diff --git a/dsLightRag/T4_QueryNeo4j.py b/dsLightRag/T4_QueryNeo4j.py index be89e0c8..62e8e9d5 100644 --- a/dsLightRag/T4_QueryNeo4j.py +++ b/dsLightRag/T4_QueryNeo4j.py @@ -1,5 +1,8 @@ import asyncio import inspect +import os + +from Config.Config import NEO4J_URI, NEO4J_USERNAME, NEO4J_PASSWORD from Util.LightRagUtil import configure_logging, initialize_rag, print_stream from lightrag import QueryParam @@ -18,11 +21,16 @@ idx = [i for i, d in enumerate(data) if d["NAME"] == KEMU][0] async def main(): + # 设置Neo4j连接参数 + os.environ["NEO4J_URI"] = NEO4J_URI + os.environ["NEO4J_USERNAME"] = NEO4J_USERNAME + os.environ["NEO4J_PASSWORD"] = NEO4J_PASSWORD + try: user_prompt = "\n 1、资料中提供化学反应方程式的,一定要严格按提供的Latex公式输出,绝对不允许对Latex公式进行修改 !" user_prompt = user_prompt + "\n 2、如果资料中提供了图片的,一定要严格按照原文提供图片输出,不允许省略或不输出!" user_prompt = user_prompt + "\n 3、资料中提到的知识内容,需要判断是否与本次问题相关,不相关的绝对不要输出!" - rag = await initialize_rag('Topic/' + data[idx]["NAME"]) + rag = await initialize_rag('Topic/' + data[idx]["NAME"],graph_storage="Neo4JStorage") # 加上使用Neo4JStorage resp = await rag.aquery( data[idx]["Q"], param=QueryParam(mode="hybrid", stream=True, user_prompt=user_prompt), diff --git a/dsLightRag/Topic/Chemistry/kv_store_doc_status.json b/dsLightRag/Topic/Chemistry/kv_store_doc_status.json index 505ac9a0..808c2266 100644 --- a/dsLightRag/Topic/Chemistry/kv_store_doc_status.json +++ b/dsLightRag/Topic/Chemistry/kv_store_doc_status.json @@ -1,12 +1,12 @@ { "doc-7367de1960fc3eb00672757c23990f62": { - "status": "processing", + "status": "processed", "chunks_count": 1, "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/5009542d74a24d00b5ae62f5cdc0f048/media/image1.png)", "content_summary": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{ov...", "content_length": 344, "created_at": "2025-07-11T00:29:04.956110+00:00", - "updated_at": "2025-07-11T00:29:04.959142+00:00", + "updated_at": "2025-07-11T00:30:01.205644+00:00", "file_path": "unknown_source" } } \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/kv_store_full_docs.json b/dsLightRag/Topic/Chemistry/kv_store_full_docs.json new file mode 100644 index 00000000..58298c4c --- /dev/null +++ b/dsLightRag/Topic/Chemistry/kv_store_full_docs.json @@ -0,0 +1,5 @@ +{ + "doc-7367de1960fc3eb00672757c23990f62": { + "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/5009542d74a24d00b5ae62f5cdc0f048/media/image1.png)" + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json b/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json index 02f27e6e..8d710b3c 100644 --- a/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json +++ b/dsLightRag/Topic/Chemistry/kv_store_llm_response_cache.json @@ -131,6 +131,26 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n硝酸光照分解的方程式\\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\\n氧化铁与硝酸的加热反应方程式\\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\\n氢气与氧气燃烧的现象如下图所示:\\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\\n![](./Images/4826f1dfc6ce4ba5a294167a016b736f/media/image1.png)\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"Nitric Acid\\\"<|>\\\"category\\\"<|>\\\"Nitric Acid (HNO₃) is a chemical compound involved in photodecomposition and reaction with iron oxide under heat.\\\")##\\n(\\\"entity\\\"<|>\\\"Iron Oxide\\\"<|>\\\"category\\\"<|>\\\"Iron Oxide (FeO) reacts with nitric acid under heat to produce iron nitrate, water, and nitrogen dioxide.\\\")##\\n(\\\"entity\\\"<|>\\\"Hydrogen\\\"<|>\\\"category\\\"<|>\\\"Hydrogen (H₂) combusts with oxygen to form water, releasing energy in the process.\\\")##\\n(\\\"entity\\\"<|>\\\"Oxygen\\\"<|>\\\"category\\\"<|>\\\"Oxygen (O₂) is a reactant in the combustion process with hydrogen, resulting in water formation.\\\")##\\n(\\\"entity\\\"<|>\\\"Water\\\"<|>\\\"category\\\"<|>\\\"Water (H₂O) is the product of hydrogen and oxygen combustion.\\\")##\\n(\\\"entity\\\"<|>\\\"Nitrogen Dioxide\\\"<|>\\\"category\\\"<|>\\\"Nitrogen Dioxide (NO₂) is a byproduct of nitric acid decomposition and its reaction with iron oxide.\\\")##\\n(\\\"entity\\\"<|>\\\"Photodecomposition\\\"<|>\\\"event\\\"<|>\\\"Photodecomposition is the chemical breakdown of nitric acid under light or heat, producing nitrogen dioxide, oxygen, and water.\\\")##\\n(\\\"entity\\\"<|>\\\"Combustion\\\"<|>\\\"event\\\"<|>\\\"Combustion is the chemical reaction between hydrogen and oxygen, resulting in water formation and energy release.\\\")##\\n(\\\"relationship\\\"<|>\\\"Nitric Acid\\\"<|>\\\"Photodecomposition\\\"<|>\\\"Nitric acid undergoes photodecomposition when exposed to light or heat, producing nitrogen dioxide, oxygen, and water.\\\"<|>\\\"chemical reaction, decomposition\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Iron Oxide\\\"<|>\\\"Nitric Acid\\\"<|>\\\"Iron oxide reacts with nitric acid under heat to form iron nitrate, water, and nitrogen dioxide.\\\"<|>\\\"chemical reaction, oxidation\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Hydrogen\\\"<|>\\\"Oxygen\\\"<|>\\\"Hydrogen combusts with oxygen to produce water, a fundamental chemical reaction.\\\"<|>\\\"combustion, energy release\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Hydrogen\\\"<|>\\\"Water\\\"<|>\\\"Hydrogen is a reactant in the formation of water through combustion with oxygen.\\\"<|>\\\"product formation, chemical synthesis\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Oxygen\\\"<|>\\\"Water\\\"<|>\\\"Oxygen is a reactant in the formation of water through combustion with hydrogen.\\\"<|>\\\"product formation, chemical synthesis\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"chemical reactions, photodecomposition, combustion, oxidation, chemical equations\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "d332c8c3727a97dcdd6960e6e6d04339": { + "return": "(\"entity\"<|>\"硝酸\"<|>\"category\"<|>\"硝酸是一种化学物质,在光照或加热条件下会分解,产生二氧化氮、氧气和水。\")##\n(\"entity\"<|>\"氧化铁\"<|>\"category\"<|>\"氧化铁是一种化学物质,与硝酸加热反应会生成硝酸铁、水和二氧化氮。\")##\n(\"entity\"<|>\"氢气\"<|>\"category\"<|>\"氢气是一种化学元素,与氧气燃烧会生成水。\")##\n(\"entity\"<|>\"氧气\"<|>\"category\"<|>\"氧气是一种化学元素,与氢气燃烧会生成水。\")##\n(\"entity\"<|>\"二氧化氮\"<|>\"category\"<|>\"二氧化氮是硝酸分解的产物之一,也是氧化铁与硝酸反应的产物之一。\")##\n(\"entity\"<|>\"硝酸铁\"<|>\"category\"<|>\"硝酸铁是氧化铁与硝酸反应的产物之一。\")##\n(\"entity\"<|>\"水\"<|>\"category\"<|>\"水是氢气与氧气燃烧的产物,也是氧化铁与硝酸反应的产物之一。\")##\n(\"relationship\"<|>\"硝酸\"<|>\"二氧化氮\"<|>\"硝酸在光照或加热条件下分解会产生二氧化氮。\"<|>\"chemical reaction, decomposition\"<|>9)##\n(\"relationship\"<|>\"氧化铁\"<|>\"硝酸铁\"<|>\"氧化铁与硝酸加热反应会生成硝酸铁。\"<|>\"chemical reaction, synthesis\"<|>8)##\n(\"relationship\"<|>\"氢气\"<|>\"水\"<|>\"氢气与氧气燃烧会生成水。\"<|>\"chemical reaction, combustion\"<|>10)##\n(\"relationship\"<|>\"氧气\"<|>\"水\"<|>\"氧气与氢气燃烧会生成水。\"<|>\"chemical reaction, combustion\"<|>10)##\n(\"content_keywords\"<|>\"chemical reactions, decomposition, synthesis, combustion\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-7367de1960fc3eb00672757c23990f62", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\n硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/5009542d74a24d00b5ae62f5cdc0f048/media/image1.png)\n######################\nOutput:" + }, + "f2bba3043b1750a42bf359aaded81d4b": { + "return": "(\"entity\"<|>\"硝酸光照分解\"<|>\"event\"<|>\"硝酸在光照条件下分解为二氧化氮、氧气和水的过程。\")##\n(\"entity\"<|>\"氧化铁与硝酸反应\"<|>\"event\"<|>\"氧化铁与硝酸在加热条件下反应生成硝酸铁、水和二氧化氮的过程。\")##\n(\"entity\"<|>\"氢气与氧气燃烧\"<|>\"event\"<|>\"氢气与氧气在燃烧条件下反应生成水的过程。\")##\n(\"entity\"<|>\"Δ (加热条件)\"<|>\"category\"<|>\"化学方程式中的加热条件符号,表示反应需要在加热条件下进行。\")##\n(\"entity\"<|>\"燃烧条件\"<|>\"category\"<|>\"化学方程式中的燃烧条件符号,表示反应需要在燃烧条件下进行。\")##\n(\"entity\"<|>\"化学方程式\"<|>\"category\"<|>\"描述化学反应过程中反应物与生成物之间关系的数学表达式。\")##\n(\"entity\"<|>\"气体符号(↑)\"<|>\"category\"<|>\"化学方程式中表示气体产物的符号。\")##\n(\"relationship\"<|>\"硝酸\"<|>\"硝酸光照分解\"<|>\"硝酸是硝酸光照分解反应中的反应物。\"<|>\"chemical reactant, decomposition\"<|>9)##\n(\"relationship\"<|>\"硝酸光照分解\"<|>\"二氧化氮\"<|>\"硝酸光照分解会产生二氧化氮作为产物。\"<|>\"chemical product, decomposition\"<|>9)##\n(\"relationship\"<|>\"硝酸光照分解\"<|>\"氧气\"<|>\"硝酸光照分解会产生氧气作为产物。\"<|>\"chemical product, decomposition\"<|>9)##\n(\"relationship\"<|>\"硝酸光照分解\"<|>\"水\"<|>\"硝酸光照分解会产生水作为产物。\"<|>\"chemical product, decomposition\"<|>9)##\n(\"relationship\"<|>\"氧化铁\"<|>\"氧化铁与硝酸反应\"<|>\"氧化铁是氧化铁与硝酸反应中的反应物。\"<|>\"chemical reactant, synthesis\"<|>9)##\n(\"relationship\"<|>\"硝酸\"<|>\"氧化铁与硝酸反应\"<|>\"硝酸是氧化铁与硝酸反应中的反应物。\"<|>\"chemical reactant, synthesis\"<|>9)##\n(\"relationship\"<|>\"氧化铁与硝酸反应\"<|>\"硝酸铁\"<|>\"氧化铁与硝酸反应会生成硝酸铁作为产物。\"<|>\"chemical product, synthesis\"<|>9)##\n(\"relationship\"<|>\"氧化铁与硝酸反应\"<|>\"水\"<|>\"氧化铁与硝酸反应会生成水作为产物。\"<|>\"chemical product, synthesis\"<|>9)##\n(\"relationship\"<|>\"氧化铁与硝酸反应\"<|>\"二氧化氮\"<|>\"氧化铁与硝酸反应会生成二氧化氮作为产物。\"<|>\"chemical product, synthesis\"<|>9)##\n(\"relationship\"<|>\"氢气\"<|>\"氢气与氧气燃烧\"<|>\"氢气是氢气与氧气燃烧反应中的反应物。\"<|>\"chemical reactant, combustion\"<|>10)##\n(\"relationship\"<|>\"氧气\"<|>\"氢气与氧气燃烧\"<|>\"氧气是氢气与氧气燃烧反应中的反应物。\"<|>\"chemical reactant, combustion\"<|>10)##\n(\"relationship\"<|>\"氢气与氧气燃烧\"<|>\"水\"<|>\"氢气与氧气燃烧会生成水作为产物。\"<|>\"chemical product, combustion\"<|>10)##\n(\"relationship\"<|>\"Δ (加热条件)\"<|>\"硝酸光照分解\"<|>\"硝酸光照分解反应需要在加热条件下进行。\"<|>\"reaction condition\"<|>8)##\n(\"relationship\"<|>\"Δ (加热条件)\"<|>\"氧化铁与硝酸反应\"<|>\"氧化铁与硝酸反应需要在加热条件下进行。\"<|>\"reaction condition\"<|>8)##\n(\"relationship\"<|>\"燃烧条件\"<|>\"氢气与氧气燃烧\"<|>\"氢气与氧气燃烧反应需要在燃烧条件下进行。\"<|>\"reaction condition\"<|>8)##\n(\"relationship\"<|>\"化学方程式\"<|>\"硝酸光照分解\"<|>\"化学方程式描述了硝酸光照分解的反应过程。\"<|>\"representation\"<|>7)##\n(\"relationship\"<|>\"化学方程式\"<|>\"氧化铁与硝酸反应\"<|>\"化学方程式描述了氧化铁与硝酸反应的反应过程。\"<|>\"representation\"<|>7)##\n(\"relationship\"<|>\"化学方程式\"<|>\"氢气与氧气燃烧\"<|>\"化学方程式描述了氢气与氧气燃烧的反应过程。\"<|>\"representation\"<|>7)##\n(\"relationship\"<|>\"气体符号(↑)\"<|>\"二氧化氮\"<|>\"二氧化氮在反应中作为气体产物出现,用气体符号表示。\"<|>\"notation\"<|>6)##\n(\"relationship\"<|>\"气体符号(↑)\"<|>\"氧气\"<|>\"氧气在反应中作为气体产物出现,用气体符号表示。\"<|>\"notation\"<|>6)##\n(\"relationship\"<|>\"气体符号(↑)\"<|>\"氢气\"<|>\"氢气在反应中作为气体产物出现,用气体符号表示。