diff --git a/dsSchoolBuddy/Doc/1、python环境配置.png b/dsSchoolBuddy/Doc/1、python环境配置.png deleted file mode 100644 index ffc55842..00000000 Binary files a/dsSchoolBuddy/Doc/1、python环境配置.png and /dev/null differ diff --git a/dsSchoolBuddy/Doc/2、Conda维护.txt b/dsSchoolBuddy/Doc/2、Conda维护.txt deleted file mode 100644 index 021764bf..00000000 --- a/dsSchoolBuddy/Doc/2、Conda维护.txt +++ /dev/null @@ -1,30 +0,0 @@ -# 添加Anaconda的TUNA镜像 -conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - -# 设置搜索时显示通道地址 -conda config --set show_channel_urls yes - -# 创建虚拟环境 -conda create -n rag python=3.10 - -# 查看当前存在哪些虚拟环境 -conda env list -conda info -e - -# 查看安装了哪些包 -conda list - -# 激活虚拟环境 -conda activate rag - -# 对虚拟环境中安装额外的包 -conda install -n rag $package_name - -# 删除虚拟环境 -conda remove -n rag --all - -# 删除环境中的某个包 -conda remove --name rag $package_name - -# 恢复默认镜像 -conda config --remove-key channels diff --git a/dsSchoolBuddy/Doc/3、Pip维护.txt b/dsSchoolBuddy/Doc/3、Pip维护.txt deleted file mode 100644 index 081e047b..00000000 --- a/dsSchoolBuddy/Doc/3、Pip维护.txt +++ /dev/null @@ -1,16 +0,0 @@ -# 激活虚拟环境 -conda activate rag - -# 永久修改pip源为阿里云镜像源(适用于Windows系统) -pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ - -# 验证是否修改成功 -pip config list - -global.index-url='https://mirrors.aliyun.com/pypi/simple/' - -# 获取依赖了哪些包 -pip freeze > requirements.txt - -# 新机器安装包 -pip install -r D:\dsWork\dsProject\dsRag\requirements.txt \ No newline at end of file diff --git a/dsSchoolBuddy/Doc/4、Elasticsearch安装配置文档.md b/dsSchoolBuddy/Doc/4、Elasticsearch安装配置文档.md deleted file mode 100644 index cac6d013..00000000 --- a/dsSchoolBuddy/Doc/4、Elasticsearch安装配置文档.md +++ /dev/null @@ -1,132 +0,0 @@ -### 一、安装 $ES$ - -**1、下载安装包** - -进入官网下载$linux$安装包 [下载地址](https://www.elastic.co/cn/downloads/elasticsearch) - -![img](https://i-blog.csdnimg.cn/direct/04ae4c7f65fe475fb19e913eaf80ba04.png) - -**2、安装$JDK$$21$** - -```sh -sudo yum install java-21-openjdk-devel -echo 'export JAVA_HOME=/usr/lib/jvm/java-21-openjdk -export PATH=$JAVA_HOME/bin:$PATH' >> ~/.bashrc - -source ~/.bashrc -``` - -**3、上传文件到$linux$服务器** - -```sh -# 如果没有 rz 命令 先安装 -yum -y install lrzsz - -# rz 打开弹窗 选择下载好的文件 确认 在哪个目录下执行,就会上传到该目录下 -rz -be -``` - - **4、新建用户并设置密码** - -```sh -# 创建用户 -useradd elauser - -# 设置密码 符合密码规范 大写 + 小写 + 数字 + 特殊字符 + 大于八位 -passwd elauser - -#输入密码: -DsideaL@123 - -tar -zxvf elasticsearch-9.0.2-linux-x86_64.tar.gz -sudo chown -R elauser:elauser /usr/local/elasticsearch-9.0.2 -# 进入解压文件并编辑配置文件 -cd elasticsearch-9.0.2/config -vi elasticsearch.yml -# 修改数据目录和日志目录 -mkdir -p /usr/local/elasticsearch-9.0.2/data -mkdir -p /usr/local/elasticsearch-9.0.2/logs -``` - -![](https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/{year}/{month}/{md5}.{extName}/20250623130022571.png) - -设置允许所有IP进行访问,在添加下面参数让$elasticsearch-head$插件可以访问$es$ - -![](https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/{year}/{month}/{md5}.