This commit is contained in:
2025-08-19 09:45:41 +08:00
parent 2e7a218998
commit 79c6cc992c
3 changed files with 176 additions and 161 deletions

View File

@@ -1,175 +1,28 @@
import json
import requests
from langchain_openai import OpenAIEmbeddings
from pydantic import SecretStr
from Config import Config
from ElasticSearch.Utils.EsSearchUtil import EsSearchUtil
def get_query_embedding(query: str) -> list:
"""
将查询文本转换为向量
参数:
query: 查询文本
返回:
list: 向量表示
"""
# 创建嵌入模型
embeddings = OpenAIEmbeddings(
model=Config.EMBED_MODEL_NAME,
base_url=Config.EMBED_BASE_URL,
api_key=SecretStr(Config.EMBED_API_KEY)
)
# 生成查询向量
query_embedding = embeddings.embed_query(query)
return query_embedding
def search_by_vector(search_util: EsSearchUtil, query_embedding: list, k: int = 10) -> list:
"""
在Elasticsearch中按向量搜索
参数:
search_util: EsSearchUtil实例
query_embedding: 查询向量
k: 返回结果数量
返回:
list: 搜索结果
"""
# 从连接池获取连接
conn = search_util.es_pool.get_connection()
try:
# 构建向量查询DSL
query = {
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
"params": {
"query_vector": query_embedding
}
}
}
},
"size": k
}
# 执行查询
response = conn.search(index=search_util.es_config['index_name'], body=query)
return response['hits']['hits']
except Exception as e:
print(f"向量查询失败: {e}")
return []
finally:
# 释放连接回连接池
search_util.es_pool.release_connection(conn)
def rerank_results(query: str, results: list) -> list:
"""
使用重排模型对结果进行排序
参数:
query: 查询文本
results: 初始搜索结果
返回:
list: 重排后的结果
"""
if len(results) <= 1:
# 结果太少,无需重排
return [(result, 1.0) for result in results]
# 准备重排请求数据
rerank_data = {
"model": Config.RERANK_MODEL,
"query": query,
"documents": [result['_source']['user_input'] for result in results],
"top_n": len(results)
}
# 调用重排API
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {Config.RERANK_BINDING_API_KEY}"
}
try:
response = requests.post(Config.RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
response.raise_for_status()
rerank_result = response.json()
# 处理重排结果
reranked_results = []
if "results" in rerank_result:
for item in rerank_result["results"]:
doc_idx = item.get("index")
score = item.get("relevance_score", 0.0)
if 0 <= doc_idx < len(results):
reranked_results.append((results[doc_idx], score))
else:
print("警告: 无法识别重排API响应格式")
reranked_results = [(result, 0.0) for result in results]
return reranked_results
except Exception as e:
print(f"重排模型调用失败: {e}")
return [(result, 0.0) for result in results]
def display_results(results: list) -> None:
"""
展示查询结果
参数:
results: 查询结果列表,每个元素是(结果对象, 分数)的元组
"""
if not results:
print("未找到相关数据。")
return
print(f"找到 {len(results)} 条相关数据:")
for i, (result, score) in enumerate(results, 1):
source = result['_source']
print(f"{i}. ID: {result['_id']}")
print(f" 相似度分数: {score:.4f}")
print(f" 内容: {source.get('user_input', '')}")
print(f" 标签: {source['tags']['tags'] if 'tags' in source and 'tags' in source['tags'] else ''}")
print(f" 时间: {source['timestamp'] if 'timestamp' in source else ''}")
print("-" * 50)
def main():
# 创建EsSearchUtil实例已封装连接池
# 初始化搜索工具
search_util = EsSearchUtil(Config.ES_CONFIG)
# 获取用户输入
query_text = input("请输入查询关键词(例如: 高性能的混凝土): ")
if not query_text:
query_text = "高性能的混凝土"
print(f"未输入查询关键词,使用默认值: {query_text}")
# 输入查询文本
query = "混凝土"
print(f"查询文本: {query}")
# 生成查询向量
print("正在生成查询向量...")
query_embedding = get_query_embedding(query_text)
# 获取查询向量
query_embedding = search_util.get_query_embedding(query)
print(f"查询向量维度: {len(query_embedding)}")
# 执行向量搜索
print("正在执行向量搜索...")
search_results = search_by_vector(search_util, query_embedding, k=10)
# 向量搜索
search_results = search_util.search_by_vector(query_embedding, k=10)
print(f"向量搜索结果数量: {len(search_results)}")
# 重排结果
print("正在重排结果...")
reranked_results = rerank_results(query_text, search_results)
# 结果重排
reranked_results = search_util.rerank_results(query, search_results)
# 示结果
display_results(reranked_results)
# 示结果
search_util.display_results(reranked_results)
if __name__ == "__main__":

