This commit is contained in:
2025-08-19 08:53:12 +08:00
parent d9b0e32e65
commit c3ae7f8798
6 changed files with 209 additions and 287 deletions

View File

@@ -1,109 +0,0 @@
import logging
import warnings
from Config.Config import ES_CONFIG
from Util.EsSearchUtil import EsSearchUtil
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# 初始化EsSearchUtil
esClient = EsSearchUtil(ES_CONFIG)
# 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
if __name__ == "__main__":
# 测试查询
# query = "小学数学中有哪些模型"
query = "文言虚词"
query_tags = ["MATH_1"] # 默认搜索标签,可修改
print(f"\n=== 开始执行查询 ===")
print(f"原始查询文本: {query}")
# 执行混合搜索
es_conn = esClient.es_pool.get_connection()
try:
# 向量搜索
print("\n=== 向量搜索阶段 ===")
print("1. 文本分词和向量化处理中...")
query_embedding = esClient.text_to_embedding(query)
print(f"2. 生成的查询向量维度: {len(query_embedding)}")
print(f"3. 前3维向量值: {query_embedding[:3]}")
print("4. 正在执行Elasticsearch向量搜索...")
vector_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"script_score": {
"query": {
"bool": {
"should": [
{
"terms": {
"tags.tags": query_tags
}
}
],
"minimum_should_match": 1
}
},
"script": {
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
"params": {"query_vector": query_embedding}
}
}
},
"size": 3
}
)
print(f"5. 向量搜索结果数量: {len(vector_results['hits']['hits'])}")
# 文本精确搜索
print("\n=== 文本精确搜索阶段 ===")
print("1. 正在执行Elasticsearch文本精确搜索...")
text_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"bool": {
"must": [
{
"match": {
"user_input": query
}
},
{
"terms": {
"tags.tags": query_tags
}
}
]
}
},
"size": 3
}
)
print(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}")
# 打印详细结果
print("\n=== 最终搜索结果 ===")
vector_int = 0
for i, hit in enumerate(vector_results['hits']['hits'], 1):
if hit['_score'] > 0.4: # 阀值0.4
print(f" {i}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}")
print(f" 内容: {hit['_source']['user_input']}")
vector_int = vector_int + 1
print(f" 向量搜索结果: {vector_int}")
print("\n文本精确搜索结果:")
for i, hit in enumerate(text_results['hits']['hits']):
print(f" {i + 1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}")
print(f" 内容: {hit['_source']['user_input']}")
# print(f" 详细: {hit['_source']['tags']['full_content']}")
finally:
esClient.es_pool.release_connection(es_conn)