\"<|>\"notation\"<|>6)##\n(\"content_keywords\"<|>\"chemical reactions, decomposition, synthesis, combustion, reaction conditions\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-7367de1960fc3eb00672757c23990f62", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n硝酸光照分解的方程式\\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\\n氧化铁与硝酸的加热反应方程式\\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\\n氢气与氧气燃烧的现象如下图所示:\\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\\n![](./Images/5009542d74a24d00b5ae62f5cdc0f048/media/image1.png)\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"硝酸\\\"<|>\\\"category\\\"<|>\\\"硝酸是一种化学物质,在光照或加热条件下会分解,产生二氧化氮、氧气和水。\\\")##\\n(\\\"entity\\\"<|>\\\"氧化铁\\\"<|>\\\"category\\\"<|>\\\"氧化铁是一种化学物质,与硝酸加热反应会生成硝酸铁、水和二氧化氮。\\\")##\\n(\\\"entity\\\"<|>\\\"氢气\\\"<|>\\\"category\\\"<|>\\\"氢气是一种化学元素,与氧气燃烧会生成水。\\\")##\\n(\\\"entity\\\"<|>\\\"氧气\\\"<|>\\\"category\\\"<|>\\\"氧气是一种化学元素,与氢气燃烧会生成水。\\\")##\\n(\\\"entity\\\"<|>\\\"二氧化氮\\\"<|>\\\"category\\\"<|>\\\"二氧化氮是硝酸分解的产物之一,也是氧化铁与硝酸反应的产物之一。\\\")##\\n(\\\"entity\\\"<|>\\\"硝酸铁\\\"<|>\\\"category\\\"<|>\\\"硝酸铁是氧化铁与硝酸反应的产物之一。\\\")##\\n(\\\"entity\\\"<|>\\\"水\\\"<|>\\\"category\\\"<|>\\\"水是氢气与氧气燃烧的产物,也是氧化铁与硝酸反应的产物之一。\\\")##\\n(\\\"relationship\\\"<|>\\\"硝酸\\\"<|>\\\"二氧化氮\\\"<|>\\\"硝酸在光照或加热条件下分解会产生二氧化氮。\\\"<|>\\\"chemical reaction, decomposition\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"氧化铁\\\"<|>\\\"硝酸铁\\\"<|>\\\"氧化铁与硝酸加热反应会生成硝酸铁。\\\"<|>\\\"chemical reaction, synthesis\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"氢气\\\"<|>\\\"水\\\"<|>\\\"氢气与氧气燃烧会生成水。\\\"<|>\\\"chemical reaction, combustion\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"氧气\\\"<|>\\\"水\\\"<|>\\\"氧气与氢气燃烧会生成水。\\\"<|>\\\"chemical reaction, combustion\\\"<|>10)##\\n(\\\"content_keywords\\\"<|>\\\"chemical reactions, decomposition, synthesis, combustion\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" } } } \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/kv_store_text_chunks.json b/dsLightRag/Topic/Chemistry/kv_store_text_chunks.json new file mode 100644 index 00000000..9e13a9fb --- /dev/null +++ b/dsLightRag/Topic/Chemistry/kv_store_text_chunks.json @@ -0,0 +1,9 @@ +{ + "chunk-7367de1960fc3eb00672757c23990f62": { + "tokens": 198, + "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/5009542d74a24d00b5ae62f5cdc0f048/media/image1.png)", + "chunk_order_index": 0, + "full_doc_id": "doc-7367de1960fc3eb00672757c23990f62", + "file_path": "unknown_source" + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/vdb_chunks.json b/dsLightRag/Topic/Chemistry/vdb_chunks.json new file mode 100644 index 00000000..06b97504 --- /dev/null +++ b/dsLightRag/Topic/Chemistry/vdb_chunks.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "chunk-7367de1960fc3eb00672757c23990f62", "__created_at__": 1752193744, "content": "硝酸光照分解的方程式\n$$4HNO_{3}overset{overset{}{{Delta}}}{=}4NO_{2} uparrow + O_{2} uparrow + 2HO_{2}$$\n氧化铁与硝酸的加热反应方程式\n$$FeO + 4HNO_{3}overset{overset{}{{Delta}}}{=}Fe(NO_{3})_{3} + 2H_{2} uparrow + NO_{2} uparrow$$\n氢气与氧气燃烧的现象如下图所示:\n$$2H_{2} + O_{2}overset{overset{}{text{燃烧}}}{=}2H_{2}O$$\n![](./Images/5009542d74a24d00b5ae62f5cdc0f048/media/image1.png)", "full_doc_id": "doc-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}], "matrix": "4nvfPP7zDz1brTi9duZUulVSlbxQknW9Rk8ZPVisBj26zA88h+lQvDaMML2zPhW9VZIou8sQUbr7zfQ8zd0svAeDvLtklSS8idBXPJbSobz6GUW8LovLPLYM8Lpg1AU9UhLPPNN447sHUGW8c3/0vFRFJj2Vn8o8+4Byu6PuFr008qu9rPAtvVARnTzz/jQ80KoIOqijeL0hLhG9j+vnuqMibT2Snpi9TeoCPetjy7wI6mk8q73WOpQ4nbyxcTm9zxCEvJSrB71yMvK8pFVEu8c1Bz0WOTa8ScO1uytXwjzk4Y297LDNvNl5yL0CAjG8xULDun9nEz3eLSu9Ym6KvK2wmrw68xA9gJtpPXqzsDwHaZG8jh0NvTyNFb0e1B89ulmlO5WFH738Gve8ElIvu9gsRjzhYTS9EdLVPCmK5jzQ6hs8Fjm2u2GuHb28jS48/FkLPEcPhj16szA8lKsHPXgZLLtzCwu9TzeFvItQsTwOhCG93PpTvC9xIDoZusG8uw1VveThDT0cOpu8GSC9unTlIj30ZeK7IsiVO/MY4LtehwO9rT0wvU53GLxjSCI8eDPXPO89Fr0WObY8HkeKO19hmzwyWCc93kdWO2GuHbzhLt28VazTvMX1QDwTxRm9ibasPKqjK7yVbHM9uL+gvABoLDxxy8S81Pi8O16u6jqVn8q8vyezO5ksk7uoic28EGsovSgjubvq/J27J/BhuqK7v7tRxcw8l6B8PTJYp71NKhY9hoKjPEFC9zwKhO68me3+PCgjub1MxOc73JOmvGNIojx0pY88izYGvOoWSbwCAjE8SJBeO2Iv9rsiIlQ9IdXRutHEszz8Gne9VvlVvWGV8burYxg83+0XvKFuvbydIIk8D96SvfQxDLxQER09Rtwuveu8Cr0xCyU9JSIHvH7nubpc+rq79bLkvOtjyzy42cs9PMHrPJc5TzsQn368QnXOvKpw1LzBwbe7UxJPvXZMUD2pCSc9f85AvMsq/LseCPa7L+QKPTO/1LtJqQq9pm+ivIAbQz272v08I+8vvZhspjxyCwu7p+KMvJzTBry18kQ7cr4IPa6Ksrw8TYK85GLmOv7zDzwOhCG9n7oNvRJSr7tYORy9bzHAPAXpN71Yk1q9QmiSPNu5jrzI9nI9Xy5EPJRSSL0CKBk8jARhvZcGeLykVcQ8OMA5PO99KbmwCow9Nr+HvU0qFjtCGxA9LfHGPOjVgzwqoxK9Sd3gPCS8WD0hCCm9M6UpPZVs87xUX9E7fgHlPG7KErxURSa95pU9PBeg47yiu787/gH+PBxURr0doUg9+830PKrJEz0GHA+9kOtnvS/YTT1kr087IiLUvPwATD2AG8M90KqIvL7asLv7Zse7Xq5qvQXPDL2SURY903hjPYtQMbslPDI9GAaSN4u33rxbrTi7Dx4mPXBkFzySnhg9RFxVPLemdDyoiU280kSNO4VPTLySEYM8C52avOtjSzzniAE+jmoPPQ/rTj2KA687vsAFPYfPJbzslqI8e+aHvcjPi719gAw8T6tuOryNrjywCgy92XnIu/tmRz0vi0s8gM7AvAYcDz0g4Q68DTcfvlfsGb2ONzg8JQnbPK09MLz15bs8FBIcvLFxubwUn7G8A5w1va2wmr1EtRS9NAxXu3vmB70e7ko8HDqbPNqsH7sdh508UXhKPSWjX7xc+rq8hagLvKbVHT3uMCe7FdKIvO7wEz0TxZm7fGfguy5Y9LzVX2q8lDidvbMLPr0cOhs8ApsDvOoWybslVl27QMEevU+r7rr85qA8Z3yrvNkfij3/51I9cjLyvN/HL7zSK2G8ZJUkPaZICD3GKJg8fhqRvBy7c7xpMNs86SKGu+OuNr1wmO08p1b2vLvzqTzQETY8tKVCPfvN9LycoK+7xugEPdOrOr3v5FY8A3UbvdN44zpNREE7TUTBO9N4Y7r6GcU8HfqHvAxdBz3buQ49yPbyPPh/wDthlfG83qCVPTrzkL01jDC8CxAFPe5K0r29wIW6MQulO/lyBDwH0D48s4sXO0KopTym78i8Ja+cvFB4yjzmr2g+FQbfO4aCozxmohO9vsAFvOmvG701vwc88+SJPOtjS7yVn0o8nQfdvGwX4jz5/xk93PrTu0IbELv7zfQ8bH0QvPuzyTz3GBM9wShlvMUPbLuwJDc6IjsAPT6ahDzslqK8MnJSvLflCL0dhx09+2bHPItQMb3WeBa8W8djPPQxDDzm4j+8MSXQvIc20zxaYLa6RLWUuw5Ejj2kiBu9WkYLOhsHxLxHKTG8QQ6hu7flCD2tI4W8cSSEvKqjq7wLt0U9w3VnvDWMMDt4GSw8Q9x7vFB4yryfB5C88GSwupoGq7zPXQa75pU9vfRLNz29p1m7JDwyvCfw4Ts08qu8DOqcvES1lLwI0L45/gF+vabVHT2wJDc9XUe9u3UyJT2UBUa8/gF+PUP1pzxbrbg8WRO0PLW/bT1WLK28EziEu2YvKb1hIYi8DGt1vHfMqTseRwo8F6BjuuOutjtJ3eC7zZCqvACOlDwlIoe8IO98PPZMaToU7DO88bEyPOA6mjytV1u8WJNaO/blO72UBUY9TpFDPecvwjs+moS6fM0OvMv2pT0Lt0W8DGt1vOf86jto49i8lUWMO9ARtrwwMQ09V+yZvKzWgjzE2xU9nVTfPHZmezsV0gg97jAnvaxXWz2oic28uDKLPKZICDxjSCK7D+vOPH9O57zX+W68QVsju3TM9jy0pUI9YchIvNmTc7ygITu9v0HePJ6h4TwB2xY8kThqPbGL5Ls7dOk8WPmIPNOrOr1cFGY8v0Heu0oQOL0hCKk8t3IePERCKjxOkcM8ZHz4u3SyyzycE5o8TBFquyZvCT0hexO9nm0LPCBuJLxCdU688MqrvBXsM72VhR+7lAVGPAY2urpBWyO9LKREPCaJtDwHnee8zt0sPZ7UuD1HKTE9bEo5vfFKBTyaBiu81N4RvTElUDy2jMk8Z2IAPYPP8rwbVMa84642vG2Xuz3RK+E83hMAPazWArx3PxQ9J7wLPG1k5Dwsihm9gJvpvO7wEz038927Y0giu06r7j2lvPG8ESuVvAdQZT1R33e8Q8JQPTjAOTyI3BQ94MevvH9nEz3AdDU8NT8uPaWiRj1Uxv68v/RbvdJEjTwtPsm87vATOzfZMjwUEhw8L3EgvYy3Xr1Y4Ny7FIWGvEDbybwKwwI9MQslPW7+6LxsMA69mbmoPHZMULpEXFW70SvhvFWs07z9pg09YNQFver8Hb3RETa9lUUMvE83hTqMnbO8v0FePMtpkDw02AA9N9kyPdkfijxAwR49C50aPKwK2by4Mos75BXku5nt/jzRK+E8gLSVvLoZEjyFNSG91V/qPLdynjx2Zvs7pbzxvGGunbzolu88Zu+VvDhAYDxPRfM6EbiquiS8WLt05aK7a7C0uuA6Gr022bK65BVkPa6Ksrx4/4C8Vd+qvWvKXzpNEeo8zxAEuphsJr1Vkqi8xkLDO8NBkTzVrOy8an3dvOH6hjwYID28dMx2vGaikzzJzwu9OFkMvaZvIjzhYTQ9SUMPvPLL3bzck6a4pYgbvJs5Aj1zZcm705EPvf20+7tYORy9U/ijvNtgTz1HKTE86clGu39O57xO3kW62sZKO0b2WToQn/67ih1avVXGfrwjb1a9AxzcvDxNAr2uirK7xNsVPTwO7rrghxy9mGymvHIy8rwtSga9S5ARvHDXAT0TbFo8DkSOPbA+4rv4JQI8Tl7svOCtBL248/a8HYcdvWv9tjwuJJ688deaPCI7ALrZeUi8qLwkvVb5VTyOUWM8OEDgvK09MLxxGEe8Z3wrPYrpg71X7Bk96GIZvZoGKz0EaV692uB1u5ygr73GQsM9zvfXu3204jx0mCA8hTUhvanw+jvYEhu8RtyuPIDOwDwxJVC7QVujvJQ4HTwXoOO8B4M8vSOIgjwCm4M8NXIFPYO1RzzFXO481Pi8vPzNdLzYRnE6Rw+GvMB0NT2kVcS6CDfsOwzqnDxdR728cJhtvcrDTjxVrFM8Gofqu1bfKr2Z7f48Otpku1Hf9zprsLS8VZIoPOWv6LwOBXq8I2/WvJtt2Ltu5L08/Br3vPPkiTzDQRE9DgX6PPblOztIkN680Hexu8tDqLxk/FE8vXMDvkS1lDmqI9K8q2MYvOVIOzzO91c8RtyuvHsAszylCfS5gAEYvKZvIjwXoGO8uUD5O8jcx7xsfRA8NVlZPHNlyTuSEYM7yqmjPJygrzuUBcY6XXqUvFUFE7zTxeW8yClKPIHo6zvl4j+6dJigvAXPDDwgiE88gXQCPWGunTwZOug7/DOjPIVPTDz+gCU9LZeIPCS8WLvrY0u8vFpXPAN1Gz3a4HW7amOyvHnZGDuCwYQ8yqmjvPNlYr0fO029S8TnusNBEb3ID5+8TpHDuzrzEDy4v6A8wg46vMiCiTy48/a8yhyOvDKMfb2l+4W8oW49vdzH/Dsg7/y86JbvvN2t0bsKUJi7LD0XvWYvKT2T0m487Rf7vAKbg7xsSjk9X+FBPHCxGbyoic08RA/TvLXyRLwgbqQ72uD1vHUypTvRxLO7+5mePMVc7ryZuSg8zKpVPCgjOb2nPEu9vw0IPC9Y9Dv7mZ48XocDvbAkN71ANAm9DKoJvF6UP72x2Oa71sWYO0nDtTx6mYW7TpFDvFP4ozsCm4M5l1N6vDcMCroKasO8O1o+Pejj8Tw6Wj48AzWIPetjy7ob7Zi7mSwTvP6AJbz0MYw8NwyKvNJeuDuqI9I8mFP6vEr2DLqAzkA7uSbOvBeGuLxZE7S8CXaAvEnDtTzwyiu6duZUPKZvIr0jVSu82CxGPbMLvrwQUvy8s1hAOq2k3TyMnTM8OaaOvIKC8LwaoBY9+bIXvRNs2ryxi2Q8uL8guQGCVzvvFy68Q/UnPDcmtbyrFpY8+ObtPDfZMjzZeci71ngWvH40PDwR0tW73u2XPS1KBr0MBEg9K/AUu5iGUb0Eggq9NoywPCWjX7xjSCK9jIMIvIE1bjw2pts7rbCaPD5BRbzXOIM8gRvDO9JeuDvk+zg8+jNwPLMl6Trfei29tKVCPTra5Lu4Mgs9DATIvOnJRj21JRw854gBPU83hT1KKuM8i8MbOuV7ErxURaY9YcjIPH2at7zZXx09mzkCPduTJjzDQZG7w1u8vO+xf7yDtUc9JNWEPHTlojxGDwa8A2neOQ8epjzB22K9UdEJPRJ4l7zH3Ee8dOWiu+1Wj70bB8Q8CtHwvA33i7zPKi89z10GvYyds7zN3aw8n9Q4PLjZS7txsRm9G9RsO4KC8LwLEIU9KddovUJ1zjz7Zsc8t6Z0O/qAcjzeR1Y8YSEIvXwzCr13P5Q8HfqHO2QIj7tkyfq8xkJDvYm2LDuFtnk7q6MrPRM4hDz85iC9+4DyO/FksDwh1VE8CxAFPCZvCT1YORw81MVlPA=="} \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/vdb_entities.json b/dsLightRag/Topic/Chemistry/vdb_entities.json new file mode 100644 index 00000000..80120b71 --- /dev/null +++ b/dsLightRag/Topic/Chemistry/vdb_entities.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "ent-44635b939a0dac857d1d84583d9cdbfc", "__created_at__": 1752193799, "entity_name": "硝酸", "content": "硝酸\n硝酸是一种化学物质,在光照或加热条件下会分解,产生二氧化氮、氧气和水。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-7f3f40b149836e219fde3f5ec3bee219", "__created_at__": 1752193799, "entity_name": "氧化铁", "content": "氧化铁\n氧化铁是一种化学物质,与硝酸加热反应会生成硝酸铁、水和二氧化氮。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-a9fd7dcf0855ca37941cd02429f5cef9", "__created_at__": 1752193799, "entity_name": "氢气", "content": "氢气\n氢气是一种化学元素,与氧气燃烧会生成水。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-5efee68823291bc4ac21479758bde4c4", "__created_at__": 1752193799, "entity_name": "氧气", "content": "氧气\n氧气是一种化学元素,与氢气燃烧会生成水。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-af78119e75a899a37b59c6d3cdf9bd8f", "__created_at__": 1752193799, "entity_name": "二氧化氮", "content": "二氧化氮\n二氧化氮是硝酸分解的产物之一,也是氧化铁与硝酸反应的产物之一。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-39b9c01f6d7c02a815d72e8aa4300d43", "__created_at__": 1752193799, "entity_name": "硝酸铁", "content": "硝酸铁\n硝酸铁是氧化铁与硝酸反应的产物之一。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-eab619fba24a1ea828eebee4f54a138f", "__created_at__": 1752193799, "entity_name": "水", "content": "水\n水是氢气与氧气燃烧的产物,也是氧化铁与硝酸反应的产物之一。