'commit'
This commit is contained in:
@@ -415,4 +415,140 @@ class VikingDBMemoryService(Service):
|
|||||||
return None
|
return None
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.info(f"记忆体创建失败: {e}")
|
logger.info(f"记忆体创建失败: {e}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def initialize_services():
|
||||||
|
"""初始化服务和LLM客户端"""
|
||||||
|
ak = VOLC_ACCESSKEY
|
||||||
|
sk = VOLC_SECRETKEY
|
||||||
|
ark_api_key = VOLC_API_KEY
|
||||||
|
|
||||||
|
if not all([ak, sk, ark_api_key]):
|
||||||
|
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
|
||||||
|
|
||||||
|
memory_service = VikingDBMemoryService(
|
||||||
|
ak=ak,
|
||||||
|
sk=sk,
|
||||||
|
host="api-knowledgebase.mlp.cn-beijing.volces.com",
|
||||||
|
region="cn-beijing"
|
||||||
|
)
|
||||||
|
llm_client = Ark(
|
||||||
|
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
||||||
|
api_key=ark_api_key,
|
||||||
|
)
|
||||||
|
return memory_service, llm_client
|
||||||
|
|
||||||
|
|
||||||
|
def search_relevant_memories(memory_service, collection_name, user_id, query):
|
||||||
|
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
|
||||||
|
logger.info(f"正在搜索与 '{query}' 相关的记忆...")
|
||||||
|
retry_attempt = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
filter_params = {
|
||||||
|
"user_id": [user_id],
|
||||||
|
"memory_type": ["sys_event_v1", "sys_profile_v1"]
|
||||||
|
}
|
||||||
|
response = memory_service.search_memory(
|
||||||
|
collection_name=collection_name,
|
||||||
|
query=query,
|
||||||
|
filter=filter_params,
|
||||||
|
limit=3
|
||||||
|
)
|
||||||
|
|
||||||
|
memories = []
|
||||||
|
if response.get('data', {}).get('count', 0) > 0:
|
||||||
|
for result in response['data']['result_list']:
|
||||||
|
if 'memory_info' in result and result['memory_info']:
|
||||||
|
memories.append({
|
||||||
|
'memory_info': result['memory_info'],
|
||||||
|
'score': result['score']
|
||||||
|
})
|
||||||
|
|
||||||
|
if memories:
|
||||||
|
if retry_attempt > 0:
|
||||||
|
logger.info("重试后搜索成功。")
|
||||||
|
logger.info(f"找到 {len(memories)} 条相关记忆:")
|
||||||
|
for i, memory in enumerate(memories, 1):
|
||||||
|
logger.info(
|
||||||
|
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
|
||||||
|
else:
|
||||||
|
logger.info("未找到相关记忆。")
|
||||||
|
return memories
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
error_message = str(e)
|
||||||
|
if "1000023" in error_message:
|
||||||
|
retry_attempt += 1
|
||||||
|
logger.info(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
|
||||||
|
time.sleep(60)
|
||||||
|
else:
|
||||||
|
logger.info(f"搜索记忆时出错 (不可重试): {e}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
|
||||||
|
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
||||||
|
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
||||||
|
logger.info("\n" + "=" * 60)
|
||||||
|
logger.info(f"用户: {user_message}")
|
||||||
|
|
||||||
|
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
|
||||||
|
|
||||||
|
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
||||||
|
if relevant_memories:
|
||||||
|
memory_context = "\n".join(
|
||||||
|
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
||||||
|
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
||||||
|
|
||||||
|
logger.info("AI正在思考...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
