main
HuangHai 4 weeks ago
parent e55ab1d90e
commit c2dac849dd

@ -1,154 +1,117 @@
from Config.Config import MODEL_API_KEY, MODEL_NAME
from openai import OpenAI
from Config import Config
import docx
import os
# 初始化DeepSeek客户端
# 初始化通义千问客户端
client = OpenAI(
api_key=Config.DEEPSEEK_API_KEY,
base_url=Config.DEEPSEEK_URL
api_key=MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
)
def call_deepseek(prompt):
"""调用DeepSeek API"""
def call_qwen_plus(prompt, stream_callback=None):
"""调用通义千问API"""
try:
response = client.chat.completions.create(
model="deepseek-chat",
model=MODEL_NAME,
messages=[
{"role": "system", "content": "你是一个专业的文档分析助手"},
{"role": "user", "content": prompt}
],
temperature=0.3
temperature=0.3,
stream=True
)
return response.choices[0].message.content
full_response = ""
for chunk in response:
content = chunk.choices[0].delta.content
if content:
full_response += content
if stream_callback:
stream_callback(content)
return full_response
except Exception as e:
print(f"调用DeepSeek API出错: {str(e)}")
print(f"调用通义千问API出错: {str(e)}")
return ""
def ask_llm(text_chunk):
"""向大模型提问并获取响应"""
PROMPT_TEMPLATE = """
请分析以下数学教学内容直接返回处理后的文本
1. 根据每个段落间的逻辑关系判断是不是强相关一致内容的划分为同一个段落否则视为两个段落
2. 不同段落间用两个换行符分隔
3. 不要添加任何额外格式或标记绝对不要使用markdown格式返回
待处理内容
{text_chunk}
"""
prompt = PROMPT_TEMPLATE.format(text_chunk=text_chunk)
return call_deepseek(prompt)
# 修改后的处理函数
def process_response(response):
# 直接返回原始响应内容,不做格式处理
return response
def split_text(text, chunk_size=6000):
"""按段落分割文本确保每个块接近6000字"""
paragraphs = [p.strip() for p in text.split('\n') if p.strip()]
chunks = []
current_chunk = []
current_length = 0
for para in paragraphs:
para_length = len(para)
if current_length + para_length > chunk_size and current_chunk:
chunks.append('\n'.join(current_chunk))
current_chunk = []
current_length = 0
current_chunk.append(para)
current_length += para_length
if current_chunk:
chunks.append('\n'.join(current_chunk))
return chunks
def process_document(input_file, output_file):
"""处理文档主流程"""
text = read_docx(input_file)
chunks = split_text(text)
for i, chunk in enumerate(chunks, 1):
print(f"正在处理第{i}个段落...")
try:
response = ask_llm(chunk)
paragraphs = process_llm_response(response)
for para in paragraphs:
save_to_txt(para, output_file)
except Exception as e:
save_to_txt(f"段落{i}处理失败: {str(e)}", output_file)
print(f"处理完成,结果已保存到 {output_file}")
def read_docx(file_path):
"""读取docx文件内容"""
from docx import Document
try:
doc = Document(file_path)
return '\n'.join([para.text for para in doc.paragraphs if para.text.strip()])
doc = docx.Document(file_path)
return "\n".join([para.text for para in doc.paragraphs if para.text])
except Exception as e:
print(f"读取docx文件出错: {str(e)}")
return ""
def save_to_txt(content, file_path, mode='a'):
"""将内容保存到txt文件"""
"""保存内容到txt文件"""
try:
with open(file_path, mode, encoding='utf-8') as f:
f.write(content + '\n\n')
f.write(content + "\n")
return True
except Exception as e:
print(f"保存到txt文件出错: {str(e)}")
print(f"保存文件出错: {str(e)}")
return False
def split_text(text, chunk_size=6000):
"""按约6000字符分割文本优先在段落结束处分隔"""
chunks = []
current_chunk = ""
paragraphs = text.split('\n\n')
for para in paragraphs:
if len(current_chunk) + len(para) > chunk_size and current_chunk:
chunks.append(current_chunk)
current_chunk = para
else:
if current_chunk:
current_chunk += '\n\n' + para
else:
current_chunk = para
if current_chunk:
chunks.append(current_chunk)
return chunks
# 在process_document方法中调用时请确保output_file参数是完整的文件路径
def call_deepseek_api(prompt, stream_callback=None):
"""流式调用DeepSeek API"""
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "你是一个专业的文档分析助手"},
{"role": "user", "content": prompt}
],
temperature=0.3,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
full_response += content
if stream_callback:
stream_callback(content)
return full_response
except Exception as e:
print(f"调用DeepSeek API出错: {str(e)}")
PROMPT_TEMPLATE = """
请分析以下数学教学内容直接返回处理后的文本
1. 根据每个段落间的逻辑关系判断是不是强相关一致内容的划分为同一个段落否则视为两个段落
2. 不同段落间用两个换行符分隔
3. 不要添加任何额外格式或标记绝对不要使用markdown格式返回
def process_llm_response(response):
"""处理大模型的段落划分响应"""
paragraphs = []
current_para = ""
for line in response.split('\n'):
if line.startswith('## '):
if current_para:
paragraphs.append(current_para.strip())
current_para = line[3:] + '\n' # 去掉##标记
else:
current_para += line + '\n'
if current_para:
paragraphs.append(current_para.strip())
return paragraphs
待处理内容
{text_chunk}
"""
def ask_llm(text_chunk):
"""向大模型提问并获取响应"""
prompt = PROMPT_TEMPLATE.format(text_chunk=text_chunk)
return call_qwen_plus(prompt)
def process_document(input_path, output_dir):
"""处理文档主函数"""
text = read_docx(input_path)
if not text:
print("无法读取输入文件内容")
return False
# 确保输出目录存在
os.makedirs(output_dir, exist_ok=True)
chunks = split_text(text)
for i, chunk in enumerate(chunks):
print(f"正在处理第{i+1}/{len(chunks)}个分块...")
response = ask_llm(chunk)
if response:
output_file = os.path.join(output_dir, f"{i+1}.txt")
save_to_txt(response, output_file, mode='w')
print(f"处理完成,结果已保存到目录: {output_dir}")
return True
if __name__ == "__main__":
input_file = '../Txt/小学数学(史校长).docx'
output_file = '../Txt/小学数学(史校长).txt'
process_document(input_file, output_file)
output_dir = '../Txt/processed_chunks' # 改为输出目录
process_document(input_file, output_dir)

Loading…
Cancel
Save