This commit is contained in:
2025-08-19 08:08:02 +08:00
parent b87c234d3f
commit 7e29267f9c
3 changed files with 116 additions and 113 deletions

View File

@@ -1,117 +1,5 @@
# pip install pydantic requests
from langchain_core.documents import Document
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from pydantic import SecretStr
import requests
import json
from Config.Config import (
EMBED_MODEL_NAME, EMBED_BASE_URL, EMBED_API_KEY,
RERANK_MODEL, RERANK_BASE_URL, RERANK_BINDING_API_KEY
)
def text_to_vector_db(text: str, chunk_size: int = 200, chunk_overlap: int = 100) -> tuple:
"""
将文本存入向量数据库
参数:
text: 要入库的文本
chunk_size: 文本分割块大小
chunk_overlap: 文本块重叠大小
返回:
tuple: (向量存储对象, 文档数量, 分割后的文档块数量)
"""
# 创建文档对象
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
doc_count = len(docs)
print(f"文档数量:{doc_count}")
# 切割文档
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
)
all_splits = text_splitter.split_documents(docs)
split_count = len(all_splits)
print(f"切割后的文档块数量:{split_count}")
# 嵌入模型
embeddings = OpenAIEmbeddings(
model=EMBED_MODEL_NAME,
base_url=EMBED_BASE_URL,
api_key=SecretStr(EMBED_API_KEY) # 包装成 SecretStr 类型
)
# 向量存储
vector_store = InMemoryVectorStore(embeddings)
ids = vector_store.add_documents(documents=all_splits)
return vector_store, doc_count, split_count
def query_vector_db(vector_store: InMemoryVectorStore, query: str, k: int = 4) -> list:
"""
从向量数据库查询文本
参数:
vector_store: 向量存储对象
query: 查询字符串
k: 要返回的结果数量
返回:
list: 重排后的结果列表,每个元素是(文档对象, 可信度分数)的元组
"""
# 向量查询 - 获取更多结果用于重排
results = vector_store.similarity_search(query, k=k)
print(f"向量搜索结果数量:{len(results)}")
# 存储重排后的文档和分数
reranked_docs_with_scores = []
# 调用重排模型
if len(results) > 1:
# 准备重排请求数据
rerank_data = {
"model": RERANK_MODEL,
"query": query,
"documents": [doc.page_content for doc in results],
"top_n": len(results)
}
# 调用SiliconFlow API进行重排
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {RERANK_BINDING_API_KEY}"
}
try:
response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
response.raise_for_status() # 检查请求是否成功
rerank_result = response.json()
# 处理重排结果提取relevance_score
if "results" in rerank_result:
for item in rerank_result["results"]:
doc_idx = item.get("index")
score = item.get("relevance_score", 0.0)
if 0 <= doc_idx < len(results):
reranked_docs_with_scores.append((results[doc_idx], score))
else:
print("警告: 无法识别重排API响应格式")
reranked_docs_with_scores = [(doc, 0.0) for doc in results]
print(f"重排后结果数量:{len(reranked_docs_with_scores)}")
except Exception as e:
print(f"重排模型调用失败: {e}")
print("将使用原始搜索结果")
reranked_docs_with_scores = [(doc, 0.0) for doc in results]
else:
# 只有一个结果,无需重排
reranked_docs_with_scores = [(doc, 1.0) for doc in results] # 单个结果可信度设为1.0
return reranked_docs_with_scores
from Util.VectorUtil import text_to_vector_db, query_vector_db
def main():

View File

@@ -0,0 +1,115 @@
# pip install pydantic requests
from langchain_core.documents import Document
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from pydantic import SecretStr
import requests
import json
from Config.Config import (
EMBED_MODEL_NAME, EMBED_BASE_URL, EMBED_API_KEY,
RERANK_MODEL, RERANK_BASE_URL, RERANK_BINDING_API_KEY
)
def text_to_vector_db(text: str, chunk_size: int = 200, chunk_overlap: int = 100) -> tuple:
"""
将文本存入向量数据库
参数:
text: 要入库的文本
chunk_size: 文本分割块大小
chunk_overlap: 文本块重叠大小
返回:
tuple: (向量存储对象, 文档数量, 分割后的文档块数量)
"""
# 创建文档对象
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
doc_count = len(docs)
print(f"文档数量:{doc_count}")
# 切割文档
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
)
all_splits = text_splitter.split_documents(docs)
split_count = len(all_splits)
print(f"切割后的文档块数量:{split_count}")
# 嵌入模型
embeddings = OpenAIEmbeddings(
model=EMBED_MODEL_NAME,
base_url=EMBED_BASE_URL,
api_key=SecretStr(EMBED_API_KEY) # 包装成 SecretStr 类型
)
# 向量存储
vector_store = InMemoryVectorStore(embeddings)
ids = vector_store.add_documents(documents=all_splits)
return vector_store, doc_count, split_count
def query_vector_db(vector_store: InMemoryVectorStore, query: str, k: int = 4) -> list:
"""
从向量数据库查询文本
参数:
vector_store: 向量存储对象
query: 查询字符串
k: 要返回的结果数量
返回:
list: 重排后的结果列表,每个元素是(文档对象, 可信度分数)的元组
"""
# 向量查询 - 获取更多结果用于重排
results = vector_store.similarity_search(query, k=k)
print(f"向量搜索结果数量:{len(results)}")
# 存储重排后的文档和分数
reranked_docs_with_scores = []
# 调用重排模型
if len(results) > 1:
# 准备重排请求数据
rerank_data = {
"model": RERANK_MODEL,
"query": query,
"documents": [doc.page_content for doc in results],
"top_n": len(results)
}
# 调用SiliconFlow API进行重排
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {RERANK_BINDING_API_KEY}"
}
try:
response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
response.raise_for_status() # 检查请求是否成功
rerank_result = response.json()
# 处理重排结果提取relevance_score
if "results" in rerank_result:
for item in rerank_result["results"]:
doc_idx = item.get("index")
score = item.get("relevance_score", 0.0)
if 0 <= doc_idx < len(results):
reranked_docs_with_scores.append((results[doc_idx], score))
else:
print("警告: 无法识别重排API响应格式")
reranked_docs_with_scores = [(doc, 0.0) for doc in results]
print(f"重排后结果数量:{len(reranked_docs_with_scores)}")
except Exception as e:
print(f"重排模型调用失败: {e}")
print("将使用原始搜索结果")
reranked_docs_with_scores = [(doc, 0.0) for doc in results]
else:
# 只有一个结果,无需重排
reranked_docs_with_scores = [(doc, 1.0) for doc in results] # 单个结果可信度设为1.0
return reranked_docs_with_scores