View File

@@ -0,0 +1,209 @@
import logging
import warnings
import json
import requests
from typing import List, Tuple, Dict
from elasticsearch import Elasticsearch
from Config import Config
from Config.Config import ES_CONFIG, EMBED_MODEL_NAME, EMBED_BASE_URL, EMBED_API_KEY, RERANK_MODEL, RERANK_BASE_URL, RERANK_BINDING_API_KEY
from langchain_openai import OpenAIEmbeddings
from pydantic import SecretStr
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
def text_to_embedding(text: str) -> List[float]:
"""
将文本转换为嵌入向量
"""
embeddings = OpenAIEmbeddings(
model=EMBED_MODEL_NAME,
base_url=EMBED_BASE_URL,
api_key=SecretStr(EMBED_API_KEY)
)
return embeddings.embed_query(text)
def rerank_results(query: str, results: List[Dict]) -> List[Tuple[Dict, float]]:
"""
对搜索结果进行重排
"""
if len(results) <= 1:
return [(doc, 1.0) for doc in results]
# 准备重排请求数据
rerank_data = {
"model": RERANK_MODEL,
"query": query,
"documents": [doc['_source']['user_input'] for doc in results],
"top_n": len(results)
}
# 调用SiliconFlow API进行重排
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {RERANK_BINDING_API_KEY}"
}
try:
response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
response.raise_for_status()
rerank_result = response.json()
# 处理重排结果
reranked_docs_with_scores = []
if "results" in rerank_result:
for item in rerank_result["results"]:
doc_idx = item.get("index")
score = item.get("relevance_score", 0.0)
if 0 <= doc_idx < len(results):
reranked_docs_with_scores.append((results[doc_idx], score))
return reranked_docs_with_scores
except Exception as e:
logger.error(f"重排失败: {str(e)}")
return [(doc, 1.0) for doc in results]
def merge_results(keyword_results: List[Tuple[Dict, float]], vector_results: List[Tuple[Dict, float]]) -> List[Tuple[Dict, float, str]]:
"""
合并关键字搜索和向量搜索结果
"""
# 标记结果来源并合并
all_results = []
for doc, score in keyword_results:
all_results.append((doc, score, "关键字搜索"))
for doc, score in vector_results:
all_results.append((doc, score, "向量搜索"))
# 去重并按分数排序
unique_results = {}
for doc, score, source in all_results:
doc_id = doc['_id']
if doc_id not in unique_results or score > unique_results[doc_id][1]:
unique_results[doc_id] = (doc, score, source)
# 按分数降序排序
sorted_results = sorted(unique_results.values(), key=lambda x: x[1], reverse=True)
return sorted_results
if __name__ == "__main__":
# 初始化EsSearchUtil
esClient = Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=False
)
# 获取用户输入
user_query = input("请输入查询语句(例如:高性能的混凝土): ")
if not user_query:
user_query = "高性能的混凝土"
print(f"未输入查询语句,使用默认值: {user_query}")
query_tags = [] # 可以根据需要添加标签过滤
print(f"\n=== 开始执行查询 ===")
print(f"原始查询文本: {user_query}")
# 执行搜索
es_conn = esClient.es_pool.get_connection()
try:
# 1. 向量搜索
print("\n=== 向量搜索阶段 ===")
print("1. 文本向量化处理中...")
query_embedding = text_to_embedding(user_query)
print(f"2. 生成的查询向量维度: {len(query_embedding)}")
print(f"3. 前3维向量值: {query_embedding[:3]}")
print("4. 正在执行Elasticsearch向量搜索...")
vector_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"script_score": {
"query": {
"bool": {
"should": [
{
"terms": {
"tags.tags": query_tags
}
}
] if query_tags else {"match_all": {}},
"minimum_should_match": 1 if query_tags else 0
}
},
"script": {
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
"params": {"query_vector": query_embedding}
}
}
},
"size": 5
}
)
vector_hits = vector_results['hits']['hits']
print(f"5. 向量搜索结果数量: {len(vector_hits)}")
# 向量结果重排
print("6. 正在进行向量结果重排...")
reranked_vector_results = rerank_results(user_query, vector_hits)
print(f"7. 重排后向量结果数量: {len(reranked_vector_results)}")
# 2. 关键字搜索
print("\n=== 关键字搜索阶段 ===")
print("1. 正在执行Elasticsearch关键字搜索...")
keyword_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"bool": {
"must": [
{
"match": {
"user_input": user_query
}
}
] + ([
{
"terms": {
"tags.tags": query_tags
}
}
] if query_tags else [])
}
},
"size": 5
}
)
keyword_hits = keyword_results['hits']['hits']
print(f"2. 关键字搜索结果数量: {len(keyword_hits)}")
# 3. 合并结果
print("\n=== 合并搜索结果 ===")
# 为关键字结果添加默认分数1.0
keyword_results_with_scores = [(doc, doc['_score']) for doc in keyword_hits]
merged_results = merge_results(keyword_results_with_scores, reranked_vector_results)
print(f"合并后唯一结果数量: {len(merged_results)}")
# 4. 打印最终结果
print("\n=== 最终搜索结果 ===")
for i, (doc, score, source) in enumerate(merged_results, 1):
print(f"{i}. 文档ID: {doc['_id']}, 分数: {score:.2f}, 来源: {source}")
print(f" 内容: {doc['_source']['user_input']}")
print(" --- ")
except Exception as e:
logger.error(f"搜索过程中发生错误: {str(e)}")
print(f"搜索失败: {str(e)}")
finally:
esClient.es_pool.release_connection(es_conn)