'commit'
This commit is contained in:
@@ -1,235 +0,0 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import uuid
|
||||
from queue import Queue
|
||||
|
||||
import websockets
|
||||
|
||||
from Config import Config
|
||||
from Util.TTS_Protocols import full_client_request, receive_message, MsgType, EventType
|
||||
# 添加必要的导入
|
||||
from Util.XueBanUtil import get_xueban_response_async
|
||||
|
||||
|
||||
async def stream_and_split_text(query_text=None, llm_stream=None):
|
||||
"""
|
||||
流式获取LLM输出并按句子分割
|
||||
@param query_text: 查询文本(如果直接提供查询文本)
|
||||
@param llm_stream: LLM流式响应生成器(如果已有流式响应)
|
||||
@return: 异步生成器,每次产生一个完整句子
|
||||
"""
|
||||
buffer = ""
|
||||
|
||||
if llm_stream is None and query_text is not None:
|
||||
# 如果没有提供llm_stream但有query_text,则使用get_xueban_response_async获取流式响应
|
||||
llm_stream = get_xueban_response_async(query_text, stream=True)
|
||||
elif llm_stream is None:
|
||||
raise ValueError("必须提供query_text或llm_stream参数")
|
||||
|
||||
# 直接处理LLM流式输出
|
||||
async for content in llm_stream:
|
||||
buffer += content
|
||||
|
||||
# 使用正则表达式检测句子结束
|
||||
sentences = re.split(r'([。!?.!?])', buffer)
|
||||
if len(sentences) > 1:
|
||||
# 提取完整句子
|
||||
for i in range(0, len(sentences)-1, 2):
|
||||
if i+1 < len(sentences):
|
||||
sentence = sentences[i] + sentences[i+1]
|
||||
yield sentence
|
||||
|
||||
# 保留不完整的部分
|
||||
buffer = sentences[-1]
|
||||
|
||||
# 处理最后剩余的部分
|
||||
if buffer:
|
||||
yield buffer
|
||||
|
||||
# 修改streaming_tts_pipeline函数
|
||||
async def streaming_tts_pipeline(query_text, audio_callback):
|
||||
"""
|
||||
流式TTS管道:获取LLM流式输出并断句,然后使用TTS合成语音
|
||||
|
||||
Args:
|
||||
query_text: 查询文本
|
||||
audio_callback: 音频数据回调函数
|
||||
"""
|
||||
# 1. 获取LLM流式输出并断句
|
||||
text_stream = stream_and_split_text(query_text=query_text)
|
||||
|
||||
# 2. 初始化TTS处理器
|
||||
tts = StreamingVolcanoTTS()
|
||||
|
||||
# 3. 流式处理文本并生成音频
|
||||
await tts.synthesize_stream(text_stream, audio_callback)
|
||||
|
||||
|
||||
class StreamingVolcanoTTS:
|
||||
def __init__(self, voice_type='zh_female_wanwanxiaohe_moon_bigtts', encoding='wav', max_concurrency=2):
|
||||
self.voice_type = voice_type
|
||||
self.encoding = encoding
|
||||
self.app_key = Config.HS_APP_ID
|
||||
self.access_token = Config.HS_ACCESS_TOKEN
|
||||
self.endpoint = "wss://openspeech.bytedance.com/api/v3/tts/unidirectional/stream"
|
||||
self.audio_queue = Queue()
|
||||
self.max_concurrency = max_concurrency # 最大并发数
|
||||
self.semaphore = asyncio.Semaphore(max_concurrency) # 并发控制信号量
|
||||
|
||||
@staticmethod
|
||||
def get_resource_id(voice: str) -> str:
|
||||
if voice.startswith("S_"):
|
||||
return "volc.megatts.default"
|
||||
return "volc.service_type.10029"
|
||||
|
||||
async def synthesize_stream(self, text_stream, audio_callback):
|
||||
"""
|
||||
流式合成语音
|
||||
|
||||
Args:
|
||||
text_stream: 文本流生成器
|
||||
audio_callback: 音频数据回调函数,接收音频片段
|
||||
"""
|
||||
# 实时处理每个文本片段(删除任务列表和gather)
|
||||
async for text in text_stream:
|
||||
if text.strip():
|
||||
await self._synthesize_single_with_semaphore(text, audio_callback)
|
||||
|
||||
async def _synthesize_single_with_semaphore(self, text, audio_callback):
|
||||
"""使用信号量控制并发数的单个文本合成"""
|
||||
async with self.semaphore: # 获取信号量,限制并发数
|
||||
await self._synthesize_single(text, audio_callback)
|
||||
|
||||
async def _synthesize_single(self, text, audio_callback):
|
||||
"""合成单个文本片段"""
|
||||
headers = {
|
||||
"X-Api-App-Key": self.app_key,
|
||||
"X-Api-Access-Key": self.access_token,
|
||||
