main
HuangHai 4 weeks ago
parent 8decf74959
commit 8d5b23f817

@ -1,41 +1,41 @@
import asyncio
import logging
from contextlib import asynccontextmanager
from logging.handlers import RotatingFileHandler
import jieba # 导入 jieba 分词库
import uvicorn
from fastapi import FastAPI, UploadFile, File, Request
from sse_starlette.sse import EventSourceResponse
from elasticsearch import Elasticsearch
from fastapi import FastAPI, Request
from openai import OpenAI
from Dao.KbDao import KbDao
from Util.MySQLUtil import init_mysql_pool
from sse_starlette.sse import EventSourceResponse
from starlette.staticfiles import StaticFiles
from gensim.models import KeyedVectors
from Config import Config
from fastapi.staticfiles import StaticFiles
from Milvus.Config.MulvusConfig import *
from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from Milvus.Utils.MilvusConnectionPool import *
from Milvus.Utils.MilvusConnectionPool import MilvusConnectionPool
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = RotatingFileHandler('Logs/start.log', maxBytes=1024*1024, backupCount=5)
handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5)
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
# 1. 加载预训练的 Word2Vec 模型
model_path = MS_MODEL_PATH # 替换为你的 Word2Vec 模型路径
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=MS_MODEL_LIMIT)
print(f"模型加载成功,词向量维度: {model.vector_size}")
@asynccontextmanager
async def lifespan(app: FastAPI):
# 初始化数据库连接池
app.state.kb_dao = KbDao(await init_mysql_pool())
# 初始化Milvus连接池
app.state.milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
# 初始化ES连接
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# 初始化ES连接时添加verify_certs=False
app.state.es = Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=False # 禁用证书验证
)
# 初始化集合管理器
app.state.collection_manager = MilvusCollectionManager(MS_COLLECTION_NAME)
app.state.collection_manager.load_collection()
# 初始化DeepSeek客户端
app.state.deepseek_client = OpenAI(
@ -43,110 +43,66 @@ async def lifespan(app: FastAPI):
base_url=Config.DEEPSEEK_URL
)
yield
# 关闭数据库连接池
await app.state.kb_dao.mysql_pool.close()
app = FastAPI(lifespan=lifespan)
# 知识库CRUD接口
@app.get("/kb")
async def list_kbs():
"""获取所有知识库列表"""
return await app.state.kb_dao.list_kbs()
@app.post("/kb")
async def create_kb(kb: dict):
"""创建知识库"""
return await app.state.kb_dao.create_kb(kb)
# 关闭Milvus连接池
app.state.milvus_pool.close()
@app.get("/kb/{kb_id}")
async def read_kb(kb_id: int):
"""获取知识库详情"""
return await app.state.kb_dao.get_kb(kb_id)
@app.post("/kb/update/{kb_id}")
async def update_kb(kb_id: int, kb: dict):
"""更新知识库信息"""
return await app.state.kb_dao.update_kb(kb_id, kb)
@app.delete("/kb/{kb_id}")
async def delete_kb(kb_id: int):
"""删除知识库"""
return await app.state.kb_dao.delete_kb(kb_id)
# 知识库文件CRUD接口
@app.post("/kb_file")
async def create_kb_file(file: dict):
"""创建知识库文件记录"""
return await app.state.kb_dao.create_kb_file(file)
@app.get("/kb_files/{file_id}")
async def read_kb_file(file_id: int):
"""获取文件详情"""
return await app.state.kb_dao.get_kb_file(file_id)
@app.post("/kb_files/update/{file_id}")
async def update_kb_file(file_id: int, file: dict):
"""更新文件信息"""
return await app.state.kb_dao.update_kb_file(file_id, file)
@app.delete("/kb_files/{file_id}")
async def delete_kb_file(file_id: int):
"""删除文件记录"""
