This commit is contained in:
2025-09-07 08:13:00 +08:00
parent dd5ed7fc53
commit bb94553638
5 changed files with 169 additions and 189 deletions

View File

@@ -3,7 +3,6 @@ import logging
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY
from VikingDBMemoryService import VikingDBMemoryService, MEMORY_COLLECTION_NAME
from Volcengine.chat import wait_for_collection_ready
# 控制日志输出
logger = logging.getLogger('CollectionMemory')
logger.setLevel(logging.INFO)
@@ -47,7 +46,8 @@ def create_memory_collection(collection_name, description="情感陪伴记忆库
# 等待集合就绪
logger.info("等待集合初始化完成...")
if wait_for_collection_ready(memory_service, collection_name):
# 将独立函数调用改为实例方法调用
if memory_service.wait_for_collection_ready():
logger.info(f"集合 '{collection_name}' 已就绪,可以开始使用")
return True
else:

View File

@@ -3,6 +3,7 @@ pip install volcengine
pip install --upgrade "volcengine-python-sdk[ark]"
"""
import json
import logging
import os
import threading
import time
@@ -17,6 +18,13 @@ from volcenginesdkarkruntime import Ark
from Config.Config import VOLC_SECRETKEY, VOLC_ACCESSKEY, VOLC_API_KEY
# 配置日志
logger = logging.getLogger('CollectionMemory')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
# 记忆体集合名称
MEMORY_COLLECTION_NAME="dsideal_collection"
@@ -294,4 +302,162 @@ class VikingDBMemoryService(Service):
if entities is not None:
params["entities"] = entities
res = self.json("AddSession", {}, json.dumps(params))
return json.loads(res)
return json.loads(res)
def handle_conversation_turn(self, llm_client, user_id, user_message, conversation_history):
"""处理一轮对话包括记忆搜索和LLM响应。"""
logger.info("\n" + "=" * 60)
logger.info(f"用户: {user_message}")
relevant_memories = self.search_relevant_memories(user_id, user_message)
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
if relevant_memories:
memory_context = "\n".join(
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
logger.info("AI正在思考...")
try:
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
{"role": "user", "content": user_message}]
completion = llm_client.chat.completions.create(
model="doubao-seed-1-6-flash-250715",
messages=messages
)
assistant_reply = completion.choices[0].message.content
except Exception as e:
logger.info(f"LLM调用失败: {e}")
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
logger.info(f"伙伴: {assistant_reply}")
conversation_history.extend([
{"role": "user", "content": user_message},
{"role": "assistant", "content": assistant_reply}
])
return assistant_reply
def archive_conversation(self, user_id, assistant_id, conversation_history, topic_name):
"""将对话历史归档到记忆数据库。"""
if not conversation_history:
logger.info("没有对话可以归档。")
return False
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
session_id = f"{topic_name}_{int(time.time())}"
metadata = {
"default_user_id": user_id,
"default_assistant_id": assistant_id,
"time": int(time.time() * 1000)
}
try:
self.add_session(
collection_name=MEMORY_COLLECTION_NAME,
session_id=session_id,
messages=conversation_history,
metadata=metadata
)
logger.info(f"对话已成功归档会话ID: {session_id}")
logger.info("正在等待记忆索引更新...")
return True
except Exception as e:
logger.info(f"归档对话失败: {e}")
return False
def wait_for_collection_ready(self, timeout=300, interval=10):
"""
等待集合准备就绪
:param timeout: 超时时间(秒)
:param interval: 检查间隔(秒)
:return: True if ready, False if timeout
"""
start_time = time.time()
while time.time() - start_time < timeout:
try:
# 使用类中定义的集合名称常量
collection_info = self.get_collection(MEMORY_COLLECTION_NAME)
status = collection_info.get("Status", "UNKNOWN")
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 当前状态: {status}")
if status == "READY":
return True
time.sleep(interval)
except Exception as e:
logger.info(f"检查集合状态失败: {e}")
time.sleep(interval)
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}'{timeout}秒内未就绪")
return False
def setup_memory_collection(self):
"""独立封装记忆体创建逻辑返回memory_service供测试使用"""
try:
ensure_collection_exists(self, MEMORY_COLLECTION_NAME)
logger.info(f"记忆体 '{MEMORY_COLLECTION_NAME}' 创建/验证成功")
# 添加集合就绪等待
logger.info("等待集合准备就绪...")
if self.wait_for_collection_ready():
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 已就绪")
return self
else:
logger.info(f"集合 '{MEMORY_COLLECTION_NAME}' 未能就绪")
return None
except Exception as e:
logger.info(f"记忆体创建失败: {e}")
return None
def run_end_to_end_test(self):
"""端到端记忆测试的主函数"""
logger.info("开始端到端记忆测试...")
try:
# 调用封装的记忆体创建函数
memory_service = self.setup_memory_collection()
if not memory_service:
return
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=VOLC_API_KEY
)
user_id = "xiaoming" # 用户ID:小明
assistant_id = "assistant1" # 助手ID:助手1
except Exception as e:
logger.info(f"初始化失败: {e}")
return
logger.info("\n--- 阶段 1: 初始对话 ---")
initial_conversation_history = []
self.handle_conversation_turn(
llm_client, user_id,
"你好我是小明今年18岁但压力好大。",
initial_conversation_history
)
self.handle_conversation_turn(
llm_client, user_id,
"马上就要高考了,家里人的期待好高。",
initial_conversation_history
)
logger.info("\n--- 阶段 2: 归档记忆 ---")
self.archive_conversation(
user_id, assistant_id,
initial_conversation_history, "study_stress_discussion"
)
logger.info("\n--- 阶段 3: 验证记忆 ---")
verification_conversation_history = []
self.handle_conversation_turn(
llm_client, user_id,
"我最近很焦虑,不知道该怎么办。",
verification_conversation_history
)
logger.info("\n端到端记忆测试完成!")
if __name__ == "__main__":
# 初始化服务
memory_service, _ = initialize_services()
# 运行端到端测试
memory_service.run_end_to_end_test()

