This commit is contained in:
2025-08-26 13:33:43 +08:00
parent ddddbfbb7c
commit a5c93b9bba
253 changed files with 162 additions and 112618 deletions

133
dsRagAnything/Test.py Normal file
View File

@@ -0,0 +1,133 @@
import asyncio
from raganything import RAGAnything, RAGAnythingConfig
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
async def main():
# 设置 API 配置
api_key = "your-api-key"
base_url = "your-base-url" # 可选
# 创建 RAGAnything 配置
config = RAGAnythingConfig(
working_dir="./rag_storage",
parser="mineru", # 选择解析器mineru 或 docling
parse_method="auto", # 解析方法auto, ocr 或 txt
enable_image_processing=True,
enable_table_processing=True,
enable_equation_processing=True,
)
# 定义 LLM 模型函数
def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
return openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=api_key,
base_url=base_url,
**kwargs,
)
# 定义视觉模型函数用于图像处理
def vision_model_func(
prompt, system_prompt=None, history_messages=[], image_data=None, messages=None, **kwargs
):
# 如果提供了messages格式用于多模态VLM增强查询直接使用
if messages:
return openai_complete_if_cache(
"gpt-4o",
"",
system_prompt=None,
history_messages=[],
messages=messages,
api_key=api_key,
base_url=base_url,
**kwargs,
)
# 传统单图片格式
elif image_data:
return openai_complete_if_cache(
"gpt-4o",
"",
system_prompt=None,
history_messages=[],
messages=[
{"role": "system", "content": system_prompt}
if system_prompt
else None,
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_data}"
},
},
],
}
if image_data
else {"role": "user", "content": prompt},
],
api_key=api_key,
base_url=base_url,
**kwargs,
)
# 纯文本格式
else:
return llm_model_func(prompt, system_prompt, history_messages, **kwargs)
# 定义嵌入函数
embedding_func = EmbeddingFunc(
embedding_dim=3072,
max_token_size=8192,
func=lambda texts: openai_embed(
texts,
model="text-embedding-3-large",
api_key=api_key,
base_url=base_url,
),
)
# 初始化 RAGAnything
rag = RAGAnything(
config=config,
llm_model_func=llm_model_func,
vision_model_func=vision_model_func,
embedding_func=embedding_func,
)
# 处理文档
await rag.process_document_complete(
file_path="path/to/your/document.pdf",
output_dir="./output",
parse_method="auto"
)
# 查询处理后的内容
# 纯文本查询 - 基本知识库搜索
text_result = await rag.aquery(
"文档的主要内容是什么?",
mode="hybrid"
)
print("文本查询结果:", text_result)
# 多模态查询 - 包含具体多模态内容的查询
multimodal_result = await rag.aquery_with_multimodal(
"分析这个性能数据并解释与现有文档内容的关系",
multimodal_content=[{
"type": "table",
"table_data": """系统,准确率,F1分数
RAGAnything,95.2%,0.94
基准方法,87.3%,0.85""",
"table_caption": "性能对比结果"
}],
mode="hybrid"
)
print("多模态查询结果:", multimodal_result)
if __name__ == "__main__":
asyncio.run(main())