diff --git a/dsRag/Config/Config.py b/dsRag/Config/Config.py index 4105bf20..278dfcca 100644 --- a/dsRag/Config/Config.py +++ b/dsRag/Config/Config.py @@ -1,20 +1,3 @@ -# Elasticsearch配置 -ES_CONFIG = { - "hosts": "https://10.10.14.206:9200", - "basic_auth": ("elastic", "jv9h8uwRrRxmDi1dq6u8"), - "verify_certs": False, - "ssl_show_warn": False, - "default_index": "knowledge_base" -} - -# 词向量模型路径 -WORD2VEC_MODEL_PATH = r"D:\Tencent_AILab_ChineseEmbedding\Tencent_AILab_ChineseEmbedding.txt" - -# DeepSeek -DEEPSEEK_API_KEY = 'sk-44ae895eeb614aa1a9c6460579e322f1' -DEEPSEEK_URL = 'https://api.deepseek.com' - - # MYSQL配置信息 MYSQL_HOST = "10.10.14.210" MYSQL_PORT = 22066 @@ -26,4 +9,21 @@ MYSQL_DB_NAME = "base_db" # https://bailian.console.aliyun.com/?spm=a2c4g.11186623.0.0.77b17980FcMVYv&apiKey=1#/api-key MODEL_API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc" MODEL_NAME = "qwen-plus" -#MODEL_NAME = "deepseek-v3" \ No newline at end of file +#MODEL_NAME = "deepseek-v3" + +# Milvus 服务器的主机地址 +MS_HOST = "10.10.14.207" +# Milvus 服务器的端口号 +MS_PORT = "19530" +# Milvus 集合的名称 +MS_COLLECTION_NAME = "ds_collection" +# Milvus 连接池的最大连接数 +MS_MAX_CONNECTIONS = 50 +# 腾讯 AI Lab 中文词向量模型的路径 +MS_MODEL_PATH = "D:/Tencent_AILab_ChineseEmbedding/Tencent_AILab_ChineseEmbedding.txt" +# 加载词向量模型时限制的词汇数量 +MS_MODEL_LIMIT = 10000 +# 词向量的维度(腾讯 AI Lab 中文词向量模型的维度为 200) +MS_DIMENSION = 200 +# Milvus 搜索时的 nprobe 参数,用于控制搜索的精度和性能 +MS_NPROBE = 100 diff --git a/dsRag/Config/__pycache__/Config.cpython-310.pyc b/dsRag/Config/__pycache__/Config.cpython-310.pyc index 765cd6e0..60f140ba 100644 Binary files a/dsRag/Config/__pycache__/Config.cpython-310.pyc and b/dsRag/Config/__pycache__/Config.cpython-310.pyc differ diff --git a/dsRag/Milvus/Config/MulvusConfig.py b/dsRag/Milvus/Config/MulvusConfig.py deleted file mode 100644 index 6276bacf..00000000 --- a/dsRag/Milvus/Config/MulvusConfig.py +++ /dev/null @@ -1,84 +0,0 @@ -# Milvus 服务器的主机地址 -#MS_HOST = "10.10.14.205" -MS_HOST = "10.10.14.207" -# Milvus 服务器的端口号 -MS_PORT = "19530" - -# Milvus 集合的名称 -MS_COLLECTION_NAME = "ds_collection" - -# Milvus 连接池的最大连接数 -MS_MAX_CONNECTIONS = 50 - -# 腾讯 AI Lab 中文词向量模型的路径 -MS_MODEL_PATH = "D:/Tencent_AILab_ChineseEmbedding/Tencent_AILab_ChineseEmbedding.txt" - -# 加载词向量模型时限制的词汇数量 -MS_MODEL_LIMIT = 10000 - -# 词向量的维度(腾讯 AI Lab 中文词向量模型的维度为 200) -MS_DIMENSION = 200 - -# Milvus 搜索时的 nprobe 参数,用于控制搜索的精度和性能 -MS_NPROBE = 100 - -# Redis 配置 -REDIS_HOST = '10.10.14.14' # Redis 服务器地址 -REDIS_PORT = 18890 # Redis 端口 -REDIS_DB = 0 # Redis 数据库编号 -REDIS_PASSWORD = None # Redis 密码(如果没有密码,设置为 None) - -# MYSQL配置信息 -MYSQL_HOST = "10.10.14.210" -MYSQL_PORT = 22066 -MYSQL_USER = "root" -MYSQL_PASSWORD = "DsideaL147258369" -MYSQL_DB_NAME = "ai_db" - -# JWT密匙 -JWT_SECRET_KEY = "DsideaL4r5t6y7u" -# 配置 JWT -ALGORITHM = "HS256" -ACCESS_TOKEN_EXPIRE_MINUTES = 24 * 60 * 30 # 一个月有效期 -# ----------------下面的配置需要根据情况进行修改------------------------- - -''' -######################### 驿来特 ######################### -ACCESS_KEY_ID = 'LTAI5t5jxkgJtRK8wew8fnbq' -ACCESS_KEY_SECRET = 'b8HXNGz7IkI3Dhv7BZx9BNBEZy1uku' -BUCKET_NAME = 'ylt' -ENDPOINT = 'https://oss-cn-hangzhou.aliyuncs.com' -OSS_PREFIX = "https://ylt.oss-cn-hangzhou.aliyuncs.com/" - -# 阿里云中用来调用 deepseek v3 的密钥 -MODEL_API_KEY = "sk-f6da0c787eff4b0389e4ad03a35a911f" -#MODEL_NAME = "qwen-plus" -MODEL_NAME = "deepseek-v3" - -# TTS的APPKEY -APPKEY = "90RJcqjlN4ZqymGd" # 获取Appkey请前往控制台:https://nls-portal.console.aliyun.com/applist -''' - -######################### 绘智 ######################### -ACCESS_KEY_ID = 'LTAI5tE4tgpGcKWhbZg6C4bh' -ACCESS_KEY_SECRET = 'oizcTOZ8izbGUouboC00RcmGE8vBQ1' -BUCKET_NAME = 'hzkc' -ENDPOINT = 'https://oss-cn-beijing.aliyuncs.com' -OSS_PREFIX = "https://hzkc.oss-cn-beijing.aliyuncs.com/" -REGION_ID = 'cn-beijing' - -# 阿里云中用来调用 deepseek v3 的密钥 -# https://bailian.console.aliyun.com/?spm=a2c4g.11186623.0.0.77b17980FcMVYv&apiKey=1#/api-key -MODEL_API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc" -##MODEL_NAME = "qwen-plus" -MODEL_NAME = "deepseek-v3" - -# TTS的APPKEY -# 获取Appkey请前往控制台:https://nls-portal.console.aliyun.com/applist -APPKEY = "CBeQJK7KbjpQXrFZ" -# ---------------------------------------------------------------------- - -# 魔搭社区黄海的令牌 -# https://modelscope.cn/my/myaccesstoken -# 18686619970 -MODELSCOPE_ACCESS_TOKEN = '9b486dc5-28a3-4793-bb2c-0123c72a214f' diff --git a/dsRag/Milvus/Config/__init__.py b/dsRag/Milvus/Config/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/dsRag/Milvus/Config/__pycache__/MulvusConfig.cpython-310.pyc b/dsRag/Milvus/Config/__pycache__/MulvusConfig.cpython-310.pyc deleted file mode 100644 index 2fe8f020..00000000 Binary files a/dsRag/Milvus/Config/__pycache__/MulvusConfig.cpython-310.pyc and /dev/null differ diff --git a/dsRag/Milvus/Config/__pycache__/__init__.cpython-310.pyc b/dsRag/Milvus/Config/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 57bab8ef..00000000 Binary files a/dsRag/Milvus/Config/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/dsRag/Milvus/X1_create_collection.py b/dsRag/Milvus/X1_create_collection.py index 6d7372b9..c598c53b 100644 --- a/dsRag/Milvus/X1_create_collection.py +++ b/dsRag/Milvus/X1_create_collection.py @@ -4,7 +4,7 @@ pip install pymilvus gensim from pymilvus import FieldSchema, DataType, utility -from Milvus.Config.MulvusConfig import MS_HOST, MS_PORT, MS_MAX_CONNECTIONS, MS_COLLECTION_NAME, MS_DIMENSION +from Config.Config import MS_HOST, MS_PORT, MS_MAX_CONNECTIONS, MS_COLLECTION_NAME, MS_DIMENSION from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from Milvus.Utils.MilvusConnectionPool import * diff --git a/dsRag/Milvus/X2_create_index.py b/dsRag/Milvus/X2_create_index.py index 745917de..21172216 100644 --- a/dsRag/Milvus/X2_create_index.py +++ b/dsRag/Milvus/X2_create_index.py @@ -1,6 +1,6 @@ from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from Milvus.Utils.MilvusConnectionPool import * -from Milvus.Config.MulvusConfig import * +from Config.Config import * # 1. 使用连接池管理 Milvus 连接 milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS) diff --git a/dsRag/Milvus/X4_InsertMathData.py b/dsRag/Milvus/X4_InsertMathData.py index 63033729..230527c5 100644 --- a/dsRag/Milvus/X4_InsertMathData.py +++ b/dsRag/Milvus/X4_InsertMathData.py @@ -1,4 +1,4 @@ -from Milvus.Config.MulvusConfig import * +from Config.Config import * from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from Milvus.Utils.MilvusConnectionPool import * from gensim.models import KeyedVectors diff --git a/dsRag/Milvus/X5_select_all_data.py b/dsRag/Milvus/X5_select_all_data.py index afaa5c39..a4b602a6 100644 --- a/dsRag/Milvus/X5_select_all_data.py +++ b/dsRag/Milvus/X5_select_all_data.py @@ -1,6 +1,6 @@ from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from Milvus.Utils.MilvusConnectionPool import * -from Milvus.Config.MulvusConfig import * +from Config.Config import * # 1. 使用连接池管理 Milvus 连接 milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS) diff --git a/dsRag/Milvus/X6_search_near_data.py b/dsRag/Milvus/X6_search_near_data.py index 37ec1c4a..0f10f2bb 100644 --- a/dsRag/Milvus/X6_search_near_data.py +++ b/dsRag/Milvus/X6_search_near_data.py @@ -2,7 +2,7 @@ import time import jieba # 导入 jieba 分词库 from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from Milvus.Utils.MilvusConnectionPool import * -from Milvus.Config.MulvusConfig import * +from Config.Config import * from gensim.models import KeyedVectors # 1. 加载预训练的 Word2Vec 模型 diff --git a/dsRag/Util/__pycache__/SplitDocxUtil.cpython-310.pyc b/dsRag/Util/__pycache__/SplitDocxUtil.cpython-310.pyc index 90e11e18..9836806c 100644 Binary files a/dsRag/Util/__pycache__/SplitDocxUtil.cpython-310.pyc and b/dsRag/Util/__pycache__/SplitDocxUtil.cpython-310.pyc differ