This commit is contained in:
2025-09-07 13:13:21 +08:00
parent 26377b0baa
commit 8ac14dbdc9
6 changed files with 208 additions and 201 deletions

View File

@@ -4,9 +4,10 @@ pip install --upgrade "volcengine-python-sdk[ark]"
"""
import json
import logging
import os
import threading
import time
import sys
import os
from dotenv import load_dotenv
from volcengine.ApiInfo import ApiInfo
@@ -21,107 +22,16 @@ from Config.Config import VOLC_SECRETKEY, VOLC_ACCESSKEY, VOLC_API_KEY
# 配置日志
logger = logging.getLogger('CollectionMemory')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
# 只添加一次处理器,避免重复日志
if not logger.handlers:
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
# 记忆体集合名称
MEMORY_COLLECTION_NAME="dsideal_collection"
def initialize_services(ak=None, sk=None, ark_api_key=None):
"""初始化记忆数据库服务和LLM客户端"""
load_dotenv()
# 如果参数未提供,尝试从环境变量获取
if not ak:
ak = VOLC_ACCESSKEY
if not sk:
sk = VOLC_SECRETKEY
if not ark_api_key:
ark_api_key = VOLC_API_KEY
if not all([ak, sk, ark_api_key]):
raise ValueError("必须提供 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 VOLC_API_KEY。")
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=ark_api_key,
)
return memory_service, llm_client
def ensure_collection_exists(memory_service, collection_name, description="",
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
builtin_entity_types=["sys_profile_v1"]):
"""检查记忆集合是否存在,如果不存在则创建。"""
try:
memory_service.get_collection(collection_name)
print(f"记忆集合 '{collection_name}' 已存在。")
except Exception as e:
error_message = str(e)
if "collection not exist" in error_message:
print(f"记忆集合 '{collection_name}' 未找到,正在创建...")
try:
memory_service.create_collection(
collection_name=collection_name,
description=description,
builtin_event_types=builtin_event_types,
builtin_entity_types=builtin_entity_types
)
print(f"记忆集合 '{collection_name}' 创建成功。")
print("等待集合准备就绪...")
except Exception as create_e:
print(f"创建集合失败: {create_e}")
raise
else:
print(f"检查集合时出错: {e}")
raise
def search_relevant_memories(memory_service, collection_name, user_id, query, limit=3):
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
print(f"正在搜索与 '{query}' 相关的记忆...")
retry_attempt = 0
while True:
try:
filter_params = {
"user_id": user_id, # 修正为字符串类型
"memory_type": ["sys_event_v1", "sys_profile_v1"]
}
response = memory_service.search_memory(
collection_name=collection_name,
query=query,
filter=filter_params,
limit=limit
)
memories = []
if response.get('data', {}).get('count', 0) > 0:
for result in response['data']['result_list']:
if 'memory_info' in result and result['memory_info']:
memories.append({
'memory_info': result['memory_info'],
'score': result['score']
})
if memories:
if retry_attempt > 0:
print("重试后搜索成功。")
print(f"找到 {len(memories)} 条相关记忆:")
for i, memory in enumerate(memories, 1):
print(
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
else:
print("未找到相关记忆。")
return memories
except Exception as e:
error_message = str(e)
if "1000023" in error_message:
retry_attempt += 1
print(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
time.sleep(60)
else:
print(f"搜索记忆时出错 (不可重试): {e}")
return []
class VikingDBMemoryException(Exception):
def __init__(self, code, request_id, message=None):
@@ -309,7 +219,8 @@ class VikingDBMemoryService(Service):
logger.info("\n" + "=" * 60)
logger.info(f"用户: {user_message}")
relevant_memories = self.search_relevant_memories(user_id, user_message)
# 修复调用正确的search_relevant_memories方法
relevant_memories = self.search_relevant_memories(MEMORY_COLLECTION_NAME, user_id, user_message)
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
if relevant_memories:
@@ -395,10 +306,105 @@ class VikingDBMemoryService(Service):
logger.error(f"集合 '{MEMORY_COLLECTION_NAME}'{timeout}秒内未就绪")
return False
def initialize_services(self, ak=None, sk=None, ark_api_key=None):
"""初始化记忆数据库服务和LLM客户端"""
load_dotenv()
# 如果参数未提供,尝试从环境变量获取
if not ak:
ak = VOLC_ACCESSKEY
if not sk:
sk = VOLC_SECRETKEY
if not ark_api_key:
ark_api_key = VOLC_API_KEY
if not all([ak, sk, ark_api_key]):
raise ValueError("必须提供 VOLC_ACCESSKEY, VOLC_SECRETKEY, 和 VOLC_API_KEY。")
memory_service = VikingDBMemoryService(ak=ak, sk=sk)
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=ark_api_key,
)
return memory_service, llm_client
def ensure_collection_exists(self, collection_name, description="",
builtin_event_types=["sys_event_v1", "sys_profile_collect_v1"],
builtin_entity_types=["sys_profile_v1"]):
"""检查记忆集合是否存在,如果不存在则创建。"""
try:
self.get_collection(collection_name)
logger.info(f"记忆集合 '{collection_name}' 已存在。")
except Exception as e:
error_message = str(e)
if "collection not exist" in error_message:
logger.info(f"记忆集合 '{collection_name}' 未找到,正在创建...")
