|
|
|
@ -1,54 +1,61 @@
|
|
|
|
|
1.
|
|
|
|
|
题目序号:1
|
|
|
|
|
题目内容:已知集合 \(A=\left\{x \mid -5 < x^{3} < 5\right\}, B=\left\{-3,-1,0,2,3\right\}\),则 \(A \cap B=\)
|
|
|
|
|
选项:
|
|
|
|
|
A. \(\{-1,0\}\)
|
|
|
|
|
B. \(\{2,3\}\)
|
|
|
|
|
C. \(\{-3,-1,0\}\)
|
|
|
|
|
D. \(\{-1,0,2\}\)
|
|
|
|
|
答案:A
|
|
|
|
|
解析:\(A \cap B=\{-1,0\}\),选 A。
|
|
|
|
|
|
|
|
|
|
2.
|
|
|
|
|
题目序号:2
|
|
|
|
|
题目内容:若 \(\frac{2}{z-1}=1+i\),则 \(z=\)
|
|
|
|
|
选项:
|
|
|
|
|
A. \(-1-i\)
|
|
|
|
|
B. \(-1+i\)
|
|
|
|
|
C. \(1-i\)
|
|
|
|
|
D. \(1+i\)
|
|
|
|
|
答案:C
|
|
|
|
|
解析:
|
|
|
|
|
|
|
|
|
|
3.
|
|
|
|
|
题目序号:3
|
|
|
|
|
题目内容:已知向量 \(\vec{a}=(0,1)\),\(\vec{b}=(2,x)\),若 \(\vec{b} \perp (\vec{b}-4\vec{a})\),则 \(x=\)
|
|
|
|
|
选项:
|
|
|
|
|
A. \(-2\)
|
|
|
|
|
B. \(-1\)
|
|
|
|
|
C. \(1\)
|
|
|
|
|
D. \(2\)
|
|
|
|
|
答案:D
|
|
|
|
|
解析:\(\vec{b}-4\vec{a}=(2,x-4)\),\(\vec{b} \perp (\vec{b}-4\vec{a})\),\(\therefore \vec{b}(\vec{b}-4\vec{a})=0\),\(\therefore 4+x(x-4)=0\),\(\therefore x=2\),选 D。
|
|
|
|
|
|
|
|
|
|
4.
|
|
|
|
|
题目序号:4
|
|
|
|
|
题目内容:已知 \(\cos(\alpha+\beta)=m\),\(\tan \alpha \tan \beta=2\),则 \(\cos(\alpha-\beta)=\)
|
|
|
|
|
选项:
|
|
|
|
|
A. \(-3m\)
|
|
|
|
|
B. \(-\frac{m}{3}\)
|
|
|
|
|
C. \(\frac{m}{3}\)
|
|
|
|
|
D. \(3m\)
|
|
|
|
|
答案:A
|
|
|
|
|
解析:\(\left\{\begin{array}{l}\cos \alpha \cos \beta-\sin \alpha \sin \beta=m \\\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=2\end{array}\right.\),\(\therefore \left\{\begin{array}{l}\sin \alpha \sin \beta=-2m \\\cos \alpha \cos \beta=-m\end{array}\right.\),\(\cos(\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=-m-2m=-3m\),选 A。
|
|
|
|
|
|
|
|
|
|
5.
