'commit'
This commit is contained in:
@@ -416,3 +416,139 @@ class VikingDBMemoryService(Service):
|
||||
except Exception as e:
|
||||
logger.info(f"记忆体创建失败: {e}")
|
||||
return None
|
||||
|
||||
|
||||
|
||||
def initialize_services():
|
||||
"""初始化服务和LLM客户端"""
|
||||
ak = VOLC_ACCESSKEY
|
||||
sk = VOLC_SECRETKEY
|
||||
ark_api_key = VOLC_API_KEY
|
||||
|
||||
if not all([ak, sk, ark_api_key]):
|
||||
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
|
||||
|
||||
memory_service = VikingDBMemoryService(
|
||||
ak=ak,
|
||||
sk=sk,
|
||||
host="api-knowledgebase.mlp.cn-beijing.volces.com",
|
||||
region="cn-beijing"
|
||||
)
|
||||
llm_client = Ark(
|
||||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||||
api_key=ark_api_key,
|
||||
)
|
||||
return memory_service, llm_client
|
||||
|
||||
|
||||
def search_relevant_memories(memory_service, collection_name, user_id, query):
|
||||
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
|
||||
logger.info(f"正在搜索与 '{query}' 相关的记忆...")
|
||||
retry_attempt = 0
|
||||
while True:
|
||||
try:
|
||||
filter_params = {
|
||||
"user_id": [user_id],
|
||||
"memory_type": ["sys_event_v1", "sys_profile_v1"]
|
||||
}
|
||||
response = memory_service.search_memory(
|
||||
collection_name=collection_name,
|
||||
query=query,
|
||||
filter=filter_params,
|
||||
limit=3
|
||||
)
|
||||
|
||||
memories = []
|
||||
if response.get('data', {}).get('count', 0) > 0:
|
||||
for result in response['data']['result_list']:
|
||||
if 'memory_info' in result and result['memory_info']:
|
||||
memories.append({
|
||||
'memory_info': result['memory_info'],
|
||||
'score': result['score']
|
||||
})
|
||||
|
||||
if memories:
|
||||
if retry_attempt > 0:
|
||||
logger.info("重试后搜索成功。")
|
||||
logger.info(f"找到 {len(memories)} 条相关记忆:")
|
||||
for i, memory in enumerate(memories, 1):
|
||||
logger.info(
|
||||
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
|
||||
else:
|
||||
logger.info("未找到相关记忆。")
|
||||
return memories
|
||||
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
if "1000023" in error_message:
|
||||
retry_attempt += 1
|
||||
logger.info(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
|
||||
time.sleep(60)
|
||||
else:
|
||||
logger.info(f"搜索记忆时出错 (不可重试): {e}")
|
||||
return []
|
||||
|
||||
|
||||
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
||||
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
||||
logger.info("\n" + "=" * 60)
|
||||
logger.info(f"用户: {user_message}")
|
||||
|
||||
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
|
||||
|
||||
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
||||
if relevant_memories:
|
||||
memory_context = "\n".join(
|
||||
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
||||
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
||||
|
||||
logger.info("AI正在思考...")
|
||||
|
||||
try:
|
||||
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
||||
{"role": "user", "content": user_message}]
|
||||
completion = llm_client.chat.completions.create(
|
||||
model="doubao-seed-1-6-flash-250715",
|
||||
messages=messages
|
||||
)
|
||||
assistant_reply = completion.choices[0].message.content
|
||||
except Exception as e:
|
||||
logger.info(f"LLM调用失败: {e}")
|
||||
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
||||
|
||||
logger.info(f"伙伴: {assistant_reply}")
|
||||
|
||||
conversation_history.extend([
|
||||
{"role": "user", "content": user_message},
|
||||
{"role": "assistant", "content": assistant_reply}
|
||||
])
|
||||
return assistant_reply
|
||||
|
||||
|
||||
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
||||
"""将对话历史归档到记忆数据库。"""
|
||||
if not conversation_history:
|
||||
logger.info("没有对话可以归档。")
|
||||
return False
|
||||
|
||||
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
|
||||
session_id = f"{topic_name}_{int(time.time())}"
|
||||
metadata = {
|
||||
"default_user_id": user_id,
|
||||
"default_assistant_id": assistant_id,
|
||||
"time": int(time.time() * 1000)
|
||||
}
|
||||
|
||||
try:
|
||||
memory_service.add_session(
|
||||
collection_name=collection_name,
|
||||
session_id=session_id,
|
||||
messages=conversation_history,
|
||||
metadata=metadata
|
||||
)
|
||||
logger.info(f"对话已成功归档,会话ID: {session_id}")
|
||||
logger.info("正在等待记忆索引更新...")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.info(f"归档对话失败: {e}")
|
||||
return False
|
@@ -1,11 +1,9 @@
|
||||
import logging
|
||||
import sys
|
||||
import time
|
||||
import json
|
||||
|
||||
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY, VOLC_API_KEY
|
||||
from Volcengine.Kit.VikingDBMemoryService import VikingDBMemoryService, MEMORY_COLLECTION_NAME
|
||||
from volcenginesdkarkruntime import Ark
|
||||
from Volcengine.Kit.VikingDBMemoryService import MEMORY_COLLECTION_NAME, initialize_services, \
|
||||
handle_conversation_turn, archive_conversation
|
||||
|
||||
# 控制日志输出
|
||||
logger = logging.getLogger('ChatWithMemory')
|
||||
@@ -18,140 +16,6 @@ if not logger.handlers:
|
||||
logger.addHandler(handler)
|
||||
|
||||
|
||||
def initialize_services():
|
||||
"""初始化服务和LLM客户端"""
|
||||
ak = VOLC_ACCESSKEY
|
||||
sk = VOLC_SECRETKEY
|
||||
ark_api_key = VOLC_API_KEY
|
||||
|
||||
if not all([ak, sk, ark_api_key]):
|
||||
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
|
||||
|
||||
memory_service = VikingDBMemoryService(
|
||||
ak=ak,
|
||||
sk=sk,
|
||||
host="api-knowledgebase.mlp.cn-beijing.volces.com",
|
||||
region="cn-beijing"
|
||||
)
|
||||
llm_client = Ark(
|
||||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||||
api_key=ark_api_key,
|
||||
)
|
||||
return memory_service, llm_client
|
||||
|
||||
|
||||
def search_relevant_memories(memory_service, collection_name, user_id, query):
|
||||
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
|
||||
logger.info(f"正在搜索与 '{query}' 相关的记忆...")