try:
self.create_collection(
collection_name=collection_name,
description=description,
builtin_event_types=builtin_event_types,
builtin_entity_types=builtin_entity_types
)
logger.info(f"记忆集合 '{collection_name}' 创建成功。")
logger.info("等待集合准备就绪...")
except Exception as create_e:
logger.info(f"创建集合失败: {create_e}")
raise
else:
logger.info(f"检查集合时出错: {e}")
raise
def search_relevant_memories(self, collection_name, user_id, query, limit=3):
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
logger.info(f"正在搜索与 '{query}' 相关的记忆...")
retry_attempt = 0
while True:
try:
filter_params = {
"user_id": user_id, # 修正为字符串类型
"memory_type": ["sys_event_v1", "sys_profile_v1"]
}
response = self.search_memory(
collection_name=collection_name,
query=query,
filter=filter_params,
limit=limit
)
memories = []
if response.get('data', {}).get('count', 0) > 0:
for result in response['data']['result_list']:
if 'memory_info' in result and result['memory_info']:
memories.append({
'memory_info': result['memory_info'],
'score': result['score']
})
if memories:
if retry_attempt > 0:
logger.info("重试后搜索成功。")
logger.info(f"找到 {len(memories)} 条相关记忆:")
for i, memory in enumerate(memories, 1):
logger.info(
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
else:
logger.info("未找到相关记忆。")
return memories
except Exception as e:
error_message = str(e)
if "1000023" in error_message:
retry_attempt += 1
logger.info(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
time.sleep(60)
else:
logger.info(f"搜索记忆时出错 (不可重试): {e}")
return []
def setup_memory_collection(self):
"""独立封装记忆体创建逻辑返回memory_service供测试使用"""
try:
ensure_collection_exists(self, MEMORY_COLLECTION_NAME)
self.ensure_collection_exists(MEMORY_COLLECTION_NAME)
logger.info(f"记忆体 '{MEMORY_COLLECTION_NAME}' 创建/验证成功")
# 添加集合就绪等待
@@ -411,58 +417,4 @@ class VikingDBMemoryService(Service):
return None
except Exception as e:
logger.info(f"记忆体创建失败: {e}")
return None
def run_end_to_end_test(self):
"""端到端记忆测试的主函数"""
logger.info("开始端到端记忆测试...")
try:
# 调用封装的记忆体创建函数
memory_service = self.setup_memory_collection()
if not memory_service:
return
llm_client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=VOLC_API_KEY
)
user_id = "xiaoming" # 用户ID:小明
assistant_id = "assistant1" # 助手ID:助手1
except Exception as e:
logger.info(f"初始化失败: {e}")
return
logger.info("\n--- 阶段 1: 初始对话 ---")
initial_conversation_history = []
self.handle_conversation_turn(
llm_client, user_id,
"你好我是小明今年18岁但压力好大。",
initial_conversation_history
)
self.handle_conversation_turn(
llm_client, user_id,
"马上就要高考了,家里人的期待好高。",
initial_conversation_history
)
logger.info("\n--- 阶段 2: 归档记忆 ---")
self.archive_conversation(
user_id, assistant_id,
initial_conversation_history, "study_stress_discussion"
)
logger.info("\n--- 阶段 3: 验证记忆 ---")
verification_conversation_history = []
self.handle_conversation_turn(
llm_client, user_id,
"我最近很焦虑,不知道该怎么办。",
verification_conversation_history
)
logger.info("\n端到端记忆测试完成!")
if __name__ == "__main__":
# 初始化服务
memory_service, _ = initialize_services()
# 运行端到端测试
memory_service.run_end_to_end_test()
return None