'commit'
This commit is contained in:
@@ -3,7 +3,6 @@ import logging
|
||||
|
||||
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY
|
||||
from VikingDBMemoryService import VikingDBMemoryService, MEMORY_COLLECTION_NAME
|
||||
from Volcengine.chat import wait_for_collection_ready
|
||||
# 控制日志输出
|
||||
logger = logging.getLogger('CollectionMemory')
|
||||
logger.setLevel(logging.INFO)
|
||||
@@ -47,7 +46,8 @@ def create_memory_collection(collection_name, description="情感陪伴记忆库
|
||||
|
||||
# 等待集合就绪
|
||||
logger.info("等待集合初始化完成...")
|
||||
if wait_for_collection_ready(memory_service, collection_name):
|
||||
# 将独立函数调用改为实例方法调用
|
||||
if memory_service.wait_for_collection_ready():
|
||||
logger.info(f"集合 '{collection_name}' 已就绪,可以开始使用")
|
||||
return True
|
||||
else:
|
||||
|
@@ -3,6 +3,7 @@ pip install volcengine
|
||||
pip install --upgrade "volcengine-python-sdk[ark]"
|
||||
"""
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
@@ -17,6 +18,13 @@ from volcenginesdkarkruntime import Ark
|
||||
|
||||
from Config.Config import VOLC_SECRETKEY, VOLC_ACCESSKEY, VOLC_API_KEY
|
||||
|
||||
# 配置日志
|
||||
logger = logging.getLogger('CollectionMemory')
|
||||
logger.setLevel(logging.INFO)
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||
logger.addHandler(handler)
|
||||
|
||||
# 记忆体集合名称
|
||||
MEMORY_COLLECTION_NAME="dsideal_collection"
|
||||
|
||||
@@ -294,4 +302,162 @@ class VikingDBMemoryService(Service):
|
||||
if entities is not None:
|
||||
params["entities"] = entities
|
||||
res = self.json("AddSession", {}, json.dumps(params))
|
||||
return json.loads(res)
|
||||
return json.loads(res)
|
||||
|
||||
def handle_conversation_turn(self, llm_client, user_id, user_message, conversation_history):
|
||||
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
||||
logger.info("\n" + "=" * 60)
|
||||
logger.info(f"用户: {user_message}")
|
||||
|
||||
relevant_memories = self.search_relevant_memories(user_id, user_message)
|
||||
|
||||
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
||||
if relevant_memories:
|
||||
memory_context = "\n".join(
|
||||
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
||||
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
||||
|
||||
logger.info("AI正在思考...")
|
||||
|
||||
try:
|
||||
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
||||
{"role": "user", "content": user_message}]
|
||||
completion = llm_client.chat.completions.create(
|
||||
model="doubao-seed-1-6-flash-250715",
|
||||
messages=messages
|
||||
)
|
||||
assistant_reply = completion.choices[0].message.content
|
||||
except Exception as e:
|
||||
logger.info(f"LLM调用失败: {e}")
|
||||
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
||||
|
||||
logger.info(f"伙伴: {assistant_reply}")
|
||||
|
||||
conversation_history.extend([
|
||||
{"role": "user", "content": user_message},
|
||||
{"role": "assistant", "content": assistant_reply}
|
||||
])
|
||||
return assistant_reply
|
||||
|
||||
def archive_conversation(self, user_id, assistant_id, conversation_history, topic_name):
|
||||
"""将对话历史归档到记忆数据库。"""
|
||||
if not conversation_history:
|
||||
logger.info("没有对话可以归档。")
|
||||
return False
|
||||
|
||||
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
|
||||
session_id = f"{topic_name}_{int(time.time())}"
|
||||
metadata = {
|
||||
"default_user_id": user_id,
|
||||
"default_assistant_id": assistant_id,
|
||||
"time": int(time.time() * 1000)
|
||||
}
|
||||
|
||||
try:
|
||||
self.add_session(
|
||||
collection_name=MEMORY_COLLECTION_NAME,
|
||||
session_id=session_id,
|
||||
messages=conversation_history,
|
||||
metadata=metadata
|
||||
)
|
||||
logger.info(f"对话已成功归档,会话ID: {session_id}")
|
||||
logger.info("正在等待记忆索引更新...")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.info(f"归档对话失败: {e}")
|
||||
return False
|
||||
|
||||
def wait_for_collection_ready(self, timeout=300, interval=10):
|
||||
"""
|
||||
等待集合准备就绪
|
||||
:param timeout: 超时时间(秒)
|
||||
:param interval: 检查间隔(秒)
|
||||
:return: True if ready, False if timeout
|
||||
"""
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < timeout:
|
||||
try:
|
||||
# 使用类中定义的集合名称常量
|
||||
collection_info = self.get_collection(MEMORY_COLLECTION_NAME)
|
||||
status = collection_info.get("Status", "UNKNOWN")
|
||||
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 当前状态: {status}")
|
||||
if status == "READY":
|
||||
return True
|
||||
time.sleep(interval)
|
||||
except Exception as e:
|
||||
logger.info(f"检查集合状态失败: {e}")
|
||||
time.sleep(interval)
|
||||
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 在{timeout}秒内未就绪")
|
||||
return False
|
||||
|
||||
def setup_memory_collection(self):
|
||||
"""独立封装记忆体创建逻辑,返回memory_service供测试使用"""
|
||||
try:
|
||||
ensure_collection_exists(self, MEMORY_COLLECTION_NAME)
|
||||
logger.info(f"记忆体 '{MEMORY_COLLECTION_NAME}' 创建/验证成功")
|
||||
|
||||
# 添加集合就绪等待
|
||||
logger.info("等待集合准备就绪...")
