parent
3180a4a279
commit
e0867e7244
@ -0,0 +1,68 @@
|
||||
from Milvus.Config.MulvusConfig import *
|
||||
from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
|
||||
from Milvus.Utils.MilvusConnectionPool import *
|
||||
from gensim.models import KeyedVectors
|
||||
import jieba
|
||||
import os
|
||||
import time
|
||||
|
||||
# 1. 加载预训练的 Word2Vec 模型
|
||||
model_path = MS_MODEL_PATH
|
||||
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=MS_MODEL_LIMIT)
|
||||
print(f"模型加载成功,词向量维度: {model.vector_size}")
|
||||
|
||||
|
||||
# 功能:将文本转换为嵌入向量
|
||||
def text_to_embedding(text):
|
||||
words = jieba.lcut(text)
|
||||
embeddings = [model[word] for word in words if word in model]
|
||||
if embeddings:
|
||||
return sum(embeddings) / len(embeddings)
|
||||
return [0.0] * model.vector_size
|
||||
|
||||
|
||||
# 2. 使用连接池管理 Milvus 连接
|
||||
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
|
||||
connection = milvus_pool.get_connection()
|
||||
|
||||
# 3. 初始化集合管理器
|
||||
collection_name = MS_COLLECTION_NAME
|
||||
collection_manager = MilvusCollectionManager(collection_name)
|
||||
|
||||
# 4. 处理processed_chunks目录下的所有文件
|
||||
txt_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'Txt', 'processed_chunks')
|
||||
|
||||
for filename in os.listdir(txt_dir):
|
||||
if filename.endswith('.txt'):
|
||||
filepath = os.path.join(txt_dir, filename)
|
||||
with open(filepath, 'r', encoding='utf-8') as f:
|
||||
content = f.read().strip()
|
||||
|
||||
if not content:
|
||||
print(f"跳过空文件: {filename}")
|
||||
continue
|
||||
|
||||
print(f"正在处理文件: {filename}")
|
||||
|
||||
# 5. 获取当前时间和会话ID
|
||||
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||
person_id = "MATH_DATA_" + str(hash(filename))
|
||||
|
||||
# 6. 将文本转换为嵌入向量
|
||||
embedding = text_to_embedding(content)
|
||||
|
||||
# 7. 插入数据
|
||||
entities = [
|
||||
[person_id], # person_id
|
||||
[content], # user_input
|
||||
[""], # model_response (留空)
|
||||
[timestamp], # timestamp
|
||||
[embedding] # embedding
|
||||
]
|
||||
collection_manager.insert_data(entities)
|
||||
print(f"文件 {filename} 数据插入成功")
|
||||
|
||||
# 8. 释放连接 (移出循环外)
|
||||
milvus_pool.release_connection(connection)
|
||||
milvus_pool.close()
|
||||
print("所有文件处理完成")
|
@ -1,14 +0,0 @@
|
||||
# 基础依赖
|
||||
gensim==4.3.3
|
||||
jieba==0.42.1
|
||||
pymilvus==2.5.6
|
||||
aiomysql==0.2.0
|
||||
numpy==1.23.5
|
||||
alibabacloud_imagerecog20190930==2.0.10
|
||||
alibabacloud_tea_openapi==0.0.2
|
||||
alibabacloud_sts20150401==1.1.4
|
||||
alibabacloud_credentials==2.2.1
|
||||
python-jose[cryptography]==2.21
|
||||
passlib[bcrypt]== 0.6.1
|
||||
alibabacloud_iqs20241111==1.1.5
|
||||
|
Loading…
Reference in new issue