main
HuangHai 3 weeks ago
parent 93f37f5198
commit 7bdb34580a

@ -8,10 +8,11 @@ from Util.RagUtil import create_llm_model_func, create_vision_model_func, create
async def main():
# 要处理的文件路径
#file_path = "./Txt/氢气与氧气反应化学方程式.docx"
file_path = "./Txt/苏轼.docx"
#file_path = "static/Txt/苏轼.docx"
file_path = "static/Txt/化学方程式_CHEMISTRY_1.docx"
# 索引生成目录
WORKING_DIR = "./Topic/Chinese"
WORKING_DIR = "./Topic/Chemistry"
# 指定最终的索引生成目录,启动索引生成
config = RAGAnythingConfig(

@ -1,12 +1,12 @@
{
"doc-a92c992eb95f6e5fe155e1ff3dbce047": {
"doc-5e0566d22f842bb59b250343b38d99b6": {
"status": "processed",
"chunks_count": 1,
"content": "氢气与氧气反应化学方程式",
"content_summary": "氢气与氧气反应化学方程式",
"content_length": 12,
"created_at": "2025-07-07T00:51:02.162675+00:00",
"updated_at": "2025-07-07T00:52:51.169860+00:00",
"file_path": "氢气与氧气反应化学方程式.docx"
"content": "问题 1 氧化铁和硝酸的反应方程式\n\n问题2 氢气与氧气燃烧的方程式$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .$",
"content_summary": "问题 1 氧化铁和硝酸的反应方程式\n\n问题2 氢气与氧气燃烧的方程式$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .$",
"content_length": 77,
"created_at": "2025-07-07T08:06:26.856161+00:00",
"updated_at": "2025-07-07T08:07:10.152457+00:00",
"file_path": "化学方程式_CHEMISTRY_1.docx"
}
}

@ -1,5 +1,5 @@
{
"doc-a92c992eb95f6e5fe155e1ff3dbce047": {
"content": "氢气与氧气反应化学方程式"
"doc-5e0566d22f842bb59b250343b38d99b6": {
"content": "问题 1 氧化铁和硝酸的反应方程式\n\n问题2 氢气与氧气燃烧的方程式$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .$"
}
}

File diff suppressed because one or more lines are too long

@ -1,37 +1,23 @@
{
"chunk-a92c992eb95f6e5fe155e1ff3dbce047": {
"tokens": 13,
"content": "氢气与氧气反应化学方程式",
"chunk-5e0566d22f842bb59b250343b38d99b6": {
"tokens": 58,
"content": "问题 1 氧化铁和硝酸的反应方程式\n\n问题2 氢气与氧气燃烧的方程式$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .$",
"chunk_order_index": 0,
"full_doc_id": "doc-a92c992eb95f6e5fe155e1ff3dbce047",
"file_path": "氢气与氧气反应化学方程式.docx"
"full_doc_id": "doc-5e0566d22f842bb59b250343b38d99b6",
"file_path": "化学方程式_CHEMISTRY_1.docx"
},
"chunk-3e43e1f14ec3bfe2ea1ec990e4a7a3dd": {
"tokens": 587,
"content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: ```json\n{\n \"detailed_description\": \"The equation $$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O$$ represents the balanced chemical reaction for the combustion of hydrogen gas (H₂) with oxygen gas (O₂) to form water (H₂O). Mathematically, it is a stoichiometric equation where the coefficients (2, 1, and 2) indicate the molar ratios of the reactants and products. The equation adheres to the law of conservation of mass, ensuring that the number of atoms for each element is equal on both sides. \n\n- **Variables and Definitions**: \n - \\( H _ { 2 } \\): Diatomic hydrogen molecule (reactant).\n - \\( O _ { 2 } \\): Diatomic oxygen molecule (reactant).\n - \\( H _ { 2 } O \\): Water molecule (product).\n\n- **Mathematical Operations**: \n - The equation uses integer coefficients to balance the reaction, ensuring atomic conservation. \n - The '+' denotes the combination of reactants, and the '=' signifies the transformation into products.