Nitrogen Dioxide", "content": "Nitrogen Dioxide\nNitrogen dioxide (NO₂) is a byproduct of the decomposition of nitric acid and the reaction between iron oxide and nitric acid.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-f168f7b110939759992482a8fc06f229", "__created_at__": 1752205395, "entity_name": "Iron Nitrate", "content": "Iron Nitrate\nIron nitrate (Fe(NO₃)₃) is a product of the reaction between iron oxide and nitric acid.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-5415e49c5d264aaf162d5c97c9e09a5f", "__created_at__": 1752205395, "entity_name": "Nitric Acid (HNO₃)", "content": "Nitric Acid (HNO₃)\nA strong mineral acid that undergoes photodecomposition when exposed to light, producing nitrogen dioxide, oxygen, and water.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-9bfc829880d6e09b27bbce6c27553e3d", "__created_at__": 1752205395, "entity_name": "Nitrogen Dioxide (NO₂)", "content": "Nitrogen Dioxide (NO₂)\nA reddish-brown toxic gas produced as a byproduct in nitric acid decomposition and iron oxide reactions.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-6cfdf8f6e49825c6a29801160101d05d", "__created_at__": 1752205395, "entity_name": "Oxygen (O₂)", "content": "Oxygen (O₂)\nA diatomic gas produced in nitric acid decomposition and consumed in hydrogen combustion.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-dc04d2ac5f1a04f73e997d762be4224c", "__created_at__": 1752205395, "entity_name": "Water (H₂O)", "content": "Water (H₂O)\nA compound formed in both nitric acid decomposition and hydrogen-oxygen combustion.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-96a5c5c81fe10bcec1f8579e9050bf08", "__created_at__": 1752205395, "entity_name": "Iron Oxide (FeO)", "content": "Iron Oxide (FeO)\nA chemical compound that reacts with nitric acid to form iron nitrate, water, and nitrogen dioxide.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-85ae1d900c7100d7017a352dff3febba", "__created_at__": 1752205395, "entity_name": "Iron Nitrate (Fe(NO₃)₃)", "content": "Iron Nitrate (Fe(NO₃)₃)\nA product formed when iron oxide reacts with nitric acid under heat.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-b5618f1ba278a2bae96fc553393d859f", "__created_at__": 1752205395, "entity_name": "Hydrogen (H₂)", "content": "Hydrogen (H₂)\nA flammable gas that combusts with oxygen to form water.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-a211a0a02c95d55eecea6e96ec63938b", "__created_at__": 1752205395, "entity_name": "Combustion Reaction", "content": "Combustion Reaction\nThe chemical process where hydrogen reacts with oxygen to produce water.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-acfe2ed2a788e873bfbf07a45e79d4d8", "__created_at__": 1752205395, "entity_name": "Photodecomposition", "content": "Photodecomposition\nThe chemical decomposition of nitric acid under light exposure.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "ent-b535db2f4374c14375eb83519c3b1568", "__created_at__": 1752205395, "entity_name": "Chemical Equation", "content": "Chemical Equation\nThe symbolic representation of chemical reactions described in the text.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}], "matrix": "54o0vIdQhbxj1Y274KGpvHbZ27tzKWa9tb/pO/OzMT0Hxjk79mOnPPIjNb3TcU+9l6s6vdtolDuI0kc8rUbiOtaYJb3AX0e9OOzwPDdc9Lx5gnS94YCBvOExJrwT77Y7bSYQPWPOMD3yIzU9Fy+pPFGbADxv9628ZnBsvLCNsbzGfhG9aJfCu4F5ubwAZk47YCWYPEFsVbwfGLS8wnhjPaG0PrwpKBW7EEYePVJlQbzCeGO8/9wuO1A+azwjWCa8TZVSvSgBvzxQC4Q8GUHou9THBz0MiO473ON5vd16U7mO8RG9lAKiu+ThG725/9u8s7QHPIV4Cj2FIlI8JwG/uvGM27ysVJw903HPvOzRAz2flEW83OP5vExbjrxs0Fc9kuIou0Fl+LrDCGC9aJDlvEYCADvL+Ee8RBxLvDADZj2bVFM8UZuAvHdp2Lx7ICu9Q5OrO4jgAT1OLKy8pe1Tu650FT2Y+pW9czcgPGGutzpJ5dw7RXKDvJoaD7rEn7k89mOnvcyPIb0xESC9o8Z9O1HVxLuTZOu8fLCnPRUBdjwYIW88lMGAvHKugDy4fRk7RjzEPEmrmLyybAk9upY1vckuBz0Cf+o8vT/OvHKgRrsUeNa7jiT5u6AkQj13L5S8EljdPBxvG7y6nRI9V6yQPLfmPz0J5rK8WlyGPbJsiT11Sd+8bmBUvB8R17zng1c9QOO1vd1zdj39rvs8uH2ZPMdI0jxelRs9bmBUPXkHj71/YJ26SWMaPdaRSLxd/sG8T7yoPQQdIb3lY967pnZzvTIjX7y5+P68S3w2u+DwBL2oFKq8h1CFu7BMEL322oc9IsipPDQ8+zzEnzk8RboBu5j6lbz4+oC8pvuNvIL7+7xypyM9XHUivdywkrzCf8A9VQf9vF6OPr1Dk6s8/bw1PT7DvDv0PNG83ON5OvIc2DwhMdA9obubO2CnWjzWGmi7nYIGvaNEu7v7nDy9Q5OrvO1hAD1PtUs935PvvKRWerz9tVg8ym8ovC1aTbyQEQu9Q4XxvNaYpTwoE/4887MxvODwBD0/1Xs8SasYPW/3rbwPOOS7dVeZPPRDLjq2VkO6XxdevJLby7uI2aS8hJmyvM6hYLuztAe98YX+PJtbsLzg8IS8OPNNvVJsnr3I0fE65vPavHB5cLxyroC8W+WlPB6PlLzzpfe8BB0hPT7DvDzEnzk9+6OZu2s5frwtaAc9Q5OrPEDqkrwjWCa9qibpu5WLQT2TZGu9RXKDPULCDT1OHnK5kMKvO/h15juS20u9IKgwvOGzaL2OK1a8JvphuoDwmTzxUpc8kETyurqdEr3L+Me8cpnpvNFYMz0/WhY8sQ90vfWSiT2deyk9+5w8PE+1y7vOrxo7E/YTO/oTHTtyZgK9vHWNPRUBdj1GPMQ69toHPeb6N73Ingo9QgMvuy+BozwMVYc9Elhdu+ThG7uNlPw8JF+Du4jLarxWHBQ8mDu3us8x3bkjF4U9epAuu6vEn7s4+qq8/gsRPRcvKbza2Bc8xF6YvNFRVr2yHS483YEwPN2BsLym+408SvMWvQyWKD2WG748Ae9tvcBmJDy+TYg8ynYFvsa/MrwfHxE8UdyhvH9ZwDz8LDk8BaZAPAKGR71v9y29SvOWvMSmlr0NGGu9g1gRvbftHD1LdVk8Cn0MvXB58LtDkys9y/+kux8YtLuzL228+6OZvb0FCrzxUpc6k2vIPIdJqDstWk06b/6KPMJ447xSXuS88VKXvSsz97xeBR88kMmMOgQWxDoUPpI8RjxEvKXt07x7EnE8ftCgvJeyFzsVAfa8eU8NvCCosDxaVSm9NtoxPDMxGT3iwSI7zzFdO4OLeLzyI7W7WC5TvKmWbLqm9LC7KAG/vNQBzDugK588Ba2dPWqw3jxDjM45I0psvRKuFb3hgIE8bSYQvKPUtzxh/ZK9P1qWPE+1y7y9qHS8A40kvf/OdDxX9I487VqjvYzRGLtFcgM6N3ELPNiqZL0rQTG9YkWRuy1hqr3b0Tq8aJdCPUwFVjwgr407YjdXPHkAsjwXL6m8EmYXPDbhjrvJaEs+XxdePdYaaLy9vQu9p4QtvC9z6bwm+uG7hSLSPB8RVz17IKu8iMvqvGVQc7yGuSs9uHa8vNYaaLu1xkY9XHWivBUPsLuaGo89ym+ou1BFyDwusIU8AobHOzcpDT2hreE7Hfi6PHsZTjzNGME8h0moOvOs1LsFFkS8i4K9uhXODjzNH568gWt/PLIkiz1qsF69IsipPGqwXj20Nko9cHlwvWRlirsSrhU9p9MIPcdBdT1kZQo8wn9APNKnDr3B9iA7cIcqvDaZED1SbB67KJiYvC1ohzxonp88WkdvvNiqZL1gbZY5CFY2u+ghjjx2n5c7qi3GOpg7t7x0ueK83ON5vDMqPLwk6CI9Wb7PvGG1lDy11AA9QsINPMMWGj3ZQT69gPCZPTERoDyzJAu8qBSqPPucvD2xD/S8t+a/vDKhHL3+U4+7QWzVu4dJqLuXqzo8Hfg6vYUwDLwYv6U8XHUiPYOSVbvB6OY8OUkGPQpv0rygK588r/ZXO/uV37xxFyc9pF3XvOu8bL2GwIg902ryvGknP7y37Ry9B7h/vSKHCD03aq48y/hHvXbS/jzKdgW95OEbPdCHFbxlrQg8B79cPLJsiTyYLX08FHH5vMHvw7zgKkk95WNevABf8TwOdYC8XGfovNYa6Lteh+E8vT/Ouz5FfztfF948MANmOi7jbLwwA2Y9IsipvB6It7yI2SS9OhPHPEt12TxCZfg8Cd/VPLSMgjsmamW8i4I9PSiYGLwpGls8FyhMPHVQvLwk4cW8tb/pOwyWKLxkV1C8EmYXvbQ2SrzdQA+9UEVIPJ+bIj3Qwdm8ktRuvFvlJb0NJiW7woYdvW5gVL2htD48gOk8u9UIqbxBbNU8O5xmPFpHbzyGuSs9ngumPNPhUjw0uji7VH5dvIkogLxC/NG8oCsfve7cZTzCf0C8dtL+PDohgbxBczK8gPCZPMdIUjxCA687RBxLujIj3zxrR7i7cmaCPCCa9jzbU/2822G3vCs6VD1uZzG9pn1QPRthYT2plmy8aSe/O0xbDj1cZ2i9IsgpPRc2Br2ZyzM9oj1ePNC6/Drk4Zs8UZuAPL2odDwFpsA81hpovZ+URbxijQ894bPovH9ZQD3hs2g9D7ahvCMXBb2EoI+8bde0uzujQzvm+je8DzjkOxthYTsJ2Pi8fKLtu9FfEDs2mZA7uf9bvVgu0zyPtHU6Yj60vFA+a72QRPK8ggLZudUPBjv2VW274sGiPFT8mjzWkUg9wGYkPWkunDyK62M8dp+XvE/DBbxGPEQ86aqtvH7QIDzm89o8gsiUuhHPPTz6E527N2ouPTohgbuI2SQ9hXiKO6OTFj2GuSs9UEXIvOeRkbpv8NA86jNNPZ9aAb0UhpC7QOM1vevDyby5+P48zRjBPIbACLw+yhm9CFY2vCb64TzrQQc9ufj+vPYiBr3DDz29cIeqvBkOAb0201S85vNaPLsf1bwxk2I9Yj40PZerOj1QTKU7LWEqvSE4LTxYJ/a7RbOkvKxUnDm332K9+YMgPAntDz3hMaa84YCBvXVJ3zpyZoK9mEIUvcp2BTuPu1I8yd+rPCszdzyhtD49P9X7vFaX+bwpIbi8ITFQvPoTnbuZxNa8SFy9u7ZWQzz/44s7lhThO8axeLxutgy954PXvMsGgr0Df+q7rm24PC96Rj0IFRW8UEVIPfh15ryNora80V8QvF6VG719QCQ9MiPfvHMp5jp22Vs8yNjOvNUPBr3K8eq85Wo7PFHcIb26lrW8FQ8wO/wsObwyoZy8dMecPbvlEL2gHeW6k3kCvSgTfj0u8aY854o0vZNypbxgoP08ngsmvJN5gjwlccK8g4t4vJgtfbzLTgA8ivLAOoUpLz0pGtu86NmPvLB/97zAbQG9n41oO4UiUjz3soK8bde0PM0fnjtOMwk7CwYsPD5M3LuhreE8DRjrOmaFg7t9RwG9fKlKvUF6jztSXuQ6VhW3u8nfK7yt3Ts80zcLvSE/Cr0ih4i8VIU6vIt74LuB8Bm8WcUsujbhjjsCTIO8t+2cvUJleLyLiZo6dUnfvHywp7xaTsw80VizuhnGArx2n5e88YV+OyToIrvDFpq77uPCvXEXpzvCf8A8T7yoPH9ZwLz7oxk7Gk+iu5LiqDy+lYY8Zj0FPH1HATyfmyK8OhqkvPwef7wkpwE73gNzO4IJtjmj1Le8fUAkPK8EEj3rw8m8y/FqPEOTqzrI0XG8RCMovDrZAjy8dY281VcEPP4++LuMErq9C/hxPA6vRL31kgk89mOnPLXNo7uiPV48Sm58vKb0MDyudBW872ziPOghjjwZDgE9bNBXve1TxjpelZs9Fy8pujuqoL3tU0a72UgbvK5m27rdgbA6sIbUPAnf1bvc+BA8qaQmvctOgD2ImIO940pCvHMwQ70ISPw8OLkJvXqJ0Tz6BeO8b/etvGLA9rwtIAm8DJYovbnFFz1xHoQ8uHa8uyNYJr1XrJA82TphPf4++LyxlA49GQ4BPfXF8DxgJRi9AG0rO0t12Tzm+rc8KwCQPMBtgb1MBVY8ZFdQvHKnIz1EKgW9LvEmPW/3LTqzrSo8bSaQvSRfA7zog1e8P9X7vJYim728LY88kzGEvNzj+bsSXzq5noIGvEYCAL2qJum78AoZvVYclDtJ5dy85vNaPAYv4DwMlqg8D7ahPfoMQD2vBJI9O5xmvKo0o7x0x5w8uQY5PODwhDy6ljU7bE6VvSs61Lz+U488tDZKvS9z6byPu1I8ZFdQvDuc5juEoA+93hGtPFUHfTs1SjU8gXk5PWsGlzxK7Dm921N9vOb6NzuNYZU89cxNPX9ZwLtmcOw8N2NRvZYU4btl58y7TAXWPEmrGLyCAtm6OAGIu+a5Frzu48I8xKaWOkv++Dyb3XI9VPwavXjy9zwFrR295XGYPOlpDL2oBnA86aPQvPIcWLxEI6g7uxj4O8v4R7xE4ga9vah0vAONJLxrR7i8k3mCvKxUnLyudBU93YEwvEL1dDwnCBw8i4kaPWPVjbtiN1e9FHhWPQHv7TxMExC8smyJPASf4zyuX/46LSAJPRrYQT0d+Lo8tD0nPU+ubj2S6YU9okS7vLkGubzFIfw8UmXBOSKHiDvWmKU7oksYPQMPZzv35Wm80V+QvNUIKbumdnM93OpWO9iq5DwUhhC9QWzVPOLBojzChh29fKLtO0uDk7vxkzi8iWLEvIdJKLtPvKi8woYdvT06nbs6GqS7Z82BPCtIDrtVDtq8eonRPAyIbr3hOAM9vThxvP17FD30Q648BaZAPApvUj1Zxaw7aJfCvCLIqTsL/848gOk8PEjTHT1OJc+8rm04PNDINr348yO8OPqqPOmqLb1slpO7CnYvPCCoMD1yoMa77ExpvNEXEj3wc7870Up5vOjdeDwobIS8YARQvdvtZruKcuC71PxJvcRCjLu/05k9fTNhvDQGPbyZsV+9+daCvYj+Db2kLR+8HOnYPEpEMTjAvlW8LLjavO+pMDxFFlS8e78OvQw2hzwrhZ28nKUTPIcmij3R6hy8cnEsOge5vLsNdxw9AReNunwHELz4h5W84KtGvSAXtrsi9qW7erG2PIdSWzy3jKO8YNESvfnIqjz/eDI8FznRuyAlDjwZJhk8NqSXOzN2uryjpIg7PhdfPKEUhr2ZfiK9D0i0vN8bRDz1Z5A8JGp4u+dpJr2JoUg5JtyBvd8NbDuSzpq9nzyCvB7WIDzkijY8UZITPKUfx7zoqju9UhQ+PRbq47zevv48o4HsvMRu3TgGeCc8G5rrPAlJvzuHtoy8FJv2u5fuHzzTu7Q6Etg2vKYfxzvOCy09YLXiuhu9hzwXnYK8dQEvvMcMOLuI8DU988k1vHUBrzw/Zkw8MdjfvHjgHr0nCFO97ScGPCKZYL1+kKa70eqcvNURDr0SC3S7C+6Fuxua67xedM28wqsdvf94Mj2BlHu9EcrePCb6erwmx707ce8Bvak/zDwZydO8+GvlPNv7vjyTHQg87QtWPNHObLw1XJY7yuunu8tBgTwGeCc9z0zCO/43Hby0bJ48YlM9PdIrsjvzCss8NKl3vB/ISDyJRo89TmS2PHN/BDwe1qC6Q3h5PEYyhL3Pf387yKoSvMbSjrz3P5Q7PjMPPb/MrTynvSG9j9P6O1/DOj0Ryt48BNrMujfsmD1zY9S9IuhNPRdHqb2X4Me8ICUOvdw81DwL7gW9q+SSPFNql7yBb5a8uhymPXqxtrtOl/O8mX4ivdkqJzue7RQ9gbcXvb0u0ztaBVs7gCCpPFkF27zmGrm88YigPZWfMr1+dPa8yyy9PM9MQrwXK/m88wrLvNX8ybyqnBE9mD2NPVX6mTzrysC82oAAvWcDxTqe3zy87QtWO5xdErzNruc8rgSYPCL2Jb3ZHM+7VibrOyFtDz2LwU07g/FAvKvkEruP/QI6CTtnPUIEJ735hxU4+66GPBCJyTygxRi8bDGivL+ShDxx7wE9JHjQPDjJfDyJk3C8X7ViveKd7rwHzgA9NWOCvG9YEz0nFiu9ksBCvVtioL3KLL29/2paPeuJqzzh7Nu8DgefPGfCL7y/koS8EHtxvJvy9Dy525A8G70HPUzUM71nA0U9jmYUPNOt3Ltn0Ae9krLqvB6VCz0s1Io7OHWvu6k/TD2X7p888PgdPLcv3jwp2Wo8IWYjvQ64MT1VuQS9+DiouzfzBD0D6CQ8jpLlPIihSLy3jCO9Oahsu748K7zJ6yc926xRvB7ISL0Y3hc9lu6fPVzWcjyu4Xs70JuvvESblbz2rxE9IWYjPHzyyzyTAdi8ceEpPDakFz0Yu3u9l+BHvXOk6TxGKxg9ndFkPN8wCLxDN+S67mibvKEUBr1yN4O8WhMzPS9WNb2kLZ+7mD2NPZD2Fj0Y1ys9xEIMPc4+aj1pRFo64jtJvMDTmbxc5Eq97QtWO1eDsDu5Ds47Qej2OyQ3u71BtTk9dUJEPB+6cL3doIU8LLhaPLZLDr4XiL64b0PPPJRCbbtyMJc89Fm4u2qoCz3XjEy9kT4YvU8Ckbx/LoG9w+wyvfhr5bxOuo88KyhYPPynmry3jCO7U2MrO5lwyjyJRg+9M3a6vFzkSr3PWho9yZy6vM28v7zG0g68KGwEPJPVBj2gviy8V0kHvBHmjr3eG8S8uNuQul0zuDyX7h86tu7IPJfuH73EH/A764krPEC1uTxtwSQ9aziOPDnLCLxS06i8MRl1vTaI5zymr0k9tF5GPSWNlL3xiCC96kgWPdHqnLzvt4g8sw9ZPKZuNL2/b2g8jLN1POt70z1UuQS8RSQsvEn1Q73ZMRO9SkQxOsbSjrzZKqc8YSCAveJJIT3e2i49K2ntPAlXF729LtO7Q3j5PLRQ7ry24HA8YkVlPH/fkzzJ6ye9fpcSvQj60bzw+J29UikCvUSblTzEOyA9ph9HPBCXIbzv6sU7+h6EvLY9NryZfqI8WkZwPh04Rj3YHM88Jsc9u9ErMjy0n1u9stwbO5MB2DzlGrk5H8hIvM4ZhbxoA8W7/YvqPIoj87yiQNc6o6SIPZ3R5DonHZc87ScGPVMiFr2u71M9oQ2au5RlCT1UVdO72oCAvEp37ruP4VI9qs9OvJqx3zsCSsq8QGbMOkeYfrtRhLu7inLgvBuowzwrd0U9auK0u0NFPDxFJKw9RjIEvRc50bzfMIi8jBA7PTcmQjse1qA8uiOSO/oXGDh9M+G8pXwMvNkO97pegqW5v5KEPBz3MDxvpwA8sY2uu31PEb2d0WS6ZoiGvHIU57omCFM7Cp+YPFcmazxAe5A8mD0NvOos5rzrvOi8/KcaPZKGmb0yJ808aBEdPcssvTyxmwY90dzEvNJe7zwFKbo8ocwEPHUPBz0HCKo9xa/yvNaMzDzRzmw8sX9Wvc3Kl7wXOVE8/sz/PN2LwbpUuYQ8BX8TPeH6Mzz6yKo7KGyEPDHmtzy3S468Fb4SPYdSW7xUlui8KK2ZupEwQLsm3AG9pXwMPQrLab0Ci9+75QxhvLpdOzyX9Ys9fwT5O8y8P7sY1ys8umsTvdEdWj3aXWS7hx+ePMMtyDkCi9+7APtcPMttUrwICKq76jo+PUziCzz/eDI8SQoIvdU9X7pgBNC815okPeH6szyItgy9TrqPPX109rtyMBc8sysJPdjpETvnaaa8jNYRvDWIZzzOGQU93BADPdwQgz14L4w8DDaHvCckgz1NIyG9yc93PPynmrw6tsS8ZwPFOsttUrztC9Y7OxOKvM79VLxxIj+8MfQPvIk/I7wPSLQ8ReqCu9Cphzx9QTm9E2g5vWJFZbxjqRa9T/Q4vGEZFLylEe+7F5YWu8R8tTvG/t88jM8lPJ4gUj3R8Qg9fpAmPYXCWL2W4Me7HUYePPnIKr00+GS67pvYvPQfjzwGq+S8sZsGvRpnLjyJ4t08OXWvugPMdDzQqYc8FVWBvDarg7oYu3s9pS0fvc4LLb19M2E9CUk/vH509jx8B5A9t3BzO/cq0Ly+LlM9+D+UvDQbAT1NKg07kUWEO0wjIbv5yKq8hXPru2UWfTwzt088LRyMvPVLYLzrvOi8Fvi7PGOiKrw5qGw9K0QIPQ/5RrnqSJa8IWYjvZl+orzSXm+9ozJ/PIRArjwH7Pk7PcjxvBpL/jzhuZ472Ns5O7usKLw+Mw+8+1+ZPZF/rTztGS699um6vMssvbyOUVA7rryWumTjPz0K2cG8ko0FPepIFj0p9Zq619u5PNJ6Hzznqrs7SKbWPCuFHb3A2oU8Jvr6PJMBWLwm+vq7gCApvVyV3TsPOty8+Hk9vKL/QTxOcg49RQh8O0pEMb0Vqc68zj7qO/Ar2zxnwi87pmDcuycIU70zzJO8qt2mPM9MQjysbak8ZPiDvEXqArzw+B07xsuiOzPFJ7ywPkG7tz22vKTsCTq+PCu9hECuvDnLiLzVCqK7ZOO/PIXCWD0oV8A8lELtO0NTFL3LbdK7zRKZuxYr+br222K9YmgBPI5tAD22/KA9CtnBvAU3Er11D4c8RisYvbeTj7zb+768ty/ePMcMOLo/Jbc8QzfkujakF72OkuU60SsyPLYDjTs319S852kmvQUb4rx6cKG7pJ0cPRLYtjoc97A8i44QvXpwIbztaBu8X4mRPKJAV7xNZDY9aqEfvawslD3zyTW9v75VOtehkDtItK679veSvD4X37v5yCo9bcEkO7b8ILzITU271AoivT2jDLx5Ykm9SfXDux/WoLt88ku8KLQFPBIZzD3Fio28hsJYu1zW8rzLQYE9YlM9OrkA9jptcre8QgSnPTaWP7wip7g8EZchvT8lN71ycaw7SoXGO8RCjDsqKNg83w1svKENGrxSFL685igRPDyVNLyy4we7jm2AvLGNrjuYPY283FgEvXzk87wrae28XKM1vcc/dbxvUac6XSVgvFNVU72zHTE95OCPu6avSbwp2Wo8enAhPdeapDw8Wwu989cNPcJO2Dq6HCa9zIkCvRlnrrrFr3K6u0/jvOdppr2+Qxc8KvUaPc4+ar3C7DI8GcnTPIROBrxGJKy631zZPGqhHzyq3aa8TSoNu4XC2L1JNtk73ugGPM3RAz0+M4+8V4OwO7oOzjriSaG8G6jDOmVzwjslavi73FgEPQVqzzyqz847Y9VnvAOZtzxRxVC8S5MevXkhND2+PCs6XfIivRkthTyqjjm89WcQvHjnirsj6M07cjAXPHfE7jt454q6h24LvamA4TzJnDq9IUrzuiV4UD0dRh49E1phPUYyhDiDBgW9+wnAOzhZ/zzA/2o8SkQxPAToJL2UUEU7/jcdPcFqCL1pYAq96k+CPDtbi7xjhvo69ailuxzp2DxAdKQ8ExlMuiWNlDtB6PY8TRVJvdHcxLwMW2y8GmeuPKmAYb0XR6k7W2kMvUn1w7xOuo+83zCIvLF/Vr2hvqw8BRviPM0SGbylEW+9o04vPOIIjDyiQNc8DapZPahNJLzvqbA6KJjVPIAugbwwpSI8r0yZPBCXoToyhJK9xIoNPMW9yryuC4Q87NgYvcb+XzztaJs73xtEuwJfDrz1WTi9LIwJPMDTmbyP4VK9gyT+PAqfGL3IYpG8tj22O5yC97tzeJi88XrIPIRHmrwgJQ69ze98vDhZ/zxTVVM9LLhaPCyMCT1UYys9j+FSPSdJaLudpRO9pC0fvMtBATs3JsK7hXNru7y6gLwobAS8B+z5vOdppr1WJuu82Ns5vaQtH7zcPNS8Gkt+vf32B7x6dw27TpfzPGmhnz1CCxM8EZehvRCXoby1n9s8KKYtPf+GCjzGvUq92Wu8PEXqgr0xGfW8mC+1O8hikTvncJK8gWG+vFuxDT2gb7+85QzhPDfzBD0XR6m8NpY/O21yN70UdhE9cNPRvG+nAD3eG8S8TSMhPcKyCb3U7vG78sm1vG6l9Do5Z1c8pXyMvAZ/k7sR5o48wQ1DvLLcm7y4v+C864krPR1GnrpycSy8HoczPUfCBjz5utI7AQk1vAqfmLqavzc9+DioO0+zozuX0m89RmVBPVBDpjymbrQ7lV4dPWwjSjxk1ec8ceEpPdDObDvqT4K8ZPGXPEILkzzxbHC8vN/lvAx3nLu0rbM5u7OUPBpLfry8sxQ7grCrvDH0D7zwK9s82oCAvfcceD31Z5A8YSCAO/RnkL0Ryt68vjyru37DYzu0cwq9TqVLvNJe77zw+B27gr6DO8ttUrx1UBy95eCPvOR83jw2pJe926xRPOiqu7wqNjC7XJXdPPbbYryQ/YI8kw8wPYMGBb29+5W82M1hPR55WzzOTEI7+Hk9vGvU3LzN0QO9OWdXPB6VCzyYPY28UPS4vEzGWzy/sP08bgK6vMEbmzyScdU7FgaUPLkOzrthXrI7HWfiPCroJLtXsD29KDLDvIONn721rLK8j5oWPemJSjtBL8W8UH5SvT1MFr1//Ew8m7fTvFB2r7zOsVe7of4HO/0vUjy43gK8eMphvIjX87ygIxe8AOYzu4eig7qSv8C748MHOwVaGj09u96658tFvLhFKL1uBIQ678t7u4yFsr3Z8AO9nJrnvMTznLxOuCq9lswBPPKOg7zyeTo9K9NbvMrGhbxUAv+7d3iFvSZf9TzwuzW9eaXSvJtIC7uxKIa8bu+6Ovi76zvK+3U8jH0PPdItYbzhdEu9ouEbve/gxL0A0eq8HKE6vdiZJL1jVg89M3kSPa9VuLtm7wQ9Lv0Iu8sYYj0yBUc9QUQOPBu+Jr30P+K8e2NXPIHPmj2DeNY6kzOMPDzYSro6EiM9AbT+vCH4tLxMdpS8Sx81PVAPirpONJm8VA8lvBKxSjvgKpK8UW4MPZ5lkrtqe9S79v3muxHefDkHlI28p0A5PLPJHryTt528t1XuvKOv5jrZZ++7AT2TPBu+pryOtwI8LZ4Gvd++aboxIrM8BxgfvSLwkbiuese82zo9PXqVDL18shM9i6KeOqi0BD3tBVS8DVItPetHTz3UCFK9RO1JutiE27xZWfm6JK4WPdsymryvXds7SVmNPakGYTxgmAq860dPPMIYLLw5N7I74mwoPCJsgLxsypA8yyUIvaCfBTqFS6S9RH4BPfDDWLwNWtA8RqMrPOQqLTwZAKI82tMXvCEA2LkgFSG7VkmYvBu+Jr13/JY9OS+PvcW5RD1AVNS84mwoPKr+vTyI1/M7fT5IvOCmAD0wKla9anvUu2fFcj3WvrM7HITOvGZzFr1cHAG8gEuJPVFEer21l+k5wFonvHKADT1ZWXm76ZFtPPtpKj1DAhO90krNvN++6Tye4QA9LZ6GveQqrTxe2oW8zeMMPYRwMz1uDKc8nYohPNep6ruxG2C9m6+wvHYEOr2otIS86nmEPD6ecj3gkbe7KaYOvXfnTTy8yVQ7T4b1uhR38rzGpHu8Tcjwu6kbKj2vaoG9qLQEPdiEWzyJ5Jm5MvB9vBGxSrzRUnA7qLQEPclSujxYJAk7AcnHPJZD7bxfvZm8yxC/PFT627xQflI8/icvvb93k7ygDs69mflOvWCL5DvbJXQ8nlDJvAxSLTz5s8i7Rci6vH4ZObvW2586Ux9rPZrMnD3kFWS91ACvPAxSrTuHEUy8FjV3PboLUDwkKoW8Yyz9PAjmabwcoTo8zISKvEMCk7t4wr48hi44vM3W5rx4ymE8dSEmvA1a0LyPJss6dE7YvF/FPD2Z8Ss9WuKNOrogGb2Jxy29u+5jPdehR7xYk9G85KYbPQnJfT0UjLu86mS7vJZYtrt6nS88b+eXO69NFTyV8RA9qun0O9/LjzxPhvU8uuZAvaLpPr0/cUC8i5X4PEMKNjzFwec7E6knvUq4Dz0PqQy8s2qcPHwp/7p273C8pJ+gPDoSIz2av/Y8rnKkPBHWWbytl7M8yi2rPGb3p7w3ZGS9FkKdvboL0DegI5c8lWBZPRZCnbw74G295vDUPGNWDz0mbJu8b+cXPVB2LzxXqBq+1r6zvJV1Ij1LH7W7GAjFPCy277v+Hww9B5SNvObTaDquZf673myNutJCqrypBmG9OgV9uzIFxzsXvgu9A3+pPEP1bDyWWLY92k+GPCPTpbyjxK+8YKCtPDkvD70JzoC8s+YKvNlnb7yoI028c2OhvIjX87xPhnW90V8WPBZCnbt+LoI7P4YJvE3I8Dw0u6g8jGhGPEebCDyeZRK7KDJDPdbbHz1KuI+6Ccl9PE7AzbyUfcW7Cy2DPDoaxjslkaq7zbl6u5K/QD0Df6m8XQe4O34ugrtEfgG9dSGmPN3jeD3OsVc9SidYPIKyLrqfxBS9gOyGvARiPT2VaHy8j5qWOv/tVr3a0xc8xc6NPOQqLTynQLm7rLxCPcKxhrtdewO9rDCOuz6OLDwONUE9sDhMvQ8YVbxtHG09FISYvUISWTuXKwQ80IQlu9/LDzzFnFi8qDgWurEwKb2y/vO86ZFtO9lnbz5tpQE9gUsJvF+wc7zbOr26x5Q1vZ1tNb3TOoc83BWuvJHcLL0ETfS8NTcXvU7ATT3cFa48QieivE+bPj25MF+8dp2UPMXWMDzLJYi8fFu0PB5XnLs79TY9qRuqu8WcWLw5NzK9wwPjPEeOYjh5pVK7s9nkvLNqHLu+nKI6hUukPNlfzLyMcGk8cMIIPRHe/Lyy/nO8FQAHPVlZeTzq/ZW8PNAnPGL3DD0jtrm7/UQbvCropDycffs8lzMnvUInIrwq2/48Vs0pve0anTrKqRm9XBf+uufgjjzxlia9Z9KYvEzyArz7hpY8Ux/ru79qbTyZbZo7/h8MPYseDb0Y83u8aLUsvU+bvjx+LgK9mfErPUMKNj3e07I80xD1O9+2Rr3+Jy89pJJ6Pfp5cLxZWfm7GAjFPdiEW7uDjR+82Xy4u8ac2LzpnhO8Ifg0PJ5YbDyKsuS63eN4Pd34QT24Rai7yG8mvPC7NTxi9ww9ljtKPBAIDzyFQ4G8GeM1PCNPFD1Pm768Dy0evI4u7jy5KDy9rZczvarh0bx+LgK9rLxCPZVgWTtA5Qu8+LtrPF85iDvv2CE9yT3xu2/acbuOQzc8DG+ZOzPgtzy6IBm8aZAdPRRS4zxQflI8wPOBPftpKrxd6su8mIoGOyy2bzrbMpo8c98PvT1MFj3W25874XRLvIRb6jxV8jg8ouEbvb9iSr1IcfY8DGJzPcXODT3nwyI9TPolPb4YEb0dSna8wxAJvfQ/4ju83p28vbmOvSmmjrymbWs6YmZVPHDCiDu9GJG9K8s4vb4YkTxWxYY9Rd2DPWtWRb12BDq90krNvLS0VbzBKPI5Cy2DvXjfqrvSLWE8b2MGPa9d2ztDCrY8WeINPIRbaj3RZzk9tocjPSWRKj0A3pC7irJkPYnP0LtjOaO8GleBvER+Ab2FU8e7lIXovEov+7yVaHy8oCu6POps3jxhex49Ifg0PBjz+zyvaoG8RbNxPKLU9Tz5RAC9rDCOPbL+c7wz9YA8q9muPTd5rbw1nry8r+6SPSrbfrtv55c8NMtuvB/TCj1uDCe7qLSEvA8tnrw4VB49q9muvLnBFjupGyq979ihuzdkZDziV9+8ZvenPeCRtzyVYNm85QUeve7oZ7xN1RY6K2QTvYDshroEPS494KYAvElERL06Bf08+qMCvSLbyLwh+LS8vYdZvPKB3TrZ8AM9PGmCPFFuDL3v4MQ75CIKuxXjmrxqczG9WW7CvEhhMD2ASwk92dMXvbgoPDxz3w+9Mv2jvL6H2TyazJw8PbO7Oz2WTz2Tt508T5s+PPEvgbyzyR68e2PXO3/8zDtEYZW7LmzRuzaB0DzFzg29u+5jvJ5Y7DpnTgc9c98POdXjwjvM66+8Ktt+vCropDxm2js80kIqPN7bVTvcHVG9dEa1Ozki6bw9u148iAGGvO7o57w9u967Pp5yOwDms73lBZ68anvUvG2lgTo7CgA9uiCZPLETvbqz2WS9vYdZu8Tm9jyi4Rs87D8svXv0Dr0LnEs94XxuPAjeRjzxsxK95KYbvIVTR7wA5rO8SUTEPDAy+Ty0rDK85fj3vGgxGz0ibAC9n0CDvHNjoTvgkTe7kVibPFwkJL3fof27FFJjvNAAFL38VOG6yi2rPDPo2rwCnBW9NbMFvf4SZrzFucQ8i41VPYYmlTwHlI288hIVvZLHYzymbes7YYPBO5OasbxtpYG7cMorPdQIUrzZdBW9pKfDuIONn70kmU296oGnvPC7tTwVSkC8V6iavAG0/ry3f4A8V6gavUEvxbx6nS+9jH2PPAKP77rftsa8wUVevAYoZT3Xqeq88z9iPZLHYzzKqRm9sKwXvIKd5TyQ+Zg8uEWoPH0+yLtaUdY8c07Yu185CLwtkeC8YKAtu0P17LzR24Q9UHavN8XODb0pDbQ7vazou7qcB7yhBqs7gp3lPEz6pTwgHcS8OhKjPO0aHbx+IVw8kAE8PBclMTyI13O8G7YDvKSnQz0kmU29rmV+vJ8zXTzsKuM8A4fMPMsQP73gKpK9PbM7OwnJ/TxrTiK9wNaVPMv79bsvT2U9hhlvPD27Xr0bqd28nJJEu44ubjya1L+9/wIgPe71jbz9RJs8bRxtvBSEGDwwPx+90VLwuX8RFr2Q7HI7q8TlPCrwxzwd+Bk7eohmvakThzzkFeQ8IBUhvTIFx7sTlF67TsDNPPi7a7zA8wE8Us0OvRu+Jr03ZOS799hXvK5lfrzTOoe9plD/u1pRVjx0RrU7cMqrvXRGNTvzZHE8pKfDu7EbYD0SQoI8NaZfvOg/Eb0Dh0w93fAePV/FvDwoKqA4I08UO1ygkj0j0yU93tMyvQQ9Lr1VSRi8ZCRavNQIUjx7eCA9sEBvPVQPpTyBulG8soeIPflEAL1rTiK9+wIFvTTDSzxPhvW8KCqgPKrh0bypBmG9HBWGu/Q3PzrE3lM7nYqhvFssRzwE+5e9cLViu72s6LxlkAI9HKE6u4VTRz074G28I75cPDS7qDojy4K8SUxnvRDzxbykkvo7cMqru30+SD3pnhO8//X5PMDzAbytguo7I8uCPDhUnjxv2nG9HIROu57hgLvRXxa8aLUsvVVJGDxooGO8oQarPARNdDwOPWS899hXvEo8oTustB+8O/U2PBZKwLylGw88XBf+PJAWhTw/hok9fiHcOzd5rTx2BLq8jWAjvQnJfTytn1a60IQlvBkAIr2Sv8C8nzPdOmw52TylG4+9mBa7vAN/KTvpkW08QhJZu0arzrzhBQM9anOxOqddpTzSvpg8vo/8PDAyeb002BQ8HJkXPCgqID1PhvW7OhKjvK9NlTugDk694K6jvD3IBD3THZu8cSELvRyEzrwsw5U8pYK0u/jQtDo2iXM8QqOQu9l8uLy9uY68jrcCveNPPL2i6b49s8kePByM8TwI1iO9mfnOPI1go7wPELK7s+6tvFlmn7z9L1K8hi64vJHcLLzW2588hi64u6LpPjwu/Qg7sSiGuSkNND1e4qg8vo/8vPp5cLwUUuM8pnqRPQR3BjoSuW08Bwv5PNbGVjt9Pkg9YItkPMrGBT3u6Ge8KCqgPEebiD3QhCW8ieQZvI8JXz2KsuS84zrzuyH4tLsI+7I740+8vONPvDxCGny7EsYTPSPLgrwsP4S8oYIZPf3ACb2wQO88vofZvH4Zubyq9hq8DjVBvRrO7Lw0w8s8QGmdvKrpdDwR66K9XCSkvERhlTuknyA7wT07vM+ptLu2ev08jybLvDENaj1u9127ANFqPMhvprsEYj2883EXPd7b1bo39Ru8vbkOvU+G9TztDXc7uhNzPIDsBrxEfgE9WVl5vGNJabweX7+6JlfSOfUvHDyXK4Q97QXUPIYZ77wF1gg9vpyiPOr9lTy4YpS7gaiivIUg4DupaBu9zj1ivd/G7rxvf1S9q6mqO21IJj14ZGI883u8vD/QbL3mam29x5njPOFSbrwjzPG7R8m8OVx+CrzkPSA81HoTPA3qVjxDzI69jlo/vKt5Cz0DlJo7VhubO/bzebzpSz49bhgHvXhk4rwi6hS9GbC1u5rLTLxM65y9yOTTvGfvF73oCq+7b4k1vO0irrtn7xe9IuqUPByHpbznFBC9JCFDPAgnKb2f2Wo8LWWDvfMma7xZuAq884UdvMhDBr0ckYY8thq4u2LNNz2Z1S29okmNvb1pZbyfvY29yS9EvYJ4g72YgFy8292CPEAb3TydmFs6QHqPvBLclzxwykQ9q59JPFmJ9zvCgeS8bpMWvT7krjzw+R09ZA5HPNyZoTv0Z/q7JCskPYKK/7tRAxy9yOTTvPIwTD3Blaa7Xb8ZPRSEdLyovvg7qB0ru9jCMT3j8q+8szlnu0WIrbwV4yY8/+LovBND5bwPdta81yzRONHJYbymh0o6R8m8OYei/jz+oVm8jM6/vEUp+7wo+LK7DT+oPA/VCL14SIU6PyU+vX7H0Twy+JG8+d4rPHShtDo/OQA9y2byOxd5hz1Fkg49su72vHEVtbyVs827bUgmOtEeMzxZ8go8IzUFPG3pcz0sxUG8kTsQvI1Q3jwWswe9uXaYPBd5B7yHtkA7As4aPDNpwLx/HCO8QBF8vQJv6DtkDse8bjTkPBf0Frre5BE9T1n5PJ2snbxmRfU6vcgXPMp6NDwUhPS8pPtKPdqub724pjc9NkqRu6pKeDzNWwU9zVuFO23zVLokIcM8bP21vGkAiLzYY389owWsvGeQ5bzpXwC91ZZwvJTHjz0Duli94PWBPHVxlTxyYKU87M1cPNB+8bx9JoQ9sQyavPHb+ry5kvU8X/ZHvCpwcL3tIq68rmzYOk02jTwhJJU97M3cPIqNMLxqcTa93tDPvF4KCrwgVLS8FeMmvS89/zz8ais9riFovDS+Eb0jzHE6hsChvD2ZvrqXij298dv6O0MGj7tThTo98eVbvI0F7jw26967QqdcuvgiDTzxRI66HCjzO63W9zxjGCg8cR+WPCvZgzzYd0G8j0b9u1dSST2YlB69TOscPR2+07wZBQe9/GDKvQjIdr2+jhc9sQK5PGA317yR5r68d4IFu9DdI7xOd5w7pFCcPBC3ZT22Grg95X4vvQupRz0uWyI7zAa0u0fTnTyW/r084buBO76OFz0zX1+8ZppGPTtiEL1XUsk7a8YHPRuHJbwV4ya9S3ANPf72qrys6rm88jBMO6dhDL268Sc9DeD1PDh3XrpU2gu9eGRivRTtBz2BnkG8r2J3vMkvRDu68ac94+jOvBSOVbs+7o+7kdxdu8QXxbudMY68sx0KPVozGr1ICsw89ZYNOyBeFb0oyBO91f+Du7YQVzyDPgM9wEo2vIM+A70sxcE8JsEEvYM+Az2qVNk8HAwWvTS+kTw4d948vv/FPOBcTzypCek8bKjkPJb0XDzx77y8Z3QIvapeur1wykQ6uDUJvMVitTyQ8J+8thBXvVnoKT3MEJU8lv69vByRBj1zMIY7QHoPvvWWDb2dMQ49fxwjuikv4Txn5bY7YZYJPQAkeLx/oRM8xWyWPOlVn7ylPNq8GZxzvWGWCbyRwIA6J63CvFf99zsNPyg9wuCWPaaHSjxER568k3I+vKaHSruPNAG84oGBux7INDwQt+W74BHfO45kIL3mThC9FO2HvcTxhrxFiK27Wyk5O0qgLDuAXbI83yUhPDcs7jndhV87gngDPdeBIj1IFC09fXxhvO5jvTz+9iq9lMcPvKqzizuBqCI8T1l5u3EfFr3x5Vs8xVjUvHcZcjt5ubM7ppErvWaaxjyND089h5ACPaMFrDzN1pQ8C6lHveG7Ab3XgSI9fSYEvTtiEDq4pje9Ko6TPB4dBrubDNw8UzDpvEgKTDxOd5y6ThjqvFrU5zxxHxY8OIE/PbdlKL1sUge9j6+QPHjDlL3szVw8vv9FPVz5GTyOWr882pKSvMpw07ynYYy714uDvJc/zTzCgWQ+4VJuPXGkhrsi6hS9Hsg0Pbx9p71Ue1m8HAyWu2MYqLy+/8W8wZ+HvZMBEL2BSXA9XGrIPCBUNDv4kzs9vH2nOzxOTrvxRI48f6ETvTvngDr4nRy9XgApPbimt7x8kCO8VhsbvZgZj7u650a75nTOO0P8Lbys4Ng7o/tKvKzqOTx+x9G8/8aLOo9GfT3PiFK7AI2LvN7kET15pXG8KMiTvNGtBDxWEbo83Y9AvNbXfzx09oW88eVbPNHJ4bzBi8W8OHdePO0YTb3jk/07UQOcvCKVw7nC1jU85nTOvIBdsrzkMz+8XgApO9B+8bt22OI8zJUFuiVsMz3uDuy8d3gku0lfHb1jIgk9UjBpvdOqMjwuW6I8eomUPB6YFT3JOSW9XHQpPVCkaT2pCek8gVPRPFJEqz3kH/06xCEmO0lVPDwf/2K8CXKZuquV6LqOWr88Fc/kvNSqsjygGno9hmtQPJdJLru5+4i7ElcnPBGbCD1jGCg7Ue/ZvBNNxjwa5+M8ELdlu6dhDLuMzr88c1ZEvfOFHb0Ln+a8+J2cvCLqFD2Q+gA9OdYQvRXPZDwgVDQ8JWwzPXyahLtf9sc8lv49O85HQzwnApQ6Dmz1O0lfnTypCek8Mcn+u7soVj2RO5C8WegpOZCR7TwpQ6M8yS9EPNXrQb3MlQU96V8AvJUInzthjCg8rT+Lu5nVrbyay8y8sK1nPW4YBz03EBE8aQAIPbJXCj2rlWi8204xvN8bQL2XSa48E0PlvLLu9rwl+wS9B+aZPD85gDs0vhE8RSl7vS5H4LtQrko8wZUmPU0srD3XBpO8mBkPPbDBqbwvPf+8/0EbvB608rxgQbi78PmdPOgATjzZwrE8itggPSk5wrzYd0E9a7JFPU9Z+TzvWVw94VzPvM0hhT24sBg8SB6OvDG3ArxIFC29y8+FvHEfFr3+AIy8V1LJvFKPGz1Llss86V8APOQ9oDxKoKw83y+CvFdmC7ty5RU9DPQ3vBrnYz2L2CC8JWLSu66Amj0w8YK8fSYEvZS9rj3ntd28YxgoPZE7EL29aWU9NFX+uwbcOLx2NxW814sDPWGCR71k6Ii7hkUSvUzrnLzBNnS6ERYYPDq4bT3OUaQ9sx0KvaupqrwM9Le73JmhOzJ9Ar2JTCE9T2NaPcE2dLxzVkS9xqPEu4zOv7xqcba8pUa7vJ/jS73BNvQ83ETQO/MmazwkF2K99ZaNvDv5fLqCeIO8hmFvvakJ6byVs0096kFdPUUp+7xcfgo93Dpvu6FJDbqUxw87uudGPDqckLyejvo8deykPKgnjDxqcTa9T8IMvA3q1jxLjGo8lF58vNoNIrxH0x09RYgtvU9j2rw6FyA864JsPLC3SLzKerQ7QbuevO4ObL2+/8U7UkQrPMQhpryjBay8ADg6vegKrzy9vja877gOvFW8aL2PRn28MTKSPDoXILxKoKy9KE2EvL6Ol7w8Tk482FGDPGlxNjxThbo8oCTbvHHAYzts81Q88KRMPF9LGb0CxLm8b94GPcvPhTwg4wU95tOAvQgnKTwZsLU7HpiVvC0GUT0emJU8Y7n1O3DUJbygg408tamJvH+hE7yixBy6eGRiPMatpTs0Vf68q3mLPLx9J7xgN1c8SLX6vLJDyDzpN/y8x+40vRC3Zby2Grg8Hb7TPBmccz1tUoc8FJi2vMVY1Ly12ag8fJAjPS5HYDyDPoO8NkoRvJ7tLD0V2cW8r0YavH184TugJFu9j0b9vHXsJL0TTcY8SArMvL601TmYGQ+9Cl7XPGakJ72tK8m8XBX3vCBUtDxs/bU7b4m1vF6h9rs51pA9FI7VvHcjUz0d0pU8XgoKvbwCGDw3EJE82/nfPO0YTT1Obbs7EMHGPHHA47wjzHG6OiGBvPxqqzs3QDC9lMcPPbLSmbuYGY+8F/QWOwabqbwxtwK9OMLOOCQrJD3b+d870R6zvPxgSj3fJaG83Jmhu2d0CLwS+PQ5jRmwu+Uf/bvip788QrE9vS89/7zr4Z68PFgvPRcaVTznmYC9Z3SIvXJqhjvUqjI9xa2lvdNV4Two5PA8kPAfPdxEULrI2nK9zlEkvYFT0TrXInA8evrCvcBAVTxKoKy85SneO1TGSbz1vEs8X0E4vX3bEztYpxq8hkWSvN7kET1lWTe8Hsi0PFreSL0V46Y8IEpTPeKd3rztIi66NKrPPLYkGT2TfB+9ipcRuowjEb28fSe9Am9ovA3gdbxyaga7xk7zvH184bxThbo6XgApPZRefL37YEo7GZzzPGPD1jyFBAM9ufuIOxLclzz3Uqy8aQAIPTiLID05bX07+J2cu4+lrzq7KFY9aSZGPc5Hw7zind68kPqAvBf0FrwGIBo6NaDuPBr7JT2W/r07lv49vF1gZz0gXpW7gor/vAfmmbynYQw9kh3tvJxhLTx8kCO9aRxlvUlVvLlbH1i8wYtFvFdcKjwE3wo9a7wmvRXjprwQwca8L5LQO4gBsTqlMnk9QXCuu7XZKLxlT1a7Nf8guj/QbL0mPJS8hsqCPLEMmrz2SEs9s5gZveG7ATyovvi8kPCfPMqEFTwagBa9Tnecvd8bQLw95K47REeeOioTBL03lQG83DpvO7SEVzsAjQu7/8aLvAdrijrV68G8bj7FvB8TpTs+2s28ZZpGPFCkaT3cmaE6UxSMPSKVQ7sXeQc9i9ggOANaGr14ZOK6Gzw1O3w70rzakpK8eQQkvWGMqLxmKRg9tho4vfZIS72iuju8dbyFOx2+Uzww3UC8dJdTPVrUZ7yn3Ju36doPPB//4jxNIsu9podKvDCI7zys6jk9w8zUOwMPqrumkSs7Pi+fvTDnIb0IyPY8i+IBvVTGSbyKl5G8KPiyPJ7trDxEPb089HFbPNeLg7xDBo+84p3evPW8y7vsLA+8lL2uPYqNMLzmam09KoQyvLrxpzw0Vf68z4hSvJInTrxmKZi84bEgO3bY4rwBg6q8uZL1PHT2hbsIE2c8sLfIuyqEMryVqWw95SlePe5jvbyW6vu85R/9PHhuQz1pJkY8msHrPNX1Ij2BSXA6lbPNPOwsjztJX508mxa9vF6hdjoIrBk9Fc9kO1x0qbw1/yA9LpJQvNweErw95C68ZA5Hu+H8kLs5zC89RliOPJ+9DT03LO68OdYQvH2GQj37Hzu9+J0cPfOFnTys9Jq85nTOvFmJd70QDLe7io2wu/sfO7xeACk7qWgbvXEfFr3fxu48H/9iOoBdMr0cKHO84oEBPTS+Eb34k7s8cRU1PD2P3Tw7RO088dv6uwQFyTx5r9I8c1ZEvClDI72vdjk8LLF/PCbBhDwtBlG8XgCpvGg6iLy3W0e8i3luOq01Kjz7H7s8wmWHPXr6Qj18kCO9SArMPJHmvjwZnHO7Y8NWvC6DCzsfX/o8BP4GvSdhv7xlCFy8HIA0vR9f+rz8ezg9HQEEPeBYIbxS55y8aAhvvQP8Zzzc+Iu85ff+O5YvIz1xij08z1YjPAf+mbxKZU67zHW+usVVEbz4u6A8fMwjvO3YdjzqOay7Df4/PQjdzLtVBt68tHF7vYUM2DtgZ/K7bkqvvTjCeb0wYxe9Fd+3vMe1Jr1dp1q8Zyk8vWVpJDubL0m8s/HxOyphUjwK/iy99bsNPZhO5LzkOQa97ZqHvPx7OL1D5Z45kk6+u7UzHznyeWA9GYChvCpCJL2LjpM8I4BavVvn1bxOJwW9Azzju6AQLjuhL289JoIMvZCOuTtsyqU64bddPSaCjDyoUOI8QGP2vFDGPDyWL6M74bddPdGWsbytEhk8mE5kvBRfrjyZL7a743mBvBV+b7zM9o09GJ/PO4JMwDssAqk8eSu6uwhenL3Plp48+Hulu3CrCr3HtaY7HYA0vKTQxbs8xKu8dEsbvA8/FL3BlLO827c3uyOhJ72x0rA87Hm6u+GYr7yCzQ87SCXAOwZdwzyS7XW9BV6JOtuYibwKHVs9ia3BvGapMj3lmQi8F9/KPFtInjy0UxM99ZpAPYwOHb0Jvp47aIqEvLWzlbyhsQQ9u1JzPMSURrw+JYc99Bo3PAudZDstQjc8ADxQvXPrmDz1eXO7Er5XPf97Szxwq4q8ytRnvIPMyb35Gt0881oyvK1x1TylUE892VZcPEiGCDv1u428BP6GuqgxNDntug67pG99vLXTnD2D7Za95ZjCPJjwgLwrAim8zFYQPFzIJ7wLvjG79vn8PJGvBr35Gl2829iEPZ5QKbrYlle9v1QlvV1IMbxZ58I8BT6CvQH81Dz6+64701a2PHCrijwJndG85thQPbgzMrwmgoy8t7MoPSSiALxqSH29Ep+pPOWZCLw/o/E8tHF7PUaEaTwXABg8cKsKvco1sL2FLSW9ZektvZCtZ702AvU8slOAPYHtA73KtTk7XWdfPPl7JT2mENQ8Vme5vLGSNbzDVLi69LnuPFfoiL38e7g8k636PKSQSrxRRsY8onEJvSdhPzxtaV09DR3uOx/AQrz9Oz08XGffvMtU8bwNPrs8otGLO0vlVzxKxpa8im3GOm/rhb30W4u9y3W+PMUz/jxpyPO881qyPH3MozzkmYi8PgS6O7Ix7Ty1ksg8vBJ4PWqpRb34Wtg7b8q4PF8ItrvZVtw7KMD7uQfekjysMcc8TGXhvJ3Qn7ycsBi925gJvNAWqDxa6Ju84bddvHnrPjzUN4i8PkS1Ogz/hTzvOpg7sjFtPa9SJz0vIwm8fYwovct1vrxkiFI9ZGmkvA//GDsN3fI8zdT6PEkmGb2bDnw7iczvOkQlrTvTVra6oRGHu+X3frojgNo7BTz2PFSnoTwb3129MsJTvbOxdjsW4BA9IIDHu4GtCDwegY27xLN0PKtxQju79I+8dcpePAe8/7w8o948cWuPulgnPj08xKs8zrXMvN63yjvzWjI82LckvTaCa734u6C9ZojlOx0Avrt/DLI8qnKIu0ylXL2S7fU8SWaUPNHWLL0DvGw85PkKPIOtG76PzjS8aaoLPeW5j7xR5f07Df4/vCahujy980m9eop2vI/OtLwDHbW8/LuzvLxzQL1kSFc8fQyfPK1ym7wo4cg7P6PxPGsKoT17jJW7oK/lvGtKnLsN/j89vPPJvMo1sLx4Cm286TmsvMo1sLyjr/i8/NwAvAm+Hrx/zLa8At2mu7QTGDwo4Ug8RoTpPJevrLuATQY8JeG1PAeeF7yRDwk94nmBPeoYX7ybUBY9B/6ZvElmFDzN9ce7O+NZPDYkiLtBxNG8dKsdPUpGoLzDNQq8aWqQO+BYIb0cX2c8E5+pPZwQmz1PBri6WkZ/PNkW4bz0Gre7JiFEPdk3Lju7c0A8q5KPvSXA6DxeCDY9uhSEPP6aebxwS4g9L0OQPB9f+rzwOdI7xJWMvIBrbjzld3W97hoRvVAHET13LIC9BPznOkREW7v6O6o7BJ6EPN/Yl7wE3bk7+LsgvSmhTb0JHds8IkBfPvW7jTuFTNO7sLHjvC9DkDx5zBC9/LszvPy7Mzw14zO9P6PxvCBAzLzgt9280XVkPSXAaLoXIAw8/FprPcY1HbyyEr88IwDkPCKhJzzGNR08LGHluyBATD0wYXi7im1GvDwEJ70rAik81JeKPCNhLLzwudu8tbOVOqkQ57ydsBg8N2O9vGEISbykkEq7ZIjSvN93z7wZgCE9m073O9+YHDoJndG8IB9/POx5urvVNXw89Bo3PHisCT3rWO28IqEnvN33RTqzcfu8j+1iPAZdw7w/BDo9/3vLPPRbi71KJVO7X6ftvEdEbjtv64W8cMq4uuoYXzwPfsk8NoQKvTWjOL2Tjsy8LyOJvPi7oL1kqR8903eDPDOjpTzsWoy6RGUovRyhgT2IDGs9O0QiPHEp9TpIBpI9ndAfPNoYgDyn8aW87znSvK1SlDu7s7s8Fp+8PO56E7xAZZU8vBSXPD/FhDx9q9Y8b0qvu0KFHD2o0Gs8yXUrvM910TyzMwy7IGGZPHHLEb3luY+8QGWVPH2rVr2t0h29HYA0vPb5/Dz4uyA9HQGEPLuzuzyCDMU6kA4wPLKSNT3Ldb68JsKHvLtzQLztGPI65LdwPI0OnTxaSJ47Zyk8Pc61zDy61Ig9cul5PLfSVrxySkK8/LszvEHEUTwlITG8d6swPfLaKLztGHI8aCqCPL2zzrzTlwq9QeP/uy9DED2FTFM9MAMVPaFvaj1Ppe887Tm/vOw5vzt9zKO8ccsRPdNWNr3wuVu9jY6mvBbgEDsR/tK7/RwPvXLrGL3RlrG8RKWjO/T7CD3beII9HF9nvVLnHL3bmIm9UWeTvC9DEDwTHzO7ZsjgO+U3ejw3I8I86JjVuxR+7zyq0go9SaVJPEalNj2BDYs9im3GPAmd0TsFnT49vxQqvbGStbyL7pU7+trhvA0dbrzreoC8BHzxupdvMb2mMaE8g6t8PN63yjzkmYg8mtAMPQu+sTufUCk9zzacPA0d7rxdSDE92xZ0vEdGDbt56749k0+XvLhS4LzlWY09WYb6vBRfrjz3O5c8hUxTPOA3VLrb9zK5VsgBPDLCUz0MXem8v1QlvYFNBr0agCG7WIiGPJYvo7zcN0E9UIbBPJfvp7wGfhC9JgKDvDjC+bw3JIi9bcolvDDjDTw8xCs9gU2Gvev5MD147AS9bwq0vKzQfryj8RK905cKPbIx7Tz/u0Y5VKehvLxzQLmbb0S823e8vPlaWDrpOay8uDMyPZSvGT07I9W7RGWou+JYtLuc8JO8fYwou3Crijw9hDA8Dz+UPbTzkDyqEoY7qdBrvYoukTt9zKM7eiyTPMVUS7uI7oI7/1p+PP0acLzTlwq7acjzPAldVj1giL+8wpQzPJtOd7xC5Z48k87HPELlnjxBBE08xTN+PJ4v3LxfKQM92VZcvaCvZbwk4TU7CT4ovSCAx7tXZ7m70XXkvJFtbLwrwq28NgL1O5LPjTxh5/u80/VtPBigFb2NzqE8kK1nO1CHhzrkmMK7kW8LvX2MKD2WDtY8cMo4O801Q73/e0u8LgI8vdoYgLppahA9MiOcPLwzxbxPZ4A79ZpAPWnKkrxP5eo8p1BiPI5t2TvFM368SeVEvbVTk7wXoJW8gGvuvHgrOr1BJRo91teYvPr7rjs3pJG9zLYSvE4lZj2TrXo9m29EPPM55bv0+Wm9sdKwPJFOPrzKFgI9CZ3Ru5RvnjvVNXw9wdQuvUElmrw3Yz25NgL1vL9zU73leZS8DJ8DPUKFnLzOlP+86JhVvTtEortraUq9MGOXvB+f9bz3exI9RERbO0FESL3K1Gc7H4GNPaOveLxoioQ96bmiPISMzrwxAk88QuUePZAOsDtIxPc8cGlwPBB+STo8BCe9HYA0O7w0C7wPfw+8oxBBvD1EtTxqKU88OKPLvMG1ALz9+0G96bkivM811ruj8RI99nsSPJ+QJLuEbSA9I4DaO7WzlTyjkMo8RuUxPKwQ+rtfZ3K8lI5MPfla2Lw4wnk7zpT/OnRKVbvgGKY80FajvHXrq71kaaQ8ZKmfPHApdb2ILbg8zzVWPJ5v1zw/xL48QQUTvem5orwM/wW9D58WPfcayr2Prec8cmuPvGmpRTyj8ZK85FmNPFHHFb2JDoq8TkYzvWopz7wQH6C7IIDHPIBrbjxp6UC92dZlvLp0hjpAY3a9Ap2rvGsKobyKjPQ8rXKbuwVeiTyGra47wFQlvDVkg7vhmK+8Db8KvcSz9LzgGKa8eArtPLwS+DxkqR+9svFxvCgCFj279I85p5BdPdV1dzw+42w8akj9vG3KJT2yUjo9b0qvPI/OtLwNPwG8aYh4PdUWTjvlN3q9oBCuvLizKLxbCCO9p3EvPLGStTyKjHQ9+RrdOyOhJ70wgkU99vn8vByhAb261Ag7MIJFu/D51rzBc+Y7upLuvC/CQL0Cnas7yxYCuy+jkrvUtfK60FajPLTzkL3ZFmG8eiwTPUnGFj34uyA81Ba7PBvAL71GhGk8YWmRupQPnDubMA+9dQravNkW4TxWp7Q76hjfPEgGkrwuArw85JhCvITtFjxJhPw7UOeJPLfSVr3d90W8LuHuuyEBl7wNPju9odCyu/S57rx9jCg8YKmMPNN3AzyiL2+8vnPTuoxOGL280ny8Ez7hvKvykTyj8RI867k1PFlokj2Yb7E7b4sDvMBUpbweAYS9VigEPKJQvLxTxs86kW8LvT5EtbsggEc82tblPPGaLb1Q5wm9ISEePLq0ATylsZc8vXQZvfJaMj3K9bQ7Yed7PN93T7u61Ag9uLOovdY3Gz3EVRE9shI/PONYtDzZ1mW8HiELO6OREL0zglg8ees+PcBUpbwWYIc7bWndvC7DhjwlIbG83DfBvBzAr7ujkZC6eKyJu5hQA72GzNy87toVvbkzsj1zqx08q3FCPcr1tLwhANG8N8L5u8RVEb1wir28lu+nugm+Hr0rwi296JhVvUFESD0tAwK921ZvPDUEATzH1FQ7VKehPMtUcTy61Ii8fivgvFgnPruqEgY9QeP/unIrlDuosSo9ecwQPdPWPz261Ag9ntAfPS/CwLwJndE8En5cPYBNBjuukiK7NoJrPbizKLxzK5S8nLCYPF+Jhbx3Sui7zfVHPGIIybg1o7g87Tk/vBV+b7ynkF094zmGvGCIvzz8Wmu9GJ/PvKTQRb3Ylle9yRRjvDDDGTxfZ3K8XMgnPDekEb1hCMm8JcIHO+36CbzSNem6SwYlPHNLmzpOxwK90ZYxPYSMTrwAPFC8KoIfPTsjVb2XTmQ9h62uPNxW77qBTQa9c4sWPbyUDb0O35E7At0mvWppyjxR5X28wbNhvNoYAL3D9Q47bwq0PCQAZD3vWh89TkazOfxaazswIX08pvElPcwU9ryHu9u8S5IkvBexlLyEhJy8BCA8vFtwtbzEWba8fudNPeKBQjw7V726Ny8Svc1Fkb1Cvha9nqNvu0QE6rtiU1c6b/qovC6w67z97te8sYo5PFM/0btzfyo82jmbPPKGND3EWTY8NgixuwI+ZD2KxBQ7sTz3PEADoLzCC3Q8/8iAvHQiVL1kkgW98ylePDeE+Ty/zAW7Gk3ZvJ4np7yLjp88aqscvFJ1Rj3Bnr88wlGHvd30ET18U7g8R+ZBvOKoozmeo++8qY/KvN/GSzynIpY6il8PPWeiYzyeJ6e9yluKvIwxSb27RwS9ls9hvTcvkruVHSQ8uCcIPRX+zDyM+1O8JgO/vIeVhD2yirm8VdPmul+Y4Lzadz88Oo2yPIbaDT19HUO8VI0TOwzcfLzTlJ27rErBvIiVhLvpZOQ6ip0zPeujkjwaNha7emLMvDJczryDXTu9qbYrPeHemLzfSgM9VkgKPTsZGb1kLQC99gs2vd4jIjr1aIy8bOJbvF3thztLDm29J6bouxQNYblCE368bBhRPEc0hLv31UA9zw8cvdilBTzCaEq820FKPWSSBb0UDeE8gHvju0OIIT1sGNE7hU4nPb0ZPj17sA69+YiIuz7r0ryuBbi8xzuOPDrqCL2NIjU8gcklPUzY9zwSoCy8oV5mPTk/8LxJY5Q9fmuFPfMSm7vTbTy8vwqqvMyKGj0uNKO9ZthYPbuFKLzqVdA8eXFgPVztBz2J0yg9JbV8vHcrDTwO9Mk8oJRbO1tJ1LwBXRY9wmhKvUAqAT19BoC9qY/KvIhPcbwG6sY8ks6XPEQUiLx5mEG8W5cWvRH9gj0fnOU8nV2cvKqAtrxTCVw8+J9LvEjXLbxkLQA8A04CPXcErDxg5iK8PhK0vKqAtj13xge9/CRNve3pZT0sQze7UOEwvBXI17o/npo8FsjXPMc7jj2glNs70LJFvFVXnjo3q9o7jdTyu8oV97yae8S84d4YPZ1dnD2TmCK8QH9ovPbk1DzZhlO8D77UvOmLxbxtP7K8BtODPPBu5zyxwK68azeDPObvADwkloo8JJYKvE3/2LwkOTS6tAcMPZvJhjzTL5i6FVsjvWhs7rxB9Au9VkiKO9wL1TukZ588cesUvTnDp7x7LFe9fR3DvYpA3Ty925k8UygOvZb2QjwsQ7c6PjmVOihwczxImQk9akYXPayYgz0Qr8C8ylsKPa39iLyZVOO7gHvjuzTwY7yglNs8eM42Pb5AH73ZhlM9nqNvvNyu/juoxT89F+84uxZMD70+ErS8Y6EZvcgFmbz+PBo7Gk1Zu5VTmTx7BXY8vrxnvSW1/Lz6kLe8LQ1CPWN6OLxCOt+8i7WAPW0Bjj1tP7I85lQGPNCyRbybbLC87Tcou7YPu7zsCBg9LjSjPJCnNjyKQF09IkCZuujBuru2suQ8al3aPH+Kd7uaoiU8Q2FAvKl4h7xd7Qe8KohAPMJoSj17ia28wkHpucJoSj3k/pQ8hwkevZwP2ryVUxk9FucJPP8GJb27hSi9JOvxvD6O/DxMgxC999VAPMbWCL3VAVK9cesUPbOiBjw5w6e9BtODun0dQzsIAhS+Po58vCDqJz3Tbby8qYA2PAQYjTtJYxQ9VdNmvWQtAL2GGDK9idMovQNlRb14p1W943KuPBjgpDxHDSO8m0XPvGnhkTx4Sv88bbt6vHxTuLx+wOy711/yuhCvwLzKwA88ndnku7xPMz09SCk9NsqMvJDdK7347Y29S7kFOzmcRrsTQ9Y75qltO2zxbzzD1f68HGUmvOxGPD1XrY+83iMiPEjXLTyBRW6876RcOlgSlb27AfE8n7ONPGnhEbuguzw8kzvMvINduzzKwA+9mbG5vCnlFjwUNMK8MZLDPH/YOT0QDJc92F9yPP+CbbtTwwi9nOj4vIrEFD3Pwdm8UpynuwsScry4yrE97rNwPP64YjyTv4O8I6UePSor6jthcgm9rgW4PGqrnLnWy1w87TeovLYPO70VggQ7rWKOvfxLrjsd8Qw9/jwaPdReqDyze6U8FdfrOywcVrwl+4+8rgW4vDerWj7OHjA9N6vavPwkzbzhtzc7AKpOvbKxmronGww81qT7vF+3Er2peAe90ItkvMmoQj1Apsm8wuwBO67eVj3mLaU7KeWWPMUjQT0qr6G8Q4ghPaeeXrqsSkE9gpOwOzUXxby/hnI8cVAaPY0iNbv/yIA8PW8KuyCsg7tl94q8cJ3Su6LTCb1tu/o8XDpAPRmqL7wDs4e8V62PPZJK4DsEGA07h+I8vBi5QzwG0wO7FVsjPDjSu7qFEIO7aqscvcpyzbpfmOA7ymM5vJJxwTwDZcW8ovJ7PM1UpTxlsXe9aqscvUuSJL0G6ka81rQZvLltW7xiU1c7Y6EZvJtFT73+uGK8WQOBuQjbMj1DYUC9v4byPPq3GD040rs7Gib4PKaeXr3sCBg9tGwRPbh87ztIU/Y8n5TbPc3Q7TtdiAK8RCtLvMbeN72BosQ7rt7WPAFN+DxkREO8hhiyPNWFCT0Zg848pjGqPB8gHTyU7pM8Q4ghvUJZkTxx6xQ9hCdGuwVHHT3JqEK9WHcavbmUPD1Xtb69uMoxvQNlxbz+FTk7nqPvPF+YYD0B+JC86nyxPDpPDr3mLSU9G3Q6vBjgJDwqK2o7twCnvFNmMjyLZz67akYXvHNBBjztEMe8YteOPJQkCb22Npy8UwlcvJjnrjyFEIM86JrZu4xYqjzEgJe7X/W2PPVBqzxobG68+1rCvErImTtl94o8X7cSPaQZXT0A0S89p/s0PZGAVb2P7L88ZQ5OPKC7vLuKxJS8IXYOvVZICrwusOu7UKMMuriUPDru2lG9BupGvdwL1Tvk7vY8aqscPa0UzLz2Mpe7Rph/vWSSBbvKWwo7srEavUAqgTyrI+A6YWLrO9+vCD2BRW48KohAPLQezzp7LFc7AwhvPG27+jxX6zO9VVcePY3U8ry4yjG91stcPD6O/Lu6u528ZQ5OvWI8lDoPl/M7nukCPV+3kjwALgY7GSZ4PaZYi7yCVYw8965fPdyu/rwW5wm9rRRMPQLCm7wEGA09wPuVPar8frzNVCW8hIQcPXNBBr2iT1I9fFO4vHTsXj2iboQ7uUb6PEB/6Dv1QSs9lGItukI63zvzUL+8nienvPYLNjwBPmS82a20PGC/wTyA/5q8Rd4SvQ3NaLwNeAG9M4MvvbNURD0dCFC7qGjpvGN6OL1/2Lm7S7kFvfxLrrxuMJ68kYDVvFUwPT1AKgG9KJdUvL+G8rv25NS8uHzvu9JGWzzO4Au8HfGMvEtUAD2l42c9iIXmu3NBBj3sbZ280XxQvOwQx7qEJ0Y7fR1DOyxDNz3Mipo6FsjXPDU+prxhcok8drZpPGbBlbuFdQg96tmHPJepCj0yNe252OOpvAqWKT0PvtS6vrznOzwhSDxGmH+9+UJ1vUFw1Dwreaw80XzQvANOAr3Newa9qoA2PdueID1dBMu74qgjvfqQN725lDw8hU6nvDk/cDwfnGW7NsqMvACqTj3TIAQ8mIrYOyGN0Tu/hnK9J81JPJepijogjdG8WzIRvTcvEjue6YI9kac2PSFXXLv8Sy69/4Ltu45JFr0Zqq+7mqKlPNbyvTy3woK53CqHPESvgjwgjdG86egbu8pbirvXlec753P4unXFfb3cjwy9oYXHPAcRKLybRc+84VphPSs7iDtMNc68CpapvflpVryptqu8AKpOPePPhDzzKd48JfsPvE3oFbxjoRk80NkmvRsX5Dy5lLy7Sw5tO0X1VTxCWZG66nwxvWX3Crxpk087+UJ1vFh3Grw66oi8EqCsvCorarwgjVE9pQrJvPlCdbwBdFm9Ehx1PRlc7Tq9Gb68ejvrvFTiej3N0O28zuALPXDEs7yLZz68A2XFuw++1DtSXgO87yiUPTJcTrxU8hg8nV0cvZvJhrrcC1W8dRNAPMwtRL331UA9KitqPEOIobyDXbs7CaU9vextnbtSXoO8DANePE1NmzzQ2Sa9s6KGO9OUnTyptqs86MG6PIoZ/Dx89uG8tcH4vEiZCbzvpNy81vK9vONLzTh3BCy9TpPuu5UsuLys7Wq9II1RPN9KAzyh4h29MrmkOwAuBj0q1oK7+UJ1PFSNE73/gm07pGcfvW7LGDyP7L+9RARqPPDLvbxe9TY8BfnavIwKaLwLvYq7rbd1vP1yDzyN5BC9A04CvDj5nDtR0pw7Zv85vJdEBb2hhUc7SNctvQ70ybztEMc8Uk5lPNmGU73ZhtO6wZ6/vLjKsbxsGNG757kLPQ/lNby+Z4A7P7VduLzLe71h1w687317vTZlh7x2OqE94HmTvIcJHj1+5028aXwMPQCTi7tv00c9iIXmPFJO5TxEUiy9EdYhPeiLxT37WsI853N4vVVXnjsyXE69HyAdO+VjmjzUIIQ9eZhBOhHWoby/MQu9M4MvPVDhML2HCR48/XIPvBNDVjyXmWy9om6EPFUwvbzEWTa9mVTjvA1RoLvkPDm9cjFoPddf8rriqKO7qGhpvZDdqzyMWKo8254gPCOlHj3Q2SY8ctwAPfnGLDveI6I7lN51OwDRLzwbdDq8p3d9vY8TobxqhLu8zdBtPHCdUrzN9048fzWQPNbL3Dvwy728S1SAu2+8BL11cBa8e7COvb5AnzzyhrS8rTutvAR9EjxW+se8Kb41PJJKYDl2YYK9rJiDvNwL1bznc3i6Xqf0PG4wnjxeUo09dt1KPOBp9TwV/sy8trJkvdMvGL0dCNA8ZOfsOzeUF73n9y+91xkfvRw+RTw+3D69qMU/vECmybzpi0U8AfiQPIpAXb0WyNc8iJUEvV5SDTxyjj48ok/Su4IPeb2Qnwe9o/L7PCCsAz0M3Pw8Rpj/u8tjuTzKW4q9FcjXuUjXLT3vffs7J/SqvGREQ7yG2g08rHGivEXekjxUjZM8Ny+SPA1RID1+5828CX7cPLh877zhJGw9ifqJvEeJ6zxft5K81qT7u9/GS7wPp5G8f4p3PB6r+byguzy8WqaqO0a/4LxEUqw8Kq+hvOxtHT2GGDI83TI2PCXcXT3psiY78uOKuyNISLsZqi89hj+TPBCI3ztQ4bC828UBPZlzlTsUDeE8h+K8PNeV5zwAkws7+J9LPUYcNz0tapi8ZbF3PAe00TytYo47ynJNPP+C7Tuq/P48gmxPu0tUgLs8IUi96WTkO9UoszzO4As9aoS7O4VOJ717sA49EK/AO2U1r7zjzwS9M4OvvDbKDL0aJvi7B43wvO+kXLtTZjK9NuFPvHFA/LrpZOQ8d842vDlm0bzOHrA7IBGJvdkpfTz0dyC90WUNPWycCD28KFK9ZsEVPTv6ZjwHtFG9xhQtu5b2wjxYd5o8m8kGPTMmWb258ZK8YYnMvGg2+bvDMlU82kHKuh/Dxjz5xqw8YOaiPOSZDzz5aVY4gpMwvOdzeLuxwC69jbw4PBogRryqPTq9f4Pku5NmLLqLoSW9vIcLO8tdjz2OW4y6Of66unFzgb0Vchm9sEhavWZPY7wzt5c8wP+RvMkhDLxqZj292wgNPAYDH7221zq9q9yNPGVbnbz09FA539cpPaP2lrsgryY9Jxe6PFRoYj1ivEm8h4pLPFjBHL2krlm96P8AvYexGDxxs708My16PDXn4LwwYAG9VC4DPbHnrbzC1Is8bN7DPG47NzuYFFk5EvoSPPZsV7t15Sq8Ko9AvWBrkLzxYTe8ku4lu/KX3TyKoaW7r28nvfz7NzqjUWa9OeOnPFUug721OGe8HTcgPI2V6zx/Ijg8AU3xvN0dw7ziVQ09bN7DvKO6Ez0iJy29V388O605gbyUgb88oNnfvFKVjLyUwx+9HTcgPCxPBLz65gE78cSHvCh0LT13XTE8nI6DPMqX7rvWtS+8+4OxvLX+BzxXIkm85SQqPRTTRTzBmIi9Y3rpvHJtJLzLG687DsilvM1R1Traiqk6LgOOvVOVDDwzb9o6iKVevHRh6rx4NuS8IqNsPbMCQbxklXw8QsNBvfUP5DxWhRm9pFOKPFN0nLzDs5s8wHX0PBD+yzwYw9I7S+W7uhxWbDuw7Yq82YqpPOeBHT2mjw085SQqPIpEsrs2KUE9VuBoPHTrBz1FFHs7jLw4PRJbvzw+URg8v94hvLShFLycjgM9OWGLvUtG6Dw0iu27FwsQPP5YKzrMeCI95Mc2Pe7pML151bc8kgm5PdpIyTwS+pI8aGp2PYVUpb0xOTQ9WT+AvbRlEb2Gbzi9wi/bPCUbc7zGBNW7+uYBvd68Fr24DWE9ayYBu0ImErwjo2y8My16PF3zibq21zq5JABgPC/BLbwrTwQ9YQQHvV6l7zheDp09WZrPvJMkTL1YPdw8C3EPvC0Hx7pghiO8p+yAPO5MAT0ZR5M9xoiVPO+IBDxSTU+8GIHyu/HEh7wpTeC7C8zeuyNCQD0MUJ89c0bXvAXBvrvjzRM8DMzePE1IjLw61228KfDsPA1rMjxsJgE9B3slvQUkD7zscSo7OXr6PNTUe7zisoC8YMiDuihZmjzrkPa5vIXnPCCvJjtwmCq9Dc4Cu9BB4jvSg8K8IohZPLY6C70CSbi8Nq0BvRkgRr27S4g8Z9OjOljBnLwyEuc8QgWiu2wmAb2k8Lm8OUAbPb79bTwp0aA8jw3yvLnTAT33h2o8tzQuO73i2rxvL329EIIMPXefkTwK86u8RvUuPQzncTxdLem7WvfCPI+RsjzkhVa911SDPLoPBb2wzBo8qqAKO0LDQTz19FA8u0uIvOwI/byfAC08DCnSOySfMz2Shfi8ImmNvbHnLT1be4M9yvRhPDYpwTwTuDK854GdvKDZXzurfxq8MpYnPTQOrjsC7MQ8hZYFPTYpQb3N9gU8Yh32PEezzjwIVFg76laXvIUt2Du5shG9wHX0PHZjjryxpU093GWAvHh4xDuw7Yo9nYgmPCnw7Dzsswo9Uk1PPe9GJLyGsZg8D+M4vSeT+bw4JQg8sx1UvGfTI7xWZCk8GoOWvRD+Sz3nPz07UFmJveSF1jxt+dY8P64LvlBZibxJbTU8yXzbPJac0jzyAIs80QeDPOJPsL0jhCC9ttc6vVzSmb0IVFi95maKvNcSozwXCxA85uLJvL2BrrvN8Cg9UFkJvOGw3LzazAm9aY2Kven5Iz0XZl+6iEoPOynRoLwO6ZU7r+vmPKbJbDz3bFe9F6i/vVUHNr1bVLa7iEqPPOPNkzx/4Nc8IdCWvDq8Wjyb6VI93EQQvPIAizycbZM7JMYAuxqDFrwP47i95IXWPL1mmzrNMgk9a8MwvYAiuLwxexS7CFTYO59hWTwdmMy7tXpHvU0b4rsHeyU9NinBPY8N8jt7yX07FNNFvYbSCLzAXAU8nEbGvL0/zrvflcm81Fg8PZlxzDzrL0o89pOkvIV1lTxQNvU88r4qvc8mzzvnPz080z2pPPAERL3Ufwm9bN5DvBRXhr0Vkwm9NcxNPEGB4TxPNnU8BcG+PHfZ8Dxbe4M8q1jNPGeRQ7r2bFc+cRAxPczVlTwsB8e83V+jvAPFd7178Eo8WZpPPGmNijwes9+8oNlfuxne5bx7Mqs8+SY+vfaTpDxEfag9uE/BvFOPL7z0mYE9thmbvOc/PT3pdWO8A8X3PE9dwjwc2iy9OUAbPOm3Qz2uVJS8kaxFvEJHgrybp/I7Z9OjvHyPnrze2+K8za5IPQ/jOD2pnma8VUkWvHKvhD2nyxC8qqCKO4od5bteDh094rKAvLRftDx6k9c8olHmvBnD0rzBmAi6i3pYPEXaGz3Pbow8/Ps3uisuFD3QQeI8sYq6vFA4Gb0ZR5O8sWNtvKlkBzx0yhc8mfUMvHNG1zyp4Ma8Uk3PvGwgpLnTXPU81rUvvSzsMz1JlII9otsDu9pjXD3Ivru8SHOSPf+1njyPDfI8jZVrPa33oD0+kVQ8eVF3OtLmEryonma9v5zBOMD5tDurmi091F4ZvJ2Iprq8Zps8sYq6PKVNLT0Q/ks7gOBXO7gNYbuvLcc7v1rhvHt0C72diKY7daNKvE5CL735ov08TABPvcZGtbwcfbk8k6iMPCnwbD0l4RM9+AsrvZxtk7xw9Z28n0INPQU9/rtl2QA95mYKu1jBnLwNazI8a6idut729bu4DeE8dScLvWV2sDy1vKe8P8f6vDRQDr2X0ni74g1QPJEwBr2b6VI9MPdTvBt9ObyMHwk9piZgPGECY7zWc087TUiMPKQyGj132fA8zyZPPcMvWzzYLTa8RrNOPcMvW7yKAlI9htIIvS/BrbzhsNw6OOMnvNpISTtCw0G8CdiYvC2mGr2JKR+8zws8uwrzKz1YwZy7Gvl4vLShFL3Z61W8bX0XvWfuNr3MUdW7DyUZvEsnnLwOROU7wVYoPMijqDwraHM8hdDkPE6fIrzEjM48p8sQvSzss7yAIri84G78vJ3KBj2NlWu80OTuPHyPHr2BPUs85xhwuec/vTyZ9Yy857t8PJn1DLvEEI+75SQqO76cQT0wHqG9xEruvJd9hj3DjE67m6dyPYz+mD1ziLe8ZXawvMx4Ij27x0e9blbKPALF97qRrMU6AnAFvcz2hTxcEtY8r7EHPWpmPTwS+pI7rRgRvdpISb2Ec/E8/CKFu9/4GT0BTxU9Jj4HPHsyq7zBVii96lYXvT4wKL3TXhk9cVIRPGL+KTwqTeC8Tp+iOwXBPjxk11y8kcdYvQYeMr2xijo9Z9OjO/Cjl70Na7K8mkp/OyBG+boc2iy8k6gMPaTwubsInJU8pmjAPBbPjDy4DeE84FPpO+svSrsTkeW62qU8vdM9KT1kWx09/fu3vCnRoDyzRCG9SBDCPMWnYbwjQsC7y5kSPESDhT16Fxg9ELzrvF+MgLyShfg8Tx2GPJmzLDwQggy954EdvdW7DLwDxXc9hrGYPAnYmLwE6Au95uLJvO0IfTwag5Y8HrNfvAZ/3jtsw7C86fmjvBeoP70Jlri6JF3Tu6Lbgzl/g+Q8BSSPPNgttjyVWnK7SojIvHFSETs5/rq8G325uiYdl7zg8jw8YQSHPEkQQj0RnZ+8rHNgvSNCwLxcb0m90QcDvSHKubxNhI881hiAPA3OgjuDWgI801z1vFuWFr3+WCu8+AsrPPgLq7ypQxe9W3uDvUS/iDxghqM8XNKZu1EyPD0Zw1K84pEQvfz7N71PurU8EEAsO0Bmzjze9vW86RqUPdVzT71WZKm84g3Quz4wKLy5T0E7XYpcvc9uDD0apIa83ryWvLEpjjw907S73nq2uyInLb0SNPK7TL7uPIjMq7w+7sc8IK+mPVML77t0Yeq7BtxRvHj8hD3bfu87wFyFu0JHgryk1aY9q1jNvMC3VD1JK9W7XBJWvPHEhzzrL0q8LYsHvcfEGD3LGy88P40bvAmWOL15UXe7pybgu0WYO7ww3MC84TSdPK7Q0zk/jZu87Erdu1g93Lw6Gc68hZYFvSmPwDvNMgk6lzsmvUU7yLr+Fsu59dUEvN3ATzwTGwM9a8Mwu1rcr7w0Dq67iqGlOgSLGLyl8Dm9g1hevNN/CTustcC7RflnvUazTjyWt+U8vyACvSaT+bvLG688Dsglvb6cQbxeDh07YUTDPMOzm7yUBYA8MffTvRaNrLxG2hu8wRRIPLRfNL3/1g6819DCPJyOA72gXaC5qj06PCqq0zszFIs8hBLFO5XDnzxEvwi5Wjmju4+w/rsGYBK9C1CfPDs04buYuYm8r5AXOnGMcDxD3lQ8ug+FvPy51zxfKbC8bGIEPdb3j7zmu3y96FrQPEc3D73AXAU8BWRLPcsbLzxYf7w8thmbvNPgNbz/1g47MTm0POkaFDz/tZ47AwdYvUgQQrxU7KI9RVZbvA5feL2dyoY89dWEvGmNirsvmmC7hZYFPXk2ZLkXLAC8il9FOz4wqDzvZ5S9QoFhvZdcFr2fQg07g1qCvYLcnjw6Gc68D+O4vHa+3bxQWQm97c4dvQ+hWD3Ioyi7HTcgPC/BLb3Dzq48q9wNPXj8hDr6QVE939cpPHFSkTyjUWY7nQRmvEnpdDw4JQi6UgtvPLPbc70U7tg86tJWPBTTRT2EVCW9bZzjPCYdF7zgsNw7rdBTvD8J27wS1/47N0RUvS+aYL2JhpI8rRiRvFh/vLzYLTY8UFkJvYpEMrwUV4Y7M2/avCZ4Zrwagxa8TEiMO52plj0qaPO5MxSLPehaUD0+07Q8rlSUvL/Djrwh8Ya8UjK8uGEddrs3hrS8oF0gvY9PUr1wmCq97Aj9vPkmPrs9NoW7GiBGvFbgaDz+1Gq97HGqvOc/Pbw5QJs8Ln/NPbPAYLtPHYa9a8Owu8cE1TyoKAQ9KY/APGjHab0uZLo8h2N+vf4Wy7xVSZY8MPfTPNrMCb30svC87c6dPBs7Wb12vt08n77MuoLcHj0nukY9sYq6vKXwOT29JLu8MNzAPM5saL0UFSY9jw1yvXOIt7wHmvG7sSkOPBlHkzyXOya9cm2kO6VNrTvNERm8ssDgvHAWjrwylqc8PlGYvBfqH72vkBc9yxuvO3vJfTxyrwS8thmbPPueRDwTNPI69pOkvDMt+jxorNY8cc7QO4pfxTwlG/M8LEknPej/gD1DYhU9cJgqvGV2MLuLHWU7/dRqO4WWhbtMo9u81rUvvPz7NzyUBYC7UjI8PA1rMjsBTXE8uZGhOTF7FD3ss4q9yl0PPRjD0js8T/S8MB4hvdipdbzBO5W8DkRluDOxujvgGQq6LMXmvH4HJTwftQO8oNnfukQ7yLuLeli9htIIPeQqh73SQwY9sEjavJX9fjutjvM83aGDOLDtCj0yEuc8AI9RvGV2sLtYfzw9gCK4vI9PUjybUgA8/3O+OYlEMr3X0MI8iYaSvLustLyDWF68cm0kvOMNUD1LJxy9BKarPLtLCD0TGwM82NBCvLLi6jtCX5470z7uvDfWsryTUlm81tZRvYbJj7yEWyA9V0cBOh83Kby+r1G8psxMvUX8Pb2ymbM7/IEBPdqdB7z8m+a8KTgevZCGCTzVCmA8iA1pve4xYDvJq4q8oB/AOxU7cDxg9Os89FG6PCdsrDtIDKs8N9ayvLkX7rzvcJ+8RvcBvTVjB7y4j/e42F7IOSKQTbyTgas7BhCpvFBBLj1wWTY8d445u/UdLD0dazc8/JvmvPH4lbtQhak5iggtvFSve73CuoI62RURPNuDgDsM7Ac9cJ2xPA0BMb0Yj9i8uuMBvYevCL0iYfu87rnWvB6vsrsbtJA938IdvZ1omTwZF0+92/tnPSMYxLx7nqY82V7IvOghFbs22246jqVMPWt9VzxyaaO8k1JZvdR9rbwF0em8mF2KvHZ5EL1sBU492vsJPD9PMb1RzmC60FgXvYqV37xP/bI8jlwVvK9FSzxCARw9+f5GvRERHrzAxPq7Zg+KPLHIBb3+I907Vb8KO80ZWL0qHhe93ParvEx6+DwLwnE8ulvpvBwnPD0ysRy7l7uMvMk9eTvVCmA7k1JZPLbtmzzbgwC9ajlcPYhRhrwrlv479zLVPNM+7ry0ISo9oDSLvKlPh7sRVZk80PoUvIBLszyW1ZM8XeR+PUKjmbv+lio8MC7ivDxUjz1Qhak9VCLJvEupyjpeI768sOIMPfUi6L2V7xo9Y4zPO9ZJnzwbtBA77aQtPSTp8TwtGTm9MfrTvMJHtTxsBU67t77JvB7zrT1GVYS96N2ZvOllEL3ZokO8Pn4DvWfgNzwkXL874UoUPUDXp7zPoc68Ll00PancuTynVMO70iSJvFvP1by403I6GltKvQ/SXrwQzaK8TGATPcrvhbxAIF+8CvHDPTApJr1yaSO93LKwPK7S/Txahp48B1ngu7rONrzrjwQ9NpK3PSZx6DtffAQ9pfueuhsseL3LwLO8HLTuvFW/iry5F+48nqwUPXXCR7x0OtE723NxPJm7ajtJ3Vg8k8UmvadUw7yrNd48azQgPVJW17y4j3c9A0nzPIBLszzxEvu84WT5vLZ6zjuZcrM8crLavDWXcztRySS8Vu46vT9PMb1W7rq7wXtDvFXzdjyfJPy8+bpLvE/9Mr1dbHW9sSaIOyiwp7zAkI68nYKgPNtuNTxLehq82BWRvFfuujy5F248PZgKPW2NRLxW7jo7FwfiPBBa1TzKgXS6lAmivBro/Lu6ErI8UckkvYLTKT0aW0o7V0eBvL6v0TqwzcE8hCxOvfoTkjxj/xy9iMntu1YDhrtZi9o847gDPV30Dbw4Xim9R8ivvOjITr2vRUs9Nx9qPMTPK72naY49hOhSPXKy2jz7hj06yMURPO2krby0Iaq8vJooOx6vMj1yslo9XfSNPKiYPj03Gi69xpsdPGZYQTtWYYg8HWs3Pb+AfzwD0Qu9koErPagLDLxKlKG8nD6lPFJWVzuhrHI8q6irPT6YaDnDizC9wMT6vJYeyzynEEi8kfk0PLhGwLwDFQe9ji1DPZQJojymP5q8IHskPK+eEbufkg09qE8HPdaSVr13o4Q83Tonu0KjGb5nUwW9ajlcPJlyM71wnbE75rOlvIC+ADyELE69FTY0vUw2/bwBNEq90m1AvXFuX72pkwI9KbCnun/IeLzGm5078jwRPVUdjTzEzyu8+4v5ungb7LwiRxa7ghxhPJDKhDzGPZu78slDPOnd9zycPiW9NkkAvLgXkL3o3Rm8ypGDumRDmLuZd287UprSPPNRuruu0v289NmwPIF6hbo1Y4e8ajlcuw7SXr0HVCQ9mHdvvTtuFj3/Z9g8E/f0PKO8X7tq8CS9rnQdPc+hzrxZA+S8FwdiPA5FLL19hP084haGPbKZsz3h7BE9EeLLO1wOFbxsSUm9gY+uPB885bxGQLm6GI9YvZ4KFz3qlMA8wlyAvGmsqbzfT9A7gByDvB0igL208le8Hq8yu3wmHTuZQ4O9azSgvIdBdzzKM4G9sIQKvGYp7zwDc4k8Mw99uvrP9DxSmtK88oCMvNA+ELwhvx88qCVxPi2maz0hTFK8G7SQu1d77buzJua754RTPbFVOD0Uf+s8h68IvR885bwikE08iggtPU4shbwBSZW8DtJePdL1tryRtTk8pfuePeNaAbxFAfo8DOyHPKX7Hj0+VO08hmsNu/elIjzv/dE8UcmkO+9wnzz1Iui7rb3UvAJ4RbyorQk9t9MUvMF7QzzUCmA9HoDgvNGCCz0wcl09hyeSPas13rztMWA8tnpOuyiwpzxosWU9hUGZPOb3oDwm5DW9pszMPEeENLz7PQY92p0HvNGCizug1gg8b9E/PMhnD704Xim9GEahuUZAOTyZd2+8Rs3ru7WpoDxrfde8EBEevfIiirwT3Y+8bxW7PJbv+Lwspg09heMWPahPBz2UCaI86xw3vbTyVz2+r1E8zAQvvJnlgDxuiIg9PbIRvSiB1bxHhDS8wrqCvJ9o97zyVva4y8AzPGdtarxrfdc6VR0NPPGFSD0JJVK87ugoPD2YCj2P5Au9qjUAvO9wn7tNpA68Pce6PMAyDL2KCC29oPBtPV7fwrx9rpO8FwImvMRc3rzBvz49GSyaPJQJIr1rwdI7OeYfvY6lTD3kuOG8BYgyvPnPFrsRVRk9JaC6PCMtDzxk5ZW8XCj6PFYDBrxAZNo8/paqvPyBgbyTyuK84KgWPcOLMDwfPGW8HzcpPauoqzy4Wws7/iNdPZ1TTrzzVva80JwSvR7zrTx6Wis9Do7jPO51Wz3fwh08E92PvPUdrD2fkg28eRawPKJ45DzudVu9E2pCvJw+pbyeChe9sgwBvbZ6Tjtd30K91H0tvHBugTwTIQs9qZMCvabhF734ixu9jTL/vFm6LL23dRK9Pws2PHjStLzKM4G7pfuePMzVXD3xhcg84WT5PE7oCTpT8xg8NpI3vCTPDDwNAbE8A0nzu0IBnLzLTWa781b2vMiwRjy+Ih+9M/UXvE/9Mjtu1vs8oB9APDKxnDxfq7Q8XCj6vJYeyzwrCcw8nVPOvMQTp7ynnXo9NQrBvADwTj1LHJg9/x6hOndfiTxmWEE93G61vBJvfj0a6Py75fxcPMXPqzlmDwq7poOVvKncOTw1Trw83G61PCk4Hr2DF6W8v6oVPd32K7x998o8VmGIPNOCabyAHAO94SD+u5QJoryZcrO8NxquvHXXEjyjLy08Iy0PvZihhTzQcny78UFNOwKNEL26ErI8mUODPAWIsrys7Ca9kYZnvIVBGTykAFu78UFNvNXBqDloJLO7KD3aPMLU5zuFnxs86H+XPEKjGb1aQqO8RW+LuzUKQbxRzmA8oPBtPM9YF7z+lqo7aWiuvKGnNj25n4a7pln/PNUKYLzdOqc8rXSdO+VvKr00U3i7TAKRPF1SED1oJLO80mgEPN9kG73Sxoa8hrREPcozAT2M1B47K2ISvTH6U7yhvAE9e+KhPKG8Ab2Txaa88t6OvRGeULzl/Fy7w5DsvF3fQjwpOB69hYUUPWOMTz2VllQ8JnHoOvSVtbyuAdA8Uc5gPDC22LwXS926YcBdvTR9jjy4AsU8ztCgPKO8X73OFJy73LIwvaGs8rwzxkU8tTZTPGrwpDz9Uq+6o3MoPXBugbw/3OO8jB1WvGaxhzvz3uy7xVcivfwOtDr5LRm8rKiruitNR7w1BYU7GNPTu7gCRTuWq329Q0UXvenDErt/UG89BRXlux2AgjwtjIa8VCLJvCymDbySgau8ZrGHPE/9Mr2IgLY7tCEqvBhGobxW8/a8Czr7vHiOubrZL/a7uoq7vIlR5LzJPfm7yoH0vAbMrT2vFvm8A0lzPBoSE72YXYo9pfsevWqsKb3MBC+8APBOPQRZArwgvx+6ji1Du5jqPLwx+tO8NWOHPJRNnbyi6zE9wXtDu5DKBLxwKuS8to8ZOzUFhbx3X4k8REX1vF7aBj1mWME8obyBOZGGZzyAS7O8lneRPGlorjyhGgQ9LGLwvG2NRL2VTR08qWnsuiva+btt1vs77rlWu2DvL7wMMIO9pLejO21eFL0NATE8EM0iPP1Sr7xn9QK8SVAmvajhdb24W4u864+EvENFF73Ztw68V0cBPTZJALvdg147mS64u1e/aDwji5E7oRqEvZD+8L1Vqj88NpK3PKBjuzzH+f28Ts4CulSv+7zvLKS7e+IhvLmfhrsUZQY94+xvPHmj4rzZL/a8+LrLumHAXbqlRFa8Fr4qvXcBhzx313A9j+SLvE8shToBSZW8VnvtvONfvbwkXL88z6HOu3Z5ELz2qt47C0oKvTR9jjwJIBa9d9fwuuEbwjyorYk7Cn72PBHiy7vqB4674dfGvGdt6jxn4Lc80OXJPLBAj73XjRq8wb8+PRP39DtIyK+9ldpPvNmiQ71hwN07yLDGu92DXj0TJse80z5uPNv7Z70pxVA9JnFovZ9OEryudB299mGnPMOLsLySPbA8dDrRvFpCI73Ez6u8Gyx4u9MKgr3xmhM9t0v8O6jhdTza5j69/IGBPDrMmD0uXbS8o3hkPOVvqjwlLe07qfEEvSZx6LrCXAA9PPvIPDZJgLw0fQ69UlZXPDaSt7tvou081cEovf6WKjz4usu8/JtmPPlHfr1sBc68A0lzvFi6rLt8Jp29qK0JPSKQTb3bbrU5cW5fvMhnD73H3xg6FTa0O80ZWL0Wei88yauKvEMwzDyZLri7Xt/CPD7chT2a/2U9fgx0PdQK4LwWeq+8AwA8PHeTdTwDvEA8g2BcvJC6db1SVle7ZilvPHviIb1HEWe8iggtPI9xPrwzD308aWguvIVwyTz+lqq7BFkCPeCTSzyteVk8ldpPvcabHbxsBU68zhScOzMPfT1CARy9A7zAPFQ3FL1IDCu8e54mPIRbID0nbKy71QpgvDanArygH8A8Y4zPPKbMTLzUCmA9wUzxPPRRuryQKAc9UEEuvZdixjuzJua7Em9+O906J72/N0i8JnFoPKpksDxQham8n9tEvbtWLb2EpNe6bhr3vBz4Cz0FFeW80woCPcY9m7tOioc87aStPIZB9zx7nqY6X3yEvXTxGT2UTR094RvCO9P1NjyerJQ8ulvpu0QrED2hrHI9N9YyPY+GCT2IDWk9HoBgPVHJJL0MvbW8eEWCPVzkfrv834O7I4sRPPLeDj2vRUs8QRujvJwPU70Tfw08puEXPSJh+zpSmtI8dgbDvIUsTjyO/pI8h4XyuxHiyzxv0b+8dDpRvIC+ADzXGk28qWlsvER0R73HgZa8bAXOO5G1uTwhCFe7gBwDvYf4vzz1qoC9G1YOPVywkrrJqwo9ajlcPBXyODxvom09uuMBPGZtjLxx4ay8EJ5QPYYnEjv2Yac8QgEcvbkX7jys7Ca90OXJuyJhezxffIQ6UcmkvNL1NjuTxSY9N6fgO/elIrz0qgA9HSc8vAYQqbzXUWC8Rm6jPL/yd7xe3BG8OCrqvLFwYrzB/7m8xHdqPfP4gLvOY8M8FGU0vTBL07ydeOC6vbbfuwum7btadIm8D7INvGjnmLyt6Su9QMqCPSY/KrwkI+I8XfxhvGtAGz3IoRY8ebOqOiYwJD2FGfi7xFlePAGLPrvbqcA8t/MQvaQq5bzNRbe8mLWRPGE2NjydOoS83tQOu18abryNnKY8GL2UvPmcIT3bmro8CkqFvZxLTj0Y+3A8x6I4vDBLUzrS23O8rgYWvYliUjpRhw66UYcOPMxH+7y3E2G9P7yevIFWKb1xxQ29g85ZvRWhzLpOTbq7pzYFPG6aPzzXE4S8ZrsovSGrsT1sXqe6dB4QvBnboLzfAaG8BeOeumE1FD1IqZm8Rl+dOxa/2Lzc1lK8U8KEvMZ1prtvuMs7sn0kPaQ56zzA0QU7wQ5AvfMXrzvtg7a8Z6uAPW97kTtOTBg9bou5PE9rRr00wb85TRAAvbtcu7rOY0O8obGSvDJJD7yUTQm9mg+2vKzaJTuKQoK8klDvPDArA70i50k8fTphvSddtjyMjaC83yFxPe5zjrzgH608qp4NO1lXHz010MW8H55vOo7nRD3jasu8tLm8O2fZtLwP70e8/338OWozWb1LAhw9GOxqPZ6W7DzvsMi84C6zPE0QgLx4d5I93hJrPVmV+7zEd2q89CWTvJjzbT0HELG9NwxePblef7tImpM81jPUPNYz1DxOXEA9jI0gvRnqpjy/tJs8yvxcOyG6t7yKcdg8ui4HvUEHPT05GaC9P+t0PMw49bypr1c8bE+hOxfO3ju118g78ij5vJxaVD0lIZ48bE+hvI2NoDpqFU08tKq2vNK7o7zsR548bE8hO5oPNjyvNMo6q81jvFuivT2t+DG9vsVlvdp8Lj3757+8n3YcPKzLn7xxA+o7RY7zPEi5wT2hogw8zScrPLF/aLu7XDs8ccWNOh9+H71WDIG8KsbgPOfgNz2SEhM8/1BqPKPdAj225k67R5s1vfrJs7wUdDq9LMScPL/DIT1MQPi8U9Ksux1x3TsAXiw8wPAzu5rwB72Z4iM5BOXiPKHBOjxCJck62V6iO4bMlbw+zWi81yIKOoqA3rwSKRw8hgguvRR0Or3Yb2y9P8ukvcDjcTzo35U83vTevApZi7uH+AU8aSTTPMMbgjxhNrY8uDHtPL/jcT06J4S74B8tO8NK2LwfvHs7YAiCu/ZRgzsenu88wixMPUVQF72pr1c9AqnKO5stwjsY7Oo8BLaMO9CQ1byFGfg5rzRKvZsevLwHEDE8g6FHvP0jWD3RjhE9ECvgvI8FUb14lR69vsVlPVYs0bteC+i8GPtwPbouhz3y6pw8QMoCPLfVhLz3b4+8e+9CvAT0aLxHqjs9LAL5PIGSwTqxf2g9I9hDPB5gEzwQ7QM9io/kPE+JUryu94885IYTvQlqVbvdtoK8ERqWPCHJvTxRtuS7AYu+u80nKz1NH4Y7ygtju80JH7ya4YE5yb4AurtrQby1yEK6PEWQvfMXr7xvuMu8+ti5PCG6t7w0wb+9DsETPV8p9Dvy6py9zBglu8RZXjzrKRK+2U8cPErGAz0Vg0C9Ji+CPL/ydzzZnH68n4dmvahzv7vHk7K8mNMdvYBlL71rIg+9gYO7O/8/oDwUZJK8q9zpvPee5TwUdDo9x5IQvPVizbz3nuU7jY2gOhjMmrt3aIy8cLYHO+spkj29hwk9ZJ/gvDpVOL25H4G9U9KsujSyuTryKPk7Rm6jOsHgizqs2qW7H631vBNGBj3A8DO9BgErvAyVozwaCDO92myGvOAPhb0/vJ48OTesPE+J0jxEYWG7GOxqvGWdnDxGbiO9gYM7vdLqebx6wjC8YCewPEIlyTz0NTs9M7T9PAYBqztPidK8KahUvS3xrjxgCIK8OSgmPBjdZLxhRbw9qr5dOxoIszw9cQC9j/ZKPQykKbvFZqC8W6K9PJjTHTya/408DbOvvGAXCL3rOJi7EzeAvdUGQrz75z89lYrDPHDWVzxeC+g81xOEvBRlNLwMtfO8kBTXvJ14YD4a6YQ9uBEdvf0j2LwvDhk9AYs+vc0mCTya8Ac9hL0Pvcr83LzDGwK9IudJvHQ9Pj3zCCm8XfxhvDg5cD0wOom8ZHCKPNuaOj3L+hi9BxAxPUVfnTxV75Y9pzYFPM02sbx3aAw9QNqqPLObsLwydiE8D/5NPJAjXbwwWlm7WVefO6vrb72qgAG6SyLsPMRIFL0Wv9i8ikKCPWXb+DteGm67Ns4BuzA6CT0lIZ48lFyPO+xWJDvT2a+7YBgqvc9EFTyIJRg8gIX/u3MfsjxvuMu6AWyQPKVI8bt/dnm9kjAfvRNHKL2KYI68cLaHPMDSp7yDoUc8IthDvfHblrxIyEe8C5fnPAT0aD2Nqyy9pUjxPIKwTT05GaA8CD1DPZNdMb1wtgc9MCsDPWJEmrv4res8FGW0PQcfN7tmuyi7UZYUO1ho6bw10EU8Xwmkuqmv1zw9r9y53zD3PJ+FIj00o7M8/04mPTOFpzoWksY8dUxEvbgRnTxwpwG85aQfvIFWqTx60Ta9VPC4vGjYkjzFhnC9WpM3vUZ9qbwF45480J9bPWxeJz1n6Dq9tJoOPdmNeL3Isb48i34aPAp5WzwfjSW8bnsRvT/rdDygw347P8skuw7CNTx8DU+8SdfNO2fqfrzpHFC8HUIHu+s4mDya/w08ajPZvEZuI7rzCKk8LOKoPE9rRjtHm7W83uMUvSdsvLwoisg8f2fzPDpVOD0a+Sw9U8OmPM1FN70Z2yA9KIrIOlzPTzxtbS27OSgmvf0yXjsbB5G7rha+vOo6XLstADW9DsI1vEi5QTxzH7I7Nv1XPRN2/rweUY08mhH6vL/DobyKcdg8J2y8vLkfgbmOyJY85HeNPL/j8TzU6LU8/BTSO89EFbw33Qc9bXwzO680yjyoc7+8u1w7PCL2z7xFjnO9NxtkPOfQj7ycPEi9K+Rsvf30gbw1o7O7eIaYPPna/TwG8QI7V1ljPWyNfTv5y/c8odBAPQ/vx7xOTJi8nTqEPcDhrbxpFc08v/J3PVuxw7sLaJG7eJUePcneUL1HmzU9VP++uekcUD1iY8g6k10xPSh7wrs7c0Q98fvmOrgRHbx9K9u8dkoAvN7UDj3HkhC8FHQ6PUIlyTzx7OA78/iAvMwJnzkNwjW9xYZwvHdZBj15hhg8AXw4vZstwrxcwEk6fTphvYqA3rvXUWC8qo+HvFCY2DwHH7e8ETpmvLciZ7y2BNu8EBxau+pJYjwu8Iw7ZqwivMQqCDwNsy89xGjkvBAr4Dx/OB29VPC4vCPYQzxWDAE63uOUO7yYUz3dxYg7kQMNPQKaxLz/P6A88uqcPB+8e7xU0iw9zQmfu680Sj1YhnW8hQryu9UGwjwgjIO82V6iu9cxkLzZjXi9g79TvQXjnjxU/748nWlavBH8ibwXzl47nlgQPc0nKz0mX3q8CojhvNX2Gb1fCSS74jwXvDBLUz0Oso08OTcsvJ+W7LprQBs9xnWmPOnvPbw33Ye9cx8yvF84+rwcU9G8gqHHvJeXhbwX3WQ9NLK5PK4Gljy31YS82Y34vBkZ/bzKzYa8Qfi2PAS2jDygsrS7n3YcPA/+zTwNwrW7jboyvHQPCjyFCvK8UYcOPCrGYL1mu6i8C3eXPDbOgbttba28ZsouPV/6HTxU4bI8gXS1vbsuB7zXEwS8LdIAvMIdxrsO0Ts841kBu8ntVjxxxQ28fTphvadUETtZdSu7oJQovP4jWDos06I8AG0yvRM3gL3ukrw8dDB8vEwgKDp3l2K8AF6svB9+H7ydaVo9qa9Xu2fZtLwG8QK9t/OQPSZferxiY8g7DKQpvd70Xj35nKG8jbqyO5R7vbwu8Iy8yxrpO1ho6TxCBpu60q5hPXrCMLuUbLc77WQIvWOBVDzVBsK6aSTTO096TL3RzO08qZFLPUI0TztcwMm7E1YuvbyYU7zSuyO99AeHugOnhjxhVMK81OcTPD1xgDyG+Sc8zjWPPGR/kDwej2m71Pc7vVp0CbpyIfa8s510vDKW8TvpK1a9ERqWupstQrzukjy9dnnWO2yNfTxn2TS8ygtju2AIgjx0Dwo9p2Q5O+bCK73fMHc8q7wZvWEmjruWt9W9EzeAO+5zDrxL85U8yc9KvJIwn7zGdaY8E0eoOsDRhbwwad+89VNHPIKCGTzCDkC8tdfIvNPZL7wu/xI9TlzAu/EK7bxyEvA8chJwPMVmIL01sRe8W6K9vJIhmbyyjm68aRXNPNzHTDVx1BO9u1w7vBDvR70ztP284ltFvV2+hTkwOok9VjvXOyrGYD3zCCm5KIpIu26KF72oc788rvcPPf99fDylSHG9F58IPc0miT04Kmo8esEOvT2gVjx2atC8Lh7BuiYwpDwmL4I9so7uO6CyNL0ffp+84A+FPdldgL1rb3G84B+tPLgx7TzNF4O9mAL0O01PfrxLBGC8PILKPDOUrTt74Dy9zEd7PUDaqrwUdLo7/QOIvY/2SjtrQBs8nmcWvOs4GD3NJyu8mx48PCCrsTplnZw5LfEuPBrphLzrWGi9qZFLvVuDD73yKHm8zlS9PNKdl7xU4TI9i61wPOEtkbvPgc+79URBvNCQVb231YS8fA1PvQg9Qz1y45m7a29xvM0nq7yyju68LeEGPTBLU7zfIXG959ExvU0+NLrn0bE8AF4sPZ1p2jxIqRk9ZK5mO6z6dTw+rRi9UGmCvV3NC72bHrw75dN1uQzE+byG6iG9Po8MvQS2jDxbkhW9J06wvAhMybxA6TA8v/L3OwF8OL1OL648hih+vYTdXzwBbBA70ttzvJ1Jir3+IRS91OcTPcr83DxPa0Y9SxNmu0ebtTzJvoC94jwXvEwgKD1kf5A8GN1kvKCjLrz3gNk7U9IsPENS2zwfnm863NZSPdO6gTzDO1K8OUj2PNhAFr1EYeE8qHM/vDk3rDzS6vm8IudJu9UGwjuOuZA6tamUPHHFDb1/Z3O8Y5DaPKCjLr0ej2k8remrvB+8+zyG+Sc8FpCCPBJneD1NPjQ826nAu0Zuo7x60TY9j+fEO85UvTwoXBS9jassPYg1QLyYtRE9gWSNPK4WPjwKSoW8AppEPfHblj1tbAu8OlW4PJfGW7sxWBU8goKZPBJY8rtPa8Y8ebMqvQpZCzuHBwy9BwCJOkvkjzzdtgI95ZUZOzSyubz/ffw8uk01PRoIM731REG9Nd/LO5sevLxmyi68Y4HUvJEDjbzy6hy9iVPMvEvzlTwzhac8s5uwvJsdGr36ybO7jrmQvWR/kDzgDwW9bpo/PSvk7Dxw5V29Gya/PC3xLj0lEhi9XwkkvbtbmTyF2xs9BvKku/i8cb1EMou82E+cvNCfW7v1RME8N90HPZ+0eLxIuUE9owxZO7gClzyIREa8UrSgvO6hwjnmsoO8cPM9PAppxzwgaxi9FLX2vNNT0bxVIXK9YfYgvP6pRD18Uog7Mg5Nu6qPPr0VYJS9IJ7cu8PuNrwYUq07fyUUvLgNlry8dRO7fLJAu+hVojw0dkq9hYqAPE4yaj0WCb08C54AvK3NWDsSTfk8zZkCOzbKEDy1+vq8s6ipPPhaBLwIAcq9Cl7xvJMGY7xiIIQ8CPbzvF+iWrxDHgW9Pk4KPXESS7ywSwI9+yI6POJve731KNw8/WDUvJoU+LxfIxW6E4IyvZjCprtITjg8Dw/fPPoXZD3C4+C8jO13vSeN5LrKG1m9wbCcvUNzZ71h68o8Qn69PIBY2Dz+ABy8lm5gPLrBlLuRyEg9xDcnPc2DVrvKByK92kLZu7KdUzwFjnY909SLvJC0kbt3DKm7tToKPLdieLzLRby7CPbzvHf2fD0sv4w89mZ2POtSkbxdZMC6FMuivLTmwzy7Vga9TjLqPGouGTzBuf27X6JaPB5BNb0pwp289VI/vMcVCb0xDk287k8AvS5otTtCaoa70NccvE3peT2CrJ68WLPSOpMcD72QtBG9j57lvDEOTTzWxiS8QnPnOmfaUrs7RkU97NwsPElOOD2NVfU82k0vvVYhcjx++zC8Aib5vOmI5rtzrwG8T1xNO0FU2jxWLMg7TZSXPJZ5tjxG5rq8tqUYPYNBED0CHZi8BqSivM2OrLyjgak8xcyYvcndPj3Ri5s7vT3Ju5aYwzweF1I9Fv5mO1T5A70bxQC7m78VPAWFlTteBAi9rdguPTDQMr3ZQtk8rzXWvJ7FZTwV39m8RbzXOleAjjteg009ZGd/vKuE6LzQbI493pMOPF4ECL2aAEG8HfjEOtfaWzy4DRa9QSp3OqE4OTyhLWM8f1jYuov4zbwTjYg90fYpvTHvP71L4Jg9lDBGvKrmlbxkZ/+8u+AhvILLKz1oz3w9iBGLPPZm9jsRRJi8LqbPvKfpprwWFJO816QGvVm+KD274CE9eD9tvBzt7jpsYV08/WuqOi+bebx5aVC90GwOPKJDDz3YI8w8qCfBvH4GBz3hhSc8dgHTvEXHrTtIGf+8QUCjPOlpWTzqk7w8Ycy9PDgIKzyyiRy8KwC4O5oUeDzk4s68KVePPFDdh73bDAS9fNyjveqekr2gcIM7WJ8bPSK0iLzR61O86pM8vCsU7zxYn5s7PGVSPKEOVj2pcLE97SUdvQiCBD0sv4y8qnCxPN8S1DwJSjo8oTi5PKfpJj3X+ei8CAFKPYmbJrqtTpM7wcTTPDR2yrstM3y9NRYSPHI8LrzX8Ae9Fgk9O8ndPr1PPUA9MhmjPCfvkbypO/i8hAnGvFH8lD38TJ07ti80vfnFkj3YD5U9Ayb5Oh0iKLz0KNy5yegUvYAu9bxRhjC8c6QrPeH7C7x14kU8IH/PPC1JKLzgPLe7VmrivOkzBD0OkJk8RxAeO/QoXL3hZpq6s9IMvB9V7DuCrJ48sFTju9I/mjzZLiI97RpHvNyWn7zgW8S7somcPNNepzvJ0ui7GYXxvIGNkb18p2o8AMnRvCHIPz1iCti8E8sivVm+KD3fk448zWRJvaL3jTwyGaO6P20Xvnp0prwbr1Q9DsZuvSijEDwG1+a6/WDUPIYoU70sFO+78IJEvLXb7bwJSjq96D92vXJvcrz9lQ093hJUu6WgtrupZVs9SZcoPRJjpTvR9qk8ws8pPHJvcjxU+QO8YNcTvA3RxDy3bU48jJgVPWkENr3Q1xy9mhR4vWkPDL1M1cK4CCutu1PEyrvBuf07qEZOOxAlC73Fams8ViFyPNpYBbtkU8g80lNRvSMRMDwc2Te9ffBaPYPAVbzpfwU9loSMPJQ7HL0fNt88jS0Hvf12AL1SpT28ORMBvXOZVTwWCT09Itx2PaSV4Dyn03o8hP7vvB0DG73vY7c8n8XlvJnWXbzY+Wi9xnXBPE0eszvaYeY8XBD6vHcMKT2dkiG7qCfBvFio/DyexeU6fiUUPfP1F709o2y9MhmjPHihmr05HOK8j55lPYmbpjydfPU8kufVuzfpHbxSmme8vHWTuyCeXLy4jFs+4pnePHg/bbwnea28gkGQPFUhcr1+Bge9YzS7PLtWBr2UJfC8TNVCvRqk/rrk7aQ9cBLLu+BHjbyQqTs9cPO9uYGNkTxti0A9AzwlvYA5SzwUtfa845lePbWGi7ww2wi8/oo3vOXtpDuE/m+7bSsIPCAflzwvfOy8WvHsvHzcIzui2AC9m7+Vu3FQ5TxcnIq8RxCeu3OZVT0ga5g5p97QvLd4JLz8TB27WwcZvHP7Ajz3poW81/CHPDNDBr3fRw28hQlGPDDFXLwhyL+75Nd4utuLybpw6Oc7t2J4vUqrX7zAe2M8PwKJPNWnl7tpDww8oTg5PFKwEzy7Vga9/WuqvGRn/7zP4P08/WDUvEkNjTxWYQE9vPTYPFU3Hj0gnty81rvOPDSBID1OKQk90fapPIBEoT0amx28HRfSO0vVQjyhLeO8jUwUPfnFkjstSSg8Ek15vFYsSD1rQtA89DMyPRRBBzui9428XDpdPDvmjDwG12Y87jlUPOqeEjwGuFk83vPGvPJBmbwXqQQ8jmBLvSxJKL2yc3C9Lmg1vCK9aT043kc9tQXRvMMYGjyFCUY8NGITPZHTnjpNHrM85Nd4PO0u/rxOE126tOZDvBO19jv8NnE8Tj3AvC1dXz21LzS8RwXIvG/JWjoN0cQ8Tj3APC1d37zjrwo9TSmJPPxMHTwCHZi8mqCIu15kwLyY1t28wHvjPMjJhz1+Gj49dwwpPZQwxjwrC468TfTPOm6f97xJjFI9u/RYO0elD70dIig89VI/PCAfF7xmnDg7G8UAvSNoB71PXM08aXoaPX3cIz3PuA+9VizIPLYkXr0sKhu90jREvC1otbyAboS40RU3PCiNZDyWeTa7NpVXPYwtB7xR/JQ74FvEu9jDkzz7LRA9vR68vGrDij2Z7Ik7N786vW0rCLwKXnG94LIbvauaFL0O8NG8Mi1avD7YJT2S8is97SUdu7mraD2UO5w7ahjtPG/J2jyCyyu9qnsHvRhdgz3xrKe8VO6tuyrsgD0ojWS8RKggvBhSrT2HyBo8oY+QPd10gTu022099KkWu5McjzzwgsQ61PMYPalGzrzWu8685zaVvP1Vfr3D42A8uA0WPP1/YT3ipDQ922y8OSVEdLztm4G84fsLvZo+W7ze3w89sqgpPFdhgbz+AJy9uatoPH7w2rydh0u99mZ2vOhKzLxcEPo8Ry8rvAPRlrsq9WG9Ib3pvEJfMLwFjnY893HMu8Qh+7xuqk09PtglPYBuhLzAhrk8E3fcvPVH6bxeg008m78VPNnDE71OPcA88kEZvNH2qTrMb5+8rC8GPZVaqTzYBL+8NasDPJZu4LsTyyI9KbdHvKgyl7tnu0U9C33+u4xBvrsGpCI84qQ0vIdHYL2pUaQ8du0bPW6f97yE3+K7p9N6vAyIVD32EZS7nrGuvFdLVb3ZwxO9X60wPNpNr7rgshu9G8UAPUptRb3e6PA8KuwAPGtNJjwQJQs847jrvLA11jto5Sg9wJEPvWXzD73pf4W8vmcsPYt5CD0QGjU9jAMkvdlC2bxgwWe8XyOVO9NepzwjEbA8V4COuxShP7wUwMw8dcO4vJ2xLrzirwo8DLI3PEQ9Er3LJi+9Z8abvCCpMryn3lC8ZX0rvT7YJT1PSBa9x5TOvFndNb3tmwG91H00O0FAIz3WsPg8L6ZPu2kEtrx8ssA8dddvOp0nE7xeg008qAi0O33cozstc4u85Nf4Oj7YJTyloDa9/WuqOjHvP7zaTa87SiwaPNkuIrzJ3b68eFUZPF063bxo2tK8S+CYvIBuBD1DkvQ72AS/u3ehmrx2Y4A99UfpvH4aPj3gshs9/eEOveun87ve3w89nqbYPKWrDD02yhC87ljhPHTOjrwbxQA9KFePvYgwmDwB8zS9TMpsPVKlvTw6Mg47dI7/PCK0CL2yndO7qmXbvBu6Kj0oOIK4lU9TvPjZST1WQP87FMsiOt3+HLxhi5I6prTtvLiMW70KXvE8vB48vS0zfLwA1Cc8e54JvZfCpjzIs1u9N1+CvQ8P37uhjxA77rqOvQyn4TyCrB49a00mPDxwqDuFigC9p9N6vDaV1zyKxYk7zoPWvapl2zvd/hy8pJVgPAWO9rzqp/O5BsMvvKJDD70TgrK7e54JvWfGGz1CXzC8mx/OPC/FXL39YFQ8SVkOPbgNFr3tJR26o2IcPbH/AD0kETC9C31+vMXMGDtliAG9Fd9ZvPGsp7z8woG7joquvClXD7tZNA27Ql8wPayuS70TgrI5Kct+PQwonDx4KzY95z92urFfuTxBVNq8Z7BvPMPjYDwJK608mewJvda7zjwmWqA91HLePGRTSL0mT8o6Q6igvJVPUzzSPxo7wHtjPXDzvTzkuGu7SrY1vezwYz0S+Ja88+rBukAL6rmhOLk8mgsXvdfa2zzUct680SCNvVgVADp0wzg85yBpu/i6PDzuTwA9JTsTvXuTM72VRP08m1QHPd21rLpCfj09zYPWvG/UMDwSgrI6FQm9OuqTvLwMp2G7oji5ul54d7z4r+Y7+Lo8vJ6m2Dw0gSC9a2wzPWIKWLxIOgG8jJgVvagnwbxWVqu8v2csvKfeUL0zTGc8BrjZvOqTPL3mF4i8N9PxvAa4WTzYBL+79DOyvBONCLyL7fe8rxbJPAkrLT2Oii66t0NrPbrK9TvaTa+8NasDvXQakL0HzgW9rLkhPB4X0rxTufS8t05BvS5otbs0gSA923eSvBOW6Ts0dkq8n/qeu/eQWTz+f+G86TMEPcxvH70xDk08ETnCvJ9wAzxpBLa9zG+fvCy/DDuiTPA8S8GLPDjpHb0O8NE8mfVqvdflMb3bbDw9KDiCPAp0nbuRvfK7UkWFu8r8yzzjGhk9B+K8PNdbFjwIDKA7ydLovKbKmTyKr928ZzyAPaFDD7yhLeM8kxyPvDxa/Dxv3wa85zYVvIddDDxAC2q8tkPrvLwKhbxXdTi80fapPLz02Ly2pRg9Pk6KvGC4hjvdyWM9MMVcPCv14bzBsJy84qS0PH1xlTwIDCA9EljPu1TurTyfxeW83vNGPawvBj2wQCw9deJFvF1QCT1kZ/88ckcEuwvqgbtAKvc8N97HvNyA8zqR0x48VPmDu6y5oTpnu8U7myokvQueADxyeki83dQ5PF5kQD2RyMi858sGPcg0ljww2wi9BqQivc2ZAr0fQbW7GhECuOA8t7vQ15w8L8VcvW/J2rxxEss8TP8lPL5yAr25tr68aOUoPEXxkL33fCI7tjoKvagTijwj8qI72AQ/vZQ7HD2vthA9K/VhvMXMGL2BlvI8eDYMPdwrET3eElS89lK/OnjqiryGqQ27o2Kcuzxl0jvOrTm8+K9mPWkjQz0vxdw6mvVqPOcrPzzuTwC8jwATvRuGOjzKTaw8TB0BvXlmArz0FTC81nmCvcdQy7uQdYM9oT74PNZgcDzjLo+8B2+AvXlmgryN23O8e2scvBUuwTx2aSG8yPKTuuSvDDycKpA8BBkCvDxrEzzgC8k8hyApvEFHKbswkKE8oNsmPanfnDxTCOW7eCLxvAcjNjyVfJi8HItUvfoXK737bam8F/uIvFi5e7wBeti81KegvOq2IT2Idic8/MMnPd8sFDvnaFy9Rv3ZPKc4Ors776+89HNnvBUuQb2cKhA8JeCuO09SNLx6kYE98hjPvDWSnL2/7p0811OdvQDsB71aAqe8wkk2vIAhzToPIpI9GuTxO4fPxDznMIq8qUJuPU9StDtgvfE8qOzvvFu2XLzSAL47EdthPUfwBrw7TWc5JQaUvD5KyLv8csO80PaJvAMhO721Q0U9JjatPOgKpbzgumS85toLvdqzT70LIJc8gcgvPFAG6rz1OxU957lAvMZLsTzOT6e8U1Svu9pi67wIdBq8hMWQO7xohr2lkdc77hbUvEb9WbrkvF89fHA2vCEvGDyQy4G9uZYkvV4EIrwfiLU8co2LvBqBID3as8+8sUFKPQwlMbujrYg8qphsPWZmz7wKfk47Fzh1PCCNz7xzvSQ9tPLgvOMIqjy4kQo97G9xPRQppzyc2as8GSuivEqu8DyS0Bs9l/2VPHKNi7vqZb28mNcwPVu23L1rChM9lt/pujHhhTxJ+jo9gCHNPP+VCT1cWCW9f5gWOw17L7zd1pU8ENbHvOi+Wj0IdJq9Ezb6PNClJb2z7Ua8Rv3ZvKevA7zqtqG87F0EPWbdmDuLSIm8GqeFPZPVtTv8IV+94gMQvJiL5rv0bs28qphsvUFHKbyuN5a8q+nQO7ijd7xwwEM8oNumPSub+bxCw4y9/chBPeu7OzzLo6q8mNewPIEmZ7w7FRU9FX+lPaSMPbwAJFq6XAxbvGZmT71CnSe9gnzlvHqRgb1ggAU9B4FtPf9vpLzYWDc8XAxbPN9Xkzy/nbk81Kw6vYV5xrzR+6M8LI6mPILNSb0GHhw9987/PLFBSjst5KQ8nd5FvWO6UjzOTyc9D4XjO2FfOrrmF/g8HzdRvfpoD73u3oE8T1K0u9wJzroD0Fa9sugsvMgdk728R7u99L8xO6GPXDzzuhc8G4tUPHu8gDur7uq8vZifOzxAlDy6+fU8vZOFPZV8GL305Ra5tZSpPNH7ozxwDA67MQwFvZOEUTzQWds8ByO2vMdQyzv9d127iccLPKABjDy3Tfm7zPSOva4MlzsE1fC8q+nQOi86o7qp35y7Ob+WPS1C3DxLULm80ncHverchrtPAVA9kcuBPMBEHLxHAnQ916SBPT/skLxyZ6Y8njTEO82oRLyHRo68pIy9OzmUFz1YCuA8bWUrPHQOCT03Phm98hhPvIYbD72Ofbw8kIfwPM9UwTzd1hW9ki5TPF4EoryCGRS9dWQHPU9SNLw4Q7M8w580PR7hUjyC0mM8eRUevT/+fTtjBp06ZwgYvHV29LtgCby9xPWyOYglw7yIJUM8QkxDPMOfNL21lCk9uKP3PFe0Yb2gisI7P6DGPOHYEL5Y0g073mRmPVpgXr2LgNs7kaACvItIiTxjVwG9sfV/vCyOprzTtPO8gcgvvRF9Kr0PhWM97MBVPWWHmryr7mq8S6EdPUmpVj31c2c7Q1HdOpl+E7345xE9q2AavI7OoLwRLMY8/nx3ug4v5Tyw8OW8S/IBu0FHKb1Rrcy8ESxGO7tP9LyHcQ08V1aqPLVDxbyDgf+7nuPfPCSKsLzYqRu7vZOFPAcjtrxTA8s7AOwHvcCiUzx+y048TFXTPFH5ljw8o2U85Gv7PPbJ5byFeUa9dx3Xu09SNL0wPz08xFNqPXBvXz2GG488JpRkPAko0Lz6evy8GY5zPaEsi7xdrqO86YaIvXlmAj3Rqj+8FX8lPbDwZb1cDFs9GNq9Oz8XEL1v4Q68p4kevBrk8bhraEq9a7kuvRCKfbtVDX+9kvYAu4TX/TvhEGM7y6MqPLn0W7yKHYq6cXT5vJ2NYb0c3Di8wKJTPtT4BD2hLIu81Kw6vZ40xDrM9I68tZSpPEGq+jw1khy831cTveG/frwqMw48UFdOPWQLt7yLJz68Rk4+PWtoSrwQow89O55LPTVGUjz5dWI8rgwXPDRBOD1Cnac7VfuRvLz21rzoCiU8d8zyOYzWWTuWp5e8XrM9vHtrnLwJypg8C4Pou+G//jtHnyK8hMUQvUuhnTwQ1kc9w580PUPui7wKz7K8Es4OOwRynzydVY88Nkvsut4BFT28QiG9AReHPMOftDn7kw67mIvmPIUoYrzcWrI8SPWgPKEsi70Rfaq8J7IQvPrL4DyAcjE7dROjvNX9Hjz2Gkq7ups+vWEOVrzNXHq7gXdLvFkPer2L0T89V7ThPKaEhD2rOjU9Vq/HvGQLNz1QBuo8zUqNvL1HOzsl4K49w07QvCGSaTrtxW+8INkZvd6wsDzSAD48WFtEPKyLGbwQ1sc8TUiAOxyL1DxwHns6KO/8vNGqPz0e4dI8DSpLO98Gr7vvG+46qD1UPORZDr0KzzK9Kl4NPSQ+Zr1zbMC8J4eRvPYaSryKHYo9NEE4PXsfUrtYpw67GNq9vLeeXT1XVqq8tUPFPHDAwznesLC7jNbZuhDbYTpCnSe70Ah3PbLoLDxApWA9RW+JvI0sWLyEdKy8DcyTu5/WDDxFb4m7hHQsPbhAJjsySfG7tbqOPDA/PbzfBi+9dCD2vDaXtjwrm3k9Gd9XPdwJTj2Czck882mzvDJJcTzjt8W8fewZPVhbRLuoBYK9tff6OzyWkrui5dq85rSmvN3Wlby5lqS8VNASO3O9JDxxEag8c70kvTqZMbxoM5e9pN2hvKg9VDwgBJm8Q1FdO4sipDzka/s8yavjO+wMoLmS0Bs9isylPO0RujwW4nY94w3EOzHz8juQdQM9NUZSvcdQS71sbeQ8tUPFvMGVALzzuhe8w6TOvBCjj7w+Ssg8y6OqPEFHKTzTtPM8Ci1qvEMZCz3WeQI9h0aOvLmWJL1VXmM9jHOIvATV8Dwh3rM9uECmvNVb1rzF+kw96FsJvPscRT3PA907v525PJ6S+7vggpK8UwNLvLTy4DxFp9u8s5zivH7LTr1yjQu9EjHgO6pbAL3NSg09qD3UPDHzcryB7hS9JjatvJoyybwviwe9J+piu3aPhjpyZ6Y7K+xdvREsxjxgq4S8r+vLvHDAQ7yOzqC8o9gHvIEmZzzisqu7CSjQvONre7xFp9u7X7jXO5SJazzIpsm7V3yPPQTIHT1mZk88QsOMPGZmz7ztEbq8WFtEPOxinjzhEGO7NLiBPbs9h7t2GD08dWQHvbFByjzaYuu711OdPG3D4jzJSBI8EHgQPTVG0rzdDug7H64aPQko0Dzrale8tplDO8OkTr0y5h+8C4PoPErHAj2Rep07AOyHPATDg7yh4EA9U3oUvQnKGL2SLlO7U1QvvYvRv7v9Jnm5nNkrvFDOFzuS0Bu9fXVQPX3sGbxGTj68SanWPOoUWb1ascI8BCZVPL2lcrx3bju8wkk2vYzWWT1d1Ig82a61PHtrHL3WToO8wEQcvcH40buBd8u7AMEIPX3GtLysP088+RKRPfvDJ7x0OYi7+MGsPAMhOzzKTay8PkpIvUVJJL1jaW68+mgPvboSCL1PUrQ81KcgvUxVU7xR+Za9qI44vQYeHD0YiVk9OEOzO47OIDz6y2C9rjeWPEgbBr1raMq8IZLpO/vQ+rvjt8U8qULuvGu5rrvyGE87mNcwvYeD+ryc2Su82Fi3O/zDp7yxkq68dXZ0vFxYJTvPVEG9oIrCvMacFb17vAA9lCaaPMGVAL2mMyC9s5xiPUClYLxGrHU9S/IBvFAG6rywuJO7sPBlPGw1Ejt/bZc8AcaivGtoyrzQpSW9XP8HvLpK2rxyuIo8y1LGu3AMDj2C0uM8MfNyvNipG7xRJBa9FaWKO96wsLwwPz08PJaSOyrnw7yIdic9eCLxOgEXhzzvCYG7UwPLO6qYbLvKsP28fcY0PVhbxLyq5LY6q+lQPBYz27xvu6k8UwPLvLXljb2R3W48XRH1u4nyCr0w7li7AXrYPK/rSzwk2xQ9YFogvUvyATxYW0Q8FCknO40s2L0wkCE9GInZu9ax1DxLULm8p4mePKvp0Lxlv2y8OKFqvZf9lbsiWpc8LD3Cu1i5+zwnO0e9yKZJvLDw5TvD8Bi9w/CYvIMeLrpA8So9mIvmuwZEgTy2mcO7N+20vA6AybukO9m8zahEvHbH2LxLoZ07j0oEO9UjBD2niZ69u+wiu4HuFD048s67opR2PfxywzwIdBo7WmBevCQ+5jyC0uM8CXm0PL778LydL6q8D9GtPZ/WDDxzbEC9rzywOxwog7q89ta8x8cUvDsVFT38IV89wkm2O0ikPL1z44k9FNhCvUasdbwagaC86Q8/uxhRh7wjOcw7J7IQvUn6ury/7p07mS2vPKDbprtGxQc6+cbGPJWnl73gghK98sdqPRvXHj3eZOa711OdPMOkTr0qlt88fhyzPEL73jwBeli6vZOFu4yeBz1bB8G8tboOOxuGurx4c9U8T6MYvea0JjzYqZu80KWlPBAnLL2hj9y87hbUvKSMvbwKfk6927jpPP8ewLpA8So7x1DLu3YYPbuHIKm89G5NPEpLH71xYgy7BXe5vIDDFT3STAi7YhNwPHO9pD0tR/Y4w6ROPD5KyLxIG4a9hNf9OexdBLzEGxi8PPTJvINvEr3d1pU8acFnPP/NW70/F5C8D4XjO4J8Zbz8w6c8pS4GvfhwyDzuswI8nDx9PMlIkrpA8ao8pAOHvWO60rqYKBW8thANvLIOkrqS9gC9II3PPEWn27xzG9w8ktAbPd0OaDtJcYS8NkvsuwkoULz/byS9T1I0O6kwATwVf6U7HzfRO27I/LyUURk811MdvT9PYj0Kfk47BHIfPVqxwrzTtPO7CcqYu3HFXbwWf6W592uuPLIOEr35JP68/81bvesyBT3TUSK90ncHPfETNTzzuhc9SFjyO5iLZjwmlOS7NxMavX4cMzxnt7M8HX6BOxMkDTxQzhc9criKPHqRgT2NyQY9mS0vPTbomrwojCs9TVptPTKaVbuCfGU82a61PM51jLwUKSc8eBAEPa9ilTpuZSu6mCiVvOALSby470G8LN+KPCeHkTtVXuM877gcvYrMJT3XUx28eyTsvJUrNL008NO81f0evFi5e7uaMsm8oIpCPDpITb1ApWC7qphsvNX9njur6dC8h89EO7hApjz+P4u9kaACPdmuNb0r7N08kNjUPBbi9rxRXGg9a7muPPXES7xKSx+9kSk5PS+LBzxYCmA8sg4SvZEpOT04QzO8R/CGumW/bLzovlo7r5pnvEpLHz1na+k89G7NPOSvDLwJypg8jdvzPAXuAr2oPAU82iVBPGoUJ70Qu4G8iXKHu041Mr2AOLm7NtylPW5JoTrXTYa7Jwg9vcFhe71Pwhe9pnOovNK7TDyt3Ry8X48DvQaIML0N8qQ78GMeO0O/7LzvrY88YCTKvKUHC7y3i2k9/T4EvNSEqbvWVIO6oOHuPHF+G7rRJoa89UcqvUzQEb3v94C8G4MZvCXFyDxzf3885JuGvFDK+Lw7AyY9zww7PEq9wzsy0NS5CHo2ut7go7ut3Zy8e5ehOz84oDymxXq9eO8MvRDK37zohg88w766PIaAgbxN8j29/h28O/gQh72yVQs8a+SAvd8jGL1p0bI7LBXyPNhGiTtQoc+83yMYvWQwGz26Ovu80uT1PBOtB71W6Ze85kqYO3uXIT2KvVw8mxcuvCcIvbzZ4ky7102GueZzQbwfuJO8cTsnPV6WgDlqFKc8cy0tvG0Grbw5ngW8TfI9PSK5d7zoho88bkmhOz1vw7wmxUi9zww7vUEQWzxRDW293nSGu8yul7wo0Zm8YAr/u8tR2LuTzgG9TjWyvJGh6Lz23PA8FzRUve8gqjs1Bc+7k0GcumQwG72fddE86xTZvENtGj1M0BE9NCaXOzYfmjw6wDG8JD9guoQC+jo/R/477mobPeIk/Dugj5w6+XwkPbo6ez0Xd0g8EMrfPIZfObthZz48//SSPXpUrTvVx506OsCxvO5J0zxGX6C9qGWuPHA7J7xgJEq8LrWlORVcGT1hiAY9uegovbCMLjzkqmQ9sGMFPXp9VrxNyZQ9tXC6vctrIz3nSpi9jBqcvCbFSL2GiOI8UkEDvctrIzy+YJe6YAp/vOIVnj3GgJq7LZtavewuJL3y6Ya6n0yoPEwaA71TraC8K8OfO8LfAjzvIKq8yiivu56WmT2mWV294qkAvZbAhzymc6i8SnrPvHtUrbziZ/C8hLAnPeOigz2SUHo88p8VvLPBqLwuB/g55ln2vHMtLbuQeD+820DwPNdc5DyiyxO9sWRpvHesGDuEsCc9J+B3uz2yt7wo+kI8FfHfO2QWUD1+slC9hAJ6O3isGDzLvfU8mHd6O6+117zBUp05gXstPdTOmjzZJcE85O1YPBn9ML3mc0G9NMLaPBJqEzu1cLo8TGxVvby4gr0MQ5O9352vvSFNWj256Kg8A22BvHe0+TxyC4E7e5ehvO4GX7y1meM8gaTWPGmoCT34OTC9iSgWPVB4pju3i2m8e5chvZ7gCr3rFFk8SwA4uC1JCDp6ETk96IYPPMQq2DtorwY9bJoPPJUzIr2YuQo9xvM0vTUueDwCU7Y8r2OFO+7dtTx/WYG7OwMmvb6JwLvohg+8b4wVPbDPIrsqqdS8APb2PBE2fT2cg0u73RdHOz9hybxhTXO8ghD0PGR6jDwv+Jk8iA7LvGbFYTzGygs9SilhvUHN5rw7A6Y8Fp8NPWQW0Dzw8AM8KNGZvBdOH7zRkqO8YYgGvVbx+Dw4ziu9JSkFvHCFmD25YsA8CgAfPc/JxjwxjWA9LC89u3um/7t5OmK8uWJAvVyDMrzADyk8BsskPEk32zzpPJ698RIwPVbITzzexli9sqfdPKSqyzzZ/Be+WmGGu5910TxBpD28B1iKPO4GXzvbggA9aCIhvQEQQr0yfgK8jENFvfrGFb2ZkcW8trMuPSciCD1VGb682k7quqmoojzuBt88F139vA41mbwqqVS95koYPTg6ybu7wOO85nNBvJVcSzxBpD09Y9NbvPl8JLwClqq9Fp8NuwWIsDoDv9M7oHXRO3diJz3sLqS8OTpJPBQZpTumc6g8MX4CPbEh9TynQ4K7v7JpvHvASr1O8r07USc4PTLQVD39PoS9qfITvWBN8zzfdeq8lnaWPP9gMDx7wEq9mWgcPBzGDTxB57E9TNARPN8JTbykxBa9O00XvTMtlLqs5Jm8dHChO/cXhL0IejY9lK25PB6/ED0zf2a9ppxRvFPWyTy8sQW9gQiTPI1kjTpCKiY8zq/7vFWF27z66MG8SiGAvZFImbxSQYM8w9gFPUq9wzwsLz28Z3TzOv3ax7yX4rO7rkm6PEzYcj7qqDs9gXutPK4nDrycpBM8xAEvvT84oDybFy499XDTu0LnsbwVyLa8kbszvD+Kcjwn4Pe87LsJPADulT05ngU7ETZ9OsGk7zxorwa91jM7PYJLh7zZ4kw90bvMOlP3Eb2/zDQ7AM1NPbILGr0mnB+8NgVPvKiO17tCfPi7gKRWvO8gqrxbF5U8jzVLPcooL7yYC905AlO2Pc6v+7zPDLu80idqvAcOGT2YuYo7oj6uPCjg9zvaP4w7d7T5vEZu/rv8bqq7IfsHOguNhDuq8hM8WuN+O7QEnbpmtgO9XcYmvPKflbz4Ytm7zADqO8oorzxjgQk8obhFPKJn17y+YBe9YqqyvIvXJz2w+Eu9pRbpPA08Fj17pn88wlIdPUibl7wo0Rk9LC+9PKhlrruL1yc9TcmUPbPBqLwYd8i5rQZGOwRFPL1a4368HjIrO1glDz19b9w7ETZ9PK+MLj3WM7s7bS/WPMMBLzyoS+M87YB2vOXt2Dw0cAi9FzTUvG+1vjtbQL67yIj7vBdd/TyElly9F139u/sRa7wKD/269JiYPcc2Kbx0wnO7un3vuonlIb27wGM9uysdvLCMrjyTk248pMQWPHRwIbsKAB854dIpO+HSKT1T1sk7Ac3NPIEIE71LQyy4KSPsvDA7Dj0n4Pc8zacavXumfz2bQFc7D3gNvPDPuzzKlMw68fjkvHnoj7w3Yg491ccdPfbc8DyoPIU9RUVVPEBhybuMQ0U9HwpmvYwpejxuL1a8LXIxvbaKhTvqfxK8xbBAvJBedLxqFCe6Ennxu4A4ubpigYm8OyzPPJr1ATtDbZo8mZFFvR4yK73dMRI5AyMQvTGnK7xyC4G7JpwfPP9GZTyeCTQ8/bEePcv4CD1dGHk9kifRPKoUQD13tPm8ohUFu2leGLxm3yy9WibzuyFnpbyq0cs7abdnvPgQB72WwAc8ZZy4PBi6PDtfnmE8SeZsPP1uqrxXnyY8ODpJPUapEb2elhm9GiZaPdzuHbyJcgc9K8OfPQm9KjzLUdi8835NPSk9t7w7AyY9Z0vKu0QCYTxxyIy7uM5dvH1Gs7t23D484ftSPEijeLx4zsS8kZIKvXRW1jwEbYG7IZBOPaI+Lj0njqU7glPovNFPL71YJQ+9UQ1tvXWZSjwpFI482LkjvDM88rxN2HI8/bGeu+eNDDuuIBG62EaJvAuNhD1g+yA9AecYvdTW+7yIL5O8qDwFu2ciITwqqVQ98RKwvFzvzzxtL9Y88M87PK0v7zyWnz88Jat9PGhllTx7pv+8aqGMPADNTT2BCBO8hkVuu57gCr04Y3I8+yu2vCkjbDxguKw8U9ZJPKyaKDwApCS98GOevLu4grptBi099/Y7uwoAHzzEKli9WSWPvF6WgDz9bqo8RAJhPMLfgrz3zZK8uTmXOxddfbuZkUW8kaFoPF6WgLwGy6Q7aCIhvZFQ+ry9HaO8PE0XvFAFDD3wYx49d/aJPIIqPzzRTy+9BEW8uzQml7noS3w7GkAlvdF42LlzBAQ9ljOiPVOtoLuEsCe9g76hPEvXDr3vcny825HevFEnOD26VEa88fjkPKcADjw3Yg690xgMvMfDDjzNNIC6+BeEvF+4LL0LjQS90E8vu2vkAD07A6a5pVldPInlIb1pqAm8CQ99vN8jGDtXC0S86IYPPcsoL71CU089yIh7vQg3QjyRSJk73uCjvOwupLyoPIW83RdHPSvSfbz8RYG7Tl5bO1JqLL223Ne8mZFFvREnn7xKlBq8BYiwvO+tDzzjgbs9Cb2qvCk9N7tc70+8df2GPVom8zz39js8bIDEvAxDkz1F2Te8/kblPDpUFL1ZTji9A79TPCYIvToDv9O7rQbGPJTW4rw/gpG8i9envMXZ6Ty7wOO77901O0yGoDv1R6o8XO9PvMiI+7zSJ+q8t4MIvVm6Vb2sw9G8Rm5+PFJIgLsLUnG9mqsQPYUcRbxNyRS8N0jDPGvkAD3K/4U8Q20avaxXND1KUaa7cwQEvTssz7zR3BQ7Dofru9NBNb0rw5+96CLTPHYF6DzvSVO9jRocPMOOFD2dnRY6gc1/OzdIwzxsgEQ7kv6nvBiRk7zuBt+9zqCdu6n69DsLbDw9CebTvC5JiDtVM4k4eySHvG2bc7zZ4sw7XTJEPO6awTyBzf88DhtOOzR/Zry7K508VYXbu9SEKb1vtT49U/cRO4waHL1ZTrg8P0f+u6uAXbwyfgI8R4jJu5GhaDyDviE8h4hiO2bfLL1zLa08dcJzvQ08lruPDCI9zqAdPeOigz1i09u6dbMVvYbzGzxVMwk9K+xIPPTqajw0wtq8l+IzvH1GszxbQL68DTwWvTXC2jsBzc28avrbO30dCry5YsA8rJooPNi5IzzntrU7+hHrPJafP71Iyz29dbMVvBOTPDycWqK9zfELO1phBr1uSaG8+Dkwux91H7wNPBa9ESefPLDPojzOhtK8e+lzvQ1EdzwZ1Ic8KoCrPOSBOz1mc4+8UORDPCQwgjy0Tg68wZyOPBJqkzzONAA8reSZvYIQdDyZaBy9SlEmPGWC7bxndHM8V/H4u+hL/LtR/g677ppBvaxXtDwQ5Kq8PttgvTITST1fjwO9mrpuvHHIjLuTk268x8OOuiBN2jy1Lca8FvHfvOTEr7v/YDA91vBGPSUpBTy56Cg9hEQKPQCKWT2iJGO8QiomvVKT1boqgCs6TgwJvMr/hbxKIYC8qfr0u/3ax7w7A6a9j5mHvBC7Ab3jquS7nuAKvGlemL2U8C28dkjcu4Bh4jwsDZE9Jt+TPMJSnb0fx3E5TK/JPBSmCj14pZs8E0JOvdGSozyojle99S3fvHWZSrslq/072LkjvM3xC72EsCc9t4vpvEHN5jz1Ld88ZwjWvHXcPjvP8m+9100GPVPWybzfTEE92v37vLILGj35pU297LuJvHp9VrtApD07MErsOyvsyLyxIXW7rOSZPEyVfrzUW4A8HBjgvHCFGD2h0pC7iPR/vIF7LT2xEhe8+BeEPOlL/Ly7bpE8N0hDPRP/2TrHiHu6QM1mPdPVFz3RJoY8SDfbO1VcMj2xIXU8WZGsPAYddz2XyOi76N9eu/9gsDxdrFs8AaSkvMjL77wCKo08tXC6O8Fh+zwTY5a6//X2O+UwTbzyfk07glPoPDI0kb12BWg9YAr/O0YcrLxAinK9J0uxvP4dPLxzLS28rOQZvYp66LuOya28S0MsO87JRjso0Rm7/bEevZB4v7y8A9g8CQecvXoyATxLALi8en1WOxeYkDyUrbk7AIrZPMGk7zx9RrO8w766vBG0hD1tBq08d2InPD4e1by1kQK8rOz6vBzvtroLjQS8nzLdOyYx5rxONbI8HMYNPfxuKruCKr88pRbpO8yulzy7bpG8PgsZPbDXrLslsSy9rVN5PAzBZbwOZCy9VD8TvH+5eD3lLUS8ZghgvB3o87zp6RC92u6BvVQAZbwLweU8KwmrvFCJU7ymAhC9VhPePMLAFLwSqTG9kgAiPfrqdry+W3S75r0RPYtXBLxWE9489gOzPIF7Uj0w9wO9FbwqPNRXVb3uyke9E0vwvImVKjxVIAA9IdxZu5FwVLyeAb68KrgLPbT9nrxvVMQ8OFvmPBW8qjz7WzG8fodsOhdx4rzLSh87+bhqvbwp6Ly891s8PgsZPPsKkjzRagS8a90yvU3nlDyV24G9WQdEu/WZjb3r9XS8r4YNPAEk4jzdozm7PdmMvB14Qb1Ur0U9eqAovBjinDx85S29XWvcu8Fubbw+s2Q8STHVvBNLcLzJGBO9MpO1O84+BTtbyR0834SmvMYkLT12PJA7gMCNvHUc9bzYS7u8BY+PPF/WCTwXkPW8eaAoPeWkCzzfJmW9AnyWusD+OrwJrmw81RmvvJ2XmDzMXZg8QAWMvWpN5bsR59e707UWvPOfmrwUvCq9ns8xPaUInbw6/iw8fATBvKnv4DxlhbS8ECYGPehyybxhQK88ArSvPDD3A7u19xE7S5wCPO95qDwpKL68/KzQPEWbMD0Og787pQidO1l3djyzjGQ9bdGYPGWFtDvDMEc8Oh1APU12Wj3Es3I8Kp+Fu8W6Bzu4A/Y8GtV6vda77TxcyZ08ymkyvA61S7xk9eY82O15PaXpCb0p9jE8B9qhPQIFTzzTJcm6T9pyPbp0sL2esB49TJVtvXMQEb30YOy88r4tPTRVj7xicru7qA50vWICCb17gRU93VIau6/2v7z0QVk6AgVPPLKrd7vxhpS8E4oeOlDacrwUDUo9eRDbvDjrs7tXUow9P3U+vZNRQb2Be1I9qL1UvN9lE7xgftW8JuO4O9MlST2vn5M9Ksr8Ox+LujyRcNS8WWWFO6EUt7xcyZ27i1cEPCEO5jzFlF89WgfEvDSmrjxNzg49HlmuPEYeXLwOZKy8pJfiPO1HnDzdGgE9lnczvZk5jTwI1JQ8kgAiPdMGNrziiv28qBWJPLwp6LtMnIK8ksiIPH6OgTvDYlO93FIaPBrVejwnxKW7/0+Xu1waPb1TH/i8UZxMvWyGBr0PLBM9YnK7OynXHjpcGr08G9yPu4Tfar3sZq+8ueRiPE12Wj0zxUE8o3jPvHHkET0jQHI8EamxO+fvHbxoG1m9RT3vPIT+/TxeTMm8qkcVPXxVYDxt8Ks74smrPLLqpTy3YTe9ZmYhPLAJubzIiMU6TsgBPDcKRzzTdug8PYFYvO7KR718I9S6ttFpvLDXLD3DYlO8yOaGvf2NPT0L5409EnGYPFl39jtxhlC7bL6fvOwVkLx8dPM6U16mPOeRXDy4A/Y7OeszPReXCr2AaFm8tp9dPF9fwjz/NpG7G0a1u1gmV7w+Q7K80GPvOyA6m7w6/iw9/xDpu7w2iruEHpk9BRjIPMsSBj3DwJS7Kzs3PZW1Wbx43s48NFUPvaX7+rwZ4hy70tQpPO7KR7zJ+Hc8qmCbvRkzPD2jRkM8n6qRvYJ70jwCfJY83kwNvnwEwbwI7Zo8OpSHvLiy1jxZl5E8+3pEuznMoL0RdyW9BTfbvLWfXb3gWHG9tp/dumYuCD3iGss8/DyevDr+LL0y5FQ9BTdbPIOOy7ywR1+71hkvvS5twzyXyFK88VSIvCkovryVBnk8lBMbPdESULtWwj699dGmvd9lE72mG5a7uJPDPHtiArwBSoo8ti+rvE3H+bsMABQ9+ki4u435QjvmsG88MBAKvPOfGrz0Isa9aco5PaTJbjwlIV89v1t0vaiewbxp/MU8iUQLvFbh0bw3aIi8G2VIvYo36TpusgU92H3HPeZf0Luzy5I8VVgZvSQh37xbyR08MBAKvewVkLtuQcu82z8hPTAvHT0pvpg7XUxJvXZbozzuysc8EoqevKuSpzzHBZo8MzX0O61T+bwIfOC8H4u6vE3Ojr1atiS9TSW7PFejq7vikRI8Co9ZPJ+RCz3Xu208amx4PKL1o7ueIFE+NilaPVs50DxnRw688IyhvGn8Rb2jeM881Kj0O3c8ED2QHzW9DwZru7McsrrftrI8m2sZvTwwubysWo49DKLSvIxpdbt3/WE9CbWBvLjxhD2gqhG8G2VIPW+yBTt5Twm951/QOqKkBD3AzK68Noebu3RIqrsCXQO8V/TKvFroMLzdozm9luflPANWbj341/27Q9lWvF2qij3zn5o8cf2Xu6lHlbuCzPE8pxuWvKnv4DymbLU8eS9uvD3Sd7zdUpq5okbDPB5ZrjzEETQ7nSBRPDvfmTzYLCg8c0iqvNkNlbzW+hu8rVP5u63Es7tUAGU86vV0uQaoFT1Q+o2871oVvYs36Tt5EFs9E0vwvOdfUD341309w4FmOqMnMD0zIwO9bC5SPVVYmTxzmUk7jUpiPQk+uj3tD4O8MbLIO7G4mbrokVy9eyPUO3NnPTzxbQ49JlNrvD2BWDwAMQQ9fTbNPGmMEz0kIV88spkGPfK+LbxsLlK72zkUvYM9LL0LweU76/wJvJIAIr3tDwM9Kzs3vZydpby28Pw8F8+jPGpNZT1fDiM9MrLIvJn6XrvWu+28V6OrPNtxLbxeLbY8QMZdO41K4rxBVqs8cHNXO765NTySouA83RNsOhFYEjwsHCS8WWWFvMw9/byhZdY6MzX0PEgxVb1IUGg9+Ibeu/VBWbuOK0889CLGPEuV7bxAJJ+80oMKPct8Kz3LSh89MjyJPWfpzDs/7AW8Bvk0PT6U0bionsE8/m6qvCG9xrybDVg6C+eNvHrxR7zKaTK8mUv+vDEpEL0Y4pw8NwrHOz91Pj26dDC66EC9vO4oCb31Qdm8pQgdvbKZBr2w1yw8WugwvKhNIrsUfXw8gPKZuwUYSDzLSh87RXydPCeMjDyCXD+7BBhIvU3nlLyiZVa80yXJvDYpWjzHzYC8z1cLPbTkGL0nZuQ50wY2PMtEkjxUAOW8ceSRPNIlSTw3uSe8/KxQu2MbDz16oKi9QMbdvP2NPT3d9Ng7jgw8PVM/kz1Axt28M8VBvBkzPD1RS628kXBUPTAvHTvPMeO79CLGvAQ32zox0ds8e2KCPEOItzxTfTk7YiEcvQ0yIL3Xak49do0vvBrDCT1cGj09G7bnOzl7Ab353hK9z4+kvOy3Tr2CXD89Ir1GPFMNh7xgDiO8X72Du+W9kbqVBvm7eb+7vCnXnrxKiQk969ZhPIgrhb1EShG9EHclvIkFXbvgJuW8EamxPPKfGrs8p4A8eb87PdKDCjyEPaw8gq1evOnie7wZ4py6ti+rvG7RGD3+HQs92fSOvOwVkLvEuge9lBMbPR+LujieAT6873koPbtVHT3W+hs9ASRivW3wq7tfX8I8JloAPXqgKDv0YOy8/t5cvc+PpLwLwWU9THbaPN+Eprzdwky8qn+uvJCPZzxr3bI8xsbrvHXLVTqlqlu82zkUvU9qwLsqeV28B0pUPFp+i7wkIV88PIHYPGeYrTt85a26mBlyvbMcMrzhySu8CV3NvEuV7bz/L3w5n+KqPOv1dD3VOMK6omVWvYfTULzArRu9LRwkvbAozLwgAgI9jnzuO8tKnzv0YOw83vTYvHaswrzsZi889PA5PKUInbx3/WG9yKdYvVY5hjuZOY07sAk5vK2lID16Que7lNTsu8inWL3pUzY4fq2UvPxbMT0M+ga9yOaGPeXcJL0ksSy8qE0iuz1ixbzmsG+7Cs6HvbtPED1Zd/a8/79JO2t/8br5Fiy9zESSO0I3GL0F+bQ4DfoGu+1HHLyPfO48ofWjPYQ9rLtfDqO86uODvC3ddT1Grqk7E1IFvES6w7zKabI9tP2evFYT3jx2PBC8nrAevSmYcDwNMiC8PRGmvNXnIj2gM8q7L59PPPGMIb14NoM89lTSvHtigrwa1fq85IuFPNs/IbwOJX68o0bDu3LeBL0BSoq8tP2evIVQJTxicju89EFZvfvLYzwqn4W8vlv0urgKCzqLdpc8DaJSPP2NPb1QGaE6IS35uzRVj7tPyAG9e3RzvKZsNbr0gAe8ASRivRBFmTp/Fzo9ngG+vGmrpruEb7g8p4vIvJZFJzxlhbQ8td4LPZFw1Lvl1hc8O27fva2lILwHm3O8DBkaPHKGULyOu5y8F3HiPFG737xOODS8/DyePMj49zwOgz87uhbvPAGCIzzBdQI3qiHtu0x2Wrw/lFG9vEh7PAJdg7zzn5q8PWLFOSRy/jurYBu8rOPGvDPFwTwnpRK5WznQPAzBZbz/EGm9i1cEO3uzIb0YsBA8bpJqPVVxnzzdwsw8yfh3vOjQCr3R1Km8hRH3PHLX7zyweWs6JVNrvedfULvwq7Q9l8jSvOSLhb3+L/w7Lm3Du0ZEBLs3Cse7ueRiPefQijzO4MO7+8vjOwjN/zySyIi9Kzs3vdpeNL0KHye8wG5tvVuwFzzglx+92Eu7vHg2A7yMafW8fqb/vAldzTy6xU+8hkoYuxiwEL3rpNU8vkmDPRdx4rt7syE9pxsWvUjgtTyxCbm7xnXMuuaw7zzRop08MzX0Okf/SL1rLtK7dzyQPDZPgj0tHCS9aaumPNs/Ib2hM8o66vV0O8bG67yCCyC8ZIU0vZ0/ZL0nZmQ9Co9ZvBXutrxWUgw8sqv3vL0KVby9ubU8Us7YvKY6qbxVIAC8eb87Pb9bdD05zCA8kc4VPYaCMT0LweU8eE8JvOBfBr0awwm91JaDu2SkR7xdTEm7qwJavFllBb3Slfu8HCeivC3LhLs/7AU8wo6IvGa3QLuSyAi9XWtcO5w/ZLwL4Pg8KSi+PXZbo7ydfpK9Xw6jvO7KxzyuFdM8yjEZPa6loL0NMqA89GBsvWQbj7wqed08b3PXPLgDdryaUhO9PmLFuh0nIr3YLCg82PSOuonmyTxgftU8VjmGvG8DJT06v/68r5+TPBtlSL2i9SM92H1Hve3p2rwClZw5KwmrPAsZmjqWRSe90DFjvK1UATw8oOu8LDu3vO7Kx7xcyR09Ov6svG64kryG8mM8ak3luwo+Ojv7Ixi9xUPAO++rtDxpWoe703bovKK9Cj2RH7U830yNPLtVnTxj4u08MSkQPT/lcD3knXY98U3zuJkZcrwWzyM79lTSOx8hlbz+bqq8Iy4BPPXRJjwTa4s8QCSfvHNIqrxWcZ87tOQYPIJcPz3iin29raUgPSUCzLsFiHq8XIpvvZVkOjo9YsW82q9TPIp2FzzUloM7nF73vK72vzt4NoO6Kii+Oqb7erznX1C9MPDuPBF3pb2w1yw9Ce0avBZ+BLsk0D89iCRwvK/2vzwopRI9ulUdvA0yoLy195E92H1HPOBfhjzF8qC8uqa8u4bA17wEiPo8jqKWvClH0bui9SO9/h2LuhNrizwaM7y8Nk8CPXGl4zy3slY8L04wvEBP1zqh0Do9G/+fO9hsG734RQO9cWqUvVR7tbwahTE9JvVDPHXEt7wSYx+9KdV4vLjQqjtoVKW8/+PSu73XX7yK0Eo8L0p5O3CAi7xC/Og79hSvvNz54TlBgvq86H0cPA6PjbxeSIq7dnHJPISiFTyrn1684rUtvfn0YzrAOQg8bk+3vR4SeL2+1RC9qXjevORsk7233E08+MuUvJplDj2qORi7QkM0PHF2t7tm5lm9T2z7PLHhO70K+sG8yggsu1yRJL2eL0w79HPAOwWsQbuy1Rg95ZViOwfTQb1Fnde8JsKgvbhWPL0j2ma9YawBvUGC+jwP9dM8Lu4GvWU5SDyF1Ti8SPd6PbIUXz0q/Pg8YR7rvCAEBrsxMrM8oCOpPa0Nqrw+b6I8CE2wvKGJ7zwyuMS8bY59vJ2MjrybWzo9QMlFPD17xbtwtX28ObGHOknr17xexEc9qvJMPEYXxrlxqdo7EqAWPOPoUDuQmLk7+bWdu9Nd4bwh+jG95KmKvJM5qLw2BkU7UVS1vKo5mLohs+Y7OWBovMwvrLvNqRq9RGo0vXyzprzLO888lRldOvjBwDyhFwa6EDwfPcNgCDkwhaE8zOhgPVeCar0PwrA7qvLMvEJNiLy6NnE8CE2wvP+6A7wVQYU9RpG0O9GwT7yqbDu8mLpLvOBHYjyYuku7dqRsvPjLFDyZrqi8kgYFOyQVj70eWcM8n7OOO9JxiTumZYY8AGgVPN5xgTwH00G8bY79O3u/STx4Uf671NdPve1Fiz35tZ29nvwoPaxgGL0gx448OOZ5u0m4NLwk2Be7F+TCPLW1zbzJR3K8/7AvPUO9ojovF1a9HSagvGCk/LvYnz49k/JcvRB5ljyvc/C8btXIPPXN4zxX1Vg8Jv8XPUAQEb3O3L28DCsWPTVZszz+73W9ed8UPSDHjrslUgY9hN8MPSbCoDzP0Jo8QzeRugGlDL2mHru8xUoRvTfm+btcIQo9DNp2PX+T27sHoB69+fTjPKAjKTzaTFA7iGL/vHzy7LsGJrA8Pq7oPOzLnL0HoB49UwubPICHOLx4Zaa7H00gvRJjnzufsw49eGWmPJDfhDwbeQ49owEPvQYwhLvAJeA8DKWEvOWJP7ydgjq9WfxYvKHQur0Lp1O9tyMZPS9KeTytDaq7j6KNPE8ttbydtV28XZGkPBB5ljxNTYA9KpayPT6uaL3FQL08aNq2O8ia4LsYXjE9IqfDPBJjnzoTEDE95Q/RvEGCeroyuES8S5jpvPhFAz0sNyG8rcbevJDfhDtGmwi9W6cbvBu41Dt6jKa7WYCbPdnmCT0nb7K5fLMmvenj4rxz5II9AGgVvLSCKr0m/xc9MT5WPfjLlLy0gqo7yzvPOzz1MzwkzkO8+TsvPLU5ED0lAec7vOuHPGtn/Tx88uy85VYcvX1gOLw+rmg89Weduo24BDyKVly93metO6Rxqbtu1cg7VSjHu3+T27uWVAU8TJYaPTUS6Dzita08L0p5vF7Exztezps7XzITvEWdV70jIbK935pQvCTOQzwBXkE9un28Ok90gL2XewU9G2VmPJk0urzA8jw9FvBlPKPEF77EDRq8CvpBPf/v9byNcTk8CbP2OtCHgDs5sQe9hdW4OxY3sTswhaE8X4WBvKGJ77zX8qy8d+u3u3cq/rs2BsW7knjuPDeAsz2yFF86eRwMvPRzQDstasQ82VhzvJmuKL0p1fg8WUMkvGWzNruPHsu8HSagvN5nLb31zeM8eGUmOjaKB7w+b6K88dJRPKQ+Bj3u8pw80AO+u4pKObyQy9w8SMKIPQV5nrw1WbM8GoWxvKHajjyhF4Y8YR7rPAUyU7yq8sy8mLpLPYYGDb0/W/q86x4LuZ52F734CAw8vOuHPTeAMz1sKLc8eFF+vEke+7xeCxO94y8cPdvQEryIYn+8uInfvLykvDz2HgM8JFTVPMrBYDo9wpA9DkhCO9Hj8rsG32Q85GyTu35gOD0BXsG8bVkLvJdAXT0buFS97vKcO6YeuzykKt68UdpGPC0j+bxJcek7vlFOvWD1m7ybFG87n2JvPl8+Nj3Dkys83x6TvHQDfjwSoBa9kBKovIQU/zu40Kq8WUMkvbcjmbxg60e8l0BdPW5PNzwM2va84xt0PSb/l7yGgso88/nRPLpxGbzdpvM8x3GRu9BKiT3FQL077fIcvEm4tLznvGI8t2AQvUeFkTtnGf28jbB/vJlnXTtjRWs89uELvRfuljpre6U8eUXbvBZq1LwrxwY9VeF7PGenk7zqpBw7U8IAPE0GNTttW9o6iko5PGPL/DwtdBi9WfzYu+e84jthrAG9yY49vPVnnbyYuss7cmqUPNQKc73l3K28nnYXvEZekTxjy/y7f8Z+PIJ7lTzmQnQ8abprvFLOo7xLjEa8okqpPG5PN71MElg9NVkzPU/m6Tzq4RM935pQvXyzJj1uTzc9TvqRvE6AI7x/2qY9xq4IvGwot7w62ta6YPUbvRv/Hzv2U/W7AaWMPAM+9jtb5JI9gq44PcC/Gbt39Ys8zC8svMy1PT3GNJo8azTavHIjybxxL2w7HtOxPFwhCr1wtX2869c/PFdZG72LSjm9uNCqvBJjn7yGQ4Q96l1RPFlDpDyBASc8WiNZvNTXTzybW7o8F513vEZeETy/q/G6bCg3PacSmLs/W/o8gq64PHQXpjzgW4o9BwblvPGTC7y/eM683nEBPJplDjwctoW97AgUPXULgzw5pzO8AORSu3XOCzwctgW9yOErvcOTKz1I93o9oCMpPVccpD0nPA88guHbvEYXxrs/W/q8wCXgPNLj8ryMcbm9GzwXPCGz5rtSzqO8L5uYPB6MZr240Cq9QkO0PBysMT18gIM9DCFCvV/36rziOz+9Gj7mvMcgcjx367e8RGq0vFjTiTxnpxM9ObGHvN/hGz1zVuw8dyr+PCeu+Dy+Uc48BiawPI7rJ7uh0Do9kgaFvLp9vLxg60e88UxAvR3fVLxfPra8SR77vBZq1LyJagQ9CnQwPQIL0zwu7oY8UVQ1PF4Lk7roNtE8+2wDPVxW/Lyr5ik9425ivJ61XTsITbA9ihcWvQegnrx/2qY9fPJsPCjpID1ulgK8B9PBPK3ED7x6RVs8ma6ovCoQIT2uh5i8GZHUvEAQEb18bNs7ed8UPM5gAL1aN4E9t2CQPKZlBrqGO/+8pD6GvMoIrLzlD1G9CvpBvNqTGz3+Ax68Aj72vPEZHT1mLSW9IyGyvKJKqTtKZUa8A7jku2oBtzxrZ/27GzJDvbUvvLqQy9y7Tb9pu4bJlTupv6k7G/8fPYjc7Tw9/we9/2nkOv/v9bzueK68qb8pPCMhMj2jfUy7IDl4PYtUjTxpzhO8hTt/vOcNArwUip88tqmqumzh67uqdg+9zeYRPQvuHr0VatS6qmw7uzL/Dz0DuOS6dvfaPAqz9rxbaiQ8xrqru2Ee6zsQPB88+AiMPIpW3Lzyf+M8GoWxvP+wLzoahTG9nvwovaWkzLuCuIw8OOZ5vavmqbvyxq68bsklvEHJRT1J69e7YwalO5sUb73bf/M7CrP2PLV2B7z0LHW9r7o7vZYNOj2x6w88NCYQPUdIGr3YqZK8f9qmvCuKj7wBXsE8ph67PHULA721L7y8T3QAPdXVAL3aGa27bDKLPC8Ls7wtI/m6jSpuvR7Tsbz4evW8zWJPvcmOPbzvqYI9slsqvWt7JbwahTG9DZuwvF+kfDwC2C88tDvfO2cZfbzcQC29L9gPPXULAzwST/c7K4qPvOL087s030Q99KZjvHXEN7zx0tE7zC+svZHJDb0SY5+8nnYXPWtvAr2dgjq8bY59vPLQgjz6oXW88sauvAArnrzf4Zs8K4oPvYe17btGF0a8kmxLPd5nrbzDGT09u/eqPJxPF70TELE7xfnxPB3f1DtdStk8HlnDuxBvwjx1fey7j9f/u5aTS70rQ0Q7cS9svGKYWT1znbc8TNORuzizVjvsgoK84y+cO2hUJbxMlpo8DCsWPPeOnbxSziM93e0+u2S/2TuF1Tg8tIIqvBJjnztXCHy82SOBPaQqXr2DKCe8seuPO2wyizz/sC89YWU2vXlRfr0UQ9S7HtOxPC9K+byaZY483SBivAPMjD0Ixx48hoJKveCOLbx1zgs8W2qkPNgl0L1W6QA9JzyPvL5Rzjz0pmO8btXIOz31s7y5A867kYwWvSt2ZzwUih89Bt/kPHNWbDws8FW9fWA4POCOLT36ofW883NAvOkqrjt88uw8PqJFvOg20bwfOXi8CQQWvVLOI7xmYMi8BP8vPORWnL3v3nQ7J2+yPORiPzua4cu9T+bpO7Q73zyh0Lo8h/w4PeqQdDwCC1O7d6TsvAmA0zwZkVQ9ysFgPOFFk7y3nYe6G/8fPT+ixTw2BkW9RhfGvOAUP7w5YOi85GI/PH6ngz2mHjs9Ci3lPAmA07wT3Y09G+v3vEKp+rzJjr281v7PPJplDr0Nm7A76PcKvZ78KL2Z4Us8kJi5us+Jz7szrKG8VHs1u5g+jr0SHNS6eRI4vDra1jy7sF+816thPf9pZL2E34w8p5gpPNNdYbvYqRK9h/y4vDHCGLwSYx856pB0PKnyTLr68hQ9GrhUvDeAszx367c8jH1cPEdIGr2oRbu89lN1vHXEt7yyWyq9qP7vPAotZbyZZ108b4Lau1T1o7zsyxy8tyOZPMxucrxIPsY7gvUDvQUyUz2WVAU9DsyEPNNdYT21/Jg8e79JPHD8yLzQDRK99hSvOzVZM70IV4S7JM7DvFYcpLt+DUo8ilbcPGLfJL0hs2a8j6INu7V2Bzx/xv67ekVbvB9NoDy8pLy8+uhAPCZ71TvXMXM8UOQavVjJNTvdups8P6yZPKxgmDtxqdq8GBfmO7X8GL20O9+6lpNLPe3+P7ymy0y85GK/vFCbADzz+VG8c1ZsvHXENzyyFN+7nckFvSrJVbwe3QW9Do8NvSZ7VT3AJeA8l3sFPbykPL1hrIG7F+TCOypP57vofRy8+5XSuvN9FL1ThYm8pPc6vZk0ujyNuIS81v7PO1Zbajme8IW6YphZPRQEjjzjLxy99ppAvViC6jv/49I8hdU4POh9nLwsvTI9lOY5OwwhQj2QmLk8K3bnPJYNurzgjq08YKR8PacSmLzJR3K8YWU2PTTfxLyV2ha861GuvDvYhzvAq/G8Sm8aPQArHr1oVKU85Q/RvNlMULwX5EI94+jQvBv/Hz2Ye4W8O5sQvSoQIb2oTw+9sY7NvCqWsjy5A867FXZ3PNJxib1lbOu85VYcPLdgkDwVsZ+8RtD6u+MvnDxvglq93metPCPaZrx7Q4w7+2IvPFp2R73gzXM96TQCPQLYrzsPKHe94BQ/PeCOrTyfqbo7dAN+vB8G1TwPKPe8azRaO4CHuLx9agw85NwtvN5xgT2jfUw8LxdWPJ/wBT3OlXI8Wr0SPb9FK7urfRA7SRTbPOxO3LxsNLi837sHvWyHY72HRQi9rbMePS3sJT0HYKy8bDS4vNaNUb2a7aE8KyZgustlU7w88pQ7NjB7OzBYwruYtxO7Cj3XPC7PCLvbbAg8PQpAPF9GdLxRstk7oKf3vIK5fD2asVs6mu2hvFza171R0QI7vkJHO20Xm73jCge9dNK2vHQl4rwonGC9cZviOnxwNb3htc88neivumQHyLtbh6w8Cq7lvPzkAjwiiOG8cdeovMncGby/tBu90ESKvOPsI7yzqbo8dyBwPWfk8rx5k4q99JkvPOzdTb3enN68BNasvWnIm7zt3hM9uC5IPUmkEr38xp88uIHzO3RDRT2wPR494bXPPLhqDr10JeK8CXkdu//BLT1D4ni8OWiVu3qq77uquBA9ZHjWPOlTTr3D5Te8HzooPZKiTrybQRM87vY+O0yAd7y4EGW9qgu8O7VRHb1Rstm8jI8VvAUL9buYJ9w7O/FOPBQwjbwfOqi8cbnFvGTp5LvksN2872dNujIeCL1JM4S7hCwXvPzGn7sCEOc7u7hHvenE3Lz64va8qgs8PSqACTyHXG09VnMtO1ZzLT1TlgI8LpJ8PPmPSz3P8Ji7GGDjvEjBr7ydWb6872gTPbAfuzsofn27ZwOcPfpxaLj64vY8VnMtu7MaSb2/tJs85xx6PPyovDytBso8HD8avV4vj7ylhq697IoiPUaovrtMgPc7B2CsPEy9Azyzi9c8PIGGvAfRurvLEqi6lZ1cvGlu8rxguQ49cn1/vVflATxL+AO9NaiHu84NNjz5yxG6xRyMumY+nDxcag+9yUxivFiMnj3pxNy8pvgCvSIX07wtXTQ8B2CsPMBbOL3y02k7/6NKPL4k5DzJawu8eskYPB2SRT3uoxO9hA60vDvTazz+boK4w6lxvZ0d+LuRE12872fNPCm7iT3tbYU8fMNgPDsPsrzkIWy9292WvAClEDwCLkq9nlqEPLLHnT16yRi9ZOlkPHobfjw4hTI9O4DAPGaRx7z0ma87vLkNPF/0Dj2ii6C9yGpFPdZv7jsKrmW74dMyPD5da7waedQ8aRvHPHzDYD3NKxk8KA3vPNMhNb2SMUC8IsSnPKp8Srx5V8S8S2kSveQ/z7wHlXS9VK1nvWR4Vj2BEyY8wOopvIETprphfUg8IhdTvThnzzz0ma+6F5wpPVHRgj2Xtk29Ls8IPbuaZDwJl4C85lhAPJ2s6TooK1K7c3+LPEvaILzOnKe87IqivBNrjTuyOKy7TtUuPLCQSbsHQkk8oougvLCQyTsJeR28XhGsuw2pcz1hmys9YyWrvDDnM73cg2296TXrPMhqxTtQ7h+99LcSPXzD4Dyt6Ga90noYOzUZljrW4Hw8EtvVvI1wbLoSFxw8DHQrutyD7Ty2pQ46iUAWvfKBBL13kX48qYICPe9nzTxTy8o8BIMBvZL1eTxZMnW8YV/lvBpb8brPfwq8oDbpPFUgAjwfqzY9J2eYPJiYar3O79I5gROmunH1i7zNK5m91liJvUAjsTv3I6+74dOyPOCABzzv94S9AdsePby5DT3R6uC84woHPSh+fTywPR6+B7PXvBhg4zyEf8K8OEnsO3z/prsXugw9TC4SvWw0uLz9bHY83357vCXdmLytsx69TmQgPEy9gzzOnKe86QAjujZOXj2pgoI9wOopvHrJmDuKk0G8XmRXPCaiGLxcag+9hJ2lvBZmG7x1RIu8zpwnvXFIN7yHXO28l2OiOZp8Ezsukvy7MMnQO7LlAD27muS7ksCxu4nPhzyShOu86R4GPNTlbj3LZdM6bmuMPGeSjbz0KCE9Sy1MvAquZTxOKNq8/MYfvNmI3zxmAla9GkQMvT4LhjxUrWe9lPcFPPTsWj0oSTU97qMTvDqeIzw8gQa9WTJ1u+K2FT2Qa/q8o8Bou1sWHr2drGk8ejnhPDIApTw0VBa9dJZwPVUgAj2Vndy7aVeNPPLT6TnJvXA9oFRMvUhuBL1hmys9DFZIvXrI0jszNe05q+3YvOy/ajyQ+uu8lEqxunK6C70XnCm9S7w9PdN0YD7Gbzc9f4kmPTyBBr0KWzo8dz5TvbGRDzy71iq79JkvveFEQb2fASG9PgsGvPcjLz1woRo8X/QOvZ1ZvjyqCzy8PIGGO5gJ+Tw1qAe7uIFzPNwS3zuiT1o91m/uO2lucro1iiS9vpVyO7UzurvF/qi82OKIvHl1p7tyDPG87E7cPJBr+rxRI+g7UdGCPJJPI73RCQq98Q8wPdjEpTzxYls7H1iLvK0GSjthKp27S9ogPNartDhTPNk6bmsMvRXWY7xyK5o8M+JBvaoLPLofOii77hQiPY82sjwERzu9J9gmPLEggboqYqa77L9qu+EmXroyAKU8HzooPZV/+bywHzu9Y0MOvHFmmrsgjVO9+gBaPQULdTxT6S09GNHxPIGiF7078U49w3QpPYGENDwa6uI6oKd3PX4YmLuCuXy7ic+HvEtLL7wP4Ec8D42cPAFMrTzkzsA8VjdnPHrJGD0gHMU8D2+5PJLAsTvvZ808ovyuPOFEQbxDrbC8IhdTPEJahTyqR4K8j4ndvNMhtTgMdCu9mu2hvEMAXDwg/uE7MMlQPR4EmjzY4og8rXfYPAS4STwekws9WuAPvG7cmjzxD7A68bwEu0OPTT0wHPw8QEEUPHN/iz3sbL884WKkPVdWELtDHr88pvgCO4lAFrxqHI083pxevX++bj1mILm8EoiqvCYxCj0CEGc8tTO6vIh7lruS9fk83KKWPa6WgTy2NIA95najPK/MjzzeusG7y/TEvKX3vDxBlQW9h+tevUCyojp8jhi76Y8UvSLiCr30Xem8d1w2vOk1azzTzgk9206lPZeBhbwApRC9Eogqvc7Rb7wVR3K5wT6bvIyPFTznq2s8cZviPNOSQzyP4wY9pBUgPfKBhDuiiyA9KSyYPY+J3TwHYCw8n3IvPf0aEbxbaUm9O4DAvOTOwLx6qu+8z38KOaiBPL1MvQO94WIkPWz4cTx0JeK6+gDauzB2JT0BvTs8jzYyO/z75ztTy8q8kRPdPAKfWLvpHoY8QCOxPate57z4BpK8HSG3PSYxirwqYiY9kjFAuyVsCj16yNK75xz6O9QEGDzffvs87N3NvEmF6bzWHEO94kWHPDotlTwMIQC9Sy1MPeZYQD1gSIC8tqUOvSpEQ7wixKe7pWhLvZ5ahDxBlYU8Ye7Wu3l1J72bQZM87N1NvemmebyUSjE8II1TvQW5jzwBvTs8btwavBd+Rr3O71K8NWxBvFDuH71vL8Y6y2VTuyaiGD3ZNTQ9OPbAurmgnDwtsN+75snOvA/CZLyg5AO8WTL1ObDjdD1AsqI7bPhxvEgzBL30ma86gROmPD58FDxxKlS6Q49Nu5LAMT042F297DB5u9MD0jvcg2091v7fvIdFCD18/ya8yBcavHVECzw1qIc8sscdPLEggbzLg7a8wOopPXRDxbzReVK8wFu4vIyssrylhi68+pCRO/z7Z71DANy83rpBvN6c3jwg4H67WVBYvKNugzywriy9YQy6PDJxszy1Fde79+dovBomqby4vTk9M8TePNyD7Tz/o0q9UbLZvHJ9/7wUEqq8CXkdvAySDj35Hr28n3Kvu6QVID0aeVS6q32QPIwdQTt2CQs8tqWOvA9R1rxqjZu7BbmPu5RolLyHRYi9lSxOPWkbx7xsNDg74bVPvc6cp7zsiiI9f2tDPRjwmjwY0fG8grl8vR/JGT0CvoG78YC+O3K6i7wwdiW8EOENPRqXt7wMIQC8iiIzPDlolb1+GBi9TtWuvI9UFT1xSLe8Kwh9PJrtIbxRstm8UbJZvQK+Ab2uWXW8O/FOPWHQ8zyK5uy8ve+bvOK2FT1xZpq8gYQ0PWn94zxfRnS9O0T6uuPsozzhl2y8+JUDPcPlNzxX5QE8uC7IvFluuzsSFxy9Op6jOvlagzxJhWk9Ar4BPThnT7yaQM25bDS4vJqT+DtL+IO5+VoDPVDQvDzRW2+7hwlCPUwuEr0Bvbu5qnzKPMHNjDvGUdS8SYVpvE5GPT30mS+9Xr6AuyrTNLxR0QK8XqAdPdyhUL1Zbru9HeVwPOz7sLsSiCq98byEOxe6jLvTdGA96lQUPGEqHb1WAh+9JqIYvR86qDxAdty98oGEPA+NnLxDPKI7oougvBw/mjtHqYS8S0svvP9QH73bvzO82fltPJ0deDyquBC8PIEGvX/6NDtxKlQ8/xRZva4HkLygp3c8ZwOcPImxpLyIe5a74dOyvJrtIb3rqIW8f03gvMv0RLydyky9D2+5vDhnT7wYfww9DJKOvZUO6zv0mS89Nd3PPJiYaj3pAKM5SN+SPGF9yLw9CsA8w6lxPT0KwDy69I271Fb9u3++7jx00rY6mkBNvVYCn7zuhTA8KEk1vZdjIryVf3k8C80OPVAMAzw4unq7ahwNPZ0deL3GM3G8TYKDvH6niTxmkce8fy/9OiKmRL3GwuK8/1AfPHzD4DswdiU8j8UjvMjb0zxhKh29zmDhu7OpOrslMMQ8dz5TvFDunzv3WHe9/BnLu2Hu1rwukvw7wHmbvJdjIrwgb3A8YEgAOypiJj3apwi8f01gPG+gVLwofv054dOyPHTSNrwmohi9S57avF4vj7xbacm8D40cvR2wKD2UaJS7W6UPPYXS7bpFN7C7bIfjukMevzv/Mjy8py6RO/eUPbyo8ko81hzDPCX0fTyw43Q9Wf0sPDgyhzu90Tg8JU4nvdaNUTvDx9S8nXehvAfvHb3ACA09Bg2BPF7zyDzZavy8li0UvbUV1zuU94U6Jb81vAzlubtkB0g9B5V0vNkXUTxRQcs83BLfPLhMq72NHgc8j4ldPTVsQTxYGxA9vX4NvfGAvruF8Ra9HzooPIETJj33lD28a1IbvLCurLzLg7Y83rrBvBQSqryYJ9y8BUiBvGJ+Dr0lg2+82qcIvcz1Cr1CWgU+CNKAvBoIRj3QlzW9gYQ0vIJmUbzQtRi8k6MUvcDMxjtJpBK8/6NKvXdcNr1RQpE8I2p+vDFZiDyU9wU8naxpO16gHT2+Qw09iiKzvJ9yL713XDY65M8GPWINgLupgoI8yGpFPQMvED3fuwc9x+ELPX9rQz2KBFC80cz9PKVoSz2FYd+7Ps75O5UO6zxspUa8SMEvvOQhbLyfASE9sAHYOyaiGD1G++m6jY+VO8y4fryVndw6BEc7Pa1CEL2MrDI8LF00vbVRnbzxvAS99Ao+vXZ6GbxpjNU7UzzZvDKPljwUoZu8zboKvXZ6GTxQfZE8K5fuu/SZrzvhJt48ml4wvVUgAj13XLa8dCXiue/Y2zz0KCG97jKFPSf2CT0P4Ee8fOFDvTtiXT2yVg88jzYyPDVsQb0PUdY803RgvLAfu7z0XWm8Tgr3uR2SxbrrGZQ9C80OPVGU9jySok67a1KbPEu8vTwSvXK8u0KbO03ZXLzWOh29w2e0Ou+cRLzlJAq9l+9qO//mdj1j5R4901GhPEAgFbwgUau9UGITvatl0jyqBQ28hV+7O8GBfLxSWLO8bVC1PK+hbzyM1LG8RQShuw1+wjwXObY8fZpnu2wN/DyRYKw8LzuYOpBtUDvNcgW8cn+uPPlXOL3fste6Nm1VO/i0ObxkMAy683icvEx5F72fZOG81ZcePQ4hwTwNzh+8yiwIPfLVHbtANe27d7MXuwdc7bx96kS8JIWUvRx1UzzEx3k83Hl+PBvFMD2CGT48Q2GivVG1tLyaeCG9krNNvdqD3rzsTpO8EGe+usqZcT1srba6JI3Iu5ooxLxi8kI96BqqOtIO6LlCy8e8uk8/vXMv0bw+4ks9RU+Ou+jCGL1CviO9zXIFvDR3Nb3CdNi8aLyGO6+Rhz10gnI8PoKGu3pEAjwUQxa9N7COPAVZqTwbxTC9E13ePFX+dTwm4Gm9eQFJPOLrMLzi6zA84GJ6vEidv7pMIYa8CP9rvQdPSbx3s5c8Tsw4Pf5D+LrhmA+8aloVPXNyCrwpyeW8J24QvBQA3TxTuPg8pYY2PeBV1rxLk1898TIfvCLnhTy0cCM96b0oPFeUUDzH86474vjUvEB4pjxGpx+9mTXoOzQnWLyVqe08tdBoPFX+dT0fXs+8FVN+PZ1hnT3ctAO9+03Yuxx1U73XhQo9NRq0vaL9fz278r08/3kNPIeluDoOcZ48S4Y7PasVdb3dHP28GX8zvGu6WrywjBe9HLiMPW6w+rxMNl67Y5VBvefX8LsQtxu8hV87vCtfwDrjS/Y7IZyYvI4n07xInb89bF1ZPCfTRblz3/O7E0gGvOd3K72ISDe8vji7vHQiLbwI6hM9HGgvvWFPxDzLjM098TIfvRjUgL0dGNI8Y42NPM9opTz2Ht85p4n6vLDXBD1iouU9BkwFvBwldryvkQe8SO2cvG2gkryfVz29aBQYvW7zszwQXwo9zyVsvJy+njxYh6w8ieu1vDpWUTt00k+9DnEevRKtuzwU6wQ9zdLKvDYNED27/2E7r5EHO4nrtbwcddO8OAOwPGTo4rtiQiC8xAozPCLnhbpxLA290vkPvZWcybs/fRa9qnJ2PCJHS72QHXO7H66svPV7YL0UAN08WDdPvLn8HT0v+N46eVGmPF1elLxhT0S83l82PErbCD0BwAo9R/rAuzXXerxOvxQ9IPmZPFWRDLwzbwG8PoIGPMAZgzxMNl69s80kPYmb2LfqsIQ6NMcSPYIZPjwqbGS98eJBPHYQGb1srba8P32Wu1bxUTvx4sE8XMNJuih2RL0jOie9X/wivdL5Dz20fUc8ZSscvJJjcD1yjFI8oAdgu9AYyLtoFJg74QX5vDHufrwk3aU8cPZ3PQqVRj2a2GY5zCeYPKL9f7x0FQk99gkHvM51yTwUAF09YEeQPL+LXLz6qtk8K1eMvLqfHLyOJ1M9RU8OPBy4jLu/zpU9J8ahu/7WDr2PylG9JdCBOwDNrryA00A9asf+vIZif71sXVk9ljcUPJiS6bpRrYC8AM0uvXSC8jwOGQ09Tsw4vbZeDz0ZPPq7NMcSvtAYSDsY3LQ8P9UnvfudNTwAinW7+KeVOzZ6eb14a269b5ayuzDrOr34ZFy9Qx5pu83KFj15AUk8lJkFPMZQML0RWho9WnUYPVkqKzt9hQ89rEsKvVVO0zu+04U7TdncPJp4ITw2bdU8EGc+O5cyJL3DJPu7dSVxvfV74LzWOh2898Hdu+2ZgDyi/X888O/lvO1JI72QbdA77vlFvH/gZLz8OIA8dCItvWLywjxx3C+9yuEaPY4aLzxJkBs9OWN1PCLnhbw/hcq5v9s5vSwCP72TVsw7mCUAvVot7zzhBXk9XQYDPYelOLwqtA09kWAsu5Xspr02bVU8wH44vZsbILu+6F29wXEUuQakFry5rEA8qG8yved3KzuLMTO8Dc4fvF4Wa7zzeJy5BakGPZY3FL1x6dO8ZdMKPNALpL0113q70AukPFP7sTz+hrG7wBmDu2Q4QLyLMbO8CeUjvco5rDxjRWQ+kQibPUx5F7wcdVO9HLgMPCh2RLyaeCE9eQFJPLLayDwt9Rq9Fpa3vIVSFz1GB2W6dXVOvPKFwLyv8cw88yi/vM+4Arxv5o89ies1PDLMgru0wAA98tUdPQ0u5TxgnyG9I/dtOlRb9zzk7vQ83wK1O2NF5LxWNIu8lAZvOk3Z3Dy1IEY8dIJyPF22pTzFavi8MOu6PACKdT12EJk9AwaIvCH0KbpeARO867PIPLpPPzx2aCo670xnOUeqY707SS09celTvDLMAj29Rd87MOu6PO75RTu1EyK8gmkbvA7R47xNHJa7N2CxPJSZBT2Nd7C8GX8zPCGcmLy7/+G8hvUVvMs8cLxK47w6/JARvQwrIT34tLk7V5RQPQWphj1dZsi8LbLhPPm3/TqL4dW5aBSYO0K+oz1FTw69494MvRrfeLxOZwO9cy/RPHukxzyPenQ875zEvJc/yDxX1wm9RqcfPZbfgrrRriK8MYEVPSUoE7zyhUA9U7j4vLpHi7tz3/M8H66sOF1zbL2wNIY9PTeZvEZXQrsFWam82yZdvT3vbz2pz3c8ErpfvUSsDz3k7nQ4ZIgdPU3Z3Lx2uAc9B0cVO7UgxrwHT0m7JjDHPJEIm7udEUA970znvPhPhDx/4GS8Hgsuu0mQG7xjjQ09kB3zuhiM1zv2YZg8tBiSPDGBlbx2GE09tsPEu4qOtLymIYG9OFMNPK9BKj3u+cU8tMAAPbR9xztGB+U7BqSWPSoMnzuQHXM8UMJYPDLMgr2nzDM8E11eurmswLxk6OK8rVvyu7Zejzt5Ack7AmOJPOuzSD3Bgfy8X0wAvQJjCb3N0sq8J8YhvQJwLb3x4sE7BVkpPKgs+TuxN8o7aV8FOqOg/juetL48Q2GivKOg/jzf+oA8A8POO4adhDxxLI28awo4vcrhmjynHBG96GoHvWgUmLwgAc68K19AOz/VpzzBvAE8zM8GvGi8Bj3X3Rs7hwV+PftNWDk9jyq9it6RvIO0iD2OGq+8ft0gPPJ9jD0Jomq8U7j4vK9BKj0myxG8jceNPXXFq7yuRpo8ObPSvAefpjzQsxK8VJ6wulDC2DwmMEe8JnOAvX3qxLsiR8s83g/ZvJ60vjxMIYY6eFYWvaoFjbx2uIc7W8AFvfTYYTyO1/U7lantvD3vb7yxLxa9JN2lu/vtEjs7SS08krPNvMMk+zxNiX88iOMBvUjtHL2be2W9hGzfu5c/SDssUhy9P9Wnu2XbPju/i9w8ioYAPWXTCj1l2z49QnvqvIb1FToI6hM7drgHvZsbIDyWj6U8aloVvbgBDr04EFS8eVEmPeEF+TzH8648Y5XBuoYCOjogsfA81jodvd9SkrxwRlU707FmPYvh1bzy1R29aLwGvRNd3rwjOqc89Ms9Pf3jsrs6VlG8hp2EPHbI7zwW9vw8BVkpvUZXQr2w5Ki8OaauOwLQcryGnQS9Tsy4u5T5SrxEwWc9cDmxPHUl8Tw5pq648eJBvdfdGz1X5K08xl3UvA/EvzxAKEm9dcWrvGHqDj1uQ5E8JI3IvNRU5byPevS8VFv3vLdmQ7oJ5aM84PWQOz/Vpzhu8zM9NRKAOq7+cLs8TPE5LbLhumUrnDtANe28QHgmvMIUE7wPdOI8RKwPvHa4Bz3Favi8OlbRO7vyPb3XjT69opAWPN/6AD0AivW6YKxFO0B4przMJ5g8f+DkvJFgLL377RI9CoiivETB57wcddO8asd+PCkZw7tu8zO9ZnaJPHtUary8ouC5LbJhvEwhBrwAHYw5r5EHPYcF/rzLjE280FuBvHxHxj21IEa8FEMWvb/OlbzxMp88SjOavPI14zzhmA+82saXvA5xHrwU64S8Tsw4vE582zxDHum8ngScu59PibxyPPU8fEfGvGSIHT0Gue68ok1dusNfAD0L6Ge8bA38ukK+o7yBxpw8TwqCPFotbztTS4+8l+/qvPN4HDwBfVG5kmPwvBTrhLrTUSE5CzhFvUann728lTw7142+vM9oJT1NxIS64ZgPvV6pAbwqvEG8zM+GvZTxlryYkmm9ZIgdvZKrmTuXgoE9j8rRu06/FD2L7nk6dIJyvLQtajx9mme9mTXoved3qzyuTs47stKUPAJwrbzjjq+7ravPvH3qxLv1brw76Q2GvIqGgD1cw8m7nqyKvMIUE70j4pU8O0mtvBNd3rvQyGq7i+FVPE9vNz2OJ1M8s4rrO3uXo7zN3+68zCcYuwMGiDlWoXS6l9qSvO7soTxh/2a93q8TPTtJLb0IQiW6Kw/jOt8CNTv5Vzg8QCCVvCuvHbxc0G261KTCPPcRuzufp5o8iEg3vXqx6zwyzII9gNNAPZP2hr3n13C8tROivAs4RTwOGY283Rz9PDa9Mr00dzU8SZAbveaETz2U+Uq9OAMwvDCbXbwumBm8142+u09vtzzPaCW9pEP9vN5fNrsKRWk8CfJHvfpKlDwHn6Y8FaNbvIIZPr0Vo1s9fepEPRQAXb0umBk8snoDPMwvTDwBwAq9ZDCMPHHp0zyW34K7IFGrvKxYLr2y2si87QZqPLcW5jzALlu93wI1vFJYM72rFfW74QV5vSwCP7zw72W8n1c9uoHGnL0rrx095oTPO3495jquniu8+vq2vIyR+Dv8/Xq5cs8LvSduELxSFfq7MJtdPQDNLjr58gI9zXKFPWbOmruy2kg88ZLkvAqIoryinbo6D3RiPH8oDryob7K8acQ6vSsPY7yL7nm7sx0CvRjUALtRtTQ9wsS1vKtl0jw/hcq8XwlHPXj+hLxAyAM8Qg6BPE5ngzwbxTC9QMiDvNGuoruPevQ7IZyYPUAoybzKLAg9ZyG8vNnLB7zL3Ko7T8/8PDDeFr0fXs+8KWkgvcNfgDxX5C09pim1vN28Nz2m2dc8/oaxvIzUMTyKjjS9NCdYPfxAtLwpyeU52xGFu5OmqbzTUaG54UgyPSCx8LuzHYK8w1+AvL7o3TvnJ0689MOJPNJexbxfpJE82oNePHzikD0EFvA6Z3EZPYwkD7t4Vpa9CogiPVmK8DzerxO7hfoFPAb8p7t7pMc8BGZNPZrYZj1SqJA9nG7BPPVmiD36+jY940t2PKq1L70SrTs9p4l6vFjncbuxL5Y8K1cMu8ZQMDzAGQO9WDdPvf95DbxWofQ8ufydPH/g5LsFAZi8o6D+u4ayXDwkjUg7SvBgPB4LLrxeFus6ZothPA3OnztEEUW7wYF8vGytNrzl4dA61jqdPBKlBzuiTd282SMZu3qcE705s1I8VUGvO4elOD1toBI9FABdujGBlT2cbsE6H15PvM8l7LwbxbC6Y+WePBc5tjzTUSG8bA18PNSkQrw+Mqm8BBZwPGcZiDzVR0G9J8YhvInrNT2/O/+7IpeovKwIUTwj6km8tC1qvH/xTrtsXxI9yEKZvIrT2Lu8Yra8Z682vZxY6jyFVVQ9ReQVO8N4vrup0nc5uMoyvYY7VTygbhs7XBkDvUjkbDxtbD077mQUu6MV8bsUh487FZQ6vYpGWTyrnvk8Hh3DPP+QpLvdxQO5klxhPfifn7wAXSY8XBkDvfAwFj1Cmua8CL8EvceDQjz7YPQ79nqcvMSqFb0xiFW7BsErvUnk7DxF2Wi7mMBmvQOcqDyf+xq9EO+LPAS0AL1uUj69M1TXvPYHHL1VBXm9/h0kOnQpRLzEkJY9OZ5dO8s1RTywJyu9Pw2QvZjA5rySQuK9MC/UvPzeIb2FRgI83FIDvT4nj7x8Wcu8JcBKPGcitzsGNKw8O1BgvPdVcLwiKEe8+XpzPXhOR70Trjm889drvKgRIz0bRJa85dBeveqn5Dz0O5o9k02PvD4c4jzDURQ9C7KwvHMcmTxOSPI8OFAJvBVtkLwX7bu8w5I9velo4rwIv4Q7MK2BOzZ5WryhSW+8Zjy2vBxRQb2fiJo8Pw2Qu/vt8zyvQSq9Qw1nPLEC/zxhvrG6l9plPKeeIr2ajGi7r42AupGbDD3CrLw7GoU/PaiEIzy1/rA8oi9wPaHHnDy3V7K6W+crvBfTPDzltl88TtXxPAaAgjqu3fs7DX6yu0Rm6LzvvZW729RVve0Lkzy777U8oUnvvIn4hLu8SDe9E8g4PJQoY70FaCo9EDC1vH4lTbtdQC09wh89PWNjCT1b56u8U16jPB4dQzzZr9K8XpmuvFCsID0lTUq9h58DPOBsWb1xBEE9FZQ6Paa4oTwrsU87wOC6vCemSzyvAIG7WoN9PRAwtbzHXJi8TsYfvQE4erpjFzM7LX1RvTAv1Dy1/rC8WTWpPJ1JGL0Uh4+7blK+PXPQQr0wolQ8j8+KPNWKz7whQka9BNB9vKlfd7wkZ0k8JPTIPffi7ztSbfU8XXIEvUBb5LyJawW8AikouxZ6u7ztfpO8x4NCvCsk0Lz/hXe9yBDCO52XbDz9xKI8F6wSvdktALysj6e8Fnq7PNJlTL0Cq/o8ha5VvRwQGLyF4tO8z7PJuzPSBLzBEhI8Cz+wuxu3Fr0CKSg892CdvOOR3LyLNwc8QTITvQbBK7zfBAa8hq5VvKnS97ojDsi6dvXFPE85oLxB2RE8VXj5PJGbjDpNh528egDKO1Neozwg6cQ9smYtPaKIcbyxDay8kkJiPfv4oLpEZug8HFFBvKh59jsnGcw8SkibvAaAgjytAqi8zlpIPPUhmzyp7HY9Iw5Iu0rK7TswOoG9GJITPRJvN735lHK8MCCCPddWUbxxkcC8p54ivTfSW72quHg8TXxwPNuGgb2CMNG7VRAmPRDvCzxZNak7hkYCvUTz5zt7c0o6bF8Su7MlhLwcUcE88mRrPMWQFjy3VzK99RbuvKMV8TzFXj89rIR6PTEGAzzPQEm9w3g+ukj+67y4PTM7ZogMPWMXM7w2Bto82S0APfJk6zx0tkM9nhWavPmucbvdula9UusiPQFDJ70FTiu9AcX5vDRFhbtYTyg84GxZPI7EXb0MCzI9zs1IPMs1Rb0NZDM9occcPGPWCb4IAC69FK45Oa/mgbxLu5s8kZsMuwTqfLxl4zS9t1cyvLGALD1xkUC7ERY2vaOTHrtjYwk9tRiwPM0BR7sKGAa9gjBRPCT0SD0A3/g7G/g/PFlnAL2IhYQ9KljOvDH7Vb3D3pM8L7xTPRu3lrzsmJK8h58DvAv+Br2XZ+U7eMFHvP/4dz1ecgS7qGokPaRfoDtN+h29oohxPNQXT7xvhJU7smatPBbGEb3x/Bc9DcoIvR92RLy2cTE9LJfQOdktgLu7Owy9HpDDvLyUDb2A10+9C/4GPUcjmL0N8bK5VColvNv5gTtBMpO8XZkuPVCsoDsZ6xS9+gdzPLNMLr3sGmW97tcUPMWQFj0Zn768U14jPSnlzbymrfQ8NJ4GvFzNrDyxdX88r+YBPKiEIz1logu9bzi/OolgWDvlaIu9laYQPeFdBz1aG6q8qyv5PMyOxryiL3C3iBKEPJb/Eb3k9Qo9l9plPknvmT0E0P073qBXvQnmLj2TQmK85ingPE1icbzuzOe8MAaDvf4dJL37+KC8xR2WvCemyzxg8i+88fyXPHKpmDyM+Ns7RsoWPYIwUTwTVbi8ZyK3PBksPj0y4dY7BPUpvVhPKDt9P8w8kANgvDfS27z1lBu9Rxjru5PP4Tz0rpo8W9z+O67oKD1gZTC7qAb2u54Kbb0g6US7gb3QPDtQ4LtzHJm8+npzPO6yaDy+oTi8+SFyPBw3wrua/2i9B/OCPGpHOjx2gsW86I2Ou8wBx7wXuT28nMvqPMIfvbyffe28HcTBvLKyAzw7at88a7q6PJ/7GjzKT0Q8Wk0BvI12iTmTQuI7pOwfuySBSL35LB89sI/+PEINZz0YRj091nDQvAT1KTvaldO6LfBRvC+80zzZLYC8pisiPTkrXTuyPwO9/cQiuwDfeDtsE7w8oUnvO6BuG7u1pa88J6ZLPVhPKDy4iQk8Qw3nvNEMyzxRbXW8KyTQu7UYsLyal5U8QUwSPQenrLy5IzS9tWQGPVQqJby+h7m7C/6GvKpQpb1ZKnw9nhUavBtrQDztc2Y8Oo8Lu2OKszwrsc+8hcjUPM5aSDuJawW85OrdPE7V8TznAA88EeI3PaeeIjyOxF09MBXVO22GvDzqNGS8oVQcPaq4eDxhvjG9Efw2PaXHczyCMNG8Se8ZO0NmaLxoYTm8wwU+vf9R+Tztc+Y8euZKvBWUOj2BvVA8Cz+wvHBqljwZLL68H3ZEPFi3ezvbYdU8GZ8+u5EODT1jFzO7QSfmvATqfDwwrYE8nSTsPFQqJTwJMoU9XbMtPNb9TzwTVTg8B6csvTtQYDw5Noq922wCvAWaAb0NfjI8+bkePE3v8DoBQye99vxuPKHHHD3hxVq8yPbCPGIxsryzTC68O/fevE7GH736hSA8Hh1DvLgWCbzusmg8KT5PvP03ozyhVBw9Hh3DPIchVr1O4B68iAdXPardJD0+HOI8U1P2O4ss2rvb7lQ9qrj4vKOIcb26yIs97z9ovcyORr1VnSU9D0q0vQ4jijxN1XG8oqLwPLvvtbzk6l28XEAtPObBjLzCrLw8o5Oeu3b1Rb0k9Eg922FVvA1+sry2izC99nocPCsk0LyPQou8N1/bPDt1DL1Oxh+9EGIMPZUZkTyGuQK9AwR8veSCCj0eHcM8UQWivDv3XrsSbze9w5I9Pej14bsIja285sGMvaOTnrvKT0S8bNKSvfWUG70HnH88RVeWPG5SPj26ljQ9Gl4VPfUhm7ycJGw5dQ9FPEBb5Lzvsug7bBO8PbJmrbvsAOa6Fgc7vUDoY7xKPe48OhyLvFAU9Lz4yHC62qAAPardpLzMG8Y8LJfQPPoHczzvsui7Mm7WvMgQQr2FVdS8H3ZEPEo97rqdPus8KeXNvNF/y7wO17O7pjp0vPb8brzE6768bKA7vfmucTvI9kI8+SwfvVobqjpFTGm6/NP0O7lvCr1T0aO8vNU2PAT1Kb2RkN88fT/MvLfkMTwKWa+8sfOsO1UQJrw0rVg7Em83PGRwtDumrfQ7YjGyPG4rFDzGREA9+SwfPP52JbpW9qa8DfEyPfoH8zwUO7k8t6OIPBQ7Ob2vw3y8IrXGvNQxzrvdOAQ8DFcIPRYfE72mRaE8OoRevLJmrTyIhQS9PiePPL6huDuFYAE8nSTsuzbSW7zExBS9HN5APWAkhzs33Qi9Xz6GvBHVjLybcum8A5F7vEHZET04wwk93FKDveYp4Lzkgoo6kB3fO7O/Lr2hSW+8vJSNPJCq3ryHetc7fLLMOvWUm7u6VYs9t+QxPcIfPTwyVFe8cMMXPfc7cbyu6Cg9l01mPXCrv7waXpW7ClkvPXjBR726yIs9UB8hPfv4ILyNA4m800tNO8wbxjwba8A87yXpu2rUOT35LB89IOlEPPxRoju1pa87StUaO2gIuDuE0wG8uMoyPQDqJTvF0b87AN/4vA+jNb0aEr88770VPR8DRLz3YB26xrfAO1GSIb0S4re8eMHHPADQJr3p5o87YPKvvKXSoLxw95U8nhUavIgShL3+n/a6vEi3PIreBTzPQEk86qfkvJ0k7Ds294c7t1eyvAIe+71u3708h58DveMPijwPvbQ8D5YKPaq4+Lu/0w+9xdE/PLmws7xyXUI9oqLwu21SPru3MAi9OLjcPCyX0DxjirO5+oWgu0liGr0FTqs8Q4sUuzzODT0UO7k8w3i+O/tgdDw1INm7bNKSO/PImbxKsO68y45GvKQGHzzJaUO9s0yuPGAkBz235DE9nT7rPFsBq7pFTOm82SJTOjbSW7x+JU277sxnu34lzbueohm8G7eWPPhGHjz40508ReQVvf6qI72UtWK7/hL3u1fcJzveHgW9LJdQPBqFv7zIg0K7/qojvc9AyTtHI5i7hWCBPAUNgrz7a6E7ulWLvKY6dL2eFZo8Zcm1vPksn7tzQ8M8Vl56PN0TWDyaCha9+SwfPTJ5gzwLJTG9iWuFPBftuzwba8A8UngiO4efAz3xFpe7Xz4GvVragL10tsO6nUmYPJkkFb1LI2+9M1RXvej1YTzxFhe9r84pvBYHu7tUt6S8JsBKvQDf+DwDnKi9JsDKPNxSgz1m+wy8UB8hPEKlE724yjI9hPxSO//ppTq/uZA8CaUFOsZ2Fz0FTqs84qvbPKwcJz0Uh488YPIvvS5JU7y++jm87fETPKpQJb3l2wu84cXavBVTET1tuBM8VZ2lPL76uTvUMU699K6ausa3QLw33Qg91YpPvEh8mT2ysgM8g2/TPIVggbv6hSA9rlB8vcL4EjvW/U89bt+9PFkqfD3t5ua8O2pfPN+GWL3ZldM8ysJEu4KjUb0Bxfm8c9BCvCK1RjtZqCm9YxezOxYHu7wnpsu8U9EjvHKpGL0xiNW5sYCsvKn3oz1s0pK9G2tAPbvvtbzBxju9sQ0svd6rBLyBStA7pOHyPKpFeLzZItM8Yb4xvXI2mDuQHd+8h58DPcs1RT3hONu8Tm0ePVCsIDy6lrS7bKA7vToR3jwYLD48AOolPBftOz1hlwc53h4FPK7d+zx4wUc81L5NPQ8Jiz1g8i89BxqtPHjBx7pz0EK9MK0Btz+AELv4nx+9vqE4vVhE+zv/AyU8nhWaPIuFWzwbRBY7Se8Zu926VjwbKhc94dAHvQzkhzxpYbm8fT9MO0rVGjzExJS8QM7kPBPIuLzDBb682nvUvJ2X7DzCaxO95sEMvVUF+Ty2izA7HwPEvHMcmTw2edq83cUDPWfhjTwb+D88VDl3PaHHHL3Ps0m87Brlu/c78buwmiu9CXMuPYYsgz2IEoS8OSvdvMKsPLwNfrI7bt+9PKwcJ724Fok86lkQvcbplzxruro8BsErvXDdFj0dxEE9VLekPBVtELw="} \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/vdb_relationships.json b/dsLightRag/Topic/Chemistry/vdb_relationships.json index b322875c..4abbba00 100644 --- a/dsLightRag/Topic/Chemistry/vdb_relationships.json +++ b/dsLightRag/Topic/Chemistry/vdb_relationships.json @@ -1 +1 @@ -{"embedding_dim": 1024, "data": [{"__id__": "rel-19fc003f86fe0ab223780b80bb3cbdcb", "__created_at__": 1752194223, "src_id": "Iron Oxide", "tgt_id": "Nitric Acid", "content": "Iron Oxide\tNitric Acid\nacid-base,chemical reaction,heating\nIron Oxide reacts with Nitric Acid under heating to produce iron nitrate, water, and nitrogen dioxide.Nitric Acid reacts with Iron Oxide under heating to produce iron nitrate, water, and nitrogen dioxide.