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-25f95712efbc01bb456e4a0ca78185ca", "__created_at__": 1752193799, "entity_name": "硝酸光照分解", "content": "硝酸光照分解\n硝酸在光照条件下分解为二氧化氮、氧气和水的过程。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-960ab84a56cf61318ff43a546910ad92", "__created_at__": 1752193799, "entity_name": "氧化铁与硝酸反应", "content": "氧化铁与硝酸反应\n氧化铁与硝酸在加热条件下反应生成硝酸铁、水和二氧化氮的过程。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-6a26506b411e8e609e219c74f1d9bf96", "__created_at__": 1752193799, "entity_name": "氢气与氧气燃烧", "content": "氢气与氧气燃烧\n氢气与氧气在燃烧条件下反应生成水的过程。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-f3d221bb8201c27e42f1eb1810ebbe94", "__created_at__": 1752193799, "entity_name": "Δ (加热条件)", "content": "Δ (加热条件)\n化学方程式中的加热条件符号,表示反应需要在加热条件下进行。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-83d0352a8506aa8fa533758fdf674cd1", "__created_at__": 1752193799, "entity_name": "燃烧条件", "content": "燃烧条件\n化学方程式中的燃烧条件符号,表示反应需要在燃烧条件下进行。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-5694ce8668abbda7a6c7164c38e7df98", "__created_at__": 1752193799, "entity_name": "化学方程式", "content": "化学方程式\n描述化学反应过程中反应物与生成物之间关系的数学表达式。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "ent-9022d5c3e03199ed50ec1d89b503f209", "__created_at__": 1752193799, "entity_name": "气体符号(↑)", "content": "气体符号(↑)\n化学方程式中表示气体产物的符号。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}], "matrix": "D5cmPbiMuzxsaDS9M+wPvbISB73XMze9USI4u/s7Mj2uDPu6rR+VO5AjQb2kfrW8Bf6wvNQ427uzeKo8o8DzPJL6Nzy6Y7K8vC/5O65Zaby4uIq8WMuBPMJn77tvWOC6pDFHPX/DKDxYc+O8rUA0vPmQCj1aSlq8p+eevNxzl73bLpO9cn+LvJ8dNjumVSw7nqxivJ1GP71wqBS8dwGqPL3tOj2sjSK94CEFPUdHhLspH+G5TSfcO6WXarwe3om8Oj27vHDJM70pbE+8xUkWPIB2Oj3YEhg8YF7ruzIuzrxZMaW9PBQyvN4ev7zb4aS8JRaAvKHp/Dx52KC8DnNBvRlyWruoLCM9r/YLPV5xBT2N2/a8sDsQu9IU9rrxE5A9Ht4JvGwbRrwhzrW8jdt2vJzV6zwRuwu94sysOktQZT3QSK+7SdGMPIiFp7wyLk68BbFCPCdI6jyfaqQ8yGURPK/KvLsF3RG9TuUdu0tQ5TxekqS8BRdmO/mxqbwstJm934TivOFbWTtwFiI82r0/PLSR3zwkhA08F/MBO59qpLz6F0294lvZvJubF7yhQZu723BRPKPA87w23Ls8AlMJPU6N/zonldg8S1sVvPUvCzuAoom7pKqEvGxoNDx52KC8NrucOgnFU7xjprU8hYrLu3UJlLzk5WG8I+dqOqMN4jxlML482yNjO6H0LLyRPPY7k2BbvSCq0Dzmxwg8zr4mPDXDBr0QSrg8xUkWPTqKKb2e+dA8q6t7PQ+M9jzk5WG8Y4UWPeGox702CAs9S1BlvRk4hjyKnlw50hR2vBT4pbzJqhU9evyFuWwbxryCAEM9nl90uwe0CDwfkZu9fp9DvayC8jxsR5W6GjCcPPim+bzLKe48dSozvdn//bwFF2Y9gdxdvQp4ZbutQDQ9o8BzvAInOrwJxdM7YwzZvLHNAj3worw98btxPDPsD7zA3ea77PTOvNTr7Lz4/pe8cqAqvURlXT1OjX89lw5JvUzBODu2tUS8GXJavBowHLzCZ++7oINZvJVCAj2kMUc9CT6RvQwC7juaS2O8m2/IvNq9v7zMNB48yhC5PPDvqjxvYxA81amuuhCwWzs/njq8qxzPvFp+EzsrQ0a90a5SPMznL71ekiS9rrGHvPHvKr23znk9HUwXvK5sg730nRg8/njMOh1MF7x3tDs8bz+rPPRF+jyDZuY8XnGFvSEbJD0mfKO7rUC0PK1AtDyFtpq8PXpVPWS/aj3+8Qm9fssSPU0yjLwdIEi9w9hCPW2MGTw7o9685Va1vAnFU70BwRY8z1AZPfLGIbwj8ho9Hzl9OxSrNzwblj+9zk1TvSSlLD0dTJc6NLjWvHRs8TyRPHY92BIYvf6kG73EPmY8HW22OVbpWrzjfz48TSdcPct23DuWh4Y8q2k9PTHIqrxsRxU7yjyIu07lHTwG1ac8ysPKPJgyrrwfRK28NSmqPJpLYzxKNzA8Q/+5PN2tazymCL49FRwLPK0fFTreuBu8XYf0O/p98DykfjU9UohbvXEvV7zuy0U7Aic6PFqXSD1nBzW9T/5SvXJTvDyGrrA7KR/hvGOmNT1xL9e6CzYnvqJlADougOA8mkvjuZXq47s3AKG8O6PeO/SdGL3vfle9QA+OvGpET72LwsG8pKoEvACdMTzI7FO8RolCvOZ6mjwD2ss8vIeXPAsVCLvg9TW8R6J3vIgfBD3BLZu81hoCvSH6BD387kM6dFYCvCUWAL3f0VC8C+m4vWi6xrx9GIE8I5p8vCdI6jsa2P08C8iZvFg5jzxw9QI9X17rvNOFST3GYks95Va1vLA7kLvyxiG9JckRPaPLozw43wE94sysu+OrjTsnoIi4Z+aVu13U4rwG1Sc8xq85vdtw0TucLQo9D+QUPV3UYrt6pOc6IF1iOhKHUr3QPX88Vq+Gvf6kG70duqS8ZzMEvPUDvDy97To9vDopvC4+Ijy2AjM7dk6YOlkmdTyYzAq9dMSPPXB8xb2o3zS9pyHzuyi5vb1ecYW8peRYvJvohTx3kxy8ve06PDIuTrzbLhO9qxzPvDQxlDxN2m0+CKFuPYk4uTzgQqS61Z7+PBNFlLxfq9k8ve26PAj5jDw9x0M70hT2vBXXBrzZpIo8jwoMvSz217tRToc9flLVPCHONTxHrSc90OKLuw+M9jzuGLQ8ZTA+PUoWETyYMq68U9iPvCZbBL3ViI88NggLPBBKuLzNAOW7f7h4O+U1FjzSbJS8gY9vO/NYlDrJqpU8vVNevDUe+jw+6yg8x685vCVxczykXZY8W7D9vMMlMbtaSlo76JNPvE7lHb0Sh1I9XySXvK0fFTtEZd27yOzTu7K6aDsaJew71EMLvZnlv7wT7fW8EodSvR8jDj2fHbY8z1AZPByv9DzIhjC9Zb9qvCrS8rtJee48paKavd0Fij2lSnw9awIRO85xODzBTrq8cToHPZpL4zxtNPs89QM8OwJ0qD1fXmu72umOObfO+bvDUYC8QVSSuiSEDbq6sCA8MFfXuws2Jz0ugGA8OoopPWuqcru2ArM7gY/vPLw6qTza6Q69Gn2KO42ZuLtjDNm8adP7Oz6FBb1K6kE9K28VvKch87wfkRs7GQw3vSSlrD1JeW68jTOVO8Ziyzwv8bM8/KwFPUKZFrwzn6G7oTZrvMt23Dwblj89yVL3PJL6N7zuGLS6fwXnu8fTHj3lCUe9/KFVPBBKuLvhW9m7n2qkPISzVL0xFRk99FCqOp4EAT1H7+U8oTZru0/+0rzJn+W8F5vjPEf6FT17Yik9I5p8PVdPfjx1CZQ77G0MPe+JBzwxezw8otONvH05IL0lFoA4FmGPPNvhpDwgqlC8zr4mOvKlgrwhzjU9WHPjOr4GcD0hGyS9fS5wvAxaDDsI+Yy8hxTUvDPsj70duqS6uo+BueuOqzst+R29hxRUPWQXiTxZJvU5hHEWPf7xiT2AKUw8ow3ivO7LRTyEcRY8q0gevStDxjtUxfW7eYsyPPp9cL0AnTE7K0NGOR1ttj1+yxI9VYO3PKyNIj1zud88ON8BvSVx8zz5ZDs8w9jCvEQriT023Ls7lTfSu0bWsD0FscI75D0AvBz8Yj3rjqu8/BqTPdyUNrzk8JE8P1FMPNWIDz0I+Qy9EEo4PSoqkTzANQW9vyrVvNsjY7sHiLk8vDopvdIU9jxGPFS4A43dvFY2SbykMce8Bsr3vO73FLxp3is9ShaRPLA7EDwgXWK9+n3wPK/2i7zzWBS77vcUvRD9yTukMUc9NSmqvD16VbwkhA29iMflu0uogzvbe4E7b2OQu9suEzuusYc8C8gZPd4eP7x0d6E86QQjvSkf4bx0VoK86eMDOyYOFj1BoYC5nUa/vCSlrDzTH6a9zr4mPRolbLrbLhO8Abbmum1HFbz/K948NrscvHEv1ztZJnU8kCPBvJubF7ya/nQ7VmIYvZoJJb0v8TM9n2okPXB8RTxEZd077EG9vP1fl7xaSto7yynuORD9ybyS+je997mTu9mkijymVSy8gk0xvUUCgLxNdEq9aLpGPWnT+zx68dW8dSozvQs2J72Bj2888YEdvWV9rLyp+Om889/Wu0FUEj0lFoA7PuD4vGE14rp4zfC8fwVnvBfo0TyMKGU8OJKTPHUqM70SABA9urAguw5zQbn6yl68EbuLura1xDstzU69kxNtvO6n4LvJUne7d+CKvDkZVjy9zJu8jv9bu8o8CL01a2i8VB2UPGxHlT1TrMA8wwQSPcXbiLwZcto7G5Y/PGGCULtAwh+8kx4dvUfvZbyQI0G7AlOJu8evuTuxoTO9VunaO6R+tbwTkgI8PfMSvLiMu7zgIYW8Gb9IPVennL3pBKM84ahHvTujXj3vMWm8g74EPSQL0LzIOcI9rR8VvPyh1Ttlfay8tuGTvGnT+zyll+q8D5emPJNg2zyNxQc8Oj27vKyCcjziW1m8eqRnvYk4OT3P11u9IfqEPLzJVbyyB9e8HFQBPDcAob00uNa87vcUvfYnIT2RRya84CGFPG9Y4Dxf+Ec5d7Q7vA7Z5LssZyu87bIQve/k+ryo3zS6Bd0RveMyULv6yl66Yc++uQ3Ar7uxobO85OVhvQ/klLoZv0g9xJaEvT3zEj0mfCM9BbHCPDdC37yx7iG9N02PvFBk9judItq7J5XYvaRdljxqkT28iB8Eu+Sjo7wf9z47qfjpvFoQhjuDZuY5NR76vAeIuTysgnI8ceLoO8g5wryWWzc78nmzOyYOljwxyCo60ftAPV5FNj0o5Qy9bdkHvARLH7314py8A5gNvbml8Dz+Eik8d2fNu+BCJLs985I89QM8PeMy0Lt4zXA6dDIdPHJTvDtf+Mc8SsbcOjGnC72L7hC9Ji+1PBXEbD11KrO7HK90vKmSRruQI8E8NR76PBXXhr3w76q8cwbOPDxAAburSB49k8Z+Oszc/7sq3aI6xIvUvF5FNj3b4aS9l8FavTbcO737iKC7y4EMvY54GT23zvm8QATevN/cgDzYmdo7mv50vJFHJj0hzrU8UojbO47/27xlfaw8AlMJPUEoQ7w2j009S1BlvEl57rv9Xxe8+zsyvQc7S70XNcA8Q/+5OmOmNb1f+Mc8KZgevLK66LzGYsu8F/OBPLnZKT1YDUA64EIkvUDCn7woBqy769sZvX8F57yAVZs8SXluvDo9O7tYOY+8XSHRvJzVaz2CAMO8KAasvIvCwTyXOpg5QXUxPV+rWTzEi9Q839yAPZAjwbz7iKA7FIoYupBPEL1OoBk85Va1vHmLMjvWD9K8P546vfKlArxE3ho6To1/vENMKL2hQRu8LjPyu3R3oTw7o968CcXTPH3sMb0NT1y8ZzMEPd0FCr3XdXW9Y1nHuLg/TTzI7FM7Pi1nOknG3LxzBs485D2AvSC1AL1aSlo9rqbXO4nrSrxtjBm9v8SxPEgTSzw6iik8w9hCOgvIGTxzBk69NcOGvIMAQzxRIjg8B+5cPcMlsbw98xK8gHa6vG9Y4LyAogm8lls3PamSxrzQSC+9oIPZvJFHprroURG8ip7cPOPB/Ly4P028nUY/u71TXjy0K7w9gFUbPLwv+bsgqlC9VGqCPIBVGz1slAM9i1HuuzBX1zyfaiS8DnNBPY9wrzz8odW6WA1APZSwjzy+Xo496pYVPJoJpTsMnEo9hvDuO39dhTzPJEo7U/kuvWFpG7yt88W7ngSBvPlkuzx5JQ+870QDu9RDCzxLUGW8wZuoPFenHLwWgi68adP7uyHONb1GiUI83HsBPJ9qpDvHIA08GnJavQ+XprrBTjo9XnGFvL8qVTqPCoy974kHPWH7jTvQPf88Ic41PGBe67uMddM8d7Q7Oz3HQz38rIU8/njMvGBpm724P808R6L3vOUJR7wQ/cm8JuLGu9t7gbuWWzc8j7LtPCxnq7xXT347MAppPPysBT01Hno7q2k9Otq9Pzz3jcS7OJITveh3TT0r+LA8DjChvZHxXDtE3be6RVswve3YTryUb1U9q737OzqEVLwRZ/C8ncg4vYG5f7xwyEu8Q40APTqE1DsqTHe88LtXvAof1zx0QrU5DbKovDO+QjyPug07SVehu+6EiD2c4SA8yjHFPF4Sdrz6A4A9Zp0pvE1PAzqZt269JgBPvTMrAL1XEYY6K1AVPWuVizyqbUS9lum+vHTZFT2JrVI9i6lDvZhntzy+3HA8nxhwvFj4nbzUiii9UZurvNkEkjsT+kG9cludO9OjkLy0mGY99TXBuH1cHLx6IS+8xdDDvW/hM7sIUae92QQSvLgBFTtr0Gk8lO1NPGW2Eb0zVaO8TSFCPevc3TzfM0M9/eLqvPO3yLz1HFk7FvayPfrmeb1l9Q29qJ8UPM5CDzxcreU8zymnvANZRTx6uI88tq2/vKgINDwVDxu7CFGnPJ9bCrzva6A89MyhvInbEzs4tqS8wVbavNA+gLtlthE9AMbzuK4/Eru7DkE7gNJnvZQbj7zWWNg8DgLgPMvIJbzCazM8Z+1gvY1387xveBS94xZMvOV7XL0LTRg8RcTPvFd6JTxGQsi8YlGBPKmGLD0RLBI8hOOxO+V73LuKlGo8BzxOuyAhVbt87948IYp0PAipizzFZ6S7JRk3PVKwBDtzQjU8Tx0zvVVlzLxXEYY8qd4QO99hBD139/w6mzmFvIlEM723K7i7vuCOvB0lZDvgSBy9OIwBPVKCwzxyxDy935ziPGTxbz3ixpQ9y0aevPvqFz0qeri98NQ/PVMAPL3uv+Y8ZPHvPAw0sDwfOr2878OEPGJRgTzMLba85XtcPZZSXjvsx5M8V3qlvcLUUr3goAA9n5bou8tGHju+iKq8X5DuPOWpHb01UZS8zP90PZSdFr0hCG288SgVPSbvE725Jym9y4H8vEUt77wwWbI86fXFPXenRTzNfW08C02YvJ/EKbzuv+a8p4q7O5Chpb2Va0Y9HD7MPPvqF72F4zE80SWYvNfFFTzpXuW8WPidvAi6Rrxgvi89AttMPUwQh70x1yq7yeENvHs2CLwdvMQ7TnF5vFnfNTt2EOU8KOsEO8a32zxCToQ8LM6NPKV14rytVFw8FsjxvP73wzyR8Vy9DMuQvckgCr0wwlG9PmddPejkijtRcYi9m7uMu1hQgjzUiqi7ZR+xPLVdiDxJPjk9gedAPTSlWr0arxg9cTUJPDArcTzNfW28osCauyhtjD1NuCI9OnOZvITjsTxxMeu6xk68vOGgADz+jiS735zivAuMFD0S5ei8lzl2O1szizzzt8i52tLBPXufJzsa2bs8IgwLva7SVL1yWx09sUw+PEJOBL2i2QI9iUSzPXufp7xJPrm8DbKoO5FafLw/TnW7HD5MPBNj4TxJVyG9lO1NPP5g4zyVWgs6vvHJvLcWX7wihuU8mGc3u/aJFjsx1yq8L9u5vB0lZDvyOdA8ny3JPO7tp7xZ3zU9P3y2PUPI3jyeGHA9H9EdPQBd1Dybuww9LHapuhQoA72ETNG8HxAaO8oxRTy3Ft88jyMtvf73Q70RZ/A8120xPDUjU72VAic9mzmFvI2+HL4YSgi9O/ERPB2nazu2RCA7CFGnvEhXIbuJFvK8mxx/vB0tEbz+JYW8Ns8MvbgBFb1Er/Y8NqHLPOXk+7yuAJY8L0TZPD8TlzupcVM8aoAyOomtUr3qYgM9IE8Wu9ZYWLxylnu6ia3Suz0XJjyvN+W8ewjHvC+Lgr0zVaO8/3W8O5RW7bx5eRO7isKrPJbpvjshn827Ic0OPIoWcrxltpE9VX40PZChJb1Er/Y7kh8evQ2EZz2ldWI9x55zPWzlwrykfQ89yZrkPCIdxruldeK8oKvBPNQhCb0fo1w8IQjtOwH0ND2S2HQ7Ch9XvHFGxDxzq1S9iF2bvARunrwzKwC9WDP8vD9O9bsbwNM8x57zuhITKr3JHOy6d7yePObombyKK8s8GFvDvKmGrD30nuC9eHX1vLPfj7yCZbm9A/Clu2W2kTtCD4g8P3y2O2Glxzq7DsE74QFzvIax4bz4ryo8KGVfPhwtkTx02RU8Hadru+tJmzzmkDW9IYp0PC3G4Dy5kMg7rMGZuxmJBL3YBBK9CFEnPWadqbz3B4+82jthPfCqnDyJrdI81drfPElXIb0vrfg8clsdPBDtFT05b3u7QninvMma5LxKJVG95XvcPI/1a7ztRYy8b+EzPKeKO7t1KU08gRWCvBh0qzwpk6A7V3qlPA0bSLt9BDg9FQ8bvchKLTzJIAo4yeENPZeAH720mGY8jqW0O3UpTbsrYdC8a/6qPDiIY7y89di7dyU+PPO3SDvpjKa8e3HmuqQlK71ylvs7B1U2vadgGL2qbcQ75XvcO3OrVDzr3N26YiPAO1V+NL1M0Qq9DbIoPaQlK72L1wQ9kh8ePfoUOzzNfe08RVswvU1PAz000xs9xiD7PMnhjTxc26Y9OB/EvHufJzyn81o7fpuYvJ/Eqbzqcz48xuUcPX3W9jpQ8488ZvUNujUjUzy4ARU96fVFvIlEszymo6M8Kfy/vI57ETxliFA8bWM7PKdgGLzABiO8xTnjOzrtc7zD6Su7MdeqvBN8Sb0Kz589RDH+vJfYg7vXxZU77W+vu5cXgDwkMh+7a5WLO1q1krz3Bw87oz6TPAwGb7tVUHO9RVuwO13CvrzIYxU9vDwCvPcxMjxRmyu8FXg6uxw+TD2q1uO8sPwGPQzLkLwnbYw8r2WmPLxe+Lst30i9e58nvRjE4jzP/4M9L634Oj2uhj0gTxY532GEO3Y+Jj0D8CW9AN/bO41387yJRDO8EuXoO1+Qbru3lFe86A4uPdTzR7t2lgo8r87FPFtdrruvN2U9U5ccvdygcTxiEoW532EEve/UP7xeQDe9DUkJPBrZuzzQPoA8REZXveSUxDxB0Is8yp6CPASp/DwD8KU9lum+PNgEEr06GzU5aWtZvCWwl7zaaaI8GPKjvKodDTxSGSS9qtZjvGx8I7zGPYE9e3FmPDUj0zw7ma28xf4EPeleZbxTALw8kArFvPQ1wbxNimE9POlkvA9rfzy3wpg9Ll1BvDQ8O7uY/hc9s6ATvSjOfj3dpA88SiVRPE06qrsEwuQ7UPOPuohdGz3pjCY98NQ/vRJrDr30JIa9Pv69ujFASruxTD48TorhO+GHmLxZSFW9XhL2vGGlx7w7GzW90BC/PBV4urw+0Hw7tys4vVdM5DyLQKS8cDHrPItZjLzCApS8EhMqPbxeeLytO/S8y689vWpWj7xmNAq70ffWOoEVAjybHP+81z/wPN5MKz0nbYy89YX4PMqeArnU80e8ByuTuypM97s2OCw9RbMUO/hGi7wHPM48Hgx8vc0UzjxKJVE7jqW0OtppojxrlYu8JbCXPMAfC7yMkNu7W10uPM0DEzsTkSK8s7HOPFXO67taxk294IN6POV7XD3va6C7zqsuvDzp5LyF+Iq8Ef7QPEpTErzqRX28k9ySvNNkFLz3mtG7Ou3zu7ipML2GseG8vCMavOfgbDxjoTi8fIY/PO1vr7uZTs+7QPquPI/167nzIOi8IQhtvC9E2btLo0k97MN1uy3fSL2UVu07D8cBve6/Zrsp/D89b+GzPLatPzxeqda8LM4NPeGY0zvU88e7bHyjOrNIr7wSfMm8gedAvWdzhryQOAa8pLwLPGpS8Txr/qq7Qk4Evf91PDwOmcC718UVvDUSGDvINVQ9QPouPK079DyXUt688qYNPMPpK727d+C8Z7ICvMhKLb3wu9c80BC/vBPphrwHpe08a2dKvI8jLb0ExgK9mNBWPEq8sbv65vm7NKVavX9Ubz1PhlK9OE2FPGjU+LxNuCI9hWEqvBITqryaNWe9nq/QPTzp5Lqbs987FCgDvH1tV70XRmo9ovt4vMI9cjzW77g8mmOoPMoxxbwNG0i7D4BYvNhDjr1DXz89/2QBvS/buTyBfiE6Ef5Qu/8MHTtjUYG9GPIjveaQNTqGdgM9GEqIvBlC27vdHmo8DRvIu5yad7x/WI08jqW0uyE2LrzMLba8FvayPJscf7wE1706J+fmvGKM37knrIi8Cjg/vRxsDb2PjMw8D+n3PGR3lb0zvsI8CCPmPKeKOzsoZV+8e3FmvPr/YblNuCK8JxWoPL1z0b0oZd87WPidvG1SALwp0hy8uScpPOXke7ykjsq7kwY2u/FSOLwml6884QHzuPhGCz3r3F281IqoPOXkezwGJ/W80SWYO5c59jyJRLM879S/u9g/8Lpq2Ba9WGE9u9UIIb2w/IY8bcxaO1VQc7zzt8g6hjcHvKkdDT3Lrz27/ftSPDArcT1zQrU86/E2PU2K4Tw4tiS9K/iwu92kDz0bVzQ9bVKAPFzbJrwOMKG7yLPMPHufp7xnG6K9O5ktvf7mCLuCztg7AcoRPb3ccLtgvq85hjNpPOoKH73PgQs9FSiDvZ4YcL2bNWc8ltgDvXOaGb3YBBI9gRUCvOCxO7xaxk26SqfYO98zQzkhCG08qVjrPDY4rLwoZd+8nkaxvII3+Dw2OKy7Ih3GPADGc7wz7IO7xdBDPA1JCby6vgm99YV4O53IuDwdqwm9T7QTPC/0Ib0CROw7rlDNvFj4nTxc2yY9nOGgvGx8o7z9ecu8aelRPMiikTzZ66m80KefPLOxzrwlsJe7/RAsvBcLDL29CrI8E2NhvGHTCLra0kE6idsTvRH+UD3jFsw8J37HPM775TznZhI7SJL/PCjOfjyQc+S8FEp5PHq4D7zSjje8IQhtPMLUUr2YZ7e8lISuvDBZMr0KDpy8VFBzu2MKWLyOpbS5jb6cvDQ8Oz0JJ4S8pqMjPLJhFz3if+u8rgCWvRwtkbxJPjk9vuCOu2CUjDvTXOe8ejqXPM0DE72ImPm8ZPHvPJGIvTxS62I84YcYvckgijyN/Zi7c6vUPD0Xprs7ma081oYZvd5MK73vwwS8y689OxDtFT3XxRW9LEjoPIqU6rzm6Bm91u84vPtk8jwVD5u8zC02vetJG713jl08+hS7u05x+Ts/1Jq7DUmJPLatv7oAxvO8BMaCPdgEkrzABiO8Y7ogvdDi/TxqF5M9ewhHPTahS7wiS4c96SOHPLcrOD3TXGe8WUjVuzDCUbsW9jK7SwxpPa65bLsrym+8gX6hPCAhVb2JGpA6jyOtPMwtNr1Yyly8XSvePF3CvrxoAro7DMuQvMU5Y7yz3w89DjChveUSPT3oDq48W/SOvJnlr7vcN1K9FsjxO2QK2LoQF7m8gACpO/UcWb11Kc089zEyPf9H+7wpk6C8e3FmvZnlLz1ltpG95vlUPSjrhDyLQKQ8jPn6PBmr+ruXOXY8dj6mPM+SRrxncwa9Cc8fPevcXbptY7s5HNWsvEarZ7pXk408Ih3GPGdv6LuBuf87mjXnu4kW8jySHx49kfHcu4z5ersT6QY9OzCOPEar57r8WHQ9JQsMPQet07xIdpq8OgZGu6Wjkr3euPe7ckogPUe3kjzg4wu8w1RGvElWRL1T65s8rbumvFlV37zQJrW8KtYdvBu3LDsKuBG6rcxdPEYJwrwtZeQ7mOEOvOsoTLynAAA9KtadvMKEB709ZP+74qITPeNhG73fdrM8MHCivEvTh71wrDq9ekLeuzOcgrzSkw06NFuKvN3YTbvTczc9VWp3PN92M73/dGk8OTdTvNw66DlT27C8KufUvLM1VTt8rza9PhEEve6lD7yyhjg87qZbPf6ldruL/zQ733azvAup8r2qbiS8vjeFvfa+77w7teI703M3PeEF+rtLw5y7gIt/vAw2oT2wCCk9Xv4CPXVmlbwZKn69gXrIPOsXlT0MRoy8HhXmu5cTaDxeIHE7q/3quq2aBL1T65u700KqO1Y5arw5F/26Q7y/O7ptPzzRxJq8WVSTvEPtzLzfRaY88eImu7pciLxgXLy8nnzfPHoxp7wNBZS80CY1vOwnAL2fOps8bV84PEOLMjyosOi8gZoeu8ahSLz23sU8xAIXvZv9g7x6c+u8Fd17PfXNjryJklw9XNPuu6G4Kj0XioC7okdxPOXfKjxKJbe8kPvTuzk3U7ySeeM8a+EoPSBhHLzfh+o8SIaFPeQQODzfVZG8FC2Tu0h2Gr0qB6u8MD8VPNjcLry7Tem7waUpvWSYh7w0O7S9ulwIPSa6KDppdFA8O7Xiu0CPEz1olKY8tbPkvMQjubzKjLA8toLXO+eOR71olCY9i0F5vcGlKT1KNm69CFzwPDbphLxKBeE8y2zavMdQZT0bl9a8IIK+vCExWz2yJB68QuwAvVSJAb33Wwm9QID0PK5ZjL0+8S27UuxnvLp+9jxUik29i0H5u6QFLT2SNx+9TiHWvP60lTz7mKA8lJSMvdZuijyQ+9O8Ir4JPaCYVD1RXaE8yO7Kugkr4zobl1a9Eq+DvMTRCby96069dXfMPCUcQz2uWQy9cgp0vLptv7w3uUM8X+/ju3ZGv7wYaqq88eKmO7Mknj135KS9XJGqPCLPQD1f7+O7qdC+O9K1+7y1s+S784CMuzbZmTzwREE8S7T9PFEslLwpJwG87FlZPMzq6ToLeGU8114fvQ+DI732nIG9g/eLvVLsZz2OTDe8vbrBvBesbjzMCsA58rGZvKaU8zssZJi8ArE0PX8+fT1o1mq9DtSGPA/F5zwnevy8wBh7PZW1rrwbl9Y8bj/iPNg+SbtcomE7mk+zvEy0/bsYe2E8ehCFvAKRXrwTX+w8VImBvGGNybw0Wwo9T64EvZcTaD14wwI9D4OjuomBJTnnfRC95e8VPdqroby0Ff+8FH/CPFlVXz1pYxm9nzqbvA60sLpgrR88LGSYuu7GMTyk5Io8H6IUvNtr9TuXM748RSkYvXCsuryvObY6Bf42Pf3lorw26lC8eJPBvHTILz1iKy888FV4vH5eU7w9U8i8qn4PPX/rAT1coRU9Y/ohPcwKwDk0Wwo9zojPO7Nm4jtf3iy9IFExvem787zGcLs8TiAKPaJ4/rycvIu9rxgUPQkaLD2iZ0e9rptQPb26wTzmrh2+JsoTvULN9jz56YO8c9iauzeZ7byxpg488ERBvYWn9LzywtA8XXHUO3TIr7xsoXy8vmiSu1hVXzzwJGu86QzXPKQFrTw6F309AERcvBLQJb38R728tbKYPR7TobzKaw69/sXMOjSMlzyVxuW5O9W4vDbpBL0mmYa90NVRvEln+ztSDL67nzqbPH4txjzqmYU8E7DPOxJuizwLmLu721o+PYsQ7DwAE088Q812vMXS1bwznAI9x08ZPVzCNz1wmwM8/pQ/PCOeMz3hBfq7CStjvPLC0LxdcAi9KrZHPHPYGj1Qji49ejGnu0oElTzBhVM7hxTNvMQDYz29iTS8lZSMPLM1Vb2s7LO5eYIKPT4iOzw5N9O8+6nXPEVaJTsTnxg8VUiJPNOE7rlAjxM9jyxhvT/QC70uA8o8GQiQvSUcwzxL1FM8O8SBOxhJCDoHrVO7QR0OPKp+D72rPRe9NRoSPTPOWz7A9gw86dvJPDBworxIpyc80DdsvEPclbwTsE89qm4kPF+9iryOTLe8B5wcvRbsGj3BtZQ7ADOlvC+hLz0yzQ+8AETcPLGmjjy3Ucq7ewCaPOT/AL18XQc95126u1SJgby15HG8qn9bu+QQuDsq5gi8gIv/vKJHcbzEAhc9glryPOW/VL3Xb9Y71o+su3mCijvi1Gy9omdHPVCOrjtyKsq81qBjvHF7rTxxWgu8ilAYuwQeDT0shbq7my4RvT0C5TzUIlQ7MT8VvS+hrzs1TOu7mLCBvBUdKDw7pCu95d+qvHliNLx+XlM8LFQtvFK6Djxv/R07SvQpPdQRHbwRQ3e8pLTJvEbpazv/gwi9VghdPeH0Qj1ZRKg8bg2JPA60ML1Ih1E9KgcrPdwpsby9y3i8KUlvPZMXybxn9sA891sJvZcCsbxeIPE6PvGtPCrWHbvXb9Y87EgiPQJfBTxqErY8wbWUu95WXbw5N1M99q04PWPay7wKyUi9gxiuOi/j8zvEEoK8iOO/vExhAjzJ7kq9fi1GvMAHRDrwRMG8dkY/PQLz+DwYOZ08fi3GOnzgQ7us/Wo9B63TvKmvnDrsSCI7pNSfO8ndkzxv/Z08YisvPPQvqTxswdI67CeAPfkL8rw7pCu91CJUvHpz67zdCds8dKjZvN6WiT0/wKA7NgonOlEsFD3kELg8MVBMvZTFGb0EHg09oYcdPa57+jzZ7WU97pWkPJpvCb0HrVM7zYjPvccfWDtBPrC7eJNBvVlEqLqloxK81tHwusQClztkuvW8If+BO+T/AD0jnjM963kvPb43hb0BE0+9W/NEvV4gcbz1zY68TiCKvHzPDDymYhq8/SfnPH8+/buMrYU8hjQjPcs6AT06BkY9OTYHPaTUHz2yhri7zBv3PIpBeTvZ7eW8llOUvI8bqryiZ8c8cYxkvSvHfrxj+qG8kPvTPALCazyJktw8TLT9OhRONT2zZmI8CCoXPDu0Frszztu8j/qHPfd8q7woSe+6SVbEPTvEgbvt97689EBgPbcAZ7yXE2g9FszEPFSqIzxj2ss7XSDxOTRsQbwPkw49XkDHvDk2hzqosOi84fRCPUYJwjwYaiq9pOVWPdwIj7x35CS8Fv1RvbHI/LrsJ4A5pnKFvXPoBbz4Sx494qPfPFIMPrxBgHQ9PQLlvI/6h7xhbXO8OSacO8GFUzwomlI8EGKBvJmxzbxUik080DfsuhXde72Bmh69SiW3vAnpnjyc/k8955/+O1RZwLokbaa8ehCFvOXwYTzysZk8XXAIPa27pj16Qt47kwaSPLnPWb0+Irs8JTwZvcwb9zuRqnA8lbWuu9g+yTwbl9a8nkqGPEENIzzLbNo812/WvOKj3zkK2v+8nnxfvNncrjsDgKc8hmWwOzUaEj0JGqw5jV1uO3TIL7wvcCI95wsLvdtavrxdUX68Fd17PPRAYL3Q1VG81cA5O+QQOL1+LUY8kZm5PDCBWb1kqb68DEaMvOducTxfvtY7vevOvCd6/LyXM748uZ2APKnQvjxc0+67mm+JvY2uUb1kqT48+smtPDUbXruRqnC8ypybu2BcvDwtIyC7IJP1PBRf7LmCWvK7VWp3u0VapbwW/dG8PgJlu+NBRb022Zm8KUnvPCN9Eb1CDSO7T9DyvDLND7zkELg6Ctr/PFI9yzxH2LQ8M87bvFl1NTwBE0+9obiqvM24EL3p+5+7iPR2uziINjtAoEq9VLvavFl1Nb07teK8gIv/vPqoizwIS7m6ub6ivG4Nib2iZ0e8vAslvXC9cTyqbiS89Q/TPGS69bxZdTW8YgqNvZmRdz15pPi80NVRPWvxkzsy/2i9MVDMOyoHKz1kqb48LIU6OpT3cjz95aK8kYiCPEOrCL399Q28Vigzu7MkHr3jYRs97CjMPOjKEr1e/gI9MQ4IvRxGc7wqtke7xz8uu99VET174MO8xcGePMndkzzbSYe8TiHWPHTIrzwgYRy9SiU3vexZ2TyMfUS7hmWwPNntZby3Uco7Bt7gOy/j87yTF0m96dtJPN3YzTwZ6Lm81o+sPAra/zzYDbw8J4mbPAAzJb3QN+y7hMdKPJDqHD3KjLC9NFsKPc5oebwbyOM7waUpvM6HgzySNx+9TiCKu0eHUbymMlm8Al8FO/wWsLrl8OE8rxiUveNxBj2kFuQ7spfvvK5K7Tr7ZxM9bZBFvAAzpTvt1+i6PQLlvBHh3Lyw6NK8cwr0ux1G87wKyUi9szVVu1imwjxpY5k7cHstvQkr47vp20k9lcblPFPrGz3njsc8UV0hvaTlVjy9usE88ERBPe2mWzzDQ4+8OgbGu1BuWD3E8qs8sAgpvThnFL0sI6C6PUKROwxnrjpnpd08SSW3PVVZwDwFL8S821o+PYCLf70RIQm93CkxPazss7v9J2e9poO8PI5d7rwZKn68DDYhvGRHJLyOTDe80pMNPYmRkDyyl2+7Rhr5vF4vkLtX1gM9xAIXPTeZ7TzfVl29+CtIPXSXIrydrew8MjD2vL8HxLsFL0Q8fY4UvUFPZ7sgk3U7rP1qO2lDQ7wvgA28Tr+7PD4RBLy6nsy7ETJAvZI3H7wB0Qq9mmBqvYGrVTzV4I885b4IPNZuijsjr+q8szQJPIiBJTvqiZo78RO0vCb8bLwe5Fg9Uj1LPUVaJT3wM4o9xdGJvEVr3Dppc4S7CFxwvaJH8TwtNNe8uzyyvNaPrLxMYQK9jkw3PewXFbzrWA29nmuoPO91Tj3p+x+84CSEvFIMPrzfdrM8JG0mPOKj37wO9vQ8pzGNPKZyhb1j2ku6bj/iPDxk/7q0oi08QG89vWojbTwzbEG9Al+FuuKjXzyvObY8bj9iO0Scabz3fKs6rnt6PKzsMzxMYYI8ppTzO+QwDr3J7kq942EbvHcm6byGZbA9EQEzvRUuXz2NfUS9sch8u0olN73cKTG9TiHWvCEwj7zuxjG9FJD5vLIkHrzo+5+6jo77vCQtejug+m66nZy1PIYDFjx9jpQ8nktSvBAS6jqAyys9VUgJPYcDljyVhCE8hKd0PU1S47x8rzY9qeH1OkoUADwkft26MHCiPOsXlT0EYFG9jyxhvFSKTT24AGe9mpF3vHVmlTu3IL28xPIrvUPclTydexM9Q812PGYmAr1v/Z278sEEPREyQL2ZYGo8Uj1LuyknAbyxpg682e3lvL840Trx8pE8gjgEOyOeM7wlC4y9dXfMvHfkpDvDA2O8VtfPO5PmOzwUf0K7qAFMveauHT3B1jY8lPfyPKDIlTyRaKy7L6EvPfuYILuvGBQ8XiBxvU4h1jwYOR28E5+YPOXvFb1HtxI84qPfvPxHPTtMYYI8VtfPO1i3ebtYpkI9+FzVPNgNvDw71bg8syQePWlzBD0ggr677zJDPURs6TwZd0W9XelSvWBqYbzZgIi92RgSPDpoLz3i7Lg8/+owPJOFnLwyM2290uPPPLcV67wQEvC7eIekvD0Kpry/axU8ugGCvAYOtjw0ZhK9Vx+ZO61QbzsJ0ZS6zkHZPDTOiLwbKGe8LtsWvVjntTxirDG9DrLJO0jwCb3uEVu9qpAive7w8rzu0hw7Amw/PNMEOLzxU6u8aPAePee+wjw/W6G8yTCRPDlZhDsVT4I7Js8Mvf8aRLxCZY48MhUXvZvYNL3bqMs74GuqO8HaZj1begG8GrkVvEVdvrx8icG9Zo3mvKSsW737OQ+9JDeDOtzY3jxe2ie90tSkvE4Tjzu5SJA9KV/GPChQGz20lNy8SV9bvd+jDT2prng9gPuku14rI7q9OPA767kEvAB0jzsBXRS96zAmvBP+hjxmTii8/Jm1PDfnoDwgRJG8n9pRvY7R6LtaWRm9zWqRPJYV1jikfEi8H4sfvRCtCzv09aG8492NvKct6jsFHeG8iy9yPEpxGLuFLVU8D8QGvbg2UztcyGq8SdmOOvPjZL0Tdai8Nk8XvYrhCD0iS2y8hP3BPKhd/bsvLBI9skPhPNVVMz13ls86Gyjnu/yZNTtPQ6I7AHSPPChu8TxwzBW6yO7APGVOqD3qABM9al9wPMuBDDxOUs28Gwd/vCE8wbo4VvI7UZQdPNWFxrzimz27HWq3vRnIwDwzdT28u6i2O6vwSLsOgrY8kjQhPIFqdryRnJe8g9xZPBmJAj1yxEW9d1cRPV25P73Amyg9PQomvce+rTwUpbu7Nk+XPN1SEr1Vljo9McSbvKLVE71KkoA9sdSPvIKL3rzaeDi9zWoRvbDR/Twtq4O9SP80O2ogsrwZmK08ILuyvKM9iryqkCI9T8wAvUpBBb3CK+I8Aqv9O6hdfb3Rwme7Bi+evHxKAz24Jyg9pG2dPBb2Nju6t+G8Xwo7vabNw7yPs5K74/tjvRYmSj2NYhc9/xpEvVlHXLvAy7u8TfKmPHY2qbt2dee8Pnl3vPV+AD0+K449gotevSi4ETuXZtE8RE6TvJ/pfDxQo8i8CL/XOB154jsBPKw8ATysPFyJrDzRpBG8d1cRvdvRgzyl7qu6gDrjPKKlAL3ZNmi9he6WvS5zoL12dWc96zCmPCrgVL1NEH08szQ2PFcfGbw+eXc70xPju3KjXT1J2Y49I10pvR+LHz1Xt6I7wJsovU5SzTxi6++7r8LSPABL1zxMoSu8aqmQPFMGAb1ciSw8P1uhPLSU3LzxU6u8pdzuPMQ9H713ls+8rRExPRAVAr1qIDI9rkHEPA6yybuCfDO8AHQPvWxxrTwUlpC8nrnpvLbl1zxEtok9eymbvH/Lkbx/y5G6klWJO+adWrwoL7M7YIvJu5ETOb3Ayzs80YOpPNa1Wb0tIqW8NgV3vBvpqDxLsNa6fqopvKhdfbyvwtI88USAvMVtMrxe+w88mRAYvcbN2DwiLRY9CeC/PKYePz3AesA7py3qPOfNbTz41ta8rVDvvBFUQL2Zh7m8witiO93JMz1XQAG9vkqtvatJFD1ssOs8n9pRvSrgVD1pWJU7dlcRvo2SKr0bChE936ONvCC7sjsjnOe8wSQHPQRGGb2kfEi8DHD5PGLcRDt4h6S8s3P0vC6R9ruqkKI8JL3PvMIKejzPU5Y8YZ2GPWj/SbyzNLa8sY0BvQihgT07yNW62kilvJ4DijwhDC48HAqRuo2SKr0T/ga9EFyQvVK1Bb0uQw08LpF2vN35RjzqP9E8Qc2EPMpgpDyLeRI8OEdHPMCqUz2vg5Q840WEvLdfCzwRY+u8Hql1PId+0DxLsFY9WOc1vKWdMLwuQw09COiPu5YGq7uwPAa8CIAZvcEkhzztwN88FvY2PcyxHzxY2Ao9nrlpvN26iLydawA9afCevHrnyjxMKoq9lRVWuwiAGT0P0zE8evkHvT7DlzsE/Hg8wftOPGA6zjzY1sG8Ja4kPSsQaL3ys1G9iSgXPAiwrL1Gnw48Bi8eO0HrWjyw8mW7McQbvEggnTpo/0m8ebc3vU0Q/Tziqmg+gSu4PEyhqzscGTy85XzyPAONJ72nLWq8aPAePZOjcryBTKC8q0kUvbhXO709KHw93Lf2Og/i3LwuUrg8546vOihucTww4nE8hz+SvEfPoTq+WVi9BPz4PKNMtbyb2LS8v4nrvHn2dbyTo/I7SSCdO4EruLy+OwK8kUPMO8HaZjwZmC29QaycvH/avDwy9K48IetFvYxxQj3sgaG8QevavFhwFLyjTDU8gISDvDNFKjybF3M8INwaum9Dt7xvIk88r8LSu8uQN71yhQc8YqyxOx5qN7zB+048ymAkvSJs1LxwUuK8gqxGPMjuQLxmjeY7aN7hO0WNUT29OPC8X0n5vDUfBL1dqhQ96GiJvQHFCj3AesA8zdIHPPRdmDy0dga9hS1VPfKkJj20lFw7QhvuO5spsD2CfLO83uobOzSEaLw2BXe8yU7nOtIEODsfyl08fqopPNMT4zxAFBM9/GkiPZ56qzvXlwO8ziODPRsoZz3u0hy9qhkBvSlxAzxgtAG6wKpTvI8B/Lu21qw8gSs4vUlQsLqnLWq80rO8vJJzXz28yR49pdxuvC5SODyjTDU8XMhqPWLcRLyw8mW7EVRAPNZ2Gzy753Q8qZ9NPCXt4juHTr08/iKUPKZ3ij0XFx+9xHzdvBL+BruGpwi8nqq+POVtx7z0JTU9m/kcvInedjwBPKw8yW9Pu4hvJb2kfMi8NdVjPcHsIz1H7Xc8rZqPPWxigjyf2tG8z3HsOywipb2euek7ZV1Tu9WFRr0mz4y8ttasOz+a37weW4y8lja+vIifODtlbP48zgKbPCEbWT3sYDm99NS5Ozl3Wr0RrYu8GEeyuGywazlAFBM8yU5nunZ1ZzxNAVK8lycTPcH7zjzFrPA8V0CBPeLsOD0+Kw49d5bPuwxhzjzlbcc6jWKXvHVUf7ydso692ni4PEHNhL2Gp4i8zeGyvKcPFD3kdZc8Uk0PPYt5kjym7is9j8K9O9flbDw25yA7L3OgvI2hVT2U5cK8Amw/vCwx0D35x6s5DoK2vBXniz14xmK8FvY2PbvYyTw76b08n9pRPEgvSLsBe2q8oMsmPcffFb2QImS8vThwvKlvujzuEds8DGHOvCOcZz2SNCE8ngOKvI/y0LzVlPG7ZC3AuyrgVL3fGi88OokXPZSUxzyMccK82PcpPWPNGb0LigY8eBADvF34fbyUta88wLn+Os9x7LtMwhO9pZ2wvC3blrrNahG997XuvBso57t5t7c8KV9GPexgubt4qIw8pu6rvB5qt7xX9uA81+XsPBAzWDycGoU9X0n5O/sYpzxnrk693ckzPe2QzLwERpk8K9EpPC0iJbytmo88SC/IvAwiELthrDG6evmHPAoQ07xOqxi7ohyivE0B0ryj1ZM6rZoPPV7ap7tekxk7ILsyvAF7ajw76b07jpKqPIA647x4hyS9goveO/oYJ7tJ2Y69OFZyujNU1buEDO28upZ5PIrwszuvoWq9jaHVu7qWebxYF0k8pZ0wPCH9Ar1m14a8EoRTPEbeTD0AKu88YtzEvH6qKb1nfju9QHwJPKcPFDweqXW7D8SGvP8axLt1RdQ85A0hvHxZLj0frAe6pJ2wu9lIpTlcEgu9uqg2u4OdG7wVBWK8sLMnvaDLJjw11eO8T6uYuuXGErwlriQ8qfgYPIUtVT0BxQo9yW/PO9uHY7wP4lw8sDwGvS+Cy7r09SG9ldYXvIrhCDwThFM5QzzWvB+LH73cugi9YFs2vRyiGr1LcRg8EPSZO+7SnLyoyIW9zkFZPMVeh72euem5qG86OtjHljxXt6K8ejjGvIPc2bzqAJM9E/4GvW3RUz2VFdY8csRFvVcfmTxVljo9UKPIPEauObzduog80tSkvC7bFrv2ZwW9P1uhvJ+bEzwwozO9iv9ePZ1KmDsJ4L+8i3mSPHQkbL1C/Re9a1DFuiDrxTvnf4Q8DXMLvBdHMj0OwXQ7lMTavGUelTwzVFU85xcOvfnHK70yfY08XtqnvGxxLTmBKzi8dRVBvCqhFjwK0RS9Qx6AvZS1rzzeKVo8E7RmvZhXJj0kjTw9mFcmPbEieTw+efe8RX6mvGuAWDzNEcY8RF2+vWQ86zzEPR+8rlOBPNvRA7wQM9g7u9hJvcDLO7y2BsC7NreNvPjW1jw8Qom8UyTXPBsoZ737V+U8LPKRPLETTrztsTQ8IQwuPQONpzs0zoi8jHFCvFPlGL1ZR9y87IEhvcLso7yrSRS9r4MUvVp377sP4tw83bqIPOyBIb3RpBG8lgYrPW9DtzzI7kA9SPAJPJl4DrxkLcC7Z882PRb2Nj0b6ag8LnMgOyHrRTxlXVM9OKCSPKlvOr19Mwi9fwpQO5TEWjymzUM8KXEDPUzCkz2MccI8dOWtvNzYXj0AS1e9yW/PvO3hxzxeYwY8yD88vWogsjyThRy9B27cvNa12bvu0pw8Qy0rvNCS1DwCbL874xzMvGkO9bzi7Dg8KuDUPKmfzTx650o9sjQ2vdmACD1HzyG8pw8UPdEMCL0W9rY8qhmBO/xpIr04R0c7t1+LvFo4MTvH/Ws6zgKbPHr5hzwE7c288VOrvCSNPL2mzcM7WnfvvDTOCL3Jb888UU2Puo3KDTq6t+E7c9PwvPs5jzxhu9y7beB+vKwChrwrAT28vSlFPURs6TyofuU80/WMPWpQRbyGTj06yD88u2Q8a70FZ4E7R88hvTuYwrxKQYW89ATNvMgPKT0yJMI7ofs5vbkBgrqJz0s9WikGO6Xc7rq0lFy8lJRHPcvP9Tp6KRu7TQFSPJwaBT0IsKy9B1+xO3VF1DwNUiM8ACpvPAduXL2MccI7B25cvWoRh7ykbR09/9sFPG3g/jzZ96m8oqUAO3eWzzzfGq88OFbyPK5irDuK/968T2F4vT0o/LtVlrq8lMTaPb4aGr2PAXw90cLnvF3p0rsCbL+8Vx8ZvZU+jrwl3je94rwlvdQlIL3Hvq28eymbPNemrryQnBc7bdFTvGjACz2yBCM9XenSPP66nbzBJIe8KwG9PGDkFD3Hvi09LywSPakZgT0gRJG7zLEfPVCjyDmcONs8FNXOu+7wcrxNEH09bxMkvQngv7uYhzk9Bd4ivRP+BrzxRIA8TOBpvK1Q77wCq/08S4DDPIiQjTz0BE29GXdFvIZd6DwwozO9aREHPYArODv8h3i86j9RO2Vs/rxhfB48TfImPKwgXLvB7CO69PUhvY3KjbzcAZc7al9wvHA0jLwemko6hh4qO9BiQb3zLYU8l2ZRPMJUmjxYF8k8MCwSvDDTRj3M8N076d+qO0+CYL0GL548ahEHO4J8szxC/Re9D+Lcu9Ly+rycGoU83AGXPK0ymTuCbYg87cBfPQy6GT1uS4c8uFe7POoAEz1nn6M8ZC1AvR29ujxj6Wk7+yajvQT9iTyO9BS8yniPvPrTs7uh5F0911unuzsoljzRdGa9qNLQvMPNZLycmxY7pwc1PcqdzLuF8Hu8D3DavA+AAbyTNqo7qENLu9ETEzwJguc81x+ROyQcqDy0Aaa8vJypPKdaJL19v0A9D7yXvJpCqLwCWF69wsayvQ5LHb0WQEK7d9HNPFoLnrwmVwu9TtzIvCR2yTy14xo82IDkPFX/Hz3XCDi9mvZqPN6ciTvCbJG8knLAufu1qLzDkc687eD0Ovv48Lwj50M9aNCqPDm4zrx2ft68wsayvQ6ejLwVVxu9IC0CvAchlDx9uA49McOpuziaw7zJtCW8QhYJPZLcCD3sLDI9hHEdvVopKTzJhnM8ADMhPa/eTr2SiRm8AnZpO1V3TLthaos8I/6cvABoBbwHP5897NKQvFThFDuahfA6Bwo7OyR2Sb1Ovj08w4ocPCPQaj1i2wU9ATrTvEaUNLzfhTC8CS94PKGox7z7D0q8flV4vb39fL3RsHw8Py4VPCqZoLtoXzA9MuE0PM5+jjwqTWO9JDozvALJ2LskOjO7+2I5vOJPmbtw3Ci8b74dPG/zAT0/xMy827QVPeXknbx+Tsa6R33bO0cjurz7LVW8RyM6vDL/vztXWA69hOKXPC5jCTxwvh09w+S9vN5Jmrtaz4c7K4JHPH7dSzwJEW08+9plPLyjW73RqUo97NIQvDFwujw/AGO8tvH+PKP6Az0qChu9yZYaPUZBxTxcZT89ySzSuzuZEDyMZkK9ZXAKPT9TUr2nljq8K9zou/tELrwPNMS8vJypPO9nlTyxTha9Mv8/PTFwujzKf8E76MwRvTKlHr1Na847YhecPAgRbTvzVju8Fl5NPD88+bzmRfG8k02DPa4qDLycfQu97Uq9POzCabwdny+9FrhuPPPejjxNRpE88/yZPX6o5zzGARY8wz5fO5pn5TqqBgK9DksdvC3Ug7zYAYY9qkIYPfst1bx3JL08nF8AvB0Qqjz7LVW8aF+wvFQ7NjzDc0M97KTePA68l71mjhW8Y3hvO05UdbxHq4287WhIPFC9irqTH9E8vP38OwWMjzyneC88MYeTPN+MYr0xjkW7hCXgOjFSLzxJIoe9YaYhvXasEL1iUzK97WhIPKjw2zq28X69ySWgOlM0hLzRi7865gnbPH5VeDzOYIM9dytvPVSV17zYgGQ9P8TMvCR9+zxeRgG8qkKYPFAuhT2hVVg9vNi/vIU8OT3zbRS8fWUfvX2/QD16so87nF8AvRaxvDyaBpK8kjYqPG8YPzuh5N07wk6GPVtHtDzYgOQ7qMsevbsrr7zXJsM88/yZu0Ctc7zKQ6s8XPTEPQ5Sz7y4rYO7I1g+PNEDbLyvi9+6TUaRvO9nFT3XYlm8MfiNPPqeTz378b47jBPTu83viLwOgAE90ThQvB0nA7wyytu7XGU/vaiWOj04Kck8mZxJvPSpqruZ0S09yemJPUDETDor1bY7vJwpPE6+PbuBvg082EROvH1V+LxNtwu99CHXO0eUtLx0+YA9QB5uveZjfL0rTeM8vGfFPD/ETL3KJSA9oL8gu4vQCr4jybg6DmkoPWKt07vzGiU8Tr69utq0lTzJQ6u9oTdNvA6lPr1QTBC93kkavcKoJ71wPXy7lQATPWh9uzlGQUU8YsQsPenMETt2joW7jvSUvJq61DtwH3G7ADOhvJkUdrxOGN87I5TUPGn1ZzxvoJK872cVvbFOlr1w+jO9i210PGHit7wjwoa7ofSEPMdUhbyFPLm8Ky9YPV9kjLyvqWo9jBNTPSBpGL1OVPU7tZArvYSPqDxosh89+wgYPW8RjTwr88G6mWCzPN/f0bv35A28o/oDPd8ywbwAhpC8OCIXPYV4Tz3Kf8E8ofQEO9/f0bzeMkG9MaWeusqdTL13ypu8VB2ru+FPGTrfwcY8CdXWPNF0Zr0LeoI8R9BKvIt9m7zXYlk8yrvXvNjxXj32c5O9OWVfvWE1p7ynWqS9Alheu2GmoTx+MDs77H+hOVvWubv7Yrk7/g4XvXA9/LxOa067afVnPvSw3DzXtci8RgUvOQRuBD30zme9oFVYO9BmgjwOw0m8w92LuxnOlL3R3i69PAqLPcIZIjsxcLq8K7crPddi2TxJz5c8EP9fPd9uV72ScsA8CdXWvPSwXD2oBzU8CIJnvSsv2LzfZyW9V8kIvCpdirwQ/9+80BOTvFpeDTs/Hm68WOeTOx1xfTwCdmk8qNJQPH0pCTuoljo93/aqvHA2Srwt1AO6HS61OoxP6bxpdgk8ofs2vP1hhjs41tm83vYqPX0SML20AaY84TEOPeXGErydm5Y7ybtXOmNa5LyFPDm8qOkpvX0SMLy89kq7faG1OXeVNzySiRk9MdqCvIQH1bxcTma70ZLxPPR0Rr3DNy09AGgFPdBPqTucX4A8k3nyvEBx3TwkHCg9WkCCPTkLvjwugZQ9O5mQPE6gsrpN86G8ofu2vKE3TTwAFRY932elPJl+PjtpZmI8VB0rPKHkXTzD5D09hFMSvJqzojxHX9A7dyQ9vSTudT0kbxc9ByGUOzKOxbxiU7K87CUAPd+jO70gSw29uMsOvVQdK7yvT0k9Ve/4O+aRrjv7Yjk99uQNPdGpyjwyjsW8hfB7u66ErbwAwqa6jITNu3AvmLzRExO9RgxhPCvVNr2FtGU9RwzhvLz2Sjygiry7qDwZPK/AwzzKYTa9yhX5PNHlYDma9mo9ydliPOVVmLwjwga9mn6+vMNVOD1H1/w8JO71PK5Wez0rEU09AufjvAwnE7zKhvO8ph4OPU4RrbyTTYO83w2EumwLDjyF0vC8JBwoPMkloLzCqKe70E+pPA+scDwBwiY9RwUvvfP8mTwj/pw6tgjYvCbIhbwxjkW9OJORu4CggjwWXs08Gc6UvJkkHT325A29OWXfPMpK3Tvsuzc90d6uPM3vCL2M0Ao9P1PSvDh1Br3pHwE9aX27vLGhBb0BpJu95dT2O2lBpbwj/pw9bJoTPQkR7TwazhQ9mSSdvMpK3TrQopg9JHbJvCsY/7xArXM9hSXgvKfLnjtsmpM91z2cO289fLxAnw89EKxwvQKrTT1v41q8tMWPPNd5sro5fDg9oFVYPFPDiT3mRfE5qiQNvaMYD73tSr280TjQO6gO57odY5k8JI2iO5MYn7wyWeG8i18QvT8ulb0qmaC8o4mJPXByYLxUcBq7PxCKvRYp6Tz98Au9gC8IPIze7rokqy29fvQkPSQj2ry14xq8cHLgvPva5bt9RxS6oa/5u5mVF7zRMR69CbdLOwI6Uz1hagu9R9f8PGFxPbz0Cv47tMzBvH6oZzvQwKM8r/zZPK78WTv+8Is8aNAqvROGgDxAPHk65pjgvFT/HzutKgy9wxmiPFVCaDx3yps8UzSEPbuFUDxVQmi7hFMSvGXhBL1Ovj29u7MCPcoHlTxwcmC8UL2KO9h5MryFtOU7YaahO+0OJ7tvTSO7VOEUvWJqCzu1Pby7r6K4vGztgjsPjmW88NiPvPva5TyFHi68JF9wPIzulbySW2c8OHUGPPMapTsrL1i9p/BbvKSJCTwdTEA9TZkAvBzyHr2o0tC89OzyvNgfkbyhMJs9XPTEPH6K3Dy2Ynk82IDkPDFSLzxbCx47OLhOvMKKnLsdgSS83htovSR9+7wxylu8k3LAO9FWW7zR9Qc9D1JPvNGS8bvKSl29QOLXO34wuzsdF9w8yn9BPTm4zjzhT5m8sjALPK78WTu9wea8oXPjPGibxrxGX1A8mkKoPNEhdzuZ7zg8jvSUvObNxLyL0Iq8aLIfOxAda7oxNKS8Hb06vbsrLz3QdOa8OOYAPEfJmL1VQug8OygWPAiSjruLm6a8MXC6Pd6jOzw5R9Q8aUElucORTrwJ8+E8Fprju7XjGjyLhE092iWQvEC9mrzf9qo8ySUguiPnQ73T+wY9HYhWvb+5AT2FJeA8MYcTu+27NzwdEKq9qOkpvUmxDL12joU8qLRFO0fXfLwI7C89jE/pu/R7+LnQwCM9DrwXu6YeDr24WpS82A/qOzHhNL0xrNC73znzvMKoJ70CHEg834xivcJOhr0HXao8wqinPHT5gL19mgM9+2K5PEIWiTtOa068MpV3vex/oTwWsbw7P6ZBPBWxvL1iUzI838HGvNi1yDuF8Hu8FsgVvAg/n7qhkW48WrguPEA1x7z7RK68ATMhO3BUVTz0ktG8JO71vLsNpDwkwga8vVDsO6Hk3TxvGD+7cNwovS3yDrxhFxw8ixNTvFopqbz7gMQ8R31bO8MZojy7K6867EOLvECINj0OS528wmyROsJskT3QbTS8qCzyPOzSELzQT6k7FppjvX43bTyqlYc91wg4PIUAo7zD6+883htoPYAvCLwClHS9wmwRvXeVN7z7+HA8R+7VPItfkDz3xoI8D6W+vAh0g73lr7k8CycTvWgjmr3mCVu9d9FNO6MYD72TW2c9EKzwvEY6k7x3YNM7OF6tPLSQq7yhN009IyNauxy9OrxhiBa9K/rzO1p8mDzmtuu7yVoEPZNNA70dJwM9YlpkO1q4rjx+VXi9aUGlvJMBxjsd+VC9D47lvK848Lt+qGe88+XAvGOW+jy0PTw9oE6mvB1TcjoCI/q8me84O+2G07xwkOu8/X8RPdc9nLwmyAW8b4m5vNee77w4Kck8i9CKvGjXXLyFAKM8FVebvE2Cpzw5k5E81ybDuYg7hjwMmI28ThjfO6gHNbyLfRu9qA7nuljnE7wQrHA7+wiYOyvcaL1jeG+8MllhvK6parwj/pw7mVmBvGI1p7vDCfs8mVkBveLAEz2hMJu8ByGUPDiaw7uFACO7qCxyva4a5bxOGF890FZbO6hKfTySW2e8W4PKPKg8mb0CHEi8COwvPb3f8brtSr28HIGkvIXEjDxArfM7klvnPGH5kDz78b48JFGMvMLdC73RsPw8R9DKO8YBFj1Gsr+8MlKvvK7ezrwBOtO8u7q0u1/zkTuT47o5oIo8vfqez7v72mW4RwUvvXdZoTzJ6Ym8hOnJO/P8mTtJz5e7u++YPbzYvzxh+ZA79HTGvNd5sjy0ASY9jIv/PBxjmbtGjQI9hUNrvCugUj0IzqS8VbPiuzmxHLzlxpK7E4YAPd+jO73bloo8mWCzPB0QKr0rgkc9U8MJPckVeb2MDCG8JMk4POxDC705g+o8VTu2vE5kHLyAvg09XkaBvTkLPj372uW7hXjPu2/FT7yo0lC9PxCKPPPHNbuTPdy8Dy0Svai797wqvt07w3NDPa9PyTuS47o8LtSDvR350DwCUSy90W20PO0OJ7yoDme8hXjPPC5jibwC/jw9r6nqPA7DSbx9EjC9jCqsO1z0xDs57bK7P4i2vJqjezzsLLK7hzuGOyug0ruSAcY80GYCuq3XHD1aQII9h+gWPGOWeryZ0a07HL06vAd7NbyahFc90uKvPFQ+dL2rR1w82Q3ZOpd2+7zBUg28ONSiPewKLjyvw3+7jewWveVNTL2XCLS8Mbhqu+TCHD1uK408fOC1PACpLL2LaWo80lD3vGduK7xEFBY99t3uPHaJGLzVXlM9hubYPPoeLbyhDtc8UfUyPXTLhrx4/k08arfsvDLrTL0aa2a8emuAPBPh5jx8rdM7FrxgvchKVLxrHTE98Y2/PFFj+rzu3rk8+X0DvS64hTx+MAA8iy4FvQJRxLyRhaK71V5TvbhbW7xmzQG9dIIqPUDTV7x3XaS84Mo6vJnjrb2CN1M8G3JUvSw1WbyI7ca8udeZPMDsSD10giq9xc6wvHsMqjxx8Aw9eU4YPXaJGL2nmFa8nq+bujDkXj37k2K9/9Qgu9W9KbvI3Aw9FYl+PO/lJ72ZQgS8pSOhuhpr5rw/zGk8oQ7XvM/UUzx7DCq8f7svO1JqaDvqnfu5Wy64vCw12bwlCjC8FEcrPFH1Mrzgyro7hD5BvBfDTr0rwCO9FEcrPfnryjyZsMu7gFzZPMU8+LzywKE8e9nHvCd/5bwOXlW9Ns20O7reB70Q4YG7lHYWvd4iIzxkLW09d5CGPNeYIz2+jY08C+IxPKN7ibtQPo876fxRPMJh/roxuGq7BFiyu9gG6zwIB7i7cUHsO7USGr0J28M7DitzOtjLhTxfqtu7tAssvFA+D7x3XSS9OHVMOxzYmLsaMIE8iO3GO/WbGz3zxw89fYHfvA//fj1qSaU9oLaJPSoJALvDx8I8td+3vbr0AT1r6s68gpYpPP4AFT0C6/87imL8vAsVFDzz3Qk9LjzHvCzHkT2rR9y8NwAXPKrvjr0Y9rC7rbQOPTEXwTxlxhM96p17um74Kj0hpAa9NcbGvE5Nmz23h0+9CajhvOikhDxA01e9HawkvXRPSLzISlS8lwi0PNtHqT3y8wO8hHGjPPRoObx1VrY6G9EqvW5BBzrBaIe9n8yDPRty1DytTsq7mbBLO1L8oDvu3jm8MEM1vdrhZLzM+Vm8sKUCPfC5Mz2HTJ29aEK3u8FSDb0IUJS7EbWNO92J/LsDt4i8yX22PKnSpjxSami6yvJrPDCxfDu+jQ28A4SmvKPp0Ly9uQG8sgS+vI2juryg2/S8pyqPu99k9jw2O3y8Etp4vQZfIDyxeY47AlFEushKVDyiFcU8tD6OPVEolTxzrp69JANCPQ2KSbvP1NM8HEZgvJaib7ufmaE9EkA9PYHfBb1rUBO893aVvKLiYrz9Z+67TUatPLzXfrw//0u8GhoHvasUej05qK665HJSuSSkaz1kYE88ylHCPOI/cL31PEW9fucjPSD15by69IG8mUIEPW86fj2rR9y7kYWivKC2CTqx/c+743LSvL8YvTudX1E9/0Louz/M6TwRtQ09xJtOPAF9OLzHqao7bSQfO7zX/jtqfIc8DQaIOZ6vm7whKEg8vXClO+s2ojxQVIk75oCuOzjUoj0OK/M84WtkPZmwyzy81/488BiKPSRphjy/dxO9tHnzvELaxbyhDle7fohNPHlOGLzDx8K88OWnO0VW6byQx5C9e