|
||||
retry_attempt = 0
|
||||
while True:
|
||||
try:
|
||||
filter_params = {
|
||||
"user_id": [user_id],
|
||||
"memory_type": ["sys_event_v1", "sys_profile_v1"]
|
||||
}
|
||||
response = memory_service.search_memory(
|
||||
collection_name=collection_name,
|
||||
query=query,
|
||||
filter=filter_params,
|
||||
limit=3
|
||||
)
|
||||
|
||||
memories = []
|
||||
if response.get('data', {}).get('count', 0) > 0:
|
||||
for result in response['data']['result_list']:
|
||||
if 'memory_info' in result and result['memory_info']:
|
||||
memories.append({
|
||||
'memory_info': result['memory_info'],
|
||||
'score': result['score']
|
||||
})
|
||||
|
||||
if memories:
|
||||
if retry_attempt > 0:
|
||||
logger.info("重试后搜索成功。")
|
||||
logger.info(f"找到 {len(memories)} 条相关记忆:")
|
||||
for i, memory in enumerate(memories, 1):
|
||||
logger.info(
|
||||
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
|
||||
else:
|
||||
logger.info("未找到相关记忆。")
|
||||
return memories
|
||||
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
if "1000023" in error_message:
|
||||
retry_attempt += 1
|
||||
logger.info(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
|
||||
time.sleep(60)
|
||||
else:
|
||||
logger.info(f"搜索记忆时出错 (不可重试): {e}")
|
||||
return []
|
||||
|
||||
|
||||
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
||||
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
||||
logger.info("\n" + "=" * 60)
|
||||
logger.info(f"用户: {user_message}")
|
||||
|
||||
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
|
||||
|
||||
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
||||
if relevant_memories:
|
||||
memory_context = "\n".join(
|
||||
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
||||
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
||||
|
||||
logger.info("AI正在思考...")
|
||||
|
||||
try:
|
||||
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
||||
{"role": "user", "content": user_message}]
|
||||
completion = llm_client.chat.completions.create(
|
||||
model="doubao-seed-1-6-flash-250715",
|
||||
messages=messages
|
||||
)
|
||||
assistant_reply = completion.choices[0].message.content
|
||||
except Exception as e:
|
||||
logger.info(f"LLM调用失败: {e}")
|
||||
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
||||
|
||||
logger.info(f"伙伴: {assistant_reply}")
|
||||
|
||||
conversation_history.extend([
|
||||
{"role": "user", "content": user_message},
|
||||
{"role": "assistant", "content": assistant_reply}
|
||||
])
|
||||
return assistant_reply
|
||||
|
||||
|
||||
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
||||
"""将对话历史归档到记忆数据库。"""
|
||||
if not conversation_history:
|
||||
logger.info("没有对话可以归档。")
|
||||
return False
|
||||
|
||||
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
|
||||
session_id = f"{topic_name}_{int(time.time())}"
|
||||
metadata = {
|
||||
"default_user_id": user_id,
|
||||
"default_assistant_id": assistant_id,
|
||||
"time": int(time.time() * 1000)
|
||||
}
|
||||
|
||||
try:
|
||||
memory_service.add_session(
|
||||
collection_name=collection_name,
|
||||
session_id=session_id,
|
||||
messages=conversation_history,
|
||||
metadata=metadata
|
||||
)
|
||||
logger.info(f"对话已成功归档,会话ID: {session_id}")
|
||||
logger.info("正在等待记忆索引更新...")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.info(f"归档对话失败: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def main():
|
||||
logger.info("开始测试大模型记忆功能...")
|
||||
|
Reference in New Issue
Block a user