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "rel-40ca1814ff3034c4057137e8874eb6f1", "__created_at__": 1752194223, "src_id": "Hydrogen", "tgt_id": "Oxygen", "content": "Hydrogen\tOxygen\nchemical reaction,combustion\nHydrogen and Oxygen react through combustion to produce water.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "rel-8e745f57c7aa42cf13ea68c4434073c3", "__created_at__": 1752194223, "src_id": "Nitric Acid", "tgt_id": "Water", "content": "Nitric Acid\tWater\nchemical reaction,photodecomposition\nNitric Acid decomposes under light to produce nitrogen dioxide, oxygen, and water.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "rel-92f28c2a274b73df2ec4767c30b4bb8d", "__created_at__": 1752194223, "src_id": "Nitric Acid", "tgt_id": "Photodecomposition", "content": "Nitric Acid\tPhotodecomposition\nchemical reaction,light-induced\nNitric Acid undergoes photodecomposition when exposed to light, breaking down into nitrogen dioxide, oxygen, and water.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "rel-2ff952e23e9ad334f9244237bc7d6049", "__created_at__": 1752194223, "src_id": "Nitric Acid", "tgt_id": "Nitrogen Dioxide", "content": "Nitric Acid\tNitrogen Dioxide\ndecomposition product,gas formation\nNitric Acid produces Nitrogen Dioxide as one of the main products during its photodecomposition.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "rel-f792fce23f42b2dafa0eaf5f34f201bd", "__created_at__": 1752194223, "src_id": "Iron Nitrate", "tgt_id": "Iron Oxide", "content": "Iron Nitrate\tIron Oxide\nchemical transformation,salt formation\nIron Oxide is transformed into Iron Nitrate when reacting with nitric acid under heating conditions.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "rel-fd07581085b698bab24fb96f830ee452", "__created_at__": 1752194223, "src_id": "Combustion", "tgt_id": "Water", "content": "Combustion\tWater\ncompound formation,reaction product\nThe Combustion reaction between hydrogen and oxygen produces Water as its primary product.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}, {"__id__": "rel-89c0c6f0194f50829cb8f8bb4beaf3e0", "__created_at__": 1752194223, "src_id": "Nitrogen Dioxide", "tgt_id": "Photodecomposition", "content": "Nitrogen Dioxide\tPhotodecomposition\ndecomposition,gas production\nPhotodecomposition of Nitric Acid yields Nitrogen Dioxide as one of its gaseous products.", "source_id": "chunk-e4dee9f72e6c899fd70a04b77c38d8d0", "file_path": "unknown_source"}], "matrix": "ajfNPC3sRzwhgyW9ENCxPIrFe7yMamS9YAlLvIUYQz2dvhg8Q7a8vPRJU7yiNFm91BpkvY4PzbzAlIQ8VJ4UvDJtkbwJFEi8CBAgvFqEWbuBznG8eXzQPEERVLznFRU8ql4zPdkHCroVD/o6v/EvPLCsrDytcQy9Y+WrO9ibLb2Cpiq9/aqlvG62grzxDJ88kLS1OrVmgrzDPRW98dc6PX3GoTzwCgu7VNcgPcV2oTynS9o7+Mqcu0J/RDwJtQg8RihVvfdN+7tOhxM8Q7Y8PD418zzuLqq8c8Bmvb3thzxx8za9SM29PD41c71rDwa82mjdO/dcrDvDBh28nIegvJHpGb048gI96yoCvEYADj2ZFQi9AVS2vFEuELzixxs9iWIUPI1CHbzJViq8SGN1vNNNtLxGKFU5kUrtvCp6Lz145IS7BqKvO3hBsDtNQ368HxW1vAHq7TyP54W8BaCbPM3/Oj1SnAC9bAT9usxpA710BhA8zqIPveepODypXB86mxkwvU0bNzow/yC8F7Riu3uAeLwFND+9Ay6DPBCZOb0VHJe78kWrvDv2KjwGAW+8RBV8PCuxp7zObSs98GnKPE+JpzxN5L48bNw1vCuxJzyO2FS5fbdwOzDIKD0bNaw86a3gPMsjWjx2dIA9iZmMPGhoCT2IvSs8hIKLPGJAQz34yhy8Lo8cPauVq7uTJs487vtZvWrYDT3+QN08GVlLOqH94Lu7p947o0OKPeLx9rxFuuQ6rdBLPdkx5Tx5fFC95wh4Pc8D472dVNA8yFSWvRlZSzuMCyW9StFlPOiDBb0RByo9qytjuldJOb2YBlc9u38Xutctvbz9qqW84cWHu0/1gzufYwG9rAMcPL1MxztzYSc9gG2evCNfBrvMWlI9qoZ6vb66N73ThCw9n1j4uprit7wlwu27FOOKvMlWKj0Q0LE9h1NjPHvqQLwcy+O8Xzybu8L5f7ygMLE71r/MO8C+Xz21wy09e4uBvB8VtTzBXyA8mkH3PONsBDtkslu8gW8yO1cSwTxJOy49zqKPvYW5Az2GhjO7xdXgPJEipryTkJa8zTSfPCLxlTwZWUs8eyE5PESD7LtvTk69SXASvIaGszykEDq86HboPHh4KL1tSia9i/xzvelOob0DWF49Uvu/u4ABQr2ZFQg9RgAOvHFS9rydVFA8c82DO/sFPT2aQXc8uGw+vVjfcDz/rs080t9DPN2wGrtoMRG98xLbPOCODz19xqG804SsPHIqrzxdYLo8L7n3PFPVjLz7cZm8B0WEPTBeYL0RZmk8zqIPPcHNkLrSFrw8R1/NO9ctPbunS9q8yyNavSpDNz0OlRE8/NJsvTkecj3UJ4E9UsRHPBdVI7uP5wW5itAEvdnSJbuM1Cy8gqYqPYFvMjwbJns579OSPIxACb11nEe8C+H3O21KJj17Ibk8xAixvIblcrw79iq8Ytb6vMwyC72JmQw9q5WrvK1xDD3WYI09+WDUPEJ/xDxx8zY7ljknPboRp7wn0Z47STuuvIABwrzOlfI7dAaQuqQQujxYgDG7tcOtva+qGD2dHVg8CKZXvT8NLDsOlRE7eHgovppMADx0zxc9e+pAuvsFvTrc1k08nOZfOxpdc71bk4q8SGN1vBADgr1kslu9NnXhvLZoFj1vTs48d0GwvOLJr7weSIU86yoCPLCsrLwm+WW8rp17vRJ1mjxBSEy7JSw2PFPIbzyP3Hw86YUZPcd6SbvBzZC8PJuTvZtQKL1spb27Db1YO8CUhDsecEw9LsSAvHIqr7rF1WA77zLSPNyj/Ty1WeU8dGVPOkDaW7tkUxy94vF2PRaKh7rYZDU9E6wSvZ/CQLwli3U9FUbyvMqNoryG5XI8RCQtvSXPirsNvdg7oGepPT4LmDy1ZgK7q8wjvCmeTr06Veq8MZXYvAuCuDusOpS80ahLPXqzSD0Lgjg8VqRQvVyVnrq0jLU7YtZ6u+nkWD0axzu7elQJPMWrhb07LSO9dj+cOrSMtb09CQS9AB0+PK6d+zxoMRE8C+F3PIsJkTwVD/o7g3PavEMV/Dz48mM+SqkePfjKHLzObSu8LEdfO1yVHr0PzIm6tcMtPfJFKzyJmYy80BIUvVSgKDxg0tI8yosOvXzEjbwv8G89AsImvGmfATxWfAk9NnXhvEc3hj2f+bi8c2EnPfE2erwRPI68HdoUPMsj2jtAo+M7YtZ6vCO+Rb0ep8S879OSPLf+TTz27ru837bWPH2PKT3ThCw7MgPJu2f6mD0VsDo8ETyOvDZ1Ybyzv4U8GyZ7OqdLWrugj/A81YhUvOh26LvMWtK8sufMO/CgwjsNvVg8LH7XO0PtNDugZym8Gv4zvSCrbDuFuYM6z6SjO03kPjzbd467udgau6i5Sjwz2wG8/aolvd5VA7w+Cxg9ql4zvUdfTTxXqHg8bX8KPbCsLD327ju9Db3YPB5wzDyi1Zm8tcMtPY4PzT3SFry87ZoGuvBpSrohGV294O3OvPbuuzu+JhQ9LsSAPDD/oDwZWcs8BTS/PH5c2Tyy58w8/NLsPBRCSjx2Pxw9bAR9vGo3zbzeHgs8zMhCvEFITL2bGTA9OmKHvYe9q7xSnAA8bBEau0mabT1F8Vw8OvYqvXAmBz1j5Su8ybVpPWck9LuNd4E8CuyAPLFRFb3COwE82TFlPK1xjLwRcwY9K7EnPG1KJj2dHdi8gDi6PJSUvryouco8vBXPu6IMEr0PK0k9sE+BvGNRiLzCO4E8kestPeY7yLwuI8C8qZEDPVVtWD22aJY8hxxrPVu7UbsM8Ki8jXeBPQ/MCb0UQso83K6GvH6T0bzzsYe75QTQO1JnnLwv8O+7NN0VvVJa/7zo4LA8Gv4zPOQ3ID1kiIC8K+ifvPjKnL3HsUG90+PrvGDSUr2G5fK6hRhDu7/xLzyGhjO73K4GPISq0jzg7U48EJk5PL+H5zzv+9k7/Dy1vGsPhrzDPZW8mKeXvNoHCrx7gHi9zjazPNQaZL1NQ/68X5vaPAU0vzxXEkG77Vbxu1SeFDxvF9Y6BTS/O1328Ty1w628ETwOvclWKj2R6628WLUVPTn0lj3t97G72gkeu6uVqzxZt6m8HqdEPT4LmDzco/08y/uSPPWAyzze6aa8CuwAPU/1Az2smdO8jnkVvV1gujqfWHg81LukvCuxpzw/DSw9WoTZPMjoOb0fFTW9uMt9O1vyybyFGEO6VttIPIliFDwdOdS7eK+gPEVbJb3v05K7iWIUvOZywLxrbkU8KtluPCUsNr0Exk69VqTQvEBEJLyFTzu9ysIGPfbuu7vCOwE91y09PSXPCjyAooI84STHO016drzoFym7lTeTvKvMIzxMToc8jrCNvKdLWrwL4Xe8vSSAPbAYCbvPpKM8aFvsO9IWvDxeZOI7CktAvQLCJjz/5cU8rdDLPCNfBr0zOkG82T4CvUIgBb0AfP081LskPQsYcDwDj9a8oMbovISq0rq97Yc829bNvNnSJbxeBSO8RgCOO88QgLzGQ9G8v/GvOXKJbrwG1xM9X5taPeepuDzJViq9R19NvYblcrpbu9E8DPCovHTPF71o/Kw8pX6qPAm1iD3nqbg7mAbXvF3Mljx3QbC8OlVqvKhaCzzco/077mWivCXC7TzGQ1E9hU+7vBlZS7urlas8KuYLPEJITLxA2lu91y09vSrmizvdsq68B9knvOmtYD2uPjy9h1NjOX37hb3rKoI8sRodOrraLj2zVT28u97WPDAnaL2aCn+43KP9Ove767s4vR68LiNAvWXBDD1eZGI6PguYOirZ7jpWpNC8Q7a8u5zm37ym6oa7Ep1hPDhRQrwUQsq77PWdPYblcr0peJs8gW8yvR5wTD3CmkC9AImavGhoCTsJtYg9Y+UrvJl0RzvwoMK8Nd8pvWPlq7t1nEe8eeaYO/clND2+JhS80oKYvGwE/bxIY3U7EQeqvMjouTvPpCO8TK3GPHAmhzsZWUu8A1jeu2NRCL1clR69SghePMbV4Ds55/m8EQcqvcL5fzzjAKg8dj+cuxFm6Typ8EK823eOvL9djL3rKgI9PJsTu64+PDzXlwW942yEvMexwbxeBaO85xWVvZpB9zsoPw+7Wbcpve1jjrypXB89pNlBOw8ryTyMC6U787ObOwc4Z7zfV5c8Tx/fveh26Lrx1zq7VAyFPE5SL7vybfK7+wW9vFm3qbxAbGu8GjOYOqbdaTxFuuQ864nBO2bpUztdAw+9Qn/EPAkUyLxEkIm806zzPBQagzy8tg+8aZ+BvPPb4rwK7IC8YkDDvJXzfbuYBtc8IeLku9QnATwPzIm9DpURPf+Ghr0Z+os6sXlcPYhgADvwoEI9lcu2vCsQZ7uFrvo7iGAAPYiKWzze6aY8otMFvSrZ7ru0+JE9o0MKvZsZsL14r6C7AYuuvCHvgbsNvVg70YAEPRTlnjwIptc8zDKLvO1WcT2aTpS9s1U9vU16drwwJ2g8QNpbvcIECby7SB+96a1gvMPRuDzECLE8MP8gvWPlqzznCPg8HdoUvLmjNr3riUG8Ync7PT95CD2WmGY9CxjwvM5tKzvCmkC7l89eOwNY3jsAiRo9WRZpO8I7gb0NvVg8tcMtPEW65DxmV8S8qVyfOjUUjjyKL8S72p9VvG1y7byxUZW8wppAu/QSW72BpJY73dr1vLVZZbu0+JE8gG2evMlWqrve6aY887MbvQhvX7xDFfy8j+cFPBVGcjtGAA48aDMlPXWcxzxZ7qE859yIu6bqhr1id7u8Q7Y8PAGLLrwHDgw8mxmwvPJ6j7yU/oa8rdBLvVZFEb0341E6m3jvOxuU67w/Day8vYO/PAP5nrtje+O6XZeyPZyHoLuTkJa9FOOKvKV+qjweSAU8x3rJPLYvir1QVtc7MCdovdf2RLz4yhw89yW0PBjDk7xxvD69TVCbPE+JJ724y/08JPU9u1TXoDxGyRU8RfFcvSWL9brLI9q8cVJ2PXNhJ720jDU94STHvGb4BL2BpJa8J9EevDas2bwfShm9oI/wvJinFzwNhuC8fY8pvDz6UryWOac8xgzZvIWuejyy50w94v4Tuw0nITtKqR69y/uSPCNfBj0NJ6E8s78FvJ9YeD3sLBY9sKysPLoRp7vdEW48i520O0mnij0ZkEM9YNJSvCrZ7rz27rs87i6qvIa7F7145IS8ljmnPBuU6zusOhQ9tmgWvaR6AjxZtyk8pNlBPA8ryTw13ym9/aolPYABQjzjX2e8/QnlvJgGV7z3TXu8NKixO8qNorwJtQg8B0WEvIW5A7sB6u27KWt+OmUgTLyP5wW9QUhMPbT4kb0Goq88V34dvcgdHj2i1Rk9We4hvDfj0Txezio9VQ4ZvdS7pLxCf0Q9nR1YPLF53Dz1WIS9CX4Qu4QUG73odmg8W/LJPAc4Z7xHlkW9gG2eu1+b2jzjNQy7wZYYvFkWaTzYw3Q9d3YUvZI+fzxUe8U8rlMDvZNB27yRrpa8utoivToU97zt4KU8lCUoPQ/mG73ou968F3+YvU/I5DzXSOu8zm8BvM8cqjtQy8C7eaImvFv63bsE7+Q7ib9mvHTQtjwz6xE9xkWPukprtzuPjnq8xAlAPRMkurymRUS8Ryq9vWMiATv8UL07fMG1veReMb2Kv+Y5VQy7vMN4Sr11tIO8OLolvfE7BD3RrZ+8PIm5vLbU6jugVyG9eLv9u3RCHb0YoPa7dWEsPPdiGr0gA9y7NCbUPL01gTzr+Xw9fME1vBACT72lmJs8cVt0vTJ5K715gxe9Z/EUvAuloTyjQBk9f3E6vZifFbzAyEU636mBPQulIT2RdaM8Sr4Ovb2KJ7zTedc8Z7rwPCN4njuzsn+7E0Dtup/GKzzonyu8/x0CvcLLITt1tIM9vBjBvL38jbvYutE8YDtYu8idEb3R5hI8rVJ2vH3gxLsEtCI7xAlAuz45PryjtE683hrbvJYoBL0EtCK7aS8zPGqhmbw+VXE8U0CDvKUmtbsXuIs8xihPuhn2qTmaE0u9UnjpvA3EMLxCWyk7T/+IvPkuUj2eAe44cj9BPUSZR7z73Ac9GYRDPbmE77wu4v281ieNvGUp+zsqFsY8EHS1O2CtPjx3DlU9cAEjPYQkGzt0fV88s5ZMvVJ2mjySBpk7R9WWPOUL2jypZ6+8zv2avBqhg73ogJw8WWcZvChKDjw0mLq7fFKrO7NbCj0VYAm8uGVgu879Grx8bt48mZ8Vva/jaz3GKM+9Zin7Ors0dDu7pto8Nkg/PHDK/ju+N9C8KYMBPQS0Ir0gA9y8c1yBPWYp+7x00Da9HsW9vK85nzwyI3g82tw8vSv6EjyLTo08Xm8gPcgrq7tfAJY8wXXuPPad3LxLh2q8RbjWPPbws7sisRG9ahOAvK37AL0YEA49d/IhPUSZRzxb+l06gT3yvKn1SL1u/ka9FF98uwvBVL3kXjE9BkWYPXR9X7yRA727ASBRO3tPzzyZL/48a07CvMgrK7y21Go7KzL5PBpokL0eNyQ9tUP1uyqkXzvUXSS8BNDVvNnZ4DyLMU09AOUOPZeAhjxhWBg9gpOlvE2nBr0HZKc8UMtAOmiCiryjtE69oZLjvB8Bjb2jBya9mhNLPZ01tjw0tO28MgfFO9tOo7zmKBq913+PPK0aELwMF4g9xkUPPTlLG72cFic9bnCtPANeb7xmKfs8gs5nPHeAu7tMGOA8zzs5PFQJ37u9iie97zp3PAZ+izzOb4G8ybygvG1RHj0eN6S8B/LAPIuHgDybpMC8k0FbPbIk5jxkegO58lzivF04fL1VDDs9lkeTO4E9crzlmXM9cTxlPUlmDL2LozO89V8+PNabQrzWKdy8S/lQPJj0uzxSeOm8D1WmPBEfj7xN/Ky8ASDRvIGvWLuDX908vcOaOjQkhTxz7Gm8D1WmO4RdDrx+4yC8/FA9PPUMZ7x/HBQ9Sfb0PHABIz2SIsw8P6ukvMGU/TyvOR+8GKB2vF6ok72MNKm9SveBPEnaQbwjeB49PcR7vDdkcr18M5w8QXfcPAj1nLzXLDg9KIL0OzvcEL7AyMW8UB4YPbJ3vbzdGAy8ir0XvLmE7zxEeri8FkalOvkuUrwao9K8Vkd9vOPNO73ogBw8XwAWvOTsyrtisBo8vYonPdHmkj13KxW7gK9YvICQybuNxR49DuM/vGI+NL18M5w7P6skvfsxrrxTl/i8fxwUvLZEAr0DzgY8rqgpu9EfBr3jzbu6Ths8Pc8cqrtKTKi8BEI8PBOWoLs73BA9lradPTjzmLvR5pI855zPvBRf/DwJg7a8eGQIPU4bvLwsw+68j3JHPXFbdLzmmgA736kBuw3EML0G0zE8nzgSPcXtDD3yXOI7i1DcPK85n7u62qK8vBjBPBkx7Lx2DIa8kiJMvQI/YDqpZ688UnaaPC/jirz31AA9clt0Oibxfjt1tAM98QKRvMyIWD3/HHW9sQMIvVyJBD1Wt5S9HFNXvNYnDbviWQa9XBltPDulbLxCd1w6cs3avA3EsLzF7Qw9vKZaPhTR4jyMUNy6FNHiuttq1jzYnh69QunCusgrqzw0JAW9jMJCvd2o9LxequK7oARKPRPPE7xfOYm8vxudPLLpIzzBde47/N5WPG6rb7yRdSM7CBHQvFv63TwAruq7ln/5vFCsMb2siRq8WA8XPGiCiru5u5O6LlRku2a6cLxvj7w8D8eMvKEhijwH8kA9vDT0O3XvxbzJ2FM9MMkmu4vedbvL2y87aJ49vPeBKTvJvKA7hF2OO5ifFTxcbMS8rBe0vOlKBT2ragu9eJ9KPBRDSbwz65E7zxwqPUOWa71b+t07rzkfu043bzxVDDs8Q16FO5bvkDyahTE9mdiIvDlnTr2ONwW9kj7/OwqGEr3dbTI9DDM7uR8BjT0WYtg87lIMvaBXIT1nunA9zRlOPJukQDwIn2k9KaKQvNEfBroBBJ68xXumu5xR6TppLzM8rzmfPFmgDD259AY9ZSl7PKylzTzTd4g8S/lQvCRE1jwBkjc9P6ukO7djkbtr+2o8ib/mO23+xrziWYa8OCyMPOaagL3ArBK94gh+PLJ3PbwgkXU9tgsPPf+tarzXfw+7fDMcPcsWcj3IKyu7lUQ3vBxTVzz28DO8eLv9PFmgDD0SBSs8F7gLPfXRpDxhH6U9AT9gPOIgkzqAAjC8bx1WvLpMiTxO/4i9QK4APQNCvLxK94G8gXSWPCnYpzrUlpe8SEnMvIE98jzkemQ9sne9PC44MT3Wm8I7xtX3u2e68DvjPyK98MvsPH7EEb1NbhO9tCdCPD5V8Tz+HHU7MlqcvFxQEb1hPjS8hmI5PDUKIT1zXIE9t7i3vFZ+Ib2bwHO9xtX3ugwXiLyqonG8pQoCPNN3CDwYEA49rzkfPBbUvjwPx4w8NUXjux1TVz2LTo09E5YgPRmEw7rlmXM9IAPcu7xrmLz9+xY8vRhBvcBZu7xILRm97eAlvWKwGr3ECUA9MAIaPUJbqTx/cbq88loTPelKBToyI3i8C78FuzF2z7ySlDI93W2yvDV8hzzFmrU9lCUovIbUn7zm76Y9R9UWvNovFD0QkOg7ebwKPWoTgDzXLLg8x7nEO/tQvTyAkMm7kZFWvUCugL3keuQ79QqYPEEF9rzXSOs8JETWPAfyQLvFeya9887IvKdiBDy21Gq90a2fPPgsAzzWYAC8nMEAvW0a+jykQmi9EALPvFR7xTzjsYi9LTXVuuOxiDyv4+u76kxUvYCQSbxAroC8tAizvIku8bzMi7S83oxBPZxPGj2hyQe9ab3MPOmfq7wbFTk8q4a+vE9WfjspE2o8V9jyPFv6XTxaTbW7rcRcvVa3FD2CIT88CS4QPalnr7qrMRg9CWcDPWxtUb2jtE68GKD2u7ZGUT2fOBK9HjekPHReULxNqdW8Ry2ZupSzwTzxPVM71w0pvETsnr2Wtp089QxnvHi7fTwiIuu76r46vJuIDbwKokU9kZFWvX7EkbxK9wG6cZIYPSIGODxFC647EK/3vHOxJ73L2688bVEePE38LLzuGZm8xCYAvP+OWz3iWQY9JJetPD3E+7wH8sC8Ynl2vKwXtLvYulE8/x0CPeUL2ryBkyW83x03PLMkZrz73Ic875CqOkGuALoSsAS8tCfCvM5vAb2SlLK8VCjuvANe77xu/kY9gpMlvdA7ubzyrzm9hvBSvFE9pzyZ2Ig9BoBaPB1TV71DXoW9UT0nPC44sbydp5w8tSdCvdLMrrz3mw09adn/vFKvjbzpEZI8eGQIvXcOVb3tbj+7xbQZPf2Lf7x7FI08Pjm+vG6MYDrUmGa9dQt5vLpMibqvOR89zN4LvMlKOr3/req6pSY1PQR9/rx8Mxw9naecPF6qYr3gjx07D+YbPcdH3ju5hO88RrjWO0wY4LsgkfW7VrcUPD/kl7zMbCU7hO32OZ5weD1Dlms8sKsFvfoSn7tk7ji88pMGvQkuELwEtCI9LjixPOzdSTw2SL88i6MzvHct5DxvHdY7P+QXvMV+grxKTCi9p2IEPUgtGb1ucK05Dv9yu3rbmTxiPrQ7Q7X6vB1RiL1ArgA9pQqCPB0YFb1L3R08eJ/KPKjWOT26E5Y8lWDqvDRF47ymZFO83MAJPQfywL1PyOQ8tCfCvJkvfjwu4wq8kXUjO4ACsLx62xm8ASBRvddI67wLv4U83IllvHPsaTwE0FW9jW/rutXumTwMF4i9IiJrvPcPwzyEJJs8SveBvMF1brzqMCG9lradvNN3CL3EJXO8OUsbvJ5weL0wApq76jChu7HKFLuv42u9wefUuyADXD1MikY8+9yHPVWaVDzfq9A87E8wu6wXND39wiM9YFpnPFqId7zjsYi8utoiPena7TyqEom9zRnOvNrcPDzjCP68bG3ROgRCPDzZZ3o9CoYSPWlqdbwiBjg92tw8vQR9/rzFfgK9IiLrOv1vTL1s37c7nMNPvfq/R72/G505EZPEOx9WMzxGtgc7FkYlPRmEQ73R6OG4p/LsO6BXIT11exA8Xo4vPAUmib3lC1o7yvfivHABI7xSrw29wT2IvCQlxzx/HuO7c7GnPAwXiDwbh588sumjvGiCCjtwAaM8DVJKvOTsSr31X768ab1Mu2iCCrxIaNu8B9aNPF3hhjrejME8OPXnOwNCvLxl0gU86jAhu88cqrzJvKC8MOXZu9TPirq9iie6VHtFPFJ4aT0eNyS74K4svHgRMTy3uDe9oQTKOzyJOTyo1rm8DVLKvM8cqrviWYa8htSfPMV7Jr2RkVa91F0kvJ5URTyN34K8zv0avf2Lfz2Pcsc8lUQ3vJ9zVD0eN6Q8NUVjvRKwhDyciA09FWJYPIZiOTyeVEW9wKySvA3gY72uGpA8/GzwPN+rULx5vIq8VV8SvQlngzyIoFe8xtX3u28d1rvYutE7C78FvawXNL0xkw+8w3jKvKoSCT5ujOC7dEKdPZ2nHL0CscY6mPS7vBMkurwX8029fY3tO++QKrwXfxi9LMPuvPCQKj1Lpnm8sQOIPNcsuLxE7B68DDM7PXkwwDxu4pO8dtOSvN6MwTzeOWo9G1B7PJJBWzxc3qo8hw0TPb38DT3Mi7Q8D1WmPGTPKb1SeOk7FfBxPUIGgzssiwi88loTPcZFD7ymRcS83PtLuzIj+Dyzlsw7sumjPAzeFLz10aQ83oxBvZowizwnRzI9ufbVvAUmCT2CBQy9qYPiO3XvxbzkemS9onawvFLogDxVDDu9Q5brPLCrBb3Y1xG9P+SXPKa3KjxlfNK8LIsIPBw0SD1C6UK9ir/mPFhK2bti6Q08RmX/PKnZFb3IZm093v4nPav4pLzA5QW9ir9mPTF0ADtgrb48Y+tcvera7TscNMi8Ac35vMN4yryHRoY7GqGDO0QnYT3nSXg8ab1MPJ01NrysFzQ9S92dPCQJFL3rQI48k69MPKf+lLzJnxG8FQ8YvGZjAL2juLG8T23TPLx91jxd1zk8d+tLO8UJnb1I+Bq9LczWuoJ3kjzp6bo61LKkvH7IR7w61t87oLnVu1mJ8Dp86QM85UtgOgRmkDzhXfQ8WOnNPPuB0jsC/3C8jhFyPOY6cLwZpYw7kHArvYfkZL1Eaoy8Q2ImvIWlwzr8IXW8CdzsvMg48rwE/kw9b4cDPWhCxLvkS2A9Bk26u8C7U7wtbPm4qTVQO34oJTzqiV29YBZbPCZfhDzrQA49wGtCPTn3Gzy5npK9R1G2OaMYj70IjNu8HITQvCYHjbknj307XCdLPU0uMjsweyE7aJJVvOnZbj0wG0S8IbFdOzNJ9byMMq68/7/PuwCAij2RwDw7xVmuvO3H2rxL38S8PyQpvZMXELwhETu7XOeFPTrukTqp1fK7NMEEPBZeBb16en68Kz0kOHs6ubwrPaQ8DSo2Pb6897zCWlI7EiCIvD3Fbzz54tO8pvfSO35oarxKz3i9g7azvFbqcTx+2BM9TeaGPEahx7xsgEE8/2++vLre17y57iO8K401PMAbsbtxbi09eUupvGFlSD1N3qC8IsmPO2NUWD3Jn5G8SfA0O2AWW7yDZiK8LxvEPJWeXLyKm5U8Uqx0vNexgD1scPU8xUliPZfd/bz7kR49kiCaPZv0i7yckwo9wMsfvYVdGD3XUaO9fjCLPej6qjzNZX889LSiPGjysrpjVFg9ZGQkvfNtG701CbA72aAQuWHNC73IsIE95/qqvdTyabv9IFG9DSo2u0FzlrwkYKi7WkgHvX4Y2TvQFMq8SpcZve03hD3p6bo8iFQOvMRJYrx5m7o7WOnNvMDLn7xuH8C8bOCevBKo+Dx/aOq8vmxmOPuRnj0dgyy9BZ5vvfAWyDw6Nj09hl0YvIOmZzmh0Qe9shEoPVZamz0kAMs7Su8QvFiJcLvyFSS9jsHgvA95I72nllG93W5kPbpGmz10/V+8kbDwPLKxSjwLizc8qk2CO2WT+bzriDm9cSYCPeJ0Aj25nhK9CIzbPGvxjjzs2Eo8HxLfvNvfMb1jxAE9gR+bPC3MVru5TgE8P7R/Ox/CTb390D+9nooAu4MWEbxI+Jo8MSIGvSot2LwfIiu9D9GavTOp0jzSw5S7pQcfvaEJ5zyDpuc8G9RhvENSWjvrKNw75FssPRiF9DwAEOG8W+ipvLNR7TzGuQu8p1aMvBhFr7wdO4E6BP5MPIpLBL18kQw9k09vPEBk7jtGAaU82ZBEvD3lB71bKO88b88uvYFnRrx1DAg9lL8YPLNR7TxFwoO6cQ7QvDGq9rwrnYG9vhxVPVmZvDxjxAG9WfmZPYNmojzZ8KE7jOIcu/QENDzriLm8Xde5uzhPEzwG/Sg9OjY9PcNqHrt76qc8ezq5vExudzzBGzG8shGoPMBrQj2RwDw8M/lju1T74buVrii8SKAjvdKzSD3LNiq8xfnQPHW0kD1RvEC7SFASvcs2Kr3p+YY8epqWvFWa4DtfLg29moxIvSSg7TwA2IG8++EvPL4sIbw/FF29+TLlPIW1Dz0LOya98gVYPNVSR7y5Rhu+QcuNO7hXCz1KL1a9jjGKuxamMLzrOKg7qp2TvWmiobynltG8xQkdvZ3Lab3rQI68jJILPSyVGzyckwq9OOdPvIHHIz3GCR08PSXNu+3fjDugCWe9pUfkPFEkhLyH9DA8/nDiOwK/KzwwyzI8R/HYvEYBpTo2SFG9X3Y4vbW4DDxIqAm9Y/R6PHo6OT0C//C8SaCjOvOl+juMMq68YXWUO/ZD1TxCU/684nSCPNB0p7wNGmo93r51PNsvQz3ehha78lVpvMuWBzz1pNa8VgoKvTB7obqgySG9VEtzPDQRFj04508964i5POs4KD2qla28YVV8vS0sNLuDtjO8D8m0vDawFL28Hfk60wPaPG5v0TuCFzW9p6YdO5NPb7yzof68nRt7PDZgA70yusI8nctpvVvY3bxHUbY76ziovVWa4LwtjJE8dvy7PMpPgDx8yWs8jYI/vK6DGb35She9U7scPFx3XD7CCkE9nOMbvQDYgbwfYvC60sOUu50b+zz70WM9v8zDPM1l/7wWrha9pqfBPGSk6TwG/Si9EAl6vLYAOD2o9q673W7kPKpNgj1NzlQ63n6wPAmkjTz4A5A7ZmMAPVNbv7xFagw87NjKPL4soTxkZCQ8+zFBvIszUrxPhQW71EL7O2iSVbxs6IQ8fYmmPNSiWLwvy7I8t6ecPYFXej3smIW81/HFu4iUUzwo3uo8vI2iPNB0pzzr6JY87RdsvfS0Iry1sCa8GDXjPP7A8zqo9i48W4hMOzuGzjy7zWe9rSTgvN6GljoAwM88bh9APKBpxLxbiEw8kLBwvGFlSL3Z4NW8MVplvO4nuDywIhi9CaQNPUHDJzwYRS89jhHyPC3M1rwblBw96TnMPGhSELtWspK6bTCwPet47bwOyti8j3FPvFqYGLyYrQQ8cg5QPGAW2zyck4q7Jv8mPE3mhjtDsjc9R1E2PPDGNrsm/yY9C4s3PENiJj3O3Y66akGgvPB2JT04N2G8G9RhvZyTij0xqna9ux15vFVKTzyKS4S9pQ+FPU/VljycO5O8h0TCPEYBJTv7QY09X9YVvZdNp7oxche8EmizOz2NkDw0uZ48jNLQu4IXNT18OZW8OJe+PJo8tziegho68sWSvBK4RDzDGg08ZaNFvPQUAD1jBMe73c7BO8uWBz1jtDU76PqqvJ4yCb3AC+U8QiOFPUC0/zwkYCg9XOeFvF03l7zqiV09Q/L8vNeR6Dw6lpo7pVcwvWRU2DsxqvY7yTdOvPwhdbz86RW6sRLMvOdKPDtamJg8U1s/PQ3aJL3t1ya9XMdtvUNiprxhdRS98HYlvW4fQDz0vAg8VUrPO8dYijzpOcw8uZ4SPbbwazzJTwA6IbFdPfPFEjzSc4M7bh/API4xCrxqMVS8dkzNO8BrQr2OgZu88hUkvVjpzbwUv4Y85FssPQRmkLtc5wU8UVzjOpdVjbwrPSQ9lf45PH4oJb0rlRu9xbmLPfJltTllk/k8vI2iPdJjtzsP0Zq72JFoPaVH5LxDoms9cxUSu4UFoTyeKqO69LQiPeLEEzuV7m08USQEPX8Y2bxqQSC9Sz+ivIqbFT2VDga9X4aEPHWc3jw0WcE7820bvRvU4bzzVem85PvOvHJe4bsNOoK8niojPds/D73ibBy6GZVAvDrmq7wKnKe8298xPANfTjwCr9+8/NFjvK00rLzbz2W8ux35uyYHDTvj/PK74rwtPC8rED2BF7U815HoPOgCET35og69Ouaru9cBkrxTuxy8G+StO7VQyTwdOwG9H8LNvNTyabyci6Q9JQDLuhb2QT3Fqb+71wGSPEj4mjxFkfu8ICKrPPZD1TvYkWg916E0vTDLMjqsJGC9VmIBvSimizzUChw9mvQLO6emnbzo+qq8h0RCPdHEuLq6Lum8INKZu3raW70H/ag7oFn4O8VJ4rwNyti7McoOvUs/Ij0RCNY8HITQPGElg7wdO4G83zYFPW/PrjyWPv+7qEZAvMUJHb3r6BY99pNmPbzlmTy+HFW9DToCvSSwOb3j/HK83M/lPPmCdjwchNC8zjWGu/Klej11tJC80xsMPPS0IjyyYbm7GUWvO+uYBb2wcim9+UIxPPaT5ruXTSe8vjQHPdznF731FAC8bOiEvSuNtbyxsu47oqhlPeSrvToo/gK80HQnvX05FbxRJAS9J4/9u6imHTxoqoe8JKBtuqWXdbxmC4m8oWnEu3lLqbxYUZE8rjOIvCuVm7zhDeO71VJHu7VA/bu5Rhs95FssvWEVN7vwBvy8SKiJPZo8t7wvgwe9TM5UvGiqBz2Bzwm9jjGKPNB0p7tTW7+8XmZsvNMbDDzOJTq8H9IZPfn6hTpjbAq9d+vLvHTFADv5She99BQAPRX3ZbxsgEE8bDiWPFF0lbzqid08Z7MRvZ4yiTtW+j07P9SXPDrW37zj/PK750o8PDAbRDwCHwm72ZDEO0jwtLxPveS8Sz+ivQ8Jerqcy+m8K52BPIEfmzq1sCa9UVxjvAsrWrzLloe98XYlPB7D8by4V4u9pZf1uz+EBj3CGo08YxQTPQSuOzvONQa8U8OCu9qA+LyDVta9TeYGPUEjhTuwwjo9/28+u6W3DTschNC88AZ8vODVg7xdd9y7SDD6PD3Vu7zUsqS82z8PvZP/XbzCwhW8yUcaO1MTlLzQJJY8aKoHPfVEebyq9Yq7+fKfvK4jvLzQBH68d+tLvNOzSLsUt6C8LeSIPOEllb2TXzs8FFdDvU9t07sdOwE9f4CcvO3HWj3FSeK84sQTPa6DmToFrrs8TeYGPZyLJD283TO9cw0svNdRoz2zof488WbZvdhRI7yFBaG7Fub1Ow95ozso7jY97wZ8O4oz0jvLhju9roOZPSQAy73CwpW7KD5IvFjpTbts6AS9EghWPPlCMb2O0Sy9pafBu0B0ujy5TgG9FL8GPcP69Dzkuwm9rdROvWvxDj2lt409u81nvJF4kTwpjlm8wmqePLefNr0tfMW6YC4NPBtEizxPHcI8CdxsvbDCujq5fvq76dnuPFrwD707Rgk7sqH+ukKzW7pTWz+9x1iKvCeP/btRdJW8KE6UvRS3oDxTu5y8fOmDO2AWWzzgbcC7uD/ZOazsADqKky+907NIvBZWn7wo/oI8LeQIvVP74Tz09Gc98lVpPG0gZDyjaKA763htvanlPjywYl08tbiMu6G51bwmTzi94G3Au6MIw7po8jK9xVmuunHOijx6SgW8nspFPOJsHL1qMVQ9Si9WO5W2jjs9dd48fxjZPE8dQr0SGCK8fBl9uxnlUby+LCE9lf45ve4nuDwchNC88AZ8PJAQTjwUvwY9T32fvG8P9LwScJm8OEetvMT5UDyOwWC8rCRgPfQMGjwW9kG9w2oeugZdBr2ReJE9jyG+vPdbhzyjGI+7by+MvPri0zqPEfI7xVkuvcdIPrztNwS9jDIuPIEXtbwB2AE8CdzsvO1nfTwEvge7T71kPTOp0jwrnQE8p1YMvHzJa732o7I8sHoPPWvxDjwP0Ro8ovh2PPZDVTzJ5zw9Jj/sPMB7Dj1skI08nctpPbVAfT0Cv6s73W7kvGLFJT1U++G7mpyUvPvhrzyLg+M8oSEZvF5mbLxRJIS9PxTdu6NYVDz5Shc8hPb4uozqgrwb7JM8sdKGvParmDsUV8M8l939vIVVMryo9i48pAjDvLVglTynph29apExvEo/ortGQWo7wlpSPLreV7z80WM8FFdDvco3zjyXnTi8Q2ImPaBpxDzLdu874hyLPZBgXzw36PO89lOhvM/VqDxK75C7RlkcPWOkab35+gU9p64DveP88rylp0E7qPYuOzTBBL1/uPu7sRJMPR0jzzwN2iS9pAjDPEVqjDtxvr68SeyNO/2DBbz8MDi8YGzxu3h4ZrywdeK8Hw12OmNmTD0tLxk9ft+XPIrYjbreP7G9AJ4OvRjUozvCnMU8axGnO9+sB73CU2q8aFCQPPSkGDuP7WS68rQvOxk3CDzK5Ls7D3IkPG1/8DyxK5Q7ZppevMegEjzB1ny7R+IbuwkqLr3fLxq9QBcTvLNFnbvSHBs8SUDOuszP8rx4eOa8cBbnPNTdsTzhjUy8PNmOPRDvkTryio+86DgnOl+1TDzXrl87mHgRvaTFxzzLGE48FNrIPAsV5Tx18JO7DlibvTzZDrx69VO9R28gva++PbwjarW81kt7u+mMZz3VMXK7ABzvuyjSWbzogYI9WepDu1gzHzupLey87AnVvLERi7y+omo98OOBPFDC+7zECRy9aLTnvHqS77wT+YO8BHkuPJqdfz1nF0w7bI6UvF6bQzwai0i8o6s+u674dDyvIaK80cnNPKnZKz3HZ069UtsRPIEDE73DGbM7uxqYvPniHDzxcXm8KNJZvcBos7xLvTs7kmQtPYx/G7ubKZG8PEwKPXQqS7yHCNO8kp5ku9HJTTzo1cI8Mk7iPM1rm7xE2Ck9qdkrvP5KQTz5fzg9qqpZvBx2fzxqWgK8O1yhvHfBwTylGJW8MTTZPOJTFb0EMFM9wUgFPVimmj1Gqde81ZRWPcewqT05Qhi9cdyvPFjQOr1SBbI8jpmkvfYCSz1gz1W8Gu6sPBer9js3xSo7sY9rPYE9Sr3rUjC9kDAbvDUuNDoLwSS9IQyDPZucjL3o1cK7qZBQvV5SaLzyUUu8n8CHvP5KwbxkHfE75ncQvYGgLr2Fmok9evXTPFmHX7uiDqO7C15AvKnJFL360gW8lusMvWe057vHEw49EXwWvfpfijsjarU9vSX9vJ0abb169VM8zHsyPS2sBrr7s8o77gMwvagiBz0/xMU9fKuFO6aW9bxkZsy7y8QNvdsLn7z959y81N0xveceHj02nH09U7zWvFxXGj1Sok08yuQ7PAuXhLvAgjy99p9mvTFdhjzoOCc9xpYgvQ9yJD3pKJA8XUcDPJJKpLw1qyG9YHsVPbKejzzYdCi8Npx9PL0lfTrUQBa957s5vQYQpTs15Vi8EYytPAWTN72Qoxa80UY7vUv3cr0hUKw8YoUHvEkmRbzEbIA8dSrLPLtu2LxgGLG6T247uyW9gjwR7xE9S5MbvCoVELyEmok8NUi9O3j7eLz0zji8rMTiu817MjvuTAu9rMRiPXSNLzwofhk8uIMhPRdXNrui5IK9wEiFPAR5Lr3TmQi8hlEuPfuzSrvgOQy8W1eavGrnBr1aBM28WiOIvYmFQD1BFxM9/QYYvSGZhz1I0oQ8ryEiPKL0Gbs3YkY8MxSrvPnTeLySAUk7Xv4nPTKxRj0W9NE6bpl5PKAUSLwYKOQ8ip/Ju576PjwXVzY9xW3zOlXWXzz2rgo7zd6WvKIOo7z2ZS89n02MvK6kNLkGrcA9JjtjvNZaH71ZTSi9OEIYPKNi47wd2WM8TlQyvfK0L73jXQc9HegHu4oCLrxyk1S86iiQvQBlyjxFOw49aHowvUy9uzrfrIe5vDQhvkP4V7wUI6Q8fqZTvV6bw7vlBBW892UvvJKtiL360gW9FCOkvOg4J710x2a9GlERvNtuAz0rsqu6qdmrvGcXzLutYAs9LwBHPEwgoLvTYMQ7vrEOvfMI8Dy4vVi7QHvqPHOt3TtCQbM746dVPFmH37ysJ8c8VNZfvS1JIr1S25E58wjwvEP41zwKpxs9yUcgvcqqBDuBdo48ip9JvMnkOzs5fM88eIcKvRpC7TvbJai8rCdHPQ3LFjxUc/s8bX9wPGC1zLoq7OI7jNPbvBiqA73HoJI7WqHovDx2qjxcHlY9Nw6GPU0QCTw+8xc9dn2YvIxvhL1kuRm8F3E/vJ9do7xdm0O9/c1TuljQujuhkTU7dqc4veqm8LkNeEm8PyeqvC5JIrvB1Qm9axGnPEWPTr35/KW8u1RPvPK0r71Ot5a8DkiEPKb52TxF8rI89iGGPHqSb7wrohS9pd/QvAAcb7ppMVU+05mIPfl/OL3D/6m8s9KhPOLGkLv2rgo9TddEPekOBz0T+QO90YDyvAE2+DzBgjw8RTsOveWhsLz9hPg8Wz0RvEJBMzxihYc9NeXYuSg1vjz5/KU82yWoPKb52Tx2bQG9IiaMPOwj3jxkgNU8xxMOu/sWr7xftcy8kzoNOzJO4jzl2+e7rHCiPFNZ8jxDvqC8lTXbPCr7hj2EDng93vbVvFRyiDvmWFU8PBPGPAYQJT1mmt484lOVPHk+L72wdWK7tSZivEYMPD3qpvA7jrOtPHOt3btvC4I8i1buvPFx+bxcypU6Gu4sPHOtXbyFcdy8iYXAPDGXvbsylz29fu8uvKk8ELu7Gpg8wdb8vApewDw/DaE8VrYxPWi05zzmd5C8VHP7PNYx8jxwP5S8AOI3vOyGwj2/ouq8JkoHvTUenbsen6y7PNkOvF7+pztSos08JwEsvGr3HTy512G8cdwvPeTQAryDkJc8SaOyPHoeATzPEik9jrMtuzh8T7xVgh89g7o3vEgmRb1+UpM9oMtsvWhqGbokhL47uHR9vbCEhj290Tw8lxUtvSGK4zyIhUA7226DPWSfEL1EO448/DA4O87p+7trESc8h7QSPaalGbx2pzg96A/6vF7UhzwsvB26BhCluz8Nobx4h4o8r749PALCibup87Q8KuxiuVbw6LoGSlw9QP78unr1U7wAyC69HdnjPAPCiT31lAE9Evr2POOn1TvKm+C5IByaPZqCA70DNQU9sSuUO8WHfL0SQ1I8O/k8PM0yV7yf+r68tgY0vLGPa7xNjmk7kjoNPJ93LD3mdxC9re0PvbA7K719OIq8xoYJvZjMUb1FLOo7cLIPPLSJRrv2Ass8hwhTPN8vGj0LwaQ8ew9dvNFGOz0uOn480pr7OsxRkjy2Tw88oMvsvOJTlbvb/Pq8nOC1vGmUOb0b3hW9IByaPJtjSD2nsP67wYI8PN4/MbwWVzY8AMguPW5fQjwAyC69/QYYvdQmjT3hOQw64o3MPC5jqz3B1Yk6ABzvu34JOD3lBJW8Jb2CPdQXabzjXvo8nl0jOpbRAz3MGM46hICAPA8PQDwAf1O8INM+vYk85bv/raU8R28gvZ93rDyf+r48Q3VFvJXhmryBoK68tNIhvI+JjbyUfjY8qS1svP8QirubrKO810oIvC5JorvXrl+8qkYCvUhgfDz+EIo8QqQXvZAh97zLtem80akfu3F5S7uQIfc7pCgsvBWgETz2ZS893rwePRFD0jw5M/Q8paWZvMKcRTuKAi6828LDvARpFzyBdo48zM/yvNZL+7w+DaE7rweZPbXsKruO/Ag9r769uijxFD29NKE86igQvS46fjw8TIq74Y1MPT2QM73ip9W8V21WvVkzH72anX88NashPTUutLwysUa8r1tZvIJ2Dj1U9Zo88TfCvP6EeLy5AA+9UCXguknd6btJw2C95YenvNFGu7w6TX09Cpj3PDDgGD0RjK28Z1AQvX4JOD0y+qE8mQUWvFmwDLurDT69xNDXPKgihz3sI148Q698vQDit7yjcQe92MjovGndFDuAhqU8IqRsvDXl2DvvulQ9FroavLZA6zuAhiW6FMC/vF9hjDwxNNm8ulTPvABlSruA6Yk8bAEQOv8QCj0hUCy9sNhGvPgcVL1MEAm9mC+2PNR6TT1oapm75T7MvAR5rrz3VRi7uxqYvLA7K7ys04Y8gIalvF0eVryfXaO8ZjaHvLGeDzx6Pq+8+tIFPVMfuzvCnMW7rHCivK5B0LpmRh48Pqo8PZ1DGr2968W7O3YqvbERiz1DEmG8xZagvNx56LwW9FE8V23WvHtyQTxfGDG6KwbsvMkdgLw7+Ty88rSvvMHVCT0hiuO8SF+JvPuzSryMNsC6r1vZvBRd2zwoGzW8m5wMu6XfUDwIAI68cT8UPIqfybytiis7Kk9HPA9yJD3sbLm8XtSHvLwKATtDEmE7UAtXvKWlGTvHTcW8sCEivRIJm70VkW28udfhvKTFxzyKn8m6zwISvb1OqrxsK7C7KvuGveahMLspif68BZM3vWmUubzAaDM9VjlEPDYeHT0AyK47rwcZvMGcRboF3BK9Nv/hvd8vmjwX1KM8Al8lPatwIrwUwD+8HIWjvA0+EryarCM7pHxsvNtf3zxm/cK8+BzUvAfHybwRfBa8qfO0vJWYvzskvvW7B2TlPKP+Cz0ybR28rkHQOtoLnzsJ4VK9RkZzvOkoELw6TX06FvTRu4/NNjzVQJa9elg4PEnd6bygy2y7/M3TPPK0L7wYKOQ8v6LqvKkt7Dy+sQ48hwjTPBveFT1TBTI9u6ccvdcRxLvUJo09HYUjPc0y170R75G8AzWFvPGaJjvloTA8nUMaPcAf2Lv3Aks8Gu4svZXhmj2iDqO94kTxu/Lu5ry80Tw7167fvAlEtzxfGDG9ahEnvU9EGzocdn881CYNvWf9Qj1428o8DHjJvG5FOb1Gqdc8dHOmPZpJv7wUwL87VB87u2PJsDuJPGW9tyA9u3A/lDxD+Fc8fe+uPARPjr1yzJi846fVu7k6xjwapVG9mgBkunqhk7xu/F06VvBovfFxebwW9NE7XUcDvLERi727jRM9Kuxiu8WGibrxcIY8PBNGvN8QX7yKPOU6DVgbvWmUubu51+G8RSzqPIoCLr30zrg8c7yBPS8aUDzt2Q893h8DO6DaEL1Be2o8BHmuPAatQDvt6aa8m8YsvfQi+bvAvPO7KDU+vdtugzsRfJY8q3Ciux5WUTzo1cK8eIcKPZ76PrwWuho8+ZlBPNsLnzzyFxS9eCQmvJucDLtZJPu7S707Pcb5BL3evJ483y+avG+YBrxV5QO8mkm/PGU3+rzi8LC8mw+IvD5HWDtOnQ09muZavLASfj3NMtc8ahEnvXNzJjmaAGS9Dw9APXj7eLwET448XMqVPHzFjrwCmVy4TXTgPBUTDb0GSly8eIeKvM5bBDysDb68YfgCO+g4p7xTvFY8c1kdvFDCez1mqYI8Q3VFPCtp0Dt8KWa94kRxPLtu2DzqjOc7gldTPA3LljuwOys8bCswPQJfJT0g0z49ACuTPMXqYD015Vg9kxtSPFTW37wCmVw9KrIrvOgenrzd3Mw8tMIKPS8a0DvO6Xu8j7OtvVIFMru2T488rO2PPM74Hzzf9tU6mymRu8rkO7zbX188UqJNPHCyj7yPB268qK8LO8sYzry4g6E8pd/QvN9zw7xbZ7G7rSfHO9v8+jwPD8C8yuS7PMs3Cb1JiSk8BvYbvKsNPj24dH08Yq+nPDtcoT35mcE7+OIcvWKFB72z0qE805mIOXLMGD3AaDO9jpmkPLsL9LzMezK9LkmiO2aaXjylpRm99DEdOYk85Tz1hV08ckp5vacTYzxS2xG7G79avIsMvzyXfoS8ocMFvdcOJbvPEUa8R/QlvVlJmLxkv4M9RfzxO/K7Kj3P+o28wkCmveh6T73q5O+7FEi3uheIDbx7rwC8Z2LavLjVALyp5og8cZCju8bInjymucQ8vvHjPKk2dzxrsZy50T6KPNuDizw7guA8MLyGvJ07jTwGbNG8fnRVvR1YqLwTABW8Cs6lOwvdEbw43wm94U8AvVYcVD2Ndt87GePBPFzCJD36wFW8GL0dPElLNLsyObm76FSrPENsLb1yyVk8v9YFPf9AAjx+dFU95jbTupVgrL0dkd48wPypvTpcPL0h4CC8HmeUvEACDTwsgNY8HZFePFJbJTzgfXC8yAwbPcqJzTieqVO8tc7gvOFiEjwqFja7pZtsPTXJ/TvDPIC8/NqHvGuxHL3XNEm8+xdkvAdkhbyOdl89rW4BvHrGOLzNtpG8SV7GvBM98bww9bw8oweCvAG+ND3hdSQ9FCITvccnebpd+1q9nqlTPC6eLjwC5Fg64XWkvGFZib1PBBe92Z5pvAZCh7gaAZo8eqCUvJx4aT0OQ4y8tZWqurEgRDpBFZ863e0rvMRxkDw6Iwa8fEPrPDImJ7wdazq84WISPTImp7yznXY7BTObulgnGr3RVcI8ZymkvK2+7zx4XJg6Y6ErPfl0jTydO409PYkAvLppaz3Vyqg9NpsNPIC4UTxvTKe8cslZPReIjb1Lj7A9+a3DPDbn1TuyCQw9npbBPKamMj1t9Ri9TxepvCkDpDyzd9I7VLIzvfdWNT0XjDO9poCOu+5GRL0Hdxe9l34EvdUW8TsRqYY7wnlcPE8XKbwsk+i8wRqCPa/cRz0OVp68RdbNOztvzjwBmBC9UGPxvCfSuTu7Tg28PHoUPTM1k7x4b6q8hBqmPVb2L703+me9CMNfPYLDFz3gLYK8Ml/dvDRqI7whLOk8a8SuPT2zSrvgV0w7UlslO/TsFLv3VrW8F4wzveqYJzsnrBU93iZiPcJTuDx05zE94C0CPcgfLbyC6Tu8MhMVvbfsOL0sbUQ8BTObPGmTxLw434k8hUDKPLW7TjzeE9C8Mjk5vQIKfTyaIVs86FSrOrf/yrssk+i7oKGHvF0h/7xnPDY7bBD3OTjyGz2i+BW9fmFDvAidO70w4qq9ZxaSPBCtLDyvoxG9LFqyOO5GxDzfC4Q8h4TGOTIAAzxDfz89JVUHPS7EUrx2Ky684U8Au2OwlzyxM1Y7uQqRvIHedTyUGAo91RbxvIeERj3TggY9EK0sPWOhqzx1GJy6qRBTvP0iqjscIxi9ns93u3QN1jvJG4e8JVUHPbp8fTwKGu67zbYRvTM1k702rh89ojFMPMbIHr2GS5A9CrsTPdSVmDyAuNG8n3+JPGdPSLv+HgS9CJkVvH5OMT3im0g9Wn4ovDauHz1uF5e7H9XaPE4M4zyY8PA8uiwPPSMkHTxr/eS65PJWPAidO7yL0wi9HVSCPBGpBjtbjRQ8ZvQTPY9uE7ufcB2926kvvZ6pU7wbJ747PI2mu6R1yDp/Sou9uUNHPPGd0jrZi9e7RcM7vYC4Ub22pBY9GxAGPb/Whb1apMw86nIDPE/xBL7A+AM865QBPfmasb3WxgI7ulZZvDImpzoda7q9oweCuzD1PL0yOTm9Md6EvW9yS731Ejk81fDMu0N/P7xmAwC9KLuBPTRXEbm32SY8R/SlOz3Z7ryxM9a77NwjPMfXirylrv48Y6ErPeqrOT1z1B+88rsqvd8xqL0eZxS9yAybO0qEarwjJJ07OAWuPDauH73ojeG88rsqPN3tq7zs77W8oNo9Pf9Agrz+bnI8UpRbvSWOvTzd7Ss9gLjRPGX4uTssWrK8zJQTPA9lCr2kPBK91aQEPOZc97zX+xI9KhIQPfB3rj31/6Y8HDKEPLH6n7yVTZq9eX4WvElLtLzGAdW6UlslvTXJfTwi7ww9F4gNOmnMer0yJic7erMmvaQpAL0x3gQ9a7GcvD8K2TmELTi9lqz0vOQY+7tgN4u9tZUqvcbbMD3uRsQ8i9OIPIHLYzykTyQ8IKsQvbEgRLxBFR+9VhxUPu9saD2elsG8MPW8vCoWtjzIJ/m7R86BO/0iKj1cwiQ81w4lvWlaDr0qPNo82Z5pPXrs3LyrQb28QSgxPVqkTLxWCcI7mveQPUklkDvgfXA8OVF2OkhA7jxniP48TNv4vL2SCbsqFrY7aVqOO14GoTxUxcW6fDDZvGO0PTtBYWc7NpuNvOYQrzykTyQ9MM+YvFzVNjpWQng9xL1YPXPBDb31/6Y6N72LPL7Lvzykdcg8RcM7u9OChjo21MO8tYIYPezco7xie4c7gKW/Ok8XKTxQUF+66nKDPEE7Q70Q5uK8vsu/uyHNjjz7BFI8Ncn9vNuDCzxytse8Blk/vVqkzLxgSh08VhzUPOS5IL3aYQ09Oly8uuKEED3RQjA9esa4vD2ckjwUNaU8Y9rhOzkr0jyQkJE9MC7zvAHRxrv73i29BTObvBZ5ITyVcz498cP2PERoB7sgqxA86r7LuUNsLT105zE8t7OCO/X/Jj1WQvg7nrzlPP5ucryR/te88qgYPS6errzZeEW9JsdzPcpjKb1c1ba8noOvvN9EOr23/0o9gw9gPfCKwLzEcRA9kxywOj3G3DyPgSW9DnxCuw9lijsKGu674pvIOzpJKrv/n1y7EssEPZas9LxQPc08KAtwu/K7Krm1lSq8tuHyPO4goDsnvyc75v2cPJMvQjxyydk7hl4iPOKbyLwdkd681tkUvSRw5TxEaAc9KPhdPVzoSD2jV3A7Q6XjvCoSED2NUDu81fBMPIQapjxPFym95v0cO/l0DTreE9C8jXbfu5HFIbx6/+68LFaMPJMcMDz/UxQ9s3dSvMpjqbxMtVS9A+8evNcht7saAZq8dOexPNgdEbrRjng8BTMbPWp8DD1QE4M8eYK8O1k2hrzPN+o7JXsrvKfyery+uC09LG1EvI+BJb3wUYq8TuY+vUcaSrzNthG8MM+YvHZk5DwGkvU8EbwYPB/obLuxRmg8zc3JvCtHID2SEeo8bkFhvUfOAb2renM9F4gNvZVgrDz5dI09ZTFwu2d1bDvoek89sUbovGdPSD0n0rm8AwIxPWc8tjzfRDo9GxQsvBIEuzzZeMU8EhfNvHZ39rzgLYK8hVNcPSNd07yR60U8fQaPPNchN7zoes+8TMhmOx/CSL00VxG8mN1euk750LuNdt87nrxlvbya1bsljj28SoRqvH47n7wZzIm7Iu8MO+uUgbxwmG+8X1Lpup5di7wcIxi8Yo4ZuYvTiDyT9ou8cJjvPOYQrzx7/268y6/xPBey17yh7c+7dPrDvOdJ5TsXn8U7kcUhuzR9tbwdWKi86qs5vPX/pj2tcic8MyKBPJVgrDuJ7uY76nIDPSeslbsqYn68F9j7PIVAyjzPSvy8+cDVvDkrUr3rpxO9OT7kPE2tiDzjpg68g9IDvVhz4jwyX109DCU0OzAb4bw9nJK8s3dSvVhzYrz/jEq8hC24vGdPSD03vQu9vvHjPGGW5TwOQww9KOVLvKfM1rwh8zI8XhmzPHBIAb2h1he9aaZWvX9KCz0OQ4w9LIBWPKC0Gb3/Zia98IrAvAK6jrxJcVg8BTMbPZnVErqcPzM6rb5vPYminjqqLiu7UlulOwiGg7zDTxI7XQ7tvILDlzneOXQ7sQ2yO4B/G7wEFUM9iQF5vLt0sbvO66G9lplivTITFbyC1ik9DDjGPHLJ2Tpafqi8G2D0PK2Fubzc9fe8poCOPElexrx/Sgu9vrgtuniVTry+tIe8IzevuzHxljxfP9e7npbBvNlSoTk6XDy8qf1AvLglbz3gat68YZZlvDbnVb1hg1M9GdAvu6+2o7y5CpG8J5kDPWOhq7x4lU48BTMbvN8LBL2LRXW7BkKHPGS/g7xnPDY97euPvI1Qu7syE5W8/UjOPHqNAr2aDkk9gKW/u3QN1jzim0g8STgivMhF0Tz3aUe9KAvwOKfMVjumgA48q3pzPM7YD71lMXA8KM4TPLthHzvvf/q6ev/uvHCF3bzCjG6965SBvBsUrLwpA6Q8ZxYSu49bgb16xji8NtRDOkE7w73+MRa8Vi/mOkuPsL092e47UpTbPBZmj7sQ09A8uTA1vKDaPbw4BS47ctxrvP+Myr3oLge8SUs0vKDtzzwwLnO7pE+kvNOGLDwImZW8Kk/sOwZ/47xWHFQ9qSNlvNmeabycUsW8byYDvILpuztIA5K8hC04vPCKQDx044s8sfofvYvmGrympjK9e68Avd459LwzIgE8ovgVO7fsODwp8BE88cN2vRs6UDxdDu28cp+PvDjymz0eZ5S8Spf8PFT++7zW2RQ9F9j7vMbIHj0bEAY9Q6XjPFKn7bwXiI08oO3PPaIxzDxW0Iu9pDySOwdkhbyC6Ts8YYNTPMhFUT0wLvO6wRoCvBMAFb12Ky49cFuTvcRxkDsteAq9JncFPOpyA70qEpA81+gAvb2HQ72Puts8oMerPBRIN72YsxQ98GScPOLB7LwVlP+8hWZuPHiVTj2By+O8+7iJPAjD3zrfRLo8+dNnvcSXNLxpgDI7Ts8GPIdxNLwBqyK9qNccu8yUkztWL+Y8aYCyvFTFxTwsk+i6LFoyPPB3rrvirtq8eJVOvBIXTb11GJy9kwkePSNd07yNFwW9UmoRu2vELry/1gU8xKpGOzcNer1yyVm8f0qLvNf7Ejw7RYS86tHdPNbGAj14u3K8ZgOAO6kQ0zuGS5C9ChruOyHNDjxJXsY7SSUQvW4Xl70WeaG8AdHGu9XKKL1jtL08UD1NO3z3orsYqgs9u2EfvY45gz3PJNi7gH8bPNE+Cjtvcku8P+COvV0hf73ZZTM72G1/POKINj0yExW9OPIbPcgfLb0dfsw6TLXUPEt8Hj1ppta8prnEu83z7Tv9W+A7EgQ7PSeslbxTun898GScPB5nFL048ps8DHH8vJw/Mz2LDD+8vrQHvCVoGbwfdgA7ix/ROwiZlTwQwL68JIN3vURoh7xuBIU8IK82vBDT0DtQKju85AVpPKtnYTuHcTQ9LrHAPJigAjyNULs7jnZfvQZCBz14byo9ulbZPNOs0LuPuls8QTvDuuXqCj14u/I8MkxLPE7imDxniH49H682PVqkzLuQ4P+8vvFjPPePa7wsgFa81aQEPT/3xjzP/rM5E+2CvC7qdr3yqJg7gKU/PFKBSTytvm885iPBvLbh8ruRxaE76nKDvFpYBLxtLk+8GRz4vCopyDyxIMS8QU5Vu7p8/bziwWy7LpqIPKaTILuthbk8BkIHvTlR9jyYoIK9ZymkPEWwqbqJtTA9+96tPEuPMLzgV0w9VhzUPArht7zk8la8Gye+PHqzJj0Cug49UqdtvUt8HjuAbAm9+yr2vC6erjwUIpO8ISzpvIsfUbwljj092G3/PJGyj7xoiH489jCRvJigAr2Q0Mw8UhGtPKJHIr0Xt788fYEfvQaFJ70Psge8IRWJPTubgDzvY+K6FeLHuaXXXL2s5v684+8NvX9WFz0ZRJq8wFCKOmiRQzzEq9I8V18rvKtteL2y3xW7R3WwvE7+gbs1Wky7oqOTvLLflTybJKw7y4YrPbeWz7zHc4A8YbZqvbc6Xr2QLL68iqAMvMO/Jj29exI8iqAMPJO5GL0Q3GY97YsKPZAsvrvMKjo8UOBDPSJTvDzNt5S7I46PvBvHCjrK5fy8L8SwvKYIxjxsoQ67IWrwPJF027xzdV298UyuuyM8iL12Ajg8J6E6vVdfq7yQ5KC7JMzCPLpUE7zYAYq8jRkTvQWc2zyNaxq7gxc7PW8aFb1gbs061w7Uu1xobD386Cq75CPXvB3xabyU6gG8d48SvV86hDmk67A7cuUiPatWxLu01Ss8ZmDaPG2XpDvn+M68L8QwPXGgZTrphSk8vPghPT19Qr1f3hI8I+P2vJvIOrx/bcu7wsmQPAzTpbz9dYW8An9GPNt6EL3VgXm8Z0mmvO7Tp7wQKw48Su42vcck2byhAuW8boNQPGavgbzmups8RaC4vBmMtzzphSk9Qd8UPQCWejzCjr06VEwAPB6cgjyy3xU5Ec8cPddWcTt7mNM8obpHvMIeeD0aMMY8VEKWPOpxVTwhFYk88LIJPe+/0zt1pkY88LKJOijpV7ziTl+9BPhMPb3Xg7z4Jwc7PcXfvMuGq7z8MEg9JOAWvZcRgTyleIs98jjaPFbFBr0PlEk9Nba9vRcnhT1dmVW9IpvZuxwFvrzphak8kIivvKdQ4zyAnjS8O/DnvDfnJj2ffJS8AO8LvSnSI715EoO7WnzAPLlrxzrHc4C8cUR0O+TbuTxBmte8U/3YPATEgz2HeQ29yGmWvDI9tzzV2oq8vnGovGrCLLq5D9a8PDUlPYo6sT3Z40s8lDV/u89Hz7yDFzs8HpKYvC1VFDywXKU8G9RUPSynGz3bFDW9wneJPHw5Arq5D9Y8WtgxPBWGVrzYU5E86OuEPMVMgT3U3Wq9HAW+O39ty7vB1to8zv+xPIcnBr2Z3+48x3OAu25vfDxBOwY9/NTWPB7uCb2rbXi8MuHFPPakFr1L2mI88ASRva4rPL0fkpi9IzyIvef4Tj3o5Po5IMbhvBlOhLwM06W8s3m6vGYE6TuSw4K8Ri0TPZJdJ7q1qiO94DHKPIsmXTzCHng9yBePuxNV7bzvY2I8qw6nPAY9CrsgxuE8i5YiPGFhg7zFl/48dL36u2iRQ70HKTY9mi4WvQRUvjorqvs8uCOqvK5zWT3qFWS8uC2UO28albz/qc471E0wPSZjB7r9jDm9ikQbPRowxj1ak3Q8GjDGu0wfoDoTUo29fm3LvIyCTjokKDQ9reOevC7YhDskhKU8ZwGJvFmQlDpVlJ078agfPSM8iLphYQO9cZ0FO9gBCjyio5O62eNLvKyeYT3rtpK8g7vJPE0LzD08kRY9+0QcPap0gjuCLu88vnEovK6HLT0Duhm94QZCvTI9tzyA+qU7mySsN5sQ2LrhYrO92xQ1PX9tyzv8MEi9nkHBu+awMbzrWiG+VKHnu30lLj1nAQk9+v/eOxroKDwB2zc8NBKvvWtS57w3L8S8oqOTvUcZP71ak3Q83FzSPPQhpjpnAQm9qJ8KO4fLFLv9HHQ8x8hnvBhbTry/AWO9ljIfPaJHIjwB2ze8XQkbvCQotDtJphk9aDVSvEA+5rxCb0+9mKslvRt1g7xvEKu8h3kNO2sKyjygcqq8RGIFPK0/ED2PV8Y7+6ANPanJ6TvqcVU72ZsuvGsenr3aK+k8j5wDPALHYz2VMh+70DqFPBDcZj3Mcte6nVWVu0ruNjxpKAi9zv8xu6oYETxafMA9ulfzvCkulbwj43Y7lDV/vXKTm7xBmle9rOZ+PIBCw7u+cSg9/Rz0PAwbwzzK5fy84HaHvIcnBj13M6E7iMEqPQbhGL3tiwo9sFwlvaUcmrwkhKW85gyjvUGDI73Zmy48p58KPe05g7s0bqA8Nk2CPHGdBT3NuvQ73umsPIsmXT4Q3GY9ZIiCOrZOMjxWGu48GFtOvc0ThrlxtDk867YSPTjT0rxNr1q85rCxPIxuejzlxAW9f2CBvNEcRz2On2O8JMzCO8J3CT334sm88oB3PUDi9LyDFzs99GnDvJ35I72wXCW8f2CBPF2tKTxt8xW85gwjvSFnkLyrDqc8q7K1PCehuryQiC89u6YaPeM3qztnSaa50DqFPesSBLyKOrG8T1NpvDGZKDxs9vW7sLt2PM7/sTxvdga83LjDO7h/G7s8Pw891iIoPRvHijweQJE8zqPAunePkrwhry29DHe0OEE7hrr6W9A7NkOYvHyLibp/WXc7wEagPLBmj7xo7bS8vIhcPEfRoTzJnV+9UChhPQDvCz16tpE8Y+dTPR42p7yP7oo8b2ycPFAo4bqagJ08/OiqPRNVbbzB1lq8BxXiPPOHgb38MEi82eNLu+v+Lz3bepC6dkpVPDubgLy+Fbc8LZPHPNoraTw1tj08PcXfOnbu4zupJVu9832XvGiRQ7y5Iyo8xPPvvFWKMz3jNyu9S37xuyoawTzp5Pq8GxzyPd39ALxuJ1+9mooHPHZK1bojP+g8bxArvB2pzDxokUO7KdwNvQDvi7smWR06xoDKvL3Q+Tzs6tu8lh7LPKDOG722TrI8IbmXvOkpODwSsd48JbhuvYn1cz04i7W81N1qvHMZbDyLJt070DCbvN6Nu7xJAgs9Nf7aPMaAyjwEVD49ObwePL3Xgzy2TrI9YbOKvHyYUz2Iwaq8KwONvTl0gTvXVvG7d+GZuypiXryKoAy906khvfHwPD3msDE8xUwBPcbcuzh+EVq8vdD5vIJzLL2o3T29CaI8vbgjqrwEsC87A2iSO2TQHzwmBxa8Su62OgGTmjtt85W84HaHPFto7DxvyA29krmYPEGDI7tUQha9oRa5un61aL38jDk8gOZRvT4Uh7wNq308CaK8PJJdpzuEAIe88oB3OwkImLrd/QA8ifVzPdRNML38jLm8WzSjPRF9FTvYrwI9hnxtPdvMF70OBI+8PcXfPGMv8bevu/Y82Pr/OzvtBzyGSKQ7DHc0vbymmrsqdrI8eqwnPV/h8rsDDCG9Ri0Tvf145Twk4JY7r8IAPeVrdDwbHPK8KoqGvRZvIr1A9kg8Hb0gvT19wjzaKIk8x3MAvTZGeLwMd7Q8nyoNux6cgrxgbk28ah4evaXKEjvVgXk8aNlgvROkFL2GSCS839VYu/GUyzsJorw8LwxOPLucsDyIwSo9nLRmulElgTxQhFK7OBvwu11RuDydVZW8hjTQu8IlAjxo7bS8Nkb4vCzvOL2Du0k9TlCJvJirpbyU7eE8nVUVPQJ/xjrmDCO9o48/vFTwDj1jL/G7A7qZub4VN72O+9S8eNevvOYMozxhswo9VfCOum07szxoNVK8P66rvBp44zywXCW8NBKvu58tbTx84PC7Tzy1vH3JPLwaeOO8oCoNvP+pTj0BN6k8bTuzPPBggjsNB2+9M3iKvJQ8iTx4e768ksMCvUGDozz5HZ08JmOHPTqoyrvudza8UrU7PHlnarwQK468UXD+u3TRTjzJ+dA8/03dPFEbFz0kzEK8GU6EOyZjhzwB2zc9yj4OvGPnU73mDCO9/NRWvNk/vTyEUo48/6lOPXVeKb0x/wO71N1qvcO/pjynrFS8jMcLPYgJyLzMFuY8uMc4ve7dkbwNB2+8NVpMuzRuILsufJO9yyo6uyjpV7u/AeM7oabzPGKfNrwlFOC8xUwBvEruNrvzISY9DNOlvKhDGT2o3b09Z0kmvZ0DDju5s+S8f2ABPVi7HL0o6de7pR96vJqAnT3JVUK8CaK8PFo0o7zKPg69U20ePNJhBL1+EVq8Pg39PAwbw7zWLJI7PJGWvMzOSLxi+6e8Zqj3vNDUqbt0dV08Q7dsvEYwc7x9yTy9ezxivAqO6LzHJFk7XjqEPMCiEb1cEwW9H5wCPJLDAj100c68Kwbtu7HsX7x2SlW8BeT4vDRuoDyolaC7HyLTPA84WL0mY4e86/6vO32Ef7qe5U+9UXcIvBXixzr6o+284QZCO+BsHT1MNtS7qhgROnqsp7tKqfm8EmnBPNmbrjwdTdu9LEsqvE3DLryrDqe7JhGAvO4vmbyJCUi8MaMSvaXAKLz5EzO8G8cKPe9j4jzx8Dw8vCzrOxcTMbwRIaQ8IA7/vJK5GLxf4fI8pqzUPI9DcrvReDi7YbbqvFShZ7unUOM8+6ANvRbLEzxkLJE8uCOqu1xobL0gw4E8JIQlvT8NfTx5EoM8iyZdPH0lLj39eOW7mKslvVYuQrx1Xqk8xU9hvGEFErvNZQ29TWe9u9j3nz0RISS9WuKbvcVMgbz8MEi8vIhcvEE7Bjy3Ot48rZGXPEt+cbtk0J+7WnzAPBP5+7ybEFi9cLS5vIx1hLsTDVC86wgaPP9NXb29exK9ogJlvHLlorwOY2C8Um2ePKiVoLyL3j+8VOYkvRNV7bz1AIg9GP/cPBcnhT2uc9m8ErHevHYCODzxqJ+7oaZzPJXWrTzphak7Geiova7PSrxHf5o8Ln9zPQ/wOr2Z80I84CQAuws5ATnjNyu9urAEvWJDxbnsWiG8T1PpvF495Dz1rgC9RaC4vFrYMTzWasW8AxaLu86jQDxFoLi8Zq+BO207M7yDFzs9rZEXPa2e4Tp5C3k9H5wCuj4UhzwDFgu8rZEXvXpQtrxXX6s8pmQ3PC/EsDvXDlS9VsUGOgJr8rzah1q9spBuvSFqcLsmXH07VJSdvFinSL2dA448vCzrO3aScrs+uJU9KwONvF2tKb1sT4c68fC8PGHKvjxH2ws8hACHvZTqATuhpnO9bd/BvAO6mTwaMEY83kUevfvyFL1RyQ89OqjKvMrl/Dx3MyE8lOoBPbBmj7zti4q8G3WDPOtaobyy3xU9TcMuvWjttDyoOS+9ljKfvAwbw7ybEFg9rxSIvN6Nu7xcEwW84HYHPEA+5rxmBGk7nVUVvLc63jxqHh68MVELPOxGTT2wXCW8H9o1PGHKPr00ypE8E/YbPUNb+zxH0SE8Xj3kPHJBFD2YT7Q84zcrvN7prDz/axu8Xj1kPXD81jwWyxM8U/3YvDvtBz0gxmG8nuXPvFi7nLwlFGC8l2OIPJskLDzn+E681mpFvGYE6TtdrSk8ZmBaPHePEr35t0E9+lvQPHfrg7v2Pju9uC0UO9xcUrw+Zg496nFVuyncDT2Wejy9JlmdPFRFdjuC0n08CkZLvPfiSb2gcio9XGWMvZjzwjyhAuW8R3+aPLbywLvsRk28pXgLPQCdBD1a2LG8ovUau70saz2Y88K65/hOu29v/LylH3o89a4AvTVaTDyNymu8bxCrO5cHF72iR6I6Fc7zO/PZCL2ctGa7P64rOjZDGD2XZui8bvU0Pc/fvjw4ACW9oLT+uy0v4LxxfjS9szsavZRPOz2x6vA8c6IRu/1vobvkuZO93acUvEy2HL3rFdK7serwPC4ddzyLB/a54bAZvbFz5TyP2KQ8cisGPY3GsDzgjLy7GMoGPeU5mbx/GT49ZEjNu08kubx3K5G91XoyO/ZdIrzuy529DufYvPLdEbyooJu8qqkVvcmpbbxjWja9J+4EPZgOgbtRNi27qzKKPBJeb7zQu+w7Lu4avRoL17wB+aA6NmW8vJ8gALwNcE08EAu2PDTKUz0THaq8uUQfvfRmET0uZaa9gs+JvJG00rzW8b28SxJFu0gSOj2p2HG8elr4O5bqozswiQM9Y1q2PIwrUztm4zW98MKuN8oMALu+qUw9FqapunsZMzs9G5O8spfCOCaU7DtkJPu8G5RLvDZlPD32jP68qPxDvHF+tDtrNnq8LmUmvfWMfrw2Zby8Sdx+vF02Tjz3Szk7T3fyOtWVlbzN8Sc7tiDCvKD8Lbw3U1M8m44GvYthjjyVap68PAAwvI3hk7l542w8z0ThPFoScb2Foki7kD3HvPTCOT0V5+68i08lPWs2erxNvxY9z83VO7OXwjz9+BU9rbuJuha4krxTEls8IEEovJ38Ij0M+UE7L/cUvDdTUz0eL7Q8RpsuPOfLhzyRK169MLjfPOeeOzw0Qd88I2WFPM0DkbyY8527LEHJvW71ND1f/oK8N5uCPHx+1Tyx6nA6maJ/PFok2ryohbg7AfkgPDfK3jxf45+8sWH8PEGkkr0x7iU7S5s5vBgLTLz13Ry8VWMEOw3nWDvqJzs9h5DfvIG0JrxrWkw9wbtAO5rYRb38S0S8icalPOUnsDuvqaC8CsP7OrhWCDypc888/LDmOwALiruUPVI9afWpvAuUn7y3TQ490ZWKPHJaYr3Fu8u7AxSEvF3sDj2W6qM9PJsNPDkApTzSzWC8GqY0vW8QGL2hF5G7rIVDvbkytjxUv6w9cVpiO9UeCj3Xzes8KFMnPRA4Aj0GcDe9R7YRO9jxyLr9b6E78+aLvaQgizysYXE8WOwDvInGJTuRtFK9updYPJiFDD2mT/I8ZvWePF9sFD0THSq9+uYhvbzoATyQPcc840KIurdWCL19K6e8UABnvbcgQr2uICw9XpvwPHyQvrxUd/089SfcPHH1P70ZL6k8uiDNu5DGOz2OGeo8zDJtvVab2jyKGV881t/Uu3yQPjwTC0G8Z1pBPKiXoTyf2NC7zvGnvNQVkLx/orI82KeJPBJe77vBXxi8M2WxPJZhr7ztOS88gPVrPEQtEryzO5o9ZDZkPYOiPTty0e28FIJMvUo2Fz0QOIK7Ex2qvNinCT0JcEI9HEEdvQALirxk/g08C8N7PM6DFr1p9ak8dGzWPPjUrbvS8bI8GkqMu+7LnbyctPO8HILiuQcdiTw27rC8kaJpPAoUmrw5AKU8FqYpvGeterzl8ek8wvEGvUgA0Tyfl4u7zoMWPcNWKTzAu0C9EIJBvF/RNjydcy69efVVvYg9sb0KXtk8aQcTvMEyTDrven88XptwvdiMJj2V/Iw8BudCvWfjtTyGGVQ84iclvs0DkTpx9T89y4MLvcaX+Tu1u5+8IEEoPHSQKL02d6U8y9+zvM9E4bwmC/i85suHvSRTnDsWpim8ZoeNvOpCnjoAeRs9zwyLPVAA5zv9byE8fxm+vHSiETzyVB26W4n8vO+M6LscQZ27/fgVO4RPj7yw/Nm8mXOjvBc4mLzTnoS7ZX4Tu1/jnzwz3Dw9655GvGhIWLxaEnE8MXeavIMH4Dx7GbM9jD08PGQkezzqsC+9w0RAPNVoybuZDgE9uLsqvON6XrzfetM8V1oVvbwywbycPeg8b795vbOXwjyGB2s9X3WOPU6bRLwu7po8J1Onul6b8LxxB6k8G5TLvMdxlzrGIG69rA44u9h6PT3475A88Tk6vaogIT1DEi+8hcYavOuM3TxX4wm9VtqPPElIgL159VW8Bx2JO9S7d71ybMs7K9ymu2H1kztLmzk8cwc0vP1vobsNgja7onM5vbf8bzycxlw+LS/gPPBmBjz3eAW9c0j5PHpa+LzazXY8n9jQPOaeO71am2W9nXMuvQULlbyRPUc9gqI9vKqpFbxc0Ss93PHTurFh/LveniU9lXOYuy/cMTyzDs68yfEcPSBBKDxBALu8onM5vUx35zsqZZs8/EvEO/nvkDuUK2m8EtV6uzZ3JTzH+ou8g6K9O2PjqjzwXQy9Ei8TvcyDiz3kQog85icwu+Fo6rvxsMU8CRQaOxrBlzyE2IO8+CdnPO3Co7x59dU7qk99u01IC70hyhw9UdGKuxqmtDy/Vp48DtVvvXMZHTzVA6c4Vb8su9+5iLvinjC8onM5PEeJRT3gFTG9bH4pvfgn57y3/O+7hqJIvdPNYD3LVj85lwUHPd05Az2olyG9jCvTPCmUdz1+Rgo9Sr8LPIeQXz0auJ28Wa3OPKiXIb0iC228Hi+0u6A9czwTHao81XqyPHcrkTu61o08AhQEPVm/tzzIzT+8GILXPJDYJD2SYaS8DqYTvMyMBbzmFcc8gH7gvLwywbxd7A49MLhfvfmwW7yKK8g82J4PPH20Gz3jjEc9YK3kuooryLoxd5o8M2UxPQiCK73HaJ08eqKnvDeSCLypc888EDiCPBsLV7tvv/k8B9VZPLYyKz1Nv5Y8CPm2O9onj7wwysi8eBmoO5rqLr3/1EM9eeNsvJjG0Ti0zYi4bVrXOqn8w7wQHZ+87cIjPfoVfj2QPcc88SdRPYIrMjxHtpG8QCSNvA5e5LwRuIc8L4AJvXyQPr3owhi8uSDNvPrUOLytMpW8jNiZvJrYxbxKrSI8hrSxPECbmD07JAK9kNgkvcWpYr3/1MO7jeGTuosHdrxgv807x4OAPBodQD3rjN08gxnJPKQOIj2LkOo8/Z79PMoMgD1FvwA8H5TWPLRElD2rOwS91XqyvKPG8ruJolO8hVgJPPxLRLwAw9q82d9fvBlwbj2zDs48xiDuPMKX7rvrFdI8cwc0O+6wOrrLaKi84N/1vCOCeD1Qv6G8W1qgO04S0D3qOaS8YvUTvO3Coz0sQUm8eauWPLpfAj15tBA8/vgVPErIhTzR38m7SUgAPcNEwLyctPO8C5QfveHCgjxMthw982+AvGb1njzmFUc8UsgbPBH5TL1Mtpy83IyxO8FENb2ftP46tpdNuxodQDzfelO9QWVdPZQr6bxLPxG9mXOjPPaeZ71tIgE8+p7yPM2peLx6oqe8Fx21uwumCLzy5gu9UTatvJ8ggLwcQR09sw7OPMhES728zZ48ZDZkO2vR17zgjDy944xHOw35wTyulzc9OXewuwfDcLy5RJ+9dxkoPa+XtzzZ3188M2UxPGZsqjzMAxE9EK8Nvb5fDbxubMA7sw5OPepCnrxLmzk8eDSLvAH5IDzIREs8wTLMuknuZ7ss9wm8pfy4vPsBBT1R2oS9u/x6vEqtojz9gQq92Xq9vHVs1jpkNmS9qKCbvACClbxem/A4gwdgvMtoqDsIC6C8tpdNvUh3XDxi4yo7eiucvN5W9rrkQoi8FV56PS24VD2O6g094TkOvXgHv7xNra27IgttvGh+nrsAghU9WTZDu7eF5LvIRMs8CYIrOxhwbjwepr885LkTPOYVRzz1OcW8nhcGvFPIm7wm5Qq9rIXDvEhlcz0h0xa8jGoIugn5tr3BDvq6dGzWPEHuUT0B57c83rAOveFoar0zU0g8183rvFfjCTya6q688EujvMoDBj3C3x299SdcvDCJgzx6oie99GYRvXn11bwOnRk8E8GBvCblCrwkZQW9N9zHOceDgL1r0de8bDb6vJ/GZz09ALA8wmgSvYdhA73lsCQ9F8GMvO3CIz1qSGM8r6kgvTdT0zxZNkM9iLQ8vNsDvTyYBYc86hXSOMAyzLxBZV08aEjYvHqipzxtkBI8IdMWPR+CbTtqSOO8BRSPvEy2HL2s/M680YyQvPNdFz02CZQ8DAurO1lILD3VerK8PtzdPHk9BTufl4u8UO59PNUeirx7NBY9ciKMvGGt5DuxqSu8VTa4u6/8WTxdJOW8K9ymvfXdnDxvooY7sw5OvbMOTjxaEnE6VEihPIk9MTwC5ze9btHivBJe77wjlOE8ctHtvYOivTzazXa8zERWPKEXEb03m4I7y1Y/vDHupbzYjCa9/LDmu4UrvTz1sNA7x/ERPVB38ryecy67+wGFO2rjQL0RuIe8M1PIO0V3UTlGU3+8/bDmOpphOr0ICyC9KabgvL4O77o6Gwi9Hx1LvJQrabxJv4s7v4X6PMNEQL0QgkG8O0F1PdxoXzwcQZ098Dk6PM/fPjwGTGW8CB0JPSz3iT3nnjs8gbSmuwVwt7wqHWw9TlEFPH+9lb1t9bS8nHydvH3GBL1OvxY72icPPZzGXD2u2Pw7/DnbvKA98zwxd5q9fAdKvQ9Me7yKotM8zPoWvfdLOTwATE+92mhUvXd+yjxem3A8x9+ovOS5E7y5RB89c0h5vVNRkLz5FX48Ou47PVzRqzxHEro8b0huvWGt5Du0/OS8Psr0O95W9ryUxka9A9XOO21+KTzZ3188EIJBPArVZDyvDkO8VEihPP1voTwudw+7TABcvWfRzLzgelM7wt8dvasOOL3uy508DudYvO1UkjtgrWQ8OYmZvPTCObqv/Fm81kT3vGr1qbuJolO7ZEhNOckg+TvEzTQ8wDJMPf/Uw7uET4+7/+YsO3F+NL2ZDgE8rbuJOj3uRrwuZSa9XuOfO6D8Lbw93N070mi+vLbWAry2Dtk70d/Ju7Hq8Dyzl8K8ZX6TPU8SUDxqWky8mMbROyblijxNra29rA44OzBBVD0GcLe7R4lFPQMUhL0pL9U7kSvevGBIwjz2jP4801bVu1S/LLwzCQm8eePsPPvUuLzP3768k087vFIkxDvqOSS9EedjvPoV/rwFFI+8qmHmPTkApTu+qUw9WtoavT+tgbz7AYW8rzsPOr3WGL3vFV28xiBuvFm/N70rUzK9jhlqPRIvk7wwuF88lHyHvCxTsrt/vRU9wmgSPQ7nWLqYhQy9WUgsvCUvSj26IM070AMcvIU9pjzLVj89X+MfPRv5bTyCtCY9CDr8vF0k5Tzp1IE9f0aKupTGxjuZK/Q7Hx3LvPae57w/iS88sPzZPK+pILyQPcc8xTJXur/NqTzry5K744xHPM56HD1rWsy8GkqMPJE9R715bOG8ujI2vRlwbr1jWra8FkoBPR9TEb0apjQ8cPW/vGCtZLx9PRA8s4XZvK8gLLvDVik8xOgXPS7cMb0G1Vk94p4wvLIyIDyJWJQ8lWoevb0yQT0V5+48EAu2vKiFuLylhS09pCALOzfcxztTWoq9pw4tPY4Zajpem/C82mhUvBLV+jwJnY67wUS1PB+C7Txq40A893iFvA2CtjxvEBg9GtMAvdEFMTxTBVe8CkEavbmJvbuZ1gi8v43AvP3uh7xV3aU9yX+sPOSl0jw2ssi8A9Gvvb04p7yK6yY8FTJSPFMF1zuGkVa8k+51vMFOQbxNAdQ8lVSHPMNkWzy2B7w8fCKgPKWl5TrYnUy8yL4rPIZemDvwrdg8mEhGvBa1hzwXh+u78YUnvYRTC7xOhIm8uDQkO1JbJL1lpfi8zuQJvZDvKT3DnQQ7LMBcPGg+SD2H5m+9QI3mutEFMbzRZou8rCyePDk0Sr2CG5Y83TXoPITQ1TzY8mU98W7ZOs4XyL3W3Eu7piibvV2LW72vZBO9KbaDvPLawLpnfUc9pp+PvDQIlrxYSNm8QKQ0Pcsp37oD84o7uhcAvahgkDz0B6k8+HJcPW3tMTuJi4C8dUbOvMDi2by8dya9u2wZvHQTELwCumE9JihBvACkx7xoC4o7RgmSvHeVEb2B0Qk9g3s8vNh1Gz2s7R49qejnvL1gWLwSvBG9NwfiO87CrruA+bq8oc7KvERIkb3yblm61QT9u3FY5btObbs8pp8Pu1HYbj3XMeW8R/1QuguWMzwPbc48cOz9u7Wyojyj5OS7xLn0PNs2nLrP7xa7GV86PXoMhryal4m82Uf/u6Zm5rzaH0486LUWvSw4hTw+YH47COwAPQm+ZDoF0Hs9DoScvFRacD2r4pE9yr33Oz7jMzhhYva8yOCGPeNnh70dTaM9Wl5zvGr/yLsq/9s8nfcvPQzrTD35Siu9pumbvFQ+ALm2cyM7E8cevddIMz2pqhy9pmZmu5fzLL3/4sa86iwLvQPRLzsm06e78cSmPA0vg7zEPKq8p1WDPZgVCD0mlKi8JBKnu7YpFzzlETq9PGGyvOYzFbwJgJm8OR38PKW8M72E5yO7tKeVPdFmC73EuXS9AmVIPabpGz2alwk6xXp1u+6XvruKaPE8t8i8PUR7TzvEqBE89fBavHADzLpk05S8Rf4EveZm07wP2TU9I1EmPTvCDDupqpw8ZhHgPMgTRbx/pKG8lHErvf0tB720siI8EQYePVp1wbxsjYs8UkTWPGHlqztsFWO8DNT+vAJOejrjsZM7r5dRvN8vErv/r4g78RnAvBYyUr3ZCTQ8hTw9vHy2uDz5Siu9COyAvEMmNr0+T5u9X7jDPFERmLv0hPO8nfevuq+X0TsiUaY6EZq2uDhcezv1KQQ9gOLsPMb9KrsdNtW8PAtlvLbw7TwCTvq7AY35u4OSijwvugY9zT/5vI3qcj0aIDs8kpncPEJ8Az2Bujs7P+MzvRbdODzYag697IEkvDVGYbrYtJq8ErwRPfu2kjxvl+S8gw9Vvcl/rL1gDV09paVlPNcx5byVVIc9Qk5nPYHRiTz6bIY7zW2VOlhfJ7zkKAi9T5oju6dVAz2qVE89hpHWu0CNZj1UcT474SNRPGgLCj0K9w09itTYPNZfgTzgzjc7UINVPLBvoLyxxDm7jW2oPBJyBTxznBs8e82GPbYHPLsqwRC9pGcavXy2OLy/jcA73Ey2PMi+q7oW/5O9eKAePMgqk7z7n8S8/+JGvXFY5bxy2xo9et7pPN4khb26Sr48UAaLPD1EDr4W3Tg82GoOPd64nb01Xa8572SAu+GPODxuD429ng3KvCDPJL08zRm9PIONvU2ECb27bBk8mfL4uvVcQrvEPKq8bWp8PaTTgTz0L9o7GMAUPNi0mruzL208DKzNPIb9vbwpPts8BysAPYNk7jyKf787ckcCvQoqTL2vGge8oiNkOp/ai7zhI1G7Wl5zPAIyCr3LYgi97EKlPH9PCL1q/8g5g2RuPf0tB71bTRA8fxCJvTqJYzwxb8Y8yPz2PO9kgLs18ce8LYFdPCcoQb0RBh69/GBFPDScLr1tmBg90S3iPIFloj2iEoE8Sn/SPE/ZoruZ1oi91OgMPEcUH722c6O8vSHZvFcKDj3ayrQ7Sn/SPCqqQr0VSaA6V8ABvbhyb7zm6Qg9tR4KveSl0jxB4v+8olwNvIdSV7xTx4u9J5QovL0tGjw7DJk8dZvnPAsCGzylpWW7ml7gvIFlorzxGcC8EYNoPl+hdT2r4hG8PwUPvQj94zwTsNC8FXHRubSnFT2eoWI8d98dvQV74rwh/Iw801pKPX3Yk7yNbSi8cVjlPBhfOrzb95w85j6iPdZIszt5oJ67Hg6kuZo2Lz3FevU8gOLsvAGN+TsQ8IM7uxcAvAzDmzzDnQS9s9rTvMwjiTtFv4U8Nn8KvDMwxzz0sg89NPFHvJ33r7phUZM9sTAhPfObQbyEJe86X8+RvEMP6Dwy26089zSRvHBvszxyhU29LQSTPLDs6rwqFqo7iCqmO8gqkzySEYU7zVZHPOKPOL263ta8wzwqvNjy5TwvrkU8iIsAvdZIMzwRvJG84+RRvUHif7zBJhC7PJ/9PLmJPb3qqdU86/5uO6PkZD2hzko9rkK4vBYy0jxLDRU9AY35u1RacDzhpoY9aNLgvENIkbyQmhC9w2TbvE8uvDtDJjY92Ib+PL3MvzvV85m5z6WKOh4OJD03B2K8T4+WuRWIHz3VcGS8hVMLPVwf9DzugHC82uyPPOt2F70x2y29UJqjPZSTBr2/dvK8A7rhvDjfML3LKV89iusmPROw0LxMV6E89IRzPCC41jzLfni8ZdMUPApBmjznPqK888NyPBNbtzyMrKe8GV86PQnVMr0c4bs86WsKulfAgbywb6C8T9kiPf213jvrN5i8hVOLPMq99zwdTaM7U8eLPBUyUrzv7Ne8OUuYvO8lAT16DAY9aKovPcTQQj3WqQ08Nh6wvDEDXz3gzre8z4MvPdv3nDxCfAO9qsC2uqdVgzy0pxW9YJASPB9Mb7yPmpC8xzt2POrAI7u9IVk9PvoBucmhh7sWtYe9K1R1vLr1pLxIi5O8iZYNPLYpl7tghQU9MtutPIdppTwqqkI8itTYPID5uryDezy85KVSOcFOwbxObTs9kGx0vD8FD72d9y+710gzvQLRr7zBZY+8BXvivJ33rzs/4zM93qHPPK8Dubtrqfs7/cysvPirhT2jHQ48JTSCvYAQCb3xAnI9i5XZvKI6sjzSsJc9xmmSOXmJ0LtWMj89ZPvFvNyLNT1Ii5O8NrJIPa6XUTlk5Pc8A9EvvCRzAT1RWyQ8vZkBvXJHAr2dGQu8wOLZPERIEb2PUAS79QcpPAoqzDuiI2S83Uy2Ovx3k70xb8a8PLZLPE2surxhOkW8A9Evvb3jDTwSWze87mSAvHyfaryIKia8SRNrPGxODL2ci8i8l1+UvBjAlLyk0wG8lMbEOgIyCjwLf+W83GMEPVQ+AD3NVke8KpP0PCLlPr1adUG7tnOjvOEj0bzr/m47J5QoPD6OmrzmZtO8K9eqvIspcj2SsKo8TBgiu+pUPDsajCI7I70NPRbdOLzPbGG8WEjZPEHGjzzmPqK7FvSGvCsWKr2uK+q8WEjZPGIj9zzEJVy7PSKzOtLu4jxheUQ9yqyUO8t++LwVPhO8ON8wvUMPaLyht3y74+TRvOqp1TyOwsG8+UorPWB5xDzu+Bg9Bf4XvJ3g4bygebE8KbYDPNapDb0nKMG8cIYBvYjgGT0mP489hpFWPGVnLb3BJpC8YjrFvAFlSLzFenU79JtBPR2LbrtCus46qRYEPesVvbtR7zy8gOLsOhPHHr1rVOI66iwLvZPShbup/zW8iNWMPL13JrwYSGw9Lu1EvLiJPby7tqW9ng3KvAxuAjyI1Yw83HTnO0XQ6Doxb0a8oOUYPQSSsLxCuk698qeCPNKZybwkpj+9Le3EutQnDLyYIBU7ZpQVu8WRwzpadUG7JI/xvPSEczp8C9K89VxCu2tUYj0dNtU7rwM5vI8uKb1/IWw9YXnEO4tXDr0UPhO9iw0CPZ41e7xeDhE9AhCvvGdm+bzLfvi6+HJcO0qWoLxyrf48CkEaveNQuTskZ8C8zAEuPCcR87xhUZM9iB8ZvMlo3jyIiwA9PSKzuv2NrTsMrM28PmD+u0kT67uPLqk8WwOEPL/5p7x63uk8YWJ2vGcneryCGxa83Iu1vNidTLyAjVO93w03vF7g9LwtLMQ886cCu4rUWL1mEWC8g5KKvEI9hL2sFVA7gWWivBDwg71IKjk77+xXPVXdpbsLljM9nriwvKI6Mry4NCQ76JO7vAj9470fTG+7+4j2u/ufxDzy5gG98/GOvGQSlDqR2Fu84TqfO5Et9bzYtBo9OwyZvHdzNrzbNpy8y354O2F5RDxmKK682SCCvAe/GD3VBH081K/jvMzqX7uLDYK7D23OvGd9xzvl+ms7jQFBPG1q/DmYIJU7CP1jvb44pzsW3bi8Nb6JvESSnT3lu+w7tnMjPXlLBb3Kvfc82uyPvJKwKj2A+bo8BJKwPLjqF70Bjfk8hOejPRk3CT0sOIW92Qk0uwjsAL397gc8OsKMPMb9Kj1R77y7CFJ9u++5Gb3bNhw9ipaNvQzrzLkgDfC8a1RiOU5Wbb3BTsE82LQavZfcXr1miQg9jW0oPMq997z4qwU9gaPtO4MP1bwmvFm92eGCPCjScz1miQi9GowiPESSnbnCJhA9gU5UvfsLrLyKQEA8KD5bvHRdnLy3sW69dR4dvfUpBLyVnpM7xubcvEX+BD2qqWi8HLkKvImLALyPF1u8yCoTvH2ZFL3W85m92x9OPWHlq7yYtK28/cysO+74mLzxxCY8BbSLPMgTRb0MlX+75j6iu7xsGT3LKd+8ox2OPP6NLT2VVIe8U4gMu7YplzvE0EK9hJIKPFERGDx/pKE8MW/GvBYyUr3LYoi8pp8PvNIFsbxUxtc8Nn8KPMwBLrwjB5o8PIMNvXxgaz0KQZq8sG+gPGdmeTwci268DMMbvYf9Pb2iUYA8V9xxPJx0ej1A+U29drI1PWI6Rb2BTlS8jKwnPfBYvzypa528onj9uecnVLjCe6k8hTw9PSeUKLw/BY89C62BPBh2CL0Xh2s8rxoHvZSThj1cH/S7ufUku6KmmbwEkjC8nItIO6no5zxOVm28uB1Wvb1gWLwhedc8XB/0vH8QCTwUiB+8XaKpPLNubDxxWOU87IEkPSC41jtw7P051TKZvfbIKTypqpw8sFjSPHphH7zo/6I8vXcmvM4XSD32XMI8WZ3yPI+akDw79Uo9AaRHPcWRQ7yKaPG8/iHGPO+5mbwWMlI71K/jPMcfhrxYgQI8n9oLvKn/Nb2adS48/bVeu4IbljxPLrw8yeuTvLbIPLrmZtM7Pk+bvFvK2rpaIKi8W8ravPLawDyboha9OFz7u+X6a7zcdOe7XySrO704pzxu7bE8OsIMvbSnFT34cly9w2RbOUkqubvQwfo8A9EvPHjIz7xyR4I9/o0tPNjy5bwHacu8IDsMPUqWID0+IX88sOxqvaDlmLvxMA69F4frvGjprjt2sjU7Sw0VvaHOyjsHdQw99JtBPTLE37y4HdY7N8jivC0V9jo="} \ No newline at end of file +{"embedding_dim": 1024, "data": [{"__id__": "rel-2ff952e23e9ad334f9244237bc7d6049", "__created_at__": 1752205396, "src_id": "Nitric Acid", "tgt_id": "Nitrogen Dioxide", "content": "Nitric Acid\tNitrogen Dioxide\nbyproducts,chemical decomposition\nNitric acid decomposes under light to produce nitrogen dioxide, oxygen, and water.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-19fc003f86fe0ab223780b80bb3cbdcb", "__created_at__": 1752205396, "src_id": "Iron Oxide", "tgt_id": "Nitric Acid", "content": "Iron Oxide\tNitric Acid\nchemical reaction,heat application\nIron oxide reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-40ca1814ff3034c4057137e8874eb6f1", "__created_at__": 1752205396, "src_id": "Hydrogen", "tgt_id": "Oxygen", "content": "Hydrogen\tOxygen\ncombustion reaction,synthesis\nHydrogen combusts with oxygen to form water.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-f792fce23f42b2dafa0eaf5f34f201bd", "__created_at__": 1752205396, "src_id": "Iron Nitrate", "tgt_id": "Iron Oxide", "content": "Iron Nitrate\tIron Oxide\nchemical transformation,product formation\nIron oxide is converted into iron nitrate through its reaction with nitric acid.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-47fe1858b6fbdf417be9b92a9736eeb4", "__created_at__": 1752205396, "src_id": "Nitric Acid (HNO₃)", "tgt_id": "Nitrogen Dioxide (NO₂)", "content": "Nitric Acid (HNO₃)\tNitrogen Dioxide (NO₂)\nbyproduct formation,chemical decomposition\nNitric acid decomposes to produce nitrogen dioxide as a primary byproduct.