return await app.state.kb_dao.delete_kb_file(file_id)
# 文件上传接口
@app.post("/upload")
async def upload_file(kb_id: int, file: UploadFile = File(...)):
"""文件上传接口"""
return await app.state.kb_dao.handle_upload(kb_id, file)
def search_related_data(es, query):
"""搜索与查询相关的数据"""
# 向量搜索
vector_results = es.search(
index=Config.ES_CONFIG['default_index'],
body={
"query": {
"match": {
"content": {
"query": query,
"analyzer": "ik_smart"
}
}
},
"size": 5
}
)
# 文本精确搜索
text_results = es.search(
index="raw_texts",
body={
"query": {
"match": {
"text.keyword": query
}
},
"size": 5
}
)
# 合并结果
context = ""
for hit in vector_results['hits']['hits']:
context += f"向量相似度结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n"
for hit in text_results['hits']['hits']:
context += f"文本精确匹配结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n"
return context
app = FastAPI(lifespan=lifespan)
async def generate_stream(client, es, query):
# 将文本转换为嵌入向量
def text_to_embedding(text):
words = jieba.lcut(text) # 使用 jieba 分词
print(f"文本: {text}, 分词结果: {words}")
embeddings = [model[word] for word in words if word in model]
print(f"有效词向量数量: {len(embeddings)}")
if embeddings:
avg_embedding = sum(embeddings) / len(embeddings)
print(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
return avg_embedding
else:
print("未找到有效词,返回零向量")
return [0.0] * model.vector_size
async def generate_stream(client, milvus_pool, collection_manager, query):
"""生成SSE流"""
context = search_related_data(es, query)
# 从连接池获取连接
connection = milvus_pool.get_connection()
prompt = f"""根据以下关于'{query}'的相关信息,整理一份结构化的报告:
try:
# 1. 将查询文本转换为向量
current_embedding = text_to_embedding(query)
# 2. 搜索相关数据
search_params = {
"metric_type": "L2", # 使用 L2 距离度量方式
"params": {"nprobe": MS_NPROBE} # 设置 IVF_FLAT 的 nprobe 参数
}
# 7. 将文本转换为嵌入向量
results = collection_manager.search(current_embedding, search_params, limit=10) # 返回 2 条结果
# 3. 处理搜索结果
print("最相关的历史对话:")
context=""
if results:
for hits in results:
for hit in hits:
try:
# 查询非向量字段
record = collection_manager.query_by_id(hit.id)
print(f"ID: {hit.id}")
print(f"会话 ID: {record['person_id']}")
print(f"用户问题: {record['user_input']}")
context=context+record['user_input']
print(f"大模型回复: {record['model_response']}")
print(f"时间: {record['timestamp']}")
print(f"距离: {hit.distance}")
print("-" * 40) # 分隔线
except Exception as e:
print(f"查询失败: {e}")
else:
print("未找到相关历史对话,请检查查询参数或数据。")
prompt = f"""根据以下关于'{query}'的相关信息,整理一份结构化的报告:
要求
1. 分章节组织内容
2. 包含关键数据和事实
@ -154,8 +110,7 @@ async def generate_stream(client, es, query):
相关信息
{context}"""
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
@ -172,12 +127,22 @@ async def generate_stream(client, es, query):
await asyncio.sleep(0.01)
except Exception as e:
yield {"data": f"生成报告时出错: {str(e)}"}
finally:
# 释放连接
milvus_pool.release_connection(connection)
"""
http://10.10.21.22:8000/api/rag?query=小学数学中有哪些模型
"""
@app.get("/api/rag")
async def rag_stream(query: str, request: Request):
"""RAG+DeepSeek流式接口"""
return EventSourceResponse(
generate_stream(request.app.state.deepseek_client, request.app.state.es, query)
generate_stream(
request.app.state.deepseek_client,
request.app.state.milvus_pool,
request.app.state.collection_manager,
query
)
)
app.mount("/static", StaticFiles(directory="Static"), name="static")

Loading…
Cancel
Save