||||||
|
{"role": "user", "content": user_message}]
|
||||||
|
completion = llm_client.chat.completions.create(
|
||||||
|
model="doubao-seed-1-6-flash-250715",
|
||||||
|
messages=messages
|
||||||
|
)
|
||||||
|
assistant_reply = completion.choices[0].message.content
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(f"LLM调用失败: {e}")
|
||||||
|
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
||||||
|
|
||||||
|
logger.info(f"伙伴: {assistant_reply}")
|
||||||
|
|
||||||
|
conversation_history.extend([
|
||||||
|
{"role": "user", "content": user_message},
|
||||||
|
{"role": "assistant", "content": assistant_reply}
|
||||||
|
])
|
||||||
|
return assistant_reply
|
||||||
|
|
||||||
|
|
||||||
|
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
||||||
|
"""将对话历史归档到记忆数据库。"""
|
||||||
|
if not conversation_history:
|
||||||
|
logger.info("没有对话可以归档。")
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
|
||||||
|
session_id = f"{topic_name}_{int(time.time())}"
|
||||||
|
metadata = {
|
||||||
|
"default_user_id": user_id,
|
||||||
|
"default_assistant_id": assistant_id,
|
||||||
|
"time": int(time.time() * 1000)
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
memory_service.add_session(
|
||||||
|
collection_name=collection_name,
|
||||||
|
session_id=session_id,
|
||||||
|
messages=conversation_history,
|
||||||
|
metadata=metadata
|
||||||
|
)
|
||||||
|
logger.info(f"对话已成功归档,会话ID: {session_id}")
|
||||||
|
logger.info("正在等待记忆索引更新...")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(f"归档对话失败: {e}")
|
||||||
|
return False
|
@@ -1,11 +1,9 @@
|
|||||||
import logging
|
import logging
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
import json
|
|
||||||
|
|
||||||
from Config.Config import VOLC_ACCESSKEY, VOLC_SECRETKEY, VOLC_API_KEY
|
from Volcengine.Kit.VikingDBMemoryService import MEMORY_COLLECTION_NAME, initialize_services, \
|
||||||
from Volcengine.Kit.VikingDBMemoryService import VikingDBMemoryService, MEMORY_COLLECTION_NAME
|
handle_conversation_turn, archive_conversation
|
||||||
from volcenginesdkarkruntime import Ark
|
|
||||||
|
|
||||||
# 控制日志输出
|
# 控制日志输出
|
||||||
logger = logging.getLogger('ChatWithMemory')
|
logger = logging.getLogger('ChatWithMemory')
|
||||||
@@ -18,140 +16,6 @@ if not logger.handlers:
|
|||||||
logger.addHandler(handler)
|
logger.addHandler(handler)
|
||||||
|
|
||||||
|
|
||||||
def initialize_services():
|
|
||||||
"""初始化服务和LLM客户端"""
|
|
||||||
ak = VOLC_ACCESSKEY
|
|
||||||
sk = VOLC_SECRETKEY
|
|
||||||
ark_api_key = VOLC_API_KEY
|
|
||||||
|
|
||||||
if not all([ak, sk, ark_api_key]):
|
|
||||||
raise ValueError("必须在环境变量中设置 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 ARK_API_KEY。")
|
|
||||||
|
|
||||||
memory_service = VikingDBMemoryService(
|
|
||||||
ak=ak,
|
|
||||||
sk=sk,
|
|
||||||
host="api-knowledgebase.mlp.cn-beijing.volces.com",
|
|
||||||
region="cn-beijing"
|
|
||||||
)
|
|
||||||
llm_client = Ark(
|
|
||||||
base_url="https://ark.cn-beijing.volces.com/api/v3",
|
|
||||||
api_key=ark_api_key,
|
|
||||||
)
|
|
||||||
return memory_service, llm_client
|
|
||||||
|
|
||||||
|
|
||||||
def search_relevant_memories(memory_service, collection_name, user_id, query):
|
|
||||||
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
|
|
||||||
logger.info(f"正在搜索与 '{query}' 相关的记忆...")