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-55c7bd6bf1abd82987a66ed0911a0373", "__created_at__": 1752205396, "src_id": "Nitric Acid (HNO₃)", "tgt_id": "Oxygen (O₂)", "content": "Nitric Acid (HNO₃)\tOxygen (O₂)\nchemical reaction,gas production\nNitric acid decomposition releases oxygen gas as a byproduct.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-c767a7c647eb0d8a47393529e9c64fea", "__created_at__": 1752205396, "src_id": "Nitric Acid (HNO₃)", "tgt_id": "Water (H₂O)", "content": "Nitric Acid (HNO₃)\tWater (H₂O)\nchemical byproduct,reaction output\nWater is produced as a byproduct of nitric acid decomposition.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-b362c25bf7d524a2a9d808743274fa5a", "__created_at__": 1752205396, "src_id": "Iron Oxide (FeO)", "tgt_id": "Nitric Acid (HNO₃)", "content": "Iron Oxide (FeO)\tNitric Acid (HNO₃)\nacid-base reaction,heat application\nIron oxide reacts with nitric acid under heat to produce various compounds.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-af6a6e6f9b3551aebe13982495213dbc", "__created_at__": 1752205396, "src_id": "Iron Nitrate (Fe(NO₃)₃)", "tgt_id": "Iron Oxide (FeO)", "content": "Iron Nitrate (Fe(NO₃)₃)\tIron Oxide (FeO)\nchemical transformation,product formation\nIron oxide is converted to iron nitrate through reaction with nitric acid.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-02a390dd6b5a7e8baa3e081ff7e3f69b", "__created_at__": 1752205396, "src_id": "Iron Oxide (FeO)", "tgt_id": "Nitrogen Dioxide (NO₂)", "content": "Iron Oxide (FeO)\tNitrogen Dioxide (NO₂)\nchemical reaction,gas production\nReaction between iron oxide and nitric acid produces nitrogen dioxide.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-87eb6eba5a3ed8b67324e25b8a9a15ad", "__created_at__": 1752205396, "src_id": "Hydrogen (H₂)", "tgt_id": "Oxygen (O₂)", "content": "Hydrogen (H₂)\tOxygen (O₂)\ncombustion,synthesis reaction\nHydrogen combusts with oxygen in a chemical reaction to produce water.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-d7aa7ec8dabe1da929e2ec9834fe468b", "__created_at__": 1752205396, "src_id": "Hydrogen (H₂)", "tgt_id": "Water (H₂O)", "content": "Hydrogen (H₂)\tWater (H₂O)\nchemical synthesis,product formation\nHydrogen is converted to water through combustion with oxygen.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-98cdcf9fc8cc76dcffea59e3b6fa9fcd", "__created_at__": 1752205396, "src_id": "Nitric Acid (HNO₃)", "tgt_id": "Photodecomposition", "content": "Nitric Acid (HNO₃)\tPhotodecomposition\nchemical process,decomposition\nPhotodecomposition is the process that breaks down nitric acid.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}, {"__id__": "rel-0999e3c0bf0328f082718582d8ac56d2", "__created_at__": 1752205396, "src_id": "Chemical Equation", "tgt_id": "Combustion Reaction", "content": "Chemical Equation\tCombustion Reaction\nchemical notation,symbolic representation\nThe combustion reaction is represented by a chemical equation.", "source_id": "chunk-d0c3bf985a3b3b903e2fb35515fdff1e", "file_path": "unknown_source"}], "matrix": "/uDqO4GiBDxxC8q8VARtvPFtVLx8Sd28+jv5vGiM4zzeYRw8V69GPEp9g7yU74+9B2Y5vQhaabwUT6Y8hNSTvLZaC7wQLva89RLGvCkMoLqf78O77YKAPFIQvbuzcVI9b5vbPAqVVLvPeC88c7yLvF++vjxY6rG8bSvtO3pVLb2ZUDq93CYxvNOnyrsSHZe7a/bpO6CgBb28euK8mFYiPf5cqTwNQK48yWk3PfD3fbtoQBk8NIiSO59ojrzPAlk8m4U9vYYDL7zp2po8r4OKPJ60WD3UHSE7Qfi0vQnWp7tcibu99BguvZOxsLwvalY7ChETO1CgzjzveaQ8f3j4OkhIgLzoKVk9DMrXuMniAbufawK9BHIJvL4rpDuPlmg9AYxEO2o3vbxLwPG8WCgRvTGfWb16Va28iMJbvPbRcj3pn687vnT6u6U/DzyI/ca8gC8iuzXAiTxRFqW8fvoePRHlHz3Nkuq8F0PWu8LQlbysGYQ8MOCsvI8SpzvgkLe8svCEvdyw2rxfvr48iq4IPfWOBD3wsRu8CGDRPKY8m7wYuay80TH0u3T/eTwbrdy8xAUZPffDh7yqaEI9IAYEuwJL8TmqLVc9rBOcvKQKDLwKlVS8zs3Vu3pVLTyvgwq9vHriPFwT5TzYgT89/uBqPJVqdT2nOae8luYzPWEurT3DCI28vD/3PLNx0rxURUA935mTvYzjiz0YPW48lO8PPHLKdjzc8S28taZVPROe5LxQ27m84k9ku0G9STzWUiS9ZCJdPfVTmb3AH1Q8YH1rvbAHTLo/ARG9FgjrO1gokbzLInw8/CemvDfymLxzBWI9B2a5PBmzRLxKAUW7GnLxO9jFBr1wT5G8wZUqvEhIgLxPKvg8vq/lvHlbFbwD/LI9OSccvSK8VL26CvQ8+L0fPb3wOLyxPM87vbXNvI7XOz2JdpE9ZwsWO2u7frve5V288Pf9u6ydxbwqRwu9AM0XvepeXD1SS6g9luazO7LwBD0Zs8Q8JCxDvJ/vQ7wAFu68Z802vXHQ3jxG0qk8E57kvJPyAz2Ek0A8CVrpPP7g6rwYuSy9BPbKPJiUAT0FMba8BvDiuSEAHLwlpQ29YqQDvQjcj7ywPE88fkP1PE7nCb0SpMy8RlxTvRosj73yqL87kztavOFVzLzF/7A86dqaPM1MCDzVoWI8uI+OO4j9Rj02+IC7sbiNvPq3tznS6xG7/xXuupgbN7qzcdK7quQAPN7l3Tw8lJa80TH0PNq2wjpEJ9A8yaQiPQAFD7ye9au8lWr1PGiMY70UFDs6mZGNPDc+Y7obrdw8fX7gOtH88LxCMyC9YfNBvXMFYj1K+1w8CwurvFoftT1nCCI9VnrDPCBM5rwUT6Y7a7v+vEhCGLzWF7m7QvJMPcGVKj3X1uW7e8uDPLiPjrvx6RI8usEdPL+pfTuJODI9im21PBYI67srxeS7QTYUvPA40bx35T49LABQvNQglTyD14c9/lwpO7KyJb05rtG8DUCuPEWdJrsR5Z88srIlvJmRDb2xuwE9VbuWvIuoIDwT2c+8xy5MvVX2AT1cj6M8S3cbvTd5zjvtf4w6q94YvspjTzx/9DY9h4dwvbG7AbwmJlu8p/47PCgSiL1539a7jOAXvVevRr2/noa9d6rTvGHzwTyYlAE85bnqvCCH0bxmRgE9thwsPCK81LsivNQ7D7AcvZIAbzzsCba8Yu3Zu/Jn7LtO4SE910y8PNLrkbw1uiG8HKd0vY6W6Lzlcwg84c6WvD+IRjyHQY48lewbvQ+wnLy7gMo8NcCJvPgGdrvmcJQ83WcEvVQ/WDwUTya90bMaPac5pzxVuxY9LL98POxKibxFnaY85nAUvdZSJL2fKq87j00SvUOmAj02uiE9JPFXPd5hHD32iBw9uFGvu1X2gb1ZXRQ8L+aUvMDk6LycCf+8lavIPIwm+jywxng8d6pTvdKtsjttK+28Y11IvJYhnzzzHha9XM2CORAudr2mPBu9hNQTPENoo71hbwC9RlzTPFldlDw6JKg8NYWePOxKCTtO5wm977EbvYYJlzsacnE+srUZPfq3N71zgSC82ND9O0IzILvwsZs8hB1qPfoqGjxVuxa9q94YvWdReDwlZy49Q+zkvFsTZbypbio9ByXmu4BqDT2NW309p71ovDWFnjzTI4k8S3oPPKDpWzwRWAK9F7+UvIAvojxaH7U8mg/nPEt6D7zqFYa86w8evFevRjur3pi8xIlau6e96DxL+1y5UwrVO1yJuz1PZWM9d6rTvPKov7r+G9a6im21PELyTDwHpBg8sbiNPEOx+byAbYE8uFGvuxIdFzzHbx872rbCO1evRjz/zJc74QmCveEJgrwrQaO7/1bBPNOnSjvgkLe84ssiO8c0NLze5V29z0MsvDUDeLzCGew8NUTLvBmzRD0/iMY8YS4tPQ62BD3J4gG9AcevPARyiTyXXAo7btyuPGaSyz1qeJC8c0BNvG+bW7y2HKy8BivOPCVnLjzeqnI8HOLfOb7q0Dyfa4I8GikbPdiHpzwPsBw7viskPeT6Pbye9Ss9UZrmOx7c97wSHRc9viukvOuTX73PQ6w9tCIUvSx8Dr2mw1C8nX9VvaEkRz2cCf88nbrAvOxKCT36O3k7IQCcPd/f9bxczQK848W6O376nrzZvCo8LDu7uE/hoTukjs08psPQu8lpNzy98Lg6WG7zOufu7byYn3g8rsxgPL8lPLxFYrs8YS6tPIcDrzxx0N48aEMNvDa9lbysGQS9SQetPC1wPj0fjTk914obPbqGsjsnIHO8QIJePRWKETnUZnc8ESALPNJyR72YVqI7lDXyu9H88LvpI3E7wZUqvFpaIL2BrXs84z4FPTb4gD3wrie9gG0BvXika72/Jby8Oem8vNq8Kr0qBrg8xjqcu/BzPDzZgb88UwrVPF83iTw/R/M7nnntu6UEJD1dxxo8pYhlvDnpPD3oI3G8FdNnu46cUDwUDlO9fzKWvGn8Ub34Bna85+7tPOMAJj0sO7s7UpT+O6powjwNxO+8VfMNPY8Spzy8P3e9CNkbvawZhD25S0e8XBPlPCI4kz34vR88fA7yOUeXPj358qK82veVPa4NNLxbkhc9MB4MvI/RUz2dM4s4psPQPG0r7Ty056i8jOCXvOCWn7zglh89avzRvM8CWTxMNkg8EG9JvDc+47xx0N66opodvZhZlrxDLTi6N/UMvEcQiTxSSyi9xb5dvK1c8ryAbQG9qyfvvIcDrztRmuY8NYUevYaNWLwcI7M7acHmvOPFursG8OI7rkuTvPi9HzxjY7A890fJPPsqmjyjzyA9LXA+vScg87sEu1+8iMLbO+X6vTqPUIY8YS6tvLuAyrxtK+28XsSmPXR10LuMZ808n+9DPOhkRDt3qlM8i6ggvCH9pzu056g8Wh81Pca+3bwt+ue7dP/5vFpaIL0a7i89sX0iPTClQTspDKC8L6upu64NND0gTOa7aMfOvHzFm7y41XC9ed/WO3y/MzwLC6u8B6GkPBRPJr2WJJM8fQCHPAT2yjxao/a89tHyvExxszxeNwk94RT5vO4+ObxLd5u8ckY1PQz/Wj0qy0w8TLIGvYBtAb10//m8ugr0u6Y8Gz2y8IQ8fzKWvIi8c7oy2kQ9KFX2u48Sp7rS6J05X4PTO6Dp2ztURUC9rVzyvDmuUTz+XKm6gpkovKMY9zx1OmW8d6rTvAM6kr1ZXRS92kBsvNH8cD3rWPQ8FoQpvLG7Ab26hrK7B2a5vFDbubzTI4k8sTxPu/HpEr15GkI74NEKPAvK17zTI4m84JC3POMAprzeYZy8nAl/vKrkgLxIzMG8zwJZPSecMb1RFiU77X8MvUlCmD1dx5q8MCEAvU8q+Lzlcwg9DUAuvRRPJjtMr5K8QvLMvHARsrzUIJU8SgHFvP0hPj26wZ28G2ESu8OPwrtiaZg8DnUxvZYhHz3dZwS9njAXPUbYET1xC8q8B+r6PJ26QL00D0i8W5ULugM3Hjyh43O881kBvHzFGzzLFBE8iXOdPEZc07vuA068yyL8vPaInL3g0Yq6sEK3vLjV8DtEow47f3h4vaPPoLyr3pi8svCEvYaNWDuCI9K8F7msvUxxMzziyyI9cwXiukE2FD1nCCI85vRVPMrfDbzAH9S8S/vcvXR7OD047yS8NX82PWOhj7trcqi7NM70uzZ/Nrw1REu8c4GgvIGiBD3e5V28pI7Nu0Ps5LyMori8/1bBvBg9brwfy5i8l1yKPN1nBD1Opra8Jt0EvKWI5bzzWQG9EC72vNPonTy4xwU8FBQ7vIYJlzxczYK9DUCuOxd+Qb3k+j28Qy04PTAejLxhb4A9u/mUvFip3jwEcom827bCPExxszzsRxU9G+hHvedqrDzfW7Q98uOqPFoftb0Y9Je7VIArvLQiFD0l6+87ZF1IPbM2Z7o5KpA8PcwNvRCqND3oZMS9/GUFOxXTZ7zg0Yq7dyYSvbrBnTzX1uW8k7cYvQ2zEDvsjXc8H425vHpVLT0ZLwM9txbEvMNOb70kqAE94ssiPetYdLxOa8s80q2yvNQdoTxw1ka9nP6HvPQYLjzglh88wlRXO4EpOr1xTB28MVYDOiP3Pzy6Rd+84c4Wu5Vw3btr9mm6FJj8vCMyK7wJH368JPHXvDyUlr2gZRo9FsIIvRxeHrydM4u63mGcvAekmDxzQE27A4B0vWC41rxSTpy8GbNEPNdMvLxUgKs8AccvPVDbuTsTGiO7q6OtvOM7kb2CI9K71CAVPUt6j7tmV+C8vyU8vesPHrwrf4I7uccFvbv8CDwP64e8XU5Qu9Gzmjw7HkC9VnpDPWB967tO5BW7DXuZPPXRcjwrinm9ZwgivdWberw6bX66LjVTPX8yFr1fvr48+yoavcU9kDyrJ287m4U9PZVw3bxPHwG9cZXzu+4+ubtakhc8tloLPDd5Tj0Imzw8o1lKvUG3YTzw9/28bWZYPdPonbuwQrc7WCWdvPvsOrssfA68/aX/O5xE6rzhCYK8BTG2vKf+uzulB5i8+7HPPIzjC7349RY9TayeOnzFGz3Dyi09Pk1bPJUhH7wD/DK9cBGyPOxHFT3BVFc8quQAPIAvIjyeeW07sEI3PfMeljyodBI9mJ94PHMFYj0z1Fw9SMzBuqFfMrx9hMg8lDXyu+hkxLsWhKk8tloLPT/DsbzQeK+8fn5gvefubbvYhyc80D1EPFO+CrxDaKO89VOZPDdzZrwT2c+7svv7O0G34byAao28tlqLPPstDr01hR4777cDveeoi7vUIBU8OiQouTHaxDue9au8R1ZrPHLKdr1w1sY856gLOiDIJD09jq483yBJO/nyIj37sU87cka1vI1hZbw2uqE8bxcaPM1MCD2Kq5S9CVrpOxCqtLxUvoq8uoayPECCXjzPQyy9sbuBu51/1TyjlLU8gG2BvDkkKDx5lgA8Wlogvbk9Gj3jyy481i5Mvb9TvjwODva88YUGvfCob7yIQgI9PvtBPHSvqrwSnIW8d5qNvcXg8Lw2ru28CfjRPN7yrjo0g6y8X8Xzu3YGijs9vp287AYgvL9QBD3NLcW8acPAOwExNT1J56u8vd9pPGDCuTr64CY9OV9mvGyuIzzY30S9WXVlvXRyhrwyD1i8bhPPPE5mErrDeIs7xxchvbA/TT2/kOI8FcQMvDuzCz2R1ww9QtTBOvLfn7qBT0c7X0srPIkWZL1CXbO5b9aqPN3yrjxOSR085tMGvBXhgb3y4lk80FKSvRK8NDyIJY29nQCbO0EDmjzufS48aTpPPP+84LxOw2W9/UVSPbZSt7u93+k8Nb0WvQn4UTsLqUq8tIEPPS3ZhLvELD683mm9u2JTg7xnEki73EE2PFrJCjzWLkw9o3+BvNx+WrzJyBm8cYpdvIJMjbzTQ+k800CvvHBQ8zwsvA895/M1vcoCBLuh7je9fDmjPJln+bzAQds8N4sEusJ7Rb2/kGK5z74OvIhCgjuJuZC8CEQfvexG/jsdqB69WPucO5hkP7zAQds8TUmdvKnPDz2ypHi8LDbYPHw5ozxJqoc8jTuxPFNi+7v4Mug55/M1vJhkvzxoTDI9YRkZPIzEIj0nXVi8HHFuPXRVET2Kx9w8nFLcO2bYXTw0Rog99l6GO9BSEj2Dwxu7BkdZPEvVSL2vyD493EG2PGbVo7x8OaO7zSoLO4+vhT32u9m8Aqt9PIfrIj1y/rE8VvAKvcXgcD3SBsW9gsMbPZ5Aeb2vfPG7l5MXvRTkOzzIji+9UetsPJHaxrwlMhe93fVoPayAiLy77hK9+WzSuxDrjLtDEWY7nx0QvSK+wjuwAik3Q7QSPf0L6LyRnaI7VNZPPZsVOL3sQ0S9PzUsPYaRibus2qG8qDuMvAIRhrwjgR49DV19PSB2jDzrzDW8lIgFvY6yP7rsCVq8cMRHO/LfH7uepoE9RfxIPVj7HL1e1Jw81fRhPPUHJz3O3r27eFH6u27Z5DsFWbw8mxU4PTIPWL2qZk08NMDQuzX6Oj0avbu7nkD5vCuF3zw1+ro7MB6BPKhYgTwxD1g7hwgYvYYox7pfDoc88C6nvOEaNj0SvDS9uAMwvcg0lr09vp29mxhyPdwhh7srv0m93XugPIFPx7zcIQe9NNoLPNpwDjyW8Go9gNg4uUQOLL0IYZQ8L+SWPPEf/jtlYU+8fgcRvaUE3DxMEu08oaJqvJYciTzRjzY8BdDKPBcP/Twn44+8K7/JvPrgJj0NHR+9JyC0uyjUZj3X4v47YTnIPBDrDLybFTi8LnDCvNMDC73RzFo9uEDUOwupSr28aFs9vzOPPahYgTx8OaO7Pjhmu4zEIr02NCW8Kkg7vJyMRj2gK1y87AaguxTkuzwrKAy9wluWvEub3jx0cgY9ko55PBdYkLyyZ9Q6+PXDvMPy07wjgZ68ALomPWcPDr3sQ8Q8PtuSPeJUID2126g8JqmlO37qGz1uX5y8GsB1PJqeqbyuMQG9HagePFD6lbttJbI8z74OupOLv70JEg09R9wZPG8TT70++0E8jT7ru0VIFr7ZUxk8btnkPKPcVDsJNXY7lT/yO13XVjzde6C9D9HRvHxWGL1Dl529pFNjvXSvKjx+Kvo8wQS3PGTKEb0BNO+8GYCXPE/Aq7nCPqG8G240vCL7Zr14UXo81Lr3vC5wwjrkQj28Kkt1PPBryzzoakS8yFELvGmjkb31Bye9rVEwuzers7xJjRI8w3gLPcEEt7wpS3U77kCKPCuCpTuXdiI9jylOPKos47tXZ5m7kaBcvZ6mgT0Ca588bWJWPbfJRb2iZca865JLPVVKpLwEWTy8rz9NPH7qG73Rj7Y7qc8Pu9xBtj0rRQE8rVEwPAOIlLwzhma9PYSzvBMwCb0/r3Q8hrG4vOFXWj3zWWg9OV9mPBgMQ720ZJq7pwGiOy1QE7z5Ly49E20tvI7v4zyxeTe9W8kKvVQTdLxZOMG9S1sAvfi4n7v1zbw8hABAPFj7nDwPRaY8A6jDOzlf5rwSnAU8OhBfPmE5SD21GM07DVrDOxKcBbw60zq92L8VO1eHyDxgwrk8fuqbvNtE8LyePT88zPPaPI3+DL3AQVu8ilBOPfi4H7uFd848RzntPCGE2LwrKIw9O7MLvL9TPjtEiHS8Q9TBvD3B17kU5Ds8rouaPC5tCLuMAce8sFkIvNX0YTx/ZOS7wH7/vDKVDz01+jo9IEruOsrljry6tKg9hmXrt6VQqbyQoFy8UXGkPKY+xju2VfE7zmevPE/9T7wzhma8zuH3vJY8uDzG4HA8beiNPNMggDyOeFU8OxDfungUVr10KfM7yMtTvCnRrLsbNEo8gRKjvK0XRjvPknA8hrG4vB4fLb3U8Se8zuH3PP4ILr2YKtU88C6nPAbQSj3BPiE932k9vZ6mAT2p7748M8BQvDCYyTyHKMc9vYIWvYIvmLrGoJK72pA9vW7Z5LvRUhI7sdAWPQwgWTtu2WQ88/wUPKUThTydiQw9uXq+PNVr8DyEAMC6YyflPF2asrvHFyG9N4sEPer7jTsjgR69Y60cPe2AaL1POvS8bMuYOzMpk7zAx5I9HSJnPCDT37yBEqM8syqwvEubXj2wP027F5U0PG6cwLpzO1a9jAHHPAhhFDxaciu79coCPWOtnLuqKak8D9HRvByr2DwwHgG9NvcAPEmNEjwVIWC9he5cPXkRnLxnT2y64pFEPLYVkzyoWAG9FOd1vFXTlTwB1xs9fgcRPWiJVj0MwwW8mtiTvAJrnz3xH/68TmaSPH2QgrzGGlu8zxtiOrMqMDyx0Ja8pY1NvN8sGb26Wg+93S9TPPXKAjykjU09Bwo1vK+oD7zm9m+9sbMhvfAup7zepmG92NwKOamyGrx/ZOQ7ygIEvBSqUbtOZpI8aMNAvOR8Jzwg0189xCw+PN9mA73FKYS7ecXOOpXFqbw50zq8La1mvUyYJDsUbS29LJ8avVyd7DwXlTQ9UBcLvGD/3bktM547ui7xu21i1jtCmlc9+x1LvWEZGb2UAk492L8VOzMMHj2NPms92N/EurbJRbzYvxU9qmbNvA8LPD1H3Jk807r3O0OXHTyUyOM7MCE7u7vxzDzxpTU9gRIjvbYVE73HVMW81xxpPKe1VLyJFuQ8H1xRPZeTFzyp7z69vtwvvSDTXzwDqEO9GQmJOyw22LvGoBI8l7NGvJiwjDyanqm8cqSYOcI+obzpHne7OAITPXyz67oIgUO9K/kzvbipFr02ccm7N4sEvS4k9Tx/ZOQ7e98JPV5OZT2CA/o7XtScPEWFOrybFTi81PThutZotry0ZJo87/Q8vPGFhrw607q89/j9vLPtiz0mqaW8+uCmPC0znjy+vAA9485oOwpvYL0zhmY7QQOaPGPt+jwVxAy9DpStvByrWL3S5hW9689vPKPc1Dyb9Qg87KyGvKzaIb0Q6wy7aMb6OzvQALxT1k881fRhu0peurv1yoK7L6qsvAzDBby8Kze8lXlcPcJbFj2QJhQ9urSovC4kdb10ryq8UTSAPPj1Q7yYZL+85jBaPNqNAz2M4Zc97I8Ru+FX2ryF7tw6quwEvb3cL7xywQ08iNk/PHUmubyVAs48ubfiPG4Tz7zhGjY8lypVPDF4Gjz00Pa7g2mCvX2wMb1H3Bm6sfN/u2s3lTtyAWw9Y+pAvaRT47tFiHS9HuVCPJ3J6rspDlE9+PKJvFns8zypshq9DZdnvH/YOLxg/105ihOquwExNb0ScOc8EpwFO6UE3LqujtS7yMvTvEpeujvoakS83vIuuLvxzDw4ApO5HSJnPOmkrj2RoFy9vlb4uNy7/rwUqlE9CEQfvRs0yryLjXK6pPaPPbou8bs1N1+6PIftvGH8I71zO9Y5VRP0u0+Dh7t9sDE9KdGsvEyYJLxwTbm8Sa1BOUok0LygK1y8to/buR9ZF7uuy/i74KOnvOwGILzIy9O8urQovWVelTwvqiw8YjYOvXR1wLy9GVQ76eHSO+73djta7HM8FCHgu06GwbtyAWy9bpkGu9Zotru12yi8vtwvvX/YuLuFd068I4GeOZTIY71kypE8j5KQOrq3Yr2mp4i7e/84PWDCubtTIp08yW6APFj+VjxHFgS8o5+wPERL0L32QZE6h2Xru2/WqjwTqlE8mp6pu1Nie7w/rLq8Erw0vBSq0borhV88ibkQPIG4CTyzCgE865LLvLxlITyneLC84lSgvAOIFD17whQ8MJjJvDTaC7xwUPO75EK9uzgiwrtnEsi78xkKuz2EM7uMAcc72NyKvbwLCD2gsRO9MtIzuY0+az0c6Pw70cmgPVB0XryDA/q6rVGwu7VV8TwysoQ8l5OXPAJrH72IJQ27NdqLPbjGi7wKMry9nzoFvC4kdbwSvLS89AenPMy2Nj2roDc8BdDKPGdP7Ltz3oI9tTKIvRYeJr3luUu8LlCTPJTIY71jJ+U7/M5DvRcP/bws2QS8vzOPO2H8I72RoNw8GAzDPGGwVryIYjG961UnPLLwRT28Kzc9L+dQPfST0rw++Ie82Rkvu6YEXLxKJFA82RmvPAzDhTwNXX29QG8WvAOoQzwqgiU9/oL2vPLfH7xTP5I8LL/JuxMTFLzWKxK9RIh0vAJrn7wIgUO9Hpl1PFGuyLzyGQq8v8rMPHqIqjouJPW6f2GqPL9QBL3nbf68RzntvDBeXzzMloc8VdMVPDerMz3HVMU84KOnPNqNgzstrWa9iJ/VOfls0jzbu/67d9prPJ3JaryH3Pm8QOlevCYjbr2eAJu8/UXSu8zwoDub2BO9thUTvad4sDwtM545HKvYO3YmuT0a9yW8k1FVvSiXwrwzDB49SaoHPDfo1zxNZpK9Q5edO9whh71/2Li7syowPPdehjxuE8+83Lv+vFvpOTknAAW94B1wPGwo7Doavbs8e/84OtN9U73oZ4o8SecrvdMDiz2xsyG9j+wpPWfymLzpGAO9mxU4vCUyF7wUqtG8WybeOYM95Lw294A8bOvHvO2AaLxWTd68CL7nPNx+WrwNl2c8DFpDPQ0dn7zikcQ6MF7fvBeVtDuMxCI9N26PPNwhhzwQRSY9gsMbPfFoET33uJ86vd/pPBU7GzojvkI9+qY8Pecw2jwHCrW8pBY/PO2A6DsGkya9WKGDvBwUmzyy8MW58GvLPMN4C71WTV68Tzr0u1AXizx+B5E8YyQrvR6ZdT1rdLk63qZhO2dP7LwJNXa8VRC6u4M9ZDyt95a8zJaHPKe1VLzZGS+4qikpPEzVyLuCiTG8qmbNvFsmXj39rpS9SeerPOvP77wb+t88HsWTPMzzWryys6E8qikpPXw5I73sRn67pFNjPRXkO7s4Hwg9m/WIvectILlsriO997ifundgIztsy5i8yj8ovZTIY7xrKGw87n0uvHpLhrwjnhM9ZJs5PYfrIr3XB+U88y4GPVXlxbxDad+8SFv7vO/1Or2DQR69i/89PfdgOD22jxK9I73pvH9Iab1cfc08+5kDvWzAD7tkO207NqYXu9ghCjwyGqq8+5mDOg1pjDvDknA808ImPYJuqLwwIRw8SFt7vKskbj1rLTC8eTC1u0W8qL29zV68aVo6O+38rL3wdQ69scNnvOOYobwlqoS9sPeKO+7PIr2Cbig9FuB8u9KcjryPeB88QXDRvORk/jtKWyK9leN1vIIU7TtOoOC8Mm3MOl7J/TwepbU8z0lFPczQY7zCv3q9hucJPNoHjL1gthi9w6wVvQhdS7zzLgY9o0A2PQX+Dr3P4xY8NGbaum2ThT2nX1w9X5xzPL0nGr0Itwa8hjqsPJ47jj24Ygg97bwWPL5NMjs+d0O64sWrvHU+Gb31ukw81juIPdHJmLzlPg28C9YsOl+QgLsZsxm9J4ntPNToPrwv9Gq73dOPOwXk6borKGe7vFQkuxwl4ryRca28EO5gvKFHKDzDP868e8MUPIbnibz2OiC8myhbPDDhBTzaAHM7sR0jvZ47Dr1cKiu82NraPI0l1rz42XI9h2BEupncKj29FI474oWVPJLqZz1eI7m8ZuHYvF+QgLyfDoS80kLTPJ57JLzx7sg75BFcPQZkPT2zFjE8raRBPHWRO71RoAe7VeVFvNEcO7sG0QQ9wM2FvPb6ibyKhoO95eTRPFfeU7xDg4Q8F7NyPISUQLuLrBs93XnUvAKYOTw5sjG8uAjNPCyoOr3RyRg93x/AvcJs2DtUEtC7iQawPAa3XzxfSVE7dzcnvSoCzzxsrQO9Qd2YvEUPSz0brKe8DakivQMFAb0cbJE8z6OAPGym6rs8GAc6edZ5O+eKvTxz6887IRf+POvDCD1Nzeq80cmYvA58mDzOI608S4E6vfPBPjvCbNi8u4EuPazRSz3ufIA8oQeSPJncqrzbLSS9Uz/avPcG/Ttd/SC9D6IwPUdilD3zwT68qIwNu/p/XjyrWBE9pGbOPMrX1bxk6Eo8EsFWPOM+5jwsVZi9iaz0PHWROzykwIk7NqaXPMrX1bxKGww9Jrb3PD7K5Tw1OdA70xVJPd3M9ryj7RO9Hkt6O1+QALxsrYO8fWmAvfBu9bwpiZS9q1H4vFuqVz0kkF88APLNvKLAYju8AYK8SlsivQCfqzyl5qG88UiEPe2pijzia3C9w5kJPUxUsLuphZu5z0nFPLKWXbtV5cW8tWLhPDwYB7rNUDc81o4qvfFIhDwmY1U8b3JuvGiHRLy3dRQ8YBzHvKamizxcKis84sWrvEVibT0+JCE9jXh4ux94K708JHq9TRQaPWstsDoNqaK7E+6HPSxCDD3/yzW9tuK0vPMuBjx7wxS7WvEGvf14bDx6sAg9oZpKvM2j2Tzixau845ihvPrGjbw5Xw8624BGPN3MdjyzFrE8VBLQu5FxrTxEPFU8K2+WvAeKVTyAdRq85grqPNoHDD1Shgk9M+2fPAQR9LyRxM884YWVO0KwDrwfOJW9j3ifvTa5ozzs1pS7jdKzPNY7iLx8KUO9WLHJPOLFqzwNVoC89wZ9PRx/nTw+ERW+tDzJvDqFJz1kO+27bx9Mu/74P7ztonE8VH8XvToyhbteI7m6s2nTvLHKgLztvBa9lZBTPNdhoDuJs428cPLBPKiF9DyKxpk9fakWu8GzB7wBxcO63kzKPOzWFLwyGiq9LSF1umzAj7wjFyW8VzgPvfmsaLs9/gi9RWJtPIUNe7sv+wO9+sYNPBE1ED2XiWE8FBQgPHx85bvMfUG8gGIOPXqwiD2nsv67KFxjPHM+8rx35AQ9/8s1O4kGsDwFPqW8whm2vEDwfT24dRS9SYgsu4qGgzwbrCe9G/9JPJQ9MT1fnHM904KQvI0lVjslvZC8IRf+vF2j5TxjbxC8EhT5vAQR9LzTbwQ8jvjLPOa3RzyCbqi8DGkMPSQ9vTu8+mg875v/PAU+Jb3Rb109Me14vY5SB72Q8Vk976KYvcIZtrtd/aA8mpwUvYjglzzDP068osBiPEhb+7xYXqe86wOfPO9IXT5E6TI9nnukPC0ojrtYBOw6Ixclvb8gqLsv9Oo86dbtvAHFQ716Vk29DfzEvMRlZj3pMKm7sEotva93tzyq2L07IvGMPIp/ajzSQtO70xXJPNaOKrzKhDM9+VlGvKXmIb01k4u98HWOvBjgIzySl8W7yoQzvPaNwrq5SAq7XnZbPAqwFL3aWi48bXngPP94E7rXtMK8RWJtPXBrfDzfH0C6oHSyPNja2rpwnx88wr96uQXk6TvGMWo8/P8xvQDyzbwaLNQ80xVJvRjgIzxxxbe74sUrPPgzrjtmjja9ShuMu1U/gbpFYm08fs8uO1M/Wjg437s8huDwPCuCorzU6D69cV8JvSgJwTu01hq9E+duPbAKFzzXB2U9T3PWO26f+Lz1Zyo9iQYwPYGbMjzKhDO6a+2ZPWymarw0Zlq8qN+vvJTXAjxgb2m7rffjO0snfzxcfc08TKdSPaurszxUZXI8CrAUPBDISLyhmso8hJRAPZEXcju6rrg7IvGMPLmIIDyX45y8kjGXvEVi7TzRb1299wZ9vDOTZDtbBJO8MceHPWn0Czzvjwy7ge7UOrhb7zwiRC89O1idumcOiru6J3M8w5Jwu4NBnjz1De88JRCzPMYLUj0oXGM6uGKIPcqEMzw8frW7PNFXvCBLobztT888R0+IvUCdWzwQyMi8eAqdvHRrozv++D88fiLRvMZedLy6rjg90LaMPfbg5Dz2OiA9jmWTPKQTLLz5rGg7MCEcvbxUJDyN0rO8ZwdxvSQ9vTurRQW8VyWDOrKW3TorKOe8C4OKvDOT5Dyc+9A8eqlvPWlaOrwwIRy9CgM3vXc3p7vAc0q88xThvNQ7Ybu1YmE8lr0EPZvVODtYS5s8PFGrPKQTrLtRsxM9VziPPdHJGD1/Yg68a+2ZPdNoazspiZS8XNeIuoiGXL1o2ua8d93rvBFIHL1edtu8HvhXPZTqDj06hac7Gn92vC/7Az1XMfY7pgw6upmJiLyVkNO8NgxGPevDiLwk1w48B4rVPY74yzrXYaC8Sy6YPRJutDvb2gE9eAodPHM+8jziGM48dGujPGY0e7zfzB09gsHKu+rwEr39eGy9uUiKPLUPvzymjGa8WvGGPB/LzTwhHhe82CEKvczQ47xVP4G7L/RqvUe1tjy6rjg8XNDvvA48Ar3XTpQ8srCCvc/2orysK4c8J+Mova1RH7tXsUk8bFPIvHCfH73nNxu8OXIbvFHzqbwNVgC9a9P0vNPCpjw+ERU9F7PyvCoCTzxkVRK9Sluiu1gLhbxGjx48LXuwPDIaKj0T5+46TSemvOzPe70kkN8814e4O4kGsDx1/gK8l4lhPJDx2TzwYoK902+EvBAba7yHzQs9DjyCvOj3hDwLfHG8yyofvMZe9DoOdX880YkCOyeJbTxWUo297/U6PFv9ebzLBIc8xThcvN0msrxlu0C8ZFUSPbxBmL1LJ/+8i6wbvPHuyDzufIA7SFt7PElIFr0XDS69i5mPPJ4oAj3EZWa8KLaevJmCb7vaB4w9PCT6PCoCzzw1OVC9sPcKvU/G+LuZiYi82q1QPFpXNT3FONy8mS/NvB6ltTwc0r+84hjOO6B0srtWZZk7xX+LuSejEr3M0OO8CF3LvHnW+bx+fAy9W6pXPSh2CL30lLS8cPJBvVgE7LxCQ8c84EVYPRcNLjy+TTK9r8pZvS17sDxLJ3+82gcMPJfjHL0Fkce8WLHJPOCY+rxbBJO7IpfRPDAhHL3l5FG9xBJEvOBF2DwTQaq8U5L8O3c3p7zgRVg8LSF1vZ9OGr1TP1q85GT+PBXUCTtWZZm86vCSvEZ8Ej0xmta8IxclPeCMBz1kQoa9i5kPuxjgIz2Hs+a6U5kVPVU4aDxf9i48VzgPOoxsBTzgjAe9bMCPPPJunDxFaYY9yxeTPFgE7Lxu+TM8mdyqvAXk6bwQm7689WcqPfGImjwICik8iOCXPA1WAL1Clmk838yduxW6ZLwH3Xe8vFSkvCLxDD0vDpC8takQPH51c7wLfHE8sul/PLSWBL0V1Im9zeqIPPrGjTwpiRS9UZnuO4HBSjyRxE89uidzPNdhIL1r2g29lf2au/cG/TyKLMi9mYkIPfTn1ryQRPw8EBvrOk3NajwyGqq8MfSRvHiwYb2tUZ+8x4slPRJutLuKhoM8XCorvbFwxbvgjIc861ZBvfnzF7wGt188ns5GPCTXjrwYhmi8f6IkvSFxubx2ZLG8QPD9vDLHB7xzPnK9SUgWO0LwpLvWO4g7IkQvvWUoCLwRNZA9wHPKPE3Ugz2cqC48qbKlPCmJlLzRb1095L45PVhLmzzAzQW98GKCusd4GT3rA588OjKFvax+Kb2KLEg8oHSyvBzSP7wOIl08E+duPTPtHz0SG5K86AoRPbnbQr28VCS9o9oHvRDuYLyJBjC9EUgcPCuCIr22NVe9QPeWOk3Ugzyon5k8YLaYuxjgozze+Se9J4ntuFoxnbs4Ml49eqnvOxtSbDz+pZ29raTBPBwl4rx+z667EggGvdY077ylOcQ8bXlgvCTXjjyWtms84Jh6PBIIhrzDkvA604IQPZqvILxWUo29WAuFvDZmATvkK4G8+sYNvQBMiTyvd7e8ed2SPOZkpbmmjGa8C9Ysu68d/DrEEsS8ON87uxp/9ru06SY80W9duRwlYjy5LmU9Ro8ePIv/vbtBHa+7w6wVvfBudbtPxvi7UmzkvMZSAb39f4W8+QYkuna30zxgyaS8MZrWvKU5RDxSGUI888G+u8XlubzzwT49qDLSOUTpsrs1jHI9ZWiePKHtbL1mOxQ8wHPKPKAadzvv9To86LBVvcZSAbz58xe9elZNPE3UAz224rS8B4pVvBpzA70k6po8uAjNvHOYrbvHOIO87nVnPMGzB73YLf28TqBgvDPtH70Lgwo+mK95uTurPz1RRky9z5znu00nprw1jPK7rfdjvQi3hjqAdRq8NeatvKzRy7wVumQ9f0+CvMrX1TyyQ7u8hbpYvIkGMD1BHa+5g0GevH+iJL0zQMI7KAlBPUvugTxKWyI7C9YsPbTWGj2+8/Y8CylPPBcNLj2zvPW8tI9ruz2kTT1m4dg7Em40uy/06jxntM68YpyavH+iJDxaV7U845ghu1PsNz015q287nwAPceLJb2Kf2q6CF1LPUJDx7xedls8Cd0evfTn1rumjOa8gsFKvf1/hbw4jBk99EESvSBLIT2fThq9Gn/2vHoDqzypX4M7UhnCvBIIBjxoh0Q9JzZLvZbQED1jb5C8jvhLPNuAxjvfH8C8q1F4PRPnbjxoNKK8EggGvRusJz1KrkQ8d+SEPGg0Ir2QxE88i1LgvJKXxbyNePi8+n9ePL16vLwa2TE9WAuFPDLaEzw0wBW65GsXPQX+jjzSnA695UIKPYT0qjxDlOC8Osa5PBPt8Lxq9MC877ICvZdNhD3T6bA8hr2SOi+N2bwl6Ju9BWbkvFU/DL1sQu08uGKvvD4tTbsMX0e6azaRO/cwqrzoMgi9Y2aXuagUjry7oiw6WAYhvPlXwLzACUA8b9S8O1Nbaj1pe9i8orspuh8/OL0ZbWu9HtR+vPjeV7y/4ik9Gw1qPGlGE7wgMQm9EBgtPUMNSTwceKO7SztxO3utGz1gnwI9i50OOz34h7wvFHE8vUKrvGyGEL1sQu071VKXvMQ7Dj3ffmy84OmlvaRpVzuwNIe9ddvOOrP7G70u36u8V424uw6G3TzCIic8lA2HvGLGGL0WptY8yMsKvCO0+jwZsQ694RA8PM2rhrz6mZA9miLIvJkwd7x8/Zq8Kq1dOl3mHL0qyBe8XeacPF4bYj3okLa8t3DeO86CnTgRxto7ylDPvDGmwDwvjVm8tEsbPawCuTw4Jju9k6LNu9SJL72PtKK7h10RvJ3pXDukhBG99bkUvGPtLjtiPwG9X/+DvLbCsLxnLay5rTf+PMPrDr2qcGm8MziQvK03/jx/tgC9Y3TGPJbwebzIKbk8PQY3PWctLD1bRp488aIAPMkbirwJOgS7AfGhu9E7Az04rdI7rBBoPHf0tbvk8oo9697iPFgGIT3ivuk7HSZRPJU0HT3qqR27KxgXPIyparyhlBM7XhtivV6vhD2XW7O8ouQSvEF7+bs+O/y7qUlTPQu/yLybjQE9y/58PbZJyDxI7cS8pNQQPZ3brb2Ee0I9tsIwvR+4oLw3eA29vcnCPPvpj7ykWyg8WML9vPCwr7yEe0I96iKGvDsICr0LsRm9s/ubPPoF7jp6NLM8l1szuwd/SzuKCew8j3D/vJ97rDwCaoo96qkdvUnfFb0ceKM8eKJjvJmpX7xgrTG7GbEOvOMpIz12zZ89zOKePGj2EzvPqbO8GL+9PKRbqLwvFPE5NdiOPLuwWz1KjUM9jy0LvQ1RmDxxZow7jRSkPGwNKDzXXnO8pIQRPFebZzv69z49zZ57vWA0SbsQn0Q8FsEQPZ3pXDymdA+9+gXuPC5mw7t8/Zo8YJ8CPcxbBz1QG228K5+uvNU3XTwAyou8BTGfOnkNnb3oCZ+8azaRvSzGRL2D20M9qgQMvAmmYbzhEDw6dgLlvA1RGL0aUY261imuu5iCST1HP5e8XV8FvRoBjjwlzeE7Kq3dPMcrjDpzwue8axtXPEj7czzFcFO8T/TWPDgmOzy6exY8bnYOPXTpfTu1IjK9hhvBPLIXer0LODG5S7TZPIBJ9LsAUSM9GL+9vBuhjLvnJX282hfZuyn/Lz2+8Ni7hSnwvJBiUD3bCao911BEPDybfbvqMDU7Rp+YvYn9D71QG+07sEI2PWptqbz+sCQ7B436PIYNErsrny48hpQpPS7fKz3n4oi7cHS7vFaPCzvjN1K7kvQfPCrxgLsw+JI9pYI+vCVhhDx/FK89OsY5PdQrAT1KjcM7BaqHPPwQpryQfQo9lJQevUbUXb3md888e2l4OwkfyjieiVu6iDSovV6USj0xLdg6U58NvWA0yTuFKXA8KNgZvp6JW7qSsPw8uVSAPLe0ATzaF1k7QtiDPBpfvL1x7SO9Wc8IvZ97rL2BtC29Osa5OyKN5DxAzUs77mIDvQ/xFrxqbak8eQ0dPP6wpLz/5Wk7E+1wvQjqBD1yjSK8g80UvL4Lk7wOGoA7XoYbPcgpObxxIum82XdavYyp6rzbghK8rBDovEafmDwpeJg8XPTLvAUxn7pHPxc9xpfpu7krFz2UlB48kH0KPOwFeTrtcLK9Fx+/PCVhhDyqcGk97EmcvFMmpbpW7Tk9Ergru/cwKju3ixg73akoveVCijp/m8Y8axvXPSrxgLy39/W8chS6OjtmOL06PyK8ejQzvYoJbDycO6+8O98gPXmUtDzX8hU9jY0MvR7UfrwOeK48ds2fOkDNSz3/XtK8LxTxPL1CK71Bv5y841KMvHg2hr2pSVO9NG1VPHd7TTyXTQQ8RHiCPPhl7zwaX7w8kNs4O/UlcjygKVo+qUlTPbkrFzxUTbs8rAI5PPP+W70DTf07Gl+8PAj4szw4yAy95PIKvNj+8bsTZtk8vcnCvGa0QzniiSQ98DfHvHKNIjvnJf08S38UvegXTj0HmgW9BMZlPQbfTLvKyTe963KFu16USjwOGoC8t7SBvOgXzrxXm2e84gINPFx747qeEHO8lTQdPZBiUD3gcL27r1BlvFcvij2te6G8NpTrvBsN6rvGl2k85OX/u3dtHjwaAQ49OdTou4AGADsgdH07JREFPbR0BD0I+LM8C79IPHzUMTxYf4k8XpRKvdsJqrw4GAy8IVifOyVUebxzwme7ZY2tO3dtnjxx7aO8tKnJvES79jsBeDk9TC1CvZw7Lz2eids8avTAPJqbMD2S9J+8mAlhPNde8zyrl/87LD8tPW/GjT2EAlo6yCk5uzwU5rrMC4i9yV7+uxhG1TsAUSM9gmJbu13mnDu0qUm7z6mzPAoRGz2REH48shd6PI0UJDtaYnw747A6vRsN6rxo29m6el0cvCVhBL1CXxs9mPsxvUJfm7vbCao8qunRvCxN3D3lULk87mKDvR2fOTxq5pG7j3D/PNl32rsaAY48LD8tOlwPBr1Jm/K6d5aHObHw47y1FAM96jC1vGFbXzxAVOO8YeJ2PAcG47wOhl08mTD3PHz9mr29Qis9Vy+Ku79bkrxozSo85ckhPK2wZrxXjTg8S38UPY/p5zzaMpM8tKlJPawQaDx/toC8HhiiPW271bxP9FY9tzuZvKM0kr16XRw8mj0CPMH7ELyulAi8697ivHrJ+bwMARk9RSawuyXNYT08FOY6QOgFvX+pdb106f28k6LNvGWNLb2UlB68+pkQPDFIkju+C5M86DKIPNawxbtce2M7v+KpO9uQwTzcMMA84RA8vfj5kTz+sCS8ouQSvUbU3bth7wG9Qw3JO0qNQ72eEPO8QOiFPEqNwzz3MKq7/15Su8CrEbx39DW8rpSIPE3bbz1/toC98l7dvF42nD35V0A7tzsZPclefj2eVBa9X7tgvJ4Q8zwMX0e7J21gPDNGv7xYBqE7uNsXvAgtebxKL5U8FI3vPO6l9zx9nZm8d20evf2JDr23ixg91XuAPKep1DxG75c8rinPvPR3RL3wsC+9wIKoO1ktN70f4Qk9nDuvPB/GT7zNnvu8lvD5PGNml7zLd+W8aZYSvQQ/Tr32kCs8mIJJPI5Jab20qUm9xwKjvBHhlLtXjTi8z6mzPLuw2zwnbeA7wiInPeEea7wOGoA88nkXvAJqirwWwZC75vA3vGF2mTxnppQ83D7vvLuw27xHTUa9uAQBPfP+W7tZtM67ylDPPNqe8DwqNHU8fnSwvDNGv7zvEDE9+3CnPAUxHztYBiG9/UXrvANN/bxYfwk9Bt/MPMu7iLsYOKY7el2cvPje17uRHYk8KkGAvMTCpTsdJlG7XPTLu4PNlLyW4sq7GDgmvNJwyLtljS09Fx8/PEOvmjoHjfq6Kq1dvbbQX7s6+/67jD0NvUBGNL3k11A8AFEjPRg4pj1XL4q8mpuwvPnQKLx9nRm8f7aAvHmGhbwExuU8rfSJPOzChDzFYiQ9pFuovH8iXjlmVhU80esDPZuNgTvZaSu96cX7vBNYqjwxLdg8I3GGPEOvmj1ZtM68kYlmvBoBjr0j+J08CHGcvGwNKD2pSdO8UK8PPXHtI711VDe8xffqvCgN37zhELy7h12RvZgJYbzoCR85Io1kPAMYuDwgMYm8orupvL538LsVf8C61JdePWemFL3jsLo8Hz+4Pa17Ib3r3mK8H+EJvAkfSj2sArm8ECbcu88wS7xozao9zgm1vOzCBD1Gnxi6wiInvUMogzzpxXu81CsBvZ3brTyBtC28KNiZPBHhlLzIvv87nhDzvBPtcLwCrf66m9B1PPA3R7yuRAm9slsdvZeQ+LwBeDm9mhSZvJy0lzsVIRK8T/TWvPTwLLwVIZI8NOa9vJOizboQn8S7Uf+OvPj5Eb31nlo8vNfxOyomxjyEe0K9Af/QvGrmETp9+8c8VxRQvSP4nTvBMNY7AIZovcCQVzwB8SE9hg0SvA54LrynmyW6hpSpvPlXwDwYv708ddvOvaWCvrsvBsK7Qm3KOz2Nzrzupfe82wmqPBHGWr06PyI7LwbCu86CHT3Ld+U7spDiu4lpbTylkO27fz0YPAwqgrxbzTW8BLg2PRFN8jsfxs+8t7QBvIE7xbvpt0w74bINPQgtebyQfYq7jy0LPVAb7bsf4Ym9+vc+uyl4GL2cLYA7kvQfPczwzTv0d0Q9hhvBvLVX97xpRpO8iWltPHjmBjyiuyk6Wc+IvMViJDzX8pU9wJBXvCTBhb0Ahmi8i3SlvEJfm7wgZs48QygDPapwabu7oqy68L7eu9deczxcAnu9g9tDvXrJebyM7Y07+UkRvXf0NTwM5l699Z5avQHxIbzZaau8WaYfvE5GKT1sQu28XpTKuxX4qLxLz5O7nHB0PQhxnDxpe1g9Px+evLgEgbzZaau8l00EOqPw7ro/Hx4852mgOgS4tr2L+zw8XAL7PDJUbj2VNB29Xq+EPJKwfLwF7fu7d3vNvJU0Hb3Nq4Y73D7vu1eNOL1KFFs90FfhvPWe2ryq6dE7jklpvOtXSzwgMYk87jmavIudDjzKUM+7wiInPZy0Fz17rRu8ieJVPUUmMDrn4og76tIGvAKfT72kWyi8WML9PDr7/jvoCZ+7xYsNvcg3aLzk11C9HtT+vLP7G72x8GO8335su0G/HLyuoje962V6PNfXWzuQVCE8DdivPcNJvbyv13y9mXQavHKb0Tw8m/084okkPZo9gr3Hibo78EV2vYG0rbyNmzs8yMuKPL3JQr10tDi9Px8ePeGyDb0lYQQ90JuEPEWtRz1aYny8W0YevagUDj1plpK8wpuPPWZWFb1VPww9DAEZvSxN3LzMW4e8FQZYPfqZkLwYRlW9SI8WvLkrlzy0xAO8yL7/O5dNhLzR64M8VMajvCa/MrueEHM9hHvCvAeaBTyJW768dC2hPDO/Jz0ceKM8Rz+XOq4boDwExuU8nonbPHzUsbstuBU9R8YuPFTvDD1xZgw9Pjt8OwMKibyFKXA8uZd0vJ6J27y6Aq68D/GWPHxbSTwkwQU9kYlmu3q7SrzM4h48PBRmPKcwbDwh3za8zoIdPdPpMDu1m5q77ekavUdNxjuGG8G8m2SYPAmmYbvAq5E85F7ovFm0TjxerwQ7BFqIPISJ8TopeBi9SHRcPTG0b70gdH08vxdvvBuhjDwCJue6oRurvAWqBz1VdNE8pFsovd2pqDmUyWM9Qb+cvAkfyjtozSq9gbStO3K2C70nbeC6qUnTvGPtLjy3cN68uYlFO+dpoDwhFPy8Kf8vPLMkBbtDKAM9xhDSvJMb0bpz1WK7GQZ+vLOpkLyUB4u8h9CAvGTJ5LxSMyo9MUwGvNTBjDw18CG9eK2JvYyiQb1FtM68vJgWPAkAmbxIt7S8gT1FvZfwRL0eVJs8bjEUvd7etzyPpac8czQtPVeSWjz8Cse7DjEkPS8BzzukE4k8U00Jvdk3tjtsXwa9WWRovSt0rLysoF676BJcPN4mCTwFP+u8gm6dvFeSWj11vmm87OdPPS0YyDy+fuq8ILOYPM0xhDzvMoe8knqbOmWy67z3OIa8CELRPPTwgbwS1T89eKpWO2Ftmr2MosE8agCJvS5gGb1pcOa8wbKovGLjELopWs08IeG9PHUGOzxkEba8gGs3PaVyBry2Tay7x0KxvFBhnDwoiD88gCNmPVIFuLys0Ta7qLTxvIjNzbwhQAi9OySTvHjyp7xjKC89uB+6O6VYp7z2Y8W6DxqrvNB5CLwWYuI8pyq1vOVuQD3CzAc9eJYQvafi4zvypcq8BHAQPBGkZ7zxXXm66XSMu4bKZ702q7a8XYGtOLyYFjy+UPg8VY/0OqQnTz3s6gK9jSx+ug8aq7yalGA8878pvXW+6TxBELO8A4cJPegpVbwud5I8LgQCPQObz7xWCB48BZ41vNV8IbwgsGU8x0KxvMzpsjv2Y0U9+R5aPe65XTzeJok9wGrXN0hYaj1RSqM9pxO8vJQHCzv08AG8vsY7PeeIn71lK5U9akJ0POM9aDtZ9Io8Amr3PO0YKD1LoyG9hOHgOxlOTz0eVJu5I4LzvCW2MT0sRjq9aOYpPJjFBb2N05m8EEsDvfvZbjww1o88Uxyxu7GPsbzOiui7CKEbPQ7pUj289K26QPmGu6HLBD0BERO9eZPdOxw6vLvuSQC9vKzcPLusXLya86o7yHOJPQihG719sCK98LxDPdBF/TxpzzC8EAMyu+xGGrwpRgc9vuCaPXJiH7xkWQc9J1fnu3oMB7svSaC8+H0kvWkXAjqwR+A8wj+YPY13gjzsRpo8KbkXPW1IDbyyYT+8r3gFvar/qLwz1kI9gQztO7VkJb0A4Do81TeDPHxO8jxcPA+8CCvYvHnbrjzFh5w8hRK5u4ZairjemRm8HgzKvEHLFL2T03+8tAL1PLR7njwrdCy9FkvpvHY3E701fZG9FfIEvPwKR7w8abG8cx00PKjRAztyGs479jgGPO0YqDzrzXA9H/VQPI13grw3q7Y6o4aZvNbsfjy1HNQ8xijSvIu5urv2wg89bLsdvWERAz2qFqK7BG1dPHcgGj3b8kq8OzjZvFZ4ezz6gIq9sdeCu/ke2rxRSqM7noBNPNTBjLuHhfy8Qd/avMLjAL3R1R89N/MHvJEB8rygmqw9fzpfPUANzTztud28UTOqO3zeFL2+Dg29UQLSuRogXT3O0jk95ywIO28X6Dx4qta7ClywPHIGiDxf9PA7aqE+PVLrWDzZf4e85CZvPIP7jDwiKQ+8dAa7PBog3ToNMaQ8eq08PfAbDjsOMSS9xijSvGbjwzzmQwE5Wk1vOoFUvrwcOjy9KhiVPNwjo7ufUlu7RbROvCDe17wR7Dg9IA+wPEfOrb1KiUK5NpFXPDs7DL4gyhE77P7IPEwwkb1Ey0c7KUYHO4qLFbzR1R+9IeG9u3QGu7ygPhW9SxN/vUblJr0qi6U8CReSurqSfbw4Y+W8ZuNDPfs4uTz0qLC7J584uyDe17zDhLa8gAxtvO5JALwEVmS8lh43PTDTXD00q4O8kaiNvPd9pL3XBl68Tke9O9B21bpgJUk5gT3FPFIzqrzoWq28KUYHPfrwZ7zef+27Zfo8POwvobzy1qI8rkR6vehxpjsGKHI8VXj7OrnxRzyYwlK7sL0jPUBVnrwhmey8PCFgPCGZ7LxxMcc8DjEkPdcJkT2ujMs7hECrOxlOz7tQYRy9ufHHPP07n7xhEQO99WNFvCovDj2fsaU8uSIgPItxab1lhHk8+R7avNJI47ziyiQ9IZnsvA7VjLsNF0W96nQMvaswATyU8JG9wMmhu+LKJD1Dmu87QFWePFxnzjzmD/Y8Rmx9vG92sryOMpe8Drh6Pv4kJj1dIuO8DtLZucCB0DuHLJi86uRpO2ykJD1NdS888NM8vWvSlrxfC2q8YCXJPCi5l7zLz9O8aJ5YPWehi7zVIAo8kgFyPdnvZLlPeJU8b1+5PMgrOD0oop48tgXbvEaJj7vniJ88ufHHPD6DkDz6TzI8hcpnvG2kpLzSp608V36UvMX3+TsuGEg90b4mvPrwZ7yx14I9if4lPUkq+Lv/9jO7jdOZuzartjwXHXc8QhAzO49GXbsD46C8CIoiPdYdV7sEtS47qrqKu011r7u412g8IMfeuzs7DL2x1wK9/g0tOwJq9zvePYK84m4NvXDpdbkB+hm8Z6ELvXjyp7zO0rk7YygvPWq4tzzupRc9i1rwPPs4uTyE4eA80qctvaFsujw0YH88Ki+OvBJ29TwXfME9Ap4Cu3h/F7tkETa9abg3vExEV7ssXTM8eK0JPK6jRDxesgW7FkvpPOhxJj2r6K88BHCQu9s6HD1sX4a8MOrVPHUGO7sMSB29NWD/POvNcL2+4Bq9GlG1PSZuYL0vSaC8w229vCAmKb18lkM9/ApHPRp/J72UTKk8MrxjvCTkIz3YlgC9XK8fvK26vTy62s67KyxbOvgKFDzIFD88V/GkPEyMqDoAKAw9CBF5vFFKo7wVwSy9ldblPB6tfzxHzq28I4gMPNnY6zwHuBQ728FyPHPYlbyqFqK8bKQkva+MyzxJKvg8FWUVPYX7Pz0U2KU8ocsEvUEQszwbCeQ6y7haPMU/yzyH0AC9aOYpOwx2j7wDzCe71aoTvE6PjryAaze9QA3NPHd5/jw5xRU9vn7qvAVW5LyGyme9cXmYORd8wbyAI2a9wbKoPIT42btbmCY8a3NMPY93NTzXHdc7eH8XPMYUDLyXOJY79UlmPM0xhLzocSY9QhAzvYZaCr2itIs8UAJSvKu31zpOpoe94FH7OvAbDj1YCwQ9pstqPPke2rsPvhM9MqXqvNVLyTz5T7I8+R5avX09krwoop49o4YZvfLWIj1+mak9Tv9rvCefODxvX7k8y7javKX8jz0o0BC8ZrgEPeBRe7uhJGk9tQiOPBd8wTzgUfs8D7tguy8Bz7wjnwW9r4xLPXXvwTl0ZYU8y9IGPGpCdLxdOdy8d3l+O6bL6rxearS8QcjhPP8+hbqXqPO7BITWvKPf/bslhdm87qUXvUtHirzDhLa8omw6OjcKgbz8Cse84eEdu3p85Lv7ODm8fpmpPMgUv7xvp4o8tk0sPLlQEj0qEvy50UsWPeu297xbfse8x/2Sujs42TvkhTk8J584PVPAmbyH0IA6VqnTvHfEgj3Dbb07YN13O1Huizz72e47lO3ePMLMh7m2BVu8OGPlPDaR1zwRvka8du9Bu9JIY7zvouS8HSNDPesVwjw12Si8o4YZvecVD73aCUQ95VfHPH6ZqbxAVZ68FqozvSxGOrzoQzQ8SqOhu/WRNz16rTy9bY2rPAkXEjyp5Uk8hRK5vGWEeb3tGCg8Xmo0PDxpMb3Bsii85xUPvWjPMD0EbV09V/GkPNFiD70lzSq9SP+FvEoT/7uqhv887P7IPJAvZDtQ0fm7U02JPTEbLrx9a4S8uan2u8n9xTqrMIE86iw7vZKRlLzRYg89ePKnvIP7DLzvMgc9i3HpOpa/7LzMz9O9R84tvV/0cLy6qXY9Jv6CPDeUvTwaI5C8YPoJvOhDtLzyjlG9y7jaO/lPsryVNTC9kaiNvJJJQzucfWe9Q/k5OjJMhjsLRbe8omw6vZ+xpbsEbd28WWTovIecdT1RSiO9NZHXuqmd+Ly1CI49cOl1vEA+Jb18N3m9Lu0IPcGbL71oh188iucsOj/c9LxrWe28djeTPOZAzrzGFAw982DfvE8FBTyGQ5G8Eb7GPGPg3bwYUQI9gIWWvEQqkj03wq88LneSvBADsjzlthG9G2guu6FVwbwZliA87gGvPJ6Xxrw7IeA7xRSMuopxaTw38wc5IpnsO6/UnLyIzU296ClVu8U/y7o3q7Y69nq+PJ5sh73WNFC8kx4EvQKegr3rFcK7aumPvCiIP709Uji7FvIEPcJTXjribg08iwGMvF8LajxgJUm8hpx1vFO95r1izJc8oWw6vJjFBT2i9va8LEY6vF6bDLp/I+Y5IimPuzxpsbr+JCY9DTEkvOj+FbveJom8fE7yvHp85DvuAa+8BITWvBIdkTs+O787dyAavaBS27uwvSO9sjDnvH2worwpWs081wkRverNcDxhbRo8ZSuVvU94FbtpcGa9AlN+uypDVD20Hwe9kxtRPSfnibwBERM84Gj0vBK+Rj2MosE8Wk3vPNs6HL2lENY8pG+gPVt+RzxNGZi9fGhROFyvn7wWYmI8MQQ1uurkaT2soF67mAokPLV7Hr36TzI9PGmxvdqq+TsMXxa9UteSu7Xre7132Mg8PiTGvKgtG71Nda87W2dOOqVyBr1MjKg8kI4uvJYHvrwBski9ucBvPP7F2zwxv5a7MdPcPExEV7zaqnk8UjMqvQO1rjgPGis8sF5ZukWgCLxeC2q9hOHgu8YoUjzUMWo8ZuPDvNZ8oTwyTIY7KV2AOwxfFr2drj+8UAUFvZrzKr3vi2u9edsuPWWb8ryDV6S86P6Vu7k5mbw/EIA89jgGPKUQVr2LuTq85/j8ugoUX7sdI0O5R86tPIbkRj2SkZQ85kOBPIThYL0XHXe9mpTgvEtb0DwyBDU7R3IWvaQnT72SMkq85ynVOt7HPr2SScO7XSLju90MKrtMMBE9zopovRLVvzycZu46oYMzPGQrlTvT2IU7HWuUvfUy7bw2fRG5NHf4OxpRNT1KXgO9+gfhPGuKRb26IqA8oFJbPLqp9jztGCi8GGXIvIsBDDptpKS87efPPLkIwTzpQzQ9tDYAPX8mGb2r6C89UUqjvCOfhT2IzU27SroaO1ACUr3pdAw8FmJivNZLyTsjgnO88LxDvZR9ATuGnPU7HNtxvGTJ5Dy5OZm8vPQtPYJuHTsoop48+zg5Pc7SOTy/4Jq6puJjvZ5pVD2Ykfo8ocuEPNZ8Ib38Uhg995QdvE94FT3y1iI9yCu4PNvyyjyGymc9UGEcPRlOz7wGh7y6aqG+OmTJZLyOpSc8LF0zPFXATD3oWi28+iHAuleSWr2FcQO7Hj0iPXTs2zzEKwU8JbYxvX3HmzxSMyq6Gn8nvYqLlbueyJ66j0ZdvQOEVjxIb+O8u6+PO10lFr21ex47Ue4LOom21DxR7gs5U73mvHTs2zz4CpS9NHf4PKTf/bxAVR49Eh0RPVECUrrPpMc8x/0SvPlPsrwCanc8uqn2PG92Mj0ypeo8UdeSvXutPLsf4Yq8OyHgO7UIDjztGCg803m7vCOzSzwjiAw9ybV0PB0jQztonlg8ROLAu+iLBb0XC2W82P+Ou+5g4bwm99q8bYa5vOA6Gb2RjEC8+bVJPeGOSTzSP4I8ztMlvePTWL0BubO889ksvMJXcDkaMrK8POa6vGHBEL3gdOu8oej2PMufab0ObYk8D6WpPL6VsTy319Y81vRRO3fbIT3LdDi8dFEDvHbOMr3tKEE8GO2ivFwdlL2/rw+9xFOMvNSvQrvz2Sy73b+bvDbuDb0rqEY9yRMZvV0qgzynQwA9ljA9vACBkzy7GIK77jUwvFDZ/rmRjMC8GgcBO/47BD3A56+8aeAKPUZm1LqKT4S9LxSjPCBGb71NT2C92P8Ovc7xZ7tgtKG71skgPYW6KLwaMrK7M3MQvAosXj1OPo08VjQIPJ1RabyM21Q7szNaOdl+cD2fa0e8OpQ8vGoJCr1JjaG85SXXvBbG1bzSPwK8YN9SPRi1gjq8NJK8b9i3O+h31buIRMe8bDKJPOG5erx9t748+rMXPYJoqrzfPEs8fwk9u6h7ILxK0rC8FsZVPIlepbxyNyW9K5tXvOXttrurEq68VX37PI0gZLy8UCI99UltvF1Gk7zlGOi7VAuJPNb00byhvUU95At5vF5iIz1dVbQ6pVTTPHyqzzxQZwy9JvfauBLoBrzSMhM7X6eyPKizQLwnBMo80l1EPWDfUj0f1q48Ko5oPdpRjbw7koo9Q7GEPSuoxrw6v+07+bVJvG/YNz2U3r69gBYsPR11Dz0xWbI8/55VPMRTDD2xp4k9pSkivTuhK7yM21Q9DYvLOVIAzLwVuWY9fe9eveGBWjwzc5C8B6I/PO41ML1f0mM7R550PCt9Fbx9xK28uinVuxyvYT3vJg89X6cyutulPbzgHok8qLNAveBJOrxxHcc4D9DavLU+Fz36s5e7VopqvPwUNz3bpT29fvxNvdKI9TwMRjw826U9umWQPrzDnP+7vwXyPP9XlD3IFcs57yYPPa5kLLysSs68wdiOvHSn5bzYGx+9bstIPQQYoT3imzi8dex0PAVdsDxi+TC8pOSSvG6EB70GTo+7XsV0PcRTDD1p4Aq9moAJPUsK0brG7v08iG94O8yBp7yZjyo8bYa5PM3keDyOLVM7XVU0u8NxTryuj128PdeZvB/WLjtR5u07a0GqvBSs97xK8HK9r9RsvWtsWzylDRK85e22vP+e1bwLZP66eS0gPIzb1LtcSMU81taPPXEqNjyFuqi703ciPBbGVbw/KZg89UntO5h1zLu7NkS8a0EqPVUnGb3k4Ec94YHaOzJmoTyghaU8TOwOvMfdKr0JvJ08YLQhvTOeQbz/c6S84YFauyFT3jzYRtA8Vl+5vKdfEL0m91q9p0OAPTXwPzsVjjW9t5+2PTGEYz3SleQ5BBghvMbDzDuXPay8h/0FvZKZL7zqyVM9CizePJzhKDxebxI83LKsuzFZMjxzKIQ8IPAMPIy9Ej3KPBg7lAnwvNDtg7tHc0O74mMYvN4v3Dw2/a47T3YtPLrvgj1xHce6aLcLvTrMXLwQFeo8sOHbvDqFGzz57Wm9umF1vTOeQbzDKo28jBN1u2RLL7xtWwi90mozPT8NiDzSMpO9Dbb8OifZGDsQshi+k9FPvPh9qTxv2Le9sxUYPP+e1Tsqjmi8r5xMvU5pPjyIUba8DFMrvTB3dL23dIW8v4YQPMt0ODrLn2m8w5z/vPw/aD1AfUg9S98fvMjOibzgdOu8tpJHPFrYBDxMF8C7kYxAvDb9rjzt8KA8YKWAvOZd97sk3Xy9yfcIvSmBeTto05u70SUkOykPBz2tLAy8liEcvZOmHj1zKAS8+rOXvB8B4Ltv2De9dXoCPdmLX71Pod48jOjDuvME3jwksku7qcCvvB2RHzwBxqK8Ubu8vOJwBzvuYOG8t9fWPIt4Az12o4E9b60GPe3woDxexXS81byxvELPRjyQOJC85d4VvaQcs7xtvtk8swipOzNzkDyzM1q9M9ZhPCuoRrwu+kS8vpUxPQRD0ryKa5Q8uLmUvdl+cL3IQHw8ftGcvQG5s7y2ymc95e22u2bIXj3YG588cR1HPOvWwrsJ2l+8oHi2u9XnYj5MF0A9gpNbvDppiztQgxw8wR9QvfrPpzzMZRc9uRxmPGIGIL0iNRy91smgvMpnST2WW+68x8GavJQW3zwX00S8chuVuxC/hz0v+JK8n2vHPMyBpzw3F408+H0pPLRNuLwe9HA6Rlnlus8LxjwOiRk6tmeWu7ZnlrzNuce84HTrPL1BAb1AUhc6KjiGPWIGoLuKwXa8RzsjPbU+lzxUGiq8vFAiPH3ELbuMvRI8Fn+UO8n3CDzwpXC82P+OvEhVAbuFHXo8n0AWvKs9X7yIUba7dcFDPOy4gDy7NsS8j/MAvSb3Wjx8qs87cOWmvHV6Ar3zygs85e02O9KI9bw8uwm9zsY2PHNvRT1lu2+7xpgbPRQ6BT1rbNs8JvdaPbrvgr197149NfC/PAGOAjk4T608IBu+PRjtojwI5867K2EFvWtBqrwTPDe8+H0pO/io2jsoApg61skgPJA4ED0balI91izyPP0hJry5HOY8W/QUPG6EBzwz1mG81w6wvFM47DxUGiq9IOMdvRabpD3fZ3y9R3PDvCXq67tFTPa83SJtPZByYj0UrPe8O9lLPAaVUDyi9WU9TjEevLCaGryIfOc8ji1TvKCwVjy/2kA83syKu3I3pTxw5SY8uORFPTmHTbtkS6+7nl5YvZQJcDw1G/E7dG0TveQLeTy+wGI86HfVuvCl8DtWbCi9I16bvA/QWrwMNxs9FpskPDcoYD0EGKE84bn6u5vUObqV+Bw9I228vJVOfz0BubM8fe/evEQUVjueJIa7pSmivJAcgLwchLC893C6vNlTvzx8f548I0KLPSNCC71HSJK7/D9ovT4AGTyJJoW8QKj5vLMVmDwQvwe8jSDkOxW5ZjzSarM8T6FevNYs8jrlwgU8p26xOtqYzjysdX+8o9cjPZry+7x9xK28oE0FPBui8rw72cu7ftGcvTBMwzvNcoY8xu79PDPW4TwPloi83/WJPAs5zbzMZZc8Elp5PE1PYL2agIm8FDqFPeJjGL1DpBU9qHugPaPXo7y/2kA8m6mIPZvFGL3hVqk9bE6ZO37RHD0vFCO6kFQgPTq/7Tz9hPc82phOPB/WLrzb0O68se7KvAs5TT3N5Hi6CgEtPLxQIj0QCHu7bZOovACBk7zDRp28lBbfvDJXAD1Yoha8vFAiPHkgMb3hjkm8NfA/vVHmbbzG0Lu8EgQXvLjkRbyk8QG9oIUlvQ/Q2rxANoe71skgvAjnzrtgpQC9BmofPJvUuTxmyF49Nihgu6x1/zzxsl+9RBRWvMfBmrwoSVk70Bg1PA5tCT0A5GS8o8iCu/xMV725xoM9SXGROxSBxjpexfQ75cIFPGnvKz3G0Lu81NpzvN/1CT2H8JY85z+1vNFQVbw8uwm8E2fovG/Ytzxo4jw98ep/vFnp17z8FDe9RyyCPUA2Bz1jafG8boSHvCcROb0R96e8vbNzOw+lqbzcows9pjYRve0b0jxDB+c8zKxYPG7LyLzZKA69liEcvCawmTv73Ba9boQHvAP8EL1VJxk9mHVMPRDquDxTOGy949NYvbaSx7znFIS81NrzPH3v3jwoHqi7e53gO7s2RD0nBMq8i5STvCR6K7xjafG6VjQIPKh7oLwaMrK8N0K+PKjecbxtkyi9cygEPTB39LyJJgW9cNaFvWW777zRJSS5G6JyPcIsvzyMsCM866uRvNt6jDvO8ee8liEcvP9kgzwcd8G8lN4+vC4ldrxjPsC70mqzvDzmurwDCzI8OpS8Ou3woLzyoQw71ixyvGslmry4uRQ98ZQdvXgTwjlClya8oE2FPcqSerwmzCm9+YoYvdj/Dj2qsQ69Z6qcPGCYETxAfUi91vTRvNptnTzWAUG8KVZIPVoDtrymYUK6GNGSvMn3iDw3Ch69nSa4PE0kL7zRJaQ9JN38PMb7bLzRFgM9eS0gvfnCuLxVUkq8CizePJOmnjxoDW66yM6JPGlSfTynptE4cfKVvGnvK7namM68xFMMvQx+XLyUsw28ik8EPEqakLqoiI+9koqOuxpd47x7nWC99Dz+O6GSFL3mMka9DFOru8tJBz2E5Vk8GBjUO26gF73xlB06jfUyuumERLr3m+u9UIOcPJry+7q4D/c8iHxnvMqS+ruCaKq8qHugO8jqGbztG1K7hfJIPebrBL0u+kQ6KEnZvMIsv7sykdI6XY1UvDlcnLwKAa087mDhO2i3C72KTwS80VDVu17FdLs041C9rEpOPA1gGr2in4O7IOOdO12NVL3HCFw8/S4VvY7mkbvwpXA90SUkPLxQIj0Wm6S8qLNAPdpgLr0iGQw9+KhaPJxE+jwznkG9bbHqOwGqkj3amE48BSWQva1XPTvSMhO8Y2lxOwHGIrv8P2g9QKj5OwL+Qjx4PvO8fwk9PWcAf70aBwG8wfQevRneATx2+WO9wiy/PHI3pbyYShu9zv5WPNt6DLs9Htu8XSoDPSt9FTxlkL66I208vWjTmzzhgdo83RV+vPLMvTyWIZy8gkyaPKeZ4rzsuAC8FDqFPD84ubw7oas7ae8rvVQaKjttkyg7rYLuPG2TqLxWUBg9OHreu10qA7zSMhO98er/u8t0uLz7wAa9NLgfvf2E9zwu+kS8TBfAvHRRA7vhjsm8owJVvIEwCjsZUHS9+G4IvIB5/btXXYc8svu5PDScjzzlGGg9chuVPNpgrrqErTm9oGmVvTScj7vyzD28XppDvHhLYrxK8HK9KB6ovOGOyTw3KGC9WgO2uy6zAzwl6uu7ymdJPF/S47yQRzE9r3Gbu/YcijtYohY9HISwOnfMgL1seUq9fH8ePKrNnjzy92496bxkvePT2DxpGl29v6IgOyqO6DwZJcM8kFQgOwVdsLxXXYe7yiAIPCpUFj3Izgk8zvFnPU92rTyG/ze9Gl1jPSyKBLzbpb09CdpfvMIBjjwD4AC9xYssPB6ejrwpgXm88ZQdvRjRkr2XLgu7UIMcvI8Pkby0eGk8EAj7vBWONT2r2o26Wa+FPBM8Nz16ZcA7mHXMuzb9Lr0MGws9tT4XPdFQ1TybqQi9R3NDPRtq0rwpgfk85bUWPTc1TzyhvUU86p6iPKaM8zxSK/272Yvfuw7D67txSHi8hR36O32MjTzaUQ09pByzO51RaTwkssu8qetgPBRWlTm4D/c8PeQIPZvUOb3oMBQ9VAsJPM25R706aQu87fAgvLLQCL0SL0g8LIqEvIwT9bkaIxG95vqlvAG5MzvUaIE8D6WpvJ37Br1njgw9NLifvU0VjjybxRi9xFOMPI9lcz2mYcK7+bVJPdt6jDyIGRY8Wi7nudJqszxa2AQ9G6LyPGxOmb1rbFs6OmkLvRcLZTwv3AI84bl6vPB6v7woHqg8iG/4PNEWgzwB8dO8Qvr3PDJmIbyDWQm9UUXOu8KQpTyr7Nq8dI2evAWU57vvJCG9knu/vAW9dz20lMW7Kq/CPLzqj7yWpiS9nEw6vZAAj7xETyi7gtXkO1xuo7yIhBG92ypRvN9PfDzUCQu98FCOPBQL+Dyk9CQ8a+UzPKfB9Tv2HFc9djeZu0zIyLtLdii9ha6pPEbK2Lz0cly90lnWvPzr/LzXCAO8wxEQvPNPhrxWwtO86qcbPVfxnbz8Gkc9wrm1PJ9I1bzyILw8NIOaO3zdrrw6fq287yQhvVOghbv+bGc81VVxO19qPj02U0i8mXkvvQLHljxOTJC9nc2kvCJZ+LwiX7K7d4k5vAtDFD347+G7arwjPEcis7ze2oU9kUx1O7iWmjwZaIS8t2dQPEzOAryGBoQ9JTUavUKfc7v0cty8rBXrvNcIA72waWC8cFx/vH1YXz0lNZo7mXwMvev8mDy6Olu8htc5vSgFyDva2428NdJdvDeCEj3OYBi98HZBPLHBurvCubU7ukAVvYWuqTtZm5g8p8F1vdmpZrwYEwc8GzuPO3wJnDzjemE7eLLJPP1JEb2bJoe7BEgBvAhtLD1Pm1O9AphMPTYEhbz+lfc85nZ8uwy75zy/vRo97EvcvJl5Lzw3fNi6aTs5OyldIj1h6yi8JNriut9PfD18Bj89ncdqPBO/ET3AD7u8uJYaPfTEfD3qpxs7u5K1OyINkjo4zng9LCrzvQhncj1X62M8mXwMPf/t0TzIses8zQXhPNQyG70ds+K73iwmPQBA8rw7gYq8v72aPSQDc705/UI8htH/vOSpK7yoGdC8On6tOy1cGjz4nUG7t5DgvF7pUzyfSFU9D5cJPYbXubw9S368KNw3PMKQJb00gxq9qB+KvBsPorza2LA8a+UzvL+3YLzKD4A9FAv4vKDJP72wbxo95NUYPJsmh7yuxZ88BEiBvALHFj1G+aI9hFZPvHIMND3u9da8j6J6vTunPb3vHme9lsn6vItUvzwqiY895STcvDZTSDy/t2A8ZjnkPKjwPzsWjOK8gV2RvAFvPD3hAo48SJ1jvVgarjxmkb48YmbZPCwwrTtfQS699KSDPCqvwjugd5+5URy+vAzBIbq2FTC9LrEXvQhwibz2HFc7iIG0PCS3DL3KCUa82tgwvaB3n72uv2W8ZRYOvaeeHzsM5Pe74f8wPJhKZTvNCxu86CYxPeJRUT27u0U68HbBvIYGhLwZjre7rZbVPJ9xZTrvJCG8VXOQu1xo6TzQ3iW9pkZFOzNaCrsiWfg7dLB0PFJLCLzYMRO99HLcPGw3VL2T0xk7LrEXvcWMQDwbODI9wpClPEbKWLxaxwW9thWwvILVZD2DBww7myaHvPpKmT0whCI92gHBur/ph7toEim5gtXkvMoPgLzeA5Y67qM2PU+bUz2Q0UQ7WB0LPVq+7rxG0BK8wuJFPHi4Az256xc9OKuiPCUJrbyIqsQ7djeZPM+v27xvEBk8JlvNvJag6jy9PDA9xDRmPOv5u7r9SRG9j6J6PI4nSryYUJ881wgDvXW5i70iX7K7vpSKusm6grw6LI07idkOvV9BLj3zI5k8/p6OvWq8o7uDBww8NdgXvtVeCLuHLxQ9AseWvU+bUzytltW6FREyvCQD87xCn/O74IQAvd3US71y3Wm9arwjvEt2KD2LVD881wgDvRJh/bz5Hiw97vVWPdQs4Tl5CiS8eLgDvZDRxDx5CqS8BZqhvLY+QL3/7dE8NfttPPidwbzsKIY6PnpIvQtDFL3SWda5dd++u+H/sDsh5AE9cbRZvAcbDL1+qn89IjDovC1cmruZor87xDRmvBaSHD0GwzG9CkC3OzX7bTtD9808HbPiOlVzkDtqkxM9ChcnvHuu5Lx3iTk8fooGvU4gozxK9T09cGWWPaZ1jzysFes8DJJXvHA8Br2vF0A9EmF9uy8DuLyIe3q9RE8oPUKoCj2cTxc7NdJdvSUJLT1Q7XO8tJRFvVKdqDv5IQm9ET6nu5JVjL2VTkq9j6g0O4oCn729PLC85lOmPNmA1jsRPqc8Y5WjO+T7yztqtum8+MZRvUh6jTwFlGc+XG4jPM3iCr0Jv8w7IQfYOrnrF7x5BGo78yMZPYAxJDz8Gke9SiSIu+19A7xnus48k9MZu7Xsn7xOICM9e7SevJbJ+jwSkEc9WvAVPLNCJTxG+SI9n3HlPPZFZzy3bYq8GZGUvJl8DD3SX5A8fS/POEtw7jptkou6vOoPvYA0AT1ax4W7ao1ZO0LOPTzLW+a844CbOyk0Ej3W1ts8HjRNvNAHtrylHbU8j6uRPCTgHDzmUyY88s6bPIzVKb0ESAG6ejO0u8+MBTysHgK8ofJPvA0TwjzC4sU8Axk3vdaty7zwdkG6Kq9COylX6Ly/4PC87XqmOywHHbx3g/+8BuxBvUR4uDuh8s87AB0cO/Skgz1OTBA9nvmRPLYYDTxu4U691V6IPdhXxjwJ6Ny8O6c9PG2Prj2M1ak7xg0rPHBiOb1U9YK7XZoQPKT0pDs9KKg8i1Q/vHkNAbwMu+c8dGQOPXwGPz1u4c68oHcfPV9tG7ze2oU8mHN1PCI2orwWuyw97EtcvTXS3bwtXJo9ChqEvSxZvbwGFVK8bwpfvMRmDT1RRc48JoqXvHuLjjwlCa27EUGEPSwwLb2qcaq7sEBQPHYxX7ySez88OKsiPPIgPDt0ti49aOPePOTSOz3iKEE87XomvVrHBb0Ilrw77yQhPMYNq7sN6rE8ZRYOPGgSqTwGw7E8GBMHvdmp5rz2+QC9bGDkPPd0sTzcU2E9qnQHPTGneDxeGJ68CJkZPUokCLwvAzg9YheWOyC4FL3o9+a7UUVOuxa18ryqmrq86nhRPARrV7xeEuQ6Xjv0PIcpWj0AHRy9nc2kvGIXlr1N8di6bDdUuw5CDL0y1sI8rBslvJxMOjyZea87U8a4uzMunTxQ9oo8/8TBO3YIzzw6fq08aDX/u2gM7zyeH0W9UpfuvIYAyjya0Ym8TkP5u5agar02BAU74fn2O6qaOjvQ3qU8URw+PKNzujwOa5y7QVMNPLNl+zybIyq9xbXQvD+pkj144RO9HuKsPMKQpT1e6VO8GziyuzuBijyFhRm9naSUPbi5cDzbKlE8TkkzvHeMFrq/5io9j6L6POp+CzwsB528XJH5vNEKE71LeQU9BZqhvBaSHD2T05k76qebvI9/JL0at8e8frC5vCUJLb3r04i6s0KlvCUyPT0ds2K9fAa/ux86B73+no68PqkSvXSwdLwsWb07A/AmvJD61Lzo/SA7Up0oPPIgPLwYE4e8/puxvH/ZyTspV+g8tJRFPSgFyLkfOoc83FNhvRFBhLxjlSM6vA3mO4MELzzQ3qU90NhrO+erALtwXH+95NI7PSOIwrxyBno8VplDPJDRxDvEOqA8rr/lO7NFgjor2FI9yeA1PV2akLzG3uA7v+aqvEAkQzzo1BA9vOoPPQAX4jkbDyI7WEYbvTjUMj2AVHq88aULvZbPtDsD8Ca90oigvD/MaDqSpE88focpPVTvSL3k0js8idNUPK2WVbzLW2Y8xDogvR4OGjzgrRC8cbTZvEF8HTucTDq9QVMNPQKeBj0eC707czVEvTSDGr1avm69TM4CvJJ7vzyLfc88l/hEvERJ7jiIgbQ9xGMwvHSNHryYc/U6dLD0uvn1GzxmaC69qUgavTosjTwOPNK8HbPivDBV2DyC2x68+R6su3YIz71SnSi91q3LPNKrdj3xn9E81VXxPNQsYb04zng6585WvV9qPrzwTbE8cZEDvM+MBThToAW9BEJHO+gg97zHEIi8iiuvu9JZVrumRsW8myYHPBJqFL0lCS29u7vFPNQyG73iV4s8jlYUvAnFhj3CkwI92tJ2vVJLCL1Mnzg9/MimvD1RuDwns6c7zeIKveZ2/LvuphM907EwvBKQRz3bMAu9U8a4u3Ld6byYSuU7/MuDvIWxBj1y5oC8uL8qPdhdAD1A/g+931W2PPz0E70Cx5a7KAVIvLXsnzxqvKM8+J1BvEnG8zu6aSU8Id5HPCCPhDw2U8g8gDSBvCgFyLwVaYw8QP4PvOTSOzx8CRw9tL1VvfvC7DsCnoa8Ye6FvfpKmTzh+fa8lqYkvQFvvDovA7g8+RhyPGDCmDsSkMe8xzY7PNEwRrwo3Lc8AsHcvbBvGj0Q5sy6Emc3PQPzg7z4xlG67qaTvJr037sYPJe8supKvLuVkjz1zRO8ZL6zO2k+Fr2UJbq8P9KivNJZ1rxcaOm8f9nJvEr1vTxuuxs8VpnDPAo6/TuT0xm8lPypvMRmjbsOaxy9EL08O66cjzsy/1K90LWVPHXfPr3ar6C42zALPa1txbyU9m89VPWCOwbDsTx6MzS9RCYYPca7CjzADzs9Qs49vVyXs7y6aaU9KoYyu5l5r73grRA8BsMxuj0rhbzCkCU6DMEhPSTa4jwPlKw8ejM0vdKCZj3Q3qW9CehcvAKYzLqcTLq8+R4svfZLoTxy5oC8WsQovcKzezxclzM8BELHvE+b0zvbMIu8PPldvcQ6IL3IZQU9nvY0PUtNmLvONCs7NIC9vJhQnzx5CqS8Hg6au05yQzxeO3S8lqBqPHkKpLySUi+7qnGqO5apAT1lEFS6MH7oPDL/Urz9IIE81wUmvdE2gLvvJKG80N4lvQhtLL3Q3qU8KTQSvVhDvrt3jJY8mstPuoMHDLvOYJg8GY43vbpja7ywb5o5shPbPFEfGzxZld489c2TPYBU+jxmawu8HdxyvQ3tjr0e4qw8xza7u3SNHjyELb+7RyKzvER4uDuKJfW59253vZ72tDs4qyK8PVE4vLGYqjzOXTu9RE8oPQruljutllU8YmZZPO7MxjwoLli9P9KivDMunTxfQS48j6J6PQbDMb1EUoU8qsPKvDNaCj1qtuk86NQQuwYV0jryILy81q1LvCOIwrwX5Dw7ndABPA5rHD2Wyfo8wuJFvUKlrTxccYC8gAiUPTz5XbxX8R08vrdgvQ3qsbxcRZO7aT4WvOT7y7w/0iK9RyKzvGg1f7yRKR+97Z38PCTgHL3eAxY9YQ5/PMASGDy2PkC6fNd0uqIbYLuBg0S9VXCzPCU1mjxEUoU8AEByvBs4Mj2ay0+807EwPbLqyjxMyEg8htH/O27hTj3jemE9fNd0vH6q/zqWqYE8HzqHvJZ9lLqU/4Y8+naGuszc0Lt83S68eOGTO83iCjwqhjI9tGs1PNcIAz0LQxS95k3sPDMunbwDGTe9+nDMuz/SorycewS99fPGO2Jm2bzfL4O89MT8vNOxMLyVVAS9VUcjPOv5OzmOUFq8dbmLPIKsVL06VR09Hgu9vAc+YjyT0xk9JNriu3M1RD2VVAS6l/hEPHBc/ztdwEM9TJ84PDil6DzlJFy91ocYPXBiubtpZMm7OlWdvI5Q2ruANAG9WB0LPcWMQD1Fe5U8On4tvNaEOzwIcAk9bY+uvIeWCj2DTG26sr5IvUaNQjzAgQK90c5RvX58azwllTg92LFsvK7DrrySrj+9em44vbKAF70RsbK8ZuuZPJap2TuwmBa9L9UJvRGxsrvSkCA6xwM2vUc/9DxfbGI7sJgWvLPkej1FBim8Tx8TOzakVjw4jQw9fPVRvJ3aQjsesp28IUxQvRUNNLz2I5K7O04mPI/aDDz0iKq7LWEJvarIFD1iVGO5DlEAvONR8Dw/+/E86vcOu1RAX7ybUyk8vyAbPCSCn70FJMi7FiBNPKI2RDrvfXM74t3vO7d7Mb25Aku7VihgvRhG/7v1TXW98VJbvMgpaDxtgOY8PtU/PBvKHL2BAIm9hyFVPYLF07tgf/s8xxbPvCmj67t+yrk7CAzJPLmh4zuBZGy8FKzMvB5kz7vcb4q8GQhOvPKzQrwdA2g9OI2MvC+uorwN8Ji8ZTxkvHZzHjzTozk9a6iCvP9m3zzuV8E82tQivUIxQbzjeQy9f91SPAf5L71L1qo8FwmDPKOXK71RWN47o0ndu+lJjrzez7y6EtfkvLRFYj1EpUG9B/kvPNkSVLzjPte7f1IIvHrPHz3bme28Nt8LPcL1grv1Otw80S85PNAcILyrjd+6ZuuZOwgMSTwz9wo9cRedOePtDLxbv5Y6PiOOPccDNrj/25Q7adMau43x1jyroHg9PofxvHfnnrtld5k8DBr8PFDkXb2EOVQ8oK+qPOoh8rwpo+u7VaFGPY/GPj193oe9fbegPC/ViT2I0Ao9HdmEvBj1tD1lirK9XllJPfmWXb2Sm6a78VJbvVBFxTySrr+8L9WJPJZI8rvLX7e8GEZ/PfmWXbzfQz07qAbGOjek1jqtFHm6EbGyvPIBkTwQAn275sXwPBGxsrz0iKo7wxs1PbYaSr2z5Pq8CQgYPRxlhDv7Cl68eoHRvDhmpbzRfQc9z6ifPdwN7jsSJTM81MnrvGuoArvUyWu8+x33OeFpbzwd2QQ9/GvFPKDWEb1xFx26vRB+PEon9Tz/tC071ou6vDJIVTxhQco8THESPfU6XL3TVes8z1pRO1AyLD1QRUW7XeXIuu8sqTw38qS7CW2wOxOtgTz2/Ko6gyY7vSzGIbu6KP08EzhMu4SHIj2KVyS9fhiIvRVbgr16z5+9K2U6PcFGzbz2IxK9X7qwO3OeNr2x0eG84MsLPIN0iTtl23w9QFxZugqTYr3g9e48AjzHPML1Aj12JdC8xd0DvZxmwjwgObc81xMJvV2X+jyxXWE89IiqOwJi+Tw5K/C7RqEQvQQRLz0cPh29bRwDPDqM1zyuwy48luSOPCWVuLskR+q8Uy1GvMr+z7xebRc9vInkOxFjZL1TLUY9+UWTPX7KOTynpV66G3xOuuZhjbytsBU8RnqpOzUwVj3qDlm7+qn2O0ELDzxL6UO9EiWzvOFpbzs5K3A8Fm6bPLl3ALyIldW6hlyKOlper7z7fxO8QQsPPX/d0rxXdq67NX6kPbwlgTy8/hk9EdfkO71ymj3kn768dCaFPCcc0rzWPey8QUUPPKelXjt7lGq8iUSLPCHBhb32/Co9EJ6ZPC1NO71zi508Ig6fPPHHEL70J8O8UEXFPDBJirwFcpY8buHNO7bM+7pXdi69JxzSvHYl0LzuuKi9mxh0vQVylrtOvis9XlnJPIZcCrxKw5G8j3hwPAi+ejzyZfS8TDcSvBl9g70g6+g82obUvOqDDrx8Vrk7NX4ku683Lz02Q287kezwu0UtkL0K4TC9+1isOnVghTzVKtO7L2DUPLhA/Ly5oeM7bkI1vBUNtDyudeA8uaHjPMiKT7xsWjS74bc9vfiDxDwGSno8BpjIPNklbb3ONB+9Zp1LPR/Yz7wNF4C8fWlSPFIHFL3HZB27j7OlPBOGmj1Uji07ZhKBvJKbJr10xGi9zs+GOv0tFL3WnlM7rE8uvSztiD3ahtQ8mTDzPPDeWr37fxO7IjUGOzQKpLytsBU9/7StO5DZVzwYCE69yHc2vbd7sbunBsa9O04mvdvnuzxjZ/w85J++PEondTySwVg8OozXu15ZSbyr2608VbRfPquNXz3CWeY86A+OOyMhuLsXM2a9Zdt8u2iGAT3MctA8oeh1vHE+hLwokFI8Xm2XPHr2Br1zPU+8dMRoPYQ51LxNXcS72P86PeFpb7yWSHI9vw2CPBSZsztB43K86JrYvBT6mjsx5+08/ZH3PB3ZhDyHlgq9T4N2vOabjTr4cCs8K2W6vO64KDxdl3o9nYz0uYSHojtlsZk9h2+jO6KEEr1p0xq84z7XPCnxuTxrRxs8dP+dPF+6sLxnTAG9GhvnuhDYGTyouHc8xKODPGgkZTvG8Jw7C1UxvANPYLzkUXC8Q0RaPOc58bv690Q8ifa8OgNi+Tu+EH47Lv/sPIFRU73QbWq8KgRTPY6gDL3yARE95J8+PbYaSj3B+H49e+I4vb9xZT2mf6w8MEkKvCzGIT3Zc7s92uc7vWDz+zwwSYq754c/vXJ4BL27/pm7yIpPPM+oHzvAM7Q8r+ngPJMPJz2F+6I8A8NgPDRrCz12JdC7dpoFPZU1WbzjjCW9JDRRPLBKSLzjKz69LU07PbxLM71Rpqy86W/AO/gi3buLHG89LU07PEeg27wEOJY8f/BrvM5bhj0atwM72SXtPKvbLTtTexS8Mr2KO5kwc7tvVc47E60BPelvQDwAeng8CjL7vP3fxbuzMsm8XkYwPcTg/7sVv2W9HyYePUxxkrtI7qk7kzaOPNklbTwUmbO8/PMTvcTg/zxPH5M8pdD2PFPMXj3K67Y7doa3OyjLhz2lbJO8+IPEPCdqoLy3ezG6FiBNO1YplbwqeYi8uEB8vPhwK70lHYe8PcImPNae07tlijI8iNCKvOfopjqdjPS8HGUEveOMpbwUS2W99w9EvJ15W7yqLHg8Sif1OtY9bLz7uZM7j8Y+ulperzy0uhc9tKZJPOUAJr1EV/O8+NGSu8YXBL3f9e47IjUGvecmWD2mkkW9KMsHvQ22mDzfkQs9Sif1OwhaF7xdl3o8WInHvGXYgLu6FWQ9odVcvRT6Gr1a/Uc9LCcJvWzigjxBRY89yp3ou+wxDzqtFPk8dw4GvblQmT1UQN87JDTROvkLkzy3ezG8Z/4yuloQ4Ty5Ass8eW44vH23IL0FJMi7O04mPU8yLLw3t+88rsMuPe4Jczt+KyG90AkHvZnfqDr/U8a8aCTlPMMIHD2577E7DtxKvOwxj7vnJli80AmHOqel3rr1rtw61AQhPZ+cETvYsWy9pn8svfg1drxXx3i7IvsFvdQrCD3DzWa7E+r9PGv5TD2MkO86JeOGPEFFj7x9tyC8A7BHOZaWwLwbyhw9OtolPAQ4lrozW+68aTf+vNxIIz29mQE84j+MOy7/bDblYQ09S9YqPKi4d73WPew7hfuiPLUHsTyBUdO8rWLHvM/PBr3q9468PGG/PB4TBT27KH270BwgvUxKK7121AU7e5TqPPcPxLy6ipm8Lk27uZBOjbvCWWa8hlyKvL395Dz/tK27A7BHPZqkcz0kR+o8in6LvIITor2x0pa82+e7uzzpjbwU5wG9a6gCPKxPLj0tYYk9iOOjvHHJzrxmT308WyP6vI6gDL1jtUq8CAxJPBfiG7zSQtI8nMcpPZL8Db1eWUm7K7OIPEUGKTxPH5O8rWJHvVPM3rxiVOO7c562Ou4Jc7s2Q+88nu1bvWhyM7zezzy9kOxwPKvbrTmsAWA96m/AvKLodT3930W9V3YuvK43L7t2OGm7ZTzkOzQKJL0yliM9hJq7O3rPH7tHjcK8in4LvV5tFzzC9YK8doa3vOc58Tt5W5+8gVHTO+zjwD3ZwQm9NX4kPJe8crz/BXg9aHKzvFLf97wQxYC8JfafPWf+srtjtUo7LezTvGtHG72sFHm8LexTu4n2PDshmh49sV3hvL4QfrvA0ky86lwnO/M7kbwPPTK6o5ervIlEizy5PYC7ksFYvNhgIrxVoUa8ZBYyvSmj67tuQjU84z7XvHIqNr0mVwc9CpNiu3Sxz7vE3QM8H02FPNEvubt9aVK9QUWPPHUStzuW9ye8SnVDvbqxgLuTDye8jT8lvcvnhb3X7CG75QAmPHHJzrxznjY78xQqPWgkZbmROj+71AQhPBzwzjykqkS7zdM3PCVH6r2kvd26+ZbdOgkf4jxfbOK7eVsfPOOzDL0REho7kNlXO06+KzxiAxm8HD6dPJDZVzzYhwm7KT8IveOMpTznOXG8wwgcvfau3DzG8Jw7POkNvTnHDDwi+wU8a0ebvKVsk7y8/pk5h5VVvNBtartEV/M7bRwDvdhzOzzDuk29LWEJOx/YTz1vVc48F+IbPWPIY7zr9w66p+CTO6aSxTzcqQo8fbcgO3BoZ729SzM7tmiYPRT6Gr0kqYa9YqKxORACfTv5lt26JJU4ujDU1Dz/tK07/GvFPDV+JLy5dwA9PcImvT5djrzfV4u9FPqaPNnBib06jNc72cEJvewxj7zez7y4H8U2vM+on70JH2I8KH25PAxVsbw3GQy9tEViPMMvAz0MB+M8fEMgPcO6zbzKOQW8uQLLO3AEhDmMLAw9Kd6gPHOetjzAIJu9AjxHvHE+BDyGDrw8fEMgvccWTzy9cpo7OtqlvJGIDbxJYiq9yxHpvGy7G71Xx3i9Mr2KPIjQirwYRn+8ANtfPKi497t4rOm8GPW0PDl5vrw5x4y87WuPvFYCLjwi0+k8EJ6ZPMrrNj0SJTM9pqYTPQ9kGbx9aVK9u+sAvP5ALTrjjCW8/GvFPIFR07z/tC28jQRwvE0Pdr1xyU69kw+nOmgk5bul0Pa8y60FvcR8HDueYpE8V52VPCIhuD3tpQ+8sPx5vaxPrrzPWtE8+eQrPM3TtzyI0Iq9XlnJPCL7hb0fxTa8uBYZOwHueDvA+H685znxvOcm2LovYNS8gVHTPEz83DwH+a88Dj0yPL39ZL0aaTU9/1PGvIYOPD0RsbK8oNYRPeIYJb0+6Ni8WyP6vKCvKjssxiG8EiUzvDyvDbpFBqm7vDiavBaVgru764C8N/IkPceLBLzlJw06dGAFPSoEUzzbme072P86vSWVuDzA0kw9ixzvO0HjcryDdIk9xOD/PIg07jzcqYo8+3+TPHaGNzxsDOY8gZ8hPUc/9DpZ6q68/vJePCWVuDtkyOO8Fm6bvN/i1Ts/ScA7ghMiPcpfN7ygI6u7D2QZvLSTMDxJiRE9eEiGvRFjZD2oBsa6b/Tmu2QWMr02pFa8gZ+hvB/Ftrtxyc673byju3/wa7zELs65+1isu97PPLxQMiy92SXtvA/v4zw2kb29SnXDPJcKQb27xBk8zkc4PSXjBjuMLIw8OI0MPZ3aQrymksW8taZJPYt91jyINO48LHhTvbVY+7xd5ci8N1MMPccWzzzOR7i8v3FlvZqkczs8E3E7ZGSAvEzpQzyTcA499q7cPLPkerwr9148kI3ZOm8ZF7149wg6lbhLvDPwJ72TFIS8plONPet7kLuYhqI7j8lSvVSfgL3Ix8+8DtX7vF1+1TwLiAS9CCL8vHwHJL1+bg880aVBvCv3Xr17ZD88Ln6Ju2JS97rEe7s8pOyhvDpGjDy0BaE6p1lYPfS86LsiGIq8RawLvS+kk72x+9C88/jhu4H2HD2l8mw8LHmhvNInBL3cLOM8r5TlOzzvOzz6Ek08XZ/3PLUmQzz2RPY40aVBvICV/DucTxG9frDTvCcHA7zjooa75emyPFbmrLyHjkW9sp61O2DJhr1n3om7s2I8vVhuurydlj27AqoSPWjk1DymtZC8LboCveucsjyBOOG8/ViWPGsw6byhhTY8WxYHPMFQST0oiqi8/j2/vLG5DL2vc8M7qZ8hvXTtOLwXcSk8frBTPcyVJrts9G880MCYuuu9VLyU0yK89T6rPPS8aLyg4lE9TQg7PBdxKb2L2tm8yKYtvX0Nb7zL8sG8VihxOBAbxbzg2Re8XmP+OjYbGrw9s8K8aWaXvKJJPbypwEM9MzLsvLfP8rqeeoO85q05PBJhDr0uIlE8KW/RvMyVpjwAhAg9I7zRPLr6ZDzq+c27nNI2vMZfgbr1Pqs6ka0YPVfrlDzqGY27r3PDOj5Wpz1kd548g10IPfBPMjz1gO885s5bPWFMLLz3CH28Gz8AuslqtDzi32K9fezMPGjDsrxf5UC8GFbSu5lKqTy3zg89PndJvVUBhDzZv6w95EbOPBGdB7y3z3I9SPifvXNKVD12VCS9jsOHvOKdHr2NYuc82DwHvIEXvztAvRK9LV5KvJsvUj3LE+S7ENkAvdY3H700tC48LHkhPFUipjygA/S79YBvOwccsTx7ZL+87STAOwCEiD3xE7m8NyHlvH4MDD34aZ26RzQZvDFomrz5Tka7TsxBPajbmj2raXM8wXCIPPWA77znUJ47IJHfvMfiprzVERU8lZ30PMEvJz2yfRO9EDxnu1L9/jvXPeo8ITTEO9rElLx4GCs8h45FPCoSNj0avT29L+ZXu1R/wTwu4Aw9ePcIPNtHOr1wH+I8RQ6PuKc4Njul8uw81NCzPOyB27zoVum8zBKBPKECEToJxWA85emyvURKCL0qEja96hpwvXNr9jzZngq8l8KbvFE5+Du3rtC8h0wBvEXNrbwuIlE8Njy8PEg6ZLzMlSa9w5YSPYevZzuHbaM8sdouvO0kwLz893U8PM4ZOhUrYLzz+GE9ColnPNKKajqxVwk9LhwGPBk6mL1tl9Q8bbh2vfhpnTvHJGs8Z0ANuyjM7DzaYhG919oDvYo39Ts+04E8AKUqPe+szbxeQty8TsxBPUQJpz2U2W08yMdPupSXKbxj1Dm9caEkvJfjvTz9eTg9c2t2vC4cBjzqGvA8TGXWvMmLVjsbYCI9WvbHPO+LqzsYdpG8Ammxu1EY1ry4kpY8RQ4Pum2XVD3AreS8EDznOhXOxD01uvk8uRU8PZCu+zzC8y09ENmAvJZh+zzvCAa9E2dZvcEOBbtdPJE83zazvM5feDuT06K9JIBYPVUiJjwO1Xu98lV9PBWtojz1fwy+sBaovAPxvjzivkC642GlPLVH5TupwMM7wWugvUm8Jr3inR69oYW2vYEXP73jYSW7HQnSPLG5DLmnWdi8VicOvCbGIT3QI/88iRAIvccDSbsiGW29I7xRPdkB8buvlGW8sfvQvBk7+7uxVwk9ivWwO5sv0rwGmYu9e2S/vOatubtGsla851CeOg82nDzbaNy8dO24O3uF4TyvUqE7gtvFPBeSyzsyTUO6zdYHO6pjqL13lQU6pdHKPFLcXD2VWzC9UHXxvGf/Kz03AEM7hMBuPF1+1TulsCi974urO1rVJT2DwO49njmivBQKvrzMtsi8RCrJvHA6uTtLwvG8A/E+u5V80rzvze88hSdaPAxMCz3MlSa9ITREvMwSAT3X+6W8AeYLPUXuz7yXwps8G4FEvUGBGb0uAa+8fm6PvV8GY704o6c8EBtFPENFoDzL8sE8pOwhPeOCxzs/l4g8CcVgPO+sTT7ncUA9VF4fPJhlAD0JpL474BtcvVHWkTt5HvY8hUj8PAvqB70oy4m7IE+bu3ke9jy7+QG9lh+3O1fLVT2gA/S81PHVOXTtOD1kd568CkcjPXtkv7w87zs9qFlYPHwHJL0r9946iK4EPUQJp7yvlGW87sekvE9vJrvx8ha8r5OCvHtkP7zHJOs8VQGEPYEXv7tOzEE8QL2SPR6LFL0LTe68F5LLOlpSAD03IWW8xyMIPYL7BD3eciy80cZjvCoSNryK9bA8P5eIPLfOjzwavb07Tu1jPJBstzwXksu8OmeuvDch5buZSim8j+p0vD53STw7TNc7jFycPBtgIrwF1QS98RM5utWUOj3MEgG9ZLliPRA8Zz07KzU8aktAPfhpHbxvGRc9ZlzHPPBPMjztJEA972qJPe6mgrr5ij88tsmnO11dM71X65S83s9HPJfCGz18Seg6PtMBPDa5ljyxHPM81fHVPPU+qzyMnmA8F7KKvGR3njvzth29UJBIvbODXjtatIO8HCSpvDS0Lj3ek069q6SJPClOrzwAhIi8+U7GPaWPhjwVzkS9005xvCFV5rxS3Nw8HAOHugde9TxaUoA7h20jvISEdbzo84K7OIIFuzGq3jwgT5u8HGZtPH7R9bwPV768Y7MXvYva2Tzm7/08zdaHvZ11Gz0oq0o8Uv3+u4rUjjuGqRw7T04EvDzOGTzXHEg9TIb4PLfOjzzcC0E9KKtKPCVEX7siGIo9sBYovYH2HD091OS8S8JxvVrVpTzz+OG8eqA4vGDJhrzHJGu7LboCver5TTxw3R28PZIgPUj4HzttuHa8yy47vVSfgLxWB8+8utlCvf49v7wTYY66zBNkvICUmTyFSPw7mGWAPC5eyjrwzIw8gJV8PJlKKT3zth29zl/4O45hBLx8KMa8dC/9ujS0rrzC8608kGw3vSVEX7ycFHs8Gr29PHxJaLsg7no8mGAYvHZUpLyEY1M7mKdEPS7gjL1zKbK8FOmbPcFQyTtSmhg9Y1GUPew/l7wW72a8eR72PEr9h7sBaTE9gttFvKFkFDx8SWi8+Iq/vHp/Fj3C8608hEKxPIPAbrvKcP+8wvMtvcpPXT0Apao8EqNSPdZYwTw+Vqe8i/oYvdzqHr3cC8G8QP9WvQjgNz1eQtw8VmTqu3KGzbxuVZA8npY9vH0Nb7z+HB29wIxCvQXW5zwfrLY8zZtxvUm8Jr3XHMg7Mk3DuzIsITwdKvQ8urigOnHCRjyVnBE9kg+cO+xguTxutxM8GBQOu47kKTzCNfK842GlPF/EHj11sb+8TuyAvNKKar0u4Aw9XV0zvHXSYbxDZkI85owXPaDiUTxES+u8fCjGvJxPET1dnhQ9nPNYPHRqE739mtq85ASKvHGhJD1+j7E8HSp0vIRCsbspkPO8/+CjO+0kwDzbaFy8ZJjAulkywbli75C8E2dZvGKNDbymldG7REqIvPz2Ej0xqt47nNI2PHNrdrxGkTS9ujZeuzcAw7wnBwO9XX5Vvdc96jseixQ9UdaRPfGQk7xbmSy9LiJRvCFV5ry8gvK82QHxvDJNwzzC0gs8XmN+PFuZrDyVnBG9fcuqvDT1DzzRhJ88T28mvPAuEL36bgW9G4FEPKh5Fz1G0/g76FZpPRxm7bySML68j6gwvdDhOjxa1aW8oigbPZ/9KL0f7no9+Io/vQZYqrzlCtW80OG6vOdQHrxoBXe9zddqPM16z7wgkd87692TPJtQdLtiUve8+KthvG12srw/Gi49e0MdvS5+CT09s8I9T2+mvCiryrsMro47cqdvPR1lCrpIOuS7en8WvYLbxT0vB3q8Ko8QPSiKqDsseSG9V4kRPF4AGLyQbDe8h47FPJR2B7yQ6RE88RO5vMU/wjwzEcq8yy67uwJv/LsD0Jw8s2K8vGz077xatAO9MWgavf49P73wTzK9fcuqPAItuLsavT295CWsOou5tzqf/ai8C2hFPGoqnjyEIQ86/hwdvW5VkDyGyj47eR2TOova2bzoFKW8TIZ4O60MWLt2dUa9qNuaPBuBxDyc0ja9LV7KPMoNGT1yZSu89+davE6rHzwLJgG6ddLhOnHCRjxZMsG9tUfluwvqh7sRvqk8DK4OvccDybwA5248eFkMvQGKUzwjeo07oAN0PAFpsbn60Ig7mceDPMpP3bsvxbU7u75ru5GtGL3RhJ8889c/uyPd87yfHks7GTt7PAItODvX2gM9Ev8KO63KE7ymlVE9HSr0u0d2Xb0vAS+8wzQPvUqALbtSuzo9uHLXO2FtzjytLXq8hSfavK9SobzupoI8OKMnOiBwPbmyGxC9vL0Iu0+xaj1Bw128/l5hvRRGN7xc2g28ZyBOun0N77rKT908kGy3OhnYFLv3RPa6hkeZPHaWaL3FHiC9yYvWvAgi/LvV8VW9xR4gOnTMFr3H4ia97ujGux0J0rynWdi8SoAtPcsuu7wS/4q8OOXrvDY8vDuyfRM9yg2ZPOu9VD2XBOC887YdvEmbBLxt8wy7Z0ANPeg1xzraxXc8YzHVvZ45Ijxn/ys86dgrPRg1ML1xoSQ9BxyxvJVbMLoD0By8pA1EvacXlDx9qgi9jiZuvQW1RT1r7iS9njkivW8ZFzsYNbC8d5UFPM04Cz16wdq865yyu4za2TspTi897UViPWzTzbl2lmg9DRASPenYqzyYyOa8K7UavUaRtLwei5Q84Pq5Oqtpc7uPqDC95Gfwu0n+ar1kuWK9lLjLvJ5axLzsYDm8mw6wO85feL3/4CO8w9jWOhhW0jwFlKM98TRbvLD1hb3MEgE8zTgLPdNNDj3CFNA82DyHvX0NbzwKiWe9MiwhvUm8Jjx/MpY8NJOMvFH3M720BSE9Y1EUveOCRz35LaQ8dZAdPR0J0jnsYDm91BJ4PbAWKLyHr2c9rGgQvby9CD0bgUS9F+6DvFUBhLzoFCU9Nbr5u5S4S73OHTQ83pPOPLq4oDreUQq8CYOcvGyyqzzftPC8UFTPvDzvOz0ozGy8IVQDPUk5Ab03AMM82QHxPKCgjTyQjVm8/yEFPXOmDDwZGlk87sekPINdCD1o5NQ8rSwXPU9vJj07ChM6c0pUvBDZALqB9pw78lV9vDMxibx7Qx08hEIxPENmwjxvW9u7IvjKujsrtbu7nUk8W5ksPdDAGL2HjkU9HWWKOgZ5TLzlClW90MCYu14AGL0I4Dc8AIQIvJTYijw1mde8oAP0O4x9vrtpyX08uHJXvIx9Pr0kofo8KGmGvUqhzzzZ4M68Lwf6O6DBLzzBDgU8xL3/PJIPnDzfePe83AtBvERKiD3I6PG7S8LxO67QXrw9kqC8AqoSvZtPETyp4eW8ppXRO/lv6Lyq4II7VicOPfkMAr1fBYA8GBQOPB3orzyee+Y2M8n7u1dgNTvBU7+8GkvMuy+gUrzvYcC8yQEevQPNnD00JYg8Smhsu5EgSb0DzZy9zBRxvFY7wLskBBa8G1a3u1yu07y/I9+8FzqTvNfnxDy1gGu8+yLyPK89ODy65F88QeY5PW7EWrxKfsI81LGWOubYVj2d91C8aoVbvLaadbzCm4+9YjMJvWdV+zw1E+Y8wWJevCpLfbw3TjG9zBTxPNJterwoPN47QRQAPK8yzbzVszA8giRMO+Fp97sAqKc89g2FvbRxzLxWaQa8KmHTPPXqqTyVmhO7/Ednva8n4jvUnVq9LbQOvckBnr1UC2C84XTiuhYB4jwMOfk7escOvb3zfrwXIiM9WVn+vHd9pDuarea8e9atO0/XyzyvMs08CkAwvGHX/LuXiHG8SG+jPBKoWLx+ExO8LbSOO+08Sz2DVKy7HaAhPO9w37ySaBm8/o0dvWMdMz2TSXK8Xt4zPbj2gTwJH++8A80cvb4uSr3XCIa8JRM1vWZGXDxTFsu8X8hdvGDt0jsIMRG8ZlFHvQGSUTylroC8qwkkPS2RM72FkZE8pF95PGIonjz/YfG83m4UPXRuBbwzABM9tHHMPNwQbjyxYq08ghnhvPot3bzEwIS8nP6HPFEHrDwqd6m7EdSEuEILrzz4J489TbJWO8CBBT2fHMa8ydVxPasUjz0Anby7zDUyvIEO9rvtXQw9m9JbvdbNujw9vRA7prCavDUT5jyTX0g9czM6Pe+GtbwvwZM71J1aPcz6ZjyyeAO8fuVMPZ0Np73Cmw89Nik8vU3eArt1TUS9bcTaPPTbirt9z3Y6P6tuvIZy6rxs44E9kST9O9jyL70utii9sBz3PByRgjyJjPS8mvGCPPKV1Dx4opk89K9eO2yq0LwG61o9kTpTvWd2PL300B89xJ2pvN1WpLoG4O+85b7MO4/l/TxrqlA9m+aXPHqxuLtLmEy8AcsCPBCD47yiRe+6jzSFvO5sKz1EO489Rj9DvDMNmLxpm7E8ZVqYPLewS7zUqMW8Ch9vPEuYzDtLozc9BzERvWvApjsX9na4wXi0PNovlbwg3Ya8k3MEvCgx8zwPjs48jAILPG/0OrwpUJq8Xt6zvCUeIDzvd5Y6hpMrPDloO73343K9g0lBve1Htr2HZ389XMSpPAtaOr3TmaY8SXqOvI4Gv7wBs5I8X+mePLOHIj3zukk9+h4+vRKoWD0tcHI8Nh5RvDDQsryM9YW8/o0dPbSfkjxEJbm8JQhKPZAK87tHNFg8O5gbPejn9TuGkRG9p5rEOyx73bxlO/G5KDzePK0N2LueJZc8qtnDOx2KS730ukm87Ee2vDYpPD0Of6+7J0OVvEIJFT0y8409k4AJPEIWmjy465a8jvtTvO9W1TsnOCo8mMwNPOTJN7ySJH08jga/PDuCxbzm+Ze8BQwcPYQ+1jyiRW+8a5T6u74jX7y6BSG9kBXevMWWcrw0DzI9kEGKvFvCD7ygNlA91dYLPT7VgDwdiks8dG6FPcrrx7t7vKO8BQExvV3cGb1j/PE631pYvAX/FjwkBJa8CUmBve+RID1YayA8yhmOvUPq7Tzjjmw8yhkOvqrZw7xbid48CSravOYEgzw9sIs8I+4/PNrreL2wYBO9w4dTvcahXb244Cu9FAgZvYAKwjz1vv07UwB1O279C73W4xA9tsahPKJF77wmNpC8MNudvPPFND2OHBW8jhGqvJWPKLww2507hpMrPQ5ebrsfr0C8K4+ZvZ33ULs9vZC7eKKZPClStDvhafc8yLD8vHAvBjx7vKM8epD3O9xUijygQbs8LHDyvOXfDbzud5a9qLTOPKWugDwWLY48P9WAvdSzML1HNFg8kBXevDywi7ooPF48SGQ4vQ+ZOTzdNeM83FSKPfo4yDptz0W8UfFVvWADqbwAnbw7A80cvav+uDuPNAW9ELyUPavzzTzxoD89WIUqvS62KDqNDxA8nOF6vJvdRj1jQqg7niexPLj2gbwnOCq9pqUvvJWNjr36OMi87myrPGmF2zwRvi49S6O3PMvv+zyO8Oi5SHoOO2hVezza9mM+I81+PTZXgjyJ0JA7wEjUPHNWlb0E8hG7UioHPRcXOLxzVhW93mEPvUh6jrs2HtE8PbIlvcwfXDyotE49DZWFOcjcqDsccEE91s26vACSUT2RFd67DpUFPVyj6DvdViS9cBkwPO+RID1dub68fdrhOZ4R27ufHMa8p4Ruu279C7wQePi8yQEePcoMiT1yPiW68qC/vBYXuD3yf/68PpHku27/JbwMiAA9PJgbvDYpPLwKY4s8uvq1vAUMHL3APWm8583rO+TUojoWAWI8KXWPu3u8IzzV1gs9xMAEvdOxlryHtoa81MmGvCQcBjzAaRW8WrUKPK8yTTsX9va8aqYcvYI6ojuM4Uk9hlhgvdtHBT2CDvY8tJbBPEh6jj2OBj+9BNFQPfo4yDwSqNg89r59PWAOlD00DzK8HHssOm7pT7yXv4i9T+sHvbjrljwX9vY8dELZPDX5WzsHMRE9JNjpPE7ILD2L6AA8JRO1PHiXrrw7jTA8eIHYvNBpxrygVxE8Fxe4vP5s3LzSeOU8PsqVvQLCsbzXCIY8w6gUPd+GhD3X/Ro91s26uy62KLzfWti8aqYcPT2yJbrAaZU87Sb1Oxgxwrx6pk07/YCYPMn2Mry0nxI8LXDyuyUpC7y8FEC9XLm+O+YEA70GFwc9ZGWDPOGVI72GWOA8ODhbuzhxDDw7jbA8V2A1PK4CbbxQ+Iw8WW/UPCuPGT3we0o9rSMuPVYa/7qKx7+8SpQYPYi4IL1jB108xZZyvMFTv7wR4Yk8rS6Zu70fq7wf0IG8uuTfvI4RqryCOqI7ZkZcvHq8Iz20gGu7Ma9xum/0Or2zfLe8pqOVOiLUtbzZFyW8EqhYO23PRTwVIIk8Ngh7PMz6ZjxXdgu87kD/PCdOADyb3UY9nhFbvR+vwDv/gjK8xJ0pvTdZnLsBsxK9z32CuxlfCL25A4e8mcO8uxCvDz1FSJQ8IcnKO9JtejyHiMC8czO6PPKVVD23mnW9lrIDvYjDCz1mfw28HaChPFESlz1qenC7hp6WvPpMhD0UEwS9nhFbPb45NbuFhAw9YyxSPGy1uzqfPYc8sEgjPdKXDDy+ObW81MkGvR1l1rw2VwI9g1Ssu1hK3zxpmzE9olDaO/HBAL2ACsK8SFlNvTXucL20cUw9BuBvPAUMnLyvJ+K888U0PDdZHL3cEO674nTiPKie+LyROlM9rz04PN5hD72zW/a8GkBhvIZ91bs+keS7zPrmPATcu7w+p7o8isc/PYzLc7voHg09s1v2u0HmOTwAh2Y7QwBEvVhroDy6+rU8fyAYvPxdPTqNy/O8MK/xPFdVyjygNlC8xbezO9BpxjxpsQc9vSoWvaeP2by5v+o8KoKUu5WaEzwXIiM5Vz90vVESF73HsHw8mq1mPM85Zrwy9Se9nQ0nvaWuAD2hZBY9I/kqu6FMprwce6w7/o2dO7fekbxco+g7dGMau27EWrsk2Gk9Jwz+O4Zy6jxu2rC8Jf1evSDFFjwbQGG7i7xUOfCpEL1A2848TdMXPWEbmT2Vjyi8oUwmvbShLLzBU7+8lFRdvKn6hLwX9vY8zPrmvOkrEj3Rige8j/DovAYBsbt7vCM8zk88PEqJLbxLgva81+dEvQS7ercrd6k8gTqivC1wcj1rtbu8Yx2zvChdH72FkRE8lHUevF+98jxe3rO8hljgPBt5Er3Uvhs8/Ufnu7jK1bxaqp+79QAAveOO7DzqLay8Ff0tvC62KLxanzS8SYeTu57s5bzxqyq9WIUqPM0qx7x4gdg8qMiKPc1Anbz/YfG7S5hMvPcPnz1Xdgu8P+KFu+W+TLxs2JY9/o2dvHAvBj0pUjS8nhHbvJ4yHDtP18s7pqUvvEqUGD3xwYC8YAMpvK8n4ryp75k88X/+uyK+3zrFwp68wIEFPZOACbwpR8m8H7gRvEqJLb3Tg1C9s2bhvChStDxxPAs8AcAXvcjRvTx7wFc8BNFQu1Uw1TzIsPw80H8cvEDvCr1t5Zs846+tu8wQvbzgexm93VakvBUgibsU8sK8mq1mvQcQ0Dwwxcc5XM8Uvdf9mrvRlww9UvFVPEh6jjvZIpC8irzUuvoT07wbS0w7Ye3SvR6VNrwy9Se8Tb1BPPGrqrxatYq8FBOEvPxdPbwDofA7wpuPvHuQ97qgQbu7N0PGO2NNEzzn7qy8kUW+PE/B9bxafvO8hpERPQyIALy1gGu9vBRAuZ330Lt0WC889gKauzQanTuHiEC8KTxeONkXJbtzMzq9Id8gurF4g73bJkS8gBWtPUUazjwV51c9BevavFLxVTxMgvY6ZWedPGVnnTyzhyI8X73yvDCv8TuoyIo90H8cvGMdM71TFsu6Lqu9vGRamDtu0/k7bv8lPRf2drx/9Gs6dmdOvMxAHT1N0xe9loS9vIWEjLwm8nM8qb+5vesMa7oFAbG8PZxPvf+CMjx7kHe8NT+Svf6NHT0UCBk7NCUIvKFMJr1v6c87z32CO+YEgzw9vRA9hnJqvJrOpzu0ZmE8QLbZu3ZyuTx/9Gs7dGGAOwLAl70bYSI6nQ2nu43stLoqbL688baVPGISSDwlKQu7nhHbPE7ILL0oXZ+6GktMvNGXjL0PmTk9QgDEvDUT5rxNyKw75NSivMGDHztTAPU8UQcsvSycHr2HZ3+8BzGRO5NfSD2xTFc77mFAPVVcgTwmNpA8S4mtvHvLQr0zAJO8XKPou/kpKTwtcHK8mq1mvP9h8bxIb6O8gDiIvWyq0LxafnO8J04APFdVyrtqenC970vqO2NCqLwF0VA87o+GPQhJgbxry5G9jMvzu/f5SD1A0OM8Wp+0PM1Yjb0+hnk8qMqkvQlLm7w6ixY9BQycPBgxwrvEcf28ueCrPKWAOr3m+Rc989CfO1QL4DzY8i88wmJeveWzYT2eBnC4QwDEPaWLJbzNWA09ZUbcvHZyubuK3RW8sW2YvFhKXzz4Jw+9ugUhvDyYGzsTzU28byIBOzYeUbyUSfI8H69AvNbjELzjmVc9GCZXO1qftDzNKse6vhj0PD2ypTxwJJs8vUIGvVMWSz33Ggo8D6SkPJ49Bz37InI8EuOjO4/l/TzUyQY9G0BhO7JXQrs0Gh087V2MPMGDH7xXg5C85s3rPOGKODx0N+48LqDSvFREETzz2wq9wYMfPWL88TyYiHG9fQaOPQYkjDyRIMm8WFVKvbAnYryp7xm9lXlSvN+GhLzJ9rK6e5B3vO5qEbz6LV08RBpOPNXWC70vivy8QNDjPLBgk70Rvq675uNBvcs+Az3BeDQ98YrpvCG+3zzVkm89vk8LvaBBO72FY0s9HZECPTLU5jzJ9jK9aKQCvcj/A714l647vi5KOrbRjLs3TrG76gzrO549Bz3nzes6tIvWO81AnTxUC+C5H7qrvPY4Azw7Bic9VIfdvCFivrzgcfK8xW8tvSUQaL0CvDg9cc8GPUOsBL1o1TW9+JRMvc9CpjziGdm87egrujo36DsBORe8cVS7PAvnSryeSiI7eaalvC7jYDvv5AU9brD6u5KgFDvcw0i8XVpWPf8X+LubH5o6diWXvaJxhLu09lY7l33svWiBQr2Znou8WCmLvE8AjL0qBgm7BWIMvQjr8DxyLWO8E2ZQu415sjw7Whq9bP6qPKqeKb1BBJ68oh2ROrr0zbynTly7bgTuPCcxhzwMjzE9Rga7vHeDc73Kxb27hfiZveARA72M0Uu9nfauvBePxTwFPUc9/rkbvbHwkzyATpa5XFKAPU/dWT0s3Z07lcscvXzPmrscDK48KQicPQe+VTzmG3Y7MtsUPK9vhTy8Iem87sHTvBdglzuXc4M9q0YQvJhKGDs4MSU7COtwPFJ/B711fTA8vHVculdc37w4MSW7BRbvO+nmDrz1v0q87zoMvQEU0rzxEaG7aFABPG4E7rxvWOE8NI1kvCS89LqW+Dc8JRBouTQIsDuM0Uu9QOHrvPFC4riC/lI8tcMCvZXLHD3tGe07wporPX2owrsXtAo9cABIPYNSRr3M8ti8IWK+vC831LpNieY8M2DJuwGPHbxhUoo9yxmxPFuoBrvRPgC7qMcUvaWm9bribcy7kyM2vGvbeDwRYI28K7prvMPunr16+IU8y0pyvD5gXTwnDEI897skPKOgMjz2mPK8BOnTuKiiT7t+UKk7jarzvHhSMj2Ud6m9Kw7fPCAzkLtl0YU8aIFCPMkdV7l9zYe8AmhFPVte/Lwl3ya8Ytc+PYt9WLzwvS296fD3vN0XvDtU29A8K7rrvHCsVLuKpLA7vcnPPPxCdjuuTNM57jwfPcTsC71IrA683r8iPYJ5njy0z369eX/NO1lYubwnYDU9itVxPbDNYTwyMZs89Y6JvLdEEb228jC9bVKevMEXCr1uUAs9HzWjPQjrcDtlhei840Z0O+2UuDzqv7Y8lqTEvORppjwgDss8tnflPAtsf70MFOY8kE60PJqm4Tsvsh+7DhDAvCVk2zycxwA9tvKwPLDN4Tu3mhc9AxCsvEUtk7ybdaA8HQobvDVcI7zPx1q9EAyavCHdib3ubWC9IWI+PcNzUzvkaaa8FLrDu11aVrwkvPS8v8WpPGL8gzvLSnI9XdUhPek6gr2Cqt88oscKux4S8TvgZwk9foFqPPJvfby/St48hU6gvHZW2DuwnCC91uoWPKgbCD15K1q890DZvK343zxA14K85b2ZO5/yCDy+mI68p05cPaXyEj1aMWG8S+H/vDAQfL083049RbJHu1W0eLwo5Wk9vHVcPSzdHb2KpDC8iCMiPI0lP7w+YN283MNIPJakxDx7J7Q6ADuqPP3qXLxmVKe8+2nOvCUQ6Dk5XsA8C2CDPJ/yiDxTrrW8w3PTPMHBAzx/1V07BzmhO2R9kry8IWk8VbT4PFwtuzztGW08rKRsvHSkiDy8nLQ7SVaIvCzdnb2/xam9JRDoOyRchbvQlhk9cqiuvF8CPb27zfU8OS8SPd5rr7w4tlk9lcscPHn6GL6pz+q8o6AyPYFWbLwu42A7TNWDuScxBzx0TgK9qUo2u92ccLyIVOO885KvvEGwKr1cBmO6k1T3O3xUT7y5oNo7+TwzPY15sj052Yu72e7GuzMviDuspOw8NAiwvJD6wLwa3xK7MgzWvOsRl7tbVBO9ZazAvMVvLb2d9i46IJN/u8mYoruNSgS8EWr2PKlKtjwvN9S700RDPJJKjrqCeR49XAZjPYqksLzCy2w8AmjFvBA92zxHriG8zu6yPBUOt7zETPu8XAZjPelrw7wFwvu7S4EQPO3oK70AwN469UR/PcX0YT2Vy5y89+zlO5ohrbyoos+8bn85PYIjmLyb+tS8HuEvvZUfEDy6GRM9RS2TPHYCZbwq4UM9GbzgOaucFrwgiZY88UJivMTHRj3T8E+9ZtnbvNQTgj26b5m9FrYdvBs97zzsu5C8oky/PDyujbsI63A77jwfvQGPnbzXbbg8bINfPm38Fz1U21A89jgDvDTZgTyaIS29mCVTvLtIwTxsg9+8HzUjvSFiPr3aQjq8lKhqPWKw5joP6ee8ZtnbPNBvwbrT8M88T6qFPNzojbylpnU8kyM2vHfPED2Dd4s4ynHKvIACeb2Ddwu7MLCMPMsZMTux+ny8Ytc+vOPmhLwoOd07HggIvXSkCDwFPUc98UJiu73JT7yTIzY9Jd+mO5NUdzsWYio8SFgbPPLqyLs5Cs06Z1IUPNyUmjxjfyW9fajCvF+H8TwaZEe9o9HzO4X4mbyfI8q73ZxwPJglU738EbW79+zlO8/H2jtSf4e8VVQJvKZ1NDzK7BU9SDPWvNjBK72Udym9pnW0uxho7bw+2yg9Ejm1PL4dQz2uJXs8yZgivScMQj3r7FE9W9lHPFxSADxIWJs9ZlSnvOwRF7zUyXe84ZQkvK9vBbwki7M7dCk9PBxgoTxhg0s9LTv6PCCJljwiCqU7Er5pvOq/tjyGTA09hqx8PJgl07m1GQk8gSWrPK1zq7yHezu8GOO4PNpze71IDP68qHt3u9yUmrwsYlI9DI+xPC2FBLz3u6Q7KgYJPbOiYz0VDje7g80RvNaUkDw2BIq7uJiEPE1YpTwlEOg8qp4pPQiLgbuNSoQ9O4vbO3OB1rv/ksO6uxcAvB2+/TxcUoC9js2lPIkhj7wR5cG79pjyOtcZRTyYJdO8PmBdvKL4Sz1+d4E9V1zfPODsPT09DOo8gnkevF8ngjlcLTu9blCLPKPR87wCQW29gUyDupOeAbkL50o7I+PMOwJoRb1Niea8M4UOPYqkMD2spGw9h6AAvUtcy7yeJ3C9AmjFu6/0ObzRSOm8agJROe86DD1+geo8k1T3ujfdsTxE2Z88lXUWPJb4tzxrL2w9ilA9Pf1lKLyMTJc9NAiwO1qFVLzzkq+75pZBvXKorrzVQB29pSHBvEvXFr1fVjA9gAL5PK343zx0TgK81575PGdSFDs+2yi6dKQIvHpY9bxIM1Y9gE6WvIV/4TqfI8o9RgY7vA03mLznPqg9X1awO+a7Bj2GrHw8nNP8PBxgITw/tFA7MTMuvARkHz2ez9a70G/BvKGkWL2/xak7E2bQPLZ3ZbwnYDU9Q6wEPTtaGrwIl/28eFKyvAE5lzsttkW9sEitPDNgSTwy2xS8dqpLvVGBmjwlZFu9o9HzvEUtkzzCRji9BOlTPFMCqTxiK7K7hCEFvYNSxjq/cTa8TqyYvBe0Cr2fI8q8Cg4jPTVcIz2D1/q8pc3NO4rV8by2RiS8sJygvHOmGzz1v8o7QFw3PSmNUDzGw6C87MV5valKtjxbVJM7hdPUPCmyFbxt19I7NeHXPGoCUb269E28lVBROV8nAj3RlAa8ykCJPOa7hrzclBq8NeFXOsCe0Tx0rvG7CDcOPN8Tlr0ckeI8u8OMvIQr7jvuPJ+8LduKvGsv7LuTI7Y8cSWNvbT21rxLgZC8AjcEPYeggDz5PLM7ZCeMvMX0Yb2Se088g1LGPENi+rtCrpe8n56VO9aUkD2j0fM8eNfmPBzlVb2Udym9bgRuOi0KObvRlAY9r3nuPNc+Cr3BFwq9etPAPNAbzrwUNY86l33sOmimh7vBwQO74ZQkvZJKDr2BTIO8lHcpvcrFvbxb2Uc9vJw0vQA7Kr2aIS29oscKvSGHAz2hpFg9cKxUPFqqGb0c5VW9iCOiPDaJPrzVQB08RYOZvOZlALyDzRE9dKQIvYKqX7yjoLI85GkmvdSYNr3GSNU5RArhPINSRrwzLwi8QQSevAg3jjylIUG95pbBvIAC+bzb6iA9zh90vELdxbx0+g68aNU1PTCLx7w83049JjMaPdPwT70uXiw7W1QTPfrBZzwjCBI9NeHXO2GokDx+/LW7EWANPHmmJb0uj2073JQaOtrHbj3+PtA8cHuTvFmsLDyRJ1y8LbZFvIIjmLzubWA98rkHPAGPHTvUmLY8Pbj2u+aWQTxIDH67rB+4u3P8obwLDBC9QbAqPXZW2LzZmlO7eviFuya4TjyNJb88/L1Bvd2Sh73IFYE8IrYxPIygCr0tO/o7x/A7PMueZT05XsA8U641vXGF/Lyo9kK8aNW1PC0Kub1rewk9ysW9vDSN5Dx8zxo7+TwzPNNrG70riaq8LzdUvZbJCbwjXhg935hKvCKPWTxzgVa9x5xIvOg8lTx4UjK9x5xIvEBcNzzD7h48u22GvPG7mrw9DOq8pUaGvGdSlLzLSvK8FLrDuhFqdr2MoAo6u8MMPJP0Bzwq4UO9tPbWODEEgD0gDss7AkFtPWpWRDyQTrQ8D+nnvJPPQj0uXiw9IDOQPJwdB726GZO7Q7ZtPZd97Dwh3Ym9sZoNvfM+PDvdF7y87UBFuYQr7jyj0XM9QgILPTzfzryt+F89EWANvYNSxrwvBhO9My+Iunn6GL3evyI8jPYQvfPDcL2lIUE8Au15O/PqSDwthYS7Jd+mPOIZWb0Ltgk89hO+OrBILT1gL1g8GmTHPPzihr3RSGk8Xq5JvB81I7zAGR29dQLlvNlpkjyXTCu8ErQAPT8tCbzMbaQ8bn+5vJV1FrsVk+s8JwxCvD24dr2VH5C8xBs6u3bRo7ylIUG9su6AOm9Y4bxsg188MochPDdi5rsDEKy8IA5LPDlewLunHZu8LzdUvNVAHTyDzZE8lKjqO9q9hT3/twg8nkqiu01YpbwzhQ69HzWjOxk3LDu/xSm8/ZbpvF1aVryVy5w71uoWPZigHr34uRG9DouLudIXKDx8VE86DpX0vINSRj1CWBG8an2cOVDZMz3/a+s8KlyPvRrp+zsW5948XdWhPPOSL7tBsCq91pSQu9NrG73LGbG7N90xPX3NB70DEKy75JrnvPlt9DsNaNm8NI1kO1yBLrswi8c8rXMrvZdMq7w5g4W8fS33vPVE/z0FDIY8KgYJPWRYTb0ZvGC7q3fRvPltdLyuGxK9m8kTOeYRjbztGe282WmSvJb4Nz34D5i8ODGlPDdi5rs2un+8dX0wPYspZTvDc9O8HzUjvcmYIjyM0Us9QQSePLhzP7y/xSk9XtOOPFaDNz05XsA8PQzqPHr4hbz/twi8Cg4jPeVCTjwT4Rs7X1YwPQblrbyzcaK8oMswPJPPQjxlrEC85mUAPd2ccLzGSNU8evgFvU5Wkjuj0XM9Zy3PvNpz+zx/KVG9+Q2FvBSLlbx3I4S9MjGbvFew0jxYifq8w3PTPDdiZr0ZNyy9BT1HPB81I7ts/qq8ayUDOwA7Kj288Ce9ELgmPWha6rwpCJw8oyVnPLOi47yez1Y9Sdu8PH3Nh7yW+De9ssk7PZ0ncDy2y1g8iYH+vFbXqjws3Z286MPcu9lpEr0TjSg8CGa8vCG2MT3EG7o8YlzzO+BnCTuNeTI9o9HzPJt1oLzIuoQ8zRw6PUcNE7xQ5ba8XHPWvBY+Ub3AREu9Jsw7PSynhDw6ECK8iWcavU5AT71Pip48hIzRvGwwhbwSgYM7SNRXvIVnTzz810K8iVNhvDDuLryMHRa7mBoHPZwX4rxSrPu6C3f2uw1S9DzRN5C7jQndu6GXkr1/+1e7DlL0O/yN872H5zS9AB9tvI8/8zuSPz69I7unvE72/7xEefQ8gcUMO3Ij6TpK+aQ78rXPvH/PAz26Duq8OFomvY+JQrow7q68o3KQu/P/njwdvgE8rYBKPQ+cw7yM00a9WfNwO4pMj72e8t+8Nn+ovD3X5rxpS0U3jIl3PVEKBL26xwo9nZdHPM8tTj2JjBw9Wz3AuuinFb0etAo8IQWsPGhwxz3TEo47cZK6OionH7nUvkc8hcJnvYmMnLy7s1E7wk6NPexdkbzhIJO8s7arPOI7HjxTLGG9v7OcPHVINjwP0tm7EC1yO119mDveTwy8L6RfvDgaGb2+mBG9nWGxvI+Jwru2xz8657jeO5hhZrym3rw5p2/rOqByxbufcsU89TU1vU1l0bl8jys8oQP0PB5PML2PiUI9mHUfvGKENT2aPOQ5CJ8dPXxFXD0hllq9Hb4BvJsXYrzzEOi8fXvyPC9dADs4NaS8nquAPdl+BT2P5Nq654LIPF6E6rzruCm8ENJZPNijhzt02WQ8JydUvHj+sTsQHKm9rsoZPQKzi7wbz0o8bKYoPAnBerjGVao7pjnVu8L6xrsYY548kQkovAeEEr3QY2Q9MO6uvUVoqzzFC1u8V9ETPGwwhTsTXAE7XynSu8TVRD25fTu9/XwqPDyQBz01Ndm7XX0YvSwCHb0FH7g6ZpXJPGtc2byt75u8s2zcOsIOAD0RCPC6Fq0iuv7hBD292B69tTaRvEfNBT0r55E8Cpx4veeCyDzlAuO82KpZPbNHWj2Ewmc7QKGbPDF/3bux2y29Nj8bvbWRKb2t2+K8qQOKPEremT2ygJW8d4iOvM1S0LqHVgY948zMPPxGlLweO/c5XfO7OwIOpDzQvny9gTHuPAPOFj3XKvQ7v59jOyhd6ryhl5I8CvqAPCu4TTxNryA7W6IaPdRjr7yAez29R0OpPLE2RjvJlQK8HrSKvQeLZLwGaYe9qO9QvRL3pjx/z4M6Evemu6GXErrrE0K8TC+7vEF8GTxm3xg8WQcqPdkZqzyBMW699OtlPFWsxrs2a288zVJQPT0yfzyiKMG7RB5cPIV7iLypHhW8S+XrvOlnCLw+awU992vLulFlHL1H6JA81O0LvRhIEzwjuyc8nxetvCcWiz1ehOo8LEn8uu/4Ab0twg+9AcRUPd8qCrx8jys8zXdSPaO5bz3zRv684jsevIPn6TvCVd+8c7cHvUfNhTyU0Ow8mHUfPNfPWzxny188yWa+vLfHv7yDoIq72L4SPWwwhTs6xtI84Lu4vJi8/jynubo8MpMWO3hZSjwUY1O86KeVPEmvVT2MZPU896HhPLWRKb3HVSo8lb8jOivMhjtuC4O9SR6nvVDlNjwqJx88Kd3PPDhaprxOCjm9D+YSPYGqAT1qJsO8CvoAPSPgKTyt7xu+5xN3vDDuLj3Z9Ci9p7k6uq624LsPnEM8GL42vWbfmLxlxA29tSLYvHyPq7zluwO9CQvKPDf/jTx3yJu8E7eZO4wCCz2rys49/KGsOh6FxruhA/S8pm9rPW8S1bzXz9u8yQumvF9f6Lz1fwS3U4f5vMymFryI0/u8SNTXu/K1z7sNZq27UpuyO3iP4Dya9YS7yma+O1Gs+zy7Dmq8zRw6PcrLGD0YY567qR4VPX30Bb1NryA8oBctPLkHGD12fky8FQi7u3EBjD1XGHO8SuVru9gF8jsXGU+9MElHPMNpmD0weIs9tZGpvKS577ulaJm8xt8GvR6FRj07tYm8fEVcvKhKab1BDUg827vtPDmQvDxJCm6854JIPeWWgbxTh3m8IM+VPN1g1byh3vE8a7dxvSnxiLxbPUA9UEqRvVEKBL136ng8My6HvNx0jjxV2wq7b0GZPAkLSr01kPG8qxQePIXCZz6KJ408h7Geu83BoTzBH0k8HM/KvBr0zLxrAUE9j7iGvDg1JL38jXO8/QaHvAXVaD0ruE07IQWsvA8t8jyBIKW80a0zPcUECTzwSaO8XpijPCwCHTuJU2E9mxdiOy6dDb3o7nS94vFOPEcvcDual3y6L7gYvWHzBryq3ge8SKiDPLzpZ7zqghO7tljuPI1k9bsihZE7PldMPZ6Xxzuq+ZK8G3Syu9TtizwhBSy8rrZguyOgHD1ZByo921kDvdOIMTpDsq88GL42vVVRLjxSUeO8CWZiO3JZ/zzjzEy97ZMnvBx0MrcunY08zWaJvHDt0rrGHxQ8/+jWPEBhjrygvBS9y3AAvd2qpDwT9ya9xkFxPZ7y3zzdlus8EvcmvDO187zseBw9L6RfPaQyg7xZ83A6rq+OPf4hkrwmzDu8LTgzvEMXirzlloG83I+ZPL2OTzz4kBg8Oms6PVkHqjsmzDs8V7aIuQ73W7uKDAI9EVI/PDSQcTyVv6M61yp0O79ESzysFB69Nn8ovC1J/DyZl3y9P41ivJCJQrxplZS8zIuLPa6vjruWq+o6g/uiOuFgoDzsSVg9G/4OvU3Uorxw5oC74WCgu0FoYDxzo866rdtiPX9FJz0GxJ88u+lnPcULWzw3EFe86AIuvOx4nLxxNyI93xZRvbv9oDxbzu67Ea1XO9QZYDsj4Cm8PlfMvNtZg7xBMko9ITtCPeI7Hj04kDw9V9ETPf8N2bwDzhY6cTcivexJ2DxmJvi8QnyZvd/gujsCn9I5ROjFOVyiGrzS48m8I7snvS9dgDy17EE9rhF5PbkiI702EFe9kNORvaGo27uPicI7O9AUvWIOErzxCZY8fEXcPJy8ybmDjNE7wg6APFsYPjzp7vQ8HL6BPRMtPT3ZGau8Ld2aPS8TsbzGQfG7RHl0vFy9Jb2TdVS8edkvvYgdy7yQiUK8CESFPO5uJT3bu+08vOnnuxt0Mj0ncaM8eFlKPPdagrsQpgW9fvtXPTY/m7xarBG8aEvFPXoPxrtaPUC8FGNTPa4ReTyQGvE8KEwhvCNx2DydYbE8v7OcvKByRbnhljY9p7m6u11OVLz+Vyi9JvE9vCV7Gj0G+rW8v1iEPTF4CzzKyxi9XL0lvboO6rz467C78DVqvUqDATsOZq08hDG5O7eiPb3a4O88H7tcvfiQGL2Krnk76LjevCCPCLyspcw8jt0IPAhEBb13iA48Lm5JvLwzN7y7/SC9+nxfvMmVAj2BDOw8CkHgvBCmhTsjRQS93HQOvRcZTzvVCBc9lqtqPP1ocT2VfxY8TC87vNLjSb2rFB48nasAO+PMzDt+DxE8Kac5u+YnsDzWCJe8Ta+gu6aDJDxztwc9Jpalui1JfDz3WoK8BdVou1uHjzznXcY8eI/gOwsVDD10NH29yWa+PEh5v7xOCrm7h/j9OmQV5Lx8oHS80HedPJ28Sb02f6i8Ta8gvZ+hiTc22kA854JIvNtZg7xiOma90y2ZO//oVjxSJY+8FIjVvFUbmLxxI2k9eX4XPSgxFjwKsDG9wdX5vImuebzrpHC8S+VrPJTkJT0YYx69GvTMvGCpNz3amRC9+cauukuejDxfPYs8POufPHEBDL0juye8ZpVJvKaDJL0Ajj68poMkPVkHKr3ngsi8KThovSuCN709IbY8LUl8PSOgnDymOdW8uDNsvceLQDxgc6G867ipO+/4gbx2IzS8ip2wPGyS77xdfZi8HoXGO1msEb3dlmu9k3VUPImMnDyT5KW6wU4NvTEkxbzDn647MElHvTU12bvdjxm8cByXPHQ0fbzVGeC8GL62vOYTdz3dNAG9iNN7Pfeh4TxX0RO9hp1lu1Kbsjw1CYU73uC6PDgaGbyGZ888/I1zvChMoTwncSO9riWyO5h1HzvS94I9TvZ/PJTkJb2SP747lfW5vA5Bq7x4/rG8GfRMPTyQhzyMLl+8sOx2PGXw4TphBFA8d4gOPC5uybtw7VK7ArMLvSAqLj2Rk4S8k5pWPDgamTwop7m72AXyPKmUuLwb44O9dEi2PKaUbTymgyS930WVPHCSujujzSg9Z8vfOzSkKr3SCMy8Xz0LvMNEljxB17G9shFEParKzrxDFwo9SKgDuqByxbtgBNC8de0dvAh6G70IwXq8E1wBPeI7njlBDUi79mtLvUvla7xI1Fc7+cYuvQXV6LtKg4G8+TUAPW4Lg7vC+sY7QGEOvDnai7xT5YE8WCysvIEgpbwgFvW8scd0OU9vEzxJHqe8NmtvvdfjFLzytU89+dd3vL0ffj1st3E8CXobPCAqLr2EMTk9POufPNAtzjy29oO8GKp9uqIoQT3LcAA9Dy1yvSkCUr2nuTq8LO7jvOzuPzyIHcs8T3ZlPQlfED0AvQK9SHk/Pff8+bxhqTe8O0Y4vErembx2yBu9ypzUuKED9LzlAmO90BwFvDe1PjzAMwI8WuInu/TkE7we9Je9un07PGmmXTyezV099xAzPKMowTymb2u9Lm5JPIoMgrzl3eA6DDAXvSoTZrwvE7E8NxBXvCV7Gj3OnJ87aYHbPDbaQLyi8io88EmjO3oPxjsgYES9VuJcvByqyDvfcem8J11qvYTWoDyurw69D5zDO+Gn/ztlX7O6mvWEutxZAzyDjFG82+DvO29cJLwARG885rGMuyOgHLvAn2M9aBUvuwzmR7yFZ0+9//yPvRL3pjxax5w7A0Q6PM2t6Lz467C7M7XzPHljjDwGHzi9F3TnvHBI67uRCSg8A84WPEMXCr2aEBA93GBVO/Pkkzyjg1k8dLeHPIxkdb3U0gA9Z8tfPI9TrDyzonI8oihBvWHzBjtoAfa8XHNWuxsq4zy2WO68ZfBhvNGtM726fbs83uC6vBY+0TvcdA67ZPDhPKgDCr1ilf68MX9dvAKf0rxRrPs9NmvvPJ7GCz0QHCm9qR4VPBd057w3/4085rEMvdrg77ygvJS8vL2TvCo4aLyig1k9s7arvNFjZDzH5li8G8/KuyQWwDzp7nS7QsP4u+y4qbzGVao8Y99NPYwCCzxA1zG8emrePGJOHzxuN1c9ovKqPLcsGj1GDZO8dUg2OwwcXj0qJ58797Wau+XdYD3tJNa8tEAIvLv9oDzh8c47LLjNOXiP4DyIMQS8mZf8POKC/bwsk8s7TmVRPZVQ0rtMilM8FLeZvVqsEbz4kJi80HcdvSAW9bys1JA8SgruvIwdljy2WG69QEYDvexJWLzLcAA8jz/zupVkizydTfg8+yuJvFMADT1fX+i8smxcPHVINjtDQ968p7k6PUrDjjsQ0tm8nvLfvCk4aD34kBi8yrANPEzAab0JHwM9JlaYvP0hErxjcPy8X865PB7gXrz6fF89rUq0PKLe8bs2fyg8hMLnPNn0KD2ahjO8PfcKO96g5LxM5ey8qV/iu+d0qjqArRC9K3INOgZHTD2frOI8VbmyPFjhEb0uNJG9FN2VvJkCxDxo8gE99e5+PGKge7wXnxm9vQw/PV8/Arzv1+u8gbSpu3cnwTwr34G7ottautGY1TwhCzw9MIKHPFl7tjyiSM+8vw4HO6ntHLwWeQK9wYKUudgXDL2/Dge8pLcLvEZclLy9ebO81/ZFPXQZjzx7yP47ah8yPaad3rzomkG8AzmaPHxYAbxBJoO8fj5UvZ/zvzzO1tE8X0abt3cBKj0crxM7CEmUvUWowroACiK9o9YJvT9FAb3uP4+88gETOityjT3l2L27xLbdvEtSYbxilJE9lPlivJqXFzycnjC8EEGpvKh5j7wQRno9gQBYvElEr7zUDiu91VWIvGMutrywBDA6lYcdu0XOWT221OU72PbFvNFMJzuSnwK96Hn7u3SsGjz8AEG8YCAEPcDOwjzYhIC9AHznPOL187nJwQa8Y6D7vAPMpbxnYn+8NVB1vZSABL29U5y8T1vCPOw2LjywUN68U/x/PU8U5br2MAu7vN+OvLPGszwu7bM82t5gPZ8/7rzyTUE9b3YJvQLR9jyIpSU9vQw/OxcypTvVVQg8ra8gvRYRXzyPvLi8ezXzO0WH/LzBFSA9e1a5PGqRdz0GIbW8ThRlPTQljT1C5r68+fKOvAqc27weSTg9DOyZveMYgj2vBLA6sFBePMpgfDx+ZOs8LVMPPaa+pL1dF6O87FzFOxcyJb1gJdW8rEd9PbYbw7xjDXC8ffIlvfKZb7wNpTy8AHznvCHqdbxCDNa8XRejvITCW7zrNq49n/O/PA3GAj2cfWq8n6cRvNbJFb1jdRM8ECDjvHQe4LzKzfA85f5UvVND3TuNIpQ9F+vHvL0thb1tB807ZvA5PUm29DzbS1U8klilvKLb2jzoLc09QZoQu9VVCLw1cbs6HZVmvW0oEzymviS9jSIUvUzgGzyZlU89ofUHvZBRDLuceJk8XfELvAhV/rxgkkm9XT06vYvZ7jzRcr48Z8qivBoaQD1TsFG7CXZEPC6m1rxJakY4zBaWPJKk0zsfS4C7xLGMOkSCK7zYQvS8okhPvSjWoLzvave8NSreOg2lPL3uPw+8ZxbRvKbDdb1MLEo8imz6vO3xmDzWNgq8+R13PF2qrryacQC9e8j+PF8gBDwItgg9U2n0Orzfjrz2MAs8Z6QLPQPMJTw/StK8T6Kfu/YPxTwJwnK9Iw2EPUGakLvAqCu7ZxGAPILciDxBJoO9mNwsvEUVN70UcKG7fsyOvA/6yzvC0Io8i/o0O5VmV710i9S8fFiBvY+8OD3GUso8HtxDvVP3rj3hPNE8mdwsO7C4AbyOdVs8U2SjvItBkrxPNSs6ottaPYG5ej1Pop87934BPQB857w4f+08TOAbt73mpzw3Dag9VgAQPT2KFjyTE5A8j3Vbu34YPbwwgoe6WcITPP4CCTwxHKw9AA/zOBrOEb1Mv1W9o0oXPMREmLyREcg8LhNLvcnIn71g2aY8lWbXPAqXiry0W4e62/+mvG8JFT2cMTw9Tzp8vX0+VDzGnvg8pLcLvqNKl7ujjyw8e3xQvW1T+zuacYA88m4HOp86nbwxjnG91KG2uuX5g70xQkO9WVrwvAYA7zyxLI+6K767O+B8FbvUNEI9DctTPExzJ7xLLMo64oOuvM1DxrnRJhA8jS7+PF5lmTxBJgO7rK8gPAMTA73O9xc88m6HvXEQLrzdxvs6DaW8vOL1czxJkN07DVkOvA/UNL22Qdo8+IrrvI2PiDqmvqQ7M0QLvcGClDzHmSe9wKirPFB8iDypWpE8fFiBO3Qe4LxjeuS70SaQvEEmg7wAd5a72GO6vKwhZjypzFY9K511PdG+7LxG7588qTnLvFhOBr3eLp+7dmcFvX4YPbyfzSi9EBuSvNSA8LyV9JG7OsgSvRZ5gjw1UPU5urcvvYYLgbw7Yje8HrYsPM7WUb2vSw28P5EvPDtit72FL1A7nH3qPJfhfTui21o85R+bujW96btEexK9U4q6vAb7nbzRK2E+2IlRPV5lGbzK7ja9aBgZuzrIEr0eI6E85fkDPZC+AD22+vy8mCjbu7BLjTx0ZT08VpObuxlahLziN4A8S2yOvCTNPztG7589j7y4PGN6ZDxtTio9GVoEPVYFYT3591+70ZjVO1noqjx+ZGs822wbvSTNv7yfzai8mE7yu19GGz1+ZOs7uv4MPWqyvTznU2S9aPIBPVUfDj2i21o9iH8OvCQ6tDsDXzG7T1tCPOjhHj2Symo86OGePELmPr0ZWgQ9yqdZvKmAKD1ZNNk5q7RxPAa0QDzmbRE8akXJuzhZVr13bh67iITfPGc3lztTHca80ZhVPG1T+7upWpG8pr6kvD+Rrzupx4U7Xz8CvLiwljxjmyo8akVJPWVWFT07G9q8KwUZPT9rmDsqmKS87Dt/Ohr0qD3kJGy8NJdSvLokJL0jYEu8bMBvvHvI/jsUT9s7hZzEvPn337sKvSG8VnJVPQYhtbyAJu87O0HxPC7ts7vLogg9LsecPMaeeLyYu+Y8cH0ivdQ0Qr1Z6Ko9Lu0zvUIHhTp6Cou8s1k/vTh/bT1+q8g7DThIvTBCwzy2+vw6Z2L/PGeDxbwuplY86LuHPPai0Dvybgc8I6CPPHb6kLwwgoc95UWyvJncLD0a02K8yqfZu8TXI7wgxF49ofUHPLkD3rpq04M8bLSFPDNEi7wUvE89TpsGvbBLjbx3ASq9tWdxPP6VFD0QZ8A8P/6jPIyPiDtJsSM820aEPbBxpLziXZc8OjUHPfZ8Ob211OW6Y+dYPKk5y7zv1+u8rI7avNiv6Lxo8gG9av5rPI/iTzycV9O8PyS7vFW5Mr0nbn27j09EvYtBEr2QUYw8TOXsu5fhfbsUljg8XfGLPJfh/Tzg6Qk93i4fvCud9TyU+WI8vXkzO+KDrjyF6HK827hJveWypjyFVWe8tq7OvHvDrbxlwwm8NQTHu6JITzwQQam7KuRSPJlvOLwKUC08s8YzPXCC8zpboxW92IlRvMQegT09iha9o4+sPG2Vhz0QIOO8MhwsvIVQFj1VubK8adhUPRZ5Ar1P7k09sFDeuqlaET1d8Qs9FAMtPFOwUTwlYpO74vVzvcQj0jo9ihY9OMbKvCTzVj1chJe7nz/uvOjhHr03c4M7Gs4RvUsGM7wkhmI80bmbvLwyVrtWTL68i7NXvNpGhDjYhIC8n6cRveyC3Dt+OYO7rRyVvOI3AL1vCRW90wcSPB9xF7t+Xxq7qMzWO8ZSSjoZYR091KG2PCQ6tDx6Cgs9IeUkvC3M7btTiro8zWndvKyO2jwe3EM9RHsSvIXjobyB+wa8plEwPRr0KDyFdq08Y8FBvIYxGDyzDRE9foWxvOWRYLxZezY8Y1RNPTKJIL2ohfm67KjzvNFMp7ucfeo8CwsYPe9E4Ds1cTu80FF4vEkjaT2z7Mo8la00vXoKC73v12u9rdW3vK39lrwpJBe9LsccPI+8OLw/RYE9hcLbPJzlDT0hMVM64vAivdTHTT1jemQ8x3MQvb0thTxtKJO94oMuO+9lJj3dupE8ISyCvfJuh7xiAQa9iKr2vB2V5ru4sBY9oZR9PD+3Rrzn2oU9e+nEu6O1Q7yVZte8WOERvV2EF7upOUu80+1kvKJIT7zTBxI9YwifvHeUtTyGnoy8TxRlvFnte70/SlK9Sf1RPaJITz3xjYW70SaQPEwGs7z705A8A/K8vIXCW735Pj09GWEdvfJNQb2Lroa7VbmyvOh0qrxWmOy80XK+uvEgEToQs+6727jJu3SLVDu9n8q6xLEMPWJUTbwlYhM8sN4YvccGnD1qsr27upZpvVnoKr2C3Ag82InRu6NpFT1Ceco7vVOcvFZMvrxrR5E6hehyvPYPxTwh6vW8XV4AuhCzbryZlc87BtUGvayOWj0r3wG40UwnPfLgzDxJI2k7n4bLul2qLrp+PlQ9rYkJu4+8uDvK7rY719X/vOLKizzEsQw8ejXzvJyeMDw3cwO8PyQ7vbopdb3RTCe9zvzovBQDrTw4Evk7IQs8vV09ursXn5m7LjSRvbMSYrw4ehy9kuuwvIAahbz8Rx49xwvtO/wAwTvWNgq8YN73vCRgyzw6NQe9ccnQvejmbzwyHKw8rUKsPHswIr0QZ8C7yTplvI0u/joVmAA80XK+uxCuHT35ZNS8Z4PFvGMN8LxMmb48X2wyvCQUnbwyiaC7kjdfPN5UNj2wUN47uB2LPD/+o7z7QAW9BtrXvO6LPbzU6BO8OHocO97BKjzUoba9oYgTPGMN8LxZx2Q6SYuMPLeIt7zO/Og79u7+vGddLjxtKJO7hcLbPFYreDymmA09uUo7vZ/NKDzl/lQ9GWGdPNcXjL2Mjwi82K/ouwBWULxPgVm8ikbjPHzrDLxd0EU7thtDvcD0WT13Aaq9QsAnvDgzP71d0EW7+fIOvTWXUj2PvDi9xB6Bu/pABbwhnkc83jNwuxBBKT3eVLY8I6z5vKO1Q71OLhI9BfQEPTIcLL3xjQW8vev4OnzrjDxVjIK9cYLzPE/uTT2IF+u7Qi0cOVsQir0uptY7BkfMvLVncTzEkEa9XF4APbAqx7zAh+W63+mJvegtTbwsU486upZpvQZtY70IVf48d7rMvNMHkjkaZm67iBKau0mQ3bx5vJQ89uktvXGC8zxdFyO8xNz0PCu+O7vodCo8dKyaPaMiuDzsyTk9BrRAvFkOQrxjDXA8iKUlPFJpdDzUgPC8J9txvYuNQLz50Ui8iyBMvfJNwbveDdk89laivKYrGTzYY7q8U/euPE81q7kq5FI82gT4Owb7nTyQ5Be9N3MDvVIdxrvUDis8JBluPc6P9Lv5GCY9U0NdvMO23btG7588ATKBPF1egDvlRbK719V/vD33irszRAs91OiTvN6gZD0AfGc9ZzzovLauzjw4WVa9hHt+PdG5G724HYs8uUo7vByVZrw+A3U87DauPOzJubrb/6a8Hv2JvLAEMDyPT8S7fhg9vOh5e7xZNNk8elY5vKmAKD1J/VE6xp74PDh6nLs4VIW91A4rPRSWuDzbJT474mJoOQbVhjtFO867cTZFPRdYPD1WmOw83psTPQDDRD1Cn+E8WO37u/lk1LzEsQw9DX8lPPkddzxFFTc9EEGpPOyC3DybEPa7/NopvceZp7tZe7Y8plGwOy5f+Tzlsia9gtwIvMcGHDybEHa8EBuSPI8DFrzEI9K87fGYugoqlrx5vBQ8VnLVvPIGZLx98iU8T4HZPICtED134OO8dGW9PJKfAr1BuY48XBz0uwqc2zwkFJ07TL9VO4CtkD3cuhG8dGW9vG10QbsgMdM8FhHfOyQ6tDx00rG72yU+PIg4sbz1W/O8iF5Iu2ep3LwWEV+8lIAEPWofMj2tQqw8Yy62vGr+6zyjtUO8DaW8O/YY1TybHcs76BDFuO4fxrzdaA29sxNxvcNWZjwq20M95YSLPKTbdLyTo/i7js9cvUZspzz2mRg8IWxqvP5XwjwKMGa5pBZavKXHCbzjdw48yk/1vL9s2Dws0Mo8irViPBkt/bvMusa8MOpEPX9IkLzgdYo8ZDbpvMKcRDw7cZS8Mw84vdoItTxmIHc7TEDDvKOXHb1k8hE8IHfjvGeWwTwh7a287h9GvfOvCj0gd+O8Em/TPLa5J72eB9m8nNfsvPVeM72Ax0y9o7oMN6wP6br5vos9BN0NPClEEb1kcU47Wz1avfsyz7wVlMa9KeY8vYJtA70t0Mq7baXCvJSYf7zdcX+8u43DPMX8HD1ZU0w81+NBvPyoGb1tA5e8IbJIPQZRUb229Iy8G13pvEhhrjy1/4U8qmBAvVZpvrzct109Ts4DvU/k8jsXIgc9Z1vcuweMtjz9HN274moRvAMsXrwn/C68aSQCvZH0zzs6WZ665SY3vEYxQrxk8pG8tdyWvJaPDb05nfU8bLA7vL087DvsiJO8VfNzPEDnWz29POy7KPG1upTeXb3TYoE9jCA0PLa5Jz18Z3Q7bLC7PJE6rrkD6IY8lJh/PeAXNj0zDzi88jnAvFzWEzznmvo8kyS8Oi92ATzDhtI72/27vM5p77x2FJy7gfc4vXSpyjzwT7K7YuUUvV9iTbxlrLO8LAswvH5Tib3oEEU9F35UvUJSrTvg0dc82ZJqPUCh/TzyuHy99KSRPODR1zpHJsm8l5wKvQeMNj2KcYu99C7HPCVW+Lyk0Ps8RTw7PaaBqzv5AmM8YUzbunRuZbwNGvQ6b9UuPWeWwTkIjDY8iEGfvLZ+Qryq6nU8I5zWu0U8uzw7TiU8ey4WPYn7wLzt71k8/lfCPSbBybxPZTY7bST/PCFLArykUT+9g0oUvRwxCL0WTug8vygBPmt11jxGj5Y8BhbsvKOXHb25AYq8F0Pvu70bBL253po6C6YwPdoINb07kvy8o5edPC2K7DxZjrE8PEMsvaTSAryYeZu7WBjnPBovhL2V02Q9DpA+vOpAsbyctoS8wKe9vLBvQTwOEYI7OhPAPDoTwLyrVcc8me3evEuGIb2k23S8LcVRvaqbpbvwzm68rQTwvKEszDihZzG9WVPMPE7v67tOKlG8GXPbPKq+FDuZsvm8a4BPPNAan7xV83M9xvEjPRPlHb3F/Jy83azkPF+dMroip888Tb9/PGw6cbx8Z/Q8wOIivDOZbTyiIdO8NQS/PHZY8zxP5PI8dZ7RvP7WfjxAoX29JSqXPNR4cLv3jh+9XPd7PdaoXDziAcS8deQvvRYKkb1mIPc7oHKqPGLCJb04KbK7cMo1PTc0q7xwSfI7X6grvJpjKbviRyI8Oh45PEcmSTvdLai73DihPMoujTwtRhW9j4AMvbeuLj3n1d88GBcOPSmr1ztsal28W76du45QIL0ExZc8IHfjPBveLL38wA899GksPY5QID17rVI9JYbkuyYHqLttJP+8nsMBPTIasb0zbYy9F0NvvKRRvzqn9e68vrK2PKq+lL3oSyo9nViwO8106LzXHic9jgrCPNM/Er6TXyG9J1oDPeM8KTzCkcs7Y3xHu+wqP7p3k9i8jH6IvDGk5jz1XrO87an7vHeT2LxBXaY8dhScuhJv0zn7y4i7s/IIPRrppT1RlaI8mHkbu97nSbs+t+888K0GvRkMFb0VLQA8o5cdO+2gCbxFu/e8FP0TOwwl7bwVLQC8yyMUvEJSLT2WyGs8jNpVPLFkyLtVdLe8Ro8WPeGNgLyAge48wGFfPbIe6rs9/U08OKjuvFv5Ajyy/YE6zyUYOzBriLwkTQa96G4ZveyIE72BvFO94zypPHsulr3SjuI8+b4LPRcihzx+U4m7+8sIPdYpoDsb3iy96QXMO9nNT7168zC9iTamvFx4PzwKsam8oWcxPUwFXrz4gyY9k18hPCVL/zx1HxU9IDx+vCRWeD3kbBW9F8SyvLkBijzsq4K9LzAjPVpI0zxB3OI7QlItPGBXVLuUmP87/GI7POnKZrwEoig9RAFWPtXuuj2606E8+ngtvQz5Cz2Oi4W8f0iQPBoMFbwao8e8lshrvc5Ih70gPP47EHpMPDCv3zs/LTq7Eil1PBpo4jwLprA8nU03PXVCBDylx4m8/Z0gOZC5aj1wKIo8v2xYvH7SRbvDhtI7WkjTPN6AA71k8hG7CmtLvA4P+zzdcf88+Mf9vI4Kwjt1nlE8cYTXvBMgg70RNO48EgiNPN0tKLysD2m8JBKhO9dBFrz0x4A8pNICOezv2bzH5iq90BqfvNw4oTy4o7W8D8CqPOKCh7x9Ix08gGCGPNYpILw8CMe5AX21vEupkLywqiY8I9e7u10yYTtDpQg9Vmm+vE/kcjvIoEw8c++ovLdzybx7cm09FyIHPWeWQT3GLIk9tvQMvctGg7wBw5M8cMq1O+PGXjpZDe46rcCYPHG/vDwN1hy84zypuDuJCrzKC546Uk9EPOacgTyr1oo8nFiwPH0jHT2YeRs8c++ovPAJ1LkSqjg6yVpuvCHtLbxg8I08LgA3PSEok7zrkwy975WQPB/4prsuXou6077OO4fL1Lw/ODM9wAWSO/exjrzdOKE6/82MvJluorr9naC8OYeGPdz9uzo6WR472/07PXM1Bz1PZTa9Wz1aPSll+TuWyGs9Dw/7uw3WnDxYGGe8w4ZSPNqH8bmuejq9Va+cPbqYPDv4x/28zq/NPNNigTpWaT67xjX7vC90ej3HCRo9LrpYvO/ZZzwT5R09eM49PK/59jzHZee8jH4IPc/qMryskKy6wweWOz8tOj2IwFs7868KvVu+HbwMYFI8TTXKPBXPqzyKK609dzeLu2HNHjvyOUC81PmzvGdb3DvLI5S9lVSovLEp47xIvwI9EPuPOxyYTjv9HN28DRr0OvBPsjyg8ea5+Mf9PAxg0jsmwck8cCiKO0YxQr1LqRC85iY3OuAXtjymgSu7Z/QVvQNnQ7w4qO48f4xnPA3WHL2GkG+8WQ1uPe2gCT28yKg8ZXFOvBdDb7zsq4I94zypuspP9bwY9J493VAXvZF1E70xJao9BfWDvad2sjs8oYC73ufJPNCZW7uD7L+8/4euO8PMsDlJtIm8UB9YvG4bDb0U2qQ9+rOSvJecirzCnEQ7k1+hO7OUtDw1PyS9lVSoPGVmVTwQeky9mbJ5PTNVlruQuWq8sWRIvbr2EDw5fA08TTXKvBj0njw0yVm9mihEPR0OGb0HjDa9h4V2veyrAr3+EWS8oPFmvdoItbyRLzU8+b4LPX5TCT1kcc48DkrgPJc+trxLqZC8q9YKPHXkL71DjZK8XqirPdnNT7xGjxa9tdyWvefgWDwX/xc9ygsevMmV07yiIdO89PNhPTU/JL2/KAE8xjX7O6c7TT2UGUO6tvSMvGeWQb0ip0+9AeYCvDKZbbu13Ja8ySEQPM106LzDVma8XW1GvZTe3btQ2fm8oiHTux5H97tu4Cc6Em9TvdU0Gb26GYC812L+PPaZmLyWjw08X50yvGkkgr2V0+Q8zVOAvHgJI7yUmga81imguvr3aT2g8WY8iokBPXBU67x8Roy7NzSrPHFAgLxHsH48fV4CPH4YpDv4SMG8qqYePaA3xTxInJM8NnoJPD9oH72hLEy8n8F6vDvY2rop5jy802IBPUDn2zkB24k85DGwvEuGoTu2Q1296G4ZPeyIkzx8olk8QrABvLki8ry53pq72XECPXIFG7wjnNa8r7UfvXWe0byIQR+8TquUvDuS/DxHJkk9quGDvdRXiLzCnMQ7n8H6PAfHG706Hrm8Vmk+PDIaMb1H6+O8ejkPO1pIU7xMe6g9XydoPV/7hrxU/my9Py26PPqzkryk0gI991M6PVrJFr2WhBS7SwVePcGcRL0pZ4A953kSPUYxQjvX48G75DEwPHYUnLvX48E8ZqG6Oq2Fs7n30nY8cYTXPIh8BLwKa0s8A+iGO6xKzrzTBC081bPVPJKu8TwCN9c8rA9pvWahOr0fvcE8jmgWPa0E8Lsq20O7KlwHumeWQb0kVvg6P2gfPBD7j7tVr5y7hkyYvFu+Hb3gUhs8nYicvIMnJb28jUO8vb2vPNMELT1s6yA8vMgovUcmSbwfvcG8F8QyPBk49r26mDw8HgOgvO5aKzp5fWa7lz62OyPXu7wfvcG8kq7xO74QC73TYgE92wg1vODRVz2k0gK97Co/PZD/SLsOSuC8bOugvGzroLtjfEe7xjX7OZD/yDwv9T07cQUbvQPohjvyugO9asYtvDElqrxxQAC9FNqkvJ99Iz1wyjW9qskNPNKOYj0Fly89uw4HPZF1E7s37ky7sh5qvPxiO7zpymY9nqCSvOFHorw4ZJe8PjizPOIBxDqf/N+8lqcDvdU0mbx7rdK8oa0PvaByqjtZjrG7rJCsO7EpY7w/rPY62gg1vWS3LLz87PC69C7HPFx4v7ythbM8O83hvI/EY703NCs9mijEvEqRmjrz82E6sG9BPMPMMLwF9QO9WN+IPPF/nrtwVOu899L2POu09LxrddY7uSJyvFQ5Ujygcqo88/PhvOzv2bxm3B+8i3ELPLvrl7z94Xe9rEpOvcW2PjxFu/e8NEqdN4wgtLy7Dge9GS39vB+CXDydElK9uxf5PHJ5Xj38Yju8pLqMu1rJFr1f+wY9lN5dPNKO4ryK8Ee77eTgPB4DID0bXek8AtCQPJqRkT19I508sZ+tu4N29TovMCO8tdyWOybByTuQxOO7g3Z1vDBIGT31XjM8BMWXPF4yYTwi4rS8SL8CvWWsM7yjXDg9EMCqOrtSXj1BXSY6lJh/O4eF9rv9nSA7dWNsvd7nSToeglw9An01PA0Rgj3oViO9I2Hxurho0LxzNYc8VdILu2t1Vr115K+7OxPAuMrQuDy3c8m8x2VnO3Ru5byv+fa8v2zYvJnt3jqzE/E7/eH3vNhZjD30x4C9v2xYPWxqXb0Fly+9hGIKvXo5DzyCVQ281qjcPEQB1josaYS8P3MYvYjA2zx7UQW8ZiD3PABNSTwIvCK9+9YBPQpryzzb/Tu7m56OvUChfTyasvm4poGrurDNlT29G4Q8qqYePJ5CvjzbwlY9JgcoPT+s9jyk0oI9FBWKPATFF7waaOK8sWRIu7/tmztG9ty8T+TyvJpjqTzQmVs52ZLqPPHDdTzdUBc87HAdPShwcrnZThM9i6rpvJh5mzzTBK27Q0e0vFUu2TsHC/O85Sa3PBoki7zaCDW9IHfjvJ+4iLzscJ280o7ivLneGj0ATcm7jJ/wvMrQuDyYeRu9U90EPb8x87yyHmo8V+j6PJTe3bwsUY48gfc4O2CSubxo0Sa9vzFzPTIaMT2Z7V47utOhvDZ6ibziX5g8OCkyvUFdprzeoes8flMJvQNnwzyE4cY8DZu3vAiBvTsh7S09NnoJPcoujbo="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml b/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml new file mode 100644 index 00000000..d231bd14 --- /dev/null +++ b/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml @@ -0,0 +1,169 @@ + + + + + + + + + + + + + + + + + Triangle ABC + geo + Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + Triangle Inequality + category + The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + Euclid's Fifth Postulate + category + Euclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + Proposition 19 + category + Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 三角形ABC + geo + 三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 三角不等式 + category + 三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 欧几里得第五公理 + category + 欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 几何原本 + category + 几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 命题19 + category + 命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 点D + geo + 点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 等腰三角形BCD + geo + 等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base. + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 9.0 + Triangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides. + geometric proof,inequality + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 7.0 + Proposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides. + geometric logic,proof technique + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 8.0 + Euclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof. + angle-side relationship,geometric principles + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 9.0 + The proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction. + geometric proof,inequality demonstration + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 7.0 + Point D is constructed from triangle ABC by extending side AB to create additional geometric relationships. + auxiliary point,geometric construction + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 7.0 + The triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions. + historical reference,mathematical foundation + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 8.0 + Euclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof. + geometric principles,logical progression + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + 8.0 + The isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships. + angle properties,proof technique + chunk-a5e3dacee89618f913c4948b6ffe64ec + unknown_source + 1752209912 + + + diff --git a/dsLightRag/Topic/JiHe/kv_store_doc_status.json b/dsLightRag/Topic/JiHe/kv_store_doc_status.json new file mode 100644 index 00000000..10b53545 --- /dev/null +++ b/dsLightRag/Topic/JiHe/kv_store_doc_status.json @@ -0,0 +1,12 @@ +{ + "doc-a5e3dacee89618f913c4948b6ffe64ec": { + "status": "processed", + "chunks_count": 1, + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", + "content_summary": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9z...", + "content_length": 1772, + "created_at": "2025-07-11T04:57:49.311633+00:00", + "updated_at": "2025-07-11T04:58:34.370868+00:00", + "file_path": "unknown_source" + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_full_docs.json b/dsLightRag/Topic/JiHe/kv_store_full_docs.json new file mode 100644 index 00000000..ab93253f --- /dev/null +++ b/dsLightRag/Topic/JiHe/kv_store_full_docs.json @@ -0,0 +1,5 @@ +{ + "doc-a5e3dacee89618f913c4948b6ffe64ec": { + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。" + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json new file mode 100644 index 00000000..0cfaa85c --- /dev/null +++ b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json @@ -0,0 +1,36 @@ +{ + "default": { + "072b54ce570935e68aaaf44943207fde": { + "return": "(\"entity\"<|>\"Triangle ABC\"<|>\"geo\"<|>\"Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.\")##\n(\"entity\"<|>\"Triangle Inequality\"<|>\"category\"<|>\"The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.\")##\n(\"entity\"<|>\"Euclid's Fifth Postulate\"<|>\"category\"<|>\"Euclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof.\")##\n(\"entity\"<|>\"Proposition 19\"<|>\"category\"<|>\"Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.\")##\n(\"relationship\"<|>\"Triangle ABC\"<|>\"Triangle Inequality\"<|>\"Triangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.\"<|>\"geometric proof, inequality\"<|>9)##\n(\"relationship\"<|>\"Euclid's Fifth Postulate\"<|>\"Proposition 19\"<|>\"Euclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.\"<|>\"geometric principles, angle-side relationship\"<|>8)##\n(\"relationship\"<|>\"Triangle Inequality\"<|>\"Proposition 19\"<|>\"Proposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.\"<|>\"proof technique, geometric logic\"<|>7)##\n(\"content_keywords\"<|>\"geometry, triangle inequality, Euclid's Elements, proof, angles and sides\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\n三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n######################\nOutput:" + }, + "2e675f48b286783837db3691b44f16d1": { + "return": "(\"entity\"<|>\"三角形ABC\"<|>\"geo\"<|>\"三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem.\")##\n(\"entity\"<|>\"三角不等式\"<|>\"category\"<|>\"三角不等式 (Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side.\")##\n(\"entity\"<|>\"欧几里得第五公理\"<|>\"category\"<|>\"欧几里得第五公理 (Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles.\")##\n(\"entity\"<|>\"几何原本\"<|>\"category\"<|>\"几何原本 (Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof.\")##\n(\"entity\"<|>\"命题19\"<|>\"category\"<|>\"命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof.\")##\n(\"entity\"<|>\"点D\"<|>\"geo\"<|>\"点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle.\")##\n(\"entity\"<|>\"等腰三角形BCD\"<|>\"geo\"<|>\"等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base.\")##\n(\"relationship\"<|>\"三角形ABC\"<|>\"三角不等式\"<|>\"The proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction.\"<|>\"geometric proof, inequality demonstration\"<|>9)##\n(\"relationship\"<|>\"欧几里得第五公理\"<|>\"命题19\"<|>\"Euclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof.\"<|>\"geometric principles, logical progression\"<|>8)##\n(\"relationship\"<|>\"三角形ABC\"<|>\"点D\"<|>\"Point D is constructed from triangle ABC by extending side AB to create additional geometric relationships.\"<|>\"geometric construction, auxiliary point\"<|>7)##\n(\"relationship\"<|>\"等腰三角形BCD\"<|>\"命题19\"<|>\"The isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships.\"<|>\"angle properties, proof technique\"<|>8)##\n(\"relationship\"<|>\"三角不等式\"<|>\"几何原本\"<|>\"The triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions.\"<|>\"historical reference, mathematical foundation\"<|>7)##\n(\"content_keywords\"<|>\"geometry, triangle inequality, Euclidean geometry, proof techniques, angle-side relationships\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n三角形三边关系的证明\\n证明方法如下:\\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\\nheight=\\\"2.8183694225721783in\\\"}\\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"Triangle ABC\\\"<|>\\\"geo\\\"<|>\\\"Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.\\\")##\\n(\\\"entity\\\"<|>\\\"Triangle Inequality\\\"<|>\\\"category\\\"<|>\\\"The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.\\\")##\\n(\\\"entity\\\"<|>\\\"Euclid's Fifth Postulate\\\"<|>\\\"category\\\"<|>\\\"Euclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof.\\\")##\\n(\\\"entity\\\"<|>\\\"Proposition 19\\\"<|>\\\"category\\\"<|>\\\"Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.\\\")##\\n(\\\"relationship\\\"<|>\\\"Triangle ABC\\\"<|>\\\"Triangle Inequality\\\"<|>\\\"Triangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.\\\"<|>\\\"geometric proof, inequality\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Euclid's Fifth Postulate\\\"<|>\\\"Proposition 19\\\"<|>\\\"Euclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.\\\"<|>\\\"geometric principles, angle-side relationship\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Triangle Inequality\\\"<|>\\\"Proposition 19\\\"<|>\\\"Proposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.\\\"<|>\\\"proof technique, geometric logic\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"geometry, triangle inequality, Euclid's Elements, proof, angles and sides\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + } + }, + "hybrid": { + "e512955f204ab45619d21f9368b2d721": { + "return": "{\"high_level_keywords\": [\"\\u51e0\\u4f55\\u8bc1\\u660e\", \"\\u4e09\\u89d2\\u5f62\\u6027\\u8d28\", \"\\u6570\\u5b66\\u5b9a\\u7406\"], \"low_level_keywords\": [\"\\u4e24\\u8fb9\\u4e4b\\u548c\", \"\\u7b2c\\u4e09\\u8fb9\", \"\\u4e0d\\u7b49\\u5f0f\", \"\\u6b27\\u51e0\\u91cc\\u5f97\\u51e0\\u4f55\"]}", + "cache_type": "keywords", + "chunk_id": null, + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "三角形两边之和大于第三边的证明" + } + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_text_chunks.json b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json new file mode 100644 index 00000000..0f97e531 --- /dev/null +++ b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json @@ -0,0 +1,9 @@ +{ + "chunk-a5e3dacee89618f913c4948b6ffe64ec": { + "tokens": 1055, + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", + "chunk_order_index": 0, + "full_doc_id": "doc-a5e3dacee89618f913c4948b6ffe64ec", + "file_path": "unknown_source" + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_chunks.json b/dsLightRag/Topic/JiHe/vdb_chunks.json new file mode 100644 index 00000000..42a2d8ad --- /dev/null +++ b/dsLightRag/Topic/JiHe/vdb_chunks.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "__created_at__": 1752209869, "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", "full_doc_id": "doc-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "8igHu6jy1zyArTa9TZs7vZ3K1bxdIS89YZBYPQooxTyQ85k8bifDPJYsE70GOby6MGOEPACAojvwHmi7hJw/uocL6TxNwLO8i3pRPQFAErtwTHy9tGTKOZ2lXbwv/n27g5y/u93OY7yDd4a8YCuPPFO5nDxR7wu8PbpgPMjZBb2fLx095Kw0OzR3hTz210A8Ln5dvB+dQb3fmDO9AaVbPNaVqbw3Ace8uh0jPd+Ys7yPToE7y8jPvF38d7xeRie9WjLnO/51gbs3pp67h8sXvTcBhj1iEDi8tu6JvZ/vjDxitQ+8YjVxvELzWb1Nm7u8nUr2vNSLCLxrODq9bqeivNyp67wElGQ9Q3N6uy0ZlLxILBK7yiM3vVP5LD0ElOQ7AQDDvQkDTb0ufl29obkdvZcRvLxtAgq9vjEkvCZ7UzsRhja8y8hPO0pRCj2z5Oq81MsYvSHnMTvItA08SlEKO+/5rjwl+zI8Rb0pvWmT4jy3E4I8eKosvPaySLyWbCO9b6civTKS3rz+dYE81bCAPBKrrjw0Ug09y0hwPehA1jvomz2926mqO6zGBz3TpuE8s2TKPGI1MLwPvGY9MEgtPRkJYTwOPAU9SIc6vJWiUzy853S9boLrO5gRPLvaX3s8JyBsPYCttrsjMSI9QU6AvPxrYrsu/v08aW7qPAoohLz4fFm8shoZPGkTAb04S3g8HfiovKwGmDwJgyy9WbJGPInVuDzQNzg933M7u52l3bxCTkE9YGufu3rZBD0qj1S9LVnlPEgsU70Yvy+8xzQuu4H35zyb24u7O/BPPPaySDyVRys9b6ciPU2b/LuEwTc71pUpPHIWzDvYuiG8gfemvFGvPL3W8FE97C+evP2QGbw8up88K7QLu+d2xTvowHY9ufjru38IHr1cfNc88Z6GPEa9ar1tQpq86wrnu0JzOT2vdUE9tQkiPBvTsDzu1Da8hwvpvA+8ZrvjB108kI7SPNVLejzeTgK8WTJnO26Ca7s1t1a8f4g+PXuZNb1GYsK8cMwaPS/+PDwVGti7Lj6MvDU3NjtBKUk7L/48vCqPVLvr5e68l+zDu1SexTtvp+O8idW4uqwGmLtFPYm9ZH+gu3u+LT3J/j69NBK+O9KBabwxbaW87K++PAlolDzzDXE8aRMBvZwlfruol3A8SayyPLPkqbwkVtu844e8PAFlCj01N/e7eM8kvZpbrL24uBo9mwDFvFR5Tb3Zn4m8JfsyPNOBqLufb6066QAFPXDMGrzXumK6lUcrPQUUAz1gK488ud0SPdqEczyjXjY9ritRPOzvDT0euJi8TcD0OzMS/zyglCW9R4e6vQ+hDbyshvm7qHL4vFPU9TwQ4d48XFeePLodIzwDb+y7h7DAO8MFFb3qwDW6dcWDvHrZBLzyaJc8XsYGPNqEc7yBUg48sr8xPJCO0jxwcbM7+sbJO5gRvLu957O7l2yjPP0QOr1mZIg8dKCLPESYsbxWQ949aEkxvQKl2zuJVRi9wNZ9PCkqC7yfb248bN3SvOB9G72RWCI59I3QOx54STyO6Tk9TNsKPVN5jD2roY86SAfbvDZBljyW7AI9TPYivtaVarwNcvY71pXqPN3O47sJqCQ9ps2evebR7bxruFq8DheNPLh4CrwfQlq9OcsWvHIWTLyGCyg7Bzm8PL4MrLxhkJc8LDQsuxvT8bzpQJW8XiGvvIyfST2AUo66OKZfPTHtxTwykl47Xfz3OyVWW7w1Nza7ukLcvIgwYbyRs8q6Gi7ZO+wvnjymzZ48l2zkvPLDv71jWqi79legvCy0TD2IMKA9H0IZvH+tNjx+CF+7vGfUvFcoBT0ZCSA9cxZMvZ9vrTuf74y8rpAYPeB9m7y4+Cq9nGUMvfnGSTwJgyw9Hh2hPJI9ijuVx0s9JyBsPFIUhL2dSrU7angJvRtT0bynTb86OKaevN8Yk7wXP4+8fH4dvYXBtzzihzw8zi2XPCQxYzz18he9+aHRu5tbLL1ABJC87RSGPDQSvr2JMCA85ay0PDAj9rvwHqe8CAOMu7pCG7yYEbw7O5WnvK0GWT2EAYc+dLtkPTrwDr17GZW902aQPFClm7sBZQo9dLujuwdeNLwgwvq7YRB5vJI9irsYv687MpJePAUUA711YDw8yf6+OxIGFj1CziA9Vh6lu3u+bjzom369hwvpPCQWijxkWqi9rMYHvZwlfrxQCqQ9OnAvO+FiA7sJA4y8LdnEvNZwsbtAqai7K7SLPC+jFLzcqWu7vOf0vE0b3Dz4YYA8bF1zPIoViLoGOX08KmrcuwpNvbzahDI8xk+FPD5fuDvndsU7yVlnvD26HzwCpVu96+VuukQY0rxa8pW9Kuq7vKaoprw1XG88qJcvvDhL+LvbhHM7JnsSPPPoNz2pvKc8OKYevWI1cb36Rqk8pIOuPDy64DxM9uM6gfdnPSagyzwkVhq9itX5POwKZz2zP1K82bohPUaikbw6cHC8WY3Ou0Lz2byoly88K7SLvDKSXrzi4iM8rMaHPOWsNL1/LRY9uFNTO2kTwrzcjhK9kljjPFhoFb05y5Y882jYvMNFJT1XQ1483CnLvNRLubwWmvi8FhpYvVmyhbvbBNO8BC8bvPJDYD0Y5Ke9k/37vObRLD0v/ry7yBkWPJAO87wqatw8bF1zPPGex7zom367t666PEy2kr0BJbs7RuKhvHeqbTzwHqe8ICcBPIkwoDwHudw8nUo1vEeiETyALRY8uNNzPO2vvjujXvc8jB8pPLndEr2bAIS9ebQMPb4xpDxCzqC85tFtPauhjzxMtpI8lsfLvIiwwLyaW6y7E6vvO9C32DthKw88sz/SPD5f+bpYDa48LyO1PBOrrjuIMGE8yNnGPC5+HDwfHeK8jw6yuiAnAT1ILNO7tAljvUWYMbz3fJi8HfgovZbHyzy6HSO9WI0NPYHS77x94+Y8TRvcvKMDDj2x2gg9CQNNveFigzuqvCe99rJIvOC9bD1S1LQ8StFrPZZsI71/CB696QCFPWQ/EDzn9mW8KEUjPUpRy7w3AQY9/3/jPOnAtbxobim9JiCrvHaF9Twfwvq8gO2FvKm86D3v+a68RuKhvGGQFzw9up87I7HCu6bNHj25eMs8Ko9UvWR/IDwyEn87/1rru6GUZj2ZthO9QAQQvQkDjDynjQ64i/owPFUeZr32VyA81hWJPKq8J71RisS8Pp+HvE4AA72ZdgM7m9vMvAQvGzycZYy89lcgvNQmQbw1t1a8dWC8O3UFFLwUUAa9JVYavFho1ruz5Gq9RmJCvE2bO7taMiY7CINtu+zvjbvJ/v87rSuQPE+lGz0Lzd27A++KPKiXr7yEHGA7k/06PTFILTykg648sv+APHHxUz2vUEk8IWdSvJUiMz2K1fk8gncGPZeRXLsKqGU964qFvDgmvzwl1vu6+0apOp/vDLtSFIQ8EYb3PO7577wYZEg9rQbZPAfe1Lzom/685xsdvVbDvTubgKS8yFmmvJ2KhL2YkVy8UhQEPGDrPzxSVJS86mUNPBKGNjseuJg81nDyvPXyl7wwyIy82TrCvI7puTxDGFK8nUr2PCbgmrx0YDw6PHqPPHFxdD0Dbys8yX4evZpbrDvGj1a7hcG3vHw+Tj0jDKq8oBRGvIFST70stEw9xg/3vHiqLDyzP9K82LrivKaoJr1S1DS9Q3N6vJbHy7yR2IE7Rj3Ku3dqHL3nG968XNe+vJcRvL1Y6Pa7fuMlOwxyNTtpkyG8ez7OPBqueb2e70073KnrvH3jJb09Xzi8IzGiO4Qc4Lr7Rik8aVMRuyYgqzyMn8m8gK02vbUJYzwh5/K8j+k5vKm8J7yshri8XsbHvNBcMD3GD/e7H0LavDlL+DwVtY686+VuvCuPk72b20w9e5k1vNFccbxYjU68/loqvVLUNL3QXDA9mwDFvBi/rzumzR49gvdnu0ApCL06cK+8wFYcOioP9TzTZpA64wddPecbHT263ZK7UYrEPCkFEz2Ykdw7E6tvvIsfKT0McjU8feOlu/vrgLxexoa9HfjpvC+jlD2SPQo9gfemvDU3Nr2sYcC7y0gvOGI18brCoM27SayyvAc5PLxwzNu8TcAzvWK1Dzw78I629rJIPCV7kjtXw/47Iecxvcsj+Dw78M+8T+UrPQ48xjyb24u8czsDvsn+fzyocng7LLTMPBbahrxHB5o8DVedvA68Jb1Ix4k8qBePvJ9vbrxpbuq8WA2uPE3As7wzEn88k/26PCEngbzcjhI83ClLPEz2Ij2VR6s7tAmiPFUe5jqQM2u8eU9FPKeNjrxyFsw6+aFRPULOYby6HWS9jETiPJEYErwfQtq8lmyjPYDSLj0GuVw8IOdyPLjT87njh7w8QakoPAqopDwOvOY8zxLAu0iH+zwN8tU8r9DpPF7Ghrynsoa86UAVvDim3zwa7ge8nu9NPCQxYzxS1DQ9JNY6vLbuCT26Qty8O5UnvTyV6Lxd/Hc8MW3mvBOQlrtruBm97K8+uoewwDt/iP88MMgMve3vjTzWlSm8wqDNOtoEErxK0Ws9gfemPDSSHb3Gj1Y80gGIvOFigz2xmjm8Qs6gPOvKFb2VotO80Df5vApNPbyr4R89HFNRPK0G2bye78285naEuw/hHb27Agu9f4g+vVGvPLxY6DW9ot7WPH3j5ryRWKK7D+GdPIoViDvcjpK7apNivRHGhTpRCqS8Eoa2PNMmwTyoF1C9angJPZbHSzyPKYk8GeSnPAdeNLyshvk8LDQsvIcLab1pk+I8DpfuO83txzv7Rim7d2qcPZ2lXTzpAIW7zS0XPT+EMDyVR2w8i59JvA1XHTw8FUi8cbECPULzWT1RCuU87/kuvbD1oDwwCJ29xWreu/ghMTxILNO8OnAvPWs4Or1fa2A8Z0mxvALKU7yYttQ7vgwsvSoPND3HNK488HlPPPbXQLwq6js9TPYiPSVWmjtcVx47BTn9OgQURD0Vdb+6k32aPfNo2LwijAk9q2FAuT1fuLyK1Xm8OKbfvB+dgLwhZ5G9/ZCZvPmhUTwD7wq8JvtzvC8jtby2Lts7YjXxOyEngTyIMGE8nEAUO1coBb1zFky9e5m1PQtN/rqPjlI8kVgiPf9aqj2ocjc8BBTEPA2XLT2DnL87pihHvDhL+LoDSvQ8HriYvVx8ljz4ITE87a//O4r6sLwHngO8YOs/PHeqbTyDHOA8rpAYPbO/8rvv+a68S/ZjvA48xrtrODq9ncrVOxnkp7xABJA8dgXVvN8YE734fJg7yn4evNspCr3BexQ9zMjPuoMcn7yPTgG9j44RPW4ngjzbhDK91Kaguipq3LxI7IE8SdFrvE/lKz3gvWw97AqmOvZXoDwsNG28TLYSPYvfGL3xnkc9hME3u5LYwrwJQ5w89tdAPL4x5TwstMw8sr8xPAjeVDzxnse89A3xvCFnkTy0iUI8NbeVPCOMyjxQigM9TcCzvA=="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_entities.json b/dsLightRag/Topic/JiHe/vdb_entities.json new file mode 100644 index 00000000..7e6af989 --- /dev/null +++ b/dsLightRag/Topic/JiHe/vdb_entities.