'commit'
This commit is contained in:
@@ -1,75 +1,144 @@
|
||||
import warnings
|
||||
|
||||
from Config import Config
|
||||
from Config.Config import *
|
||||
from elasticsearch import Elasticsearch
|
||||
from gensim.models import KeyedVectors
|
||||
import jieba
|
||||
import os
|
||||
import time
|
||||
import warnings
|
||||
|
||||
from elasticsearch import Elasticsearch
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from Config import Config
|
||||
from Util.VectorUtil import text_to_vector_db # 导入向量化工具函数
|
||||
|
||||
# 抑制HTTPS相关警告
|
||||
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
||||
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
||||
|
||||
# 1. 加载预训练的 Word2Vec 模型
|
||||
model_path = MODEL_PATH
|
||||
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=MODEL_LIMIT)
|
||||
print(f"模型加载成功,词向量维度: {model.vector_size}")
|
||||
|
||||
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
|
||||
"""
|
||||
将长文本向量化并插入到Elasticsearch
|
||||
|
||||
# 功能:将文本转换为嵌入向量
|
||||
def text_to_embedding(text):
|
||||
words = jieba.lcut(text)
|
||||
embeddings = [model[word] for word in words if word in model]
|
||||
if embeddings:
|
||||
return sum(embeddings) / len(embeddings)
|
||||
return [0.0] * model.vector_size
|
||||
参数:
|
||||
long_text: 要插入的长文本
|
||||
tags: 可选的标签列表
|
||||
|
||||
|
||||
# 2. 初始化Elasticsearch连接
|
||||
es = Elasticsearch(
|
||||
返回:
|
||||
bool: 插入是否成功
|
||||
"""
|
||||
try:
|
||||
# 1. 初始化Elasticsearch连接
|
||||
es = Elasticsearch(
|
||||
hosts=Config.ES_CONFIG['hosts'],
|
||||
basic_auth=Config.ES_CONFIG['basic_auth'],
|
||||
verify_certs=False
|
||||
)
|
||||
)
|
||||
|
||||
# 3. 处理processed_chunks目录下的所有文件
|
||||
txt_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'Txt')
|
||||
# 2. 检查索引是否存在,不存在则创建
|
||||
index_name = Config.ES_CONFIG['index_name']
|
||||
if not es.indices.exists(index=index_name):
|
||||
# 定义mapping结构
|
||||
mapping = {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"embedding": {
|
||||
"type": "dense_vector",
|
||||
"dims": 1024, # 根据实际embedding维度调整
|
||||
"index": True,
|
||||
"similarity": "l2_norm"
|
||||
},
|
||||
"user_input": {"type": "text"},
|
||||
"tags": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"tags": {"type": "keyword"},
|
||||
"full_content": {"type": "text"}
|
||||
}
|
||||
},
|
||||
"timestamp": {"type": "date"}
|
||||
}
|
||||
}
|
||||
}
|
||||
es.indices.create(index=index_name, body=mapping)
|
||||
print(f"索引 '{index_name}' 创建成功")
|
||||
|
||||
for filename in os.listdir(txt_dir):
|
||||
# 3. 使用VectorUtil处理文本
|
||||
# 这里我们创建一个临时的Document对象
|
||||
docs = [Document(page_content=long_text, metadata={"source": "user_provided_text"})]
|
||||
|
||||
# 4. 获取当前时间
|
||||
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||
|
||||
# 5. 准备标签
|
||||
if tags is None:
|
||||
tags = ["general_text"]
|
||||
tags_dict = {"tags": tags, "full_content": long_text}