\n\n- **Application Domain**: \n - This equation is fundamental in chemistry, particularly in stoichiometry, thermodynamics, and reaction kinetics. It describes a highly exothermic reaction, making it relevant in energy studies (e.g., hydrogen fuel cells).\n\n- **Physical/Theoretical Significance**: \n - The reaction is a classic example of a synthesis (combination) reaction. \n - It releases significant energy (ΔH < 0), illustrating the concept of enthalpy change in thermodynamics.\n\n- **Relationship to Other Concepts**: \n - Connects to Avogadro's law (mole ratios), Hess's law (enthalpy), and reaction rate theory. \n - Often used to introduce balancing equations in chemistry education.\n\n- **Practical Applications**: \n - Hydrogen fuel technology (clean energy). \n - Rocket propulsion (e.g., space shuttle main engines). \n - Industrial water production.\n\n- **Broader Context**: \n - The equation is central to discussions about sustainable energy and chemical bonding. It exemplifies how mathematical representation underpins chemical phenomena.\",\n \"entity_info\": {\n \"entity_name\": \"Hydrogen-Oxygen Combustion Equation\",\n \"entity_type\": \"equation\",\n \"summary\": \"This balanced chemical equation represents the combustion of hydrogen and oxygen to form water, adhering to mass conservation. It is foundational in chemistry, with applications in energy production and education.\"\n }\n}\n```",
"chunk-c7f7c0c8fdc0a32f8469dfe1260ef308": {
"tokens": 358,
"content": "Mathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } \\overline { { \\frac { \\mathrm { \\large ~ \\frac { \\mathrm { \\large ~ j } _ { \\mathrm { J } } \\mathrm { \\scriptsize { I I } } \\mathrm { \\scriptsize { \\dd ~ t . \\mit ~ } } } } } { \\mathrm { \\large ~ \\Gamma \\it ~ e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } O + N O _ { 2 } \\uparrow ~ } } } }\n$$\nFormat: latex\n\nMathematical Analysis: The given chemical equation represents a redox reaction between iron(II) oxide (FeO) and concentrated nitric acid (HNO₃). In this context, the reaction involves both oxidation and reduction processes: Fe²⁺ in FeO is oxidized to Fe³⁺, while nitrogen in nitrate (NO₃⁻) is reduced to nitrogen dioxide (NO₂). The stoichiometric coefficients indicate molar ratios of reactants and products. Specifically, one mole of FeO reacts with four moles of HNO₃ to produce one mole of iron(III) nitrate Fe(NO₃)₃, two moles of water (H₂O), and one mole of nitrogen dioxide gas (NO₂↑). This equation is relevant in inorganic chemistry and environmental science, particularly in understanding acid-base reactions and atmospheric pollutant generation (e.g., NO₂ emissions). It also connects to broader thermodynamic and electrochemical concepts such as standard electrode potentials and Gibbs free energy change in redox systems.",
"chunk_order_index": 0,
"full_doc_id": "chunk-3e43e1f14ec3bfe2ea1ec990e4a7a3dd",
"file_path": "氢气与氧气反应化学方程式.docx"
"full_doc_id": "chunk-c7f7c0c8fdc0a32f8469dfe1260ef308",
"file_path": "化学方程式_CHEMISTRY_1.docx"
},
"chunk-f931182732fe87eaa439fb34fe3e6445": {
"tokens": 276,
