'commit'
This commit is contained in:
@@ -3,8 +3,10 @@ import time
|
||||
import warnings
|
||||
|
||||
from elasticsearch import Elasticsearch
|
||||
from langchain_openai import OpenAIEmbeddings # 直接导入嵌入模型
|
||||
from pydantic import SecretStr # 用于包装API密钥
|
||||
from langchain_core.documents import Document
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from pydantic import SecretStr
|
||||
|
||||
from Config import Config
|
||||
|
||||
@@ -13,14 +15,39 @@ warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verif
|
||||
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
||||
|
||||
|
||||
def split_text_into_chunks(text: str, chunk_size: int = 200, chunk_overlap: int = 100) -> list:
|
||||
"""
|
||||
将文本切割成块
|
||||
|
||||
参数:
|
||||
text: 要切割的文本
|
||||
chunk_size: 每个块的大小
|
||||
chunk_overlap: 块之间的重叠大小
|
||||
|
||||
返回:
|
||||
list: 文本块列表
|
||||
"""
|
||||
# 创建文档对象
|
||||
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
|
||||
|
||||
# 切割文档
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
|
||||
)
|
||||
all_splits = text_splitter.split_documents(docs)
|
||||
print(f"切割后的文档块数量:{len(all_splits)}")
|
||||
|
||||
return [split.page_content for split in all_splits]
|
||||
|
||||
|
||||
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
|
||||
"""
|
||||
将长文本向量化并插入到Elasticsearch,基于文本内容哈希实现去重
|
||||
|
||||
将长文本切割后向量化并插入到Elasticsearch,基于文本内容哈希实现去重
|
||||
|
||||
参数:
|
||||
long_text: 要插入的长文本
|
||||
tags: 可选的标签列表
|
||||
|
||||
|
||||
返回:
|
||||
bool: 插入是否成功
|
||||
"""
|
||||
@@ -60,44 +87,48 @@ def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
|
||||
es.indices.create(index=index_name, body=mapping)
|
||||
print(f"索引 '{index_name}' 创建成功")
|
||||
|
||||
# 3. 生成文本内容的哈希值作为文档ID(实现去重)
|
||||
doc_id = hashlib.md5(long_text.encode('utf-8')).hexdigest()
|
||||
print(f"文本哈希值: {doc_id}")
|
||||
# 3. 切割文本
|
||||
text_chunks = split_text_into_chunks(long_text)
|
||||
|
||||
# 4. 检查文档是否已存在
|
||||
if es.exists(index=index_name, id=doc_id):
|
||||
print(f"文档已存在,跳过插入: {doc_id}")
|
||||
return True
|
||||
|
||||
# 5. 准备标签
|
||||
# 4. 准备标签
|
||||
if tags is None:
|
||||
tags = ["general_text"]
|
||||
tags_dict = {"tags": tags, "full_content": long_text}
|
||||
|
||||
# 6. 获取当前时间
|
||||
# 5. 获取当前时间
|
||||
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||
|
||||
# 7. 直接创建嵌入模型并生成向量
|
||||
# 6. 创建嵌入模型
|
||||
embeddings = OpenAIEmbeddings(
|
||||
model=Config.EMBED_MODEL_NAME,
|
||||
base_url=Config.EMBED_BASE_URL,
|
||||
api_key=SecretStr(Config.EMBED_API_KEY)
|
||||
)
|
||||
|
||||
# 8. 生成文本嵌入向量
|
||||
embedding = embeddings.embed_documents([long_text])[0]
|
||||
# 7. 为每个文本块生成向量并插入
|
||||
for i, chunk in enumerate(text_chunks):
|
||||
# 生成文本块的哈希值作为文档ID
|
||||
doc_id = hashlib.md5(chunk.encode('utf-8')).hexdigest()
|
||||
|
||||
# 9. 准备文档数据
|
||||
doc = {
|
||||
'tags': tags_dict,
|
||||
'user_input': long_text[:500], # 取前500个字符作为摘要
|
||||
'timestamp': timestamp,
|
||||
'embedding': embedding
|
||||
}
|
||||
# 检查文档是否已存在
|
||||
if es.exists(index=index_name, id=doc_id):
|
||||
print(f"文档块 {i+1} 已存在,跳过插入: {doc_id}")
|
||||
continue
|
||||
|
||||
# 生成文本块的嵌入向量
|
||||
embedding = embeddings.embed_documents([chunk])[0]
|
||||
|
||||
# 准备文档数据
|
||||
doc = {
|
||||
'tags': {"tags": tags, "full_content": long_text},
|
||||
'user_input': chunk,
|
||||
'timestamp': timestamp,
|
||||
'embedding': embedding
|
||||
}
|
||||
|
||||
# 插入数据到Elasticsearch
|
||||
es.index(index=index_name, id=doc_id, document=doc)
|
||||
print(f"文档块 {i+1} 插入成功: {doc_id}")
|
||||
|
||||
# 10. 插入数据到Elasticsearch(使用哈希值作为ID)
|
||||
es.index(index=index_name, id=doc_id, document=doc)
|
||||
print(f"长文本数据插入成功: {doc_id}")
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"插入数据失败: {e}")
|
||||
@@ -121,6 +152,5 @@ def main():
|
||||
insert_long_text_to_es(long_text, tags)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Reference in New Issue
Block a user