|
||||
|
||||
# 6. 使用VectorUtil中的功能获取嵌入向量
|
||||
# 注意:我们需要修改text_to_vector_db函数或创建新函数来获取单个文档的嵌入
|
||||
# 这里为了演示,我们直接调用text_to_vector_db并获取第一个文档的嵌入
|
||||
vector_store, _, _ = text_to_vector_db(long_text)
|
||||
|
||||
# 7. 提取嵌入向量
|
||||
# 注意:这里假设我们只处理一个文档
|
||||
embedding = vector_store._embeddings.embed_documents([long_text])[0]
|
||||
|
||||
# 8. 插入数据到Elasticsearch
|
||||
doc = {
|
||||
'tags': tags_dict,
|
||||
'user_input': long_text[:500], # 取前500个字符作为摘要
|
||||
'timestamp': timestamp,
|
||||
'embedding': embedding
|
||||
}
|
||||
es.index(index=index_name, document=doc)
|
||||
print(f"长文本数据插入成功")
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"插入数据失败: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def process_text_directory(txt_dir: str) -> None:
|
||||
"""
|
||||
处理指定目录下的所有文本文件,将其向量化并插入到Elasticsearch
|
||||
|
||||
参数:
|
||||
txt_dir: 包含文本文件的目录路径
|
||||
"""
|
||||
for filename in os.listdir(txt_dir):
|
||||
if filename.endswith('.txt'):
|
||||
filepath = os.path.join(txt_dir, filename)
|
||||
with open(filepath, 'r', encoding='utf-8') as f:
|
||||
# 只读取第一行作为向量计算
|
||||
first_line = f.readline().strip()
|
||||
# 读取全部内容用于后续查询
|
||||
full_content = first_line + '\n' + f.read()
|
||||
full_content = f.read()
|
||||
|
||||
if not first_line:
|
||||
if not full_content:
|
||||
print(f"跳过空文件: {filename}")
|
||||
continue
|
||||
|
||||
print(f"正在处理文件: {filename}")
|
||||
|
||||
# 4. 获取当前时间和会话ID
|
||||
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||
# 需要进行标记的标签
|
||||
# 提取标签
|
||||
x = filename.split("_")
|
||||
selectedTags = [x[0] + "_" + x[1]]
|
||||
tags = {"tags": selectedTags, "full_content": full_content} # 添加完整内容
|
||||
if len(x) >= 2:
|
||||
selected_tags = [x[0] + "_" + x[1]]
|
||||
else:
|
||||
selected_tags = ["uncategorized"]
|
||||
|
||||
# 5. 将第一行文本转换为嵌入向量
|
||||
embedding = text_to_embedding(first_line)
|
||||
# 插入文本
|
||||
insert_long_text_to_es(full_content, selected_tags)
|
||||
|
||||
# 6. 插入数据到Elasticsearch
|
||||
doc = {
|
||||
'tags': tags,
|
||||
'user_input': first_line,
|
||||
'timestamp': timestamp,
|
||||
'embedding': embedding
|
||||
}
|
||||
es.index(index=ES_CONFIG['index_name'], document=doc)
|
||||
print(f"文件 {filename} 数据插入成功")
|
||||
|
||||
print("所有文件处理完成")
|
||||
def main():
|
||||
# 示例1:插入单个长文本
|
||||
long_text = """混凝土是一种广泛使用的建筑材料,由水泥、砂、石子和水混合而成。它具有高强度、耐久性和良好的可塑性,被广泛应用于建筑、桥梁、道路等土木工程领域。
|
||||
|
||||
混凝土的历史可以追溯到古罗马时期,当时人们使用火山灰、石灰和碎石混合制成类似混凝土的材料。现代混凝土技术始于19世纪,随着波特兰水泥的发明而得到快速发展。
|
||||
|
||||
混凝土的性能取决于其配合比,包括水灰比、砂率等参数。水灰比是影响混凝土强度的关键因素,较小的水灰比通常会产生更高强度的混凝土。"""
|
||||
insert_long_text_to_es(long_text, tags=["construction", "materials"])
|
||||
|
||||
# 示例2:处理目录中的所有文本文件
|
||||
# txt_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'Txt')
|
||||
# process_text_directory(txt_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Reference in New Issue
Block a user