"content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: The given equation, $ 2 H_2 + O_2 \\rightarrow 2 H_2O $, represents a balanced stoichiometric chemical reaction describing the synthesis of water from molecular hydrogen ($ H_2 $) and molecular oxygen ($ O_2 $). Mathematically, this equation demonstrates conservation of mass and atomic balance, where the number of atoms for each element is equal on both sides of the reaction arrow. The coefficients (2 for $ H_2 $, 1 for $ O_2 $, and 2 for $ H_2O $) indicate the molar ratios in which the reactants combine to form the products. This involves linear integer relationships, aligning with systems of equations used in stoichiometry. In the context of chemical thermodynamics and reaction kinetics, this equation quantifies the proportions required for complete combustion or electrochemical reactions involving hydrogen and oxygen. It relates to broader mathematical concepts such as proportionality, conservation laws, and matrix-based methods for solving reaction networks. Practically, it underpins calculations in fuel cell technology, rocket propulsion, and environmental chemistry, particularly in modeling clean energy processes like hydrogen combustion.",
"chunk-afe960e65ad4b2552af9da24415990f4": {
"tokens": 210,
"content": "\nImage Content Analysis:\nImage Path: images/677eaffbddaf54e682e00e5baed5f81a969a7bb55f089b9cf61f3de061fc7eaa.jpg\nCaptions: None\nFootnotes: None\n\nVisual Analysis: The image displays a handwritten chemical equation written in black ink on a lined paper background. The primary equation shown is '2H₂ + O₂ → 2H₂O,' representing the combustion of hydrogen gas to form water. The equation is written in standard chemical notation with clear subscripts and symbols. Surrounding the main equation, there are smaller annotations and arrows that suggest intermediate steps or notes related to balancing the chemical reaction. The writing style is neat and consistent, indicating that it was likely drawn to illustrate a chemical process within an educational or instructional context. The background is plain white, suggesting this may be a cropped section of a larger scanned document or educational material. No people, charts, or additional diagrams are visible in the image.",
"chunk_order_index": 0,
"full_doc_id": "chunk-f931182732fe87eaa439fb34fe3e6445",
"file_path": "氢气与氧气反应化学方程式.docx"
},
"chunk-b4e4cd7fa61e43376573d164e2730e41": {
"tokens": 332,
"content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: The given equation, $ 2 H_2 + O_2 \\rightarrow 2 H_2O $, represents a stoichiometric relationship describing the chemical reaction between hydrogen gas ($H_2$) and oxygen gas ($O_2$) to form water ($H_2O$). Mathematically, it is a balanced linear combination of molecular quantities, where coefficients (2 for $H_2$, 1 for $O_2$, and 2 for $H_2O$) ensure conservation of mass and atoms across both sides of the equation. Each term represents a molecule or compound involved in the reaction, with the numerical coefficients denoting molar ratios. This equation reflects the law of conservation of mass, which states that the total number of atoms of each element must remain constant before and after the reaction. The operations used include scalar multiplication and addition, reflecting the principles of