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "ent-043d3380caf00eb2310dd3faa6a84004", "__created_at__": 1752209912, "entity_name": "Triangle ABC", "content": "Triangle ABC\nTriangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8f4c99eefe09648d35e0adb3a70e4e46", "__created_at__": 1752209912, "entity_name": "Triangle Inequality", "content": "Triangle Inequality\nThe triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-db5203dcd8d28444cb765e0a69fabc39", "__created_at__": 1752209912, "entity_name": "Euclid's Fifth Postulate", "content": "Euclid's Fifth Postulate\nEuclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-847c21da8ab5c456b960f60c394aa01c", "__created_at__": 1752209912, "entity_name": "Proposition 19", "content": "Proposition 19\nProposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8ba3a27004f706af0260e986bc6a092f", "__created_at__": 1752209912, "entity_name": "三角形ABC", "content": "三角形ABC\n三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8a5ebf15695060ebf00d53ab04833554", "__created_at__": 1752209912, "entity_name": "三角不等式", "content": "三角不等式\n三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-c28aba2ebce9095cd8d78f1df53c3cbe", "__created_at__": 1752209912, "entity_name": "欧几里得第五公理", "content": "欧几里得第五公理\n欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-33baeb08781cf03b07b33ac6f4b4165b", "__created_at__": 1752209912, "entity_name": "几何原本", "content": "几何原本\n几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-9ac5593950faa90a93f1b5feec7e9295", "__created_at__": 1752209912, "entity_name": "命题19", "content": "命题19\n命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-1c05bc513bda1ef4c9e16fbdd1e1776a", "__created_at__": 1752209912, "entity_name": "点D", "content": "点D\n点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-6864816e2804264ec4a684abb1343e5b", "__created_at__": 1752209912, "entity_name": "等腰三角形BCD", "content": "等腰三角形BCD\n等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "yVbxuifFmjyJJ4K9gOy2vCFgtzu7ioW88f1WPKM95DxT/B68QumlPJVk8rxOND+8vVJEPGgtbrxpkIs7moLpPLKzWT1dVB29XziNu1kalrzKKza9EmqSPNTKILxCavi7VpmiuncUCT3QOoK84UB1PVnTqbueLRa8XZuJPD/ogrx+CEe8hpiGPfXFtrxCavi8pXdrvC+AlbstHfi8z+UNPbkYPbwIZwg9Hl8UPaERhrzSn8Q8xqrCvAaSwzsYM5W8nFeuPMVj1rxjOtM7CBIUvPw5RT3rUAU8/2ShvDgfALxb/gW9VcTdvJuCab3U9du8un1/vHC9rbvuGWc8d+rPvJyQEr1lyCs8iDUKvPTwcbpSX5u8rgervLc0zTzgMco8ZYE/vScbsrtbtxm9VmFhPAMRUL0aegE5oMqZvMtyIj2lIVS8XkaVO+7fgDuV8kq861CFvM2Q+LvVkl+9UlETPcu5DrxGsYU86l4NvQxpTjzq0DQ9qcyAu5yQEr28C1i9ZpDqvKl3jLyQ/ow80y0dPfG2aj0vuns8ahHeO1JuRrxyE8U7VDWDvdmFej3pQlw8RIYpPUQUgrxN3ic9RqR/u+TBaLzA/nI9tCUiO2bXVj3X6Pa7HSYwvD3aWbym6JA8YLnfPGZlr7ztw089bUvlvCrHYDyzzwq9UyfaPB+L8rxinc87AJ6Fuw8V/bxzInC8xqpCvEOxZDuauiq9KnFJvbrg+zzmMg49O8uuvHKF7LzZzGY9rmqnvKwGiLw12HK9Rb+NPQ/bFr2xFta7ZKx6OumJSD0NsDo91UtzvdmF+rvXL+M7QyKKvHFLBj3lli0981PuvKWgAT0SFZ69uNFQPTuv/btPQ2o79htOPfj/vbxEhqk8cFkOvXfqzzyZVos9he78u26h/Lz4/z086yZMPSnjcL32Yrq8kziUuknP2zwl4Sq79G8fvBWyoTzPrKm8f88DvQhnCL2SjYi8DPemPBde0DyTDtu8X6q0PCbw1TsWCLk8dNoBPbcXGr3lCNW7NkmYOxZPJbs3LYi7kPAEvSq4tbxEFIK9rmonvSBDBL0rOIa84/mpvB4KILxvICq9MixEO3trQz1inU+9xVSrPDZmyzxYjL28MXMwvCPF+bzhFbq8bUvlPIDsNruuo4u8by9VvOB4tjwH2S89ZtfWPHsVLL3ExtK8winPPMYc6jz44oq8Cj5yvSThqrtLs8s8cC9VPQZ1kL1DB/y8eQYBPWyDJjt2d4W8QZOOPINR+TwQo9U7WYw9ugvb9TwmxRo9WlT8PAOfqDyhEYY9ZGQMvT72Crxcf9i63urdvMK3JzxObAC9GiUNvanpMzxjcpS8tqZ0vUnPWz196xM9UlETPbRQXbzksr280uYwPHfqT73GHOq8WgwOvEnP27xWYeE8LwHoukcy2Ls4A088td41Pf8dNT3stCQ8ghcTvbSXybwWTyU8tJdJvLmmlby/jEs8BC0BPDWQBLyLU2A9AjsJvdiSAL0RMa68XZuJO+3tiLuok5w8m56avNyFG7331GG9dU1MPLTBgryTDlu7PIRCPGIrKD0E2Iy8+pzBOjeRJz0PTb481BENviPF+buauqo80EmtvDjYEz3lQJY8BnWQvAKD97zu7Qg9iSeCPQv2A7zOHlG9GvtTvRIVHjyFpg49p9oIO5cBdrwgp6M8pT0FvVD8/Tk7r/28EvlsveV6fD2A7Da8sIj9POvfXzzUg7Q85QhVvCEo9ryfA928SesMvdHKf7sJvR+8AyB7vBExLj3IuW0882+fu2FHOLxV4I68cUuGutAR7DwXlpE9na3FPG2DpruQ8IQ7xVSrvD++ST3zbx89GtAYvQ+UqjuxXUK9auaiOxcX5LyRKmu96ftvvVB7qzvrJsw7E86xu5Y5N7sib+I8q/jeuvdFh71oArO8Clqju9a8mLxYb4q8eHioPIKJujvCUwi9wrcnvIfS7DxEhik8ZpDqPBB4mjwwSFQ8H1EMPLntgbxk8+Y83LDWu5rzjr1HXBE942vRPA2wOryMfRm903QJvPNTbr2ckJI8PvaKvN4iHz1JFkg+puiQPXcxPL2+YW+98f3WOvLSm7tkrHo76204vWoR3rxR0cK87cPPvFpwrbwEZ+c7ZmWvPK3cTr3ztos7mrqqux4KoDwvco09u5iNPGrK8TxOF4w8JCgXPQfZLzyNYYm9MXMwuz72Cr2xMoc9B0vXPDkSejwdJjC9HMKQPCq4Nbwb30M5gWwHPaQSKbwY7Ci9THoIvVe3eD1zIvA88yizPAECpTz2DKO8T0PqPF+qtLw1V6C8tnu5u+FA9TuTDls74RW6PMFhEL3WIDi96dC0u6uGt7zb6Be93ZTGvLcXGr2pd4w8/KvsuXT3tDx/F/K758+RO7YXGjxoLe681UvzvNWSX702vOI7ahFePWfzBz0njVk8K/GZPQ9NPj3piUi9RzLYO87zFT0NPpO8ZPPmPBYIubx6zj+9vn0gvYaYBr2sI7s76ULcvJ+RtbwDEVA8Cr2fvKCRNb0fCqA9JTdCPey0pLxW0ga9ny0WPWbX1jtqyvG74AYPvcXiAz0FrtM8QAU2vaQh1LwQo9U87e2IvIT7Ar38cYa9eb+UvFbvuTxJFki95IeCu4Z81TrO12Q8ZqybvA8VfTxWYeE7PIRCPIIXkzvXrhA9dneFO/YMI73+SPA8vAvYO+Ik5TqZc748k1XHvLXetTxW0oY9Td4nvR8KID2rIpg87lEoPEeIb7yhoGA8aRFeujctCL3XZyS9MB2ZvKVowDxeVJ07ZtfWPFzGRDy67QE8u7VAvZuemjzsNfe7hCa+O/ZFhzwbmFe8k5yzPAmF3jwjxXm8O2cPvC/WrDxsruG8LscBPFlFUTxChQa6KziGPDattzwzO2+8NvQjvefPEb2zQTK88bZqvWoR3jyMqfe81DzIPKb2mLxfOI09dLDIvHMicLsjixO8sRbWvIuaTLvKnd280AJBvUWVVD0snKU89cW2u4uLIbxb4lS9cqGduwuhj7zTH5W6MEhUvZM4FL0YXlC7QAW2O//WSD16zj+8xqrCvGTIqzzTLR29vZkwvJUqjD092lm8PJNtvKDYIb3s+5A8WG8KPa3czrzb6Jc8MNYsvWieEz3CKc88+sd8u1viVD2FCq47VtKGO6QSKbuaSAM8T6bmPHT3NL1BhQY9twkSPB4127xLs0s85zMxvEKiObrP5Q29jG+RvAa9/rs0rJS9FXrgvKjMAD0q/6E8dNqBvD+hFryIYEW89xtOvC/HgTxKs0u76hchPEHpJTpRitY8MeXXO0hOCToR6sG899ThPChiHjxQeys8vOAcvbtDGbwPMIs8+UYqPZAbwDybnho9ZgGQvD/ogjyzQTI8BpJDPM90aD1uS+W7HSawvPqNljwygls98praulVStrs+rx67THqIPb8ZAbwsZGS8FXpgPWUPGL1oSR89RiMtPB4KIDzj+am8gwmLPKDKGT3neh29zzoCvUolc73PLfw6I8V5PCpxSbyhoOC8w3/mOSs4hry5Xym8eEDnPGh0Wj3rJky8JeGqPCKLEzlaKUG8RlwRPOfPkb1SGK+82qErvRwmsDuM4bg8ueD7u/4AgjsGvX47YscIvcFhED2l9hg8oz3kPM7XZL0htk49DT4TvShinry40dC8iO6dOgF0zLzdlEa9RiMtvbL6xbwcbRw9gtCmvKfaCDw79mm9uRi9O5ksUr1ou8a82cxmPS3jkbwkU9I5tIiePCSavr3QAkE9zZB4POBA9bzw7qs7TJe7u1/xILyfggo9JRoPvdERbD0hpyO9J36uvDK6HL05Lqu899RhOzgDzzlHiG+8DbC6uz72ijzu0nq8DWlOvX35mzx5vxQ83IUbPfPEk7z9gLE9+3GGupyQkrxX0oY6OEo7OlJuRr374y09Tl/6vMTV/bsz84A8gWyHvLWm9LwcwpC8GiWNvCv/oT1QtA+70Ektu3oVLDxYjL27xjgbPZDwhDysTvY8Iv06vHcUCT11TUw9o4TQu3/dizwhp6O91iC4vHNpXD1Borm7eUBnu2EPdzxuoXw8gDMjvXaUOLuvlQM9iW/wOmhJn7p8QAi9dzG8vJpIgzxCork8+g5pvT3aWbpPbAA8iLbcvAsTNzxEFAK9BnWQPOEVOjot45E8CYXevd7bsjzAxIy8Ba7TO/H91rwCWLw73LDWvOV6fLztmBQ9iDWKvQ8iAz3wp7883U3aulGmh7zu34A91tnLPKU9Bbw4Sjs9rWqnu4UKLj31qAO8Tl/6uxl6ATx197Q6wbaEuxQHFjxj5Ds8lNUXuvFEw7wNk4e9ghcTPde9u7w+vsm8SAedPe5RKDzREWw9TJe7OOw1d7x8+Ru7WDYmu4ClSjxAW009aLvGu/ZFBzw42JM8oaDgO8JTCL3hXKa7YQ/3vJks0jy5GD08Fwg5PAz3przpwQk9/BySPC0d+DxEFAK9q/hevWPkOzwp4/C8ZtdWvBdPpbz7q2w7CYVeveZPQTxjrHo8sF3CvEKx5Dx8a0O7gbT1u8TG0jxm11Y9sF1CvPAnkL3ZoSu8Tl96uQgvxzz2jXU7gtAmvLp9/7xFv42831sDvGk7F7pMiBA9LJylPIlEtToQo1W9ahHeu1Lgbb2cVy69XA0xvUnrjLx5QGe9aQIzu/O2i73lweg8vScJPWasmzxW0gY9xA0/vZwf7Tsx5Vc7jTdQPLLdEjzp+++8q4a3PYfSbLwKPvI7pWjAOiqbAj19eu67gkJOvJpIg7ywQI89q80jvTp1l7wLoQ88+OKKPaiTnLyC0Ka7UYpWPArMyrvXoAg9MVf/u5Vk8jzRkJm8Cj7yux5RjD1r9c08Pq8evTBI1LvDOPq8DyKDPI2pdzwVpJm8iW9wPQ0+E718si89NjsQvabokLwkmr47suuavI030DyqaYS8wEVfvPkO6Trtw888ljk3O6RLjTtou8a88osvPNQflbwBdEy9hQquPZ6Cir2NYQm97t+AOhxtHLzZPYy4vMRrvOczsbwE2Ay9eb+UPMhHRj1q5qI8tMGCvBL57LwzELQ8IkQnPSJEJ7zB4uI8rWqnO0jAsLx1TUy8KVSWPYH7YT2ckBI9V7d4PbwLWD0ugBW9Q/hQPSs4Bj09BBM9Q/hQPXrOvzyIYMW8NKyUvepeDbxSJ1o6+XHlvCYMB72+78e7CFkAOyAZyzslYn08y4HNPMM4+rufA927lCoMvGz1zTuooke953qdPGhJHz0NePk7GDOVPF7Vb7x2dwU8j0b7ukSGKb1BzfQ81MqgPGzKEjxw6Gi87Qo8PfrHfDxhD/e7RIapvDkuqztg45g8QEyiO1Q1Az0Ybfs7ZtfWO5KNiLsBg3e8LfI8PR58R710sEg98dKbPOrQNLm7tUC8KGKeOGwtjzz1xTY8ZcirO4ClSjwfi3K57Qo8vUjAMD2SRhy7u7XAPNMtnbyTfwA9FJZwvIucdrxS4xI8b4ZxvTty8Lpl3S+7RCTyPD3ILL1xRhQ9SHAZveATebu9mG69BBqzvI2RjLwuEky8DxmxOjhaZzzl4Y89tTypvBJmrTyQ3oi8e1m8POWtcTz0Y1K9GAAmulfxBj1GGYg8N/nAutuaST0rzg88N8RNvEkxkTx+EJ+7HzC4vNLoRzo7Pf28uhb/O3I9VDvjyQa8uR+/O14XBDyH95O8FR0QPBvjuzyvojC9UMJJPN5RLLyQqRW79k8ovUMtMjg4WZK8p+duPEELFLxT2tI9WtQcPKnTRLxR7nw8f9GWPPdG6LrffIq9ycsKvYEoqLyKeYM75CAYvd59X73BpY08Y4dzOjsRSrxd9jq79PgWvNkY2rx0kxA96+bDPG/vgr1feCq97DyAvRyuSDyECz69Mf6hPLU8Kb3+3ws8OGOnu5vxMLyEdSQ8N8RNvOvmQ72/ubc8GGqMuoEoKLyHWLo6Sfwdu+cv4bwaYcy8YNlQPStkKTt4FYA7ndRGvXZUCL2GN/G8qacRO+6UZjsMLVs9QRUpvEJ2zzynUAC9sxtgvP1/OrxBC5Q9Zj2BPIvQFD06EUo722VWPVZcwjy9zIw8L3IdPfZPKLzpuhA9+dEXvJfZJzuFAn49SvPduwb9yDxYveg8OSX0PHvDorv3EXW85Ouku+eZRzyX0Oc6QRUpvDZCXr3dhh+9H/vEPFneMTwB+JQ8FX42vQqqFr2SAfw8lSLFu+wHjTm2M2m8sJnwPGdzSbyn5hm9hTacvQZnLz04Wue8E13tOx1E4rznA648DSyGPORMyzw0Sx49XVdhPC0bjLysv5o8dlSIPFBYY730xHg911aNvak9Kz2QdKK8vKEuPbTm7DxVO/m8e1m8POHKW73duxI8mSakPZuzfTq2Bza98824vGWoPLuNJya94J6ovIY38bzxtS89xR49PaaGSLwAmMM7PvTfvGL6Gbu8zeG8NUEJPd6Gn7sFnCK7rwyXO927kjyworA8Byn8PNXKiLzP+xy9V71ou2+7ZD0btwg6jojMPMUePb2RCry8H1zru1YwDzx1Kaq8Q2IlvcCw97zMGAc95m2UPKDsz7xEjti8TH6NvSdMoDzJYnk8bo8xvIXWSrqR1ci8hKoXvX8GCj2kmnI80+jHPDp7sLwA+Wk9BpPiPODTmzvY4pG8RO/+O+0zQD2eaQs9f9srvK9tvbzgnqg8kgF8vCoDg7zhaTW9EA+cvfYaNTwW6Bw964UdvQwtW7w724E7hNbKu7tAiLp+pjg95OskPY60fzy6VLK84f9OPdWVFb1cwcc8XJWUu99HF71zB4y8zOTovKlynr3c++88tzIUPOc4Ib2b5xs7L3yyPBJmLT072wE8pxzivFkTpbwAzba80kiZu2E69zpPYSO9kgF8PMUePT2qad68alZfPH+d+DwYyzI9ei0JvV/iEL30Y9K8PcisvAPlv7uOiEy8ubSDPew8AD2Gode7G02iPHUpqryH95O8sJgbvQxizjzYtzO8bA1CPU/LCTu/Gl68NaxEvUVYEDyj2CW8u0CIPJvocLvYTU09sAKCugJPprt7+JU7y4NCPDL+Ib5Kkje92m4WPVo+A7ynWhU8FklDPfM3H7129Da82jkjPYJThj3zzbi83rJSvRsYL7o+KdM7Ntj3PG6Psbusiie9HUTiOngVgLtZqT685bYxvbvWIb3/oIM8+pNkvGkgFz3e50U7rCDBOcnLirrp7wO9It0FvN2Gn73D/fM8qqeRunC6j7wEEfM8f534uicXrbz2uY48VTCPPMDkFT06sCM95OLkPAwtW7s/v2y88824vLED1zvvVAk8J0wgPYnu07ySCjw8GDWZvDiPWjxN3zO97HzdvFBYY72RoFU8fLpiPa9tPbtBQIc8L7Glu03fszsq2Xm9A+W/vBLHU7rYGNo7Ny60vDLA7jwtGww8d+t2PLoWf72/Gt48OSV0PKEhQz3aOSM8AfiUPEim4Tz50Zc7vcwMvHzvVTxKKFG9T8uJPcFwmjwOuIq65CAYPXerGbs2zQ29eKLZO6z0Db3Jlhc9S/NdPh+QCT0i3QW8kXSiveS2sbxWxqi88qzvPBx4gDxi+pm8DsN0vHM9VLxBQAe8OhHKO0VYEDwkyjC9+pPkO1SkCr1IpQw9Uq6fPJmQCj3D/fM8xelJvTFfyD0sW+m7tmhcvfmcpLwawR08Rnquu0uJ9zx5bWa8DAEovTmP2jplEiM97Z2mvDYCgT16oQS8tOZsvEryCL3w6iI90VKuO4Iekz1EJPI76DghPGmLUjsQr0q8ArkMu+V4/jzdUay7OuWWu/Uu3zwYlj878RbWvAzMtDtBQAc8ZRIjvY3yMr0qzg+9eW1mPZfQ5zveUaw8H1sWPe0zQLwKSkU9JMowvRZJw7pAq0K93xP5vP6qmDwj3lo9u9YhPfa5jj2BiU49r209vQH4lDwyKQA9zOOTvGS85jxm1O+85wOuvOCeqLwawvK875Tmu80Z3LwrkFy97f5MPO6TkTw6ezC94TRCPfmcpDypCDi9kmtiveUX2DsZ9+W8/LStvL5Ykby8bDs8w/3zvEEVqbwtG4y9jZGMPCv6wrxjJs28PKfjvKC33Dw4Wuc8Uw9GvQxiTjw4j1q8WROlvL2Y7rwuEky90bwUvL8jnjxxewc8y+0oPJodZDz8HhS9QEocPaxVtDysiqe8y1ePvAp2eDpYvBO8hjdxPD2TOTtJ/B09Byl8PClCC7sqmRw7hECxumdzyTxVMA+9KQ5tvfM3H7zvyVk8K2SpO/OYRT3CnE084crbO3h2prwJ6R68ltmnvJzdhrzxFtY7sDhKPL5YET3nZFQ8ie7TvAwBKL1Dl5g7/B4UvbMb4Dyj2CW8N/nAPNhNTTtv7wK9qdNEusyvdb0cedW8Td+zPL+NhLw+9N88IVGBvbU8KT325UE8/avtPIzQFDxwu+Q87f7MvCgObbwlyjC8m1LXvFSkCrwGZy89rb8aPTvbAb2zsfm8IqiSPJektDv27oG8bKKGPB4EBb2XpDS86xL3PEgQSD33sE690byUvGCjCL3SfuE7MvQMvZVOeLzlF9g9JvUOveRMy7zozjo6RnquPI5ShDzkTMu8VTCPPEnHKr2yJCA9Lke/PO2dJrxvWj496e8Du7CZcDywDBc8Ft4HvBhqjLxn1G+985jFPCKoEr1Py4m9oIupvM0ZXLwGnKK8TwoSPH1FEr1mCWO8O3EbvRphzLyRNu+6QLSCPHnXTLyb5xu8jr0/PBuClbxBdk+8Zd2vu8Xpybze58W7Zj7WPH8HXzwREPE8IkhBveguDD1d7fo6tBtgu7m+mDzleP68junyPJWCljxaCmU9o6MyPWt3qLze50W8hyyHvBXonLwN+Gc9sxvgPHLTbTxQLDA9Xu16PYf3kzxwu+S8J4ETPIHHgbwF0ZU7Zd2vO93wBTwOw3S8hHUkPSGypzxO1vO8y7i1vAQRc7y5tAM9Ka3GvIdYurzDMRK96cX6u9oEsDzXIRo8tLH5uw0sBr2LpbY6OhHKvMI7p7x7w6I8RxBIvK22WrfSFPs7viMePPa5Dj0Q2/28Zd0vPAEu3bwW39w8fLmNPBza+7yK2qk84jRCO7yhLr3rEvc8/UpHOxiWPz2IueC8EQUHPJcFW7xBQAe8EvxGvTEq1bz0mEW8xDJnvXmhBL3+4OC8Ntj3PD1exrz6kg88DSyGuwrg3rwEEfO8NBarO3/Saz1dIu683n3fOzRLHj3FvZa9H/vEPMNn2jsiqee7b7tkPLVxnLwr+kK8vM3hPN9IbLyQ3oi8iLlgvaaGSL1hOve8H/tEvUZ6Lrsk/6O81TVEvWJbwDsGx4C73ufFu2tCNb2LO1A9lngBvW05dbv/Np29Ak+mPYCdeLy/ubc8ub4YPdujiTvIoKy81cqIvEcQSLxd7Xq6AM02PbTmbDwfkd47SKbhvBwYr7z5Z7E9TkDavBWzKT39FdS8Joz9vLDOYz1IpuE8OFkSPWXdL7wZjf88Uq4fPKaGSDtpVt+8qmlevGvhDryc3YY9AC7dOzvbgbxOChI71D6EPAAu3boLdvi6qjMWOSb247wxKlW8glTbusXpSb2Ut4m7m/EwPGkhbL32uY68HE0iPIR1pDxXkTU6lFe4vD8p0zwCTya9DAGoPLOx+b2LBl091J+quLYHNrsoDu27+ZykvLm+mLzefd+85OukPKTPZb2+Y3s9OxFKPOH/zjziaTW8e8MiPV4XBD2nHGK9d6sZO5S43ryFoII9y05PPGY9AT2Xb8G8tTypPLkfPzv6ZzE8hyNHvP5KR71Dl5i8pM6QvGY9gTwW31y8D6/Ku2DZ0DzLuLU8KgODPZjQZ7wylLu8EtATPZWClrwuR788Lz7/PC/cA70AxPY6F3X2u9gXBT2BvsG7rkx0Oz3IrLyyujm9N/nAO7nqS7zGUzC9wXAaPetGlbtJZgS8lO3RvFLjEr1a1Bw8D+Q9ulbGqLx6bWa7zeRoPPEWVr14QTM8YG/qPNgXBb3eHLm7DSwGvXIIYT22aNy8IqiSPZDeCLzDZoW9m/EwvMWIozz9Ssc7cCXLu08KEr3/ASq8EsfTvCtkqbxjJs08DSwGPAddGj1Ms4A8gccBveSBvrydPi29U6XfvGDZ0Dt87gC8AfgUvaQEWTxzBwy9LMXPPK22WrlW8ls9NazEubTmbL0ERRG7Mr8Zu/9rED3Qx/68zORovRbeBz1byoc75RfYu/OYxTzGf+O7tjPpO7Xbgjxh2VC8WqB+PLw3SL1olBK9Z598PG5tkz3cxnw8A3qEvEbkFD1DYqW8uR8/PWlVCjr9fzo7obYHvU5AWjzUPgQ9K/pCPb2hrrsv3IO80YchvXhBMzy6fxA90R27PD70Xz0oeNM741ULPVyM1LwoeFO8BjI8PFD3PDvukxE9PKaOvDR30bzSfYy9tgc2OvNskjxwhRw7SvIIOtdWjbt7JMk8+QYLvSvFTz2QP6+7N2MnvYNTBrwSmyC9NEuePBEQcTu8zeE8EBkxvas0a7v0+Ws8a3eouSe2hjxj8AS9VDv5O8MxEj2HwiC9P/RfvGkhbLxb1XG9e44vOxRSAz2LO1A993oGPbPvLD1TRDk99uXBu/SYRTxxESE9wtHAPL5jez1URDk8+dGXvH/RFr2mhkg9fjxSOhd19rx2HxW9aovSvK3rTbzZGNo8BpyiPDBoCD0ywG48YNnQvIR1pLyjo7I6iE/6uyrZeTx5OHM897DOO4If6LsTkYu8fnHFOy7dWDxjuxG99PnrPKEhwzyb8TC8fISavLCZcD1GryE95CCYvFbGKD2LBYi7yZfsPJVO+Dugi6k9/FMHPbSFxryo5+482888uytkqTzleP68hECxPBB5Ajy/T9E7zOOTPBB5gjxikLO7o24/OzXY9zv3sE67F3X2PEfkFDy6Sp08K1vpPAjpHj3NGdy8Ak8mPaAqA71BrCa8v087ulSID7zXqcc70ta1O7fSzLw6C4k8hx60O2nUVj0X7hk7ErcfvT1mMr2AWpw7j82WPDBO4bz11mU82++7PA4ieLgV/RM8gL4EvaYEqb2MVa68sPH1vEtvCT2IVmO9RhvQvHuHCryIVuM6MLJJO4qrUT2ZUEA91bIGvV9mYjvRbJI8nWr7vEwLobycljS9OYQmPBcgjrw2PrI6VhWtujWF27ypSh09TjRWvbb+BbybLBG982YHvPCf67xD1du8OeiOvJN9rjqsD2q83wl3Pb+zo7zsPge9VhUtPRc7/rw22kk8QKymvSU+Grt9FCi9rh0vu1NrUL1ggyG95KRZPOjVmDti8387HoA9vNJyTTrzZoc8RX+4ukqZczv8GyW9hi0uPfSeNr0J0A28qJHGuk/Q7bvTDmW8DgeIPJbDorwDdhk9vG2vPJS13btttuK7qJFGPRmtK7zp29M8K3vPPJdfurx8qoS83XzZPIi6Sz3RuXa8T1GVO5GMqLuFw4o5I02UvLiLozzQyPA8YIOhPNo2ZT2moEA8BgnyvC7BwzxYBrO86dtTPSAHoDyzuBE9UHSPvKKhdTy5w1I9HHL4PKKh9TseFpq8q9c6vESOMjwn/as8m/ocPHRfirwotoI8rcjAPD67ID3nBw28WVshvZoJlzwyP2e7/+DxumqNLb1UiA88CQICPQR8VLtdPa08bVL6PP4Mq7x4eUU6SWHEvF6Smztub7m8JHCOvVSIjz3raPG8CU9mvF09Lb2BLmM9seL7vIBaHD1ttuI8aynFub3CHTyKq9E89J62PE78JjztdjY92jZlPAIn5jzGWvy87wNUPaXnaTwRE349Gd+fO8sSHrwqdZS8BBhsuWdHuTykrzo7Ff0TPEBIPj0BUx+99SWZvYpHaTzAh2q8U8+4OnD8VrvoP7y7zZ+7PO4SzrqVbjS85MEYPDCdlL0y8oK7wvkXva4dLz2ioXW8iXOiu5VuNLt0+6E8W34bvWx+MzsUdrE8BryNvCxs1TriT+s8hmVdPUGsJrzfip68NE2sOrsDDL3C+Ze782YHvUq2sryPzRa9UjOhuy7egr0VSvi8QQEVvYfmhL37sYG8SpnzPIr6BL2krzo8ebF0u+owwjvdfNk8oc0uvZ1PizxBARU9LsFDvJ94wDtJxSy8ogVePF7ED7gGJjE9PrsgPJt59TtSl4m8FHaxvLvRF713iD88P49nPNWyhrva6YA8B15gPeDCzbwFNSs9ynaGvJN9Ljtvp2g86SqHO8r1XjvyEZm8QYBtvaWaBT3fih48ZGWtPOF7pLwyXCa90jqeuijR8jupfBG9gkuiuwgXNzyYl2m9RMZhunR6ejpxGZY8k32uvHJRxbyhzS48uuARvNDI8Dz6qfc7bGH0vE/Q7Tz+qEI9vkkAvBO9WrwV/RM7xIY1PSvKAr3WVFk86pSqPGh/aD3NO9M8l/vRPD46eT3nOQE8pEUXvNPBAD39U1S93ESqOVHBcztSFuI8T+0sO2KmG7wEGGw8TIp5vT9XOLxJYcQ7R9QmvREwvTxpnKc8MLJJPZA3Orxy7Vy91vDwvGcq+jwFNSu+b1oEvYDZdLwcVwg9MOp4PGAC+rcC2gE6QKwmvWrxFby4iyM9gD1dvSL+4LwJAgK85uSSO56/aT3RngY8TAuhvPnVsLwY9NQ70ta1vKVokbw0sZS9Lt4CPeAmtrsmRNW8h+aEvHEZljtMCyG9I5r4vFna+btDVoO92f41PENxc7sRzFQ8DBaCu1uwj7zRnoY7hNg/OeQlAbwagXI8iFZjPXpqSz1gtRW9Ph8JPWdHOb0wTuG87mEBPKKGBT0O1RO9VcC+PDJcpjtUB2i7dPshvdsna7zqzFm9qp8LPQitkzxDVgM9J/2rutsn67s3kyC8r7lGvYtkKD19sD+7iXOiuwj6d73DzV661f9qvPF1gTz18yS91qMMvLquHT17hwo99+SqPIDZ9Lz6XBM9hcOKvHbsJz3EhrW8f6FFvU/QbTwrygI7RhvQO0EzCTwyXCa86SoHvfvGNrzNAyS9AP4wPaagQD6ZiO88Mj9nu2UehL1pnCc864WwPNX/aru4bmQ7YLWVvLFGZLx5ZJC5RrfnvEnFLDx5loS8uRIGvcGkKTxvWgS9A0SlPOWVXz16aku7VhUtvYMf6TtXnI89vxeMPPQ6zrzpd2u7iNeKPNTHOzvEHBI9J/2rvLHieztmD4o88pBxPTDqeDuMOG880yskvB+47LzraPG864WwPGIQvzyX+1E9rrMLPITYvzwU2pm8iqvROrL/Or03xRS9qC3evMIrjDtP0O28Nj4yOpUKzLppOL+8CBe3u1XAvruDg9G6bygQvWC1FT3BQEE9UKYDPYi6Sz1KmXO8n9woPRhDCL2ORrS7+g1gvUfUJjz9t7w81GNTPaIF3jwFNas9g6CQu6u6e70dx2Y8EJSlPPH0Wb26GEE8bGH0PEgMVr1o41C9zlgSvG03Cr3uLw06tCjwPFaxRD3Q5S88AdJ3vNzgQT0+7ZQ8K3tPvGnU1rwXn+a74rNTPF3ZRDx/BS69WpPQvDJcJrt+mwq990gTvQN2mbyb3d28ogVevA1OsbyvVd47yvVePO4STr0tCO27yVOMPHRfCr3O1+o8JQwmvVtMJz1COUQ8zTvTPJGMKD2O3JC7ifJ6vIH2s7nPkEG9CQKCu8PNXjz/xQE96+mYPIeCHD3/xQG9GFi9PFlbITqYGBE9Q1YDvYhWYz0ShSs9+g3gvDCySb3B1p06jDhvPfZ6h7yXXzo9jQ4FO1PPOL1sfrM8BgnyPApsJbzt2p67g6AQvVWrCbxIWwk9vG0vPcjMKbxa4gO9roGXPB4WGr0o0XI74k/rvDeTIL3DMce8EmjsvP2ih7zEToa8EoUrvLvRF7xwYD+9RmoDPfcWH71+6O48xxNTuxefZj3WVNm8Ud6yu8FAQbwcJZQ7vUF2vDq81bsJnpm8LNC9PSeZQz3gJjY9nU8LvPx/Dbz6DeC7qcl1vFHBc7uniws77q5lu5RRdT0wzwg9ECoCvcFAQby1Ra+7Pu2UPcuutbyy/zq9HxzVPSeZw7sStx+9xIY1PT+P5ztKtjI9qJFGvenb07yQmyK9gNn0O5bDojpXahu9xIY1O64dL7xfyso8clHFO6gt3jwUEkm9T9DtvCw0pjwL84c8CK2TvavXOjy9Joa74d+MPC0lrDsywA49Cut9O0/tLL3XcZi5L6yOPGLz/zt7ovq88LwqvMQckjsUdjE9P/PPPMgEWb0m4Gy9YIMhvHGYbr0JT+a7xE4GvdrSfD3VsgY6LxYyPZf70TraNuU6ztdqO7FG5DxSlwk9S+7hPA7qyDtsFBC8oc2uPF8uM7wjGyC8IQ1bO4qrUT0e5CU90R3fO7TwQDz1cn08BiaxvIny+juWwyK9bgtRtxe8Jb0Lj588o/bjOzCdlLwXn+a7PPwOvbs1AL0L8we9lW60uOLQEr1wYD+8pBOjvYqrUbxUuoO74rNTvSjRcr2WwyI8d3OKvBwllDorygK9Y0juvL5etbzrTQE8eEGWOsYNGL1UugM9AP6wvMbbo7zEhjU90OUvPZ9Akbwy8gK9hslFPeg/vDy6fKm9Jag9PK/WBbw/V7g8BoqZvQ1OMTz+Ph+9KO6xPG/EJzy/5Ze8vkkAO6dZl7wUdjG7UKaDvHsGYzwqQyC9XpIbPRhDCDzgJrY6QN4avSUMprtCnSw916nHPJbDorzmTjY9PPwOvXdzijw2opo8MM+IPbQNgDyev+k8eN2tvKKGBTwbOkk8ynaGvPiAwrzDla+8Ianyu7GVFz0WA8+6TS6bOyFcDjxmD4q8tIzYPIXDCr38mn293wl3Pc+tAL3fbV+5hwH1u807Uz0Vyx+8mEoFPeJP67y5w1K8Fme3u43xRTz/k427b8SnOsVxgDx/oUU3QYBtvYQ8KL0e5KW7nr9pPZmI7ztVwD49T1GVvNDI8Lw6vFU9+DkZPevpGD0sbFW9OiA+OxB3Zj3M5mS9FHaxvCTvZr1kndy8ooaFPbu0WD1KmXO88fTZvPF1Abzi0JK8Ga0rvBX9Ez3nhmW9qcn1uzm2mrvfCfe81YCSvONsKrzUx7s85flHvCuYjj27NYC8aZynPNGeBrwxa6A8vxeMuwPD/bzAh+q9seL7OsLc2DyAWhw9SX6DvcuutTtWeRW98kONvBj0VDz8G6W9r7nGPHMKnD3YlBI9gq+KvICMkLt3iD89xXGAvUEBlTuf3Ci9J5nDPCRTz7tYBrO8/XCTvK+kkbtub7m8HmN+vIC+hLwyjpq8HCWUvKNazLzLEp48xlr8vIy5Fr1WscQ8UjOhPNiUEjwX7hm8T9DtO0XjIDwk72Y8h+aEu918WTxSesq8rgBwPEQqyjyiIp08nDLMvBUvCD3BpKm8NdSOPMbbI7tWeRW8F59muz46eT0xBzg7aDKEPKc8WDwtuwg9+o4HvNn+tbyNDgU9Q9VbvCrC+LzFPwy8zIJ8vFdqmzyw8XW81bIGO+y93zu5Ega9HxxVO+uFsD2j9mO8yvXeu0CsJj3LRJK8Mj/nPN41MLoShSs9yllHvE6Yvrwc1uC7ShqbvMf+nbv+qMI9JT4avCmnCL1O/Ca8eEEWvG+naL14QRa9pefpvG03ijveNbA8uRIGvb1BdjtQJdw8+2LOOTogvrsCqA29hcMKvObkkrsTWfK84Re8vJ3OY70LQOw8ZR4EPXT7oT2skBE89VcNPWJ0JzukE6M8vkmAvMCHaj3186S8HHJ4PM7X6rzmTjY94a0YPWk4PzlbsA88GzpJPe12Nj1EKsq8T+2sPFFCmzy/syM8F1KCvMxnDD2Q01G9zJkAvQkCAr0/80+9jka0vK6zizxlOXQ8AdL3vNjh9jzEhrW83HaevRYDTz1FFZW9Sz0VOyO3N7n4HNo8E1lyvOg/vDxbTKc9WAYzvYTYv7zmFoc88pBxu4Zl3bzfbV89YVdovLL/urzd/QC8NxJ5PPAgEz2befU7/XCTPBM+Ar0Stx878XWBvc5YErwdx+Y88CATvUiobbuIuss7E73aOgffBz21RS89g9KEvPyafb25Jzu8b1qEusAIkjz4HNo7d4g/PcYNmDpnqyE9WAYzPXsjIj2jWkw7MQe4PO/LJL0m4Gy8Ud6yPFFCmzyJ8nq6HXqCO0q2sjz4a405+IBCPOnGnjzBpCm8gkuiPBoCmrpHcL68q7r7vFFCm7zDMcc8tA2AvNvahjzvy6S7nJa0vIkPOrtnqyG8/VPUvDt1rDwlDKa8tChwu6O+NL1EKko9neuiO9LWtbsegL28GUnDPLjvCz0MFgK934oePcOVLz3YRd+8hDwovI8a+zwhXA49EJQlPFvovjshDVu8QCv/PH5pFr2N8UU8M/g9Pd2ZGD1by3+8PWYyvJgYET2gMRe92JSSu0V/uDtSZRU8rWRYvZam4zw9Ako8ZlmPunB1ZzyMWU69clkkvQZRBL3xBZi8xsgtPV1OtjyCJ2C7HoZhPAjUYbwaOLe7hLKuvPBTuzsCBrS8wz1fOyecBT3wUzs9HuqaPAUtybv/N429QZwvvN7si7zCC3+7R5y2O869cDws3+S8DNToPOusIryA9f87+4Wpu+usoryeb4C8Qw6OPMLIpjzu3gK9vIt0OubI3rug5Li8PU4FPbm9zbsSLd68q704PUwcwbzzngs9T04hvRE4qbwkAxK9ENGVu11D6zz7LDu8ejIdPfYsND0cuLq8peQ/vXenTrxCQ0G9nmQ1vLLvH70a38g7994QvQe4lzmRZKC9LbhWvWIZirsLVGW7abIEOvGsKTzISDG8eM5jvNzTmzyhPSc8SHUovUecNrzlhQa9QkNBO6sWJ71yp8c7/yzCvNaWaT2LJ+47rBYnOcdvP7wqBnO9t+8muzLDqDxhnOA73SE/PHTO3DzIoZ+802/Uu8Q6hTuLpBc98V4GuzlDMz3rU7S8xEgqvcTk8LvS71A9dIA5PYiytTvf+jA88aHeO9GW4jxgWYg8B3iZPBxfTD0akSU9XtkEPWGnqzmRAOc8AlRXPKE9J7wH0Qe8KrjPO+4spjwPERS8Jl/aPC5qM7vaSM289yHpPIoyOTzd7As9rpaqu5Vkp7xeJ6g7J0MXPDzOgbwCBrS8MDjauw/7fTtAas+8nmS1O5q9nD3bSE297SFbvbyWPzypi1i8OxHaPCM4xbzyxZk8vhZDPIm9ADyLi6e9Gi3sPNNvVL07dRM9sYiMvPPI8zyRCzK9badAPNA6mrvuLCY8wQv/vBLU77zuhZS66dMwvYeAVT1U9Tm89fpTPEuR8jx5J9I8PI4DvffTRb2EWcA80pZiO0nnhrxew2490JOIvAQtyb1bHNY8odltPC/DITyXizy99AWfvJPkIz10de48IV9TPHgLCD1t8ok8hFlAPCycjDtIdSg98cUZvS/ckbxCnC89nrJYPCRcAD0xXBU9zr3wvLhk37vHbz+8Cd8sPTbDLz2xb5y8N2pBvIinaryxvb+820hNvUeRa7yvliq9l32XvGIc5DyGzni9wboBvcoW2Lt12ae9XxxdvKNZcTz9Xhs74G9pO+hTrTuU2Vi8/qFzO6tZf7z/LMI8WQAMu+Z6u7wvwyE9J0MXvf96ZbxlnGe8ChENPJjkqjzV+qK6994QvQDU07xyp8e8M19vPONI2zu6yBi9TGcKPICypzzQb828IzhFPMZ6Cr2mlpw87oUUPGh12Tw/zgi8rpYqPI+A4zqzCBC9J0OXvMiWVDzNllu8T06hO1ecUjwlEbc8H0OJvUqcPT03HB48goBOvSAGZbwD0QC8pdaaPAzfMzzSluK7gs5xPNwsCr0M37M7N1/2PEucPTx2AD0870WWPTBDJTwTEZs7DXv6O8cWUT2GMjK9ahmYvDVDrLqyljG83CwKvCtDnrpJ5wY9Og6AvPBehrmdi8M9CIa+vJKn+Duclg69tMgRvGfOxzw/HCw9oTLcvOVvcL2m7wo9JOohu8hIsbzqRY+8yyGjPOpvdz1c9Uc8R5w2vehIYrwhuEE8oJYVvraWOL2u7xg9wb1bPbQWNTyy7588JRG3uz7qS70PEZQ8JrjIPLgL8bx+5IC9LzUAvWlOy7xgpys87FO0O4bkDr3xXga8yKEfvFBnEb0PVGy8i4snvdJIPz1/C5a78FO7PNhv2zuxFq68Ia12vIekELy2Mv+8H0OJvaUviT2IWce7ymR7vIeAVTyB2Tw9dwA9vfRTQj3R+pu7tG8jO26nQD31SHc8+ay3u+P6t7uPJBu9V5xSvAjfLLv33hA9nT2gvO9FljwlHII8aU7LPM3kfr2UVgK78KwpvZEAZzxP6mc9BS3JPG9yDT3AYZM8iADZvJELsr1RHMi7eAuIvVF1Nrp7WTK9DlTsOkjOlrks32Q85wWKvcYhnDwBX6K7kbJDPYBZuTxpsoQ7UPWyPM1IuLxSHMi8WychuxqRpb0TuCw9ijI5PUfqWTvc0xs9NPUIuufvc7wHVN48+ay3vIuLJz0duDo+oYB/Pc8W3zxHZwO9r5YqPWSZjbwcwwU9vEicvOj6Pr2hgP+8GYOAPNghuLwzEcw7htnDO/wsu7wUreE8uAvxvEqnCDxsHHI9ewsPPBi4szxIDpW8gPV/PahkQ7xNJwy9oDJcPBXfwbxWavI77shsPYD1f7wJ1GG91u9XvN6WdzzFYRq8HBGpvJjZ37wa1H08Ft9Bvbhk3zyrvTg9Z9kSPbkhhzugPae8CrievLOLZrwPuCW9WichPFUcz7s9nCi8Tc6dPI99iT2WFgS91NONvCARML1H9aS8dUuGOzbDL70CuBA9tovtPNTIQjx0J0s6Aa3FumCnKz0RkZe8Aa3FPE6R+bxdTjY80e9QPOXTqTyv75g8NhwePQTRgLyVZCe984WbPIekED3Jug+7nmQ1POF6tDv9Xpu8+Uj+vPWsMLzYbAG9p70xvVWAiLyVp/+5fYDHvK49PLvfbA89dCfLPD6RXb1HQ0i9XFkBPYLZvDwTagm9+Uh+vSKDDr0e6pq7QurSOZq9HLsH+28850hivWansrwoXIe8O8M2vMTkcDzTep+8NZyau/D6TLypPTU82G9bvDscpbwdrW885kUIPbWye7tuTtI7AIawPM3vSb00Qyw9MIb9vEx1L7xpp7m8E18+PLbvpjsKXzA9gs5xve9FFj19gMc7IGoePTK43bxzywI9XtmEPPkFJrxLkXK9Bga7PE0cQT0oA5k7aac5vcnk97vDIRW81yG4O5fZX7y+yB89hSQNPV0ZA72ist88yeT3ueKhSTxizkC9qFl4vEXDRDwgA4u8A9TaPHcAvTnjrJS70VOKO1RD3Tx1Swa9LzWAvWGcYDzphQ09FeoMva+WKj30BR+9z29NO1wAE71RJ5M90aGtvNpTGDwa1H08iQskvbbkWzzmyN67PrUYPPSsMDq7oYo99VPCPBzDBbyY5Kq8puS/O0ecNjx0J8u8pxagPHtZsrzcIb88WychPVUcz7pC9Z28GYOAvMZ6CjzaU5i8QkPBvIWyrj17siC9VEPdvD6cqDxB6lI8cqfHPKsWpzzGFlE8o28HvRStYbuWsso8ETipvOOhST2fb4C7MEOlvP/TU7sCuBA8MJHIu0h1qL1bHNY8mJaHvB24Or2YMs46NrUKPOF6NDyJsjU9zZZbPWr1XL0E36W9+beCO6HZbTxZp528uuGIvVtAkbxRgIE8k+QjO3B15zw1nJo818hJvUucvbvu07c8o2+HOgH7aLxUQ108NsMvPZSA6jxAHKy8usgYvB6RrLwPVGw9Ll/oOogAWT1o8oI98FM7vM2hprqPMkC9kmQgvRgGVzx7sqC8sMgKvPbI+jq9vdQ8yO/CvJiWh7v5BSa6RMNEvQx7+rxGkeu8p28OPMW6iLzm06k9BNRaOxbfQb2wsnS9kQBnPM6hJj3WUxG9fksUvQSGt71TQAM8F63oPE3Onb2vPTy8oT0nPWjygryECx29suRUvLVvI7zGIZy82G9bvbrIGD1Sams8jABgPM2hJry8SJy8nrJYPL9IIzxNzh0850hiuxgRIj3Nlts8QI6KvRMRGz2CgM65iQskPcCWRjxEHDM9/bcJvagL1bygPae8XAATvb/vNLxNamS8sMgKOhNqCb3uIVs8DlESvc698Lt/Tu68SHUoPCfqKL2Q/Qw9nmQ1PPOFmzyfLwI8dc5cPb+hEb0yHJc7T04hPbWy+zq0IYA83MjQPNLvUDsyajq7mVaJPNmWcLxpACi9JRG3vCVfWjxdnFm8v++0vHAyjzs0Q6w718jJvHDOVT0pEb68/PeHvWSZDT1bJ6G8EjgpPHPLgr3p0zA9PU4FPfwsOz1iHGQ9Y9kLvb291LyoC9W8eCfSOxWRnjwAInc9togTOj5DOr3n+j46yO/CvGcygT1ZwA299KFlPMbIrbxCkeS8PfUWPTd1jDyiZLw7Q7j5vKk9tTwyX+88zeR+vP8sQrzBZO284NMivW3yCT3p0zA9XxzdPIkA2TtdQ+u7B1TevLLkVD22i+08GtT9O9FTCrxVwAY8eouLvUGcL7zaSM08WnVEvCaDFT1gTr08iQBZvMW6CD3cyFC9OfUPPRwGXryvPby8yeT3vQQi/jv83pc8M3UFvb29VLww6ra8ec5jvfCsKb1XnNI88t4JvVrOMj3/hbC5JrhIPRBftzwNOCI9VhxPPV+ZBr3jSNu7wboBvccW0T32LLQ8b3INvFf1wLy9FsO8BS3JvNSTj7uCMqu84Xo0OzCck7zLFti6X5kGPQ77/bw2HJ67Ll/oPPwhcD3CugG8IV9TvP8sQrufLwI9gtm8ODJqOjyxC+M7ynoRvTU44Txfzjk82ewEPXnZrrz8et44bk7SvI8kGz02EVO7KWqsO7xhDD0F+JU9F7gzPPX6U7zuLKY8fYBHvdqsBr0PuCW5KtwKO73In7pQZxG8nm8AvVNAgzoKEY07V5zSvM8hqrxznPy8WxzWvPhTyTvn7Jk9dXXuugSGN72RWdU8QTh2O27147yNZBk7FTgwvdZTEbxTTii9aQCovB2t77zl0yk9mOQqPcHIJjyssm29C63TO88WX72jvSq9rMgDvMchHLzqb/e8PpHdvPx63rtagA87xPqGPGuAKzx28he8iE58vV2c2bwjhmg7X4AWPKwWpzuebwC9PDWVPN+W97sSOCk9S5FyPaCWlbzhyNe8sb0/vNahtLxHZwM9L2ozvU7njbtRdba7o1nxPD91Gj2UVoI8Vc4rPOysIj1CnC89xPoGvV7ZBD1q9dy7mOSqPP23CT3wSHA9PLhrPLRk2Lza+im95no7PL9Io7y9C3g8oe+DPIKATrxngKQ8sb2/vM4TBb2hgP+7+aw3vZJkID1U6u68ZUP5vDXqPTwMhkU9AIYwuxxfzDy8SJy8lf0TOZ8A/DyYgPG7cvVqPZ/WE72Nsry6tpa4OtJIvzv5BaY8ck7ZPLs90Twr3Aq8B9EHuXXO3LmEWcC7854LvKxkSrzFYZo8/NNMPKOy37vVSMa8L8MhvDvOAbxRdTa9J5wFPXVLBjwjQxA92NOUPWvZmT2m74q9HGqXPIbZwzxzADY9I4ZoPYin6jxCTgw8RM4PvbuhCj38hSk9OUOzvBKGTDyd2WY8qBYgPGCcYLsQKoS5ybqPu9hsATyzMvg7NUOsvL1vMbz5twK9YE69u11D6zyC5Ic86XpCvPSssDqLiye7VYCIvHVLhr3LvWm6IGqeOAfRh7yoZMO8TWpkPQCGsDwoA5m9oe8DPQdUXrs/dRo9PZwovEHqUj1wdec8D1ESPHQyljwXrWg840hbPGAAmrsa6pM7ndnmu1Zq8jyovbE86dMwvaDkuDtmWQ88QMO9PBKGzLs5Q7O87t4Cve4hW7zWlum64wUDPaMLzjsUKgs92xMaO0fNBz002/I8dadYvaefsry9HIK7lEwJvIb1VTzd9BI7w7UePPGIfjyz6AO9IoFYvH0Uhjz805S8jKUKPD4fGD3o6jU9K67lvPc4M7wb4cq8b4gtvd88Rju29KC8tea+u+twxLzgQzc8fk7Xu24JkD0lpI08UertvAbx+jzer8a8gmqbO903mj1OXW68xrrKvFNEDTsgAru7Mt23vKyEDD3YlUe71E0UPYR2OD0sRJu8KnSUPA+2Ar3VAde8NKiSvOEOErvUCg28aObaPOjqNbxl00w9A+Xduuvv4byiBNG7SVMWvUe277zjQXK9G1n3vLNZv7vY4YS8g/CpPG2BvDvmXTa9+T8kvN+BkryxS9073r2ovAHe7LwA5yI95iiRPLpFir1SgKM78IpDvfcqUbuFQRO974PSvOpwRLxDIv88wqe8vJZRNTv4uRU7IHP2u2FPA72BLgW9E0OCvRlbvDvG/xa8LTtlPJ3q0bynlvw8erpmPaH9X7s26VS9PApFvZRMCb2ssHu8L0nHO3OiLD0rPSo9VIXPPIuXqDxJUxa8kz4nO+XOcb0qe4U9o4pfPNL8Kj2JzhK8jZxUPWK+eTw5BRm8A20xPYR2OLyDuwQ9A/M/vQBY3rswlYQ8I5arPP5ZIz0xIoS7+MAGPaSK37yEdrg7s1m/vE9tFTxyE2i7KSjXO/g/JLu7DiC8g7sEvE7lwbwb4cq7FLlpvKQJ/bxFv6U8LbxHPbmBILzFNDy8ZmkCPf3ahbuCahs85tVivdIDnD3Rbea8uw4gvJ1ypbysP0A9qzoUPUlD77zdr0a6RLHDuZretDy/ohA94IiDPXanWLwnm1c8vAXqvFDzIz0Y44+8EruuOv1LQT3aqhq7VhQUPSRhBr3sSQE9rYSMPYmQN7yDu4S8DRlcPGu/Fz2BLoW9r8y/vKs6FDx4Lec88AnhPGn2AbzNppU80/P0vDHWxryzWb+85E9UvFBr0DuZI4E8V5oivdfakzwUuem8VI4FPA8uLz1SAQa959zTvHSpnTvpYuI8AOciPPaypLyOJCg7UXJBve+DUr0VSK6879aAu+DEGbz5P6Q77nxhve39QzuzYDA9hX0pvcIf6Tv2KlE9DiDNvF6r67w5yQK9JY11u4b11TzGQp66oMMOOT+etbwYzHe6/2cFPYPwqTwZ0+i8WyeivEEd0zsMmr485FiKu6aYQb3Es1m9FcBaPfAZCD0geme9BPO/O/iw3zw26dS6O4unvGJGTbtgOOs8Ph8YvHSZdjyUyyY9pBkkPdpnEz1ylEo8GNyePVcL3rzYFGU8hoSavBnaWby+m58803vIvBRBPb1PZN+6oAaWvDHYi70wyOQ8eLU6PIBcOT0hig684IgDvNoixzz+WSO9+0TQvPm3ULyxnou8ZMxbPElTljuTRRi9JZ0cPc8zlTxTgCM9BvH6PFyk+ryzYLC8BgGiPI+xp7qotAW9HXU7u2jfaTytRrG7gmFlPYb11bxK0jO8Cwv6vOblCbya7Ja8YUbNPHvB17vgxBm7n35CvK7OhDz6PV88hwO4PEgQDz25gSA9FUbpO31H5rxUhc88bn/3PJRMCb7iwlS8PILxOxlirbxN3tA8vgzbPKefsrz805S8dCFKvGKSij2gd9E748lFvc8zFb1WkzE8W59OPTf3NrwMmr68oMOOPEWDj7ylmEG80sCUvPOWYL3+0c88F01avF0sTj1WBO283j4LPQbFC7zHQh691YkqveHLCr038MU8hO7ku2jvkLspsCo8JZTmO9QBV7y/E8y8G1n3vCxEmzxgMfo8SlqHPVKAI7xVhc+5EPkJOjnJAr2/E0w9DN8KPQbx+rxSgCO88pbgvMJyF7w1rwO9xC1LvdokjL1eq2s8YtWRPCWUZjxcNYS7gvApPex+JrskF469pN2NO6clwbz9UjI5cI1ZvPASlzuCcQy6e0mrvLn5zLyLFsY8YsXqu+4LpjvyHrQ7YD/cOp1yJbwheue80ntIvPYzB7yeaW+9jqo2PT2J4jt2Jva7tG4Svez2Urz5RhW9Bw+EPNobVrwoMQ09bgBaPqywez1kzFu9XbShvUlMJbuJkDe8JRVJO31O17yNJKi8kLGnvB58rLxAnHC8G+FKu46jxTysP0C9mCMBPGFIkryUy6Y8DJo+Pb4aPTxjxeo8pAn9u7BbhD2No0U8/kl8vW+Wj7zcMKm8u8uYPXWgZzwxTnM8EjNbvRfVrbsCZsC7xsE7PDHYizxTcPw76/ZSvSMO2Ly9jT09i5eoPHQhSjy15j48Qys1vPaifTxHRbS89zizu5dYJrxuf3e82htWu6qrzzwsCIW7oowkvZgjATwd9h08fA0VvZ//pLx/21a9RCnwPPIXwzz8w+27bgBavMvUyTu1Zdw8aGDMu8JyF70xz1W9hXRzugL1hD3BoEs9Qiu1PDZxqD0kFw49/Lz8vAPlXbocdwA9uogRvVx4Cz1kzNu87IUXvauyQLxU/8C7ft2bOmC5zbyI1QO8A2T7PBfMd7zMY468RClwPZPENT0fgx28MSIEvaGFMz2x2qG6NngZPBx3AL0ookg9GNwePd0u5Ly4AoO8Rb+lPGC5zbyZ1f68UeptvTg8g7wLk8081VSFvSMXDjzeLmQ8AvWEu1YLXru9lK48XjowPFXRjLx2Jna8YLnNPF46MLyZ10O9ekI6PcEYeDwDa+w8dq5JPC/RmjqlkdA8m6mPPZtkQ71V0Qw98ZG0PMvUST1gP1w7G+FKPGNUrzwH+Ou8jiQoveppU7wQJfk7+5CNu3CNWT1ix688ft2bPPKP77wQLi+8e8HXvAJtMTzk0DY82A10Ovo93zwvyqk8qiP8vPlGlTtTcPw8qyptu/ai/TuzWT+779aAvG5Mlzt3PY47At5svH9cubxV/Xu9ZFugvLoAPr1SebI8IxAdvQbFizxJFwC9xLNZPSaU5rySApE8+j1fuzdvY7w9mQk7qvcMvUhMJb3bsQs9FD/4PJ/4Mzzvg9I6ukWKvamkXjwnm9e8Of4nvIZIBL3gPEa8gNTlvGn2ATsV0IE8PApFvFX9+7ya3rQ8PILxvOTXp7v9yl49qJ1tvdqjKbzAqYG86mnTPBvhyjw397a87gumPCYcOr1AnPA8RPYPPEY+Q7rl1eI8stFrvC/RGjzdqNW8H4OdPBIz2zyrKm299rIkPVufzjyWSkS9VQ2ju5K2U7wWVpC8ae8QvVaMwLx6Qro7ZlJqvYHix7zaG9Y8KbAqvJgjAbw38EW6a78XPPy8fDtqdR+8Td7QvESxw7vWCEi66GsYPJtkw7vynxa8NWNGvOFDNz1BcAE92m4EumhnPbxgP9y8OXZUPY+xJz0/H5g6m+wWPcziK7zU+uU8oMOOu2zy9zuGSIQ9KCFmvKmrTzwGxQs8CyKSPWrtS7wbaZ48U4cUvHxXjT2MHTc8FUiuPMjILD3iURm9ebP1PJS9RLvWCMi5MBsTvbHaobt1L6w8Y1SvvDuENr2swCK9zmFJuywIhTyxyno7U4AjvbRX+jsHh7C8RooAvUavfrv1pEI9EzpMPKUXXzq6y5g8fMjIvH1HZjxT+E+9n37CvMpMdrwrtxs9Ztq9PHiAFb3zYwA8mCMBPDj+J71r9Ly6DKGvOUIrtTyssHu9ytaOPXb6Br0XVEu8uHO+vH6hhTxZqAS9RTDhvB32Hb0Lk028EDUgPTyC8byEdrg7FUZpvdaQmzwD5V29zukcvNwpuDxbn8681oD0Osm/9jzzHrS9G+FKPUBpkDq/E0y9rhEMvFykejyNG3I7m9zvPEOzCL0VRuk8K65lvXauSbyJAfO8vxPMvG4A2jqJkDc8zFpYvAqcAzrQ51c9h3tkvQ0ZXL3Qb6s8Qyu1u1N37TpQa9C8oxKzPdQKDbxWC1682OGEvNwwKbtxlEq9TddfPQcPBL0A13u8u9IJPbKeC7wKGyG9E8KfuhEzW7wm5xQ9uo8CPQiHsLqb4+A8JpTmOWJGTT0RPBE9AvUEPGXTzLzqd7U8PpDTPF6yXDvAqYG82B2bvWLOIL0SM1s9LcM4PBppnrtYmiI81QHXPDj+J71J0rM6ErsuPQyavryG/EY8hwopvfEQ0rwjj7o8NKgSPGJGTb3FNDy6s9hcPNUBV72eaW88fUfmvPGRND3QOoY8xgaIO59w4L0/D3E8kq/iu7ZsTTuTCQK9jiuZPJdRNb2jC8K8XDUEPcEYeL0OmHm84UooPWx6S7ksCAU6U/jPPFwlXTxWGwW9yc8dPWTcAjw0qBI9gmqbu17CAzzwisM8ZNNMuzl2VLyLl6g8zGOOPPYzB7zXD7m8owtCvXQhSj32siS8h3vku3/dmz29jT08m7AAPdwwKby6eGq8sUtdPMGgy7tO7DK7IgksPU7sMjzvg9I7g/caPcDll7t6uma8esMcu1YLXrxBpSY8Z6WYvJK/ibxM0O68QGkQPUW/pTvGOy09u4ZMvZ9wYL1rbOk7ANf7uzl9xbwX3J67OvXxvL6ULr0Z0+g7YEiSO515Fr27/ng8zemcu2ZpAjzHOWg8mV+XPZVD07tCJES94kHyur0VEbxYEk89GeqAuxbHS7w4/qe8pZFQvCECu7wC5d086nc1PVqoBDxo32k8kTBFvUEkxLuPImO9UXJBvc7Z9bwe7ee8Y8VqvTj+Jz3+HY29ebP1O5nV/jxGigA9BQGiO6IEUb0QLi88yMisOtA6hjmvVJM8O4Q2vcDllz1pMhi8MVepO969KLvQbys9VQ2juw6oIL3c9BK97/t+PeRI47y/kum7VQ0jPFmohD21Xmu7ChQwvH1H5jwzZQu8ftaqPIaEmrtvj546Dy6vvLsOoDuxS109XKT6PGAxer3JR0o5HkCWvWfhrjyRqHE7+j3fvDBQOD2OJCi9bn/3PA4gzbwY3B69ChQwPLrLmLyffsI8NzyDuncmdjvoYmI8lZaBPM/g5jwV0AG9G2fZvEIypjutP0C87gsmvXo7yT0csxa99rKkvFKAIzxCMia92hvWvId75Ly/kum75NA2vD4fmDwffCw97UKQO/5Ssrz8w+28/dFPPMOurTs+kFM7JZ0cPQZ5Tjyb5SW9+DizvPEQ0j0PtoI9Rq/+O2xzWj3Jk4c9KSjXvPWkQj2XUTU9zekcPQkNPz3d9BI7AOAxvbqBoL0b4Uq7iNWDPPACcLsCZsC8BHQiOw5sCjwllOY7OwNUPLRuEj16O8m8A+VdOpXLJrw16xm85aKCvRdNWjyxS908A/M/PDXi4ztTRI28QR1TvOZdtrxGioC8EzrMPDXi4zvRfQ0834ESvaCFszzz6Q48aGBMvdWJqrz8w+26y9TJPH5VSDwTwh89xDQ8O1UGsjsXXYG7NK+DvMU0PD2StlO9iQFzPTh2VLqgBhY8oxKzu+bVYjrDJto8RYOPPOp3tTzyXI+8RjdSPC1LDL1tAh898AlhvLf0ID1IPP67FD94PecvAry6Jjc81VOePIKkML3BGLG8QcuwuttFGD2l68m7gqQwPUa957xsM/85b5hBvW4Ehzs9bTQ8MLj7vKe1SDzOF4c8fRBwPbKgAr1y9r08AyGvu4f7ZrokCsw709oCvbBq+7zz3oE8du86PDh09DvJA2U9JjnKPBkmGzwChms8fHw1vOnzirsjpUy8OA+4vBpVmbx9RrS6z5DfvBCFhLqZopm7y5divFaa2DxJogs9n2UVvfNDvrf1ofe8S69hvBfBG72AdTI87htDvLxVtbtpQQu9vYSzPapJRjopMse8p1BJOz2cbztgVpS7vp+VvUbzK70uxge9iGCpN9qq1LzHJQ29M4I9PKgaSDw7o7W8LZBDPOOcETtRw4O9FpIdPRO0Aj3NK2C9A+utvKnkRr0mnsm5zysjvfTXO7wl1Eq9eeg3PGh3jLxhT867kRyiOy4k/rz1oXe94gFOPWcSjbuPHF+8IXbOO+8U/bzH1Oa8znyGOXGYBD38k7S7xUCsvHroN73p8wq9FotXvA6MB7xmd0k8LSuHPUC3FLqwoL88cva9vEjs5Twy53m7f6RtPYUxaLybNtQ8D2rfu12MUj2xO8A88UoEPXD2ejywBfy8AfIwPRXjgLxm3Mg7bmJ9PcfADTxscAk9O9k2PVLXXD1s1Qi97IcIvQunpruKWWM8TK/hu4mP5LyglBO9vToWvRHqgzziAU68PDdwPL2EM7yjvEu8csD5O02biDzp84q7ZOPLvKXyjzzRq4Q7rHjEvJXfnb29ujQ9DgXgvFb/Vzw5qri8k0ugPPia9DxvmEE95JXLPFbQHDzYsZo8l6mcPHeDdTxXmpu8AY2xPcEYMb1W/1c82UVVvMCzMT28hHA8khVcvfbQdTxwMwW9aEFIPUSOaT10LAK8DnElvZgOHLwTmaA8ydQpvSaeSb2EU5C8h0wNPWCFTz0AKDK8//HtPJDSBL3gN0+7r3HBvOgpDDy+Tu88radCPIrFqLyTS6A87FHEPEq2p7vfbVC70SRdvXkDmruFMWg9yzLjPA6g4DxxkT691R1aOs/1Xrxm4448SrYnvKgaSDy2LTq87xR9uzv0mLwtYYi8zGHhvPVyPL0MQqe8/PjwPL2Es7yBWpM8Y37MvN9tULupUIw8gaQwvJbY1zxqcMa8uVy4O/JDvjxsn8Q8bs5Cu54vUbzC/RE94G2TOi5aQrx5npq7W8LTuznFGr1cJ9O7dMC8vGBWlL0XXBw9isUoPYVnLL15svM8d4P1PK1Cw7zDdmo7insLPY/tozzzcnk8vR+0vJjYGj0Lpya8MCRBPS/1BTs4Rbm8HE7TuxJj3LzP4YW9sGr7POGczjy3LTq9uVw4PDHuPz1K7Cg9v58VvHeD9bzVglm8wRgxvVvC07y2Yzs75fpKvX8rFTwOcSU9xEDpvC5aQjxfu9A8v+kyPQp4KLyxO0C9LpCGvEwUYbxc8dG7ifspvXAsfDyCCTA9gD+xO80rYD2WDtm8lkSdvA7xBr0nzcc8zvykOiBHEz3LuQo9ucG3vGqmCr3Ib6q6koEhvQ8FIz2MWSY9maIZPVhkVzy8hPC7mtHUPBfw1jwhRxO+9aH3vB590Tv0DT260UaFPBMtWz1sM3+958SMO/z48DqRnIM9t1z1vNH1Ib2S5qC8hR0PPBnwGT1v/UA5xtssvBAghTzdPtI7sjR6vE5KJb1u/X28sTvAO9BaXrwAV209h8yrO3CYBDrNxuA8zhcHvcQRrrxMgKa97+XBPAK8rzuNdAi9p4aNPEL6rrsMQqe8ulXyvG0ERDyVFZ88eIM4PcDOEz20Y/i7je3gvFzxUbzOxqO8P1KVPP7CMj0w9YW9X7vQPIxZprySels8ALxsvRO0gr0rK0S9ciy/OankRj1RQ6I8/F3wuzSCvTzf2RW7AVcwvQd/qzqSsNy8hFMQO7PPPbxeVtE8gm4vOsBOsjyPbYW9wE6yPAgT5jyQgd48VPKBO8B97Tw7ozU8PCMXvRfBm7y6QRm8gNoxvYB1sj146PQ8ebLzPOkixjwnOY08RvOrvEhR5bstkMO7x28qPVf/Vz4EBhA9pfKPvJk9mr184TS9SYcpPEtsCj2sp386je1gOpBSo7zEdi29rwV8vL3VljxDFZE7AoZrvU5KJbvuG8O8TBsnPczNJjxopsc85sTJPMFHbL2V3509UjzcPDC4e73+J++8eZ4avC4k/jwW9xw85fpKvCjNR72nUMm8Y7QQPayuCDxSPNw889f4uz6cMr2COOu8SL2qPFUGHju3XHU9IHbOPAmuKT0ISao7O48ZuzhFOTzV7h48FeMAvabryTzXHZ08usE3PP7CMr2gXk+8i6oJPXIsP73nKUm9jT4Hvflk8zzg0s+7oPlPPMzNpjzf2ZW8nABTPWo6Rb1ewpa86odFvTcP9bxJtuQ87q99PQxCJz0R6oM97OxEPXi5Ob0AV+08jPQmPdH1Ib3jZpA7tGN4vE2biLw4Rbm8kdIEO0+vJLtd8VG9tP47vUKVrzwuif08uCZ0vTh0dD0cH5g8TkolvdH1obzdPtI7c/Y9vMZvZ7tWNdm88UqEPOnzCry3wXS84dKSvbE7QD1XyVY6jYjhOweajbu59zg9UXLdPHIsP73VCYE8qRoLvD8cFL2yOwO9U6FbvfY8O7mJj2Q87q/9PK9xQTz2Bro6VPKBvXVU9zxwkfs8eE10vCB2zrwOjIe86r1GO92qFz3I1Km7gAntPBb3HDzvSkE8UQ2hO6sTRTzLHgo9uos2vRHqg73RWqG7oijOuodgZjxLUSg9LMbEPAxCp7t2iru874AFvdkWGr0ZulU8eB65O726tDxQDV48uVw4PB5OFrsbhNS8f6RtPO8U/bzVCYE8lZWAvKtJiTvVglk7VZpYuT8cFLwuJH69VAZbvae1SDu6wTe98ah6vOoiRr30PPg86r1GuykyxzyHYGY7SNiMPN4IUb3v5cG8yNSpu8J9MLxvM8K7rHhEPVMogz29HzQ8LMZEvZLmoLssWv87e7I2vQ47JDwyuL68oZSTO6lQDDzOl6U8ehdzvQzCiLw7bfG82g9UPDNTAr05qrg6Za3KPXmy87yqtYu87ID/u7TPAD0IeGU7BX9ovY2+JTz9wm+9BbUsPRxO0zz8k7Q7zvykPHHHvzxkfo88X1YUPXsymDxumMG8RPPovK0TiLvVgtm6gjhrvaIozruhXhI8ZtxIvNPu27wQhYS8tTQAPTLugr1/EDO98UoEPAC87DvFpWi8EmNcvL26tLvdqpe8iGCpvLuLNrvJVIu8O9JwupBtBTzdo9E8UQ2hPPPX+LyXqZw87htDvNEQBDxhhRI9+TW4vGMZzTyIFow8S2wKPViaGz3Rv128zDKmu/oaGb1C5hI8i1ljPdS4Wj28H/E8d7m5PFqTVT1YZNe60EYFvR2El7zPkN87RSktvD1ttDu2Yzs7Y37MvK6nQj3nKck8uiY3vOGczrwgEU+8f6TtPBCFBLwcTlO8F1wcvc/GI7v+XTM8t1x1O1YGnryH++a8TkqlvKpJxry7Cxi9R3MNOwf/jLlwM4W8l6kcvLkmN7shrBI9Es8hvZgOHLwmOUo8rXF+Pa+g/DwT/h+9zGHhPG4Eh7z+rha9dh52OiHbTbx8q3A9hZ0tvYcxKz2bbBi8T0Pfuxm6Vb2I+6m8puvJvJapHL3qh8W8LZBDvLyE8DzVHdq8rULDvLE7wLwYwZu6zvwkvQOGLjw2RfY8NoIAPDh09LvkMEw9Mh0+vbGgPz0MXYm8JaUPuhMZAjyHMau8jA8JvdS4Wj0KeKi8FMiePPY8u7ypSUa91+ebvNsPVL1cXZc8r6eFupNLoLxmrQ08gJAUPQoTqbzG2yy9ufc4PRhVVrzUiR+8BOutvbctuj1AATK6Ql9ruk9D3zxqcMa8hTFovDWCAD0NjAe9i48nvOX6Sj296W88uXeau/MNvbxOyoa8K2FFPQ47JLyWc1g9CGSMO9SJn7vEQGk97oBCPXz8Fj2wBfy8N3u6PKPyzDroXw28bWlDvcBOMr36tZm8eZ6aPXbvujw14PY7WDUcOwZrjzzJioy8z/VevM58hjuURFq9h5aqvD3tFb3w3vu8/l2zOwgT5rnPKyO9O/SYO4UCLbwOoOA5U/IBO4y+pbzttsM8F/DWvNp7mbu6VfK94pyRO8/hBT1od4w8SD0MvRX3WbxFRI+6i77ivAS16Tz7/za9ThSkPPOoPT2xoD88+f9zvE5KJT1AMO080lohvXTv97tU15+6n8oUPXIsvzv8yTU9zsYjPPXXu7qKvmI8eZ6aPMrNY7w3qnW8Ds/evHNbPb2MWSY9vk5vvMiKjLrJ1Ck977YGPDBT/DxXmpu8YbTNvPEUwDv6UJq8gJAUPV5W0TwVXNm8Z3dJOVjJ1jvmX0o8cJF7vOdfjTq5dxo8mKLWvJ2bFrsOjIe80EYFvey9CT0OVoY8JwNJPRSSWr05PvO8DgVgvLpVcrtVBh699Wt2PEyAJrxWNdm8jdkHPT3tlTsMpya9KyvEvAeaDb2K4Ao9BFCtvLummD2LDwk7LGGIvQ1xJbyyOwM9bs5CO0R6kLss/Ii88Xk/O5NEWjzZRVW8inuLOM8rozyY2Jo8kFIjvGpwRr2YPdc7PQg1vb/pMr0StAK6Ql/rvO6v/byYPVe6DdYkvbT+uzy2kvY8cMc/PM8ro7y4kjm9tDQ9O85hJDzRkKI8o40QvNl7Vr2W3x091+cbvFB5ozo05zw8xKwuO8jvCz0w7r88dMC8vG79/Tw7CHK9Uo0CvUqA4zxLtic99tB1PLLPPb3wr8A8x55lvAjkKj2PbQW9RiJnPMQRrjqa0VQ801NbPbI0ej1RDaG8Z62NvCrNCr0aH9U8adwLvFENoTw6o3I8g53quhbB2DxUoR69swUCvT1tNDxK7Ki8C90nPfMNvbuYota5nWVSvS+JQDwnOY08Y7QQvVS8gDz6UBo7lN/aPK8MwrzOfIY8OOA5PLTPALwLkwq98t4+vSmXxrsy53m7cVv6PIwjYr3qvcY8OEU5PH6rszwMDKa8VTXZu/5dMzzjnBE9rKf/vDLugjx4TfS2DQwmvQPrLbxaZJo8OdnzPCQKTDyhw866TkqlPQuTirwl1Eo8krBcPYDT6zwZulU9UqihPPPegbwbhFS9BBppPRCgozuDOK68IHbOvPhrubqof8e8h/vmu5DSBD0/NzM9hZ0tvPIN+jyemxa9SgcLu2hBSL1lSMs8bmL9PFQG27o52fM7Muf5vFb/17z7/zY82BZXvPqaNz0V44C8tZk8Ox590bwX8FY9NIK9PPfQ9bwBjTE9RI7puw3WJD253Bm9ofmSPfcGOj2K4Aq9FUgAPdEk3TzcdNM8QZVsvf2MbjyVMAG9exe2PK5Chjw8I5e8x9TmOz3SMzstkMM7IH0Uu4ixDD1YyVY8JQoPPYHT6zsX8FY9tmO7uhTInjzzeQK8hNaaO0rCmTwv8qq8S9BdO53YxrtqBSq8lSG7u4fjXDxdlpA9Fc4JO8w2Pr2viki9liA5ujsd2jsjPaO7FPEAPRWrEj0dttA7xcSeO6KQ1LwcLXq9a4+CvCmwxLwlgQ08rhShvRNFs7zLN8C6KvQuvPBV1TuBPwA9fOjmPGuPAr3H9Nc8oRsvPNl1Hr1L5I62OlSCvcCzczyufIS8wcYiPAkFUbz5UU29ibEfPfOZP73Hw5y84XEWvbu197vGsO28MyFivWVNnLzTZPO7La5AvIO0pT0PjCO97eExvYVutzwdtlC7TAYEvJVmp73Vd6K8awUqvSmwRL3fXme9ug6VvQ94cjsoJ2489sl4vFBXMLzbdBy6TMGXPJ1in7yrjEw8Yn/ZvCIq9DxbyE29ihiBvOdaX7y3QVQ8a8A9vYiecDtnOGm73C4uPRLyAj30RY08TZ4gvS2uQD1Rzde8DUg5O7uEvDwlgQ29yGr/vCyuwDytFSM98EcRvSf2MrwrOZu8fh4NPIKh9rzWmRc9vcimPLFE2juqFiU9AsNqO9TfhbwbywM7bTVjvcvyUz2oBPg7cmmFPTgQmDvYYu889VNRPXu4rTwa/L47DvSGvBlCLTyVZqe7n2GdPCmwRDziXOO7w8UgvC19hTwAQIE97kgTvNDhibzBgbY8o0vou1PgBjyrjMy8T7+TO2jz/Dx07XC8hrIhvEMZ0jsVRLG8T+KKPCyuwLwf+rq7LX0FvSeAi73/HYw9PNjtvDgQmDy/DBG9p12VPZkfN71ePfM8a8C9PJeW4DxaP/c8EvKCPLvJKD2xzjI8P9ZpPXbsbrx1AKA8Y8RFvfRFDT2P8wW8oZFWPdul1zq8MAo8kmcpvG++ubyJsZ88I4KPvHW7MzqZhhg96koXvX/nZL3Tqd88lyA5vfxBBb0n9rK8MSLku5DQjjy+tHU7nU5uuwGTsTwHGoS9URLEOp3YRr1REkQ9yvJTvKGR1rv3yPa8E8+LPEwGhLwmXhY7AvqSPKeOULxq8nq81qfbPDM1Ez1R4Yg8EYuhvEMtg7z9T0m93Bv/vEehJr1fxkk7Jfe0vD+lrjrlFnW9M2bOvMfDnLxwJZu9QJH9u63QNj23EJm8F/7CvKNfGbyGn/I7YraBPXV2R7042nE86W0OPZ+S2LuI4to7a8A9vB/6ujwlPCG87kgTPcX12Tx27O48ucqqu+8R67tadZ28gqF2vLSHQrtXD768sohEPBGLoT0Tdm68PWFEPRf+Qr3x3627QaSsPAKSLzzrbIw8mZXevJMivbwralY9IKYIPBNFszxjxEW97ZxFvVS9j7xFoqg6/k5Hvd/oP7y1/ek7B0u/vLoOFT0zq7q6OzGLPAwDTby0h0K9H4STugp7+LyUU/g7I/g2vJbNCL0Dkq88uQ8XPc2s5bzpbQ69K/QuPZJUej1/tim92mHtupuU3DtrNmU9aZAEPfFV1TmA+hM9U5sau3BHEDxXmRY9K2rWvAbB5jwqXJK81XeiPMkHh7yI4lo8E8+LvIknx7z+QIO8J4ALu4WzI73Lrec8ls0IPRhzaD3FxJ67+x8QvZlkI71wR5A8ibEfvnsuVb1362y7l5bgPLCJxjqFsyM7N+6iuUYJiryHbbW75VvhPAywHL0dQCm9i2sxO8+rY7xF5xQ9FqsSPHl0w7u/gri8fh6NOwd8+ryaYyG9geZivcrkjzwQrpi7XVEkvGQ567z/Cdu8QpD7vPfcJ70NjaU7Cnt4vdaZF7yOmui6K2rWObGJRrwnOx88U0J9PCs5mzyhghC9yTjCO4ErTz19cj89ycIavakXJz3OZ/m8AgjXvPchFL1XDz49L60+vWhuDzzN8dG8wrJxO6SPUrwBk7G8QRpUvQOSLz1xAqS85ymkO8P227s03PU8tjOQO4G1p7y0NJI871bXu/sfkLwiYBq9P+oavFqD4by/Pcw8S1q2vDHxqLwPAks9KTqdO+meST19cj+9KyVqPa1G3rz4/hw9uVSDuyCmiL0Dkq88pknkPHrpaLxyd0k9hBsHvdlh7bz8/Bg84JQNvZeqET1HXDo+LTiZPDYRGjwYuFS9A5KvPAfBZrur0Tg75Bf3O9+3BL3NNj67BX18PH1BBL3tawo7x8OcvO4Ra7xSQ/87zGh7vA8CyzxnwkE9E0Wzu6mNzrxOwJU8ZvT+PKoWJTw5Y8i8wcaivC+tPrzyD+c8v/jfPLURmzsPjKM6uvpjPNulVz3sJp48mWSjPD4bVrwcLfq82boKvWvAvTvXdiA8VEL9PAKSL7vFKwC7Naq4vF2C3zyE1hq9P2BCvOdaX7wGfXw2XVEkOwDF7rsvfIO7TgUCvOudx7xYuws89pc7vIfj3Lx6c0E9oktoPJuUXDyxicY8s0PYvC7fez2wWAu8ZvR+vE9YMr3UqF08I27ePP8JWz0OefQ89sl4PeOhz7tTVi698sv8O2cHLj3WmZe8GrdSu1498zxxAqS9Mt13vSeAiztHoaa8qX6IPBGLoTxD6BY9i/WJvPEQabxXuws9U5saPStqVrxfgd28bwMmvErCmTsLSTs7/k5HvXECJLwsW5C8OWPIvG8DJr1pSxi836NTvD1hxLwdtlC7GamOuv5ORzwwWYy9nhwxPIKhdjxy7nI6q4zMPIO0pbyqFiU9526QO0+dnjz1U1E9nxyxPHghE7zV7cm8JYENvQvTkzw1qjg7LK7APLgyDj31DuU8uQ8XvYTWmjzvEeu8W8hNPT2mML2VITs99Zi9PIoYAb1K0F29Hyv2PCcnbj2TIj28L62+PJ/XRDwBTsW8bwOmPFKbmjyqfgi6072QO41qL72pjc68ZcNDPYVuNz3526W8BPkQvUBfQDzpnkm9BUzBO0XT47zuVle9d7qxu0BfwLzrJyA6xOeVuyyuwLzvaoi77ZxFvT4NEj0l9zS9Z5EGPXcw2byZ2so8B8Hmuy3zrLoHS7883Rp9vMl9LrsFTEE8M6u6vAJNwz2RaKs9nxwxPZNTeLyrR+A8GLjUvDkyjTyuFKE6ibGfO0GQ+7ltek898VXVugu/4roOR7e847WAvCkmbD3Zplm8Dkc3veAsqj3F9Vm9/dkhvR+1zjyO0RC7FrnWO+viM71cuYe8Naq4vGc4aTxitgE9TAYEvYUpSzzW3gM8mR+3PKcYKbt2ZwE9nIUWvTM1E72SmOQ802RzPDmotL0oXZQ7zcCWvB+EEzzxEGk9pknkPDxTAD33DeO8dHbHu4JvuTsFG4a7MXsBvc7ii7yzV4k81N8FPXjr7Dw37iK9Gf1Avc2s5bvokAW9zDY+vEQKjLq3/Oc8qdK6POOSCT0OefQ8z78UO3S7szw2VgY9d3VFPXwt0zzwVdU7UkN/O+tY2zrXMTS850sZvKgEeDwnsUY9K2rWPG5IEjzglA08rVqPPIuwHTvDO0g8wPfdvAeQKzsNjSW7V1SqPEbEHbrGwxy8SdHfOz0cWL28MAq9/U9JvRCumDkrr0K9P2DCu1q6ib2nooG5d/8dupeWYL27hDy9j2ktPJNT+LwORzc8EPOEvKOkhbwiKvQ8/5OzPDljSLz9lDW9I/g2PIdtNbwQrhi9+x8QPU6KbzyuWQ08mWQjvcw2vjwXL/48vflhvTfuIj2d2Ma5J2zaO54csb3D9lu74ysovTPwJj12Z4E8urb5vEEaVLvBgTa98Mz+u/cN47zBgTY9rItKvd24Bj062e87noSUvKgEeL0lPCG7pIEOPME8Sj0LGAC9pI9SPfNUU72Ul2I8ntfEut6jUz0HkKs8/x2MPAkFUbxduAU8b3lNPCBhnLtN44y8I/g2vVeZlry/gjg9RRhQO3Az37sVRDG8hW43uzMSHLrfLSy9h+PcvE8TRj1fxsm7X8ZJPCGDET2/PUw9fLervHJ3yTwmXha9W1ImvI5WfjzblpE8O6eyvJcgubzjXOM8TIvxOt9eZ71VVSy9FHVsPJ7JAD1tvzu7ZDptPcf0V7pH5hK9sABwPQOSrzwRAUk9BQdVvUehJj1Ej3k9wYG2vGcHrrrCsvG8CUq9vJ6EFD3ftwQ9PescvdV3IryW20w8o0vovGdMGr29Ps484JQNvY5W/ju6+mM8SsIZvc0FA7xZhOO8WYRjvMA8yjsVdWw9cwGivGVNnDyWiBw7MKw8uT8b1rs3qTa9OR7cvckHhzwPjCM8E7vaPGGUjL2y/us8q0dgvNVjcbwFG4Y7IGGcvZ3JADxSh2k9oIMSPbJ6gLxtv7s8J2xaPX1BhL2bqA08PZL/vF+B3TxBGlS8x8OcvBEBSbwcqIw8HYUVvZCZZjl/tim8rQFyObND2LyXILm87lZXPRu30rz5IJK8Sozzu34eDT21ERs9JKQEvA+MIzwvrb45b765PAoYALv7UEs8wzvIvF1RJD3joc88CY8pPAu/Yjn5lrk8hCnLvF0MuDznKSQ9/ZQ1O7uEvLsiYJo9Z8JBu65FXDxpfFO8WFMoPW4mHbyrW5G84SyqPFVVrLx8pPy8d/+dvCSkBLydk9o8L2hSvE1ZtDwM9Qg9WED5u4+umTx/52Q9dDHbPBtBK7uti8o8s0NYvGhuDz2Zhhg8HYWVPNtg67zyRg+9V1QqPFGcnDs7MQs8wOmZPePmu7tjCTK9La7AuzunsrxpN2e9DvSGvQlKvbyiGq28sYnGPDRXiLweP6c86JCFPO5IE7wC+pK7O6cyvUYJijqfkti8qUjivHnq6ruR3lK9WFMoPZjMBj3dcxo9+v0aPP/E7jxzAaK8ZX7XPP5Ox7wL05M9uVSDvBq30rpYQHm80uAHPQZ9/Dz1DuU8wi0EPeNc4zwNrxo9kyK9vPVngruuN5g7YLeDPNF5JjpYQPk83aTVvKsC9LyD5eC8h+Ncva8AcLyt0La8L/KqPBhzaL0o9bA8+SASvAXCaL34Qwk9cTNfvS3zLLyqFiU8Tc/bO3UxW7x/+xU9ISp0PdRkc71Nz9u7MzWTPD4bVjwQ84S7cTNfPUXnFLwbcua8+dulPLQ0EjtKjPM83aRVPIX4DztTVi69X8ZJuxZDL72TrBW8YYDbPI/fVL0VdWy7+1BLO6bTPDyF+A+8LCToPO3hsbwDw2q9c0aOPNmmWbwrJeo8cGqHPF64hT0g+bg81WPxPO5IEzy5+2U9RY53PI2b6jwp9TC92JgVvW8DJryHsqE8RV28O/FpBr36Qgc9+x+QO4rhWDxDXr48HcqBOeOhzzx27G4622DruzsxC7zEsW+9Nx9ePWhuD70Lv+I8GXPotnpzQb1gtwO8JYENveqPg7z1IpY8nU5uO7a4/bszZk69KlySPd4afTqPrpm8mR+3PLeGQDt3MNk8/dkhPEUY0DwDHIg9F0OvvJ6EFDzBgTY98cv8PIfj3DtOztk8Ouyeu04TRjwdLHg8jyTBO6eOUD2vzzQ93aTVvA+9XjqSZ6k89Q7lvKCDErwzNZO89d0pPGUIsLwBk7E8jWovvOPmWj0hvYU9xtsCvPKtJ71thnW8RayGvGj3Cz3Y9YQ7oUgGPDVNgbzodsm7q1ygOzteJ7zoawu9AkZtOzeJtTxT2hU9uNrwPNQ3FLr1DKC8Pr0fvXmmUr0A0HM9ci1lvGs+frxrVgS78sQou7mVbToUPjC8SiRvvBL2OLxNg+e8az7+PMFW0jv2ghm90sGaOylPY7ycuBc7U7fRvPQ6Ij2c5hm9RAiLvDIFCj3lxJu7+oUNPL4lXL0NOEg78Dcuve+TMjye9Eu8/Z79vFFYWbouJFU9kXX2vIBQNr1XukW9wW1TvV+SK7yZTdy8f364vDFhDr0eoxA9tZL5vFSJz7yMK5A8n7sLvMkuODxJl/Q8bkHyvKbjMjvGCYU8F28mPKeHLjwqOGK8Mu4Ivahwrbpiw6G8gq+uu8b9Qb1SCBg9Vv9IvGAfJj0Xhqe6VInPvCjC6Dz0OqK8dKNevP5xgD34JpW8m9pWvCMEeL0mTO+8g4EsPSdMb7yq5qa8XGG1vOfSTb34a5g8vK9iPcxfLj1X0ca8GFilPWsnfTzIRbm7FuIrPZ1FkrzSk5g85S7SvIKvLrv3mZq6FSevPH7Duzx5M8273j/rOuMJn7uOigg9gfSxvOb1kTx4hBO9prWwO5ZK6DoDGGu7cVtnPf3NhLyzkIo7GBOivLoi6LxS/NS8o5u7vOVFUzvSk5i8birxPN2EbrwSyDY98tspvdjeA70TmjQ8wuPMPPnhkTxXCwy9RB+MPDL5RjyGmyE9MhyLvVIfmT0Lws68OHK0OhENurx1ddy7ouwBu1kwvzwfMIu6+A8UPMOqDD14shW9oIFGvPqcDr2AOTU9tx90vFklgTxYXsG8Rk/9O0XDB7zZx4K72w51PJv9mjzvk7I8zF8uPTEnybxthnW9jCuQvPN/Jbxp4Ao8mXvevJMC8bkmTO887GI8PXltEjsO88Q8ehGOvGR+HjyRdfa8BWDiPKq4JL1dHDI8WRk+OzRYvzts4nk8VVAPO9HYGzx4eNC8DgrGvBedqLyNz4s88E6vPKwXHboK/BO7UWQcPfEgLb2Dgay8X2SpvBhYpbzeKGq8NRM8vRkTIrxHUAI8YqygvXvXyLyGySM9icwXPWHxo7wlevG7YqygPBQ+MLxXo0S8QpIRPXfUVLyZWR+9pIQ6PSvFXLwFd+M8Esg2ve+qM7x2Ate7006VPJjAYb3YDIa9P3icvAYbXzwS37e7RmeDvE/5YLyVYWk98sQovYwUjzyAlTm8VKwTPW209zz2mZo8Al3uOwJd7rwPl0A7Et83PPA3LruHhKA8v+BYuyY1bjwBi/C8qrikO19kKb3ZgXo8w7XKvMC+GTmAZze85KHXPB6MDzyHsiK8ImGBu83sqDxewK28RyH7POGH4jlz/+K8hQ6nO10csj1+/QC9/BKIvEsN7rvCKFA992sYu3r6DL0wppE76Y3KvJiS37sVEC68WSWBvG1vdLxjUJw8YQglPaCkCr0yYY46zQOqvE8QYjxHCvo85lEWPOVF07qf3Uq9oRoEufBOLzyriiK8MvnGvHDObLv1IyE9dKPePHCgar0hjv68aPcLvTt1KL53yZa9TJpovGQLGT2B9LE8ZDmbPJl73rrmDBO9MuLFO3YOGj2sLh68Jx5tvVheQb2XBeW8lL3tPDuMqTyLQpG8O14nvYaboTzwZTC8ove/uwlMVbziQl89+ykJvbisbj3dhO68wijQvDu6KzzBeRY8V90JvT0CI73EWca84XDhuyjZabtfkis9rdKZPDotMTx6HEy8MLFPOjTLRD2mtbA802UWPROaNLwEGGs8Wg6AvGgODbxv5W082lN4PemNyrzDzEs9838lPU4n47sdupG7Ind9vKUoNr0xSo28wvpNPDigNjwuMBi81cQOPTCaTruoWSy9/Mz/u0/54LwfXg08YdoivdWtDb3K0rO8RawGPZiSX700ZII85hfRu5lZnzzZsAE9Lg1UvWzi+Tss8146UjYaPU4n47ySXnW9lY/rPBeGpzsIqFk8AOd0vLTvgr2TGXI8C8JOPVejRL0so508dIxdPj3rITwL2c8676ozvcUrxDzjz9m8gGe3uk/i37zFToi91zqIvDblOTy2NnW96IKMvJvxV7yC3TC8zqelPCcH7Lw8MKU8zRqrPXruSb1Mmui8b+XtOIQlKD3KuzK7nUUSveJwYbw7Xqc8sb4MOfn4Ejx6+oy8BNNnvUjF9rybw9U81dsPPE4n47y+PN26UJKeOivc3bwPxcI8VS3Lu1L8VD2gmMe7CvwTvZS97TyoQiu96vgFvSMb+TzTfBe9JkxvPfgmlbxtnXY9jxb+vL4anrw+vZ87VLfRu5F19jyeF5C8C+WSPSGOfrwYKiM9e8BHOxEkO7x7wMc8q1wgPEciADvC40w75X8YO4XgJL2oKyo9oFNEvHNEZj19NsG8xSAGvSS/dDt+8T09QnuQOoeEIDwu9lI99DoiveRz1bziK9481a2NvS1eGr3HuL483W3tO3IW5DzO1Sc8/nEAPXyeCDx9QgS97Ke/vPQjITyi7AE6tMB7PF7ALb24w288zQOqvNXEjrso2em8ZCKaOVPOUr0gAom9l+7jvEzI6ruMK5C7ogMDveMJHzogAok8vhoevIayorw+pp48uMNvPJ4ukTxGfX+86JkNPV9kqTw5FrA8oTzDPOfSTTsKKhY9MSdJvPaZGryGyaM8YDYnPZjAYb1MyOo76T2JPIOYLT05FrC8yuk0PQMBarzD7w+9CTXUvFrUujx6KI88CgfSuuV/GDxwzuw7gq8uvcb9QTw66K26EFK9uyWR8rz2mRq8F28mvAlM1TwMfcs9FFWxvan9p7ylEbW7OHK0vJvD1Tx4hBM99VEjvZof2jz1DCA9Mu4IvdWtDb0h1Ia8fR9AO/nKEL06uqs8WGoEPJfXYjyujRa9fR9APW/8brymtbC7RyKAPIqHlLxSCBi8bbR3PFSgUDuX7mM9L9STPTRYPz0eoxA7DSFHvI5zhzsCRu27heCku0aVhbwhvYU8MGzMPI3mDD04RLK8BXfjO4LGL7z1OqI9FfksvD1HJr19NsE9sb4MvbsL57zCEc88NRO8vFTxlrzmF1G9U87SOZcF5bzy2yk8OFszPC1S17vEh8i7BY7kvDhyNL3u2DU98QksPEpp8rzR2Bu9nLiXvKE8QzrGCQW8nIqVPHYOGr0v1BM8puMyO0jcdz3lXFQ9x4o8vcxfLj3QS6E8CioWvaObO72b2lY9KNnpvDBsTD1X0UY9WkdAPPEgLb26Iui6BY5kvDt1qL3b9/O8v+ybPF7Xrju8r2I902UWvAoqljxUoFC8RpWFPR9HjDxDNo085IpWPa0AnDqP//w8JZFyvMehvbxVLcs7FsuqvINqKz0TmjS88tspvMRliTnN7Cg8VVAPvPtXC73PpyW8nKxUvdQJErwO3EO7PeshPXVTnTyhSIa8eWFPvV9kqbwMlEw9WUfAvYtwk7y6Oem8EIC/vI8uBLx7wMe9HdGSvYKvrjt/CD+8ygA2vGqEhryYkl88mMDhvMCQFz2Q6Hs8m8NVPD3roTwAuXK8MJrOvHV1XDzcsvA8bbT3PMIRz7yB9DE9/ll6PM95I73jCR+8MhDIOxOxtTl2Alc65S5SPfN/Jb1YXkG6Ai9sPODMZTyHhKC7g5itvOb1ETxECIu8FScvPX79AL39nn28wx0SPClmZDpa67u8PDClPIX3JT0H7Vw8M53CvAlM1Tx9TcK85JaZPEvfazwJWBi85K2avAJd7jx+8b083/pnvDFKjTzDnsk6vJhhvCvF3LxYmIa8eW0Su5MZcjstO1a6gt0wvB9ejbwr89481mgKvQPqaLzvwTQ9L72SPPKtp7o/YRu775MyPekxxrx6HEw9otUAPTuMqbwMiY47NuW5PHVe27yt6Rq9LXWbPHfJljw0WD+9NTYAPOrsQrxX0UY8Jx5tPGQ5mzzEh0g66g+HvM6nJT3N7Kg8n8bJPLKni7zDwY07pFY4PWngiryRjHe9dXVcvWtWhL3MSK07d9RUPbmsbjzEk4s8wW3TPJAXA73Y3f67V6NEPJ/dSr0966E8Po+du3xkw7x0o167Rzh8PEHAE7y07wI8oKSKPAC5crw7Xic95JYZvQiRWD3XUQm9ulBqvW5Y872m47I8Rn6EPKeHLjxYagS9IdQGPS4NVL2gasU7BNPnPEZng737QAo9kkd0PVRyzjyQ6Ps8MgWKPOuzAj2eC8288E6vvIKvLrwxSo08KiHhO0cKerxQhts8eI/ROyW/9DsyBYo86F/IvKCYxzxnahG9ThDiPGptBT2/91m9ayiCvJiS3zyl+rM8g2qrOx51Dr2tABw86THGPCKPAzwPl8A76T0JOwft3LztHbk8Oi0xPTwZJDxPy968E7E1O4///Lyb2tY8GokbPJoUHL1pyYk8BklhPXV13Lu0BgS8EQ06vOfHj7xhCKW9f6y6vClPY7zbJfY87IUAvAh6V72eLpG8Io8DPMhFuTzV2w+6LlLXuuxiPL0mY3A8xULFPb2vYjt8ngi9y40wu9mY+zy5Z2s8WtS6PPwSCD16KI+8EF6AvP2fgrySMHO8ro0WPaRtuT3mDBO6VKBQvQr8EzwUVTG8Ch7TvDuMqbw7dai8birxvMVCRbzrnAG8YsOhO3xkQz16HMw8tmT3OoRTqr1a1Lq8g5itOyGmBD01TQG7fhQCvebpTj1NbGY856TLPHruyTytABw8m/HXvFVQD7t2Ale7jc8LO1Pl07zmDJM8XHi2vDSSBD17tYk9hsmjvIwrkDywA5A7eI/RO43mDLxa6zs9Jb/0u/5w+zzPYiI9XDOzPTigNrxv5W27gFA2vQiR2DwaoBy9L+uUPPpuDD2/A528e9fIPEXDB72hDsG8kYx3vFO30bydUNA7wLLWOijZabxXusU82yX2O+xLuzwy+ca8S/ZsvD9hGzw4crS7Vv/IvG3ieT3Y3gO9NIZBvKX6szg5/y68eI/RvC5p2DyCry497ti1u5vaVjq1wYC7d+CXvJTrbzup/Se9IzJ6uwftXLwbWxk9NRM8O2Haojz7QAo8pfqzvI6KCD3HxAE9jbgKvDt1KD1SCJg9tcEAvcVCxTwg64c7szSGPWtWBD3xIC09j0UFPKFIhr1OPmQ7ImD8PDGDTb1Gff+7SmnyOwZJYb3iQt88Qe4VPfXeHT0tR5k6djDZPIdtH72gjYm85MQbvX0rgzsW4iu9tNf8O4H0MbzgzGW6V7pFvSDrB7z/K3i9DtxDvfKtp7wzqYW8GBOivJ4XED2XBWU81cQOvQk1VD1HOQG8gSK0PNA0IDsowug8osm9PMwxLLzy26m81n8LPSyuWz3JALY6YpWfvGnJCb2Oioi5FuKrPIQ8qbzwTi89oKSKPMRlibqGsqK8gsYvO/nhETyfxsm7Io8DvbvdZD2B9DE7zQMqPVe6RTujdoG7KNq+PO+GAr0m7kS9R/wtvYQx4bt24Dw9Xz0NPYidgbsSLYw5ZDwmvVR6BrtU3NY71oDOPHq4sLydshM8lkwCPUWVNT2Wx4A8epV/O1obQ70KM047p6bCvLOpnLxjRik8f4YhPOwpjbtkPCY9FyylO0jLhbx6hwi8QoIWPI4XGb3lb6I7fXf2PGHVLb0z8R68BG9guwjC0rwT2bI8j5IXPDDs9rwcUuM8MIqmvGQ8pjwKM064fgujvP0vdL1nmRu9VFdVPZH5j7tPMRc9qPCYPWxnjLxOOxq9kaW2OoBZ7bx6My+8mdofvfFPSzzIOa28Guvquv1Spb2npkK995i6u5tBmDorQbc8bGeMu5ADk7srQTc83B2XPKGKhzxryVy95HmlvItmSr1Ku/O7fRUmvYLA5bkIaoU6m6PoPOLhBDz+zSM81DyHvHbgvL2eqJC8y3NxOyfkQbvubdQ8jc3CPMtz8TtEGre7KxAPvLQkGzxTYVg8pbrIPOhRGb0jDE69kiC1OWy/WT1Iy4U83b86PduiGDy5QFY8UKISPRLjNbwIR9Q7ovsCPdKoWj2mNUc9ufILO7jZ3Tz+qvI8NOcbPLVy5TvIOS08G+Hnux802rxSa1s8JXNGvHTDGrxc1hQ9xDARO9snGj1cB728vp1LvYM7ZLwTqIo8srOfvC0tMb266Ii88spJOsO1krzn1po8a8lcPeykC73qlWC9haLcO45Iwbuh4tQ8EPe7vC7yBT3bJxq55PSjOxUder3MjB89+k19vStBNz1Id6y8/bT1O6x0M736TX26OohYu2Mj+DtL1KG8mDzwvAUDjTtnmRu8xVc2PQC6HbySm7M8jpwaPLeBED3E3De81Q9TvWYoIDyv26u7fPz3O61qMD0UrP460Mbjvcg5LT27WYQ8fgujPEQaN72Vfaq7j7k8PXA/AD35Uww8COUDPQIhljzfqzS8QoIWPF39uTyrfja9MOx2vI3Nwjx4IBA9ldEDPWLLKj1gMwq9Y552OUq787zMESE9pbpIPUdQB72qDTu7wfpAO61qML2AfB694ZcuvJV9Kr2YXyG8rmAtPGQyo72w0Si9bL/Zu3nCs72rTQ48UwkLPPvI+7sWu6k8mkubO/Unv7zTI1k9/kiiO63C/bspVT28ooCEvNwdlzxAx0S8qog5vA4Lwrs2ThQ7VznMPMoCdjwIR1S9dPRCvBWie7wP0BY9+VOMugfM1bxBOMA8TcAbPZNqC70IR1Q7wfpAvVobQzywTKc7W2UZPUKzPjzUwQg7VmYAvRQZhrkLpMk6AJdsPPjYDTtGizI8EMaTPMe+LjtlBW+9BtZYPRl6bzunpkK9055XPLyx0bteRxA9bL/ZPCQCyztYL0k8jFxHvYoYALkFZd089axAO+131zyW1Xc9t17fPJkybTtEn7g8sb0iPQZbWr0tLbG71/vMvChfwLz5/zK7FaJ7O189DT0eaxG8kxYyvUQatz1ZJca8LiMuPB5rEb30hZu8GmbpPFklRj0a62q93EQ8vUk8ATzXdsu7EHI6vX2apzuonD89HPqVPUBMRjtDqTu9FUCrOi0tMTxQJxS+iITTvJSHLT1S8Fw9oA8JuwP04TzZ58a8GKcjvQozTjxOk+c8r9srvXyBeb39KwC9JIfMu4Yd2zwue3s826IYveTR8rviCKq8FooBvbEVcLo05xu9xGG5PJVa+buvM/k8VfWEPNliRbyarWu8IhbRvHq4ML2jdoG9RJ+4Peo9k7wn5MG8XIw+vPLKST1lrSG95kJuPX/e7ruOFxk8yS8qPVwHPTzHm/273oQPPHhHNb0SXjS8Mvshu9rdQzww7Pa82GzIPLjZ3Tv2Hbw7Z/FovStBN7rzwEa9mx7nu0KzPj0c+pU8+sQHuwspSzx4RzW9FCd9vRTPLzzCdT+9i2ZKvZdpJL1NwBu8u1kEPPiOtzx7+IO9Fpj4O/iEtLyHE1g99qI9PDbTFb2J9U48egwKvfy++Lzjg6i76UeWvWb7az3RN988PWpPvHVlPj1rcY87deq/vOwG3DwPS5W84XT9PHhHNT74CbY9lGAIPYQxYbwgr1g9MA8ovVVN0jvLG6S8RBo3va+qA72OFxk8VFfVuwukSTx6My86e64tvcuWIj1Rdd68B3SIPG3Yhz3k9KM8gHwePcmqqLwUJ309Y0YpO2S3JL2uuHq8YlAsvWziijxDJDo9yqAlPMNrPL3lb6I6Tw7mPO1317vEYbm8YyP4vGWtIbtH2fy8qog5uylVPT1W64E849t1u7tZBL1oj5i8+tJ+u+c4a7ybQRg9Xf25uhsEmbw7HIU8gFltPYpwzbwd8JK8+XoxvMuWIr2GmFk7FhN3vQ6GwDz7uoQ813ZLuPFPS7zfJrM7h47WO2JQLLykSc087fxYvGCuiLuXRnM8qPAYPWpY4TiFolw9a3GPO0nF9ryzhms8yQx5PeTRcjw4F108QyQ6vK60Br11uRe9MIqmvAm4z7wAEmu9EHK6uxa7qTlhpAU78spJPLbtYz2bQRg9tu1jvRMjib095U09gztkPDDs9rwc+hW9TzGXvHyBebxyCMm4yQx5vLDHpTuIpwS9XkcQu2liZDr5U4w73ES8OUaBL7yYwXE8UATjvPQxwjyhBQa9ge2ZvK9WKj1/hiE85cdvvIFPajyXRvM8St4kvf3XJj2TFrK8N8mSvJwUZLwvcXg8w2s8PK05iDwG1li9llB2O2ziijxqWGE9Hj7dugukyTzDazw9LS0xvORW9Ly5Stk8BOpePePbdTz8Ofe8AY3pOr4YyjvUwQg8WuqavJm37jwp0Ds9haLcvCKbUjy7NlM7gFntuviENL0H74a8fPx3PN+rtLmA1Os81JTUvDTnm7yCRWc8bTrYPK2+Cb38OXe98U/LO92/ujzJh/e8RZU1PR+5W71BEZs8CdsAvCZzRj0S47W8yAgFPHnCMzzx1Ey95r1sPMeNBjzKoCW8t4GQPNUPUz0l+Ec8SW2puy38CL23Xt84iAlVPC0tsbzlb6I8xpcJvZhfITxMLG88HmuRPN2OEr2+GMq8mVUevEBMxrwkAsu8ZiigPUbfi7wQQZK8JXPGO00i7Dydj+I84RItPHN5xDzHQ7C89Se/OxItDD2UDK+8jc1CPenClLyuYK28x0OwO3ggELwl+Ec8/kiivbDHJTyJnQG94VyDvTx0UryFJ947HmuRPDic3jyKGAA9SUp4vW5Thr0JuE+7r6qDPPaivbxJwYK9E9myvH6QJLyRKri7c/5FPFc5TDxblkG9qlcRvGE3/jyg7Nc8HFLjvKoNuzyPPj49WapHPM5VaLw3RJG6TcCbvLlKWT1yg0c8SUr4PCbuRD0Yp6O8TUWdvH9jcL3wWc68x0OwPCfkQb3zO8W8MthwvMoCdjyxvaK8PY2APM9uljzDOhS94uEEvYJomLwXCXQ8HPqVu8uWoj1+C6M60i1cvM1fa72cvBa8a8lcPL+TSLwZnaC8QULDvUTzkTyys588vhhKvReOdTySmzM9CylLvDuhBr2QiJS74ZcuOT7byrui2FG9Q/2UPDDsdjzNBx68SW2pPPM7xTpkMqM81/tMvBeOdTywTCc8BQMNPS2BCryHjla9MYAjPfYdPLzh7/s8umMHPRVAKz3j1wG995i6vAyaxryoIcG8rMgMveFmBr0vGSs8fO4AvI+SlzxlraG8iJ0BvMp99LyTaos8egKHveNSAD0thf66Za2huon/0TtwHM88RRA0vU1FnTsUSq48ZqOePA4LwjxmgG081MEIvJMWsjsUz6+69h08O/M7Rbz/Pp85OQ1aPEux8DrGyDG9CjPOOFVN0jtPrBW8rTmIPSnQO70YhHK9b8SBPbMLbbwe5o+8N8mSvTchYD3iCKo8HfASPWKagj2Tbv+8X+kzvf1SpbzKAva6W5bBO4RUkj3DtRI5zYIcvVvgFzz8sAG8pElNPfcTubyIp4S8deq/vLBMJ73aWEI9lAwvOpXfejz7XCi9j5KXPCw3tDyNUkS6hphZO/LKybyV0YO8WC9JPX5t8zwAl+y7UXVevEVkjbz0McK89xM5PZb4qDy4dw090lCNu0aLsjwew169sb0ivKEFBjwthf68Ksa4PJZzpzxLWaM6HNfkPOChMb1e87Y8QgcYvBUd+rvUPAe+4ggqPH139jqcNxW9B1FXvJ/22rwdSOC8x5v9vN6EjzzqlWC9sNGoPHuL/Ltq0189sR9zPPWsQD1CLj09g16VvFOECbzNX2u9kDS7PVwHPT2S7ww8e4t8vEde/jsFiA68xk2zvJdG87suAH08iuvLvGjn5bstLbE8WqBEvdE3X7vLliI9+k19PUnF9rr/Pp87GP9wvKBx2Txjwae8+f+yPMWhjDy2aGK90rJdPGMVATvICAU8zBEhvDPO7bshQwW8P9HHPEG9wbzJ/oE7jz4+PKtNjj187oC74mp6vE62GDy192a9mksbvMn+gbuPDRa87XdXPGBkMrsZnSC9UKKSvIVAjDx31jm97ZqIvK1H/7w+YMy8qJy/u6lhlD1aoEQ7jpwavcQwEbzYbMg7FoqBvLMLbTtXvs27Gg6cvBpmab2QNLu872NRvH5t8zywpPQ80i1cup6oEL17i/w844MovekkZb0fV4u8uc/aOprQHL0cUuO8aWLkunozLzwl+Mc64HAJPLOGazw6A9e8mOQivDfJEjzKAnY8LxkrPIc2Cb1CLj08lnMnvHuuLT0im1I9GpOdvGQP8rxt2Ae9+XoxvPFPyzyBT2q96KnmO3CXTTwQcjo95kLuPIXFjTwbXOY888BGPd06OT3Pbha9CylLPAOclLzw3s+7JzibPEMkOj3+zSM8FEquvGMZdb0cfxc8mVUePC9thDtobOc8rrh6vFAEYzya0Bw8sy4evdKy3Tvx1My800YKPfs/Br1BjBm9zYKcPGy/2TzHjYa8bbVWPVsRwLtttdY8lQKsPHggEL2DO2Q9s6kcvSfkQTtGgS88DZBDvNWKUbsUzy89mx5nPKawRTs6qwm7OojYuwN547wCIRY8lIetulZDTzzIOa08EWi3O6KABDui2NG86STlu8ZNM7334hA9b6FQPAb5CT1UV1U9HmGOPfy+eL2JnQE9w+a6O3uuLT258os9Y0YpOh3wkjyxH3O8f97uPOTRcjx4R7U7XIw+PGMVAT2342A7PHRSPBTPL7wG+Ym7Yxn1u/M7xTxhWi+8RBo3upjBcbxNwBu8jc3CPGQ8Jry0nxm8kxYyO/lTDDzN5Gy8z9BmvfnOCj2bo2i8XvO2u0aLsrxIRoQ9QyS6PNDplL16uDA88AGBvGMjeD0LKUu8zV9rPf7NozxtXYm7nxmMvM2CnDysdLM8zV/ru92/ujzUwQg7FEquPMbIMTzO2um8YssqvBcspTxUeoY8QTjAvLUamLvoqea8SmOmvIaY2bxRmA89+XoxvI8+Pj2dLZK7Jb6FPTzsHzwqP4S9OsoGvWvxdbz+ilC8b+wMPRSX0Ty0XEk8iUTHOkYoS72Wewm948upOyRCiTww8ik7gMtPvINcXD10+/m7WqM/PQRzuzxwaAm96UwoPFLDWzxZeZ+7q4cKvVLOAL3iL/i7E2UqPSMiVD1NOlY8gP12PFzNX70U/r283w1fPH3bXbxwr8A7xwnlvHqHnbws0BC9Fo9KPXKnubyZz0k8MPIpPe08Gr10Bp88rttKveSO3bxUu9S848upvMo2I7yBZOO7upYQOzrKBj333zG82iiSuhrmqDx921290RPpvHNqbb3EB4G8uwfovG6FoDzyLAy9XpMxvPvPIzwyUY88J6tZPHMGnzocd7W8rHxlvOQncTqAoS89nPFivN6xlzvIPiq9X2EKvW1Q27vpfs+88V6zvF7ljTyLPMC8GRhQPOPLKTwVMwM8brdHva5Ctzt8GCq9JoE5PbkP77uW19A8A7AHvei7m7wWj8o8Fva2vLd+4rzBIXq9fGoGPBAOTLvWnww899+xuxSX0TynjPM8+K0Ku1LDWzyZiJI8MBxKveYfaj1eLMW8IlT7PNafDLxcm7g8gP32PCfLjjzflAA9lnDkuw7kq7zgQqS8pZ+fPGIcN70tk0Q8IAA7PSh5Mr1SzoA9KzTfvNSnEzy+NKY8CCZhPFqjv7v2eMW6cOSFPMfXvTp44QA75DKWu0GnTDzLYEO96hqBvNKvmrt7StE8cK9AvJ70gLxFUAc96g9cvagTlbwPQPO8cOSFPZoEj72icuE8voaCvAad2zx6IDE9ow6TvJhzAj3Bk4s8cmCCvKFIQT0iVHu8EdH/PLJk0DyDXNy6zMevPDxQbr333zG9YU7evFgSszx0Bp88IAA7O5gMFrrFeFg9W3EYvF4sRb2mggg9i9XTvKB6aL3zqAi7ePYQvDsmzjyRVlI9ZXD3u0TJ5Tx3ehS8MMCCvKEWmjyV/wy9d8FLvQpGlrz+I2Q8qrkxPBx3tTyyhAU9DjaIPAM+dr2Qk566TwgvPW96+7vOWDy7S9EFvenluztkrUO9+XA+vKoLDr3wKe67fUJKPAGtaT2TB5S9+8T+vOaG1judJii9Gn88vPgJUj0WXSO7p/4EPRSXUbzwKe68IyLUPOaGVrztJ4o7poKIvMUckTz3Rh48ihIgvOftQr1Z4As9tPXcvD3XDz3Di4S8gWRjvHwYKjxoBKI848spOxb2NjyulJO89LJzPEvRBb30svO84jodPVhEWjxsJju9jGbgPKmE7DwxRuq78CluvI3NTDtHjzc9NkGBPAYEyDzWOKC8rA3yOwbSIDzjyym9/vE8vbyOCbx2/pe8xXjYvKzjUT2/91k7AINJPBK/jbvAF487rxCQPNukjrwVwfG8ZXscPZZ7ibxwr8A8Ks1yPfoBSzyXPj286TcYPbLLPD3Tck67vNVAO+l+z7xek7G8xwllPVORtDzDGXM8JxLGPBnRGLw2cyg9y2DDvF6TMbv1TqW8TXeiulS7VLtc7ZS7nvQAPQhjrbzhbMQ82Vq5PEWXPr1naPC86LsbvWRmjD2deIS8aASivfs2ED0xtV29P88Ivnnr67zETjg8Yhw3PQ9A8zxZeR8977gWvWPfar2KeQy9ZgwpPXFydLxq54q9QlgOvXAWLT0y3/08ltdQvBPUHbxQ1oc7/CvrvLizp7xcmzi8mAwWvD2FsztCWA69IcaMuyRCiTwPSxg9Fl0jPc+NATt+BX6851QvvSBnp7yWcGS7fHTxOm/h57wjItQ8truuvOvdNLzxsI+82RMCvYD99rsNuos9swCCPFDWBz3Lkuq8lIOQObUqIj3zqAg99zt5vVl5nzzVA9u6+/lDPGyNp7zJDIO9EZ9YvY8ssjv6Acs8R/ajvFazTb08UG48Da/mvIp5jLuVRsQ7ihIgvWQUMLwHLui8fGoGPDLf/bqjDhO98iFnvRFDET05LlU8poIIvC2TxLthTl68o0C6PL0KBr1zOEa8eVLYvKGvrb1W04I8NjbcPA26Cz15cg06jl7ZvIflYb2c8eI8/JLXvJpg1jwVKF4+QadMud18Ur0013a9ltfQOwAnAr0mT5I8aJ01vWC9Ub2yyzy9xBFsPK1/Az0y6iK8inmMu/q6E70o4B49cwafu5Z7CT0pw4c9rA3yu9odbTwHYy29v5BtPfkph7xfVuW8+8T+vDDAgjzRmoo8xLWkuQtbpjyDw8i7jyyyO6CFjTvvzSa8mmBWPNUOgLwy6iK8rwXrPIPtaLz+tPA8YedxPcwunDzoF2M9if0PvB89B72OApK8BCyEPa+MDLsm6KU8Z3MVvKnBuD37xH46VYmtO2idNTq2VEI8By7ovHx/Fr03BLU73y2UO7YNCzz6pYM8ZXucPHZa3zvbUjK9FJfRvHx/Fr3PG/A8+roTPfH3Rj1q5wo88zmVPVXwGT0TOwo6wF5GumODIzy63Ue8VYktPUvRhTwKRha9SF2QvKnBuDvn7UK8GRhQvLielztX3W09ut3HvI00Ob29zbk9N51IPei7G7wbqVy9Olh1PKSKj7zdsZe886iIu0xNAj1tW4C7TqHCvPIh57yGfvW8998xvOgXY70+Uwy9gvVvulgSszw4/K294i/4vDTiGzswTvE89CSFO9odbb2g4VQ8qxX5PHm5RL1r8fU7aAQivNCs/DtucBC8lUZEuzHVkjySi5e8rEq+vHJgAjyx/WM9dJ8yu8/pSLs6ygY8Z8/cPDRJiDug4VS6fnePPDTX9rzcFea8feYCvTDyKT0RQxE9SkpkPZ14hDy63ce8wMWyOy8k0TxCONm86qjvvN5KqztHSIA7U18NvRp/vLx56+u8BUGUvMKLBDw+Uww9EdH/PNdiwDwM7DI8yp2Pu/A0k7sZGNC8YrXKvCjgHjuTtTe8r6mjvJTfVz06Yxq9QQ65vNAejrxsv049bHiXvbeJhzoHOY08jpulvOKWZLwtTI296LubO/HFnz1exdg89qrsuyBnJ72UeOu8gvXvPFfoEr0IlVS8/LIMvB7Wmjwsu4C9BTbvPKJy4byM/3O9NOKbvJqVGz3+8Ty8R/ajvTDyqT2i2U075rh9vFsKrDxxcnS8AjSLPVLOgLzvzSa9XJu4PCC5g7waf7w8jGZgPPvEfj2mgoi8QNlzu9f707s1xYQ9jYaVu0GnTDzMxy+8pTgzvCkKv737K+u7L71kvOQylrzMxy885I7dvDtGA7wa5ii9Y+qPvL7Nubxexdi7/vG8vB2h1bwQdbi8DIVGvB89BzsbQvA7ABxdvSHDbruUeOs74AVYvaWfH70ZvIi7GbwIPYSRIbyJ3dq8MUZqPLqWEL1x2WC83LkePWdzFT2XPj097pjhPJnPST2RJCu9j8XFPOQncT36pQM9gYQYPRAuATxkRtc8iBqnPFpcCLw2cyg9aPl8PH6pNjysfOW8AjQLPdbRMzzZrJU90qT1u4NcXL3pTCi821IyPSjgHj2G8Aa9Pq/TvIoSIL13Wt+8HTppO9vrxTzVA9u7z40BPEmHMD1aoz+98+8/uxm8CD3JDAO6O426vMTny7vSpPW7ACeCvDhgfLxxp7m6QXUlvFYaujyp61g8Hm8uvR066bu+Zk28GFUcveSZAj1XgaY8lRQdu9bRM71hTt48CvS5vMkMgzymYtM73ZyHPKJy4bp+EKO7RlryvMAsn7ylBoy8ZK3DPK0YF72kio88Fo/KPIW7wbzBiOa835SAPJ70gLqvnn48my4vPGPqj70ZvIg8jTQ5u9diQL0KjU27870YvMAsnzzOJhU8vI4JvSh5Mjxz0Vm8d2UEuhmxY7xvevu6hJEhvHIOJrzz77+8OGD8u+oP3DwJyhm9Dn0/vW63x7wY7i89HHe1ueoagb0pCr89eoedu8o2ozy09Vy88CluvLxu1Lvj/VA9MuoivGODozvOJhW8fqk2PFORtLxtUNu8780mvbLLPD126Qe7gctPPYmrMzp/OsO8LSxYPDWlT7ye6ds8Bp3bvE1sfbtZbvo8EZ/YvFirRjxXgSY7vDwtu4AyvDyyZNA86BfjuzY23Lwtk8S8Mq1WvOHTsDtzau08DD6PvHFydLwWXSO9pNFGvZX/DLv1tZE7M3svvZoEDz3DgF89eIR/O45eWT0BRn290B4OPU0QNrwBRv07W2bzvasgHryZnSK8oUjBO0nuHL1aPFO8mvnpvOCpkL2fHqE8zC6cvHuxvbzYJXQ9GFUcPdgwGb39Lom8j8XFPNwgC72vBes8+88jvb3/4DyNzUw7G6ncukt/KTr1tZG8a/wavD7h+rw7RgO8Rf6qvEYoS7p5ucS8k7U3PK1/g70jItS7TNvwPK+pIzz2EVk6782mu55QSDwxgzY9DjYIPOftQjymyT88gYSYuwIU1jxseJc8qFrMPFAyT7w+SGc8homavExsfT3OJhU8smTQPEBLhbzYMJk812LAO7w8rbkLwhK8yNe9u/kph7yp61g86rMUPXIOprwrAri8LMVrvMatnTzqqG89u6sgPQhjrTwpCr+8EA5MvQ4W07zRmgo99BngvOYqj71qla48b3r7u7a7rj0Pp987QOQYvbkalLxj32q9fGoGuleBprykalo8kweUPFYaujwpPOa642Q9PVORtL2M/3O9jpslvLuroDvcFWa7NV6YPAW9kL1H9iM9SuP3PAJ7QjshNQA86LB2vZTf1zyHBZc81QPbPGj5fDxN3g672KyVO0ypSTtCWI48LUyNPGZehbyPLLI8ut3HPMSgFL0VwfG7BagAvb2jGT08Hsc8t37iPJO1Nz1c7RS9wlY/PCs0Xz3WOKA8HtaavJxYz7yTTks8nCYoO5yKdj2BZGM9eOEAvZuAizwM7DK9NV4YPVP4oDxFl748e+PkPKJ9Br1DBjI9CSZhvdF6Vb0D4i47poKIOho4hTzDJJi8ihKguxa56jwtLNi6hn71PPXnuLzWOCA8xd/Eu7sH6LtlPlC8HMmRPeElDb2RvT68acfVPIMqtbuCmag7/7RwOqOnpjwCe0K9UlzvuUbMg7xK4/e8gvXvOoGEmLx921275rj9uzpjmjxNdyI8bHgXu9yu+bvTK5c87KBoPRT+PTz5cL48xLUkPflwPj1Hjze9VfAZPEGnTDvpN5g9e+NkvMZGMT3YJfQ7I4nAu7qg+zw97B89IGcnveCeazzmw6I8vf9gvEbB3rrbUrK8eI8kvfO9GLzb60U7JbPgvBZIkzz2Edm8qSilO3BoiTxxcnS8e7G9PLcX9rsviz074qGJu+NkPbxf7/g6yjajPOoaAb2BhBi9ZddjPWRmDD245c46noJvu6aCCD3oIoi7igf7PCC5Az0I/EA9kxwkvNod7Tmjp6a8XFQBPb3/4DqfHiE9cmCCvMTny7sny448sGzXu9bRMz1ypzk8HN6hPDpY9TsSvw099IBMujHffTzfdEu8id3aPNmsFb0DSZs8yKWWu8bKKz07Loo8eiFzvbDjsbxdE3k8yeHTuyLY8DzpC4g8Hxv+O6TsjDx81vm8NQcKvNNyYTuRxV+8QVD4u9xewLoptRM951HvvD6UITw/Sai7IX47vdupuTzfbXw8vea4vNyxJbwCYGm87MNovQ1MSD2xPgM9cOPKu5flDz2ZR7G81CfoOxERJz2/QO48cT6cO/VU9rz6IcG8uiHavLYKsjxJh9A6Gv0FPUTDjT1teT27Dq5pvFiaL72hKyS8lYLSvCsXtbtCWOS8rMyJPFY4jrz0+kA9LScNvByxcLs6Iqg88UW6vKZKuLzhJ5W9gQKMvLi/uLyPrrc815IRvX2MHL1VMCK992TOPHkeGbz6fBI88pgfvQh/fbzcZiw89lziPG6BqTu3ZYO8btgEvX9JD73lTpW91S/UvNAIVL1FFde6v+4kvRPOmTyqYWC6UiBKPKzMib0Zmkg8ZUJlvNUvVD1Gyt07LoFCOqVKuDtHgAA968AOPcMNubwEFgy9D1ygvGLY1zx6JgW9dQJfPG8uRLrUKAQ9lzfZO+ZOlbtVitc8INEgvfNNJr31VPY7D1ygvGpqATyexYy7zEN1PZR65jy9OR68NQL4PD6YF7r9i8487Xhvvf+bprxVMCK8p6WJvMRsgD26zxA9DfliPTJGobydXtk7M0qXvNJq9TuTewK9+3v2O6oTjTvw5w68NQsAPevAjrxEvxc8mk+dOwV4Lb3Z9LK7xW9aPbkZbryB/hW74twbPSWdz7rbVlQ9t2WDvdjsRj1qvMq94oVAPeb3ubyYP8U8WD9eu0bSyTsRvkE8STRrvIqW8zxRa0M8oX6Ju2j/17yUeuY8QPZCPODIzTzl7828YSs9PeKNrLztJia8uBqKPPWvxzyxkEw9c/+EPd4TR7z7Ka28W1eiu23Mojzk52G9veY4PODITTpaphE9y5ZaPf+jEryYP8U7yCxNvSIr1rt1At+8VzwEvQZ4LTwRESc8cT4cPOtpszzDYJ48V+WoPFWK1zyrHtO8LB8hvEVwKD181nk8IzsuPLuEl7zaTwQ7sZBMvV0Mqbz5ywG8XFsYPGpqgbxmpaK8NbCuvbCI4Dx72ws88vLUvMjWDb1u0/I856TUO1xfjrx9Obe8bR5svBWHljzv2yy8YYIYPTzjkLwbVzu9WJqvu7E95zyHJPq87i6SvO/brDwyRiE9ggXmvNPVnrz1WQi921ZUO2haKTy4bFO9oHoTvYmHtzzu00A80hisPLSshjyj4Co9kcKFvJ0QBj2+QQo9IzPCPFR6/7rTH/y7OG2hPQ2nmbteFBU8HF+nu1qqhzzN+Rc7p1IkvfGQs7yklTE9S5eoOwk1oLzXN0A9xRkbPcjR+zz+7gu9M06NvGxxUbwY7S29w7rTu/a3s7xPCSK9lHrmPA4BTz0u23c6iCzmO9IYLD3+6pU8DJ8tu2Q/Cz2Npku80x98PMVv2jzvLXa8JUJ+PA1MSD14bGw7YdBrPa+AdLzjjay7Z62OvadSJLxPXAe7ZviHPLKYOLyVLBO80b1avEvqjTxQY9e8+9bHPJEQWT295jg9OyqUu+LYpbyeE2A8A7POPHgeGb6XN1m9dE3Yu5pWbbu5dL88r9vFPF5mXr2BqzC9HLaCvUMFfz2seSQ9WD9evaphYLwdZnc8OL9qPcCrFz2nUiS95kofvFFrQzyrcTi8q2nMvBy2AjrxkDM9kyAxPeEri7pJ4iE9d2kSPWxxUbuvhQa9jPFEvWb0ETyOU+Y7OG0hvJmiArzCBU2786CLPD05ULzJNDm9Twkiuyf8FrwfybQ8Rh3DPZmigruW3aO84COfvBlHY7zhfVQ8yo5uPQNhBb0lQv68wgXNO4RoozyDDVK9LHIGvcUZm73x64Q7JfA0PHLzIrwNVDQ7v/qGO9QoBDzynJW9i+lYPJ0Qhr2pByu9TlgRvSxyhjyKPL68+Gy6uw8JO71mnbY7jUwWPFqmET34EWk8MJGaunKY0TtduUO99lxivLE+A7xFcKi9zfmXvKis2bv1Ai28btPyu705HryaUxO9wVDGPOPgETxB/q48u9ZgPp8bTD36e3a9o41FvWoPsDwnpTu9XhP5PLhs07xYmq+8ZOgvvI+ut7pTxfi8zaYyvMh/sjzscZ+9Os/CPAJdD7zBUEY8WqF/PRUwOzz6e/Y8+L+fvJr8tz2OVIK6bcwivTNOjbyW4Rm70m+HPUbSSTzDYJ470hgsvP6bpjtcBL07HWZ3PMXCPzvYlgc8uR4AvUzxXTtnUr28fNb5PLa3TD29OZ48eSFzPK6BELzMnka96P8lvAnaTj0GeC28dxK3PLavYDz2XGI8Z60OvS0jlzyeZkU71oolOzKZhrya/De95kqfvB7BSLwWOCe715KRumdSPbx7Kd882OxGu6x5JL0tIxe8LMTPPEqPPD2rxB09+4AIPa3L7T0qvGM8N2W1vE9cBz36e/Y8pqETvA5UtDzorMA8AVEtvcd3RrwdZxO8w2QUvd7A4bzSxUY8iuHsPGoPMDymnZ29ZqUiPb09FD38g2K84HXovJG98zx5Io+8rMwJPam0xbzsw2g9tPrZO3keGb0TIGO98eL8PIrh7Doj6Ei9TPlJvFG+KLyVMIk86P8lvY1QDLyGysQ8OHEXPEBRFL0duVy9Bs+IPHgaIz3Gyiu8rdNZvAeAGbnfbfy8+BFpPIVv8zz5zts7EmvcPAbK9jx93uW8W6nrO7gWFL34wxU8OnzdO7yMgzyYmpY8YoVyOkh/ZDzgI5+84twbvfWvx7saqiC81uTaPFc8hDxEww09lHrmPK7TWbs1AxS7Dq8FPN7AYbwmSuo7CC00vdWCOTzGIQc9v5u/O2pqAb1FFde7qmnMOsUhhzt0qCm8tFUrvbLzibsDDiC75UIzvVtXorxB/i698DVivPLy1LwNpxk9BXgtvZsEpDtcsde8So+8PCwfob2hfgk9TlN/u8JYsry0p3Q8n8mCvPt7drznUW89XmbePFUwojyfwHq9o41FvRyxcDvCWLK8eGzsO2HYVzy95rg8jVCMO64mPz0vLt28ieKIvaF97bzqDmI9VjSYvDKgVr2zrIY9iH/LvNUv1DugyGa8HxyavBQoT7z3ZM68/DGZvB25XL2Cs5y8/pO6vAk1ILtx6zY8OcfWO4RoIzyNpsu7NPsnPUYdQzueZkW93238vKF+CTzduPW8aKxyO9upObvIf7I63ANvPB5riTzKkwC5OXRxvNBjpby4bNM73xuzPN0LW7pXksO8C5dBvUd8CjwDDqA72k+EvC8uXbzY7Ma779ssvOPf9bxTzoC80GOlOz+cDT1+QSM7FM39OwJZmTvvLfa86P8lPL2L5zxOATY9Jp1PPeZOFT0/SSg9QljkvC7UJz14GqM8HyCQPIH9+TymnR08POMQPH5Bo7wraX48/YvOPPLqaLxfG+U7NbgaPMVv2juwOg29i0QqPcH94DyUKJ08w2SUPBtXOzqTILE8nV5ZvFmiG73Lllq9lzfZvJIYxbzJ4dM7NriaOwgtND0EEpY8hyT6vActNLwTIGO8UGPXvC0mcbw2t/66MT41vX9Ic7tV1dC8mk+dPOx1FTw0TXE9bXk9PEk1B739OGk84o2sPOdSC71jOnm8wqp7vGetDjwlR5C9NPsnPHCI+bxeFJW7v+4kPMjWDT0ebuO8URByvActNDwv3BO9HblcO7opxrzaTwS9Wk+2vH05NzwtK4O9EWPwvKakbTzRvdq7jJ5fPHgaI71QFYS9Bcp2O37mUbsiK9a84o0svIGrsDzOshS8/TkFPc+yFL33EWk67oDbvEclL7yRENm83b2Hu99yDjsteVa7wVBGPGQ7lboptRM9sZDMvAmH6byszIk8Y+DDPHcSt7shfrs6oti+PV0MKbym7+Y7bibYuzcS0LsdZve8lSwTPUCjXb0Zmsg8h3ffPFqqhzzYlge9j643vYqW87z4v589cJEBO05chz3tfQE9y0N1vMBIWj34v588bMQ2vLA6Db1QY9c7sDqNPBflQb3xRbo8KAQDvVG+qLx83wE9ojOQOxr0fTxdXvK7uzEyvMVv2rx+QaM8utbgPJLF37wb/Gk82UcYvAzx9rwx6088arzKO66BEL0BUS29zfj7PMRsAL2GdIU9+Gw6vZJzFj1pYhW7tgqyvJmiAr4wNsk8n26xurLzibyX7N+7UGNXPES/l7yLlw+9hspEvJ/FDL1GHUM8N7f+PIYdKj1sGxK8Dqb9PFMoNjyQYz69Aw6gO2wfCDzh0Dk9XmbeusRn7jw71668s6f0vOweOr0UezQ8Y+BDPYnekjxgyH+8e9uLvQfSYjyJhze9PN+au05Umz06Iig9+L8fvEeAgLz/7e88QVkAPeoOYjyfyGY6r4B0PIqW87yN+TA93hNHPGIzqbsvLt28G/xpu+KFQDzVgjk90b3auq59mrwMny29zUthPdpPhDyBAow8WD/evG4mWLz1VHa8L4kuvVMgyrxa/NA8ax8IvSoPSb0Wiww97SYmPXi/0bxLl6g8gw3SvI4BnTzh0Lm87HGfPdeSET1PW2u9EhmTO/HrhLzcCIE9mwSkO7VcezzbXkA8P0kovYbKxLxllUo8pfACPTsp+DwdZ5O7xW9avOZOlbx2tIu9gQIMvYcpDL31Aq27jZ5fvcCrFz2Rvo+9xR0RPR1nEzw1sK67fkGjvJn0S7395h89XLHXPKZKuLwTIOM886SBvBr5Dz1ewS+8Vt28O0VwqDzugNs8R3wKvC8u3byhKyS9MDZJOyLg3Lwteda8+iFBvLcSHj3sw2g8WD/evC+JLj3cA288MqBWPQ4Bz7w/Sag7VdVQvId33zr4EWk94+CRPLPy7bwewcg8So+8vRlH4zt0+nI8RHAoPDrPQj1g0Qe9yNqDPL3muLx2r3m86g7iO+weurzw4ny8PDHku7JFUzspB907KQfdPNjsRjx+k2y8w7LnO0QN6zzvMog7By20uqWhEz1ducO8MpmGvDzfGjoymGo8PeeGvJmigjxwjYu8nyM4vJJzlrtOATY8xsqrOym1kzwxPrW8QwoRPAvqprzy8tS8MpjqPCToSDzTzTK8pp0dvV/NkT0+m/E8f5tYvIIGAj1qD7A9x9IXPJC2ozu8jAM99VT2PP6Turp1VUQ7Ehh3u7NNP73WN0A8etcVvUFVCr3BUMa8s6Cku5lHMTy3ZQM7ZvgHPaONRTzkOsc7AaN2vKPgKry7hBc7xBWlvVftFDxTc6+7sDqNvO8tdrtm7/+7nQt0vERoPLqXN9m8+XSmPFY4jjyjN4Y74oVAvVWDhz3/8oE8bBsSvevEhL0aorQ8qx7TPFbdPLyX7N88vT2UPN8bM7vRvVo8dKgpvb09FDzpB5K85kofPWsXHD0DDiA8eXRYPBjtrTxFxwM92Ub8PPwwfbuTILE8nLG+vOHQOb22ZGe8+cuBPHrPqT0v23e8Jp1PPUd3eLw="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_relationships.json b/dsLightRag/Topic/JiHe/vdb_relationships.json new file mode 100644 index 00000000..1faa8874 --- /dev/null +++ b/dsLightRag/Topic/JiHe/vdb_relationships.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "rel-8c1c7a535667da54717cfc684a29b3c3", "__created_at__": 1752209913, "src_id": "Triangle ABC", "tgt_id": "Triangle Inequality", "content": "Triangle ABC\tTriangle Inequality\ngeometric proof,inequality\nTriangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-b46d74f0796c8b6fef0de58539f07c35", "__created_at__": 1752209913, "src_id": "Euclid's Fifth Postulate", "tgt_id": "Proposition 19", "content": "Euclid's Fifth Postulate\tProposition 19\nangle-side relationship,geometric principles\nEuclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2ef66df36fc7aa71e1374473e20fdd1f", "__created_at__": 1752209913, "src_id": "Proposition 19", "tgt_id": "Triangle Inequality", "content": "Proposition 19\tTriangle Inequality\ngeometric logic,proof technique\nProposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-e3c9f606eb2d48c5e37f2c2d8bff69ed", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "三角形ABC", "content": "三角不等式\t三角形ABC\ngeometric proof,inequality demonstration\nThe proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-de9c692983018a15521f9ccd2f7c6a7a", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "欧几里得第五公理", "content": "命题19\t欧几里得第五公理\ngeometric principles,logical progression\nEuclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-37e6f8ce2b52adfdbedbf5458829145f", "__created_at__": 1752209913, "src_id": "三角形ABC", "tgt_id": "点D", "content": "三角形ABC\t点D\nauxiliary point,geometric construction\nPoint D is constructed from triangle ABC by extending side AB to create additional geometric relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2a9cc6a702126e537b2447867dae52f6", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "等腰三角形BCD", "content": "命题19\t等腰三角形BCD\nangle properties,proof technique\nThe isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-039ba025f89bcd6d36103f7ef75d76ca", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "几何原本", "content": "三角不等式\t几何原本\nhistorical reference,mathematical foundation\nThe triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "ZDFVPKco+zxTcES9806qvECiFjqWZ+o74mngOyCLpTwD32S8Dc0HPAw7K739aYq8nmUdPIKZPLxdKh68GWC1PE4lND2m7qC8nDTHO2JYgbznBee86kPaPD8gSry6Ppu7TGmNPOpDWjylbNS794ydPXF6mDzOjpW8oX9XPNH5RboXgFW83BEzPeUsE73vVJC89rnauvWsvTtA84y8SAfhPIfXr7vaVQw80Eq8PMkfzLwVBRU811HzvGDzYbtTU5e8XmuEOvYKUbydkto8DkhIu5p4oD0nWII5qrfkvIXKkjsmaBK9YgeLvL8UfL3QLY+8u3+BvLRxPrx/j5K5cmP8vIG53LzttRY8c+XIvJUJ17u9WFW80fnFvH5OLD3nKaA8lQlXvaedqrzQSjy9k00wPK6kYb2BaOY7XWT4u+bLDD1Uzte8zF2/OwEGkTw9E606nQeKvEkU/rucFxq9hroCPVgwhLybJ6o8kUATvfl8jTtLlko9dfLlO7evMbvapgK9yqGYvPtifrz9NcE8LxvgPEGShj34xnc6zz2fPMnO1bx2xSi7t68xvWbtez3bBBY99S6KPTPOArzW8189KGUfPPtVYTzyHVQ9ZKYEO+ZW3TwfuGK8K/QIO0+DxzmcNEc8K9DPPJ1B5DpLlko9ofQGvacvB7w8QOq74rpWO3vzC71wHAW8emGvvAyMIbyNL925daFvuXpEgrmjQgq9E5NYvQYdWDyLIsA8Ll+5uyjw77z0/TM9YnWuvOFcw7sotpW9NRV6PejYKb3kmra87z30u2YRNT0S5M47qtsdvbK1l7vg4QI9wZZIu/jNAz0AFiE92HUsvU12Kj3quIm97z10PUB+XbzzQQ08NpfGPIfXr7rt0sM8Gm1SvRVWCz2aeKA97z10vA9V5by7f4E8YGgRPS5fOb3H9YG8nViAu9PZJT2gBBc8n6aDvEBRIDzpyBm9lmdqvElsAL3UiK87sITBPOFcwzzyHVS8RpwwPE9mmrvNu9I8G+IBPTL7P73oY/q8XB0BPd0e0Dz0/TM8zEASvbMTq7tYGWi9eY5svABXB73GVgi9G5GLvDTbnzs7Vwa94K05vNnTvzzuMFe91kTWPJGRCT18bsy8FQWVugjZ/rwsjPa8ZKaEPIjkTLsc7567RT4dvS/hBT2OPPo8qI0aPC8bYL19QQ+8gArTPNZEVj0lsvy8Wps0vS5fubzTtew8y4r8PKOTgL09E628B3vrPEuWyjwQeR69eVQSvBQVpTnRqM+7uEGOPEKvszxdZHg9Cf03PeuhbTsQKKg9aJOBvFauNzxOCAe8WuwqvVpKPjxNxyC9SWyAvX5OLDsq0M87LKOSvTqEQz1O1L086cgZPfCyI7tKOLe8PRMtO8e0G70aD7+8AMUqPLqPEb0BIz48erKlvGTgXrtPMtE7UJDkPMjBOD2dWIA8LC7jvDy1mbzXF5m8t5IEvLxLuLxW/y09OQJ3PIzRybsQs3g9olIavYm3j7yoqse8/GL+O1aK/rtMGBc9RpywvLCEwbwaDz+9rwkBPFgwhLxEa9o8AzDbO4I7KT369028PLWZuxVzuDxy2Ks8HO8evtfGIr0U8Ws8AzBbvABQezyvsf486TY9vQ+m27wBI748TzJRPfmZurwavki9B5IHvduznzzL23I8CNn+un8+HL2o+707emEvvaNfN7wOK5u8Vq43vZhHSj0eWk+7xxIvPcaQ4rw1iqk7AXQ0vAu53rz7eZq8wOc+vQL2AD118uW75lZdvLaiFD3p5cY8OoRDu/g7p7yRQBO8q8sNOzl3Jj37eZo9S7qDO7snf7udWAC8WDAEvRcv3zynKPs87oFNvZ4UJzyjsC29PlSTOrZRHr3F4Vi9/7eNve+O6jt4gc88nvBtuzS3Zrzf2vY8exA5u3phr71V23S8losjvTbovLybuQa9EWmOPJZnajsZ8hG8coc1vbLvcTxHqU086TY9PcosaTxNUvE77SO6PBwpebw+ccA809mlOw8bi70tsC89ZhE1POxXg7wVc7i8EdexuSdBZr1rrbs8XAblvEtFVD03RlA+OBmTPcqhGL02y4+9+UhEvDWXxrvxUZ08L+GFuit/WbzzTqq8cbTyvHW4izgeWs+7f6y/PGDzYb0kA3O7IcyLvFk9IT1amzQ9OBkTPF217jys6Do8zF0/PbGRXjwTt5G9KGWfvERr2rzaVYw98yrxPN/adjwsUhy9AzDbPBg8/DtYat67BRA7PZp4oDxhouu8JAPzvHIpoj1dte48KGUfPZ1B5DzBRdK7LxvgOz5UE719zN+8T4NHu4Fo5rmCxvk7ubzOPNRrAjz+CIS8Hfy7OiXWtbzsBg29Wpu0vAF0NL0ITi495HZ9PBje6Du+K5g5Wps0PKbK5zx6Ya86858gvTL7P71yaoi8TVJxPdRrgj1Yu9Q8I/bVPWkrbz3F4Vi95lbdO8Kj5TwL3Ze8TiU0PY0v3bwXL1+9nUHkvMUyz7yOsSm8wHmbvODhgrw9nn27WT0hu8cSL720A5s94QtNPWZiq7olsny9lsX9PEFRoLweWk+8RGtavb+Jqzxam7S8IcwLvXXy5bzfTyY8OXcmvRAoKL3L/yu9PsI2vKNfNzxNUvG857Twuy0BprnZZZy7TgiHuk12qjxG3ZY89gpRu8UyT7upzoA82jFTu7m8Tr1FePc8hiimulE/brwLuV66vEu4usZWiDuI5Ew9JdY1vdgktjxRtJ251De5PCcHDLtIB2E8zt+LPBuRC71m7fu8lKvDuxcvXzyJxCw8fk6sPE3HIDzbsx88KGUfvZp4IDzLUKK8KaYFu6O9Sjwby2U6C38EPXWhbzvznyC8xYPFuq5T6ztw+Mu89n8APDqEwzu2LWW77wOaO3kDHLlOCIe7lKtDvX4q87yFypI5KiFGvVp+Bz2AfwK9O1cGPNz0Bb1qkI49FcSuvGJ1rjvBuoG8Qq+zvLxLODxhomu8UWMnvVgZaD16PfY8EATvvGPTQbzmVt28+DunO0DzjLnzTqq76rgJvaj7Pb1W4gA8XXuUPIT3Tzvt0kO8qrfkvOR2fTyHhjm9TQF7vHUWnz1JZfS8MMrpu/zXrbxFfwM9c+VIPas5sbyCF3A8gjupvIHdlTyQbVA9o7AtvMuKfD1PMtG7/0JePOCtuTtyaog8U3DEPMlDhb3quAk9JHiiO3QJgr1eNzs7ogEku/01QTqYKp28yn3fvP4IhLx3Izy9VSzrvDkC9zu4QY47gFtJvOMY6jtcBuU74i8GvN1vRrwBtRq81IgvvFL1A7wcKfk8a627uwAWIbt9e+m8WY6XPO8Dmjvb7Xk86rgJvWIHi7yriqc8wZZIPccSLz0/RAM9lFpNvFv5x7w74la807XsPP2GNz0D3+S7g+qyOzPOgjz8Yn49NNufu7zdFDyzE6s8hEhGPbOlB7vqQ9o7KcMyPQF0NL02epk8dRafPHVnFTv1Phq9IIulvGEXGz1afge9W0q+vK6kYb3Blsg7sZFePHvzCzvze+e8Ze37Ojik47rIwTi7G8vlPCP2VT2lbFS8Ue73O5P8uTwu8RW8l8wJPRptUr0FELs7DxsLvRbRyzxHqc08jo1wu71Y1TvcETM8u5wuvas5MT2/FHw7g3yPPHbFKL3QSjw9DmwBve6lBrxZd3u8YLmHu6NCirxPg0e96cgZvex0sLwYAiI9UT/uu2Wzobo/IEq9bjylO/jNg70U8Wu85UlAPXF6mLyP8o884JCMPASyp72COyk9KcOyOkXtJr33jJ08/TVBvOx0sLzaj+Y8x53/vFv5xzzu32C9Re0mvL58Dr1Ituq8rsiauzQsFrzsxSa9KZ95PFbiAD0W0Uu8XWT4vGr+MT0pFCm8KGWfO4UbCb18bsw9LKMSvKAEl7zYJDY8iOTMu3LYK71Yu9Q8UbQdvRWngbw1Ffo8kKGZusfu9bykvcq7VwzLvLevsT2PYLM7QdzwO+zFJjwdTTK81ZVMPQXzjTvcwDw8qI0avJYW9Dxq4QQ9pu6gO2geUrzR3Ji9bWniu3uilT38KCS7dnSyvFb/rTsC9oA8j2CzvFv5RzznBWc8kp4mOxAoKLu+tmi8+OqwvOM8ozzWxiK87HQwvRAoKLxqT6g85ymgvAifJD1wVt+8IIslPbHi1LuetpM8QH7dvdaiaT00fYy8PsK2OmWP6LviL4a7308mvf2Gt7zJztU8rhmRvUGL+jyhf1c8euz/O79l8ruS7xw9buuuPJu5Br2CzQU9RT4dOh8JWT0tQoy6IR2CvMnO1TvBlkg8qPu9O0U+Hbw0fYy77bUWvC5fObwuDkO9cFZfPASyJ7zcwDy8mRqNPUJBkDyTMIM9busuPHilCLzgkIw8LUIMvBFpjjzIUxU9t6+xvEKvszyxkd48DmwBPABQ+7wc7x677jDXvCmmhTmHaQw5OMicOzkJA713Izw9X5VOutcA/TyNL129yFMVvZ9yurpxy468nUHkvASyp7xf5sQ7wvRbvbkaYjzi3g89TBgXvfl8DTyo+z28E5PYO8DnPjxQVoo9nONQvPKSg70NzYe8l+k2u9ZoDz01iim8pu6gvNwRs7xdtW68JoW/vElsgDymeXE8wwH5PNcXGTsd/Lu8jw89vM/sKL2rFXi9su/xvH+sv7zJzlW9Ql69OzboPL2aA/E8eQOcPJ9yujzSKhw8EYY7vdB+hTqfpgM6UT/uPGb0h7s5dya9Pe9zPevyY7v4xne7DxuLOmUEGD2jO/67mCqdvFaut7x3tRg9fG7MvG3ekbuLc7Y8Qq+zPWIA/7zLUKK7losjPXphr7uGugI9ZFUOvL+Jqzuen/e802R2PJIpdz1Wiv47fJIFvV1k+LyrOTG9AFD7OpLvnDwh6bi7rfVXPT5xQL2asvo8t5IEvZ7w7bwHzGE80dyYvG2NGz3xUZ28mgNxvBzvnrv1Lgo9ogGkPPU+mjykDsG8rnekvM4ZZrx532K9W/nHPWHGJL0tQgy9oX9XPNxiqbyDmby8uo+RvGTgXrzF4Vi9jS9dPA1IyDzp5UY70dwYPEu6A71HqU08VwzLPCRUabvjjZk8jIDTO/zXLb1dZPi88pKDPWJYgT3xohM9bLpYPXLYKz1wp9W8kRxaPQNUFD3oh7M83yttPSCLpTySeu28qrdkvTWKKTyrHAQ8lKvDvKO9yryHNcO7DvfROtPZJbujkwA8RGtaPSt/2bsZsau8n8MwO9RrAruKFSO9U1OXPEb6wzwejhg8NLfmO9sElrwEA5684QvNvDTbH70l1rU8BaIXPFvcmjywZ5S80flFPcY/7LttaeK89VvHujboPLz02Xo8BLInPPLMXT3Livy7Bh3YPAd76zpoHtK8w8cePaZ5cb1q2ng9v2XyPAPfZDyJt4+8av6xO28slTy/FPw7s8I0POx0sLva4Fy71ZVMvUV49zyo+z08hcoSPMp9XzuAW0k9NpfGvO1AZbzSsAG86XSFvNK69bvoIqy8yP2UvPIllTytKYY8rhRwPQBoHrzJ3gq94V5jvK4IH7yWZYI7EAwMvQSpmzw74NU8R8S0O4OOxTyw57e82w1bvbKl6bz+Bxe9/gcXPS8hmLyjdhm9aZdyvL0pQTwzvuI7BTT+PN5AKj0Jxfe8NZEqunmuoDq6mEe8qDiFvLbaFb1JU1E7cC4DvVr14Tysg/a7zitZvSMQAT16O+C8yS6HvCMa9bwSSc+81e3EvAWpG73s4F08076vu1vKBjvFekk9dOy0vObCJL0Xq7M8zfpmvT4TJTwOicC9bvuzu1Y3ML2SAcG7b62UvXrfkr2HQgM7d6xDPL1WebtcKLE5TLNYO3K7QjxO5Eo8j5/cPIFdU72i0uY8cYwtvTFe27xPOIG8yzy1O8trSry9Vvk8EkfyvEXA+jzub3o8qiXMvMVLtDs4T9w8ei+PtzmjEj1vW7s8yP2UvPmXBL26mMc8TrU1PWc3a7xuiPM8CGkqujqv47zTvNK85u9cPX2dxDy2B848otJmPWc36zumt5a8rVa+O0tVrrwkvic9JyAMPffCXz0bbZ+8Oq9jPP/kUj3JC0M9uAsIvDZDi7x9Pxq9Io01PDOykTx+nyE7JXp8uzO+4ju5luo8UaL8PFKmNrvxokm9r+XaPE9C9TqrJUy6Ml5bvSmvKD0qDdM80C22Og38gDzwRB896POWvAUHRrvzAtE7fW4vPPUzQ7zf8oq9oENKPQg4OLyseYI858SBvV1XRj1zvR+9XtqRPF2pnzxEhRS6TKeHvP8T6DulBba6ExwXPRqY+jzUHNq8XVmjO/HRXr2wuCI9QPQaPWo9Aj05JAE7YbsHPQEYIr0J6hi7fp8hPdsN2zv89wu8x3ymPcneirxNV4u9H38HPO0R0Dv5Iuc6u5qkua6HsDol7xk9gIAXuyM/FryRMFY7CcV3vSFeoDxFYlC8WyZUPbmW6rz01Zg6w7yXO0ZmijtCJQ29a+2FPEXAejwcy0m8eM+HvJHSq7qbslA9sBbNu2NrizzzJZW7p7cWvT4TJTsLJf+8d30uvdBa7rwxL8Y7UqRZvR8rUb2j1EO8Z/yEvVBEUjz55wA9BAVpvFQpAj1EBKY8XrXwO+bARzynZT29G8nsO2z51jykNEu80V6oPOVinbysg/a5oBaSPNDPCz13fa48I74nvBfaSL1VBj69UETSvPjEPLuJrlu7SnaVO+kkCTyFERE9AXbMvGaqqzx5DMu86CKsPD9zrDxnCFY5w7yXvKAWEr0tzWG94gC5PBbaSDvf/ts8upjHvBerM7zDPQa8sUXiu3ENHL2CjsW7qcehuwUFab0uzz48XFVpOxJH8juAW3Y767HIvJ+2Cj1e2pG7MzGjPPjEPD3WHre8m+FlPBEMjDzkM4g7jUEyve5v+jth6D89kHQBvWLqHLuHUDE9tNZbPFKYiDzkYMA8D9uZPbtrj7xuKsm7ttg4PaOlLr1kGw88GppXvHVvAD3I3C01cIrQO3Aug7w4T1y9NWKVOlypn7v69S69ABbFPP/mrzwhi1g9pAPZvLR6jr3kkTK9HD4KPHd9Lr7hog69/eL1u5F0gT3yAHQ8Pm/yO9ownzp2e1G9ZHm5uiiAEz2BAYa9zctRvcJHerz2tg68wLq6PDXAv7sTHJe8M75ivMZNEbyXFQa9E3jkOseru71WNzA9f842PJpUprqIULG8Ls1hvGALBL29+qu80V4ovJ7jQr2qSBA9FnyeuSoPsLsffwc8E0lPu2NIxzs4o5I8zfpmPIBbdjyPznE9O+BVPfsmIb2p9Nk8Lp5MvV4qDr1JR4C8WOmQPFZk6Lyftoo8i+EqPFBEUjw/cc+872WGvDmATr0KmL88YxmyPAxW8TwvIZg81T8ePIqDADxIxLS9NsIcPXaeFb004wO6h31pvTijkjzGfCY6dBvKPG6Ic71xDZy7ELqyPNNgBT24Z1U9H04VvFjpED1ZaKK8vVjWPI0/VbsdH4C9ZqqrPFaTfTvZAYo8BKmbPOCgsbypFx69ummyOrWpI73YTyk9oXQ8Pth+Pj3+Bxc9ZUyBvZ4SWD16YAE8j3IkPFQzdrtchP68gICXvHgK7rk74NW8JR4vur2H67vwxY28FXyePAJ2TL107LQ8W8gpPTMCDjyCXzC9bvuzu7V6Dj1JJLw8c70fvTmAzrsOrIS8TKcHPNJeKD0Q5+q8GTpQu6J2mTwIOpU9yK2Yu1tV6TwKmpw8jT9Vu2pqOr26miQ9sqXpPJDQTj12TDy4pDRLPLhn1bw4fvG8bGwXvf/k0rzLPLU7iYGjvJ8UtbwUeOQ8IV4gvElTUbxgOhm9H4n7O8g4ezwT66S8o6UuPekiLD1Q6AQ9TrU1PZIkBbzkvuo8EryPvP/mLztPc2e9z82uPIvfzTzMnDw9gFt2PB0pdD3SjT08qJYvvbhn1Tx++2484KAxvVvIqTy6mMc8oUWnvGpqOr1Td6G86lMevQF077owALG6k4QMPQxW8bptKGw7YbsHPaBy3zyj1MM7/CahvPz3izyY9B48QtMzPBfaSL0T6yS9F9rIPEQGA71IxLS8JBzSvFXXKL3DGkK87bMlvdvgoryhRac7xElXvXk7YLy4Oh08UGcWvdreRT1gF1W8BHoGPcppbTnGqd67uphHPfHRXrwnq+68MS9GvAFFWr0Q52q8GmtCPNQafTx4Cm48AOkMPElRdL3r1Iy7o9RDO3HeBj0TGrq8sekUPfjzUTw8NIy8+SLnvADpDDxdhls9RsJXu9K6dTz2NaC8DyuWvcO8lzzAuN08+SJnO8apXrxFBoO8Lp5Mu2XLkjxEBgM9I+vfu0AVgrzar7A8S1UuvWLqHLzttYI76PMWvQxWcbx6YIG8OVG5OhIY3byoOAU8gV1Tu71YVr1gFXg92E8pvR9OFTysg/a8b1lePTWTB72kBTY8ZwjWOxk8rbxOtxI68wSuvO8TLbxXOY09WvVhPVmZlD1O5Mo7njUcPAz6I7x7PT08M+13vCZPoTyZdQ28VCmCPbdbhDyUMrO8aj2Cu2k5yLt4riA9ZEqkvNqAG72Wwc89HPreOs8r2by2qwA9VdcovEjzST2i9wc8WyZUPAbaDb1NB4+7ZUwBPZ1B7bwygZ88pjaovDkipDySUxo99FaHO8apXr12TDy9B2fNPDcgxzwmTcS93BEVvLNJnDwMy447oUWnPJH/Yz0XrZC8v/wIvS/yArwNe5I8rVibvArH1LznxIE4OSIkPP61vTyCvVo81Utvvav4k70zvmK8aZdyvUlT0TvY0Be9Jk1EPWmXcjxJJDw9dR2nutkBCrwe/Ds8ThPgO81tJz0dy0k9wunPO5OEDDyQ8xK8xqlevZvhZbzXTUw702AFPTxA3Tyk1iC8YDqZPJ8UNbuHQoM867HIPLgLCL1Ms1i8gr3avPHR3jsPWiu7CAsAvEqCZjzOTh293/5bvSK8yrxetfA7sXT3vM3L0bxgW4C9bZ0JvPSFHDzEeGy9i+EqvUaTwrlC0zO8L/ICPOIvzry/WrO7TIYgvRvJbLwpMBc9QMUFvaUFtjwl75m5ZwozvKQD2TyyGgc9A6VhvLTKirxQ6IQ9QQDsPPBEn7394vU8UHPnOyQc0jr1M8O80YvgPE61Nb3GfCY8d88HuyrePbzoIE87mPLBvMRJ17wenpG8lDSQu4K7/bxgOhk9bcyevIFd07vQWm69g45FuhwpdDw8NAw91L6vvPBEHz0F2DC9UBW9PHG55TyBXVM9+1NZPCjc4Dx0HSe89WQ1vNYetzw4ciC7R/HsvB0fAL0UeGQ8uxsTPJjFCbyrVOG8Csmxu7YHTruzdtQ8fu+dvEZkLb1NB489z/4gvb8rnrr9s+C8dOw0PRs+irxy6lc8IC0uvVXXqLz589G8RIWUvBq9G7vE7Yk886YDPdPrZ7o+oGS9s9T+vDWTB7mdhZg9/+RSvCO+pzwgXEM8KH42vUr1Jj1POAE9iKIKPPIAdL0HZfA79VYHPVmXN729exq9Nh5qvR9aZrzCR/o8x9pQPeSP1bylNMs57hOtvGpqOjsUp3k85sBHPAxW8bxEhZS7chltOrE5Eb071IS8XVkjvQTWUz37dh28ioOAPRDn6rzXfGE9AekMvaTWID3sD3O8leQTuw2H470twRA8w+usPJhEGz1rmc+8yd6KPCo8aL3zMWa86CIsPL6Ha721BfE8ZqorPbppMj3WHrc6CDg4O2WoTj2Y8kG9fMr8u0a2hr3VPx49f/3Lu736K73IOli7+nYduwTKAr2NP9W8Ls8+vY1wx7yqmAy8DofjvBDn6jshum28PRMlvU/mJz0CRzc90S8TOvxVtrs8NAw9DSm5OQqanDymkvW83kKHO5Qys7ychZg8upokPQR4qTxAz/m8+MS8O3M+jrxOtTU9BMoCvEfENDyl1qA83sGYPbmWajwVqdY8Z9udPFiV2jw9QN04MdGbvPki5zz481G8dntRvEzibbwwLWk7Xog4PPmXhLyF8Kk8yAnmPJSQXb1QRi88N/OOPXfbWLyXwyy81cAMPW3MHr2NcMc8dErfuwPKAjtAz/m7mrDzvJnFibxeiLi8bywmO3KMrT3AiUi7usfcvHQdJ7xr7YW8ioOAvUNg87z0YHu8k1OavI/Qzrs14wO9101Muo2TCz2TX+s78XM0vEr3A73iXuO7JUtnvOWRMrwba8I79AQuvf+IBT2LMwQ9OYBOPT6g5DzXfr484V5jvID/qLtZl7c6nRD7PK+2xbyyGCo9ZqqrvLPKij0EeCk9LECiO/IAdDxFBoM8/bNgPbq7i7ygct8822ERPVBnFj0nIAw5BjbbPNONPb1nrAi9dR0nvR9/B71kSqS8V4kJvLA5ETzu5Je89VYHPTWRKr3gISC9uDjAPJcfer3/E2g8GppXPEZmCj2bVCa8QwJJPcg4ez2aUsm7YpogvcKNAjzqr+s8nbQtvLargD3454C86XSFOp4SWLvYT6k7UnchPZ20LbzP/qA84NEjvZfDLLyv5Vq9YmuLu6+2RT0MVvG8BwmjO4vhKryW8OQ7JMAEPTqv4zyCX7C7BtqNvZkjNDw5gM68QwLJPNdNTD3KDSA9j0OPu6eU0jwvIZg8IC0uPeMxKzxu+7M8+ZeEvFcIG7y4OMA7Y3dcOn6fITx8ynw5Lp7MPJF0gTx4Cm67LEAiPTAAsTrAiUg8iz14vODRo7yZdY287bOlvKdlvTwEp768rYcwPO5vejythzC96CDPu9QafbyWwc+8EUdyPMMawjwRR3K8f/1Lvf6GKD2Cvdo7LW83ugSpG7t32Xu7JD+WPHfZe7rgIaA9irC4PHpggbynw2e8qkgQPQ5aKzzJXRw86H75PBk60DvGTRE9EOfqu3o9vbwQuNU8bllePCafnTtcqZ+7JZ+dPL1Mhb1Y6ZC8Hs2mPLsbE7zofnm8UccdPbdleLyLHHM7BijuPI/sgrwZLLW87NOLvC5JC7v6jBA9i0QgPdR//7so9MI7IHxlvfEZNrxtll28/z5kupjfkrz9Ktg7j+yCPO7smjzThBc9QDSuu/9S8LzLguk7nJFmOQ+gy7xBueY8q2OPu2++iryAmqQ80mtzPezJcLzGt3E8AuxJO58+TL1y5qK80mvzvNSJGr2lCUS8MoAsO1bbv7zojcw8GJPbu/lzbLt747g8F4nVO1XRuTxihTu8wY9ZvD2RzrybfVq73xXvug+gSz0FLYY87/ujPRPmCjxTLtq8Z8FfvLGpOb1+98S8NCOMvXpA2bzB9v+8FNzvu2wRpb0qCM+9CMvNO5faD7viuE47NTKVPNHcNLxIonC8Hc//PABnET3SYW29oD7MvG2MV71CzfK5wx4tvdlUEjwYk1u8Ll0XPSlvdbwhn488E1c3PQvf2bz22qe7ZjynuyB8Zbxn1YA8KxJVPI1OpryKEu28lUE2PBZ/T7zJ8yo74T0cPRLchLx3rBe9pIR2vEA0rjy00VE8F4lVPRX6ljzFPL88SKJwvDMPgLvKh4G8lcEAPVGpIT0XGKk9XLC9uzhfMD0CAFY8oVJYPPn4OTwc3h27z8govEDIBLyH6lS8KYiZO8r9MDzFt/E8avOSPLcICD3eKRC93x8KvarUuzzJ8yo8FWtDu+3dEb1vqmm8l8ZuvJlpTrwx51I8grg2PW8vN73hKXu9Rx24ueTWYDuGb6I71ZMgvSRH3TxtG6s7Ek0xPIEf3b2RCpU9gj2EvUpF0DzvbNC8IAs5PeiNzDtbpje8NiN3PD0RGT3ZVBK90mvzvOXgZjySFJu9BzyPPZfaD72Igy495W86PM851TtxTUm87d2RvH6BlTzA7Pm8Lr86PLgNdj39ryW8ZTKhve/dfDveKZA8l9UMvXPwKL1/kB69lTcwPdFrCDw5abY7h+rUPHvZsrzryYU82s/EvPTBGD2DTA290E3hOz2HSDwOIBY9uqbPOxTwED0jwqS6Hc9/vDOKsju3AwU9gaQqPZOU0LvfFe+8ywe3O82W9bxBuea8gq6wvCbgtrsFLQa9cLTvO56b7LyX1Yy85NbgPNUOU72Siso810UJPPQ3SLxkFHq8NCOMPKBIUrysbZU8P6XavKDNHz1rAhy92mMbPbiIvTzu5xe8rosnvRYEHbvt4hQ9rG0VPWhQs7xmPCe9HWhZO4ZvoryidYI8MxSDvQY3DL3r2A49NJQ4PA4H8rwNDAo71zYAvd0QATybDK482mMbPQYe6DwPL588iqFAvO7Tdj3I6SS92kp3um+qabwPL588uIi9O1ZvFr3xnoO9c2FVPC0w57v0LUK9ZKNNPG2MVzxC3JA83HwqPLLHy7wiuB48/823vLIu8jtoWrk82UDxvKnArzzDKLM854PGPKWYl7vt4hQ9dX9nPShl77xx0ha9iiuRvMuC6bx9dw+8h3mou4/sgj3MjO+6+5aWvFVlkD3ng8a8PptUOm8vt7yBpCq7VEyBPJ6bbD1urwG9tEJ+vMEKobwIMvQ8q2MPvZhfSDpko028+4d4PQ39azw9Anu8BZmvuwvfWTzcciS+5O8EvcyMbzwwbKA8SaLwO1THMz0ZsYK73O1WvcnzKj2VNzA9UakhveiNTL2LHHO8zZZ1OhLXAT3+NN47pY4RvVwh6jv8kf68BTIJvRRhvbxmt1m9uisdPVMu2rto1Ws9Rx24vD8qqLzrxAK8iQjnvGvz/bxHooW9paKdPfwgUrx8aAa9+HgEPRxe0zskzCo7YXEvPEA+tLuAFVc8SKwLPReJVT1ttIS7uBKOu7ApBL2VNzC9wQWeu3lAWTzTf5S8kPaIPGHs4byCKeM6sSRsvYCaJLtp6Yy9cb71PHLI+zy3+ek7pZOUvASPqTyLtcy3wo/ZvUDIhDvIWlG92mMbvQ39a71nUDM8XDoOOxLIYzu7sFW94KRCO5D2CDt4sRo91qesPAc8DzyqWQk9vl07PJ4qQDvmA5E8VWWQvRXmdT1BzYc8fO0+vFXRuTxImGo7/JH+vPIjvDx747i8/1cIPWpuRT6Xxm49n76WPKzoR724iD07hVH7vC/TRr3T8MA891XavD6bVLxr/Zi8iI20vOGuyLilmJe7fFRlvQDYPTyyPRC9zSVJPQ6WRT3yqIm6mOSVPB7tpryTBf08Amf8PKUJRL2Ig6680NIuvVGfGz3K/TA9TE/WPOxEOL1oy+W7VVsKPUYJLLyvnzM9o38IPGa32TnEMrm8J3SNPeeDxjywKYQ9izUXPBtAQbxmt9k7GbFtvEV62Lsmaoc8/1JwPBLSabrPOdU82MU+PTIF5bzSdQ48Ih9FvZjuG72S+/a7XUkXva2BoTzYxb674rjOO6xZdLtAzYc7oMicO4kciLw1KI+81ARNvSh+kzt9fJI8Rf+lPeCkwjzNJck9HN4dPeb+jb34fYc7ovU3PXpA2byFYBk9jlgsvBmdYbxSJNS8Ll2XvDMZhrydr428QtcNvExj4rteU528/JF+vBiTWz0m4LY8hFEQvYNMjb1r6fc8wPuXvJ80RrrqMCy9dQQ1PEeO5DssOgK8GafnvAlaoTx+fP28A/ZPvCd+k7o3Vaq7c/CoPH+LG73J/bC6sC6HvC9YlLsiuB6803V5vLgD8Dyysz87FfUTvHadDj1anDG7t+/jvG++Cj2DM+m8WZIrvAHiQ7zjzNo8+5sZPNUY2TzqxIK9xKPlu24lMTzZ2Uo8/KWfvLkclDyjegU7lcEAvEisi7zLmw289+QtPSqXojw6c7y79LeSOr3Y7bpE9Z+7NqjEOnvZsjtZiKW7xst9uhcYqTyRdj49Ipr3OvoCwLxOgQm9HErHO7M4eL0bSsc64a7Iu/GZgDqBOAE8sj2QvOvEgrxwOT29vdiCvNexMjyvnzO9X9hVPSZggb16xaY79dAhvfh9hz1X5cW7E9LpPF/Y1by8P6m8kg8YPcqMhLsTVze8iRyIPe/7Iz17Y4O7oD7MvI5YrLy0YCW65FuuvHT6rjs7/Qy8ltCJvQBJaj3ng0Y8KHmQvFGpIb2u/NO8uBKOPPugnLy8SS+9E1e3PdJr8zt3nXm8IBW/u+TW4DwV5nU9y4Jpux5o2Tz3VVq8Mw+AOmv9GD2MOhq9T4sPPapeDLwJWqE7+HgEPCuhKDsuSQs7Kxxbvfh9Bz1TLlq8ekBZvWMUj7yJFwU9nzRGvEvUIz3RV2c80nALPF26Q7yMJnm9BjIJPFj50bsC7Em8sBpmvHtjAz0axY67IRW/vMU8v7hMY2K9IrgevDY3GDwQqlG7lUE2PPwgUrsndA09lKhcPNUY2Tuq3kG8DRENvZhfSDzYRYk8po58PSO4Hj3qodi7mwIovX+LG71tG6u6VMezO5MZHjw1LRI7KGXvuxtUTT0xWH+6lsbuun8L0TxaJoK7/jTevBLXgTufvpY8AuxJvF5OGjzScIs8zKAQvXDNE70bypG83HIkPfOtDL1oWrm85/54vapUhjx2k3M8OwcTvSQzUTkFozU8jDqaPK8kAbzgH3W56qFYPZMjpLspjRy8iiYOPP0qWLzBhdM8UZ+bvAzz5TqdILq8EtyEPIomjjxAPrS8rXwePHUENbyEPe+8jLVMPflz7DzRa4i7uRf8OpEAjzy4A/C8rounvIVR+7sAZxG93gHjO3pAWb09Fhy91A7TvG6vAT0Fma88avP9uvTBGL0gFT+60nWOvXC0bzuLq0Y9pXpwuyGfD7xKO8o87mJKva8G2jywGmY7o+sxPBmdYTyvBlo78AWqvGIPjDzyqIk7xa1rPPXQIb1gZ6m8zi/PvEYJrLxjCvS7Ywp0vE937ry3CIg7kpTQPCTMKjw4xta8Rx04PTL73rxF/yW8HmhZveLCVD16xaa80E3huxcYKTozD2u85gORvB5oWboQOSW8mfghvJEADz2DTA07mnPUvJsMrrwYk9u5+O6zPZjklTx9Xus71X//vOGuSL2s6Ec93wtpu8IUpzypO+K8tw0LPT+l2jy/Z8G8HMX5vNUOU71ihTu8HgGzPS9nHbylmBe8HgEzvIGkqjwFMgm90dy0PJF2vjzv+6M8gzPpvOvJhTybfVq9H4aAPBxeU7vpq1680NIuOwWjNT3QYQK8DyUZPWhaubyH6tQ8/jTevMOZX7yWvOi9Q+sZPUFIOrxXdJm7dXXhu4K4Nrx3GEG93XwqvaNw6jzVDlO9dGtbPVRRBDxC1w09PRacPN+aPD0jKcs8dZMIvT2RTrzVnaa8V+VFPUtPVjxOgYm8VEJmvAJ7nTzJjAQ84a7IOtztVrz+uau8RXBSvKN/CL1vuYc7gj2EvLK9xbziuM48xbdxPYPCvDzLoBA8O3O8PL3YAj1C4ZO8R7EOPOTqAT2xqTm9s1EcPRq7czzximI9oM0fvDMUg7wGKO68y6AQPFd0mTsjpP27vEmvvGrzkj3NqpY8w7KDPHg207wA2L28Z0atvGMZkjwhmgy9GJNbulZlkLsMAoS9mfghvFw/kTwFKAO9vMRhO2QUery93QW9iReFPMuWij0RtFe8yoyEvTa8ULzekDa8cM2Tu8yM77r9Kti8IaQSvGsHn7zxD7C8P8MBPKP1t7sbVE098Q+wvJ80xrzXsbI7uZxJvaWdmr0hhuu8hVF7vJdLPL1/i5u7ROH+Ow4bEz30vJU8Fn/PPJ80RjwcxXm9g8K8vL3OZ7z8kf48WzCIvGWjTb3QQ1s9NRlxO0YJLDwcSkc9a3hLPBLI4ztvquk7o3oFvNvjUD0lUWO9/1eIu/XQITt2Drs96jCsPMOyA717St88l+QVvExZ3Dwy8di7dpiLujBnHb3GRsU8ZCMYPRvPFD0RQys8JD3XvDSUuLz5c+w7zSXJPLcDhTv6jBA9csh7vTYj9zwASWo7KYgZvSfqPDyLJvm8XDX2PFCamLy/4vO81X9/O+y/6jxGCSw8HNQXPdhABr09Avu7LbU0PJ6l8rxKO8o9hFYTvYPCPLzcfCq8xtCVOtYi3zupO+I8bqDjPGBnqbxx15k7xKNlPGQjGDySFJs8w60AvV4/fLuJCOc83pA2PBmxbTytgaE8RQksvatoErxC1/g8tWorPFkD2DxyV089nzRGPYCaJL0684Y8/jTePKWYFz1eP3w9Z8FfvDUZcTzVnaa8ynjjPN33XLy4DXY72Ls4vBvFeTxoWrk8KgjPO8ha0TxSJFQ9DpZFO1ZgeL3l4GY8hMzCu7NMGTuJFwU9kg+YOwYo7rsAYg48i6tGvbZ0MbzXIt+8uA12vW2WXbvHUMs7ZS0ePJhVwrxPBkI9LjrtPO3dEb3vbFA94KTCPOTW4DzfJA28h3moPULhk7uxQhM8csj7NnDNk7y5nMk73gHjvH8BSz2S+3Y7XCHqPNY7g7lfXSO9VELmu+VvurygSFI7DAeHvKtP7jwbyhG9t343vL/2lDwU3G88eUBZvJbLhj2P7IK858sHPdv1BT2qyc+8xeYsvPRbA7yzKMQ7/Cm1O0oZwTysgK+7VvLcO98DCr2sg8k6vj6YPJTa37yXTtO5q8zpPLMlKj3khn+7VDt9OxTWuLwD0sm8ReUfO/ENLTvL0a28rkN3uk5ElLt96NW7zkKHPTMnNz2zJaq7RCumPOi0bLuYCM060r9IPXt3fLyKbwO9B0zxu5gFs7qBEI+8yhc0PWf2S7zkgEs8hx4TPcDVjryvzgU8Yr8Qvdlq97ygqq28HTvhuv+gwruG/ik9FZAyOzgvhz3otOw7qeMEvdN5wruGR0q9nTY6vRckj71s25i8oyfvvJZIn7zMiI28fd+HvHLJM72lkhQ9rvEIvA03cjsWR5K85vQ+vYtPGj0H/Zw87ZxTvQVGPbyLdTe9OumAvO2cU72ibXW88hb7vM1FIT16dOK88semOzJtvTz0gSC8+bXBvDkMhDsT0x69ghZDOz/6Hrw+SfM7d9GDvBdKLDydDQM95/dYvOLAHb0+Q7+8MWcJvdN2qLsycNc8fAILPSdUTz32GJc8/3eLPOSGf7vqa0w8f6JPvUG3Mj1khXI84b2DPUhZk7s+Gog9d/egPFQ7/TwjJmI9uFYxOwpxED0sgjy9ppWuO+losjz0h9Q7P/oePaMhOzwKw349FyQPvdUKhbxwVUC7d9EDPL4blbxA1AG9E9CEvGSF8jp/nzW8tehxvGU5uLvzzVq8ayEfvXwrQjuhZ0E9uFYxO3PMzbyWSB89PWAOvWv7AbxEBYm93phkPcXmLL2iHiG4TNbUu5PaXz0//bg8siIQveJ9MbsYBKY8MmqjPL5BMj3Sxfw8oWENvYETKT2NCRS9vWEbPd5sk7z2GBe6yfGWPPiyJ7zsK3o8BIkpvfPNWj005Eo9hZDqvM2Lp7yU1Ks8Dus3PeEPcr0OxRq930wqPJdLOT3RuRQ9lZG/u4+gCj003ha9kWNSvAm6ML2qxjW8fqJPPJ0Ngzygqi29LDy2PBrE07x39IY85u4KPZrFYL1UO/28bN6yPHWM+zx2F4o8cQ86vZTdebzn+nK94Q/yvBjeCL1396A7X1HRuyaa1bwZDXS9b6F6vCCv1DwD0km9tpkdu6rDGz1YrNa8/eOuuxWNGL1fS5280AXPPAPV47plObg7lpdzvQ+lsTwXTcY8kh1MOxgHwLzyx6a8jDJLPKyJ/Tzc29C8FNlSvVkdML2HB3g8khqyPKFqW72IAcS7CNoZPUvQIDyAXEm9FmoVuzXhMLrucAK8ceaCPCWRBz005Eo9EhklPZWLi7sVkLI9anBzvALvmDzQ/xq88semvOU0ET0fqSC92V6PvXf0hjzrIiw7zNdhvRrEUz2beSY8jeYQPUJ0Rrx4sZq8XyUAOwWMQ70M5QO8nTzuu36ZAb3/oEI8IWMaPLXl17zNkVs88FlnPC02Aj0Dz688oyRVvHEMoLxqcPO7HFUWvHf0Br1rIR899TgAPEyqg7vABHo9432xvJrI+rt0gBO93NtQvM5CB7vQCOk8kiBmu1G7IbvJEQC9GApaPFN7z7zgCb48c8zNPAPPLz0nS4E7anBzvLkTRT2tOqk8lyUcvnmOl7yv9zw8ReIFva/3PDyBEA89Mm09vZIgZjoSFgu8DegdPfPKQLwLel69zZT1vEeiMzwl4/U8yhe0uxB/FL3xCpM8GN4IvNLCYrw8hiu8bnIPvdlhKT01u5O7h01+PV5rhrwKlJM6csaZu1Qvlby3ouu8khoyvbCuHD2MMku76yXGuz2PeTyIBN48kWNSuz5AJb3Cb5+8TIcAPEvQID17d3w92hsjvGU/bLz7Jhu8sK4cvcJsBT0GQAk986GJvRSwG7zYsP28KA5JPKvMab3qbma9tnaavY+mvjsDzJU8L/99PH3o1byVaAg9mAUzPO3iWb3Ccjk7d/QGvW6bRrx0iWG8TZNoPNenL7xumKy71vPpvDkMhDwsWQW7ghbDPMDVDjycMyA7VumOPKI+Cr2AXMk7MYoMPP7sfL2p44Q9WWZQPFbsqLycgnS8HvJAO9lkw7xORJQ8CnGQvGptWT0D1WM+AQ+CPcGPCL0CG2q9ZT/svBLzh7p0g608nvAzPGiqkbxn9su8CMDkvHEMILwPX6s63LKZPAcDUb3yxAy8ShlBvCW0Cj2+Phg9kTcBPK/0ojzb1Ry8wbUlPYIZXTyEhIK99/vHvG3hzLypCaI9oKqtPIm+1zsIwGS9feIhPH28BDzABPo85vS+PBWTzDyWRQW97eJZvDJqIz3m9L485REOPeU6xTxs2xi8b0+MusyrEL0H+gK81vBPPLXlV7xULxU8xCyzPDTeljxZPZm8sLG2Og+lMbxxFe68GpiCvKBkJ72e8808dkNbPBdNxjw7z0s5enTiO26bxjwzIYM7fpwbvYm4I734sie8xelGPQOGjz13+jo9UpUEPp7zTT2f9me9/Cm1vLGLGT2Jvte88hb7PEMoDL2+GxW9mAhNuslg1LtpZyU5u9PyvAm3lrzCb588FK2BO4Fi/bzr/I49qQw8Pe6f7bssPDa90AjpPITW8LxpZAs7Y3++vEyqAz3c1Zw8UbgHvQ+r5bzL1Mc8Ehy/vHBVwLyyIhC9NZiQu+3l8zzVCoW9uRCruxm7BTwPpbG7OuwaPNiqyTw7zDE8msLGuykOyTrBj4g8tpaDvMejQL0tNgI9td8jPSkOyTwYAYw7nTxuPN6b/jse8kA9FZNMvZ0Ngzy9jey5P/oePXSDLTv7LM87DeidPPpGBL1s3jK9EK5/vPi7dTx2RnW6z/wAPWskuTz0foY6ayS5vBxVlrzZZ928A8+vO+J9MTxBukw8XZEjPQLvmLwl43W8md8VvN5PRDxr+wE8ibijPGzesrvIXTo46mvMO4EQj7vSxfy7R6XNvNskcb3aIde8OumAvSgrGD1qQQi9lN35OqFhDbzBuD897eXzvJnflTymmMi8w3XTvChX6Tw71f+8P/04vef3WD2zJSo9w0wcPLXl17xyyTO9yhpOO6Fkp7wN5QM7TkrIvI7sxLxxDzo8Vu9Cu8JsBbwqyMK8MnPxvEa/Aj1wLAm9PY95vAPMlT0T0x694AakvDJqo7xqbdk8HTvhPMbv+rzKF7Q8/eZIvayDyTxJYuE8qCmLOhLzhz2/+yu8tCveO2AFFzr39RM9m39aPKdMjr1XqTw8Wyb+PKCze70H/Ry8Z/bLvE5HLroGHQa9GAEMvSCvVDzfUl69SF/HvFlpajuO7946B0zxujXkSruDzSI89IruOmN8pLwSFgu8UsTvu+f32LsZDfQ6ShnBvNAFzzkjI0i8vj4YPeURDjywtFA8+kaEvCCv1LxHn5k89/gtPbei6zzIWqA8FLAbvE2Kmry3U5e8+bXBPPf+YT1Wxos7xCwzO/m1QTvotGw9/b2RvKdSQjpos1+77pk5PWfNFLi+G5U8YsIqPYBWFb3MiI08beRmPEd8lrscMhO9Rei5vIIZXTy03Am9pbWXvBdKLL0yRAY8aLZ5PEN34Dvun229GASmPFesVryLdTe86LFSPJWOJT1XqTw7zY5BvNG8rjwzJB29uDCUPNleD70amAK901ALvIwvMT0yaiM9WWO2vHf6OjzV5wE8VDIvvVU44zsBEpw87NwlO75HZr0gsm49Y3wkve6Wn7tWxou8rkDdurkQq7x6bi69VDIvvSyFVrvRuRQ9d/cgvGskuTu14j29iZIGPPsjgb1JZXu830yqPJP0lDoLd0Q7oK3HPFD+jb1EBYk9/eOuu75BMr0WahW8HvJAvP3pYrwGSdc8TZPovAZGvTxORBS9QbeyvByB57yAX+O8OhjsOjumFLxDS4+86kIVPNDcFz1HqOe8DDG+vOSD5Tw0LWu82KrJvM2OQb36b7s9G3szvGU8UrwYB0C8b6H6vDJz8bzlNJE9SFwtvayAr7xHpU09B0xxO+AJvrx2RnU8wNWOvF9Uaz14rgA9E9MePMbvejwPpbE6XN3dPLyEHj0f+HQ730yqvAPV4zyYBbM8lyWcOwIY0Lx396C9QZGVvNDclz0jKXy7KsKOvGAIsbscMhM9JZEHvbCunDs+Ggg9H6mgvC02grxnzZS7/ux8vBWNGD12Q1u7ZTYevVyOCbz3/mE89H6GvDQt6zw9YA68RutTPRdQ4DpDd2C7ebrovWK/ED30gaA5bbiVPHm66LzF5iw77pYfvfPQ9LxKGcE831JevbyBhDvt5fM8GAdAPPSEursu+Uk888pAPD5DP73gBiQ8Reg5PC/2Lz3c2Da8eygoOwOpEjyavyw8XOB3vL5ETLsmlKE7v/7FvCMmYrzohYG9Cb3KPLd2GryH+4+8+K+NPVis1jymlS49QNSBO4+giryFkGo8feU7u+siLDxb9xI903lCu6yG4zzOQgc9Wh2wuyufC73/pnY6AF7WvAjaGTtzz+e8IWMavHixGr36bCE9EFyRO75ETD04W1i9SFwtveSD5bygqq28j6MkvbyEHjmwtFC8Dus3vVlmUDyrfRU8ghbDvFXvQryydH68LIhwO8zX4TynT6g99TsavI+mPr0tPLa7msXgO95sEz2gsGE7CAbrOnwrQryO7MS73wMKvcNJgjxc2sM8u6QHPQf6grsv+cm8rkN3PNvear1A1IG95IPlvJgFs7wGRj296yjgPL/7K714sRo9sLG2PPm1wTrfT8Q70AhpvZWOpTypD1Y8nvNNPK+xNjz/o9y8cCyJPWU80rxyxpk76yVGPIwvMT3zykC6C3revMbs4LyEhxw9iAHEvGseBTytOqk8FkeSPUhZE7wXTUa8Y3wkPZrFYLxXpiI81QqFvP3pYrxKFqe8ghldPNAFTz20Lvg8lWiIvIb+qbwEiSm91TbWPC0/UDvny4e8bbgVPWEOZb1Tfuk8QnTGu9G8Lr22lgM8R6KzvMJsBT0IALc7enHIu+6WH7xrKu08syjEPDCzw7sXUOC8MLCpuwgG67viwB29cRLUPY+mvryG/qm8/uz8O4b+Kb2I2Iy89/vHuzJwVzy13yO9GsRTPAp0qjz0h9Q8nvCzO4wsl7wGQyM8uRNFPGUTm7sT0x490AVPPHpuLr1+6++8V6OIPf3jLj0uQuo8FZAyPW+hej3c29C8YshePQzlAz0Y3gg98RNhPcepdDw2m6q8RDR0vbkQKzy4VjE7MyrRvArD/rwFjMO7Qb1mPOURDrxoras8zkg7PXPPZ7yv+tY7rICvO7JrsLoYClq9hIecPGv7gTyKch08j6lYPPbSkLxAANO816evvOv8Dr270/I8MWeJvO6WnzyC7Qu9i3U3PUN6ejtW7Ci9QANtPOiuOLymnnw8i3trvJgITT1UO/07WR0wPD2Pebyybsq8ib5XPSJAl71wW3Q9SRMNuwPMlTzHqfS7VsaLvDG23Tx94qE8O6aUPCt/Ir3zysA7isHxvMyrkDz8KbU7iATePGlnJTzpaDI9r/e8vN5jPLyV7/460J4OvAszybx6e8K8kf0hvDOzxjzUZC27alOFPTra1buLeWC9UkYWvaW7Ab3Nxo48NqHlvErqVDzApK48D+PIPJPVoTuk5aC8xWpNvWri0rzQno67molfPKERX7162hO9rEMBPOmtHLy89K48jw+DPNG46zwudpg77OYMvJ5LQDuor/28yRaPvLkcL71A04c8iV8Dvaa9ID3t/Cs8uSDtvETDxTyplaC89lwrPPUR2ryFrwO8pmDuvHSzhL1nHDS6DvlnuxbymTw0QHU9h7PBvDPJ5bxsLSQ84rJLval/AbySdLG9lpeCvCBqV72aElC8iYtBvSFUuL2eH4K8QV4XO/E5WjxcvDS8MPFlPBR7ijxI/DW8m+aRPPqpm7z7DKs88jlavfaI6bwPcHe8Exw5vCQsOLx7aeE8i9aSvEiJZD1h40M9R4WmvEWbRTup9hA99Cd5vEQktjsgVLg8NhS3vJy+kbxktwU8NBIYPaoMMLwMlLm6c1QzvMfLPbwFa4u8HpJXPRR7Cj0P48g843KNPcvujrscMee6BoPJu2D1JL0ektc8McWnPG4XhT1+tDK6lcPAPPrBWT0rK8c82LO8u7NqELvXOg69OUsIPOV0LDyAotE7+4EbvDs7RjsfUhm7L2KYPU+ENbt+QWG9hK8DPQR/Czvpsdo8He8JvYrWEj02oeU8U6eGvDHxZTuluwE9gKJRvafBXrzBAwC86MO7u3ajQruVq4K9iV+DPcTdnrw62lU8QNOHvYHtoj2yCz+9Cej3PGVIcjwBMps8fkFhPGiTw7y253w7xvd7PGPLhT3fOZ2879hpO1WrRL07xDY9Ys2kPPA1HD0Cp4u7mShvPK3Szryews+8lauCPMExXTx/uPA7KrQ3PYDrA70v7ae9vFWfPFSnBr35Hgw7IsvHvOKyy7vXOo48GeLXOwkvi7tsQ8M86MM7vXVCUjyDThO9vT+APSpTR70pTwk8OdrVvOyFHDwW9Di9bjFiPNqdnTyLTSI843KNvJx3/rlFOlU9VjhzvAM4+Lu2LhC8NEB1vattIL3kiku9IFIZuvhg6bz30zq88GFavTOzRr3tiVo5NEB1vaa9oDssFSg9Q0y2vMVSj7jKoz08T24WPJETQT1elDS9vswuPN7warlko4W89eUbvDs7xrxp9LO6A6tJO93WDT2fT/48monfO68bAb2EOpO8UVy1u02w87vbFC07H9uJPLxrvjzBpC49Ilj2vGNa0zxelDS9nTUhPZ9P/jyIoWA8RMNFO+ubu7wbule9rPrOPNwY67tI/DU8E6UpvWri0rx6YwQ8C6pYPMsCj7wFDDq8uiBtuoU8Mr2V7/47VZOGvErUtTzBpK463trLvGLNpDxtF4W8N3WnPDo3CD162hO7bCsFPOSgajytzpA7pkpPvHB8Mzy+4k09sTf9vE/jhryh94E84SWdPLiPAD0b0HY85V6NPSd7R7yXx/677gBqPRG3Cr29+Ow7CsB3vAwLSTuT0wK887DpPFRK1LzAFwC98iO7vKoQbjyJdSK9xlQuPJATwTy3GpA9+wyrvBQyWL1OsPO89loMOQlFKr5XIlS9hSaTvM/gaz1UNDU7iLd/POgijbuuphC95OmcOz79pjzOPR69qa99vaTPATqB7aK7XgcGPZqJ37oyrwi85V6NvOMpWzt3dwS98U95vBIumr1kRLQ8ZKMFvJMB4DvbGOu8+qkbvE4Nprx1y0K9bMwzvNBXe72vGwE9t9HdumqB4ruQhpI7LYw3PO1dnDxWq8Q8px4RvXplozzBMV09NCaYPWNa07xsQ0M9TQsHvQsbi73vS7u83OysPB58uLxrWWI8JCy4O1QyFruIcwO9mp/+O2w/hb06Nwg9PbJVvOOGDTwMfpq7Vwy1PDObCDnj/Zy9bMwzPYp1orxryhS9iLd/vdDKTLt94HC8RCKXPKKEML3ewg28nNSwPJVQ7zomY4k9rqYQvTeLRj0DChu8zWWePDKviLtkt4W97fyrPEFelzzLeR67YPUkPe7Uq7xZ5DS9XR0lPGCY8rygOV88Z5NDPlYiVDxBePQ8DfWpvDSdJz1nHDS8ge2ivCGzCTwg3Si9SPy1vHVC0jz51/i8aJNDPIoC0bxOsPO88rDpO4eHA73ZJo48hd9/PXgEM7zxwsq8QtWmPJko7zuS60A9u5f8vHaLBL3YPK28wQUfO1D7RD1LM4e80y/7vJiFITxok0M93vDqOZ6ssDuS04I8KlPHu2LLhbxT08Q7M8nlPCgI9jx+tLI7GSsKvUw1JrzOaVw7jw8DvSncN7wxw4i8RbFkvOZeDTyAdhM9FX2pO18hY7zeYzy9mp9+PLGqzjzmeOq8aWcFPZ9PfjzJGk08tuf8PJlvArx3MPE89BFavCpTR7z6wVm97J/5PHgEMzyhJ349aCDyPJHngj2eqpE8GFUpvSDdqLtaceM8sDM/vSKfiTwPywo9G9B2vVZ/hr1rVSS8OWPGvI4lIrzSjK088iEcPZXvfrwZ4le8f4oTPaYyET0DHhu8Hnw4vZko77tFOtU8ldlfPGv4cb3/cdm8ct0jPJatIbwNmPe8+df4vJxdIb3RFR68VZUlvAhDi7w/dLY8sZQvvXKAcbzKAg8899M6vAM4+DzgUVu72ipMPb1rPjxmpaQ7MHpWPU/jBjwBMps76MO7O95NHb3KBC67Z3sFuz79Jj2ZbwI86CINPVXBY723uR+879Srumd9JD2cvpG890YMPdKMrTybAO+72xjrvK3SzjznwZw9emWjvDo3CDxA0wc5bC0kvT2aFz0EItk8GFWpvITbQbwTu8i8S2FkvO7SDD1OmtQ8njMCvQE0Or0cjhk8iLf/vJpvgjxcvDS7yblcvYCMMjuZn/68lyQxvKoQbrzhJR287PyrurW3gL00KlY9bENDvT/nBzxzUpS8dbUjPWVI8rzo2Vo8WeQ0OmwtJLxmpaQ8NJ0nPM+yjrwOapo9sfOAPSBqVz0u64i8KGnmuk6CFr0Fmeg7yhpNOdoqTDxB68W8TrDzPMRSDzuYm0A8uiDtupix37swelY9JQIZvEzCVL1sQ8M9+sHZvGpTBb3lF/o8jGPBuv1tGz1AAWW7cAUku9GizLtDraa5LusIPbAzP73cizw8KxOJPI6akjxGm8U8dcvCO6viEL06TSe9m+aRPNKMLTsCq8m9+yLKu7qTPjymYO48uZEfPaXTPz2rgz88jWf/vOqbu7mVw8A8sQs/vLxrPr1SRha8FKlnPD79Jj2T1aE8vFMAvcgWj72qDDC8KuB1vd1527r3/3i8iHMDPW4DBT3xlgw9T+OGPEvCVLxg9aQ8khf/O/mrOj2xN/08rFeBPKJuEbuZhaG8wBcAvUStpjuzbK+7bC0kPYVS0TxZ5LQ7RZcHPO/qSjtP44Y8ToS1PNApHr2z34C89fu6vC961jsMC0m74j96vKuDPzyR/SG99VqMvQWZaL2MY0G8VL0lvc3cLbyaiV+92hStuzlLiDxr4lK9z7IOvV7A8jy2RC+8vfhsPJr6kbxXEPM6lTYSuTYUt7yHnaI7ntjuuzPJ5btR6WM87XO7vBOPCj1GKPQ7w5LNO0thZLwxwwg9trkfPc3yTL15BLM8CLoaPDRA9buUYtC8dZ+EO5ApYL2FUtE8XgcGPKS7gbzTAz08CboavdmzPLxYbSW80aLMPKn2EL1Jc0U9+NM6uzhfCDuHEpO9lpcCO5GKULwfUhk9xyoPva7STj0dG0i9OsKXPJ6qETv0+Rs9nNIRPWLjwzxs0PG7sJKQvE055DzjE7y7bxvDua8bAb3GPo882irMPA9w97wZzDi8CFvJOxV9KTvAjo865OkcvViDxLzqJKw9z7KOusDQ7Dvwvgw5OztGPdMve7slo8c8kf0hvZ9P/rxpCtO8/vpJPKl/gbwTHDk8yqO9OwBGG7z36Vm9PZoXvGLjQzyxqk49bCsFPRDNqTwmAhm7upM+vYeHgz1qa0M86a2cPAkvi71OhDU870mcPSjyVrzUZC28coBxvZ6qEbwARps7FX0pPa6mELwMB4u7/+Squ9uJnbzwYdq77tIMPfCqDL2CkHA7I7WoO3rcsrwM84q6kaDvvM3yzDt0y0I8mvqRPZaXArxiQhU9RMNFvPyveDzSAZ68ek8Evf6H+L11QtI7UPvEPJGg7zxDTDa9SktFPOMpW70Uk0i8NCpWPCSLib07xDY9Tg0mPZXvfj1jzaS7FXuKu7OCTj3sn/m8n8JPvLmRH722LhA8BhD4u/9xWb0bFwq7AkpZPPHCSr2yapA7M8nlvAI0urvpmRy8ZS4VvEUOFz17aeG8KWlmvHrcMj1VwWM9emMEPIj+Ejp3o8I89lwrO65FILtHElW8hDqTPIl1Ir2K1hI9mhLQPGprwzyGPDK8pVywOMqNHr3N3C09mZvAOuubOzyFxSI8alOFPdizvLvAF4A8rryvO3vcsjuCelG80bhrvOKcrDzjco06FX0pvbqTvrx+QeG7+gqMO0fmFr2OmpI8qK/9PDyy1bxi40M8bheFPaZKT7zn7/m5VTS1PIxjwbyNI4M8yqM9PBni1zx/FaO8t6MAvWhnBbqR/SG9inUivA755z0depm8iP4SvZcOEju7aR+9QzaXvZD7gr11WHG83sKNvBg/CrzAuk28upO+PItLAzxZ4hU8Nf4XO81p3LzM8kw8EUS5OS961rutW7+72qFbvaANIT1sLaQ8zO4OPXFmlDx04eE8KrS3u0AB5Tsp3Lc7bwUkPSyi1rwcAwo9asoUvLxTgD330zo9BhB4O+UB2zzpOss8pP/9PK1FoLzrDo05Dpj3O/9bujwR0ee7z+DrPAuq2Ly4pZ+8YssFvYezQb1MNaa8z7StvL1rPjzzDRy9Ec0pPS7/iLsmGle9nUvAPEkAdL09+4c6+GDpPHllozoo8lY8bhtDPQwLST0W8hm8+jQrvYabgzzDks07Uc8GvC/tpz0nkea8LIqYu9PtHTyqawE8U9PEPMqR3DxLvpY8wnoPvSk7Cbs9E8a8Ceh3vFJcNT10VDO9YJjyO6AjQDppZ4U8wLrNPHWfBD2fT368OF+IvdN2jjy5qV28c8cEPf9bOj1vqHE9ybncvDOzxjy+yo+8o+OBPeCuDT1kRDQ8HKS4vNApnrya5pG7eWUjPCo9qDxYbaW8E0j3PDzI9Dz5wdk6KeB1PPZcqzzewo084j96vA/LCrxqU4W8aoHivGJCFT1NI0W87BJLuyncNzykWhG9l8d+vIezQb1vqHG8+zhpPL7iTbt8PSO8L+0nvV6qUz3jKVu7vT+AvDMmmDwwYpi7k+vAPJqJ37lVwWM9nTWhPN9nejz1+7q8pUaRPEkAdDw5Tac7GMoZPQySmjxH5hY9cO+EvFnilbxWlaU8+sHZPJGKULymSs+8yCoPu7iPAL2flpG8z1d7vCOfCbzUA728/eILPY0jg7zq/nY9fCuBPErONb0Slsu8RL2nvHf3HrygoQ49oDUwPEYGsjyV95U7SphGvf1PBr2tjTs6hSARu4X25rvatiS7CnIiPaVpErzB9lQ9/51/PB6lTL07LaA8i8yWuzfW6bz//Ri9uFoIvVTKm7vMlAg96vkHPUrOtTt15AO8hBk7vVgmwTsyDua6wwnwPI/yTLwYyi26i8yWvBPMOr2XTGU940YsvQy7LDxdWiM9qmx0vVzuRDwooTK96LXsvBbtgbzHKjc8V/DRvPOJD7y8vYM8aWmkPIZiRb01+b070cEUPb+tSr1gFHu9p+16vYxnjrwUc3e9wwnwO4aYtLzefqg7W9upvECc4DwgGIE8gZrBOroIm7w0UgG9q9jSPMWykzzdBgW9s1yVPIFk0rxfbb68yt8fvdzQlbyXpai8tUCXPPajAL3/0268J2vDPKgjarwGRZa82BTXu9XuoL0DYRQ9a+idu1qlOjwZ0QO9gC5jPA1iaT10eKW6rpQRvcVSer1Gd/+75jbzvKhZWTx0QrY7ZUhdPR6lTD3ZgDW8k05yPEWaUzzjt3m9jGcOPY3fsbxsj1o9kWUBvG4CDz1p/UU8th1DPPzjpzxn8QC5aTqLvEIb2rx8KwE71Sn/vPevxTyc2Qo96jRmu+N8mz2OsJi8slU/PMlzwTwr/dc7XO7EOy0LBL3FUvo8ynqXOtNvJzz/mJC7xVJ6ujkahbuitKm8paRwu10ktDy6Poq8zxjxvI3fMTzAGSm931tUvJqV77x+5Vg9KHKZve2z3zyuNPi8sengPPXSmTtCqgy8UkuiO3do7DyOS5C1bLmEPZ7sJbxX8FG8hSxWPOjrW7y50is90c1ZvaeynDyDd+28xr7YOuEzET3l+5S8pQSKPDSNXz1xjc285fuUvGP/Uj2VLYW7FNMQvY9Qf7zwaEg8BJzyPAtDiT1wgYi85O3oPC1GYrxKmMY7VAV6PNvJv7zaXeG8j/JMuzxAuzyf/8C7j/JMPKJ+ujwibdA8DzomvWM1wrxJ8Qk9unnou05gyjwWtxK95fuUu0/MKL03Qki8s8EdveRGLLy1sWQ7l6UoPeFpgL3FF5y8Ar9GPAnQVL13Mn28V+QMPQo8szw697A7LUbivN9b1Lz1nCo8EYMwvTGdmLzziQ+8VGUTPXUfYjyEhZm6wixEvWe7kTzo3xa9dVXRPD6Jxby9LtG8AawrvGfH1jvy58G5szLrugKJVzsJ0NQ8s/cMvdRMU7wrVhs8Y/9SPK3rbbxVO+k8OVVjPIHzhLuHnwo9jT3kPDRSgTwNmFi8on46PRsm0zu50qu8jrzdPMBPGL3vJpS9ukN5vPsL6zpjNcK8DZjYPDvIl7eFuwg9SE+8PMHAZTz/CV681YkYvUli17zY3mc9hcB3O0mMATtAxoo8fQgtPGYgmrz35bQ8vFElPeLazbt3aOw8o1vmu5NO8rxSHAk9znG0u9B4Cj0d/g87w84RvNZfbj05H/S8XLhVPLUKKL2BZNI7W9spvFuC5jsqICw9k0kDvdxw/Dw2ZRw8denyvIOt3LzfTw+8ZXKHPc8TAryxs3G9SIUrPZx0gryHBBO+WZKfO5BeKzxiIqc8G7r0PEmMAT2oWdm8QQg/vFNePb0dyCA9KX5evdc3q70vWf286o0pPfiMcT3roMS7NcPOvKBrHz12i0C9CCmYvNDwLTxCdB29MI/sPPXSmTp79ZE8SphGPLlmTT3s1jM9eeflOijXIbyifjq9rpSRO36vabpzDMe6ZiAavUW9p7twsCG9l9sXvT8rE71LBCW9WCbBuyrqvD1rI3w8nBTpPK1XzLyX25e8zt0SO74L/TwBHXm93HD8PKvYUjzOpyO8W9spvTRSgb0YO3u96OvbOkTzFrzLvEu8BNLhOxaBIz1gSuq8h86jO5rL3rt5QCm8wmKzu8lzwbtwgQg9wBmpPHAhb7xWSRW9IBgBPeN8Gzw5VeO8q9hSvKwVGL361fs7r6DWvH4+nLz7awQ8F17PvXL5qzt7Who8CPOoPMVSejmS3aS8b6J1vWj9RT1y+au85jZzPR1vXT471Fw8ayP8vHod1bydtrY8qI9Iux6lzDw+U1a8IgFyvEiFK72XpSi8zxOCPFBzZbxNgx68QMaKvBSp5jzXN6u8FijgPA7ORz3zU6C8t8T/OzZlHL0SKm09EwKqvPr4T70vHh+9c9bXPJm/mTzRYXs8e1oaPYIGoLzDmKK8hSARvI09ZLyzaFo8kAXou/iMcbzjfJu7SphGO4PjSz3zHTE9YErqO2k6izyHP/E7UTgHvQaqHr3nDjA9rVdMPIKhl7wYyi28JimPPdNvJ7wrjIq8CL05O4r02TpNHha8dEK2vFfwUbjs1jM8+S6/PNdtmrsrJ4I7nr2MPEmMAb1ntDu9zTtFvcaIaT2YglQ9DIU9PZKntTxUZZM9WTncPAhkdryzwR29sbNxO2VIXTuz94w9gwYgPGYgGr1Ejg69+2uEuyL8grxz1lc8tJ7JvHGNTT0b8OO8vS5RvSZYqD0E0mE9uZw8OyjXIb1Cqgw8D+HiO/t3yboU05C8dHglPHPWVzycPhO9I9kuvAjED7yrDkK9uZw8vW7YZL02ZZy8o4UQPdjeZ70d/g+9aWmku5Twvzyp+yY9aWmkvKMl9zvvxno78QqWvJttrDzc0BU78J63O/YN+LsCv8Y8NwxZvG96srz/mJA7s/z7PAyFPT18nM68d8gFvHgKOrzeSLk8SLsavKpsdLyr2FI8WS0XvY8oPL2/d9u8hmJFPU70azyhElw9wE8YvCZYqLwfESu96OvbOxBNwbxJVhI8dUmMPFTKmzz1nKq8orSpvFYTJjyMZ466Mth2ul1aIz0Ih0o9TwIYPVe64rvUTNO8WciOPAe9ubyLlie8w2mJPGTcfrzK3x+9hmJFPT+/tLwTAqq8tyQZvbwijD2tV8y9uggbPXyczjzXNyu9OvewO0etbr3K35+71G8nPeZsYjyIq88800AOveNGLL1QqdQ8XgHgvCzH6LvTbye8N0JIPP+YEL02mws8vgt9vPlRk72Qyom8GJuUPDS3CbsUbgi966DEPTkfdLv1nKq8hpg0O4I8j7w3NoM97d2Ju6mPyLtDdB086NjAudzQFT0t1ZQ8mIJUPVBz5bypMZa8zc9mvKORVT2HP3G8Ss41vY6GbjwIKRi8BT7AvTiuprtLBKW8lc1rvLnSq7t5QKm8ElSXu3VVUb28wvK8sAy1uqJ+Or0rVpu8TR6Wu7fE/7xYXDA7YA+MORHvjrzI0fM46LXsu17LcDwtRmK9f1G3vLOSBDt+efo8H4J4OhSp5rtuAg+6AyslvfZ51rzT4HQ9MPtKPaA1MD3ZSkY9e78iPa6UEb2UJq889+U0PWbqKj2GmLQ8tNS4vBBNQT06wUE8uGbNuwiaZbtUAAs9GJsUPHuJs7zB9lQ9QNJPPJNJgz2sIV281l9uvSdrw7s8QLs6eeflPPYICb0LGd+82oeLvB057rsEnPI7qmx0PI8ovLzteAE9fj4cPAgpmLzHlpW8V38EPd8lZbzf6ga9d/cePUKve7sQF9K8IO5WvDjkFb2hElw8JsQGPf/T7jtrgxW9pc4aPAbgDbvkTQK9Pef3O3pTRDxvejK8XSQ0vTabiz1J8Qm9/2KhO9DwLbvFshM9WTncu8gHYzuMc9O8Ar9GOktwg7zxRfQ6JEUNvM0F1rtGPCE9DcKCvSogLL3ralW8wYp2uyuR+Tyay168EBdSvR8RqzzqNOa8RnIQvZ7spbt8nE68pP0zPGIipztfbT689+W0PGEPDLz3r8W8dy0OPFgmQbzEmCI8utkBvNWJmLxJ8Qm9X8aBPDQckryFVgC9hz9xO6/WRT2/QWw8a7IuveXFpT2Vzeu7YsljPJzZCr05i1K9bfu4vNDwrT2zaFq8Yo6FuWP/0jzFFxw8Qg+VvBsmUzwRgzC90ZdqPLp56LzZgDU97h++PN60l7wXXs+5SYwBu6XOmjzViRi9+pqdukn2+Dwj2a68fJzOvApyIrxgFHs7UkuiO7zCcjwR9H07ZXKHvNijibwyOBC9RC71PPZ51jxCdJ28/wnevEIbWr3RJh29XVqjO/rQDL3h/aG8Hf6PPDjkFT1J9ng7b3oyPeynmr11QjY9BJxyPArQVDztffC9uZy8ONqHi7xOVAU9ZGsxvTYvLbyLYDi9rmpnvTZlnDwiN+G8IO7WvHSuFD3teIE8aRDhvCtWm7xS5pm6o4UQvV+jrTx3ntu7UrxvPcgxDbyGmLS8jobuPOlXurtg2Rw7G/DjvGKOhbwRuR+8LQsEvIoqSb1w6388V4RzvdgUV7zDCXA9CnKiOVK87zw9Hec6VMobvJ//QD12wa+7rvkZvNIDyTx+eXo7xuiCPKCm/TzV7iA9c9bXvD1HkTwQF1K8gtCwPVuCZjxgFHs85Easu7+tyjuc2Yo7/wnePM07Rbunshy94ZgZvGB0FLyA+PM7RPOWvMHA5bxHrW68iirJPDue7Ty+mi88k4RhvPZ51rtoMzW9tduOvJqQgDzfT4+8ZNz+vEDSzzyMZw67LDNHPSuReTp2wS+9K5F5vG4CD70KqBG89DBMvBTf1TwkDx49YHQUOdW4Mbx8MPA862pVvZ22Nr2+Bo47ORqFvAEYiru/rUq8YBR7vbYdwzxL1Qs92YA1PB0D/7lbEZm9gPhzPXVJjDy7GzY80fcDPS6ywLxXfwQ8sa6CPBJg3DzRYXs8fuXYvEqYxrpsxcm7k07yvFTKGzloM7U76vkHPelXOj2FLNY8+2sEPaA1MDxoMzU87/zpPHXp8jzxpQ29vCIMvIJBfjxhtkg8Ds5HPQoNmj3+9kK9wYr2O9SCQr2Vl3w9cwxHOyvxkjwbtQU8Qg8VvWyPWj0yDma9Vt02vUtwAzy2HcO8Hf4PPN5+qLww74W8eNTKO3ee2zzcaw09/51/OuCRw7y4MF68XSQ0vHVV0bmRO9c9mSQivRnRA7zNBVY7vMJyuwy7LDxTXj07LdWUPHSulL1ggFk8Z7Q7vCIB8jr0MMw71bixvPytuDzIB2O89g34O4PjSzwKDZq7MjiQu9oncjzVKX89fGbfOk2DHj1bRwg98UV0PZd2D72BmsE8RnKQPG37OD0dyCC7T8woPVZJFTrFTYu8LQsEPTYvrTypMRa9GxqOPIkXLjypxbc86Otbu9io+LvHKjc5tUCXvApyIjz6mp28cFfeOzmLUr141Mo8eh3VPMJiM7xyZQo8YsnjO7j67rwG4A29CPOou77QnjsCswE8Wc19vJWXfL0nNVQ9MtOHPLMya7xvejI7FUu0O89O4DuOvN08SfEJPaJ+ujwGdC+8KiAsPN8lZTz4wmA9QkUEvDDF2zxG15i8gqGXvCI34TzZSka8K8doPfQwTDvgx7I8Nfm9On9Rtzw7yJc8fQgtPR1v3bs3DNk8MTG6O5xK2DzI0fO6RfomO4dquDzjv0C9iAAWvUB/67zhA0y8xGJgPfDVqjyQ/BA8wIOmO4WuQ71