{extName}/20250623130217136.png) - -```yaml -network.host: 0.0.0.0 -http.cors.enabled: true -http.cors.allow-origin: "*" -``` - -**5、修改系统配置** - -```sh -# m.max_map_count 值太低 -# 临时解决方案(需要root权限) -sudo sysctl -w vm.max_map_count=262144 - -# 永久解决方案(需要root权限) -echo "vm.max_map_count=262144" | sudo tee -a /etc/sysctl.conf -sudo sysctl -p - -# 验证是否有效 -sysctl vm.max_map_count -``` - -**6、启动** - -```sh -# 启动 -su - elauser - -cd /usr/local/elasticsearch-9.0.2/bin -# ./elasticsearch-keystore create - -# 启动 -d = damon 守护进程 -./elasticsearch -d - - -# 访问地址 -https://10.10.14.206:9200 - -# 日志文件 -/usr/local/elasticsearch-9.0.2/logs/elasticsearch.log -``` - - 弹出输入账号密码,这里需要重置下密码,再登录 进入安装目录的bin目录下 - -执行下面命令 就会在控制台打印出新密码 账号就是 elastic - -``` -./elasticsearch-reset-password -u elastic -``` - -![](https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/{year}/{month}/{md5}.{extName}/20250623132315148.png) - -登录成功,完活。 - -```sh -elastic -jv9h8uwRrRxmDi1dq6u8 -``` - - - -![](https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/{year}/{month}/{md5}.{extName}/20250623132417828.png) - -> **注意**:如果访问不到,请检查是否开启了$VPN$ - -### 二、安装$ik$中文分词插件 - -```bash -# 安装分词插件 -./bin/elasticsearch-plugin install https://get.infini.cloud/elasticsearch/analysis-ik/9.0.2 - -# 检查插件列表 -[elauser@maxkb elasticsearch-9.0.2]$ ./bin/elasticsearch-plugin list -analysis-ik -``` - -![](https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/{year}/{month}/{md5}.{extName}/20250623133924355.png) diff --git a/dsSchoolBuddy/ElasticSearch/T6_XiangLiangQuery.py b/dsSchoolBuddy/ElasticSearch/T6_XiangLiangQuery.py deleted file mode 100644 index 215ab7ad..00000000 --- a/dsSchoolBuddy/ElasticSearch/T6_XiangLiangQuery.py +++ /dev/null @@ -1,109 +0,0 @@ -import logging -import warnings - -from Config.Config import ES_CONFIG -from Util.EsSearchUtil import EsSearchUtil - -# 初始化日志 -logger = logging.getLogger(__name__) -logger.setLevel(logging.INFO) - -# 初始化EsSearchUtil -esClient = EsSearchUtil(ES_CONFIG) -# 抑制HTTPS相关警告 -warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') -warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') - -if __name__ == "__main__": - # 测试查询 - # query = "小学数学中有哪些模型" - query = "文言虚词" - query_tags = ["MATH_1"] # 默认搜索标签,可修改 - print(f"\n=== 开始执行查询 ===") - print(f"原始查询文本: {query}") - - # 执行混合搜索 - es_conn = esClient.es_pool.get_connection() - try: - # 向量搜索 - print("\n=== 向量搜索阶段 ===") - print("1. 文本分词和向量化处理中...") - query_embedding = esClient.text_to_embedding(query) - print(f"2. 生成的查询向量维度: {len(query_embedding)}") - print(f"3. 前3维向量值: {query_embedding[:3]}") - - print("4. 正在执行Elasticsearch向量搜索...") - vector_results = es_conn.search( - index=ES_CONFIG['index_name'], - body={ - "query": { - "script_score": { - "query": { - "bool": { - "should": [ - { - "terms": { - "tags.tags": query_tags - } - } - ], - "minimum_should_match": 1 - } - }, - "script": { - "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", - "params": {"query_vector": query_embedding} - } - } - }, - "size": 3 - } - ) - print(f"5. 向量搜索结果数量: {len(vector_results['hits']['hits'])}") - - # 文本精确搜索 - print("\n=== 文本精确搜索阶段 ===") - print("1. 