linear algebra applied to chemical equations. In theoretical chemistry, this equation serves as a foundational example of stoichiometry and is essential for calculating reactant amounts, yields, and energy changes in combustion and electrochemical processes. It also connects to thermodynamics through enthalpy calculations and to reaction kinetics by defining the molar proportions needed for the reaction to proceed optimally. Practically, this equation models the synthesis of water from its elemental components, which is crucial in fuel cell technology, rocket propulsion, and industrial chemical synthesis.",
"chunk_order_index": 0,
"full_doc_id": "chunk-b4e4cd7fa61e43376573d164e2730e41",
"file_path": "氢气与氧气反应化学方程式.docx"
},
"chunk-e80e2698c1728e9ea5b4f84f9f5d4786": {
"tokens": 246,
"content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O\n$$\nFormat: latex\n\nMathematical Analysis: The equation $ 2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O $ represents a balanced stoichiometric reaction in chemical thermodynamics, specifically the synthesis of water from molecular hydrogen and oxygen. Mathematically, it encodes conservation of mass through integer coefficients ensuring atomic balance: two molecules of diatomic hydrogen ($H_2$) react with one molecule of diatomic oxygen ($O_2$) to produce two molecules of water ($H_2O$). The equality symbol denotes chemical equilibrium in the context of reaction stoichiometry. This equation is foundational in physical chemistry for analyzing enthalpy changes (via Hesss Law), reaction kinetics, and redox processes. It also plays a role in electrochemistry, particularly in fuel cell systems where this reaction is harnessed to generate electrical energy. The coefficients are derived from solving a system of linear Diophantine equations that enforce conservation of atoms across the reaction.",
"chunk_order_index": 0,
"full_doc_id": "chunk-e80e2698c1728e9ea5b4f84f9f5d4786",
"file_path": "氢气与氧气反应化学方程式.docx"
"full_doc_id": "chunk-afe960e65ad4b2552af9da24415990f4",
"file_path": "化学方程式_CHEMISTRY_1.docx"
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,10 @@
# 问题 1 氧化铁和硝酸的反应方程式
$$
FeO + 4HNO_{3}\overline {{\frac{\mathrm{\large ~\frac { \mathrm { \large ~ j } _ { \mathrm { J } } \mathrm { \scriptsize { I I } } \mathrm { \scriptsize { \dd ~ t . \mit ~ } } } } } { \mathrm { \large ~ \Gamma \it ~ e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } O + N O _ { 2 } \uparrow ~ } } } }
$$
问题2 氢气与氧气燃烧的方程式$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .$
![](images/677eaffbddaf54e682e00e5baed5f81a969a7bb55f089b9cf61f3de061fc7eaa.jpg)
问题3 我是一个图片

@ -0,0 +1,29 @@
[
{
"type": "text",
"text": "问题 1 氧化铁和硝酸的反应方程式",
"text_level": 1,
"page_idx": 0
},
{
"type": "equation",
"img_path": "images/bef57f5d21e70a4f1dda4926db4489620e570e3aa235811180ab49e71246fba3.jpg",
"text": "$$\nF e O + 4 H N O _ { 3 } \\overline { { \\frac { \\mathrm { \\large ~ \\frac { \\mathrm { \\large ~ j } _ { \\mathrm { J } } \\mathrm { \\scriptsize { I I } } \\mathrm { \\scriptsize { \\dd ~ t . \\mit ~ } } } } } { \\mathrm { \\large ~ \\Gamma \\it ~ e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } O + N O _ { 2 } \\uparrow ~ } } } }\n$$",