/Oay6yaiKOx7NBrz9ESw8kcHbO8CA1DyzcA681uQLPDLZx7vRC1a9FjuuPCjvGL0lB+m8GYfcur0x1LwAy069tZalPKYxOz1urqo8zrzVPGk2wTs6dPa7hUQhPLLdAjyLubi8+foOO8yWvrwLTi29nEQ6PVpntLz1GIO8xGJgPU0o4TtdI6m8VoUovRHAcrxNKOG86sq1vOEDTDzet508fQ1xvLX99TxthcG8UqOcvGTBqbwQxha9ICivvODdtL3bZUu8Z9uYu/VNFDxfRu68vcexvb3Kg7zkjYE8B9NxvJtHjDwY96K8Ibhou5hf3DzXrCg9gcnlvLPX3rwDh0O9KO8YvUyVVb01/167YW/XvGVUtTwo7xi9vP+UPOpgEz1w1EG8rc+7vO0Ztjy9xzE7/6FlPQBeWjxIFJa89uCfvH19tzwlncY830opvKN4mLtRd2E705WLPImTobtes2I9vl2PPOVPejsSU/47TucnvAVGCj1pM++8eAL8vNcZnTwU4AU9jmmFPUUjELwFQOY8rjAIPeDdNDzy+G87TJVVuz+FD73KbVW8+S+gu3ON5Lvf4IY8hj79POazGD1GjbI8/OsUvdv7qLyEGOY6rvikO7p4MbzA6va8gF9DPPVH8Dtuq1i8ndfFu5uu3DwmmvS82HcXvWByKTw6RYk95VLMO/qNmrwG1sM8hQ+QPC9YiD1UXL+93YtiPX85rL3KcCc9gclluwHIfDtBqya9RM7rO/0RLDs8M707jdz9PJR6frzhBh69ivEbvVyQnT3C0iY9fFF8PB1vDDsyRrw8RiOQvHqPg7xBFUk94pmpPF25Bj1D1I89jgi5O4n6cb3pNNg8SEmnO3gFTr13myu84HMSPG4YTTzckQY9yEc+O28+ZLyIZ+a8GY0APXrBwrvimam8cvrYvAakhDu3uWo8B2whPdM0vzz/N8M8NpW8PBut87uMSfK8LD4ZPcLSJj2tzOk8a1xYvC9YCLzpNFi9kCv+ujPcmbvSoTO8PTBrvJY5xTtJRlW98++ZvEAVSTkAy868UzNWPDEd0zyAz4m8t7y8PPBoNjy9xzG8ug4PO5uxLr16j4M8F2SXvBDGFr16K+W85xETvK710rvy+O+7TR8LPe2vEz0LhpC94yw1vY4IOb1CdhW8ym3VPN9KKb2/uwm88ckCPcexYDyQLlA8zb+nvFyQnTYPmls8E+nbPBmKLj13b3A81F0ovDjnjrsZii491xmduwu4Tzkp7Ma7O9gUPWXqkjzpzQe9+AY3vUCCvTzlT3q7Og2mvFKdeDy+XQ89bIVBPKfERrsDHSG8dLbNvCnsxru9ygO8gWIVPc5SM70S7C09FaXQPPu/2Tzc+FY7PllUPcRlMj11TKu76/Oeu41yW7v+pLe8847NPJnyZzxZPss88ckCO/KRnzwdpJ09Gh26vDPcGTpb+j+9jN/PvNv7qDqaG1E9jXWtvB7NhryBXHG899r7OzoNJr1w0e+76sfjPGmgYz1etrQ37VEZvcmoCjwJkri8iZMhvrUsA73pzQc8bz5kPQVA5jynkgc9NpU8vXSEDr13b/C8p8TGPAu4z7wqGIK9aTPvvHzqq7xNK7M8jzGiu5zal7wHNxA8NZiOueBwwLz7v1m8Um4LvdTHSj0u+g094QYePa5f9TkVONy7MbYCPMIKCr2v9VK92440vP86FT2SuAW6lTyXu8TP1Dytz7u7l2KuvGcQqrii5Qy8io19u99HVz1FYXc99bTkvJtHjDs2K5q84HBAvXzqqzxZ1Cg9ft4DvYLyzryeAK+7esSUPG4V+7x0tk28L42ZvaQLpDzw1So9CSJyPEX6Jj2Vpjm8BLCsu2TBqb1IsPc8ytd3vX6mIL1fF4G9q6mkPCp/0ryNBWe8S9CKvbAevLzpNNg8TJVVPZ3XRT34A+W8/X6gPCUH6bxZO3m8EcByvI1AnL1oDVg8Y5Xuu1LJs7tXGDS8rvikvFpqhr2LSXI9nNqXvPJcDj0rEl4+8vtBPbAePLzTx8q78vhvPdgTeb1vooI75SANvMe3BL2tzzu75rOYPMe0Mr2HbQq9AvHlOahapL0myYE8ubAUvQBe2rsoVmk9ndfFuybJAbxqzB69e75wPTujgzx8UXy828aXvCWdxrx+3oM97VEZPfIkq7l859m730opPCPh0TxkjJi8TSszutI3ETzCCgq96AvvO6/DEzy55SU9ljbzPPgGtzwgKC+9UqBKvOZ+h72d10W8HNyAPEezSTz0uog837H5PCLkIz26Dg+9jXWtPOpgE7xRDT+8NAWDPFJui7wUfOe75n6HvISxlTxHths8Kn/SuymCJLvX5As9FqJ+vKG8I7xrX6o8ZIyYPDvYFD13csK8TCuzPbmwFD1AGBu9+ZlCPZQQ3DxcW4y8L40ZPFpqBj31R3C8XI1Lvat0E7ukdUa9bqtYvXSEDr2XzNA8dt+2u8X4Pb3AThU9pZ4vPSmCJDowh3W9NisaPbp4MbxpNsE8EDC5uyFRGD2RwVu8eS63vG2Fwbxs8jU8+S8gvA+a27y0Axq85VLMvPtVNzuf/dy8nmpRPLnlJTz1SsI876nvvERnG71AGBs9qPCBPNXzhbtkwak8iP1DvDvYFL0p7MY84NpivN0hwLyWz6I8Ken0PNcZnbwFQ7i8hQ+Qve4W5LyiTN28uFIaPcLSpjx14og8GPeivB3WXLzPT+G8mhvRPFENvzyrP4K7fwQbvD+FDzz9Eay7NGxTPCuoOzwQMDk86/OeOyoSXjy4HQm9jgVnOiG7urvkVR48ixqFu2VUNTwbRiO9j5tEPAakBDyY+Au9j5vEPOk02LwWONy8KFbpvMEWsry8NCa7q6kkvahapD2iT6+9ifrxO3MjQr2VOcU8pjE7vVM2KDx1s/s8xiEnvcnayTw7oLG7DXTEu0rZYD2IywQ9OndIPY0F57x9EEM6iSYtvPzowrtoDVi8M9nHOogAlrwpTZM8/REsPWrMnrzZPzS9YmaBvO6swTyGQU87cGqfvSWgmD1XqG28kC7QO4rxG7zuegK8beYNPGrMHj0brfM8EuwtvWmgYzp2dZS7TP93uknfBD3kjQE8ZVS1PGKYQLxNHws8JAdpOvFoNr1TzAW9iV4QuqWer72nkoc7xovJPOzteru0bby7eNOOPAVA5rt1TKu8qepdPDdUgzzHtwS8ueWlvH8EG7vXFku9AoqVONcZnTzimSm9mhvRvE5UnLu1zoi8XSBXvKRydLwiS/Q8OOcOPZLtljzpzYc8UqOcvNXwM73mezU8KFm7PIR8hD1tgu88It7/Oy049TsmmnS9RM5rPVh5AD02kuo4b0E2PO4WZDz9SY889UpCO2gN2DxP5yc99uCfOyDznTus0o28ixqFPF7fHb2LuTg9fX23PNv7KDwgj/+8ixqFO3SEDj0sCYi7pHJ0vKfBdL37v1k8+1U3O7tsibwByPw8O6ODPOVSzDzTlQu87IaqPOKZqTznDkG8cNFvvNisqLuLTES8o0OHvP6ktzuNclu7Hf9FvAq7IT0G1sM7BtbDvFRZ7TzGWQo7XPdtvaoQ9TznEZO7kriFO/tYibxwZHs8O9gUvQu4T7k0bFM7OXqaPBcvBjynkge9tc6IPIdqOL2vizA7bnmZvDJGPL1/OSy9pjG7u6PiOr176qs6MbaCOuvzHrwj4dE86TcqvXVJWb1ZO/k5FgYdvE0rM7vLk+w79qsOPTudX7wZh1w7JHRdvG9ECLxjK0y9quEHOZzalzvy+G+8PuzfvPbdTbyTgCK92midO1RfkT39ePy7yEe+vHXiiD0wisc86TTYvKw53rzRC9Y9k4Cium2CbzqDhVq8FgadvEiw97zjwpI75uXXvN9KKTtimEA7vl0PPcRohL39fiC9TJinvPmZwj0i5KM870KfPN6CjDxzI0K9skRTPcRlsjxuq9i8/qS3vAq7oTzrWm88aKO1vPW05Dz5lnC9pZ4vvHKTCD32qw686sq1PNcZHbzYQoa8ZVQ1O3KTCD1pORM8H2CSvNmggDxrXyq94HBAvcsA4Ty4Upq8zSnKvFJui7wzQ2o9N7tTvNeAbT36KXy9KYIkPdk/tLwXzrm8aQQCvpN90DyiTy88cyaUvLLaMLz3Pho88pEfvYmQT7up6t07CY9mvRmNAD1/Oaw8AV5aPYFccbzaMww9UXfhPEHjibwlnUa8FaiivMaLST2BLQQ7qIC7usZZirtykwi9VxViO4x1LbzKbVW8IVGYPB2knbtx/Sq9M9wZPADOIL1TzAW7xGJgPbHdgj2H1Fo7zJNsOuZ7NT1s7+M8yQaFO/VNlLqdZ3+6P4UPvSuouzwNd5a7kC7QPB3W3LwflSO9fqYgvEhJpzyeatE8It7/uxJW0Lx/o049CY/mPGRRYzzO5b67kcHbvKQLJL1Pspa8kC5QvG9ECD3z75m7fwQbvSUzpDv4ZwM9479Avb3HMTwc2S68Lc7SujDrk7zkjYE9W2RiPLsLPb3et507RZAEva74JD0z3Jk7krgFvURkybtvRAi9sCGOvEJBhLt14gg9ungxPVcYtDtUKoC8r8OTvBCRhb3/N0O9jQXnvBWlULz85XC9fX23PC2cE71uq9g7rvgkPFEQkTyFDxC8LdEkvURnGz0wise8Jpr0PD5Z1LxdI6m8YQiHPRcvhjx6j4M85egpPfDVKjvkT3q8PDO9vIN8BLywHrw6TC6FvP7cmruuMIi75I2BPUlGVTyT5/K7IL4MPeIA+jw54eo8uB0JvdcWS7zkUsy6s9qwPDsKVD1VvQs97j/NusaLSTyOCDm9Nf9evPbgHz0zQ+q6ls8iPTwzvbuVPBc9fg3xvOgL77zGISe6vccxvSOvkjza0r86x7cEO7ni0zwxHVM9G0YjPPzoQjw29gi9ygaFPPDVqjxltQE7VoWoPeuGKrzP5b46+ZnCO6sQ9bs1KEi8CvMEPIOILLyDiCy91u1hO+2D2Lsbfga7T1HKu1RZbbx8Ufy5/FJlPD+Fj7xM//c86KHMuxcvBrxkvle9lN6cPSp/0jufk7o8dLZNPZQTLj3Ux8q8bhX7OwolxDx5mFk92dWRPLmwlLzO5b48ywMzvSWgGLzqyrW8GfRQvABeWryZG9E7paEBPKPfaLvDnRU9AvHlPLWWJbzkVR69wzxJu19Gbrug9Ia9uFIaPHkxiTwC8eW8zrzVPEyYJ73+pDc7iZOhvFDkVb3tGTY9GYouPSVrh7yfkzq9ifpxPdmgAD1JRtW8GYouvRjCkTorpWk8Fgadu3Fkez0jd687UHozPMyT7DrBFjK9/zqVPOtdwTxrXyo9WdQoOtyRhjsiTka848KSvH6moDx3csK8Y8EpPCmCpDxoDVi8UzNWvSVrB70OCqI84N00PXO5n7zPT2E98NJYvKJ8tTxoShc9/+tUvcV9nrwAKjO8mxyru+35dD3KY7I8j0z3u/f0qru6kge9GGz+O8HyEbxgcBa9w+Q4PADumrtOIy89WsRUu+h+hzuWcq+8JxEwvXF/H7oBSSI9cMkQvc/wBDxFZtc7HX9aO+YEET1XO4488kqvuxzLEbxjRRS9F9VePbacVD0IQMy83M1CvRzoOrsJQhI5+3+3vKcJCD3pjVe9CF+7u0zlUD2qlBS84Xc+PHahS72CQnG8PwgTvSPfZLqXkZ68b6ohOQXUrryIV5M9XrqHu+DQ/7waqty8kwYSvfQfrbxno1i9LvmJvI6117wfVFi8z/CEvOmNV7w583C8lbygPNTWmLyu/us8t2ICvDcPI70gkjY8kcizOqDGprz8nia9NJNmvXq0p7yCMyG9DFOovFE2C704xTE9YAXwvEFy6jxC3ZC7JEqLPFpMpLuA9UI8ISnWvD+d7Dss9f08oV1GvACD9LzSWtw6AUkiPVd3Jr3BPXq8eXbJvAFJIr366Jc8LPX9PHxLxzxAvNs84FhPPexiVTzqU4W8nP8BPewoA72lcCI9pwmIvA0JN7wOR5U4RqQ1PU4jrzxyFr+7mUctPWbtybu2nFQ9BZgWvFbQ5zyovVA8N4dTPGEk3zxzNa48PNiNPdtF87xrl0U5Fz6/OuhPeTvlqQm9lLwgvCycvDswc4C6Ksc+PBRpwbsQv0U838GvvEFT+7zmBJE8Fh9QPZLnIjz5jZC8qL1QPXRjbbto4TY8iJOrvdX1hz2kUbO8B20UPNrbmzw3DyM9/7ECPJGpxDxYlpW7xbm2PEuncj2gig480eKruquxvbtB20o99bZMvV1AkTyyuAa9wT16POwJFLzRxQK83xpxO4JSkLlnhGk9jP9IPe0Y5LzySi+9CxXKuxDetDu5CPK8onw1vYY23rpmzto85gQRPQm4fLw4TYE9a5kLvVDbg7wcyxG98FiIPBqq3DvnX5g8XZnSvK0OCzxV+2m8OgMQPBe2bzyvtHq9xxaEvOnZDj3VTkk9mSoEPVd3Jr1Xd6a8u0ZQumJiPbxHwyS9SXmzu+85mbyw0+m8WJaVvJw7GjveosC7PDFPvU1CHr3Emkc9tlJjPCUdQ7zry7W8I2c0vIvB6jtuEwI8AWgRPbac1Ly2nFS85ONbPQPih7uvPMq7ItCUvG5sQzu4+SE7dK1eu0tOsbzEQYa9NP6MvMFNGTw8qf+81QTYvHru+TsoiWA9bdUjveItTTwpMJ88LpApPDeHUzw5PeI8yUTDu2y2tDzxsw+9E2lBPeGWLb0hKdY8r+MIvWoAprzkays7VaIoO/pBWb0k/tM8dsA6POF3Pr16DWk7/a12PdVOyTzVbTg8I6WSvDN0d7z21Tu9V3emu2bO2rwJuHy9tzP0O2uXRT0xKQ+9eDjrOw9HlTpV+2k9KqoVu7IRyLzDXOk71ownvNcjx7v93IS868s1PI0BjzxYDsY8H1RYPVfvVrzRphM7Mb7ovNIBGz2wmZc61LepO6JAnTwbyUu8EjuCvGgrqLsZ9M28+WBIPAlfOz0v6Wo9WfGcPCiJ4Lyrsb08DuyNu5ASJb7FMWe9jtTGu3XOk7vry7U8uPmhPIyWaL0PN3a8feLmOe6/Ij3QpM28jJZovRH9I70Wa4c6rWdMPEPuJj2mj5G8ZVYqvPwW1zx0rV68S6dyvCWVc7zUtyk9UHBdvNhhJT2iQJ28xlBWvf1zpDwAKrM8j9YMvNQv2ryYCxW8664MvPZs27soEbA8hhfvPOPEbDwOCTe9biLSO3kdiDz045Q8/wrEPLg3ADyTFeI6glKQvNv6Cr1ubEM8z4VePQqdmbyECB892GGlO6MT1Twy3Ve9ZRoSvW9uib0y35070xDrOvQfLTy+Way8MZ95PDnkoDzTmDq9md7MO7IRSL2Mlui7n6c3vZMVYjrBptq8qpJOO7lzGL2Mpoc8jrXXusw4MD160xY82Re0OrqvsDs7uR69kalEOyfyQL1QcF29uidhPUTupjyblNu8GZsMvcuRcbxo4bY8q5QUPUoSGbx16zw90xBrPtSaAD0RwQu9NXiDvVkttbyMd/m7ZRqSPIYXbzx0rd68IbGlu/0YHbxYDka9b6ohPMAPuzuQEqW8RLKOPLTJHDp5/hg8E2lBPee4WTwZE7066uokvDsSYDySfsK64DlgvXru+TnHFoQ8GF0uPRBmBD3yo3A83c+IvZv9O7zyDpc8b6ohPe7ekTwCHqA8fYklvFbBF71OQp48i+BZvKcmMT28ZwU8R1pEvNOYOj0+UgS9787yvHHY4LtjgSy9KqoVPU/ZPTzM/Bc9y/pRvQ6BZ7zjpX07MAjavM/wBL3vdTG9rWdMPbTmxbxxfx89Dzd2u0IZqbzqrMY8U0XbvHFgML1IAQO9wlzpOoRh4DlcIaI9UNsDPbeemj00OiU89Zddvc+FXjx17YI9sHoovZKrCj3NsGA8y6EQvV24wTpQ+Cw8h+zsu9Gmk7wf3Ke82YCUPLqvsDxlVqq8FEpSPd3PiDz1Phy9zDgwvBhdrjtqACa8x440PEovwrz69+c8LX8TPAL/sLz/CsS8UTaLPF1fAL1hJF+9qhoevd9Yz7q32rI8dMxNvf2t9johsaU7Cbj8uxKUQ7tQ+Cw6+vfnO4poKTwq5q07FPGQPBTh8TuIdLy8aCuovEun8jw9MxU9AuDBu27kc7vz4xQ8V9BnPRqLbb0ZE7087oMKO8nMEj1Voqi873WxORhdrjx6tCe9J3qQvSyeArxJXIo8/VQ1O5SdsTuM/8g8hr6tvCBzx7ys75u8qt6FvNoXtLyA9UK7OMWxu96iwDyXCU89c47vvC1/k7wgc8c6Qt2QOxEckzyb/bs8MmUnvPLC3zwOKCY9wU2ZvKSq9Lz39Kq9lICIvGejWL2ZKgQ9nFqJvA3qRzzHb8W8feJmPZscK71Xd6a8DuyNvJASJbthyx25YI2/vAfIm7yXVYY9O16XPY0BjzwJ1+u8oMamvOD/jTyCQnG8F9XePFwhIr232jK8agCmPCCSNjz5Imq8BfMdvX0B1rzT8Xs9z/AEvYSAT7pduME9cX+fvIDW07x+IEU76W7ovDbTCjxaTKS7u+2OPNE77bzB8hE98qPwuxtwCjyovdA8KTAfOyycvDsTacE8xtglPeyBxLo0/oy9HH/aOyUAmjyv4wi9KqqVOit9Tb2d0rk7lPbyu/CUIDzlqQk91ownvZW8oDleugc8bHocvADuGryOtdc8xbm2vEb99jwzG7Y8TARAPGz0kruEYWA7HH/avEyMD73FMWe7664MuhwHKj0CHqA83qJAPNMgijxDVwe7Ksc+PF8VDzytZ8w73QshPWG7frwWxg68HAeqPM2w4LsYfB09IsD1PF66Bz1vItI88+HOPF5PYbtem5g7HH/aOw4oprwnavG75iG6vGAFcDwLvAi98kovPScRMD2AfZK8pKp0vfiLSryTX9M8gjOhveRrq7w8M5W7nfEoPD1vrTxzjm+95plqvSYfiTt0rd683c8IvAnXazwELfC7Lsr7vLj5ITwF1C492XB1vNMQazxW4Aa9DerHu+okdzq6koc9EpTDPJW8oLx+Axw9BwLuOl24Qb1nlAi9Cbh8ur46vTzg4B69CV87PVGuO72b/Tu8B20UvA2RBjus75u8sjA3vXM1Lr0Tlgk7nbUQPRVMGL2P87U5yURDuy9Ukbx/XiO9BC3wOmbtSTtdQJE60nlLvHXOEz35Imq9Nkn1PMyRcbswJ8m5erSnu8V9Hrx9AdY5OeQgPcVBBjwdJhk7Qfq5vBYAYb3jpf28s08mvdZQjzwjZ7S7n4jIvA5ieDxvA+M8pDLEvDwxTzspqM87xLk2PJHIMzy8hC69nwB5PdqfA7vMOLA8W4qCPPcTGr0C4ME7WwIzPekVJ70/rQu9agAmPWNFFDyblNu8yAblu4GMYjrWUA89LlJLPZscKz1WWDc984iNvOTjWz1JXIo8fiDFPBC/xbxsehy8lurfPPNpnryaVn29WkwkvZp17LxfFY89WkykPEYshbzj1Au838EvPSycPL0BwdK8u+0OPW+qIb26zp86W4qCPHEkGLymf/K7GNXeun0B1rwELfA54rWcPETPN702SXU9uQjyu4TMhj0Dd+G8G8lLvQu8CL4RddQ8ZL8KPUVmVzzMODC9epU4PGgrKL0lABq8Zww5PQCiY71x2GA85C+TPXRUnTv3bNs6KajPO+kVJz3mQCm9vRvOu8/whDxvbom7T7pOOxF1VDz6YEg96SR3uwqN+rrhWhU8SVwKvccWhDvkxOy8gjMhvI/WDD028LO8IbGlvJ0rez2bHKs8cWAwPcQil7z/sYK8K33NPImymrz0eG668+HOPNxVEryO1MY8iQvcPDxQvjzlAsu83M3CO3XOE73sYlW8IyucukoSGb1wufG8nwB5PWlphjz8NcY8RqS1vC+QKb0HbZS9WfGcvEoQ07wKfqq7nmlZvLSNhL3jTLw8jHd5vH0BVrvk41s6JtPRvGAF8LvRppM7AA2KPWnCxzms0Cy9hYBPvL3CjDsOCbc8KPSGPGbtyTz1Ppy8XbjBvNfKhbxoKyg8c45vuplHrT1sepy7HZ5JvfR47rsQohy9I99kvao5Db3dzwi9t56avHP5FT1KEhm9JP7TPPNpnjx3ocu7dSmbOycRsL2aVv278bOPO50r+7qO1MY7cEHBvGpZZz3ug4q8SOKTPMz8lzvu3pE8xbm2vMPHj7w1aGS8R8MkPYWfvrxRB3082fhEPNQvWj2tHds8yHELvckl1DyECJ+8+ItKPOnZDr1OI688rogBvFUa2Twsf5M9Zu1JPZ+nN7yCUhC89OOUvFEH/Tw7mq88WsTUPEBjGj194ma96NfIPMCXirwzGza9aKNYvA839jjT8Xs80Bz+O0nx47vtoDO8sjA3Pf1UtTzKYzK9W8aau9Ac/rzSWlw7NJNmvHXtgj2l6hi8ozLEuyhPDrw7mi+9xlDWvFBw3TpM5dA80cM8vZCK1botM9w70Dttu47URjypv5a8BdQuvP2tdjvRphO8pehSPFBR7jsFt4W8Y2SDvBoyLD3XqxY9OeSgPOjXyDv39Ko9E7Myvd0qED3J6wE8eg1pPfpBWT1AJwI9RQ2WvG+qob0V4fE8S20gPP2tdr3xsw+8GovtvJeRHrvMOLA8eXZJPXqVOD2RQGQ8jR64Olrjw7xlN7s7nP+BvZ+KDj1u5PO5VrF4POmN17wQZgS92CWNvZ5p2bwYEz29x440vMW5tryWNpc8+SJqvMPkOD0Cwxg9OnvAvLz8Xj14oxG9Dzd2PGOgG70TK2M9tSSkPH8/tLx0c4w82tsbPPR47jyP8zW9A7U/POfXSLztoLM88cJfPMUSeLwWAOE8pq6APJ+nNzyzEw69mIH/PN6iwLsJ1+s7m/27O/bVuzxCcmq86qxGPd+FF70="} \ No newline at end of file diff --git a/dsLightRag/myKG/1.txt b/dsLightRag/myKG/1.txt deleted file mode 100644 index 639e0113..00000000 --- a/dsLightRag/myKG/1.txt +++ /dev/null @@ -1 +0,0 @@ -(('0D821754BAB14DBA9164F0F060418B17', '数与代数', None, 0), ('410A88DB8D8849BD96CA6B6F76041D07', '综合与实践', None, 0), ('513EDB17A175416EA85D73634F09E9C5', '统计与概率', None, 0), ('E6F62DDCB4F6487A8E8CAC8AC981D355', '图形与几何', None, 0), ('4EA906F9EE964A0984887C8281731888', '正比例、反比例', '0D821754BAB14DBA9164F0F060418B17', 0), ('9BCB10F0243D43C6BFB40DE9F69995DD', '探索规律', '0D821754BAB14DBA9164F0F060418B17', 0), ('A4A72A3B774D4BC1B27B9702D40A60DA', '式与方程', '0D821754BAB14DBA9164F0F060418B17', 0), ('B978FCBCEE0347B5AA8DB8E96A7B12F3', '数的认识', '0D821754BAB14DBA9164F0F060418B17', 0), ('E5650CC102764B0988A67B1DB95AB8F5', '常见的量', '0D821754BAB14DBA9164F0F060418B17', 0), ('F0333B305F7246B5A06D03D4E3FF55A9', '数的运算', '0D821754BAB14DBA9164F0F060418B17', 0), ('4902DFF4597F4BD8BD6A1ACDDDBAB120', '错车问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('600954B076AB48E29EC01726EB318C31', '流水、行船问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('74B76A3527A34E51950D92B0B9538B7B', '发车间隔问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('7DE5D4C9F5A34F749EE58F48E3528DAE', '钟面上的追及问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('849353C3B65E45F083A7B0C57CD4A8B6', '环形跑道问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('97EBA2EAF62442EC88DD60847BE01DB9', '火车过桥问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('F4A4A31ED1BF4C97A1ECAA3CAAEE577C', '追及问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('F81B143492E1402CA8EDD106284CA732', '多次相遇问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('FF231D5F6353499CBDE042D74B9BE00B', '相遇问题', '0FBB5C6B72F247E0B1BCA2FD83873B63', 1), ('00F350E5A01745CC8AAB89ABE88A154D', '梯形的特征及分类', '29694A73CF0A45CEA936791DDB626542', 1), ('0847F6C82B914B338A7692BE6B4FD186', '立体图形的分类及识别', '29694A73CF0A45CEA936791DDB626542', 1), ('0B43C350B2C940C1B9B8EB3EC5930C03', '三角形的特性', '29694A73CF0A45CEA936791DDB626542', 1), ('0F41949CCB204707BF213006D7FAD793', '平面图形的分类及识别', '29694A73CF0A45CEA936791DDB626542', 1), ('19343FD8868B4B1FBB7331329D509FB0', '长方体的特征', '29694A73CF0A45CEA936791DDB626542', 1), ('1C24FE7A7283447CB33CBADD61BF0EF6', '三角形的特征', '29694A73CF0A45CEA936791DDB626542', 1), ('1FCEDB0D02524F9E909A41FBD6858421', '图形的拼组', '29694A73CF0A45CEA936791DDB626542', 1), ('28FD775390EF4458B9DD97FEE6F116AC', '正方形的特征及性质', '29694A73CF0A45CEA936791DDB626542', 1), ('2CBAB9566AC9430B9B9F4DD90F0219B0', '圆的认识与圆周率', '29694A73CF0A45CEA936791DDB626542', 1), ('42FC0D7665C2444DB25E85238AB8476F', '正方体的特征', '29694A73CF0A45CEA936791DDB626542', 1), ('47C81C4AF201423BA8F7DDFBE982C3A0', '角的概念及其分类', '29694A73CF0A45CEA936791DDB626542', 1), ('4C917766239141788EE9DF1652E62292', '正方体的展开图', '29694A73CF0A45CEA936791DDB626542', 1), ('4F9B779684C046D997A47B7A07E1F22C', '角的画法', '29694A73CF0A45CEA936791DDB626542', 1), ('51AA48E13BFF4833B6CEDC3EAECABFF3', '垂直与平行的特征及性质', '29694A73CF0A45CEA936791DDB626542', 1), ('556B87C2498C4D7789218D3217AEDAFF', '线段与角的综合', '29694A73CF0A45CEA936791DDB626542', 1), ('5AE744A213404F438599793760BF986B', '圆锥的特征', '29694A73CF0A45CEA936791DDB626542', 1), ('5F175014750345C68FDA1952DBAD19E5', '等腰三角形与等边三角形', '29694A73CF0A45CEA936791DDB626542', 1), ('608AC4E5D79D43BF8F0BE1FC9005B059', '从不同方向观察物体和几何体', '29694A73CF0A45CEA936791DDB626542', 1), ('69DA0B4775284AB987F42431DC54AECB', '简单图形的折叠问题', '29694A73CF0A45CEA936791DDB626542', 1), ('829BEBCED0FD443AB2FF0E0E2E4E0E3A', '圆柱的展开图', '29694A73CF0A45CEA936791DDB626542', 1), ('898B3309F63E4041B6660AE2D5237944', '三角形的内角和', '29694A73CF0A45CEA936791DDB626542', 1), ('A02D11E2923B45368A8F948C1D954FEE', '观察的范围', '29694A73CF0A45CEA936791DDB626542', 1), ('A22BCB76788444029D0A6F9202D45506', '平行四边形的特征及性质', '29694A73CF0A45CEA936791DDB626542', 1), ('A7C7966DF8004A38B17A2EE3916EA99A', '直线、线段和射线的认识', '29694A73CF0A45CEA936791DDB626542', 1), ('B26F0E0AB22745B599B256A66A81EA48', '圆柱的特征', '29694A73CF0A45CEA936791DDB626542', 1), ('B9DC88F89E7E4756BB6ED36B098D8E17', '长方体的展开图', '29694A73CF0A45CEA936791DDB626542', 1), ('CDB5D90C7DD14BE48A93342F57048A9A', '简单的立方体切拼问题', '29694A73CF0A45CEA936791DDB626542', 1), ('D7AC75CA907449DD9A5B95A45ED844F8', '三角形的分类', '29694A73CF0A45CEA936791DDB626542', 1), ('E1F1265281AF40EDB5B427E2F1DA5262', '长方形的特征及性质', '29694A73CF0A45CEA936791DDB626542', 1), ('F3BAA87F1BE34E6CADEB252A0F4A55DA', '两点间线段最短与两点间的距离', '29694A73CF0A45CEA936791DDB626542', 1), ('FC363802322E4D7880AB8C4F7ABD1BB9', '四边形的特点、分类及识别', '29694A73CF0A45CEA936791DDB626542', 1), ('FF962330948644E1962D06B8C78F9FF9', '图形的密铺', '29694A73CF0A45CEA936791DDB626542', 1), ('B92999700ADA4AFEA347085FCB732F11', '综合实践活动', '410A88DB8D8849BD96CA6B6F76041D07', 0), ('D0156B85F6324C41A3924C14135B53F0', '数学广角', '410A88DB8D8849BD96CA6B6F76041D07', 0), ('0CB413D83DD248DA9260CBA4EA3369F0', '比的意义', '4EA906F9EE964A0984887C8281731888', 1), ('3484BF7D37124F119D6D8532EC837949', '辨识成正比例的量与成反比例的量', '4EA906F9EE964A0984887C8281731888', 1), ('4DD220B38A07487D8C6A6949F9CCAFB8', '比的应用', '4EA906F9EE964A0984887C8281731888', 1), ('5FBF5D08B3904DB8B6743C4BD6A5154C', '正比例和反比例的意义', '4EA906F9EE964A0984887C8281731888', 1), ('724994160D0B4B13B301A610D3F13368', '简单的归一应用题', '4EA906F9EE964A0984887C8281731888', 1), ('87643C8653F74ABD97E044F58D211ADB', '比的性质', '4EA906F9EE964A0984887C8281731888', 1), ('A0DD683990D5468A9FBF4D602BF7A975', '比的读法、写法及各部分的名称', '4EA906F9EE964A0984887C8281731888', 1), ('A9D83D8783494A279C637D8B4549DE68', '求比值和化简比', '4EA906F9EE964A0984887C8281731888', 1), ('BF63583F9F8A4D8A8428938525E0DC54', '盈亏问题', '4EA906F9EE964A0984887C8281731888', 1), ('D73B64D45E4B4121ABE292FA2695D067', '解比例', '4EA906F9EE964A0984887C8281731888', 1), ('E61979A1301645EAA0E1E2150D38AA04', '比与分数、除法的关系', '4EA906F9EE964A0984887C8281731888', 1), ('EDF2336CE1194F6DB0B664D26EAA969A', '比例的应用', '4EA906F9EE964A0984887C8281731888', 1), ('EF1C38B107B9450590D51268A7CB1D28', '比例的意义和基本性质', '4EA906F9EE964A0984887C8281731888', 1), ('9C3B4333EE5641FDB5472B286230D1C6', '简单数据统计过程', '513EDB17A175416EA85D73634F09E9C5', 0), ('FA93B936FA8B4AF78949ADBD813E2AEC', '随机现象发生的可能性', '513EDB17A175416EA85D73634F09E9C5', 0), ('0FE080A22CED4E8A9F744007ED04A999', '比例尺应用题', '59627708316740688D8DBB264E73CF34', 1), ('1166B396971E41528A5AC28CB36B706C', '方向', '59627708316740688D8DBB264E73CF34', 1), ('1E8D4D4270A9496DA629D23C4678AA5F', '位置', '59627708316740688D8DBB264E73CF34', 1), ('42E4B828812045E7803493A05930031F', '应用比例尺画图', '59627708316740688D8DBB264E73CF34', 1), ('88A42B1C5BAD4A37852F39BD38C13954', '比例尺', '59627708316740688D8DBB264E73CF34', 1), ('92463D5E4EB847F1B3A7239B68446FFD', '根据方向和距离确定物体的位置', '59627708316740688D8DBB264E73CF34', 1), ('936B1A1E16E04319BAF905414F19B643', '路线图', '59627708316740688D8DBB264E73CF34', 1), ('9A4AA5B9A3EA4548BFDE5088D3EE1005', '数对与位置', '59627708316740688D8DBB264E73CF34', 1), ('A24E3DB43E5B448AAD5C1164503895DD', '图上距离与实际距离的换算', '59627708316740688D8DBB264E73CF34', 1), ('B3C30978BEC548F6944F16DA2CCFFF94', '在平面图上标出物体的位置', '59627708316740688D8DBB264E73CF34', 1), ('0142B44821864B519E162E8F6EDFB409', '简单周期现象中的规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('13D5A37B8EF34E44B41B98AABAE74BF1', '事物的简单搭配规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('3913AC962E6647828A1BE2A8DAAD8ECA', '“式”的规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('49F488053AEC42DBBEBA591D4C4E373D', '数与形结合的规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('5A373011CE4F42818A552C289D693BAC', '数列中的规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('786110B823F34A0C86793FE62123D1EF', '简单图形覆盖现象中的规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('96899101FCB54A32956F6F09410E9946', '数表中的规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('C6E9FCE41ADD4E5192FF584EFE51560C', '事物的间隔排列规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('C6FE42706D054BD9B67C77F094A3FC79', '通过操作实验探索规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('E7F5D08F505243C1BB130E5DDCA5D33D', '算术中的规律', '9BCB10F0243D43C6BFB40DE9F69995DD', 1), ('1CD07DF0D96D46DCB436B23C2C913485', '绘制扇形统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('27C348F6844D41ABB4B468E3E5BF89E2', '两种不同形式的单式条形统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('290EEE1DF13043C29471CC02F29D554E', '统计图的选择', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('3204EDD63E4743C98E52F0AB513BC0B6', '绘制条形统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('3DE813F4E2E74DDDB52B1799F30B5CFE', '众数的意义及求解方法', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('4B8997DCED6B49B8BBA9815BB10463CA', '统计图表的填补', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('55320D2E4AE34EF086572A7391A4128B', '物体的比较、排列和分类', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('55C12EDEB154460ABB27474A0B51BFD9', '平均数的含义及求平均数的方法', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('5B034376253F4BCE82AC1A150CA728C3', '统计结果的解释和据此作出的判断和预测', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('5D23167C4D9545E28C6BFF96EE6618CA', '从统计图表中获取信息', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('6D52E23E2C194387BEA579CAEE84A3CE', '简单的排列、组合', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('6E46F6B1D425460E97ACB758BEE84285', '设计统计活动', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('70F0DBE812D040788BB31CE7A224B39D', '以一当五(或以上)的条形统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('76C740E35558498A9C1CFCEEF75F5A6A', '统计图的特点', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('79EC429ACBF0464998E4EA01CD56E0CC', '统计图表的综合分析、解释和应用', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('7B2E4C718B3140449A6EAEF70F18BD5F', '扇形统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('7B75ACC7E8584753B0961C089C619E90', '统计量的选择', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('9CB0198F5A924AD1B88A4223C4F48BF8', '复式统计表', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('BD14E054FAEF4ED8857130E50EB0F76D', '简单调查表的设计', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('BD824FC1A1984A5181F3A4B3036BF886', '中位数的意义及求解方法', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('C3E33CE95AD249AE90CEE7EE3C71F605', '简单的统计表', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('DA1A2069FA4B491E9018D24851954B19', '复式折线统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('DCBB1953D767489BA9034121529E5CEE', '以一当二的条形统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('E229B530AD1946C099485399EC8D0C43', '平均数、中位数、众数的异同及运用', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('E9730F200A5E4B0E9E95079DDE037937', '单式折线统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('FFAD27DD725A4025A031005A9FA2F92F', '两种不同形式的复式条形统计图', '9C3B4333EE5641FDB5472B286230D1C6', 1), ('1CD27F2F741B41138603B36018D14EA7', '图形的放大与缩小', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('30020B6190BF4853A971DDC5358173C1', '平移', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('3DCB9336F39D4102A9EE198989E24913', '旋转', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('8444F5EC1DD341309E4B39F474E46C68', '轴对称图形的辨识', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('9E37325E012343188A3EFEEC95854BFC', '运用平移、对称和旋转设计图案', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('ACFBEFA06FFB4D3F87FA1CC1DE73252C', '轴对称', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('C8AC9D292EDD47789D0F124964AF786B', '镜面对称', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('DE74698E000B4E1187D367E6B2F24D5B', '将简单图形平移或旋转一定的度数', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('E655B3F0F11D4E2BAED72524AFC9FA92', '确定轴对称图形的对称轴条数及位置', 'A2473DFB8568404DAD44732E1635D7D5', 1), ('0D77CE799E3B405C838503C08ED99889', '方程需要满足的条件', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('303CB40E9E044F5894C5C4BD7B86F128', '含字母式子的求值', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('473049BC711644FB9DD041EA7944514C', '等式的意义', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('6664828BCE43482AA25C58FFCC4F404B', '方程的意义', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('76B3528EC76A4084A1B66F552EDBA46D', '方程与等式的关系', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('C78B7B81C3DB4B7899FCE1E858410BC9', '不等式的意义及解法', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('D0878FC08A564B54A67902EBB0EA7D42', '列方程解应用题', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('DC85C3406B55439883C199CDAB0189A2', '用字母表示数', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('E392AFB9C76D48E7BBDEDF23E5C62905', '方程的解和解方程', 'A4A72A3B774D4BC1B27B9702D40A60DA', 1), ('0C9478FBF17548B1ACCBFD54F507D9A6', '小小商店', 'B92999700ADA4AFEA347085FCB732F11', 1), ('0FBB5C6B72F247E0B1BCA2FD83873B63', '行程问题', 'B92999700ADA4AFEA347085FCB732F11', 0), ('1005FFEA34564BF5BDEFAF62A4C940FA', '我长高了', 'B92999700ADA4AFEA347085FCB732F11', 1), ('1956C10859E34AA2B2498ED1AEB62AB2', '小管家', 'B92999700ADA4AFEA347085FCB732F11', 1), ('342D9E85D3D64595827FC6A34CF3E3E3', '粉刷围墙', 'B92999700ADA4AFEA347085FCB732F11', 1), ('36D110CFF3694DC09E4C84490BA30F6B', '数学乐园', 'B92999700ADA4AFEA347085FCB732F11', 1), ('391C2FFF83804E2E9C4E74682C6D5108', '营养午餐', 'B92999700ADA4AFEA347085FCB732F11', 1), ('48F868C3CAC641F7B8F41A5B6D27BFBC', '设计校园', 'B92999700ADA4AFEA347085FCB732F11', 1), ('4FB2A1CF5C564EF1BEBEBAAC73FBDF81', '自行车里的数学', 'B92999700ADA4AFEA347085FCB732F11', 1), ('5AF56A9F12604C15A1F0449D3F71B7A3', '看一看,摆一摆', 'B92999700ADA4AFEA347085FCB732F11', 1), ('5D9FC73C77AA4F5093331CFF83174D80', '铺一铺', 'B92999700ADA4AFEA347085FCB732F11', 1), ('6B0FD4D6B04E4F94ABE91162DACCD28D', '合理存款', 'B92999700ADA4AFEA347085FCB732F11', 1), ('7F01948E38864FC69B002C902454F3E3', '我们的校园', 'B92999700ADA4AFEA347085FCB732F11', 1), ('82470D2CB7144E13B8CAECEF0D967CC2', '节约用水', 'B92999700ADA4AFEA347085FCB732F11', 1), ('8B572009576F488998E763D37E64E6F3', '剪一剪', 'B92999700ADA4AFEA347085FCB732F11', 1), ('949D22E2640C42E1A996A3C10D9AC024', '掷一掷', 'B92999700ADA4AFEA347085FCB732F11', 1), ('94A3A39EECAA4E1EB7C950AB5C1E8756', '打电话', 'B92999700ADA4AFEA347085FCB732F11', 1), ('B5DDA0908A1B4B0B90D92AF086E00441', '填一填,说一说', 'B92999700ADA4AFEA347085FCB732F11', 1), ('C23654CB2D6E40779A44A8BBD8716DC0', '1亿有多大', 'B92999700ADA4AFEA347085FCB732F11', 1), ('C4799DC961424F79A84D9A3336A19ADD', '摆一摆,想一想', 'B92999700ADA4AFEA347085FCB732F11', 1), ('C59163D30DAF49CE940048EF2AAEE721', '有多重', 'B92999700ADA4AFEA347085FCB732F11', 1), ('C6903E1E090741E99D4DD2B873CE91D0', '确定起跑线', 'B92999700ADA4AFEA347085FCB732F11', 1), ('CF68BE4834E44B368778A1483F04ADAD', '量一量 找规律', 'B92999700ADA4AFEA347085FCB732F11', 1), ('D8A91A8975034460BC1E76B42E2685C6', '你寄过贺卡吗', 'B92999700ADA4AFEA347085FCB732F11', 1), ('FBF56EABD8DF4E9482B493BD15F4D8B5', '制作年历', 'B92999700ADA4AFEA347085FCB732F11', 1), ('00F3E0C387C6493A9215547B4C9824EE', '十进制计数法', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('022412DB556E44E49F2502115A999F74', '分数、百分数复合应用题', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('03B4D200BE4D404895F427C24725E017', '找一个数的倍数的方法', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('05916BBA6A4C4561A3EE6D56F457B2B0', '合数与质数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('0DD626CFECF7472BB5F9DE1D359C85FE', '因数与倍数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('0F8B5271C1FB4820A286B0B885D91804', '小数大小的比较', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('11D6E99334CF41EABB7F10C970986C95', '百分数的加减乘除运算', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('14A51ED381AC4AE29700A30C35914540', '循环小数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('16F8EC2F86094C9D85EF0F5BD6B8E3AF', '求几个数的最小公倍数的方法', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('18ABC778EE82483486EE501882CF4945', '倒数的认识', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('1C8DE94C3B194D14A2D195781E471640', '整数的读法和写法', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('21F7CDCBCD7741ADBE53EA72DD3A794F', '百分数的意义、读写及应用', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('297B32CE384244A9A4B1560F7B788D6A', '整数的认识', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('2F0C4B6D532043999CEFC4E19C083604', '分数与除法的关系', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('32F716B70DC9454C9CD694492BF8A781', '公倍数和最小公倍数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('38CA0DBDC6AB4D67B760461F4DA4F508', '整数大小的比较', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('3EFF5101123C49E28144794D4EF85C48', '整数、假分数和带分数的互化', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('42CAD90DD7D64896A2D2853D0A27223F', '小数、分数和百分数之间的关系及其转化', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('437A127587584F9D8838BCCDFEEAEDF3', '分数的基本性质', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('44ECB44412314180B8F57DE6021870E3', '负数的意义及其应用', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('4F965D21C8A849EABE4DFA3064046242', '约分和通分', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('51631F790F2D480E80BF0E86357F62E1', '小数的读写、意义及分类', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('59AE63A406B449BD913744F2D8E2361B', '百分数的实际应用', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('5F2FBDDD2BF74E75BB0EF0D243549E62', '找一个数的因数的方法', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('60137BC830F94F99B40573C39195A89D', '位置与方向', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('62B012D771784C9DAA41A34D1E620D6A', '近似数及其求法', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('6E372C5C0AFF4FA19BBA83919A592095', '分数的意义、读写及分类', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('72D9E0ED3B4D461697A79D17ED4DCD60', '真分数和假分数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('7E740D512DE44692BBB8A5655D320684', '存款利息与纳税相关问题', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('80A9C0D3CC014FD594B017EBAE134CB5', '分数大小的比较', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('9177BA828C3A4671BE84B553A5E4E4E2', '合数分解质因数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('922EE944A9C4471E9BD63BE4AD29B1A1', '百分率应用题', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('998F3D9211F84899A11952222612AE87', '小数与分数的互化', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('A43407EC57A147A8B716D71D49DAD5FF', '正、负数大小的比较', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('AB91622EC3FD4CE2A7D6CD1E38CB64E6', '公因数和公倍数应用题', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('B1F3F6FA537A429B8CAAE623594ABCC5', '数轴的认识', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('BF7282E1B51640D589375E457AF3EBDD', '求几个数的最大公因数的方法', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('C5F4CDE80EC54ED2844984380F9807E3', '小数点位置的移动与小数大小的变化规律', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('D0CB0C0946D94053A6A43EA65809845E', '最简分数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('D621BB0E0C30402E8943BC9337E85C6F', '小数的性质及改写', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('D6D65681F11B4E41BF48FAB570C320AC', '2、3、5的倍数特征', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('E00DED49C41A4A9A8892026BD713E7D6', '奇数与偶数的初步认识', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('E1A6AD53EBCB4830BD0B48A7E28BA227', '小数点的移动引起小数的大小变化', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('E9E771D409C440B6A929AE6054740F8C', '因数、公因数和最大公因数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('ED4C27B6E4164D1186D47A1388D42C13', '整数的改写和近似数', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('F4F9E8DA69AD4283B82DF21B2193C6E2', '自然数的认识', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('FCFDF26E4A404E01B12C76DC35AB53E5', '因数和倍数的意义', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('FD14220D3B1941B8A1F9B5E70731593E', '奇偶性问题', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('FF582BB3A509481BB7A699467556284A', '正、负数的运算', 'B978FCBCEE0347B5AA8DB8E96A7B12F3', 1), ('091417744120432F88FB8C19FEFE5EDB', '数独', 'D0156B85F6324C41A3924C14135B53F0', 1), ('2805C893B7C24906A1375EBC37EE93A3', '方阵问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('35E0FFD85611424B89B997DFDF963BEB', '逆推问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('360E028BAE7B479E8B9B0282DB96D8D5', '找规律', 'D0156B85F6324C41A3924C14135B53F0', 1), ('38ED3454CAC7412D8F73A24ED70BB048', '和差问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('42688F0BEF594A3CA5E5E833A891AEAF', '斐波那契数列', 'D0156B85F6324C41A3924C14135B53F0', 1), ('52ACBFD3B2C6421CB73E0D488A0D735C', '假设法', 'D0156B85F6324C41A3924C14135B53F0', 1), ('535B61A0452B44A48F845CC8767FC849', '逻辑推理', 'D0156B85F6324C41A3924C14135B53F0', 1), ('5467F82C6F9840228F303F9419080BF1', '抽屉原理', 'D0156B85F6324C41A3924C14135B53F0', 1), ('58098348E0FC42F4B810E63BB3F1C28B', '年龄问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('5B026DCFDE80499E88CFD99C77619CB3', '烙饼问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('711AB4ED2FCE4219B8E9A07CFDBCC588', '田忌赛马问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('809BBC0B64B94B46A05CB66D7D573790', '鸡兔同笼', 'D0156B85F6324C41A3924C14135B53F0', 1), ('8FC96003F1AA4CCEB15845AE74E07D6D', '优化与运筹', 'D0156B85F6324C41A3924C14135B53F0', 1), ('92C368DCCA79428B935AABEFC849A294', '沏茶问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('9CFCFE40E9F34406BFC5115D8EC4C65E', '数字编码', 'D0156B85F6324C41A3924C14135B53F0', 1), ('A48E5D9D66434D54AB963C9DB248A1EC', '植树问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('BA5E13497663468BAD0FBDE670A772F8', '归一归总问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('BE9E6F0FF9D5452A97B501860266F62F', '排列组合', 'D0156B85F6324C41A3924C14135B53F0', 1), ('C73C4CA984B9478FBCA82AF0B6B36035', '集合', 'D0156B85F6324C41A3924C14135B53F0', 1), ('C805C998BE29484B92B30C3289F77487', '差倍问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('CC1A84EC37C94311823E8163F81C7558', '握手问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('D5A7BA1D1DE6412AB34DF6E3559C1B04', '盈亏问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('D69D31A026204D63B3339A87A64B3FBC', '周期问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('E128371402AF483CB7F053348BBD0D39', '和倍问题', 'D0156B85F6324C41A3924C14135B53F0', 1), ('E600FED1855B456D9D1EB05C72A5CA97', '等量代换', 'D0156B85F6324C41A3924C14135B53F0', 1), ('F67649F3AFAC4095BF012AEBE2625AD7', '巧算24点', 'D0156B85F6324C41A3924C14135B53F0', 1), ('F6E047C18A1343D19AC54EFA470D04E6', '密铺', 'D0156B85F6324C41A3924C14135B53F0', 1), ('F72291885DC44CA3860E75323D91DA0D', '找次品', 'D0156B85F6324C41A3924C14135B53F0', 1), ('FCCC96551F254DA98487055A7088079C', '对策论', 'D0156B85F6324C41A3924C14135B53F0', 1), ('01103692CF7A4C638879F333E6E7E864', '最佳方法问题', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('01CE8CE705A74E97BD61A0CAAC864705', '重叠问题', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('0CE96739CC874A5A81CE68C08D781A2C', '扇形的面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('108E0FA497BA465B9DE1B50CA71FEA29', '过直线外一点作已知直线的平行线', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('13E66B0DC3564551AF5CB14214B6C22A', '圆、圆环的面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('142B9C94AA2E4029B3A2360175E675AD', '梯形的周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('15CAA22BB7F840A1854DBEED5F73DEDD', '长度的测量方法', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('1644BBE30CF043538E26B58D036F1019', '三角形的周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('18FF86282330412AA120AE225ED7ED13', '过直线上或直线外一点作直线的垂线', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('190BEAC0C25443C680C6FEFF1C788778', '长方形、正方形的面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('19A59D7F3F6647B28688402F4815C558', '平行四边形的周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('1BBCA0E6F24C4DCAA61053FDB14ACCBF', '等积变形(位移、割补)', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('206B65B803AE464EB6373C5DA7AEAA79', '有关圆的应用题', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('22A6B14CE6D64B8AA7E6C2D6E232E035', '作最短线路图', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('29576BAEEAAE46D19AFE83E4CFB40F4C', '画指定周长的长方形、正方形', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('2FAC44A43DDF4E8F87FDB52674712D23', '长方体和正方体的体积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('3600737C7D404A279AEDA8E376FD79A7', '组合图形的计数', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('4300B089E3BA48108FE2F817DA2A2E2A', '组合图形的体积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('456E11026BE34D73A8277B09215BA9BE', '平行四边形的面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('474A0B60D9534E5D843BE0649DE8C491', '梯形的面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('47AB26544582443FB65D5D7316B59286', '平行与垂直', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('49659A7E0167439FA97420BB7C7D9E5E', '作平移后的图形', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('57614CD577734425B9CE7BBEE3C5E205', '圆、圆环的周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('5AF9C46AA50A42E5AFD406F11F6540CD', '作轴对称图形', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('5F07CBBE790E45D18822F190D56F8F08', '面积及面积的大小比较', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('65045AFA61814335B61B4F292DEFBD6F', '立体图形的容积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('6705F702B42E46BB9C45EAEB7A80DB40', '周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('6E28FED5AFF9483A89D58E9342D8F07B', '组合图形的面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('6EC6CBBEAC9F4B90AB5987A841E61F34', '正方形的周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('7416C12662564047989F07243269E40C', '画指定长、宽(边长)的长方形、正方形', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('7D034C6EF2BC4089861F544B4F5CB361', '长度、周长的估算', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('84884F27472841E5AC4ADB18A9319C5F', '长方形的周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('851DBB739F2647D883FD713385BA15FE', '作平行四边形的高', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('921F71D26CE447DDBE1B8D878E5E8503', '用三角尺画30°,45°,60°,90°角', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('9DEB6D47732A4AC3A922A6E3A53D0C4C', '角的度量', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('A36BBD3850114F45801D25DE433D78FE', '画圆', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('AD956C0356664D8CA901B60CDD487A14', '画指定度数的角', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('B23FD45631DF44028C8AEFF3A0BE4145', '圆锥的侧面积和表面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('B3EA0DF979B8474C8D6D783970355FA8', '画轴对称图形的对称轴', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('B8649475B821455B8EC8A01E4DD9A7DA', '圆柱的侧面积、表面积和体积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('BC387FA5F59844C892B36A025E190D1B', '圆锥的体积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('BD6120089570425F9944A412DCB74E38', '作旋转一定角度后的图形', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('C16B307A9FCA4C70AB944CD1FF213B7F', '作三角形的高', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('C4B05F9530B24F66AAB5665D4E2F932B', '巧算周长', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('C820C62F492F4DFB82AA2968670C1A2D', '露在外面的面', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('CB6419DEA3F04684BBE515C673359C61', '三角形的面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('CC17669F918C40D4ACC545A7BFCD3192', '作梯形的高', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('D3A910A52CA84C44973D454F90450CC4', '长方体和正方体的表面积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('D54D3A74E94F4B1380C233B5EAAF7C61', '球的球面面积和体积', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('D8CF14186A02454AA449B380F4421135', '探索某些实物体积的测量方法', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('E0E3B8AD3003466494B631923BF9B9F5', '体积和体积单位', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('E120E0DD21AA485A942B140C981232E7', '三角形的面积(待删除 )', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('E6CF1324350649728EB2DCFB78ABEE13', '估测', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('F06622B6AB88409D896519EFD4300D09', '作简单图形的三视图', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('F4BDC8AEA8314E5D9A217CD4925F33F2', '画指定面积的长方形、正方形、三角形', 'D610B9E33BEE4A52985305073F6BCE2A', 1), ('04BAFA63C29D4E73A885EEBEC7B0B2B2', '货币、人民币的单位换算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('1A00081F71874197AAE32471A821BD5C', '体积、容积及其单位', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('1FB270852EF9459697E64603D21E1324', '长度的单位换算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('34C93352CB84421898CFA79A77589F17', '面积和面积单位', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('44074C9C9F0446D5AF1737F9C287C214', '体积、容积进率及单位换算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('4FBE4B06BD45457EA671796194D759FD', '质量的单位换算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('5C979583F6D64CD89813C7A512D2CD2F', '年、月、日及其关系、单位换算与计算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('5F59FDBB4C5943259A4C9CFC436A984F', '计数单位', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('84738F31C9C44FAE90E0FAA15C0DAFC3', '计量单位中单复名数的改写', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('85DDC643D2334CCCA79365900FA7CC49', '平年、闰年的判断方法', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('8842CCB50D894E17B0C4670327F78134', '进率与换算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('9EDAAECD860944E48A3FF035C21B9DE7', '质量及质量的常用单位', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('B7520AF946594507A3D842C09591E644', '时、分、秒及其关系、单位换算与计算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('BDFE58586ED642129B69760465FED942', '根据情景选择合适的计量单位', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('DF0CD01D5349472986489A6605C25A56', '日期和时间的推算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('E66D33668AEE44D4BD756EE10AEAFB89', '面积单位间的进率及单位换算', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('EF94108F79E1477DAA5F58DF182DAF50', '长度及长度的常用单位', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('FD9721541FB545EFA15D1CD3F54B1191', '货币、人民币及其常用单位', 'E5650CC102764B0988A67B1DB95AB8F5', 1), ('29694A73CF0A45CEA936791DDB626542', '图形的认识', 'E6F62DDCB4F6487A8E8CAC8AC981D355', 0), ('59627708316740688D8DBB264E73CF34', '图形与位置', 'E6F62DDCB4F6487A8E8CAC8AC981D355', 0), ('A2473DFB8568404DAD44732E1635D7D5', '图形的运动', 'E6F62DDCB4F6487A8E8CAC8AC981D355', 0), ('D610B9E33BEE4A52985305073F6BCE2A', '测量与作图', 'E6F62DDCB4F6487A8E8CAC8AC981D355', 0), ('08352C16FF844E42BC036B4BB8E1D6FA', '整数的除法及应用', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('0AFE84BD0CD748A3888FA42A2D5E8340', '有理数的乘方', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('0F67C7C7861D49FD86BA38A3C0B11324', '加法和减法的关系', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('0FCE22E42A1041B59D7595ADCF2682F7', '四则混合运算中的巧算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('10C4D6872BC84EB5845F95B7B5E228F9', '进位加法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('18DAE0198D9042CCA3F3C97E25A2AD7A', '小数除法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('19602EEA0AF94634985142CA074E2B37', '简单的工程问题', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('1EB122886F9540F4B08EA33FFA3034EC', '分数加减法应用题', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('21A57A833EC044788CE3FDFB2ED48770', '分数除法应用题', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('24FCF3C12A5D4233AF157045BEA8BA73', '分数的加法和减法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('27FD38584E8D465D9C8F3826BE8DD356', '加法运算定律', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('3218A87A6DDE446E8AF7B775108F2F30', '商不变的性质', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('34DD632CE7F94CF79853A8E363476962', '乘与除的互逆关系', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('49FB58E075364D989E6200D38662659F', '分数的拆项', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('50E35C039DC640428E05352A26E5A9D5', '有余数的除法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('567D01D4D2414B51B0C4E5886161527B', '分数四则复合应用题', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('5C70467DA346436E9B465E3F81B06BBC', '小数的加法和减法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('66CC9FFE1EDB439493965E7EFEC81D03', '简单的行程问题', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('6A63BB1947BB436093AE302734181247', '分数单位', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('6F53E685844A47538210E8961505AD35', '整数的加法和减法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('7896520302B74C0BBD99C9DDF5F26F77', '退位减法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('7A71AF19BDBD43E6997C8C2A55CF9912', '分数的简便计算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('82B7001851834984A4AAF2417CE23B0C', '单位“1”的认识及确定', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('9039D45E6C80465BA87B61DB4CBE0E26', '小数四则混合运算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('94AB554B1C554309B0EBE998B564EFD6', '分数除法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('97BB32ED69A24459B79EC8E40BAB6AE1', '分数乘法应用题', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('9D3B88AA2DA94527A44C6031F0956E56', '乘法的应用', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('A7A2A65B6F1B4C5DA31F510AD40242C4', '表内除法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('BB3CCF8588414CAEB00DB6A7793F1C98', '数的估算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('C1C757A743FE431CAD762BCDE967AA0A', '乘法运算定律', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('CB9314C686F74E009EE34180B71A4E08', '整数的乘法及应用', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('CBE7E9065E784BEBBBF85749FC9B3973', '小数乘法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('CEDB8B03A0754E4B8EDEC2F5632982EA', '运算定律与简便运算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('D4E123DE9EDB4739B99B10F26E5F2FEF', '积的变化规律', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('DFB6BEC4D88E4E32986BDDE40F31BC6B', '分数乘法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('E5C96161BEDB46C9B8E3B614DA8247B9', '表内乘法', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('E5F3D22C49124D1BA11379606E2FFA85', '整数、分数、小数、百分数、四则混合运算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('EBC45E5576FF43C2836AA12796F046D2', '计算器与复杂的运算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('EE070E040896467B9A3DECB2C39A26CE', '平均分', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('EF617C94ED104CD8AD7C766C07225025', '整除的性质及应用', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('F2B7DE7A80C44488A162EB263A2F28E5', '整数四则混合运算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('F486ABDCCA9747899D9E9CAFB09D07FE', '带括号的运算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('F5689FB0CBE446EE9953E34FBBEDF5D7', '分数的四则混合运算', 'F0333B305F7246B5A06D03D4E3FF55A9', 1), ('15FCF6B654C24A08A987AED8D41725B3', '事件发生的可能性大小语言描述', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1), ('37E674F2F2BF46B0A5313AC5DB8A7270', '简单事件发生的可能性求解', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1), ('8FF35930B87047998C937F252E894ABE', '预测简单事件发生的可能性及理由阐述', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1), ('99F1C897B3AE43AE92D1DD364A94F8E2', '事件的确定性与不确定性', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1), ('A0F0A68308BF4106B0899809A1B0FFD7', '生活中的可能性现象', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1), ('A8326BA96BDF4A24869C24C3520F5383', '可能性的大小', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1), ('B06BF0D91BBB4FF881797D48A1CDA720', '游戏规则的公平性', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1), ('D1E95C33F1D643C396318BB83346C757', '概率的认识', 'FA93B936FA8B4AF78949ADBD813E2AEC', 1)) diff --git a/dsLightRag/static/Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png b/dsLightRag/static/Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png new file mode 100644 index 00000000..dd26f14b Binary files /dev/null and b/dsLightRag/static/Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png differ diff --git a/dsLightRag/static/Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png b/dsLightRag/static/Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png new file mode 100644 index 00000000..3c219b5e Binary files /dev/null and b/dsLightRag/static/Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png differ diff --git a/dsLightRag/static/Txt/Chemistry.docx b/dsLightRag/static/Txt/Chemistry.docx index 084717c7..3a5c5252 100644 Binary files a/dsLightRag/static/Txt/Chemistry.docx and b/dsLightRag/static/Txt/Chemistry.docx differ diff --git a/dsLightRag/static/Txt/JiHe.docx b/dsLightRag/static/Txt/JiHe.docx new file mode 100644 index 00000000..179c9b5a Binary files /dev/null and b/dsLightRag/static/Txt/JiHe.docx differ diff --git a/dsLightRag/static/markdown/Chemistry.md b/dsLightRag/static/markdown/Chemistry.md index 3562a404..9a3b8b07 100644 --- a/dsLightRag/static/markdown/Chemistry.md +++ b/dsLightRag/static/markdown/Chemistry.md @@ -4,4 +4,4 @@ $$4HNO_{3}\overset{\overset{}{{\Delta}}}{=}4NO_{2} \uparrow + O_{2} \uparrow + 2 $$FeO + 4HNO_{3}\overset{\overset{}{{\Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} \uparrow + NO_{2} \uparrow$$ 氢气与氧气燃烧的现象如下图所示: $$2H_{2} + O_{2}\overset{\overset{}{\text{燃烧}}}{=}2H_{2}O$$ -![](./Images/500a35d1483c4b9d934ff584073c6590/media/image1.png) +![](./Images/c8c0221648af480699a364fd50cbbeb6/media/image1.png) diff --git a/dsLightRag/static/markdown/JiHe.md b/dsLightRag/static/markdown/JiHe.md new file mode 100644 index 00000000..6c96ca30 --- /dev/null +++ b/dsLightRag/static/markdown/JiHe.md @@ -0,0 +1,8 @@ +三角形三边关系的证明 +证明方法如下: +作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为\|AB\|+\|BC\|>\|AC\|。 +![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png) +height="2.8183694225721783in"}\ +①延长直线AB至点D,并使\|BD\|=\|BC\|,连接\|DC\|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。 +②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。 +③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到\|AB\|+\|BC\|=\|AB\|+\|BD\|=\|AD\|>\|AC\|。