正在执行Elasticsearch文本精确搜索...") - text_results = es_conn.search( - index=ES_CONFIG['index_name'], - body={ - "query": { - "bool": { - "must": [ - { - "match": { - "user_input": query - } - }, - { - "terms": { - "tags.tags": query_tags - } - } - ] - } - }, - "size": 3 - } - ) - print(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}") - - # 打印详细结果 - print("\n=== 最终搜索结果 ===") - - vector_int = 0 - for i, hit in enumerate(vector_results['hits']['hits'], 1): - if hit['_score'] > 0.4: # 阀值0.4 - print(f" {i}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}") - print(f" 内容: {hit['_source']['user_input']}") - vector_int = vector_int + 1 - print(f" 向量搜索结果: {vector_int}条") - - print("\n文本精确搜索结果:") - for i, hit in enumerate(text_results['hits']['hits']): - print(f" {i + 1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}") - print(f" 内容: {hit['_source']['user_input']}") - # print(f" 详细: {hit['_source']['tags']['full_content']}") - - finally: - esClient.es_pool.release_connection(es_conn) diff --git a/dsSchoolBuddy/ElasticSearch/T7_XiangLiangQuery.py b/dsSchoolBuddy/ElasticSearch/T7_XiangLiangQuery.py new file mode 100644 index 00000000..5c2eda10 --- /dev/null +++ b/dsSchoolBuddy/ElasticSearch/T7_XiangLiangQuery.py @@ -0,0 +1,209 @@ +import logging +import warnings +import json +import requests +from typing import List, Tuple, Dict + +from elasticsearch import Elasticsearch + +from Config import Config +from Config.Config import ES_CONFIG, EMBED_MODEL_NAME, EMBED_BASE_URL, EMBED_API_KEY, RERANK_MODEL, RERANK_BASE_URL, RERANK_BINDING_API_KEY +from langchain_openai import OpenAIEmbeddings +from pydantic import SecretStr + +# 初始化日志 +logger = logging.getLogger(__name__) +logger.setLevel(logging.INFO) + +# 抑制HTTPS相关警告 +warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') +warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') + + +def text_to_embedding(text: str) -> List[float]: + """ + 将文本转换为嵌入向量 + """ + embeddings = OpenAIEmbeddings( + model=EMBED_MODEL_NAME, + base_url=EMBED_BASE_URL, + api_key=SecretStr(EMBED_API_KEY) + ) + return embeddings.embed_query(text) + + +def rerank_results(query: str, results: List[Dict]) -> List[Tuple[Dict, float]]: + """ + 对搜索结果进行重排 + """ + if len(results) <= 1: + return [(doc, 1.0) for doc in results] + + # 准备重排请求数据 + rerank_data = { + "model": RERANK_MODEL, + "query": query, + "documents": [doc['_source']['user_input'] for doc in results], + "top_n": len(results) + } + + # 调用SiliconFlow API进行重排 + headers = { + "Content-Type": "application/json", + "Authorization": f"Bearer {RERANK_BINDING_API_KEY}" + } + + try: + response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data)) + response.raise_for_status() + rerank_result = response.json() + + # 处理重排结果 + reranked_docs_with_scores = [] + if "results" in rerank_result: + for item in rerank_result["results"]: + doc_idx = item.get("index") + score = item.get("relevance_score", 0.0) + if 0 <= doc_idx < len(results): + reranked_docs_with_scores.append((results[doc_idx], score)) + return reranked_docs_with_scores + except Exception as e: + logger.error(f"重排失败: {str(e)}") + return [(doc, 1.0) for doc in results] + + +def merge_results(keyword_results: List[Tuple[Dict, float]], vector_results: List[Tuple[Dict, float]]) -> List[Tuple[Dict, float, str]]: + """ + 合并关键字搜索和向量搜索结果 + """ + # 