|
|
|
|
|
题目序号:5
|
|
|
|
|
题目内容:已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为 \(\sqrt{3}\),则圆锥的体积为
|
|
|
|
|
选项:
|
|
|
|
|
A. \(2\sqrt{3}\pi\)
|
|
|
|
|
B. \(3\sqrt{3}\pi\)
|
|
|
|
|
C. \(6\sqrt{3}\pi\)
|
|
|
|
|
D. \(9\sqrt{3}\pi\)
|
|
|
|
|
答案:B
|
|
|
|
|
解析:设它们底面半径为 \(r\),圆锥母线 \(l\),\(\therefore 2\pi r\sqrt{3}=\pi rl\),\(\therefore l=\sqrt{3}\),则圆锥的体积为 \(\frac{1}{3}\pi r^{2}h\)。
|
|
|
|
|
### 题目1
|
|
|
|
|
**题目序号**: 1
|
|
|
|
|
**题目内容**: 已知集合 $A=\left\{x \mid -5 < x^{3} < 5\right\}, B=\left\{-3,-1,0,2,3\right\}$,则 $A \cap B=$
|
|
|
|
|
**选项**:
|
|
|
|
|
A. $\{-1,0\}$
|
|
|
|
|
B. $\{2,3\}$
|
|
|
|
|
C. $\{-3,-1,0\}$
|
|
|
|
|
D. $\{-1,0,2\}$
|
|
|
|
|
**答案**: A
|
|
|
|
|
**解析**: $A \cap B=\{-1,0\}$,选 A。
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
### 题目2
|
|
|
|
|
**题目序号**: 2
|
|
|
|
|
**题目内容**: 若 $\frac{2}{z-1}=1+i$,则 $z=$
|
|
|
|
|
**选项**:
|
|
|
|
|
A. $-1-i$
|
|
|
|
|
B. $-1+i$
|
|
|
|
|
C. $1-i$
|
|
|
|
|
D. $1+i$
|
|
|
|
|
**答案**: C
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
### 题目3
|
|
|
|
|
**题目序号**: 3
|
|
|
|
|
**题目内容**: 已知向量 $\vec{a}=(0,1)$,$\vec{b}=(2,x)$,若 $\vec{b} \perp (\vec{b}-4\vec{a})$,则 $x=$
|
|
|
|
|
**选项**:
|
|
|
|
|
A. $-2$
|
|
|
|
|
B. $-1$
|
|
|
|
|
C. $1$
|
|
|
|
|
D. $2$
|
|
|
|
|
**答案**: D
|
|
|
|
|
**解析**: $\vec{b}-4\vec{a}=(2,x-4)$,$\vec{b} \perp (\vec{b}-4\vec{a})$,$\therefore \vec{b}(\vec{b}-4\vec{a})=0$,$\therefore 4+x(x-4)=0$,$\therefore x=2$,选 D。
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
### 题目4
|
|
|
|
|
**题目序号**: 4
|
|
|
|
|
**题目内容**: 已知 $\cos(\alpha+\beta)=m$,$\tan \alpha \tan \beta=2$,则 $\cos(\alpha-\beta)=$
|
|
|
|
|
**选项**:
|
|
|
|
|
A. $-3m$
|
|
|
|
|
B. $-\frac{m}{3}$
|
|
|
|
|
C. $\frac{m}{3}$
|
|
|
|
|
D. $3m$
|
|
|
|
|
**答案**: A
|
|
|
|
|
**解析**: $\left\{\begin{array}{l}\cos \alpha \cos \beta-\sin \alpha \sin \beta=m \\\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=2\end{array}\right.$,$\therefore \left\{\begin{array}{l}\sin \alpha \sin \beta=-2m \\\cos \alpha \cos \beta=-m\end{array}\right.$ $\cos(\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=-m-2m=-3m$,选 A。
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
### 题目5
|
|
|
|
|
**题目序号**: 5
|
|
|
|
|
**题目内容**: 已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为 $\sqrt{3}$,则圆锥的体积为
|
|
|
|
|
**选项**:
|
|
|
|
|
A. $2\sqrt{3}\pi$
|
|
|
|
|
B. $3\sqrt{3}\pi$
|
|
|
|
|
C. $6\sqrt{3}\pi$
|
|
|
|
|
D. $9\sqrt{3}\pi$
|
|
|
|
|
**答案**: B
|
|
|
|
|
**解析**: 设它们底面半径为 $r$,圆锥母线 $l$,$\therefore 2\pi r\sqrt{3}=\pi rl$,$\therefore l=\sqrt{3}$,则圆锥的体积为 $\frac{1}{3}\pi r^{2}h$。
|