"text_format": "latex",
"page_idx": 0
},
{
"type": "text",
"text": "问题2 氢气与氧气燃烧的方程式$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .$ ",
"page_idx": 0
},
{
"type": "image",
"img_path": "images/677eaffbddaf54e682e00e5baed5f81a969a7bb55f089b9cf61f3de061fc7eaa.jpg",
"image_caption": [
"问题3 我是一个图片"
],
"image_footnote": [],
"page_idx": 0
}
]

@ -0,0 +1,824 @@
{
"pdf_info": [
{
"preproc_blocks": [
{
"type": "title",
"bbox": [
89,
71,
256,
86
],
"lines": [
{
"bbox": [
89,
73,
255,
85
],
"spans": [
{
"bbox": [
89,
73,
255,
85
],
"score": 0.946,
"content": "问题 1 氧化铁和硝酸的反应方程式",
"type": "text"
}
],
"index": 0
}
],
"index": 0
},
{
"type": "interline_equation",
"bbox": [
89,
97,
340,
125
],
"lines": [
{
"bbox": [
89,
97,
340,
125
],
"spans": [
{
"bbox": [
89,
97,
340,
125
],
"score": 0.75,
"content": "F e O + 4 H N O _ { 3 } \\overline { { \\frac { \\mathrm { \\large ~ \\frac { \\mathrm { \\large ~ j } _ { \\mathrm { J } } \\mathrm { \\scriptsize { I I } } \\mathrm { \\scriptsize { \\dd ~ t . \\mit ~ } } } } } { \\mathrm { \\large ~ \\Gamma \\it ~ e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } O + N O _ { 2 } \\uparrow ~ } } } }",
"type": "interline_equation",
"image_path": "bef57f5d21e70a4f1dda4926db4489620e570e3aa235811180ab49e71246fba3.jpg"
}
]
}
],
"index": 1,
"virtual_lines": [
{
"bbox": [
89,
97,
340,
125
],
"spans": [],
"index": 1
}
]
},
{
"type": "text",
"bbox": [
89,
178,
246,
225
],
"lines": [
{
"bbox": [
88,
179,
246,
195
],
"spans": [
{
"bbox": [
88,
179,
246,
195
],
"score": 0.973,
"content": "问题2 氢气与氧气燃烧的方程式",
"type": "text"
}
],
"index": 2
},
{
"bbox": [
89,
205,
185,
225
],
"spans": [
{
"bbox": [
89,
205,
185,
225
],
"score": 0.72,
"content": "2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .",
"type": "inline_equation",
"image_path": "94926835b13caa68ddc869d9d8308a685fc6b498539474df67f5508b4d6f894f.jpg"
}
],
"index": 3
}
],
"index": 2.5
},
{
"type": "image",
"bbox": [
90,
293,
315,
563
],
"blocks": [
{
"type": "image_caption",
"bbox": [
89,
271,
189,
285
],
"group_id": 0,
"lines": [
{
"bbox": [
88,
272,
189,
285
],
"spans": [
{
"bbox": [
88,
272,
189,
285
],
"score": 0.957,
"content": "问题3 我是一个图片",
"type": "text"
}
],
"index": 4
}
],
"index": 4
},
{
"type": "image_body",
"bbox": [
90,
293,
315,
563
],
"group_id": 0,
"lines": [
{
"bbox": [
90,
293,
315,
563
],
"spans": [
{
"bbox": [
90,
293,
315,
563
],
"score": 0.93,
"type": "image",
"image_path": "677eaffbddaf54e682e00e5baed5f81a969a7bb55f089b9cf61f3de061fc7eaa.jpg"
}
]
}
],
"index": 13.5,
"virtual_lines": [
{
"bbox": [
90,
293,
315,
308.0
],
"spans": [],
"index": 5
},
{
"bbox": [
90,
308.0,
315,
323.0
],
"spans": [],
"index": 6
},
{
"bbox": [
90,
323.0,
315,
338.0
],
"spans": [],
"index": 7
},
{
"bbox": [
90,
338.0,
315,
353.0
],
"spans": [],
"index": 8
},
{
"bbox": [
90,
353.0,
315,
368.0
],
"spans": [],
"index": 9
},
{
"bbox": [
90,
368.0,
315,
383.0
],
"spans": [],
"index": 10
},
{
"bbox": [
90,
383.0,
315,
398.0
],
"spans": [],
"index": 11
},
{
"bbox": [
90,
398.0,
315,
413.0
],
"spans": [],
"index": 12
},
{
"bbox": [
90,
413.0,
315,
428.0
],
"spans": [],
"index": 13
},
{
"bbox": [
90,
428.0,
