|
|
|
@ -1,11 +1,11 @@
|
|
|
|
|
import datetime
|
|
|
|
|
import logging
|
|
|
|
|
|
|
|
|
|
from Util.EmbeddingUtil import text_to_embedding # 修改导入
|
|
|
|
|
from Config.Config import ES_CONFIG
|
|
|
|
|
from elasticsearch import Elasticsearch
|
|
|
|
|
import re
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
import datetime
|
|
|
|
|
import logging
|
|
|
|
|
|
|
|
|
|
from Config.Config import ES_CONFIG
|
|
|
|
|
from Util.EmbeddingUtil import text_to_embedding
|
|
|
|
|
|
|
|
|
|
# 在文件开头添加logger配置
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
@ -17,13 +17,14 @@ formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(messag
|
|
|
|
|
handler.setFormatter(formatter)
|
|
|
|
|
logger.addHandler(handler)
|
|
|
|
|
|
|
|
|
|
def split_sentences(text):
|
|
|
|
|
"""按句分割文本"""
|
|
|
|
|
def split_paragraphs(text):
|
|
|
|
|
"""按段落分割文本"""
|
|
|
|
|
# 按两个换行符分割段落
|
|
|
|
|
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()]
|
|
|
|
|
# 使用jieba进行分句
|
|
|
|
|
sentences = re.split(r'[。!?;\n]', text) # 添加这行定义sentences
|
|
|
|
|
return [s.strip() for s in sentences if s.strip()]
|
|
|
|
|
return paragraphs
|
|
|
|
|
|
|
|
|
|
# 修改process_file函数
|
|
|
|
|
# Move save_to_es function definition before process_file
|
|
|
|
|
def save_to_es(text):
|
|
|
|
|
"""保存向量化文本和原始文本到ES"""
|
|
|
|
|
vector = text_to_embedding(text)
|
|
|
|
@ -45,18 +46,18 @@ def save_to_es(text):
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"保存文本到ES失败: {e}")
|
|
|
|
|
|
|
|
|
|
# Then define process_file function
|
|
|
|
|
def process_file(file_path):
|
|
|
|
|
"""处理文本文件"""
|
|
|
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
content = f.read()
|
|
|
|
|
|
|
|
|
|
sentences = split_sentences(content)
|
|
|
|
|
paragraphs = split_paragraphs(content)
|
|
|
|
|
|
|
|
|
|
# 添加进度条
|
|
|
|
|
for sentence in tqdm(sentences, desc='处理进度', unit='句'):
|
|
|
|
|
save_to_es(sentence)
|
|
|
|
|
for paragraph in tqdm(paragraphs, desc='处理进度', unit='段'):
|
|
|
|
|
save_to_es(paragraph)
|
|
|
|
|
|
|
|
|
|
print(f"\n处理完成,共保存{len(sentences)}个句子")
|
|
|
|
|
print(f"\n处理完成,共保存{len(paragraphs)}个段落")
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
es = Elasticsearch(
|
|
|
|
|