标记结果来源并合并 + all_results = [] + for doc, score in keyword_results: + all_results.append((doc, score, "关键字搜索")) + for doc, score in vector_results: + all_results.append((doc, score, "向量搜索")) + + # 去重并按分数排序 + unique_results = {} + for doc, score, source in all_results: + doc_id = doc['_id'] + if doc_id not in unique_results or score > unique_results[doc_id][1]: + unique_results[doc_id] = (doc, score, source) + + # 按分数降序排序 + sorted_results = sorted(unique_results.values(), key=lambda x: x[1], reverse=True) + return sorted_results + + +if __name__ == "__main__": + # 初始化EsSearchUtil + esClient = Elasticsearch( + hosts=Config.ES_CONFIG['hosts'], + basic_auth=Config.ES_CONFIG['basic_auth'], + verify_certs=False + ) + + # 获取用户输入 + user_query = input("请输入查询语句(例如:高性能的混凝土): ") + if not user_query: + user_query = "高性能的混凝土" + print(f"未输入查询语句,使用默认值: {user_query}") + + query_tags = [] # 可以根据需要添加标签过滤 + + print(f"\n=== 开始执行查询 ===") + print(f"原始查询文本: {user_query}") + + # 执行搜索 + es_conn = esClient.es_pool.get_connection() + try: + # 1. 向量搜索 + print("\n=== 向量搜索阶段 ===") + print("1. 文本向量化处理中...") + query_embedding = text_to_embedding(user_query) + print(f"2. 生成的查询向量维度: {len(query_embedding)}") + print(f"3. 前3维向量值: {query_embedding[:3]}") + + print("4. 正在执行Elasticsearch向量搜索...") + vector_results = es_conn.search( + index=ES_CONFIG['index_name'], + body={ + "query": { + "script_score": { + "query": { + "bool": { + "should": [ + { + "terms": { + "tags.tags": query_tags + } + } + ] if query_tags else {"match_all": {}}, + "minimum_should_match": 1 if query_tags else 0 + } + }, + "script": { + "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", + "params": {"query_vector": query_embedding} + } + } + }, + "size": 5 + } + ) + vector_hits = vector_results['hits']['hits'] + print(f"5. 向量搜索结果数量: {len(vector_hits)}") + + # 向量结果重排 + print("6. 正在进行向量结果重排...") + reranked_vector_results = rerank_results(user_query, vector_hits) + print(f"7. 重排后向量结果数量: {len(reranked_vector_results)}") + + # 2. 关键字搜索 + print("\n=== 关键字搜索阶段 ===") + print("1. 正在执行Elasticsearch关键字搜索...") + keyword_results = es_conn.search( + index=ES_CONFIG['index_name'], + body={ + "query": { + "bool": { + "must": [ + { + "match": { + "user_input": user_query + } + } + ] + ([ + { + "terms": { + "tags.tags": query_tags + } + } + ] if query_tags else []) + } + }, + "size": 5 + } + ) + keyword_hits = keyword_results['hits']['hits'] + print(f"2. 关键字搜索结果数量: {len(keyword_hits)}") + + # 3. 合并结果 + print("\n=== 合并搜索结果 ===") + # 为关键字结果添加默认分数1.0 + keyword_results_with_scores = [(doc, doc['_score']) for doc in keyword_hits] + merged_results = merge_results(keyword_results_with_scores, reranked_vector_results) + print(f"合并后唯一结果数量: {len(merged_results)}") + + # 4. 打印最终结果 + print("\n=== 最终搜索结果 ===") + for i, (doc, score, source) in enumerate(merged_results, 1): + print(f"{i}. 文档ID: {doc['_id']}, 分数: {score:.2f}, 来源: {source}") + print(f" 内容: {doc['_source']['user_input']}") + print(" --- ") + + except Exception as e: + logger.error(f"搜索过程中发生错误: {str(e)}") + print(f"搜索失败: {str(e)}") + finally: + esClient.es_pool.release_connection(es_conn)