|
||||
if self.wait_for_collection_ready():
|
||||
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 已就绪")
|
||||
return self
|
||||
else:
|
||||
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 未能就绪")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.info(f"记忆体创建失败: {e}")
|
||||
return None
|
||||
|
||||
def run_end_to_end_test(self):
|
||||
"""端到端记忆测试的主函数"""
|
||||
logger.info("开始端到端记忆测试...")
|
||||
|
||||
try:
|
||||
# 调用封装的记忆体创建函数
|
||||
memory_service = self.setup_memory_collection()
|
||||
if not memory_service:
|
||||
return
|
||||
llm_client = Ark(
|
||||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||||
api_key=VOLC_API_KEY
|
||||
)
|
||||
user_id = "xiaoming" # 用户ID:小明
|
||||
assistant_id = "assistant1" # 助手ID:助手1
|
||||
except Exception as e:
|
||||
logger.info(f"初始化失败: {e}")
|
||||
return
|
||||
|
||||
logger.info("\n--- 阶段 1: 初始对话 ---")
|
||||
initial_conversation_history = []
|
||||
self.handle_conversation_turn(
|
||||
llm_client, user_id,
|
||||
"你好,我是小明,今年18岁,但压力好大。",
|
||||
initial_conversation_history
|
||||
)
|
||||
self.handle_conversation_turn(
|
||||
llm_client, user_id,
|
||||
"马上就要高考了,家里人的期待好高。",
|
||||
initial_conversation_history
|
||||
)
|
||||
|
||||
logger.info("\n--- 阶段 2: 归档记忆 ---")
|
||||
self.archive_conversation(
|
||||
user_id, assistant_id,
|
||||
initial_conversation_history, "study_stress_discussion"
|
||||
)
|
||||
|
||||
logger.info("\n--- 阶段 3: 验证记忆 ---")
|
||||
verification_conversation_history = []
|
||||
self.handle_conversation_turn(
|
||||
llm_client, user_id,
|
||||
"我最近很焦虑,不知道该怎么办。",
|
||||
verification_conversation_history
|
||||
)
|
||||
|
||||
logger.info("\n端到端记忆测试完成!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 初始化服务
|
||||
memory_service, _ = initialize_services()
|
||||
# 运行端到端测试
|
||||
memory_service.run_end_to_end_test()
|
Binary file not shown.
Binary file not shown.
@@ -1,186 +0,0 @@
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
|
||||
from volcenginesdkarkruntime import Ark
|
||||
|
||||
from Config.Config import VOLC_API_KEY
|
||||
|
||||
"""
|
||||
在记忆库准备好后,我们先模拟一段包含两轮的完整对话。
|
||||
对话结束后,把这段对话历史消息写入记忆库。然后再开启一个新话题,提出和刚才相关的问题,
|
||||
AI 就能用刚写入的记忆来回答。
|
||||
注意:首次写入需要 3–5 分钟建立索引,这段时间内检索会报错。
|
||||
"""
|
||||
import json
|
||||
import time
|
||||
from VikingDBMemoryService import initialize_services, ensure_collection_exists, search_relevant_memories
|
||||
# 控制日志输出
|
||||
logger = logging.getLogger('CollectionMemory')
|
||||
logger.setLevel(logging.INFO)
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||
logger.addHandler(handler)
|
||||
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
||||
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
||||
logger.info("\n" + "=" * 60)
|
||||
logger.info(f"用户: {user_message}")
|
||||
|
||||
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
|
||||
|
||||
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
||||
if relevant_memories:
|
||||
memory_context = "\n".join(
|
||||
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
||||
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
||||
|
||||
logger.info("AI正在思考...")
