parent
c00dc7c0d5
commit
852b0540c2
@ -0,0 +1,95 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
from Config.Config import EMBED_DIM, EMBED_MAX_TOKEN_SIZE, NEO4J_URI, NEO4J_USERNAME, NEO4J_PASSWORD
|
||||
from Util.LightRagUtil import llm_model_func, embedding_func
|
||||
|
||||
# WorkingDir
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
WORKING_DIR = os.path.join(ROOT_DIR, "myKG")
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
print(f"WorkingDir: {WORKING_DIR}")
|
||||
|
||||
# redis
|
||||
os.environ["REDIS_URI"] = "redis://localhost:6379"
|
||||
|
||||
# neo4j
|
||||
BATCH_SIZE_NODES = 500
|
||||
BATCH_SIZE_EDGES = 100
|
||||
os.environ["NEO4J_URI"] = NEO4J_URI
|
||||
os.environ["NEO4J_USERNAME"] = NEO4J_USERNAME
|
||||
os.environ["NEO4J_PASSWORD"] = NEO4J_PASSWORD
|
||||
|
||||
# milvus
|
||||
os.environ["MILVUS_URI"] = "http://localhost:19530"
|
||||
os.environ["MILVUS_USER"] = "root"
|
||||
os.environ["MILVUS_PASSWORD"] = "Milvus"
|
||||
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
llm_model_max_token_size=32768,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=EMBED_DIM,
|
||||
max_token_size=EMBED_MAX_TOKEN_SIZE,
|
||||
func=embedding_func
|
||||
),
|
||||
chunk_token_size=512,
|
||||
chunk_overlap_token_size=256,
|
||||
kv_storage="RedisKVStorage",
|
||||
graph_storage="Neo4JStorage",
|
||||
vector_storage="MilvusVectorDBStorage",
|
||||
doc_status_storage="RedisKVStorage",
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in new issue