View File

@@ -1,186 +0,0 @@
import logging
import os
import time
from volcenginesdkarkruntime import Ark
from Config.Config import VOLC_API_KEY
"""
在记忆库准备好后,我们先模拟一段包含两轮的完整对话。
对话结束后,把这段对话历史消息写入记忆库。然后再开启一个新话题,提出和刚才相关的问题,
AI 就能用刚写入的记忆来回答。
注意:首次写入需要 35 分钟建立索引,这段时间内检索会报错。
"""
import json
import time
from VikingDBMemoryService import initialize_services, ensure_collection_exists, search_relevant_memories
# 控制日志输出
logger = logging.getLogger('CollectionMemory')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
"""处理一轮对话包括记忆搜索和LLM响应。"""
logger.info("\n" + "=" * 60)
logger.info(f"用户: {user_message}")
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
if relevant_memories:
memory_context = "\n".join(
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
logger.info("AI正在思考...")
try:
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
{"role": "user", "content": user_message}]
completion = llm_client.chat.completions.create(
model="doubao-seed-1-6-flash-250715",
messages=messages
)
assistant_reply = completion.choices[0].message.content
except Exception as e:
logger.info(f"LLM调用失败: {e}")
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
logger.info(f"伙伴: {assistant_reply}")
conversation_history.extend([
{"role": "user", "content": user_message},
{"role": "assistant", "content": assistant_reply}
])
return assistant_reply
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
"""将对话历史归档到记忆数据库。"""
if not conversation_history:
logger.info("没有对话可以归档。")
return False
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
session_id = f"{topic_name}_{int(time.time())}"
metadata = {
"default_user_id": user_id,
"default_assistant_id": assistant_id,
"time": int(time.time() * 1000)
}
try:
memory_service.add_session(
collection_name=collection_name,
session_id=session_id,
messages=conversation_history,
metadata=metadata
)
logger.info(f"对话已成功归档会话ID: {session_id}")
logger.info("正在等待记忆索引更新...")
return True
except Exception as e:
logger.info(f"归档对话失败: {e}")
return False
def setup_memory_collection(collection_name="emotional_support"):
"""独立封装记忆体创建逻辑返回memory_service供测试使用"""
try:
memory_service, _ = initialize_services()
ensure_collection_exists(memory_service, collection_name)
logger.info(f"记忆体 '{collection_name}' 创建/验证成功")
# 添加集合就绪等待
logger.info("等待集合准备就绪...")
if wait_for_collection_ready(memory_service, collection_name):
logger.info(f"集合 '{collection_name}' 已就绪")
return memory_service
else:
logger.info(f"集合 '{collection_name}' 未能就绪")
return None
except Exception as e:
logger.info(f"记忆体创建失败: {e}")
return None
def wait_for_collection_ready(memory_service, collection_name, timeout=300, interval=10):
"""
等待集合准备就绪
:param memory_service: 记忆库服务实例
:param collection_name: 集合名称
:param timeout: 超时时间(秒)
:param interval: 检查间隔(秒)
:return: True if ready, False if timeout
"""
start_time = time.time()
while time.time() - start_time < timeout:
try:
collection_info = memory_service.get_collection(collection_name)
# 根据Volcengine API文档状态可能在Status字段中值可能为"READY"、"CREATING"等
status = collection_info.get("Status", "UNKNOWN")
logger.info(f"集合 '{collection_name}' 当前状态: {status}")
if status == "READY":
return True
time.sleep(interval)
except Exception as e:
logger.info(f"检查集合状态失败: {e}")
time.sleep(interval)
logger.info(f"集合 '{collection_name}'{timeout}秒内未就绪")
return False
def main():
logger.info("开始端到端记忆测试...")
collection_name="emotional_support"
try:
# 调用封装的记忆体创建函数
memory_service = setup_memory_collection()
if not memory_service:
return
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=VOLC_API_KEY
)
user_id = "xiaoming" # 用户ID:小明
assistant_id = "assistant1" # 助手ID:助手1
except Exception as e:
logger.info(f"初始化失败: {e}")
return
logger.info("\n--- 阶段 1: 初始对话 ---")
initial_conversation_history = []
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"你好我是小明今年18岁但压力好大。",
initial_conversation_history
)
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"马上就要高考了,家里人的期待好高。",
initial_conversation_history
)
logger.info("\n--- 阶段 2: 归档记忆 ---")
archive_conversation(
memory_service, collection_name, user_id, assistant_id,
initial_conversation_history, "study_stress_discussion"
)
logger.info("\n--- 阶段 3: 验证记忆 ---")
verification_conversation_history = []
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"我最近很焦虑,不知道该怎么办。",
verification_conversation_history
)
logger.info("\n端到端记忆测试完成!")
if __name__ == "__main__":
setup_memory_collection()
# main()
"""
memory_service = setup_memory_collection()
if memory_service:
is_ready = wait_for_collection_ready(memory_service, "emotional_support")
"""