main
HuangHai 4 weeks ago
parent ab632ab395
commit 76373495d4

@ -0,0 +1,111 @@
"""
conda activate rag
pip install fastapi uvicorn sse-starlette
"""
import asyncio
from elasticsearch import Elasticsearch
from fastapi import FastAPI
from openai import OpenAI
from sse_starlette.sse import EventSourceResponse
from Config import Config
app = FastAPI()
# 初始化ES连接
es = Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=Config.ES_CONFIG['verify_certs']
)
# 初始化DeepSeek客户端
client = OpenAI(
api_key=Config.DEEPSEEK_API_KEY,
base_url=Config.DEEPSEEK_URL
)
def search_related_data(query):
"""搜索与查询相关的数据"""
# 向量搜索
vector_results = es.search(
index=Config.ES_CONFIG['default_index'],
body={
"query": {
"match": {
"content": {
"query": query,
"analyzer": "ik_smart"
}
}
},
"size": 5
}
)
# 文本精确搜索
text_results = es.search(
index="raw_texts",
body={
"query": {
"match": {
"text.keyword": query
}
},
"size": 5
}
)
# 合并结果
context = ""
for hit in vector_results['hits']['hits']:
context += f"向量相似度结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n"
for hit in text_results['hits']['hits']:
context += f"文本精确匹配结果(score={hit['_score']}):\n{hit['_source']['text']}\n\n"
return context
async def generate_stream(query):
"""生成SSE流"""
context = search_related_data(query)
prompt = f"""根据以下关于'{query}'的相关信息,整理一份结构化的报告:
要求
1. 分章节组织内容
2. 包含关键数据和事实
3. 语言简洁专业
相关信息
{context}"""
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "你是一个专业的文档整理助手"},
{"role": "user", "content": prompt}
],
temperature=0.3,
stream=True
)
for chunk in response:
if chunk.choices[0].delta.content:
yield {"data": chunk.choices[0].delta.content}
await asyncio.sleep(0.01)
except Exception as e:
yield {"data": f"生成报告时出错: {str(e)}"}
@app.get("/api/rag")
async def rag_stream(query: str):
"""RAG+DeepSeek流式接口"""
return EventSourceResponse(generate_stream(query))
"""
http://localhost:8000/api/rag?query=整理云南省初中在校生情况文档
"""
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
Loading…
Cancel
Save