315,
443.0
],
"spans": [],
"index": 14
},
{
"bbox": [
90,
443.0,
315,
458.0
],
"spans": [],
"index": 15
},
{
"bbox": [
90,
458.0,
315,
473.0
],
"spans": [],
"index": 16
},
{
"bbox": [
90,
473.0,
315,
488.0
],
"spans": [],
"index": 17
},
{
"bbox": [
90,
488.0,
315,
503.0
],
"spans": [],
"index": 18
},
{
"bbox": [
90,
503.0,
315,
518.0
],
"spans": [],
"index": 19
},
{
"bbox": [
90,
518.0,
315,
533.0
],
"spans": [],
"index": 20
},
{
"bbox": [
90,
533.0,
315,
548.0
],
"spans": [],
"index": 21
},
{
"bbox": [
90,
548.0,
315,
563.0
],
"spans": [],
"index": 22
}
]
}
],
"index": 8.75
}
],
"page_idx": 0,
"page_size": [
595,
841
],
"discarded_blocks": [],
"para_blocks": [
{
"type": "title",
"bbox": [
89,
71,
256,
86
],
"lines": [
{
"bbox": [
89,
73,
255,
85
],
"spans": [
{
"bbox": [
89,
73,
255,
85
],
"score": 0.946,
"content": "问题 1 氧化铁和硝酸的反应方程式",
"type": "text"
}
],
"index": 0
}
],
"index": 0
},
{
"type": "interline_equation",
"bbox": [
89,
97,
340,
125
],
"lines": [
{
"bbox": [
89,
97,
340,
125
],
"spans": [
{
"bbox": [
89,
97,
340,
125
],
"score": 0.75,
"content": "F e O + 4 H N O _ { 3 } \\overline { { \\frac { \\mathrm { \\large ~ \\frac { \\mathrm { \\large ~ j } _ { \\mathrm { J } } \\mathrm { \\scriptsize { I I } } \\mathrm { \\scriptsize { \\dd ~ t . \\mit ~ } } } } } { \\mathrm { \\large ~ \\Gamma \\it ~ e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } O + N O _ { 2 } \\uparrow ~ } } } }",
"type": "interline_equation",
"image_path": "bef57f5d21e70a4f1dda4926db4489620e570e3aa235811180ab49e71246fba3.jpg"
}
]
}
],
"index": 1,
"virtual_lines": [
{
"bbox": [
89,
97,
340,
125
],
"spans": [],
"index": 1
}
]
},
{
"type": "text",
"bbox": [
89,
178,
246,
225
],
"lines": [
{
"bbox": [
88,
179,
246,
195
],
"spans": [
{
"bbox": [
88,
179,
246,
195
],
"score": 0.973,
"content": "问题2 氢气与氧气燃烧的方程式",
"type": "text"
}
],
"index": 2
},
{
"bbox": [
89,
205,
185,
225
],
"spans": [
{
"bbox": [
89,
205,
185,
225
],
"score": 0.72,
"content": "2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .",
"type": "inline_equation",
"image_path": "94926835b13caa68ddc869d9d8308a685fc6b498539474df67f5508b4d6f894f.jpg"
}
],
"index": 3
}
],
"index": 2.5,
"bbox_fs": [
88,
179,
246,
225
]
},
{
"type": "image",
"bbox": [
90,
293,
315,
563
],
"blocks": [
{
"type": "image_caption",
"bbox": [
89,
271,
189,
285
],
"group_id": 0,
"lines": [
{
"bbox": [
88,
272,
189,
285
],
"spans": [
{
"bbox": [
88,
272,
189,
285
],
"score": 0.957,
"content": "问题3 我是一个图片",
"type": "text"
}
],
"index": 4
}
],
"index": 4
},
{
"type": "image_body",
"bbox": [
90,
293,
315,
563
],
"group_id": 0,
"lines": [
{
"bbox": [
90,
293,
315,
563
],
"spans": [
{
"bbox": [
90,
293,
315,
563
],
"score": 0.93,
"type": "image",
"image_path": "677eaffbddaf54e682e00e5baed5f81a969a7bb55f089b9cf61f3de061fc7eaa.jpg"
}
]
}
],
"index": 13.5,
"virtual_lines": [
{
"bbox": [
90,
293,
315,
308.0
],
"spans": [],
"index": 5
},
{
"bbox": [
90,
308.0,
315,
323.0
],
"spans": [],
"index": 6
},
{
"bbox": [
90,
323.0,
315,
338.0
],
"spans": [],
"index": 7
},
{
"bbox": [
90,
338.0,
315,
353.0
],
"spans": [],
"index": 8
},
{
"bbox": [
90,
353.0,
315,
368.0
],
"spans": [],
"index": 9
},
{
"bbox": [
90,