|
|
||||||
retry_attempt = 0
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
filter_params = {
|
|
||||||
"user_id": [user_id],
|
|
||||||
"memory_type": ["sys_event_v1", "sys_profile_v1"]
|
|
||||||
}
|
|
||||||
response = memory_service.search_memory(
|
|
||||||
collection_name=collection_name,
|
|
||||||
query=query,
|
|
||||||
filter=filter_params,
|
|
||||||
limit=3
|
|
||||||
)
|
|
||||||
|
|
||||||
memories = []
|
|
||||||
if response.get('data', {}).get('count', 0) > 0:
|
|
||||||
for result in response['data']['result_list']:
|
|
||||||
if 'memory_info' in result and result['memory_info']:
|
|
||||||
memories.append({
|
|
||||||
'memory_info': result['memory_info'],
|
|
||||||
'score': result['score']
|
|
||||||
})
|
|
||||||
|
|
||||||
if memories:
|
|
||||||
if retry_attempt > 0:
|
|
||||||
logger.info("重试后搜索成功。")
|
|
||||||
logger.info(f"找到 {len(memories)} 条相关记忆:")
|
|
||||||
for i, memory in enumerate(memories, 1):
|
|
||||||
logger.info(
|
|
||||||
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
|
|
||||||
else:
|
|
||||||
logger.info("未找到相关记忆。")
|
|
||||||
return memories
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
error_message = str(e)
|
|
||||||
if "1000023" in error_message:
|
|
||||||
retry_attempt += 1
|
|
||||||
logger.info(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
|
|
||||||
time.sleep(60)
|
|
||||||
else:
|
|
||||||
logger.info(f"搜索记忆时出错 (不可重试): {e}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
|
|
||||||
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
|
||||||
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
|
||||||
logger.info("\n" + "=" * 60)
|
|
||||||
logger.info(f"用户: {user_message}")
|
|
||||||
|
|
||||||
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
|
|
||||||
|
|
||||||
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
|
||||||
if relevant_memories:
|
|
||||||
memory_context = "\n".join(
|
|
||||||
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
|
||||||
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
|
||||||
|
|
||||||
logger.info("AI正在思考...")
|
|
||||||
|
|
||||||
try:
|
|
||||||
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
|
||||||
{"role": "user", "content": user_message}]
|
|
||||||
completion = llm_client.chat.completions.create(
|
|
||||||
model="doubao-seed-1-6-flash-250715",
|
|
||||||
messages=messages
|
|
||||||
)
|
|
||||||
assistant_reply = completion.choices[0].message.content
|
|
||||||
except Exception as e:
|
|
||||||
logger.info(f"LLM调用失败: {e}")
|
|
||||||
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
|
||||||
|
|
||||||
logger.info(f"伙伴: {assistant_reply}")
|
|
||||||
|
|
||||||
conversation_history.extend([
|
|
||||||
{"role": "user", "content": user_message},
|
|
||||||
{"role": "assistant", "content": assistant_reply}
|
|
||||||
])
|
|
||||||
return assistant_reply
|
|
||||||
|
|
||||||
|
|
||||||
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
|
||||||
"""将对话历史归档到记忆数据库。"""
|
|
||||||
if not conversation_history:
|
|
||||||
logger.info("没有对话可以归档。")
|
|
||||||
return False
|
|
||||||
|
|
||||||
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
|
|
||||||
session_id = f"{topic_name}_{int(time.time())}"
|
|
||||||
metadata = {
|
|
||||||
"default_user_id": user_id,
|
|
||||||
"default_assistant_id": assistant_id,
|
|
||||||
"time": int(time.time() * 1000)
|
|
||||||
}
|
|
||||||
|
|
||||||
try:
|
|
||||||
memory_service.add_session(
|
|
||||||
collection_name=collection_name,
|
|
||||||
session_id=session_id,
|
|
||||||
messages=conversation_history,
|
|
||||||
metadata=metadata
|
|
||||||
)
|
|
||||||
logger.info(f"对话已成功归档,会话ID: {session_id}")
|
|
||||||
logger.info("正在等待记忆索引更新...")
|
|
||||||
return True
|
|
||||||
except Exception as e:
|
|
||||||
logger.info(f"归档对话失败: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
logger.info("开始测试大模型记忆功能...")
|
logger.info("开始测试大模型记忆功能...")
|
||||||
|
Reference in New Issue
Block a user