"X-Api-Resource-Id": self.get_resource_id(self.voice_type),
|
||||
"X-Api-Connect-Id": str(uuid.uuid4()),
|
||||
}
|
||||
|
||||
websocket = await websockets.connect(
|
||||
self.endpoint, additional_headers=headers, max_size=10 * 1024 * 1024
|
||||
)
|
||||
|
||||
try:
|
||||
request = {
|
||||
"user": {
|
||||
"uid": str(uuid.uuid4()),
|
||||
},
|
||||
"req_params": {
|
||||
"speaker": self.voice_type,
|
||||
"audio_params": {
|
||||
"format": self.encoding,
|
||||
"sample_rate": 24000,
|
||||
"enable_timestamp": True,
|
||||
},
|
||||
"text": text,
|
||||
"additions": json.dumps({"disable_markdown_filter": False}),
|
||||
},
|
||||
}
|
||||
|
||||
# 发送请求
|
||||
await full_client_request(websocket, json.dumps(request).encode())
|
||||
|
||||
# 接收音频数据
|
||||
audio_data = bytearray()
|
||||
while True:
|
||||
msg = await receive_message(websocket)
|
||||
|
||||
if msg.type == MsgType.FullServerResponse:
|
||||
if msg.event == EventType.SessionFinished:
|
||||
break
|
||||
elif msg.type == MsgType.AudioOnlyServer:
|
||||
audio_data.extend(msg.payload)
|
||||
else:
|
||||
raise RuntimeError(f"TTS conversion failed: {msg}")
|
||||
|
||||
# 通过回调函数返回音频数据
|
||||
if audio_data:
|
||||
await audio_callback(audio_data)
|
||||
|
||||
finally:
|
||||
await websocket.close()
|
||||
|
||||
|
||||
async def streaming_tts_pipeline(prompt, audio_callback):
|
||||
"""
|
||||
流式TTS管道:获取LLM流式输出并断句,然后使用TTS合成语音
|
||||
|
||||
Args:
|
||||
prompt: 提示文本
|
||||
audio_callback: 音频数据回调函数
|
||||
"""
|
||||
# 1. 获取LLM流式输出并断句
|
||||
text_stream = stream_and_split_text(prompt)
|
||||
|
||||
# 2. 初始化TTS处理器
|
||||
tts = StreamingVolcanoTTS()
|
||||
|
||||
# 3. 流式处理文本并生成音频
|
||||
await tts.synthesize_stream(text_stream, audio_callback)
|
||||
|
||||
|
||||
def save_audio_callback(output_dir=None):
|
||||
"""
|
||||
创建一个音频回调函数,用于保存音频数据到文件
|
||||
|
||||
Args:
|
||||
output_dir: 输出目录,默认为当前文件所在目录下的output文件夹
|
||||
|
||||
Returns:
|
||||
音频回调函数
|
||||
"""
|
||||
if output_dir is None:
|
||||
output_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "output")
|
||||
|
||||
# 确保输出目录存在
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
def callback(audio_data):
|
||||
# 生成文件名
|
||||
filename = f"pipeline_tts_{uuid.uuid4().hex[:8]}.wav"
|
||||
filepath = os.path.join(output_dir, filename)
|
||||
|
||||
# 保存音频文件
|
||||
with open(filepath, "wb") as f:
|
||||
f.write(audio_data)
|
||||
|
||||
print(f"音频片段已保存到: {filepath} ({len(audio_data)} 字节)")
|
||||
|
||||
return callback
|
||||
|
||||
|
||||
async def test_pipeline():
|
||||
"""
|
||||
测试流式TTS管道
|
||||
"""
|
||||
# 创建音频回调函数
|
||||
audio_handler = save_audio_callback()
|
||||
|
||||
# 测试提示
|
||||
prompt = "请详细解释一下量子力学的基本原理,包括波粒二象性、不确定性原理和薛定谔方程。"
|
||||
|
||||
print("开始测试流式TTS管道...")
|
||||
print(f"测试提示: {prompt}")
|
||||
print("等待LLM生成文本并转换为语音...")
|
||||
|
||||
# 运行管道
|
||||
await streaming_tts_pipeline(prompt, audio_handler)
|
||||
|
||||
print("流式TTS管道测试完成!")
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
主函数,运行测试
|
||||
"""
|
||||
asyncio.run(test_pipeline())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -50,7 +50,7 @@ async def get_xueban_response_async(query_text: str, stream: bool = True):
|
||||
zhishiContent = f.read()
|
||||
zhishiContent = "选择作答的相应知识内容:" + zhishiContent + "\n"
|
||||
query_text = zhishiContent + "下面是用户提的问题:" + query_text
|
||||
logger.info("query_text: " + query_text)
|
||||
#logger.info("query_text: " + query_text)
|
||||
|
||||
try:
|
||||
# 创建请求
|
||||
|
Binary file not shown.
Binary file not shown.
Reference in New Issue
Block a user