3pxPW86/jvU6R2+0HX9usyLkjwW78I8pL1cPCyULzsguoA85smKvTsdZLwzO5e8nL4nvZcItLwwQzW9iO3GPMNDATu13ze8ONSiPMx1GD1UcVa7y7eGPE9qAzwpuTW9QKD1PA//frzMdZi8Gf0ePF8mmjxiJv86MmcLPMfyBr2MGIu9cByBvCUKMDwTcx+8Mbjqu9sUxzwCUcS87n9jPDY7/DyTjBC9TBNLPShTcT2sraC8bL5avHvZR72QsRY9gwtfPTy2ijxwbWC8e3rxPCkCkjwdrKS7rU7KvK1OSjx3XSS9aIuTO3gxMD2Q7Ps8edJZOj/Mab0i/NM8PitAvR6AsDz6v9a8wjyTvBRHK7wgVLw8sMrtPP47+jxwbeC8EAbtOzDkXjy6Ysm751S6O0Gn47yjSKc9Mh6vve7eObw4dUy82nOdvVft+bxdaIi6I539O4tpajrc6FI7jXDYPFm5grzEaOy8nAcEPL09Qz7rA0A99DXXPKoFCb0M/5k8/PkmvRHLBzxSaug8iieXO6nSJrrLWLC8+h4tvSmG0zzTtju8nCzvO3VWNj3ywCE82okXOyY9Ej3rA8C8UI/uPJpRdbyaUXU9eZ/3O2TyB724KHm81v/8vGK4Nztd1s+7gFzZvNb//DufOku8LWg7PPvyODuKYvw8VHHWvG8VE7vE+iS8JDYkPcbVnryxYxQ9cKBCPACprDy0Pg69XaPtu5y+pzxPISe9Eg3bvFrIcz1fJpq7MLH8vHzgtbv/Qmi86i80PKeYVjyeM928BFiyvPC5M71sOhm90uKvPBn9njzOfAa8AcYUPP5u3LxhF469MzuXvNEOJD2j6VC9pIp6PcC5Zj2dX9E7haQFPZq3ObxiuDc9gMIdPfm46DzDx0I98Sd7PdJQdzuahNc8iGkFvRRHK70WvOC7jnfGu/0siTzQOpi7bvgqPBmXWrxD4TM8SeCDPcBLn7zoWyg9EOEBPX4ahrx1VrY7z1CSPL6NDbwROc+8Ht8GvYRxozwi/NM8c8SYvP3NsrwBfbi8MEM1PZqE17zASx88T+7EOxBlQzr+6ho8iT0RvbcDjjwUeg29T+5EvEBlkDz+6po8Gco8vYcZO7sAqay7CkGIPCnsF7znnZa8vJwZvIDCHbzH8gY9fOC1vLpiSTwUeo28FejUPPlnCT1H748612VBvctYsLuj6VA8c64ePQShDj3HQ2Y9y6EMO3RPyLzBH6s8FRu3vGhCtzyDs5G8/ZrQvEDTVzrYtYu8EcuHOzJnCz0Lg9s7bcVIPL8YvTwJ20O85MKcPb8Yvby5jj27q3q+PMLA1LxOGrm8N6FAvbQ+jjyRH946xPqkPPRoOb3tJxY9mbBLO2GFVTwHM6w8ILqAPakbAz0uPEe9B2aOvMXOML13kAa9OdsQPYEw5TrW/3w8ltXRvJLzaTkP/368A/JtPV8QID1w06Q7RBSWu0PhszzBjfK8EAbtPCm5tbxtkua8mA8iPenJ77x3XSQ8Aut/PcBLn7yqBYm80Q4kPfuTYr3dOB09YVJzO1qjCDuHGbu8wiYZPP47+rzIxhI9ax2xPPhKIb1J4AO9DLY9vRFsMbvyLmm80isMu5pR9bvXmCO8qZ9EvULaxby5L+e8gI87vLeHzzxgscm8JQqwvIhphb3fZPY7rlW4vNXwi7uJwdK8qqayvL5EMT0r8wW94j/wvExyIb0Bfbi7N+ocObYvgrydAPs89rgDve9Tb7o3bl49zCy8vKS93DxWeES8e1UGvcLzNryWUZA7jndGPb3ebDxOGrm87avXPCPQX72Sogq7trNDPG1XAb11I1Q7pxQVuwCpLD2KEZ07/0LovLBcJj22s0O9ifQ0uyPQXzwr84U8JxEevbw2VT27shM9/6E+uznbELzHdsi70NvBvEAyrjt4MbC8ipXevEW1v7yOd0a8qxT6OgB2yjwaMAG9Bs3nvHqm5bymVgO7/MbEvMdD5jtzrp68jkTkvJPHdToanki8SeADvcBLHzxYU767meOtPK8pxLx84LW8CysOPUPhs7x8rVO7AdwOO5NZLjx0gqo8jD32vNsURz3LJc67z1ASvXF0TryhdBu8oG0tO8uhjL2JU4u8ZgjnOiV4d7xvFRM82xTHu/Q1V7vf9q47JQowvTp8OryFjos72MuFPVparDpqSaU8bcXIvCknfTw9ipa81pE1vfPdibzgyjq9Rir1PAYASryo/pq7HsmMPf7qGrhk3I28NUKFvXSCKjqsraA6cNOkvEAyLr3fw0w95awivXLakrvzAvW8jJxMPVLJPjwPxBm81zJfvb/l2j17P4y8fwQMO36ITbwEoQ69XdZPPRBlw7z568o8ZpofPVdM0Dxgfue8zqFxPAd8CL21KJS9JqtZPRS1cr2BY8e7JDaku9Xwi7xU7RS8EOGBvUJWhL3M+Vm8zCw8Pc4ASDzmyQo86clvPMjcDLsM6Z+8OaguuyIvtrsy68y89ZubPCthzTsJ20M8C+IxPBRHK72Mz667o7ZuvHddpLzOoXG9nZIzPVZ4RD3uf2O93iKjPB6AMDzE+qQ7xTx4vAIe4ry3VG0793YVPNpAOz1C2sW9V0xQvD5eIr3nhxy9LJQvvIBc2bu81/48D8QZOjY7fLtuQQe96i80PbCPiDwf7vc8iCApOHRPSLvdTpc8RILdvMd2SDwm3js9Cg6mPNRX5bvw5Sc7a1ATvZh9abtAoPW8bZJmPNuQBTxYINy7W5z/uyYnGL1W3gg9h7rkvAPy7TqeZj89FLXyPLi6MT3Gorw7gd8FvaO2bjv7k+I8EOEBPWYIZzsrYU28MutMvLycGT3vU++7eU4YvQlXAr15n/c7iGmFu725gTxkk7G8UI/uvGBDgjxzrh69HfWAPLtpt70LUHm9o7buOBKJGb0Kr0+93HoLPfCGUbvxjb+8jD32OZDHkDv9zTK8qUDuPH0TGD2exRW8892JvKUjoTtGics8GGR4vP3NsjyCN1M7pByzPIonlzwMtj29CFAUvU5jlbsnf2U8AlHEO6RPFT3rA0C8dsR9u0hkxbq0eXM8yX02Pd8/i7xF6CG9HEbgvCthTTxoD9U8/0LovOykaTzo9WM74j9wvF8mmrxFVum8CAc4PfxCA72Z4628mH1pPZDs+7xxQew8IFQ8Pa5VuDyvKUQ92kA7vcjcDDsAdso8TBNLvWmwfjzM+dm8VvSCOyQDwrvIF3K9ZgjnvMbrGL3OM6o6C4PbvIMLX7x7evG74+6QPB2sJL0PkTc9Fu/CvILJC7rLoQw9mgAWvdpznb3rNiK8k/pXPEJWhLylI6E8cNOkvFDC0DwqWl+9LMeRvCqNQT2Fjgs9EJglvENACr1hUvM8eZ93vAOEpjzspOm725CFPEnKCbrzAvW7nAeEPDDk3jxkkzE91fALvZUBxjwXkOy86XgQvYbm2LzCYf48ejgePPzGRL2BY0e8AUrWPJtYY7xjjMM8A82CvHW1jDzdiXy7W2GavFsuuD2hdBs88Y2/uyC6AL36Hi09Y4xDPfhgGz3HCIG8eDEwPASLFD2qBQk9E3MfPExyoTtwoMI8tualPAQlUD33dpW8YH7nOsT6JDwb0aq8tuYlvLM3ILzYBmu9l6ldvNsURzw1LAs8OsWWO14JsrxBBrq8uLoxPWFSc72MPfY8aA/VPDEXwbwoU3G80Q4kvfnrSrwr84U8ouJiPEVW6btGvC29VAOPPA+RNz0b0Sq9g50XOntVhr0EWDI9HawkvVqjiD3NX5480NvBuoqVXj3lTcy80uKvPGIm/zwW78I8IslxveIahTz7k+K8td83vJOMELwAqSy9H+73PEzgaDwzOxe6QlYEvSvAI7qzpec8tFQIPQzpH7w41KI66p37PKZWA7yb6ps8AeFsPeeCLz2OZoS9Ks6YOvFVN7x4rUa9n+kNvBHyVD1CWGs8DV2tO5pcEr33TCi9nX+YO+Apdby3JEU8peSUuz4tOTwNXS28cf1EvBlTOzw0qcw8iH/rPOzADzwNXS28TkZNPQvri7yRQpu8/IqIvG7SEj2XiCe9Te+FPBjxcbxBn1q9ZF7+vOd+mbwixPm8aOPNvEzUK7043wC99CWMPOn8fDvcRbK88az+PPej77yBdIw8hPLvu71qUb3B76C8Wov2vHleq7v84U87Dh5qvD3Lbz0XOGG8u7lsvPgFOTxWr9+94u0HvKomi72xJai8uNGTvKahOz1EZ4O70cFFvJRhi7sZS489LfEePfaTFz2zl8m8TZXovF4Y8rtCCVA9YIJnvYpLKryUbc05oFMDPCuDkzzqUgS9WXsevOeK2zzSeta76fx8PB9CgLuS+yu8L2NAvUFQvzw2E0K8o3aJO9qIizxZi/a7XKbQOHMgyzxb5RO4WMq5vNJ61rwHH0289THOvDSx+DzcTV48Qv2NvGB6uzydj/C8U4AXO9zygL29G7a75K7EvOSuxDzEGtO8UtPIPB9CgLy8uew8sdYMPWNOpjvuKgU9EfJUvOUQDryzQIK7so+dOs9LDj3N4Rg8nYfEPBu9MD0uFCU9wesKu/CcpjkBGAS9vRMKvLOf9bt5F7w8hVQ5O4SbKLxNhRC8gjGzvXrECj3Eyzc833DkPP2a4Dw2G+48kZE2PT3Dw7wEBHM8DFUBPRkEID1A5sm8NQcAPdtBnL2FVLk8W/XrvLB0Q7vPSw67suZku/pnAr3mIOY809iJOljCjbxI+JQ9mqstOiU9B70TXEq9ZmkAvXGqkzxQsEK9SnJiPMMOkbwk16c8J6uSvLxy/bwibTI98V3jvO4qBb2ixaQ8eFqVvLcscb3+tTo8eFqVvKU/8jy3HJk95Ri6PGB6uzzQAIm7Wot2vYAOLb2Odly89o+BvZzWXz3KGfA8CYlCvS5rbDybHU+8r7syPRQNr7nH9um8sS1UvJ17Aj0pdHs9s0iuvYKIejwY8XE8FBXbvJqrLTxkyPO84Cl1PHwyFj0MDpK6SQjtujVasTvqZvK87+tBvb+Blbu9G7a6SmIKPY5qGr2Ubc28i0sqvRc4Yb0+dCg90npWPMNpbr1955A8DFmXu2CCZzzuiXg7++l7PCw4Dj07TYw9URo4vVv16zvDaW48ElCIO2lFFz36d9q75skePaznRz160My8JOf/vDnjlry3GAM8qX1SPMJZlrzFhMi8CMgFPeOuRL0KOqc7eWbXPMf2abuaFaM9oyuEPWYyaTtWr9+8dM0Zvej8fD2jfrW8BxMLvehDbDuas1k9ca6pvCrKgrzeaDg4x+YRPMfuPTvIm4y8QI8CPeeCLzwqzhg9y8IoPfQpIr3JWDO9gimHOoqSmTys50c8o3aJvEMRfLyxLVQ6ZnEsPIC/kbwJgRY8BEviuro/Hz2YSWQ92tMQPTk+dD3dr6e8SQhtO6dSIDzfFYe8DzlEvWZxLL0XOOG8hJsovKLBjjxsZAe8lGGLve3Q5zyPJ0E8lLxovcx7OT0E8AS8P94dvjpZzrvO7do86lKEPMNp7juaXJK8/ZrgPKzvc72TA1i8cyDLvDiF47yHvq68ZnlYvRV3JLsOFr486eykvF4Y8jyFVDk9UiJkPTL4Z7xJCO28qAMFvSklYD30eL28aJQyvI29yzu3JMU6mEnkuyJlhryFTI28n54IvQiRbrzTlTA85Bg6vObFCLxFLNY8kwNYO7EhErzXsIo8eh/ovHGuKT3/BFY9g+rDvIqaxTvOlhO95Ri6PO4qBT3gygE9WYv2u8oJmDzQCLU8IFJYu3xC7rx0zZk8jydBvfCYkDvE02M9NQeAPZ/pDT326l48nM4zPNnj6LyNvUs9ZAe3vILqQzzWB1K9jyfBu7EtVD0+dCg8oQwUvTjfAD2VHjI8C+uLvLxejznB7yC9YHo7PWZxrL0PgDO9UGGnuYSXkr0JfYC8G24VvDd9NzpltAW70bUDvGiQnDzuOt28z198veLtBz0RQXA+PnxUuw7Hojt3oQS9wrDdPALh7LzqUoS8fELuPJDYJbwTDa+8lGWhvEpiCr1ORk099ureuyWY5LyQ1A89Rz+Eux3YijwobM88L2NAPOg7QDzev3+8LEA6PQpC0zzsD6s7Mj9XvMyD5bsoHTS6zCwePO4qBb1FIJQ57/NtvKdieDrFhEi8yhHEOpeY/7wWKAm6RoqJvEeedz0UvhM7bGQHvKs2Y7sCiqU85iBmvHY3DzqjK4Q83P5CPJ44Kb35vsk8d7VyvG+b+zsdJ6Y7mfKcvEeWyzwlmGQ8wxInvZyHRLzv4xW9KtbEu+g7QLsixHk84NpZPB+h8zzeYAy9gBZZvTd9t7zYKlg8sY+dvRaHfD1lwMc8nNZfPPXiMjx+rOO825x5PbyxQD27qZQ8SsF9u/zhTz1EZ4M8PAadPJmjAb35sge9xXiGOwa11zzteaA8rVG9PNSNhDziPKM8btKSPEmxJT1XYMS7AeFsPYF4Ij2f+eW8sGyXPMTLtzvH9mk8KocpvaQ3RrxtKdo70zPnvEkI7bvblE287ioFO61ZaT3WB9I8aJSyPISj1DlaMJm6LflKPfIGnLwWf1A8lLzou18rIDxw8QI9tmu0PM9ffLzDDhE9zp4/PKaZjz1QaVO8hgGIvCxIZrtQuO68SQjtO5DUD72PHxU9nkDVu8inTj269Jk8ohTAuyuPVb3PCDW8q9sFPeGTaj3DDpE8jAQ7PbQBvzyeNJO8gcc9vNPYib0cdkE9hJcSvMMSJ71seHW8Yp1BvEGf2ryGvi483P7CuyuHKbpo4008RGuZPPFNiz3B/3i9tyTFvDSdCr382aO79Cmiu6MrhLz71Y08ARwaOxMFAz06oD29h74uPcJVgD1N7wU8lGELPezADz10KPc8f1Wcu6LBDrv4vkm9OeesvJ/55TxeEMa8Dha+PO6BTL3blM28A5LRvK+zhj25jro8vLHAPB7gtjt981I9l5DTO+/zbTwdN347HSemvH9l9Dy8Xo+8mlwSPDP45z0ZU7u8QObJvFyufD0571i9AoolPYtLqjzc9hY7Ro6fvLElqDw8CrO8st44PQZmvLxRadO8C6AGvYk4/LwgUlg7cf3EvKgLsTzsD6u8aUWXvGcy6bxAl668ohxsvReaKr1SxwY7+ii/PG0pWjynUiC9bR0YPWcy6bzwnCY8+yATvWAroLy7ANw83PKAPLUJ67uEmyi95sUIPIPegbvB90y9a7c4PMlYM70fQgA9VeqMPVanMzrPX/w7CZHuOr+Fq7zc/sK7AL7muuzADz3T7Hc9JZjku0IBpDwWh3y9URq4PH6kt7sdN3673a8nPA85RLz0gOk8iuG0u4qSGTyHxlo8xjUtvHvYeLzWB9K6i6Lxu/abwzs/Lbk8CNAxPFvtPzy7+K88l5h/vPdMKLohtKG8ZAc3PJL3lbz0eD29+muYvEm50TvuiXg7nNbfvGr6Ebwuqi+9y8pUPNhlhbwDS2K8w2HCu9ZW7TuhW688iprFOVFx/7xDEfy8esSKPI8fFT2wdMM8WBnVvGQPY7y7+C+9X3IPvMx7uTzet1M6OqC9u3TJA7zKCRg9rVnpO+OmGDwQOUQ6WYPKu1l3iLzg0i29C6xIvaygWLwAIDC97A+rvP0/Az1NjTy8xXgGPGNOJrwlSUk825RNPFEauLuxJag853oDPOeCL70NDpI8bSEuvaahO7uoA4W8yhnwu7T5kjxaMJm86fz8vA4eajwobM+8z0uOvHuJ3bwibTI8+bYdPM3dgrsSq2W93E1ePBc4Yb0yjnI8lR4yvM9PJD2Z8py7lGUhvcQaU71/Dq098U2LvD23gT0Ab8u7CYlCvTwKszwtAfc8yJ8iPbW6Tzyyl0k89pvDvBoACr0PgLO8QObJvABjCT06oD29eLXyPIh/azxmbZa8cWc6PAxZF73O7dq84NrZvLOfdTxWpzM8DLT0u6p90jy9Ewo8FL6TOtVW7TzYccc8e32bvG0ZAr2CgM48qn3SvN6//zyqdSa8eV6ruxQVWzorj9W8C6CGve11Cj06qOk7SxsbvXwyljsR8tQ7waAFPKQvGjzN5S69Vf56O5JKx7spJeA8qn3SvTnv2DywdMO7PctvPOGT6ruY+kg8w2FCvFyufLpWnwe9JIiMvER78TkC0RQ8n56IPBfhGb35tp28K4/VPL7IBLwk0xE7vtzyO1anMzu43VU8pqlnOUIJULzGMZe63mCMvMY92TpjShC9jbWfvIwEO7scI5A8KGQjPQLh7LxdTwm8aONNPUsXBTwAb0s9NVabPHrEirwC4ey8yQUCPXlm1zwHH008YHq7vPp32rwtooM9gAoXPJwle72mmQ+9Ro4fOQmBlrwiZYa8txyZPJtsaj0yjvI8pfDWvMinTj0X6cW9uNETvQy0dLztyLu8btq+vNhpmzwY8fG70Ag1vbo/nzwfmUc8sGgBvTthejpviyM87oFMvfbq3rzZKtg8xjUtPWpV7zxzFAk9+bIHvfmyBz23GIM8qAOFOxaH/LwL++O6Mj/XPATwBLzDYcI7kvurvBoACrxu4mq7tAG/POd6Az18Mha81gfSu8KoMb2ObrC8MjOVvEUkKr3iPKO68KRSvCU9hzt2S3088reAOn6cCz1zIEs753qDvNAACbs5PvS8gjEzPTnjljy1sqM8Bl6QPfnGdbsq1sQ62ePoO9SNhL3RwcU8Y1ZSvdbA4jo/3p28hPLvvNrTkDx2Q9G8LxAPvVEauLtsePU5PctvvFCwwjxZi3a8nXuCPUGf2juSrBC8RSQqPLB0wzzdr6e9Ft0DPODOFz0E8AS8eWbXPDSdirtEZ4M8PAozvazv87uNvUs9lsuAPAl9gDxLK/O81JEaPIrpYLxZe568wlWAvIh3vzyJ2Qi8CMybvW+HDb3Mg+W7JvaXPT23Ab09t4E8cEQ0vS9r7LwqyoK83bfTvPR4vTsE8AS9Smo2vdVOwbxrtzi9etDMPNAINb1ytlU6dvxhvBiWFDw6oD097A+rPErBfbvVVu28+m8uuts9hjyOZgQ9QlhrPNrbPD00oaA7i0sqPTI3qzys50c9X8GqvMlYs7th5LA9dNGvvMlg37rj9TM9f2X0vCBSWDuvtxy78VU3vSMeF729alG5sHzvPBAxGD3ev/+8PAadvLUJ6zxNlWi9CCf5PNHBxbzARui8+nfavEzUK73p7CQ6uNWpPFBhJ7zPCLU7SbElvdMzZ7stAXc86eykvK4S+jxzGB+8vWpRvGlNQ73Onj89O1lOunNvZjv0KaI8wfdMvbLeOD36a5g8FiiJu7Wyo72XmP88QgGku0//3ToBGAS9K4epvCVBHbyIf2s7qAMFPCuHqbwDmn28kZE2PUO6ND0e6OI8Yp3BO5eQ0zwk05E8AoolvPbAED3PAwU9gTNNvR6xBr0sggG9sQySvF7tUbwk+XY9HBfAPHtLIThMLja96As0vVo+hbxQ3qU682T7PNqhlTwH4ZM6JPn2vOw+njt1Hiy8pfbNu2z9oDtbfLa64x0TPDMJxjwVso66swYdvYmY/rwesYY875ObutmhFb0oazW9C7OWvcb9dLx3Vwu7YaO2u7+YQ7z04iO99lm0vGSXzDxmkVc97rWuvOZPWj0/XTu8b9UYvM6h+jsFjJa7WIIrvOqIubzGxTi8SjSru7REzjw/2sA8tYOiu7KI9Lzy5/W8TyLMvfmLe7ys3xy8qerjvGsDljtCkCU9XTgQvbc5B71+feg5Xu1RPQNvVT1jXu08AjEkvYtOYzsA+ES7P5tsPST6mTmK9JO8bP2gvNPU5Lza/Ic7HgvWvPiR8DzESDM9QFdGO1ZJTLy3dzi7Gh01O2kJC7zPAwU9Kei6PFaH/TyDLVg89GWevKR5yLtFwmw8WGYNvU2rO7xXiCC8brhXvRG91bwIPIa8/zvrPJTzizzdcxg9+8pPPMLRIjwPhHY7kSGJvatil7terv07F4oGO+MdE7vBks68HgvWPMYEDT0K1Sk8cW48PRvZDrwx0Qm8Xu3Ru62a07zuta676sD1vAg8hrvVDUS96oJEPaUZhDuFZrc8VhGQvPGvOTzT1OQ8W/m7uxempLw2v6q8hqRovBsdNb2G47w8b/eru55viTxKNKu8lyVTvKcvLT313C69Y53BPI3LaDz4kfA8eykOvI3MizwAupO9R7x3OzWA1rwIXfY8SL2avCrixbw+Y7C8CNsePVCf0Tww0Qm9swV6PX6EALzqwPW86yKAvYhaTb2k9s28qayyPCdxqryuVq28YuIKPKQ0/7wHZA68gy1YPR/NpLxqAnO8rL0JPYYohjuWaXm7E3O6O5ogAb2IHBw9ns/NPaO+kTxx68G7f/ptuqxcorz1Xym9hWY3vD+bbL1zhYg9lPOLPV04EL1BEn08Q24SO+04KTtES9y6NUKlvAEVhjseEcs82n8CPYUhbr20Bh087RwLPEBXRryBM828PuC1PLEMEj3mcpA8APjEvNUNRDz9xNo81JC+u4JyIb1jXm28wBs+vQ9AULvgpV+9a77MvHvIprwld5+882UePUbDj7w8JFy9oMNjPLBQuLySPae8HFaUPFRPQTqmGYQ8uix6PKojQ73I/hc9+NBEOjh1jzzXB088RIqwvNMTuTzsPh49YxrHvPAyND1dk4K8ADZ2verAdT2hhTI8f3dzvV6u/bvxqUS9ZpFXPORbRD1wrG28s2eEPC52FztsO9I78+gYvXvIJr1U0js9YakrPOCl37y8iA89mGQnPZaoTb0T9jS9FykfPHvIJrzOY8m85hGpPHgSQj2oKbg8Rge2uh00AT20ACi8GCMqPc5pvjw0gNY7LP8GPWdTpjwPw0q81c5vvIqTLD2jOnQ8OLNAvETIYTjyLD882UCuPeHkszyGYEK8M8Ufvb3i3rprQcc8C1IvPQB7P70VbUW9Y51BPTBUhLtRmVw9QFdGvcn4Ir1tuNc8SB4CPFpgmLya2zc9oUBpu2iuGL62+rI7MwPRPMsxAjwhBgS7BAmcvETI4Tw9YzC9wbWEvfznEL1/fou9LlPhvLtlWTw9Hue8aQmLvJKYGTzYAdo8XjKbPP6AtDxusuK7/3o/PPAyNDxzCAM8v90MurBQuLxvL+g81FINu13zxryebwm9RQc2utgkkL3nT9q8NIBWPCjuL70ROls8D0DQPH85wrwltdA89J1aPBhh27wlOEs9x79DPRSyDr2dkRy7vp44vcn3fzy7qqI8320jPeBnrrukecg7XDftPPYaYDlmkVe8DoT2PNPU5LzUWAK8aoaQPZfmfj331rm8ozr0PJfnITyWqE29EX8kPP1BYL2X5yG9r5WBvEpy3Lts/SA8phMPPQRp4LvDjFk8TC62PJaoTTz5DnY6+u2FvdxydT3P5sO93S7PvGNebTzHPMm9lW/uvDb35jljnUE8HlAfOwgZUDz6jB68aIvivDOGy7wECRw9BGlgPg2Ljj2NSO67FLFrO8sxAj0yqYG8qmgMPUHUyzy4ccO7A29Vux5QH70VLnE8Z1OmPAG6k7wiwTq85JoYPbqwFzzeq9S7GAcMPUsSmLvtu6M8FwcMPBsdNT1WEZA8wbUEvdl+37z0Q4u8Fg2BPGGjtjw7p1a9MglGvMTLLTxWSUy8VJPnPKS3ebzrwRg8KibsO6wdTrsa34M96z37Os2nb7wvkrU8T+SavMLQf7wUczo8V4ggvKQ7Fzjr/0m9Zw5dPdPU5Lz5kXC7NnsEu6poDDzC0aK7VNK7uqM69LwInEq8urAXvPsJpLwwDzs8DkZFPP0DrzxiILw8gfWbvdo6ubxgJrG8frw8PCmqib0e05k9APhEPba8gTxdOJC7soh0vNo6OT2j/MI82MMoPX99aDuez009lLQ3O+122rxteqa8u+jTO+35VDyoDRo7R7x3PLBQuLl2Vug8wVSdurXeFD08R5K88ybKPF4QCD1jX5A8a8RBvYSqXTuroEg8FHO6vJI3Mrso7i+9k7Q3PcLRorxFyQS8bP2gu+/zX70XpqQ9H4hbvAmW1ToTuIM8QFfGO0NL3DyMT4a8E3mvPJbLA7ztdlo8xoBvPF3zRj2r3nm88kmAO3abMb1ojAU9LpgqvQfgcDxIHoK8hSdjPCsnDz0Db1W9vOJePP3hG7zYJBA92UAuPV+voLxk3JW8322jvOrHDT3VDcQ82vwHPUd+Rj2llgm87flUPDzmKj3uOCk83XOYPExs57unbV69G9mOPL+YQzyKmSG8ZRTSvAi/ADyhAri8FLIOPVhD1zpRWys9u6qivGa0jbnpxmq8cW48vMeBEr2FSpm99lm0uw2LDjy5r3S7DEw6vVI5GD1P5Jo83+oovBmEkTydkZw91kyYPL+eOLv13K48swYdPQfg8LzFA+o75hGpvGkJC73YKoW9UpncvCviRTvesck9XTgQPRtcCT1LsTA9GlvmPP1BYDzA1xc9y/ItvKwdzry1u149+u2FPGOdwbsp6Lo9MNGJPEKQJbsXZ1A9ua/0O0EToD1v9yu8Fg0BPZkgAbyc1UI9Iz5AvNMTOT1kl8w7CtWpvIEzzbxnU6Y6AHu/PLprzrws3FC6gnKhuy5ZVr2anOO89T0WvXiVvLzmT1q8LIKBPfmLezw/m2y8NXphvWnKtjyEJ+O8CDwGvFiCK73zxgW8CTyGPdNYAr0xTey7IMevvMWHhzu5sBc7JXefPKbw2LpdOJC8Dgfxu9WQPj1IfsY7/r7lPAuQYL08aSW8cyP+vDY8sLujOnQ875MbvFWOFb0XKHw8zqF6vQ5GRT3ezoo7U1U2vFMWYjxEDau773DlPECV97wj+fY7NEIlu2Flhbu/nri8gH4LvJdICb1UVba8bP0gPWQaRz1Wh328NUIlPEmbB701gFY7TeqPPP2ANDxyKpa8XLUVvQQJnLuuF1k8QZX3u97Oir1zCAM8EOALvRcHjDy7Jyg91kwYvdlALr0+4LU70/caPIsWp7zB0P+8lssDvdZMGLwaW+Y8lqhNPFRVtrzS2lm85++VvKK97rz/O+s8Gx01PJlCFDsJnMq8mKLYPKtb/7pX6Yc8glaDvDnyFDvAWe887rUuvZ/sDrxmtI28wwlfuxDgC7wBFQY9oMPjvLA0mrxuWBO9FqwZvSGC5jtmtI09ca2QPDpNhzw+Y7C87T4eOpclUzt32gW8VE9BOy5T4bznT9q82QFaPCT6Gbr2X6k8V+kHvaluAbwkfRS6GtjrOxUvFDxKOqC8qeuGO05tij1KGI29D8PKPEHUS70I2x49G1wJvWzhgjwzhsu8zmm+Pcf+F7xzaEc8DgdxPAm5i7z50MS6ZFj4vKcvLTwfzaQ82r2zvMlZirwb2Os8YCymvLuqIr1aPWI96UqIvMp1KD1Rwgc8Oa1LvPMmyrgZI6q9BKi0vIn6CL3qwHU9FPC/vISrAD0SOts8SH5GO6mssrze7/o7B2QOvUGWGr2I3Ue91VINPBH8Kb2CVoM8Mk4PvKVzUzvEqRq8HU98vKve+bz2l2U8FDUJPS/WW72a2zc9NjwwPeV4BT2CcqG8aK4YvIrR3bx+hAA8rlatvM5jyb2PQ5w8FupKu7MFejxrxMG8w04ovPfWubyxSkO70B+jvKDDY7zDCd88gtOIu8rWj7zIv8O8/MTaue9wZbzCMgo9lStIPP87az1sXgg9nJeRvEsSGLuhAri7sokXvRS4A70kOMs8t/S9u1n/sDuBM008O6fWOw/Dyjy8qiI8KaoJugG0HjyQwKE7fSMZPSog9zvNKw285hcevGhNsTztmRA9EX+kO16vIL1cdsE7vmCHPLMGHT0oLYS98e4NvQRqAz1QYaA7y7NZPK1ABD1++u27j6SDO7vo07w9JNw8YYeYvTb3Zr1VzEa9lssDvGRY+LygCC09KGs1vfqMnrytHc67HgvWPJ7PzbzsfE898WsTvGdNsTtQYaC8WGYNPUXJhDxKmwc5K1/LPHIp87xLsTC8sQvvvN9LEL2pZ+m8rxHkPGcOXTwA+ES96og5vLmwlzxKOqC8Hy4MvWJe7Tv4FY48Om53vImZIb3Wikm8bDvSO+XYSb0uWda8hiFuPFBhIL2eDiI8zCpqvFx2QbzTWII9aQmLvID0+Lx7KQ49oMNjvGRZGz3dcnW7c2jHPIUohj3e7/q84mE5PCombLyTdeO8JlUMPRG91bwv1ls8Hy6MvOv/Sb13GLe7EV2RvMBZ77yr3vm8/IYpvKQ0fztzJKE8huM8vUuxMDxLEhi9Tau7vJ6RnDww0Oa7g80TvfJk+zqcE3Q8kEMcuwdkDj1cdkG9rB3OPGSXTL3zxgW9OTBGPfiRcDmOBMi7tzLvvPCTmzww0OY8bbhXPMvyLTzT1OQ8544uvfmSk7zRXdQ8zqdvuzW/qj1afLa7phMPvWGpq7wqpJS8sUrDuxABfD0clEW91kwYvf3E2rx5zXg8gjPNu6huAT3h5DO9zyWYvKBpFLy3Mm87GQGXPQpYJDx7SyG74xxwveUXnjxu2w09TeoPPbvoU7yKVNg7t1uavJI3Mj3z6Bg9H47QO0o6oDzAWhK8CjaRPR9QnzyxSkM8kpgZPTVCpTzgZy48qqa9PEJ0B717iVK7dGJSvF0yG702ewQ9ca0Qve44KbzUUeo8gXiWOkJ0BzuhhTK9ZtagOq5WLbzmT1q9UJ/RPDFN7Duc1cK623jqOw0H8bwgBWG8TW2KPJof3jrYhFQ8sNMyvfZZNDtVCni8WMDcPC1Z1juxDJI6tvoyPIB4ljw+4LU93XL1uLxl2bzqx429UxeFPD/awLzpBb+8wVQdvTJH97t/fWi8G5q6vP87azxERWc87D37u2bWIDxJtyU9Ph+KPFLYsLvkFnu7hWY3O0vv4bxOg3g9gveiPO7zpr20cEs8tv0xvHdBvjuH1hu82D4rPepuzTxJPIK8uQYSva/MJr19QhG7qAaouyJlwjyNi626qdzAO7Rwy7zwff48VDsZuyL6tbs3+OM8n92pO6t6lLzxCmU9o0CpO3IIpjzndlq8/FU9PTrw1rxHfFS7M79LvUyOlL1GyBW91vp2PLPj5DySml68SpYhvUh0x7yEzbs8BBQvPancQL34LRI9y/vfu/xVvbwzhwa7GadQvX9yyby2oxK8s07xvAFGI7xUSXe7cggmPY+DIDuZF6u8stUGOzt9vb1jzec7WYWevTWV5DsJBBW8JDvbPEL3ejtOZC297pmHvNMsaz0+4Dw9JV01PbfTyryJceC7nZyEu5iKRD3gRU+93qoKvRf7njvBRXs8PJ8XPSkB2ryqJXM8mBcrPTwx/LwxVD87GTzEvKMWQjwLjuy7Kd9/PIMIELve4k88LmRZvF6+Nr20cMs7dCoAPfBWJryUJ8W7rqpMNzQDAL1ZhR69G5/DPJYfuDy/b2K7xYEiPTdEJb3BRfu8F9E3vR3SCr0/4Ly8Nbc+PLVGZLrm7II8L1zMvBbZxDwzdhk9FiJ3O8xm7DzvXrO7q3qUOzzGb7tr/vI7avCUPOolmzqgkeg785fLvNHBXj1EhOE6J2aVu7lgMb3/uDy8/k2wPCvXcjqt9o085KhOPCBtz7wpAdq89E6Zu6xppzu4m4W6DWcUvUyOlDwzKlg9Kk0bvXdBvjwxnXE9OqekPbgcfbwrI7Q86C2ovaYwD7vJbvm8f3LJPLj1pDwLI2A8DXgBvZMF6zwCh8g88BLyvOGwWz3Dmpy8eBdXOzgavr1wMo28wfxIPN7iTzzQgDk7J2YVvE6D+DwkmAm9viawvKXsWj2pBii9moK3vDOHBj1Ord+8lXD3ulms9rxCGdW8OhKxPBATxj2WHzg8Lj2BO1AQ37w/Ape8cLYTvb7i+zxVt5K9AsKcPaH89Dx8xhe98H1+PBBGDbxv7tg8vmEEvefp87zOUAG7x8JHPTwx/Dzi9I+9wJE8PCczzrx0J3E7vrujOdx3QzzcLpE805qGPGBcCrsjh5w8ENsAPZooGLzPgLm8VEl3PEfn4Lzcd0M8dElLvZZajL1V3uq8lsUYvfCAjT1x5ss8mqSRvW7PjTzeb7a8Kk0bvbiKGD1TKqw8e1h8PVo5XT22sXC9uWAxPW4YwDyASGI8XgfpOjvGb7xgamg9GV4ePTeN17zlyqi6XgdpvCfAtLymo6g8AmXuO4XFLrzRs4A8KCvBvPNOGT0vOvI8v7sjPHfWsT2dLmk8qdzAPL7i+7xuzH69sOtxPfTg/Ts1tz69sO4APWmFiD3JA+28UFygvBK/dzu+UJe7SHTHvMdXOzwvXMw8eGOYvIfnCDw3VRI8H0t1vLsM47xdU6q885fLPLkGEjoCh8g5/Al8uxevXbyqk448l9P2Oy9cTDzN81K8uWAxPRSYnz022Rg9z4A5PXMIpjo4Y3A8Nbe+PGBcCryiiVu9VEwGvawdZjySjIA7L6X+PIvGAb3Hwke9SyD5PGSEtTs7fT29DxNGPbqCC7ufch2+lf3dvOPSNTyIm8c705oGu75Ql7znwhs7VWtRvdzDhLwnM868dmulvCPQzrwB+uG8z4C5PEThDz1h1XS7WvAqPCrJFD3moEE7fNcEPItHeTuEOMi8PVNWPLKaMjvV26u8h2OCPOLStbwbn0M8qdzAvBiFdryE75W9aShavF1TqjuUBWu96HbaO6LVHD0t+Uw7CRWCu+vZWTynMI+8saI/Pbrtlz1Ohge9gKWQPMXsLr1LIHk9NUwyPUbnYD0Csa+8cKUmPdHrxTwPXwc7xqBtvXn1fDz6Xcq8tJKlu1sShTyLtZQ8NAOAvIgG1DuJvaE8gowWvSZVKLyh/PS8BjP6vE6Gh7ygs0I8l/XQPLGiPzwqIzS9i7WUPIo5mzxVIp+8SXRHPVVJ97w9dbA9yiXHvQS6j7zA2u68vrujvcwdOrzcVWm8V68FOzrwVjxfKUM7cebLPG7PDbziiQO9J8C0PC5kWT4iZcI8pBbCPJKaXrwP8es8DuMNvWZaTj2vzKY8PH09vPnyPbxS0Ay9X5TPvJEQBz004aW86rqOvG1hcj1Fprs8T6XSuuIb6Dycw9y8cq4GPY+DIDx2EQY9sDezvDq4Eb37nu+8LoYzvYJA1TyUSZ+6kXsTvVsPdjvDJ4O7fnLJOw14gbygJtw8CbjTO4mTujxgtqm8ePiLPeTbFb2rkP88zfNSPLqCizyRWTm9rLLZOu4af7rXscS8WpYLvSFDaDzrROa7tUZkvBSYnzwVFJk4PFNWu5hg3ToqyRS9FSUGPOoDwbyf3Sm9bfblPCOu9LuHMLs8F9G3PB113DtMQlO9gN1VvKU4HD1Drki9m+1DPW5h8jzpTPM86U8CPds2Hr01tz49HOuEPJX93Tx0ABk9nCCLPZi9i7wVt2o7fNcEvCOHnLx7eta65wvOPC868jwDh0g8DuONPGTvwTtTc948kVk5Pcq6OrwX0Tc8L/G/PNGzAL0qbGY8gLNuPJ+7z7sJTce8HXVcvBE1oDx/lKO8o6s1u+puTTxsi9m81v2FPa3z/rxraX+7YSE2PEXZgrofl7Y8nyZcvHhBPjz4HKW82IddvIJA1TyzmrI8uKljvUXIFTx0KgC9L/E/PRleHrydLmk8A/JUu1k53To4rzE9NtkYvW46mjzhRc+8xjVhPKtHzTy85Qq8VWtRvWrwFL0GDCI9iM6OPb1hBDxjKpY9VQBFvFW3EjzEJwM9C47svNRORTx9QhG9mYI3PMRfSDwgoJY8vS69vF6+tjzGC/q766GUudXbqzxZztC8/FU9PWeeAr37M+O6aShaPEivm7zu0cy8zB06vTyfFzvDq4k8ja0HPXW0V73wEvI8rfaNPPxVvTpZOd08P22jPcvtAT3Dmhy9O329vGU4dLwUA6y8MgsNPed22rwisQM7Q65IvfA0zLwj0M68ZaaPPUYRyDxxx4A8uD5XvGzXGj1lOPQ64okDPQ7jjbzS4zi8GGarPF6+NrwSVGs8D6i5PTvoybzaNh48aAkPPYfk+bwHiJs9DuONPI0/bDzcDLc7BLqPPBDbADzyeAA94JEQPVDHLL1mWk69rNQzvXOuBrypF5W82WCFvBtWkTwSC7m8s05xvVAyOb0myMG81uwYvVQ7GT0gbU+8Nxq+OtlPGL3DPe48ikf5vLFWfjxF2QI7fVDvvKOrNTzjhnS8Xr62vI6qeL004aW8KQHauvUksrsgbc+7JV01vVW3kjxK31M9iSguvJEQBz1eB2m8MZ1xvFbW3bxS0Iy89/pKPTivMTvRDaC8Zue0PHSSfb3WRjg99QJYO/eHMbphjEI8GGYrPK1hGj3A2u68ENsAPLdoPjxGni68csTxvP9vCj076Mm8Z+c0vT8ThDz6XUo9wEiKuySmZ7ydUEO9FpASvC35zDy/JrA4N0QlvKCzwryKtRS8LRsnPG7PjbvKkFO95qBBvHpbC7z4ZVc8ucu9vPBWpjoTPgC9H+BoPPUksjwD8lQ7ec6kvOcLzrzPXl+83OpcPZa0KzwA2xa9wokvO1WVuLyRL9K7C0U6PQSpojx5ObE73HfDvCniDj3wgA084CN1PK2qzDk1t768r3KHvGoBAr21OAa9McdYvFNzXrwcwR07WTldOwY2ibwFJZy6gtXIvNZGuLw9sIS7/itWPd5NXDwM6xo9YdX0vMUOiTz7yNa8H04EvTHHWLxwez+9bq2zPC49gby5BpK839rCPAKxr7xxL/68s05xvGJDkDzD0uG7lUkfuz2wBL0IHQ89bWSBvVrwqjtNCo68QEtJPQ0bU7vD0uG7jGlTvVAQ3z0EqaK7migYPBUidzzBRXu9uPUkPa2qzLzrsgE88IANPVFUk7o/Ahe958IbvJA3X7yH5Hm9ViIfPbxYpLxVlTg9cDKNPFCl0jlhIba7ynGIvfeHMb2JKC68zqogPTSVZLwmnlo7kKLrPDdEJbxQx6y8vpnJPOcLTjvL7YG8AfrhvDUiyzysstm7AtB6PL67I70ePRc7kRCHvNOJGb1JK5W83qoKPfXKkjx63xG9cxkTPKZX5zxQpdI8i7WUuhPhUbyXrJ47LI7AvL7iezyKceC9KtoBPEpsurzRDaA5RUycurNRgDxE4Y+8SrVsvBevXbyech28LUL/PAmZCLzjqM47qE9avPMsvztbWzc7zPvfvM3UB7zI9Q49uQYSO38pl7y+JrC8MX4mvdaParxtQie9IUNoO8+AObyMadO8wJE8PEVa+rmJ3Ow8+V3Kuki9eTwvOnI9mGBdPA2wRj3ITy48dEnLvFQqLLy7/gQ96eFmPWbF2juCQNW8oxZCvDs0Cz1YQWq8et+RvX2cML277Rc8CMBgvDJUPzwr1/I7PXUwvKfCczuFWiK9Mr/LPBvodb3Zh129ZlrOvDyfF70G6ke9bsx+PGDYg7xiQxC8lrSru31QbzwWkJK8hw5hPBUDLDzPXt+8/XeXvO7RzDnL7QE9eM4ku0ivGzwx6TK9fnLJu+P0jzwtLBS8hzC7vN5N3LtZztA85cqovImTOjxIwIi8iXHgu0nf07yaNnY7DuMNPTFUv7wrjkC8zB06vNENoLy+4vu4w5qcvNyylzzOqqC8n3Kdu2MZqbvsoRS9XgfpPJKMALwNG1O8ako0PPVt5LxynRk9STwCPf8B7zymoyg9rB1mvARd4TxaWzc8DT2tvNgcUTwfl7a8EVTruuTbFTzIigK9OBo+vHIIprvlyii9Waz2vHeK8Lm1kiW6i/7GO1iFnryCQFU9vuJ7vEmnjro9GxE9GV6evMGzlr2lDrW8OxIxPZdoarxTv588DxNGvYoorjz2Q329Q9CivMXKVD1k78E7ICSdPC49Ab0QE8Y8Z56CvIIeezs/lHu7F9G3PHBZ5bzu8ya9rT9AOz0KpDtGEUg9H7kQvam65jwuPQG9yrq6vK2LgbydUMM8l9YFveKJA71f4BC9zqqgOqNAqbxpvU08cRCzvIm9ITwO8eu79bmlvIncbD3+lmK74fwcu6EeT72jYgM9L/E/PSYRdD0VFJm8si8mPVeNqzzvFQE90aKTPGQ7Azs/S0m82D6rO8IvkD2bWNA8e3rWuor+xjyDYq+8vWEEPFNlADxV3uq80yxruwtFujzD9Du8n92pPIlKCL1hx5a8JRH0PJVJn73/uDw9nZl1uw9ceLzN89K8UeZ3vQniOrwM+fg5+57vvFO/nzwqXgi9D1z4uYJiLz3HV7u8L/E/vIFqPL2fch09DOuavWL3Tj3yeIA8eBdXO4D/