View File

@@ -1,7 +1,11 @@
import json
import logging
import warnings
import hashlib
import time
import requests
from Config.Config import ES_CONFIG
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
from langchain_core.documents import Document
@@ -258,4 +262,162 @@ class EsSearchUtil:
finally:
# 确保释放连接回连接池
if 'conn' in locals() and 'search_util' in locals():
search_util.es_pool.release_connection(conn)
search_util.es_pool.release_connection(conn)
def get_query_embedding(self, query: str) -> list:
"""
将查询文本转换为向量
参数:
query: 查询文本
返回:
list: 向量表示
"""
# 创建嵌入模型
embeddings = OpenAIEmbeddings(
model=Config.EMBED_MODEL_NAME,
base_url=Config.EMBED_BASE_URL,
api_key=SecretStr(Config.EMBED_API_KEY)
)
# 生成查询向量
query_embedding = embeddings.embed_query(query)
return query_embedding
def search_by_vector(self, query_embedding: list, k: int = 10) -> list:
"""
在Elasticsearch中按向量搜索
参数:
query_embedding: 查询向量
k: 返回结果数量
返回:
list: 搜索结果
"""
# 从连接池获取连接
conn = self.es_pool.get_connection()
try:
# 构建向量查询DSL
query = {
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
"params": {
"query_vector": query_embedding
}
}
}
},
"size": k
}
# 执行查询
response = conn.search(index=self.es_config['index_name'], body=query)
return response['hits']['hits']
except Exception as e:
logger.error(f"向量查询失败: {e}")
print(f"向量查询失败: {e}")
return []
finally:
# 释放连接回连接池
self.es_pool.release_connection(conn)
def rerank_results(self, query: str, results: list) -> list:
"""
使用重排模型对结果进行排序
参数:
query: 查询文本
results: 初始搜索结果
返回:
list: 重排后的结果
"""
if len(results) <= 1:
# 结果太少,无需重排
return [(result, 1.0) for result in results]
# 准备重排请求数据
rerank_data = {
"model": Config.RERANK_MODEL,
"query": query,
"documents": [result['_source']['user_input'] for result in results],
"top_n": len(results)
}
# 调用重排API
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {Config.RERANK_BINDING_API_KEY}"
}
try:
response = requests.post(Config.RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
response.raise_for_status()
rerank_result = response.json()
# 检查响应结构
if 'results' not in rerank_result:
logger.error(f"重排API响应结构不正确缺少'results'字段: {rerank_result}")
print(f"重排API响应结构不正确缺少'results'字段")
return [(result, 1.0) for result in results]
# 构建重排后的结果列表
reranked_pairs = []
for item in rerank_result['results']:
# 尝试获取文档索引,优先使用'index'字段,其次是'document'字段
doc_idx = item.get('index', item.get('document', -1))
if doc_idx == -1:
logger.error(f"重排结果项缺少有效索引字段: {item}")
print(f"重排结果项结构不正确")
continue
# 尝试获取分数,优先使用'relevance_score'字段,其次是'score'字段
score = item.get('relevance_score', item.get('score', 1.0))
# 检查索引是否有效
if 0 <= doc_idx < len(results):
reranked_pairs.append((results[doc_idx], score))
else:
logger.error(f"文档索引{doc_idx}超出范围")
print(f"文档索引超出范围")
# 如果没有有效的重排结果,返回原始结果
if not reranked_pairs:
logger.warning("没有有效的重排结果,返回原始结果")
return [(result, 1.0) for result in results]
# 按分数降序排序
reranked_pairs.sort(key=lambda x: x[1], reverse=True)
return reranked_pairs
except Exception as e:
logger.error(f"重排失败: {str(e)}")
print(f"重排失败: {e}")
# 重排失败时返回原始结果
return [(result, 1.0) for result in results]
def display_results(self, results: list, show_score: bool = True) -> None:
"""
展示搜索结果
参数:
results: 搜索结果列表
show_score: 是否显示分数
"""
if not results:
print("没有找到匹配的结果。")
return
print(f"找到 {len(results)} 条结果:\n")
for i, (result, score) in enumerate(results, 1):
print(f"结果 {i}:")
print(f"内容: {result['_source']['user_input']}")
if show_score:
print(f"分数: {score:.4f}")
print("---")