diff --git a/dsRag/StartEs.py b/dsRag/StartEs.py index f59350d2..e69dcbf2 100644 --- a/dsRag/StartEs.py +++ b/dsRag/StartEs.py @@ -41,13 +41,14 @@ async def lifespan(app: FastAPI): # 初始化阿里云大模型工具 app.state.aliyun_util = ALiYunUtil() yield + + app = FastAPI(lifespan=lifespan) # 挂载静态文件目录 app.mount("/static", StaticFiles(directory="Static"), name="static") - class QueryRequest(BaseModel): query: str = Field(..., description="用户查询的问题") documents: List[str] = Field(..., description="用户上传的文档") @@ -114,10 +115,10 @@ async def rag_stream(request: Request): data = await request.json() query = data.get('query', '') query_tags = data.get('tags', []) - + # 获取EsSearchUtil实例 es_search_util = EsSearchUtil(ES_CONFIG) - + # 执行混合搜索 es_conn = es_search_util.es_pool.get_connection() try: @@ -125,13 +126,13 @@ async def rag_stream(request: Request): logger.info(f"\n=== 开始执行查询 ===") logger.info(f"原始查询文本: {query}") logger.info(f"查询标签: {query_tags}") - + logger.info("\n=== 向量搜索阶段 ===") logger.info("1. 文本分词和向量化处理中...") query_embedding = es_search_util.text_to_embedding(query) logger.info(f"2. 生成的查询向量维度: {len(query_embedding)}") logger.info(f"3. 前3维向量值: {query_embedding[:3]}") - + logger.info("4. 正在执行Elasticsearch向量搜索...") vector_results = es_conn.search( index=ES_CONFIG['index_name'], @@ -160,7 +161,7 @@ async def rag_stream(request: Request): } ) logger.info(f"5. 向量搜索结果数量: {len(vector_results['hits']['hits'])}") - + # 文本精确搜索 logger.info("\n=== 文本精确搜索阶段 ===") logger.info("1. 正在执行Elasticsearch文本精确搜索...") @@ -187,30 +188,30 @@ async def rag_stream(request: Request): } ) logger.info(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}") - + # 合并结果 logger.info("\n=== 最终搜索结果 ===") logger.info(f"向量搜索结果: {len(vector_results['hits']['hits'])}条") for i, hit in enumerate(vector_results['hits']['hits'], 1): logger.info(f" {i}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}") logger.info(f" 内容: {hit['_source']['user_input']}") - + logger.info("文本精确搜索结果:") for i, hit in enumerate(text_results['hits']['hits']): - logger.info(f" {i+1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}") + logger.info(f" {i + 1}. 文档ID: {hit['_id']}, 匹配分数: {hit['_score']:.2f}") logger.info(f" 内容: {hit['_source']['user_input']}") - + search_results = { "vector_results": [hit['_source'] for hit in vector_results['hits']['hits']], "text_results": [hit['_source'] for hit in text_results['hits']['hits']] } - + # 调用阿里云大模型整合结果 aliyun_util = request.app.state.aliyun_util - + # 构建提示词 context = "\n".join([ - f"结果{i+1}: {res['tags']['full_content']}" + f"结果{i + 1}: {res['tags']['full_content']}" for i, res in enumerate(search_results['vector_results'] + search_results['text_results']) ]) @@ -237,23 +238,25 @@ async def rag_stream(request: Request): # 调用阿里云大模型 if len(context) > 0: # 调用大模型生成回答 + logger.info("正在调用阿里云大模型生成回答...") html_content = aliyun_util.chat(prompt) + logger.info(f"调用阿里云大模型生成回答成功完成!") return {"data": html_content} else: logger.warning(f"未找到查询'{query}'的相关数据,tags: {query_tags}") - return {"data": "没有在知识库中找到相关的信息,无法回答此问题。", "debug": {"query": query, "tags": query_tags}} + return {"data": "没有在知识库中找到相关的信息,无法回答此问题。", + "debug": {"query": query, "tags": query_tags}} except Exception as e: return {"data": f"生成报告时出错: {str(e)}"} - + finally: es_search_util.es_pool.release_connection(es_conn) - + except Exception as e: logger.error(f"RAG search error: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) - if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)