368.0,
315,
383.0
],
"spans": [],
"index": 10
},
{
"bbox": [
90,
383.0,
315,
398.0
],
"spans": [],
"index": 11
},
{
"bbox": [
90,
398.0,
315,
413.0
],
"spans": [],
"index": 12
},
{
"bbox": [
90,
413.0,
315,
428.0
],
"spans": [],
"index": 13
},
{
"bbox": [
90,
428.0,
315,
443.0
],
"spans": [],
"index": 14
},
{
"bbox": [
90,
443.0,
315,
458.0
],
"spans": [],
"index": 15
},
{
"bbox": [
90,
458.0,
315,
473.0
],
"spans": [],
"index": 16
},
{
"bbox": [
90,
473.0,
315,
488.0
],
"spans": [],
"index": 17
},
{
"bbox": [
90,
488.0,
315,
503.0
],
"spans": [],
"index": 18
},
{
"bbox": [
90,
503.0,
315,
518.0
],
"spans": [],
"index": 19
},
{
"bbox": [
90,
518.0,
315,
533.0
],
"spans": [],
"index": 20
},
{
"bbox": [
90,
533.0,
315,
548.0
],
"spans": [],
"index": 21
},
{
"bbox": [
90,
548.0,
315,
563.0
],
"spans": [],
"index": 22
}
]
}
],
"index": 8.75
}
]
}
],
"_backend": "pipeline",
"_version_name": "2.1.0"
}

@ -0,0 +1,349 @@
[
{
"layout_dets": [
{
"category_id": 3,
"poly": [
250,
814,
876,
814,
876,
1566,
250,
1566
],
"score": 0.93
},
{
"category_id": 4,
"poly": [
248,
754,
527,
754,
527,
793,
248,
793
],
"score": 0.89
},
{
"category_id": 8,
"poly": [
250,
271,
948,
271,
948,
348,
250,
348
],
"score": 0.884
},
{
"category_id": 8,
"poly": [
253,
570,
511,
570,
511,
621,
253,
621
],
"score": 0.722
},
{
"category_id": 0,
"poly": [
248,
199,
713,
199,
713,
240,
248,
240
],
"score": 0.533
},
{
"category_id": 1,
"poly": [
248,
199,
713,
199,
713,
240,
248,
240
],
"score": 0.35
},
{
"category_id": 1,
"poly": [
248,
496,
684,
496,
684,
625,
248,
625
],
"score": 0.141
},
{
"category_id": 14,
"poly": [
249,
270,
946,
270,
946,
349,
249,
349
],
"score": 0.75,
"latex": "F e O + 4 H N O _ { 3 } \\overline { { \\frac { \\mathrm { \\large ~ \\frac { \\mathrm { \\large ~ j } _ { \\mathrm { J } } \\mathrm { \\scriptsize { I I } } \\mathrm { \\scriptsize { \\dd ~ t . \\mit ~ } } } } } { \\mathrm { \\large ~ \\Gamma \\it ~ e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } O + N O _ { 2 } \\uparrow ~ } } } }"
},
{
"category_id": 14,
"poly": [
248,
570,
515,
570,
515,
625,
248,
625
],
"score": 0.72,
"latex": "2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O ."
},
{
"category_id": 15,
"poly": [
269.0,
848.0,
545.0,
848.0,
545.0,
912.0,
269.0,
912.0
],
"score": 0.905,
"text": "OfficeAl助手"
},
{
"category_id": 16,
"poly": [
746.0,
876.0,
754.0,
876.0,
754.0,
886.0,
746.0,
886.0
],
"score": 0.219,
"text": "V"
},
{
"category_id": 15,
"poly": [
814.0,
857.0,
857.0,
857.0,
857.0,
898.0,
814.0,
898.0
],
"score": 0.617,
"text": "×"
},
{
"category_id": 15,
"poly": [
279.0,
925.0,
348.0,
925.0,
348.0,
969.0,
279.0,
969.0
],
"score": 1.0,
"text": "聊天"
},
{
"category_id": 16,
"poly": [
284.0,
1009.0,
312.0,
1009.0,
312.0,
1023.0,
284.0,
1023.0
],
"score": 0.0,
"text": ""
},
{
"category_id": 15,
"poly": [
343.0,
995.0,
488.0,
995.0,
488.0,
1034.0,
343.0,
1034.0
],
"score": 0.989,
"text": "deepseek-V3"
},
{
"category_id": 15,
"poly": [
300.0,
1099.0,
643.0,
1099.0,
643.0,
1143.0,
300.0,
1143.0
],
"score": 0.958,
"text": "Hi我是OfficeAI助手"
},
{
"category_id": 15,
"poly": [
302.0,
1160.0,
813.0,
1160.0,
813.0,
1198.0,
302.0,
1198.0
],
"score": 0.999,
