'commit'
This commit is contained in:
154
dsRagAnything/T1_Train.py
Normal file
154
dsRagAnything/T1_Train.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import asyncio
|
||||
import logging
|
||||
|
||||
from raganything import RAGAnything, RAGAnythingConfig
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from logging.handlers import RotatingFileHandler# 导入RotatingFileHandler用于日志轮转
|
||||
import Config.Config
|
||||
|
||||
# 设置根日志记录器的级别为INFO,这样所有子记录器的日志都会被捕获
|
||||
root_logger = logging.getLogger()
|
||||
root_logger.setLevel(logging.INFO)
|
||||
|
||||
# 确保根日志记录器有处理器
|
||||
if not root_logger.handlers:
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||
root_logger.addHandler(handler)
|
||||
|
||||
|
||||
# 同时保持原有的ragAnything日志记录器配置
|
||||
logger = logging.getLogger('ragAnything')
|
||||
logger.setLevel(logging.INFO)
|
||||
if not logger.handlers:
|
||||
# 控制台输出处理器
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||
logger.addHandler(console_handler)
|
||||
# 循环滚动文件处理器(控制在200K左右)
|
||||
file_handler = RotatingFileHandler(
|
||||
'lightrag.log',
|
||||
maxBytes=200*1024, # 200KB
|
||||
backupCount=5, # 最多保留5个备份文件
|
||||
encoding='utf-8',
|
||||
delay=True # 延迟创建文件,直到有日志输出
|
||||
)
|
||||
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
|
||||
logger.addHandler(file_handler)
|
||||
|
||||
|
||||
async def main():
|
||||
# 设置 API 配置
|
||||
api_key = Config.Config.ALY_LLM_API_KEY
|
||||
base_url = Config.Config.ALY_LLM_BASE_URL
|
||||
|
||||
# 创建 RAGAnything 配置
|
||||
config = RAGAnythingConfig(
|
||||
working_dir="./rag_storage",
|
||||
parser="mineru", # 选择解析器:mineru 或 docling
|
||||
parse_method="auto", # 解析方法:auto, ocr 或 txt
|
||||
enable_image_processing=True,
|
||||
enable_table_processing=True,
|
||||
enable_equation_processing=True,
|
||||
)
|
||||
|
||||
# 定义 LLM 模型函数
|
||||
def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||||
return openai_complete_if_cache(
|
||||
Config.Config.ALY_LLM_MODEL_NAME,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# 定义视觉模型函数用于图像处理
|
||||
def vision_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], image_data=None, messages=None, **kwargs
|
||||
):
|
||||
# 如果提供了messages格式(用于多模态VLM增强查询),直接使用
|
||||
if messages:
|
||||
return openai_complete_if_cache(
|
||||
Config.Config.GLM_MODEL_NAME,
|
||||
"",
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
messages=messages,
|
||||
api_key=Config.Config.GLM_API_KEY,
|
||||
base_url=Config.Config.GLM_BASE_URL,
|
||||
**kwargs,
|
||||
)
|
||||
# 传统单图片格式
|
||||
elif image_data:
|
||||
return openai_complete_if_cache(
|
||||
Config.Config.GLM_MODEL_NAME,
|
||||
"",
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
messages=[
|
||||
{"role": "system", "content": system_prompt}
|
||||
if system_prompt
|
||||
else None,
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{image_data}"
|
||||
},
|
||||
},
|
||||
],
|
||||
}
|
||||
if image_data
|
||||
else {"role": "user", "content": prompt},
|
||||
],
|
||||
api_key=Config.Config.GLM_API_KEY,
|
||||
base_url=Config.Config.GLM_BASE_URL,
|
||||
**kwargs,
|
||||
)
|
||||
# 纯文本格式
|
||||
else:
|
||||
return llm_model_func(prompt, system_prompt, history_messages, **kwargs)
|
||||
|
||||
# 定义嵌入函数
|
||||
embedding_func = EmbeddingFunc(
|
||||
embedding_dim=Config.Config.EMBED_DIM,
|
||||
max_token_size=Config.Config.EMBED_MAX_TOKEN_SIZE,
|
||||
func=lambda texts: openai_embed(
|
||||
texts,
|
||||
model=Config.Config.EMBED_MODEL_NAME,
|
||||
api_key=Config.Config.EMBED_API_KEY,
|
||||
base_url=Config.Config.EMBED_BASE_URL,
|
||||
),
|
||||
)
|
||||
# 初始化 RAGAnything
|
||||
rag = RAGAnything(
|
||||
config=config,
|
||||
llm_model_func=llm_model_func,
|
||||
vision_model_func=vision_model_func,
|
||||
embedding_func=embedding_func
|
||||
)
|
||||
|
||||
# 处理文档
|
||||
await rag.process_document_complete(
|
||||
file_path="./Doc/GeoGebra5经典版指令汇编201903061.pdf",
|
||||
output_dir="./output",
|
||||
parse_method="auto"
|
||||
)
|
||||
|
||||
# 查询处理后的内容
|
||||
# 纯文本查询 - 基本知识库搜索
|
||||
text_result = await rag.aquery(
|
||||
"文档的主要内容是什么?",
|
||||
mode="hybrid"
|
||||
)
|
||||
print("文本查询结果:", text_result)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
Reference in New Issue
Block a user