main
HuangHai 1 month ago
parent 8492a38f1c
commit e1d2472eba

@ -3,50 +3,94 @@ pip install openai
'''
from elasticsearch import Elasticsearch
from Util.EmbeddingUtil import text_to_embedding
import Config.Config as config
from openai import OpenAI
import json
from Config import Config
# 初始化ES连接
es = Elasticsearch(
hosts=config.ES_CONFIG['hosts'],
basic_auth=config.ES_CONFIG['basic_auth'],
verify_certs=config.ES_CONFIG['verify_certs']
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=Config.ES_CONFIG['verify_certs']
)
# 初始化DeepSeek客户端
client = OpenAI(api_key=config.DEEPSEEK_API_KEY)
client = OpenAI(
api_key=Config.DEEPSEEK_API_KEY,
base_url=Config.DEEPSEEK_URL
)
def generate_report(query, context):
"""使用DeepSeek生成报告"""
prompt = f"""根据以下关于'{query}'的相关信息,整理一份结构化的报告:
要求
1. 分章节组织内容
2. 包含关键数据和事实
3. 语言简洁专业
相关信息
{context}"""
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "你是一个专业的文档整理助手"},
{"role": "user", "content": prompt}
],
temperature=0.3,
stream=True
)
# 流式输出处理
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
print(content, end="", flush=True)
full_response += content
return full_response
except Exception as e:
print(f"生成报告时出错: {str(e)}")
return ""
def process_query(query):
"""处理用户查询并生成报告"""
print(f"正在搜索与'{query}'相关的数据...")
context = search_related_data(query)
print(f"找到{len(context.split(chr(10)+chr(10)))}条相关数据")
print("正在生成报告...")
report = generate_report(query, context)
return report
def search_related_data(query):
"""搜索向量数据和原始相关数据"""
"""搜索与查询相关的数据"""
# 向量搜索
vector = text_to_embedding(query)
query_vector = text_to_embedding(query)
vector_results = es.search(
index='knowledge_base',
index=Config.ES_CONFIG['default_index'],
body={
"size": 5,
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
"params": {"query_vector": vector}
"params": {"query_vector": query_vector}
}
}
},
"_source": ["text"]
"size": 5
}
)
# 文本精确搜索
text_results = es.search(
index='raw_texts',
index="raw_texts",
body={
"query": {
"multi_match": {
"query": query,
"fields": ["text"],
"type": "best_fields"
"match": {
"text.keyword": query
}
},
"size": 5
@ -54,43 +98,14 @@ def search_related_data(query):
)
# 合并结果
all_results = [hit['_source']['text'] for hit in vector_results['hits']['hits']]
all_results.extend([hit['_source']['text'] for hit in text_results['hits']['hits']])
context = ""
for hit in vector_results['hits']['hits']:
context += f"向量相似度结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n"
return "\n\n".join(all_results)
def generate_report(query, context):
"""使用DeepSeek生成报告"""
prompt = f"""根据以下关于'{query}'的相关信息,整理一份结构化的报告:
要求
1. 分章节组织内容
2. 包含关键数据和事实
3. 语言简洁专业
相关信息
{context}"""
for hit in text_results['hits']['hits']:
context += f"文本精确匹配结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n"
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "你是一个专业的文档整理助手"},
{"role": "user", "content": prompt}
],
temperature=0.3
)
return response.choices[0].message.content
def process_query(query):
"""处理用户查询并生成报告"""
print(f"正在搜索与'{query}'相关的数据...")
context = search_related_data(query)
print(f"找到{len(context.split(chr(10)+chr(10)))}条相关数据")
print("正在生成报告...")
report = generate_report(query, context)
return report
return context
if __name__ == "__main__":
#user_query = input("请输入您的查询要求:")

Loading…
Cancel
Save