"text": "很高兴为你服务,有什么关于文档或其他方面"
},
{
"category_id": 15,
"poly": [
303.0,
1195.0,
564.0,
1195.0,
564.0,
1230.0,
303.0,
1230.0
],
"score": 1.0,
"text": "的事情都可以跟我讲哦"
},
{
"category_id": 15,
"poly": [
504.0,
1001.0,
541.0,
1001.0,
541.0,
1018.0,
504.0,
1018.0
],
"score": 0.8,
"text": "0"
},
{
"category_id": 15,
"poly": [
247.0,
756.0,
526.0,
756.0,
526.0,
793.0,
247.0,
793.0
],
"score": 0.957,
"text": "问题3 我是一个图片"
},
{
"category_id": 15,
"poly": [
249.0,
203.0,
711.0,
203.0,
711.0,
238.0,
249.0,
238.0
],
"score": 0.946,
"text": "问题 1 氧化铁和硝酸的反应方程式"
},
{
"category_id": 15,
"poly": [
249.0,
203.0,
711.0,
203.0,
711.0,
238.0,
249.0,
238.0
],
"score": 0.942,
"text": "问题 1 氧化铁和硝酸的反应方程式"
},
{
"category_id": 15,
"poly": [
245.0,
499.0,
684.0,
499.0,
684.0,
544.0,
245.0,
544.0
],
"score": 0.973,
"text": "问题2 氢气与氧气燃烧的方程式"
}
],
"page_info": {
"page_no": 0,
"width": 1654,
"height": 2339
}
}
]

@ -190,39 +190,46 @@
<div class="example-category">
<h3>已收集问题示例</h3>
<div class="example-list">
<div class="example-item" onclick="fillExample('小学数学中有哪些常见模型??')">小学数学中有哪些常见模型??</div>
<div class="example-item" onclick="fillExample('小学数学中有哪些常见模型??')">
小学数学中有哪些常见模型??
</div>
<div class="example-item" onclick="fillExample('帮我写一下 如何理解点、线、面、体、角 的教学设计')">
帮我写一下 如何理解点、线、面、体、角 的教学设计
</div>
<div class="example-item" onclick="fillExample('苏轼的好朋友都有谁?')">苏轼的好朋友都有谁?</div>
<div class="example-item" onclick="fillExample('苏轼的家人都有谁?')">苏轼的家人都有谁?</div>
帮我写一下 如何理解点、线、面、体、角 的教学设计
</div>
<div class="example-item" onclick="fillExample('苏轼的好朋友都有谁?')">苏轼的好朋友都有谁?</div>
<div class="example-item" onclick="fillExample('苏轼的家人都有谁?')">苏轼的家人都有谁?</div>
<div class="example-item" onclick="fillExample('苏轼有哪些有名的诗句?')">苏轼有哪些有名的诗句?</div>
<div class="example-item" onclick="fillExample('氧化铁和硝酸的反应方程式?')">氧化铁和硝酸的反应方程式?</div>
</div>
</div>
<div class="example-category">
<h3>未收集问题示例</h3>
<div class="example-item" onclick="fillExample('微积分的基本定理是什么?')">微积分的基本定理是什么?</div>
<div class="example-item" onclick="fillExample('线性代数在AI中的应用')">线性代数在AI中的应用</div>
</div>
</div>
<div class="example-category">
<h3>未收集问题示例</h3>
<div class="example-item" onclick="fillExample('微积分的基本定理是什么?')">微积分的基本定理是什么?</div>
<div class="example-item" onclick="fillExample('线性代数在AI中的应用')">线性代数在AI中的应用</div>
</div>
</div>
</div>
<div class="doc-links">
<h3>知识库范围</h3>
<div class="doc-checkboxes">
<label>
<input type="radio" name="topic" value="Math" checked>
小学数学
</label>
<label>
<input type="radio" name="topic" value="Chinese">
苏轼知识
</label>
<div class="doc-links">
<h3>知识库范围</h3>
<div class="doc-checkboxes">
<label>
<input type="radio" name="topic" value="Math" checked>
小学数学
</label>
<label>
<input type="radio" name="topic" value="Chinese">
苏轼知识
</label>
<label>
<input type="radio" name="topic" value="Chemistry">
化学学科
</label>
</div>
</div>
</div>
<button id="submitBtn" onclick="submitQuestion()"><span class="icon">💡</span>提问</button>
<button id="clearBtn" onclick="clearAll()"><span class="icon">🗑️</span>清空</button>
<button id="submitBtn" onclick="submitQuestion()"><span class="icon">💡</span>提问</button>
<button id="clearBtn" onclick="clearAll()"><span class="icon">🗑️</span>清空</button>
</div>
</div>

Loading…
Cancel
Save