|
||||
|
||||
try:
|
||||
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
||||
{"role": "user", "content": user_message}]
|
||||
completion = llm_client.chat.completions.create(
|
||||
model="doubao-seed-1-6-flash-250715",
|
||||
messages=messages
|
||||
)
|
||||
assistant_reply = completion.choices[0].message.content
|
||||
except Exception as e:
|
||||
logger.info(f"LLM调用失败: {e}")
|
||||
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
||||
|
||||
logger.info(f"伙伴: {assistant_reply}")
|
||||
|
||||
conversation_history.extend([
|
||||
{"role": "user", "content": user_message},
|
||||
{"role": "assistant", "content": assistant_reply}
|
||||
])
|
||||
return assistant_reply
|
||||
|
||||
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
||||
"""将对话历史归档到记忆数据库。"""
|
||||
if not conversation_history:
|
||||
logger.info("没有对话可以归档。")
|
||||
return False
|
||||
|
||||
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
|
||||
session_id = f"{topic_name}_{int(time.time())}"
|
||||
metadata = {
|
||||
"default_user_id": user_id,
|
||||
"default_assistant_id": assistant_id,
|
||||
"time": int(time.time() * 1000)
|
||||
}
|
||||
|
||||
try:
|
||||
memory_service.add_session(
|
||||
collection_name=collection_name,
|
||||
session_id=session_id,
|
||||
messages=conversation_history,
|
||||
metadata=metadata
|
||||
)
|
||||
logger.info(f"对话已成功归档,会话ID: {session_id}")
|
||||
logger.info("正在等待记忆索引更新...")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.info(f"归档对话失败: {e}")
|
||||
return False
|
||||
|
||||
def setup_memory_collection(collection_name="emotional_support"):
|
||||
"""独立封装记忆体创建逻辑,返回memory_service供测试使用"""
|
||||
try:
|
||||
memory_service, _ = initialize_services()
|
||||
ensure_collection_exists(memory_service, collection_name)
|
||||
logger.info(f"记忆体 '{collection_name}' 创建/验证成功")
|
||||
|
||||
# 添加集合就绪等待
|
||||
logger.info("等待集合准备就绪...")
|
||||
if wait_for_collection_ready(memory_service, collection_name):
|
||||
logger.info(f"集合 '{collection_name}' 已就绪")
|
||||
return memory_service
|
||||
else:
|
||||
logger.info(f"集合 '{collection_name}' 未能就绪")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.info(f"记忆体创建失败: {e}")
|
||||
return None
|
||||
|
||||
def wait_for_collection_ready(memory_service, collection_name, timeout=300, interval=10):
|
||||
"""
|
||||
等待集合准备就绪
|
||||
:param memory_service: 记忆库服务实例
|
||||
:param collection_name: 集合名称
|
||||
:param timeout: 超时时间(秒)
|
||||
:param interval: 检查间隔(秒)
|
||||
:return: True if ready, False if timeout
|
||||
"""
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < timeout:
|
||||
try:
|
||||
collection_info = memory_service.get_collection(collection_name)
|
||||
# 根据Volcengine API文档,状态可能在Status字段中,值可能为"READY"、"CREATING"等
|
||||
status = collection_info.get("Status", "UNKNOWN")
|
||||
logger.info(f"集合 '{collection_name}' 当前状态: {status}")
|
||||
if status == "READY":
|
||||
return True
|
||||
time.sleep(interval)
|
||||
except Exception as e:
|
||||
logger.info(f"检查集合状态失败: {e}")
|
||||
time.sleep(interval)
|
||||
logger.info(f"集合 '{collection_name}' 在{timeout}秒内未就绪")
|
||||
return False
|
||||
|
||||
def main():
|
||||
logger.info("开始端到端记忆测试...")
|
||||
collection_name="emotional_support"
|
||||
|
||||
try:
|
||||
# 调用封装的记忆体创建函数
|
||||
memory_service = setup_memory_collection()
|
||||
if not memory_service:
|
||||
return
|
||||
llm_client = Ark(
|
||||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||||
api_key=VOLC_API_KEY
|
||||
)
|
||||
user_id = "xiaoming" # 用户ID:小明
|
||||
assistant_id = "assistant1" # 助手ID:助手1
|
||||
except Exception as e:
|
||||
logger.info(f"初始化失败: {e}")
|
||||
return
|
||||
|
||||
logger.info("\n--- 阶段 1: 初始对话 ---")
|
||||
initial_conversation_history = []
|
||||
handle_conversation_turn(
|
||||
memory_service, llm_client, collection_name, user_id,
|
||||
"你好,我是小明,今年18岁,但压力好大。",
|
||||
initial_conversation_history
|
||||
)
|
||||
handle_conversation_turn(
|
||||
memory_service, llm_client, collection_name, user_id,
|
||||
"马上就要高考了,家里人的期待好高。",
|
||||
initial_conversation_history
|
||||
)
|
||||
|
||||
logger.info("\n--- 阶段 2: 归档记忆 ---")
|
||||
archive_conversation(
|
||||
memory_service, collection_name, user_id, assistant_id,
|
||||
initial_conversation_history, "study_stress_discussion"
|
||||
)
|
||||
|
||||
logger.info("\n--- 阶段 3: 验证记忆 ---")
|
||||
verification_conversation_history = []
|
||||
handle_conversation_turn(
|
||||
memory_service, llm_client, collection_name, user_id,
|
||||
"我最近很焦虑,不知道该怎么办。",
|
||||
verification_conversation_history
|
||||
)
|
||||
|
||||
logger.info("\n端到端记忆测试完成!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup_memory_collection()
|
||||
# main()
|
||||
"""
|
||||
memory_service = setup_memory_collection()
|
||||
if memory_service:
|
||||
is_ready = wait_for_collection_ready(memory_service, "emotional_support")
|
||||
"""
|
Reference in New Issue
Block a user