Lz2xVn68hQADPWYRHD15guO85X5nvQFGIz2HMDs5Thjsu0WmO73Msi28zFiOPNBWUjwOqDk7boNMuxYMjDvcoao8YccWPa+A5TrXscS7J1UoPTqnJDwUbji8eJU5PRFvJj3hX0i9dWRDvAiAv7z1Vwu9wQmFvEr8VD3H1Sc9E+WfvNP1hLwlaVi9+7vmPLYO2zr2QIo7rJL5u8BOiDrTsvC7cgXLu9Sb7zydA4M7KQKWPPih8TnzD5S8Ti3LPEI5Ab2nAJy8ef0AvQ4nrzzB8oO99hR3PDVep7yEtZa9mJhHvZXmGbx6IrS8kHvevPu7ZrzhX8i8rZAKPa2Qijx2ngi9Z87sPIWHlLx8mK26cQ6au4CyIr2y9OW7KWxMve46orwQtKm6sTlpuN1FUz1pRGY6nJs7u6VcoDzAiry9+KHxuuYGuL0tWL+8r8PvuklBWD2+K0S94QyTu/rpaLzz4ZE9VhwyPcFFuTxVeDa8hMwXvVVKtDwuKj09K4+QvDFyNLz8jWQ8WMCtO5iBRjun6Rq93VxUOyU71jxT67u8eX44u7B+7DuxUGo7v3wKvSff0bwvkoS8KidJPJQrnbtZeyq8sTnpu6sDkDxL5dO8+XEAvaFZLLw9OPy7KDCYuigCFryXxkm84pkNvQ/LKj3z4ZG7C9+3u2b8br1WMzO9kKlgvKyS+Ty3slY8CiQ7PTFEMrwOEC49TpWSPFELDD0/rnU8TfGWvCoQyLxQUI+8WMCtO3CPUTxzwEe7zt1+PFlkKT38jeQ8pwAcu7IL57uZPEO9nj+3u81lFrzO9P+6UUdAu1AijbzdRVO8BCqWvW9qnjzBCYU8nQMDOy1vQDyCPx09rGT3PG4ZWLx5/YC7yWIiPJyyPD3wxxy9E86ePLooUL0yLTG6HJHyvIDJozwm9tK6WjYnPJahlrx/9yU97X8lvJR+0rxArIY9RT7kvHVNQr32KQm9ZG/0u0oqV7xT6zu9IWbkOwoNOrtUvbk8HWGBvMinpbu4MR89094DvXB40LwmJFU8pLikPLoRT715fji6PH1/vJxIBj1gr5Q9KDCYPDIWsLwOPjA6wKE9vT/aCL0kl1o7iYqIvTSMKT0SQSQ9LsAGvaPmprtTmAa8iTDzPOF2STw31CC9LsCGu7oo0Dx38T09oXCtvX48KT1iEPw8B/PEvDVepzxjtPe74+zCPMvvnDxwj9G5SG/aOxIqIz0fq+e8AJHYvJXmGTwv/Lo7Ph+MvHPXSL25P1G90/UEvZv3P73aK1499VeLPO8MIL2e1YA8vv3BvCgwGL2NSug8z/IQuwfFQj3wmZo9VgUxvW/r1Tyz3eQ8uW1Tu+fvNj3tf6W88MecPL/mQD24hNS7DhAuvBzUBr2H5ow8uW3TPKoFf7xhgZK7BjhIPBlJ+7ztUaO7LhM8PT0he7xLe509WJIrPQeJjryWC828RT5kvSonST1Qo8S8qLsYvUCX9Dwog009NIwpvaCHrrwXpf872IfiOh5KAL3C24I7zk4VvAE1VDmbdog8+9LnOwlSPb3tUaO8uW1TPLy1yjzwmZo89v11vCVS17y3ydc8eVC2PA2Ds7xyBUu8xhorvK4I8zzdRdM8E84ePSonST0ZdQ695sqDPOSnP7xb2qK8Le6IvfYUd70c1Ia8fK+uu3CmUj2xOWm8HGNwvZXmGT32FPc82hRdvSYkVT0eSoA8fjwpvjiPHb0YupE8ZJ32u6zVjbsv5Tm8x9WnPPb9db1tR1q8P671ukSD5zq974+84UjHvPmIAbw/xfY8M+itPK/a8DzgIxQ90K2NPRu/dLzCLri8phedvCiaTj1+Die8n8wxvZVQ0DyIdfY6FkSYvAiAP70HiY682VlgvUr81LxRR8A7dU3CvBoZijtOw5Q8R8tePBoEeLvfaBc8C983uwFj1jywZ2s9UfQKvK8GBDy4Gh690Tz3PIle9Tzn7zY9dWRDuwkWiTxhahE9Wh8mvPScDr0Xpf+7F+gTvfrpaLxhahE95JC+PIrrb7x5Zzc97Jamu5dzFL29QkU9QvbsvIh19jryJhW9LhO8u5yEujxWBbE7iVwGvS0FCj2v74I8IThiPDcCozxPfhG9ELQpPRlejb06M5m8vLXKPDiPnb2WC027v5OLOgokO7uf+jO7v3yKvAbOETzjawu9YiUOvdlZ4DzgjUo+4gPEO3vGrzyLAAK9pVwgPeQ9Cb0OEC68BjjIPECAc7zYnuO8iKGJvF1QnLyzr2I9q+yOO0hv2rwb64c8TdqVvOYdubkz6K0842sLPFiSqzxlE3C8MDYAPUidXLv1hY289YUNvXlQtrwSKiO7l93KO/lcbr1bCKW8WWSpPHl+uDzqNy69rwaEvFLGiDwdYQE8vv1BvWiJaT00oyq7t8lXOgE1VLxf9Je8KifJvJuNiboYYHw8CWm+O8FcuryOHGY7DJq0udFoirwvewM7/V9iuyIh4bvPr3w8rwYEvaFwrbyLpuw6pXMhPFYcMrtR9Ao8ZVjzO145Gz2chDq8m3YIvby1SroEfUu8Cjs8veogLT1q/+I8Yvn6PCthDj2X3cq8y++cPdoU3Twv5bk7DhAuvOQ9CT077pW8J8jQO2iJ6bwLdYG7m/e/Oxhg/DzPr/w7LIbBPLey1jwmDVQ8Le4IPVysoDzkVIq8xI0wPUoqVz2ZasW8h6P4vFvxozw1dai8+KHxvMC4vrwr4kW7NkcmvQfzxDuuSwc8wUU5vHCmUj3lDwc9LQWKPPPhkTw2MKW8CiQ7PVVhtby8HRI8FYkbPHHglzt4QgQ95+82PZiYxzzmHTk9AJHYuspLoT3kp7+8ntWAu0fL3rrqCSy8qu79PJiBRr1JQVg9c9dIvPImlTxj4Ao9NV4nPA/5LL1Hy1681hFpPQPZTz1NW8087X+lPTcCIzvD6TQ8a7pfOi6phb3f6c48bTBZu61iCL0T/KC7UfQKu+vbqbxmVgS8KWzMvOX4BTzkkL48uQMdPBIqIz1tXlu9AWPWvDFbM70X/xS8qhqRuwR9yzvpZTA8JIBZvC4TPD1VeLa8l91KPZlTRD3O9P87W9oiPWyjXj19gaw8mg5BO/CwmzxRdcK7LJ3CvKfSmTwSKiO9IvNePPCZmr2BbZ+8GwIJvcPSMz1/4KQ8+unoPPPhkTxEmmg9NhkkPUyJTzqIjHc7ceCXvG9THTzl+IW8PXsQO6/a8D1NCJi8fg4nuxy9hT3CF7e7iM+LPQR9yzyu8fE8FYkbu9/pzjyZPMM70Tz3PLIi6LwJFom8lCsdvZeKFT0mJNU83+nOvAY4yDwRWKW8+unovFipLL071xS8JiRVvPykZb2LFwM84XZJPeyWpjxwj9G8JWlYPSvLRL1clR+8CVK9Ot/pzrzGMay7HWNwPIIonLsi8169kh/aORVymru0gWC9FVuZvGvo4bxSML88cbKVPdI6iDwqEMg7qu59vKxk97xyBcu4vv3BPDS6qzxCUII92itePBiOfjy34Fi96/IqPQlSvbvgpEs8H9lpPAyaNLzz+BI9eCsDvffP8zwe8Gq7n+OyPDFEMr2Qe947pYoivdDEDryWIs669/sGPYFWnrt/4CQ9cHjQvNGWDLlR3Yk86U6vPMEJBb1pLeW8HY+DvAqjAz2GKxC9A28ZvXIFSzwP4iu93hdRPJYLTTudGoS9iTDzvH4OpzxDyOo81G1tu1fXrrwb64e8d/E9PNVW7DxX1y49Mi0xvFCjRL2xOem85soDvC4TPDvdRdO7e8avvD4fDDo0jKk842sLPL4rRD0b1nW7bHVcO6yni7uf+rO7NwIjvbqnGLx1TUK9U+s7vXIFSz370ue8vv3Bu0oT1rugh668A28ZPJPD1TtzwMc8GTL6u6IrKr2AyaM8NwIjvXdwhrxFPuS8lEKevN3yHTtdUBy8n+MyvT/F9roH80S9B/PEvFCMw7tAl/Q8o/2nvF4iGjzW+ue8HWNwvBlejb2ZPMO6lEKevGiJ6TzhDBO9lrgXvHB4UL2KRYU9TXLOvPrpaD25A508R+Jfve1RI7yAsiI9zvT/PPVujDyeETW8u8zLvGVtBbrgpMu8ZW0FvOHeELxcwyG75fiFPeV5PT0tWD+8siLoPFQlgbwxcrS6JiRVu3KyFTxyM00849XBu41KaD10kkU8ef0AvWYT8Dxv1FQ7qwMQvefYNb1Kkp48bUdavOl8MT29Wca85Kc/OzSMKTthJ/28xI0wvbiE1DyHoYk7hkIRO8/bjzm/z788x+woPcVIrTzT3gO9rghzvH4lqDsYjv484jHGvR7w6jxvap68+uloO0Pf67uv74I8GYwPvXoLszomDdS8bTBZvAE1VDchT+O7cHhQOyIhYb3jvsA7EkGkPObKA73tUaM787X+PE6VErxwptI6j8BhvEid3Lx0PxC9rh0FvT42jbwHiQ69a7pfvS+ShDsqJ8k8HL2FO8HyA72Jioi6nEiGPX/gJDx8ry49+KFxPC97g7wQhqe4C4wCPSUNVD2nABw8QjkBvX1TKru5VlI9ZRNwvHbaPL1bCCW9U5iGO/4DXrxQo8S8QJf0PNF/iz1zVpE8/UhhvAo7vDw9e5C9S85SOwX8k7zRU/i7OI8dvYZCkTwSQSS91VZsuyt4D7xlKvE7hhZ+vPVC+Tygni+82J7jvMFcurywwYA8eJW5PCVS1zypX5Q84DqVvZvgvjwj3N277iOhPCIh4bv3Eoi8dD8QPHB4ULxTgYW8vLXKO3lnNzxBO/C7a+jhutP1BD34tgO8iIz3ux1hAb3L2Ju8LUE+vcliIr2GQhE8nQODO5FNXDzSOog7RINnvAdbDDyVZ1E8zJMYvOIaRbwEfcu8S85SPWZWhDzyJhU9q+yOPZxIBru9QkU6xXavu2vRYL0Tzh48v+ZAvT2SkbzkVIq80vdzvFA5Dj0MmjS7WWQpvdL387yZakU9BjjIO5/MsTpRdcK7Ah5TPXbavDyr7A69siLoOzYZJD370me91hHpOkxNGz1i4nm83pYZPSdeGr2740w8u+NMvRvrh7tMoFA9ghEbPJyyvDzYnuO8HXiCPAdbjLpFVWW8BjhIPOVivDy/5sC8tTxdvTPRrLyHuvm8ThbKPRx68bwAelc9VWE1vXKbFDp1+gy9PGb+vJPa1rwog028liJOvXl+OL3leT29XKwgPMfVJ70NbDI8Bs6RvHoLszwlaVg8dD8QPUE78Ls31CC9oJ6vPMzBmjyj5qY81LABPN/pTj2aDkE7/hrfPACR2Dx7xi89oiuqvBGGp7ylXKA9B3INvZYLzTwaRww9TfEWvO0jIby6KNA7xLuyvDxm/rwuKr08VQ6APMLEAT2QqeC8LhM8vKShIz3j1UG907LwPL4rxLzQxI67LtcHvZbPGL30nI447X8lPNMMhrx5FII8dgi/vBVbGb0oGZc89Sv4O1F1QjqFh5Q8o88lvYDJo70YupE8uDEfvECshjywwQA9cgVLvVQlgT1ooOo8477AvPPhkb0aBPg8PTh8PHFhzzq740y9E+WfuvoX67wVcpq75Hk9PMiQpDrPCRK8eJU5PVFHwDxuAlc9HWPwPLE56TwdeAI97JamvKC3KTxv3ki8H2eevQ0EybxrKRO7ZPRLulo6wTys0Zg8yCd3PJJ0Ab0Efgq9NwTtvEr3GDxWsaM7eDhvPJzOJ7yBWRc9AdJgvJiuej0CSr48wnUgvQzszzzFnlk89edjvHBunzz2R8i8BXP3OkDW8LumuCQ95qS7vKCfMDy9pBe9dJdYvV9rLr2yiqg8Fo5hPOyNPb1K9xi8uFT4uxrGh7uBiYm8WTpBvVyr5TySxfi8UbSCOiMINbzSYBi9HQc6vfFGTb0yq0G9s2t2uyRoGb3CjZk9VikBPWptpLzrFWA8afVGvcJdp7xxzgO+LcI/vbWzYbwSNTa8hfotvUG+d7zpZAS8RzfQvAljMjwRdW28ZTy3uwVb/rzTBA49y89GPQpcebxPyKG7c0/tvGdNdzwEZhE93eowvVeS8btmWAo9BGYRvUqXND0sSuI8nZd8PDdkUT2COuW7lbUzPIIVhr38YDw7h86VvAt0crxCNtU7dm+aPD8NnLzLh9u8vHSlvMJ1oLwZNrE6foHVPB83LLwIk6S8JRl1PM4QeTxIT0m8+ZMNPM6nCL3iA6U7JgyPPEN+wDw/DRy9vTAUPM8bDDuX/Z48X1M1PZC0uLxTUb+8jOeJvNHoujg/xTA8ck9tO+HTsjzEVu68FC79uzYPAL2+7IK7PmVMvMf+vbxmcIM8CZMkvHJPbbtfay67/Hi1PBGN5rxIfzs8L94SvTokGrwff5c8a1WrPekEoLyfP0y9OiQaPE44yzwTfSG8KyWDvC7ysT0S1VG9KpkGPTCagb3Z7Y+7OZRDvCRQIDz7uGw9sCrEOxrGhzwKdHK7yCf3PEfXa70VXu+8Cn8FvfPunDtH7+S8x16ivHIqjj2pmfK6wBU8Pa3pEb3e7oq8UPiTPdbptbzEhmC7WApPPVvKF7wWvlO92hLvvHBuH70hYOU7WTrBPVAQDTzDvQs8FWkCObNeEL3xLlQ8MNN/vOfULb0Lf4W8wl2nu3hQaLyG4jS84hseu6UQVbvt7SG9euA+vY70b7z4dzo9gPkyPU9oPbvZBYk9MDqdOkUOF73TeBG9JgyPvNbRvDwP9AM9iAtuvWZsKb16KKq74zOXvXiAWjufJ1M9uIujvZVtyDtA4QO8DLxdvcvnvzyex269jmzNPL0wlDytjYe97e2hu8W2Urw7bAU7DOzPPKegqzx7QCM9Spc0PW6WXbwLvN277jWNPQ1krTzyjjg8quHdO/+hbjyhzyK8N3zKvLjTDj1TaTi8p6CrPO3tIT0mmAu8qBgJu5EUHb0tqsa8a0EMOnxAozx64D66qRHQPDZTETtamqW62irovMdeor2A+TI9M6vBOifBxL2Q5Co9oc8iu5Eslrt2VyE8V8LjO1DgGrzR0ME8VikBPHZXIbzF5sQ8p9AdPPZHSD1TOca8/mSWvay5Hz0AlYg9JPQVPaC3qTxgmyC9MRtrvNta2jyosWs83u4KvK5qezwyS9258qaxPdjtDz35vyU9OQwhvBlmIzwAlQi9iPN0vDn0J7376F69GNbMvLKKKDzOvwG9hMq7vE5ovTxWhQs9sooovFx7c735vyU9tnMqvTAD8r3e7oq9ehAxO6zRmDycti68orDwPKRAR72/nV68Qk7OuxG9WLq5hOo8t0cSvfW38Ty8FEE8cmfmvBx34zqS6IS6FE2vPDYPAD3pTAu8HQc6vOBbVb3RADQ9AQJTvS8ipLwfZ549aj0yPDhkUTz5v6W8TjhLvIUSp72c/hk8H38XOiPAST2kyOk7p6CrPE4g0rzbuj69fBSLPCqBDTyCOuU86s10PWndzbzfE2o8wi01utWJUT12Jy89NCOfPIrLNr2jowo9zXcWPc4zhbyODGm9qLHru8DNUL03HOY8gPmyPCd5WTzTeBG9FC79PBam2rwXBr+98BZbPVYpAbxixNm8opj3O0D1Ijw8TVM8Eh09PefsJr3ZBQm9PDXaPB+XkLy1s2E7+jcDO5W1Mz3v/uG8f8nAvLFyrzyR/KO9f8nAvKMXDryv4lg9ARrMvLjrB716KKq8hRInvWKsYDyG4rQ8nd9nPqfQnTumuCQ9YMuSvLjTjj1MCNm8YD+WPEU+ibz0TgG9LzqdvLsUwTx8LAS9QPUiPMzPRryN3PY7M9uzPHxYnDzH/r081aFKPX0h8bpK9xg8bFmFvLWzYbv9qKe82gUJPGPcUrx2Pyi8MTPkPMAVPLyJI+e8GR64Ovqg8zsikFc8mp61vcuf1LthhwG9zQMTPdbRvLlpDUC88OZoO26WXTv5kw28t7sVPbmc47yTPVY6TKj0uaKAfrun0B29BiIAOkzYZrwZlhW8soqovDQLprxrtY+7O+1uPHngvrxGmhO8EaXfPLc8/7zUNAA9aa3bPEgHXjtrtQ89MpNIPSdh4LxIB148PmXMu/8ghb0jIC49xYZgPTjEtTyn0J09W3tzvOT86zwXptq6/4n1vLhfCz3bclM9FwY/vfEWWzu4dwQ9/sAgO+kEoLyB/Yw6JGgZPe6pEDmhz6I7eeC+PJP16jpNUES9e0AjvQmrHTxZajM8VmL/PCsyaTxH1+s8fFgcO90aIzvXAa+8tzx/u2yFHby+7AI8ZlgKvIHlk7z25+M8qbFrvVWBMT0k9JU8qRHQvBTFDLxixFm9G49cPHFCB7wyq8G7T4A2O6eMDD3rXUs8EXVtO2T0Szvq5W09XKvlvCYkCLxash49U1G/PEDhA73DSQi9VYExPZQNZLw/9aI81zEhPYf+BzwPlJ+88+6cvbFyrzxvPi08MPYLvO3VqD00Oxg8+e+XPMvPRj1BBuO6ToC2vA/cCr2fD1o8TSBSuoI65bww9gu8sEK9vJehlLzp2Ic8pMjpPCk5Ij0X7kU9NWsKvWPcUjz66N67lIXBvD/dKb3v/mG9C7zdO6K7A72OJOI8hGrXO4rLtrzEPnU8dm+avNu6PjyVtTM9ATLFPNfRPL1038O7bX7kOolT2bwaxoc89RfWuombxDze1hG9W7Ieu32IDjwSBUQ8FFEJPbZbsbxAsRE9CU+Tu3ngPjvyvio8V/LVPGhlcLwM1FY9He/AvMWeWbv5v6U9yDKKvfswSrwfrwk9gEEeOsIxjz2/bey5dwj9uy/ysTzESQi7QzbVvGw2+TsEZhE98S5Uu4vjL739SMM8NzTfPPinrLyghzc8gCmlu0lnQrr8eDW9kMwxPHASFT2PnL+9oLcpPRGN5jzHXiK8uZzjvKixazxIN1A7AhrMOqyhJjwDkqm7prikPDYPgDzOj4+9DqwYOtaJ0bzNdxa88x6PPFyGBjtn5IY6FK2TPLijHD12hxO8jdx2PPZfQTzzh/+8S8sAPA6Un7oqDQq91zEhPTJL3ToKCwI7GU4qvPKOOD1u9sE8bpZdPIdyi7xXknE8A8KbO0zY5rw8HeG7Pw2cPK6C9LuKsz07Ee1KvSFI7Ly3PP+86UwLPfnvFz29MBS8CBvHu/mrhrwpIam6ndKBuJqetbtifG69SvcYPI3EfbySrf88ZswNvAJ6MLyMEyK8S7MHPIxDlLz/oW48IpDXO6IvB73IJ3c8t7uVPJLF+Lzhc8682h0CvK4ZhLoUORA9NveGOyALFL154L48t0O4PCUZdTz1n3g9JSSIO5adujzFzsu7xFZuPI30bzk8TdM8y4fbO1+DJ72W/R69AepZPLTj07xFDpe7DUw0u+aMwjqgtym9sFo2POFzTj3/IAW9+7jsO93St7yVbUg8gqGCO1+DJz2BWRe9+R8KPGpVqzs74Ai9zr+Bu30h8byHzpW8pwAQvXygh7yO9O88yI6Uutkdgrun0J08+I8zPKkRUL26/Ee7JbAEPbSDb7xfUzW7+7hsu/mrBr2zAgY9St8fPG7eSD3RGK29YmT1PAiTpDts5QE9CcOWPPvQ5byrQUK7bM2IPDsFaLtUmao9y7fNvLxEMzwAAlM7nOYgvAlnDDylcLk7RfadO6BvPj13Kwk9vESzvBaO4TzrLVm8FDmQPFwSg7xdw948JFAgPXXfwzxlnBs93mKOvKspybzpTAs9ZYQiPVfa3Dwcd2O9YYeBPHG2iryGQhm8xeZEvJEsljk3HGa7D4CAvTXUerxyT+27YZugPM+I1rww0388MBvrPCALlDz+2Jk7j4RGvI5szbv+ZBa9qeFdPCGQ173zkhI7TlDEvE+Yr7waIpI8vuwCu9uKTL04xDU88qYxu6mZ8rwbX2q6erBMu6/K3zzbclO8zhuMvLlscT0bxge99RdWu9u6Pjz51x68irO9PCd52bxq9cY81zGhvL9tbL2tAQu9x14iu2CbIL3B5Um7PyWVPB3vQD3MRyS9P8UwPAQKBz0ZNjE9Sz8EvQRzdzxsKRO8uOsHvFd6eD03HGY9x0YpvHPHSrtKg5U8BbviPLc8/zpAVYc63mKOu5Ccv7uq4d07orDwvIqzPTuUDWQ8JGgZPbl3hLuODGm7wP3CvFIhTbz3pyy9aN1NPG/2QbwbR3G8z4jWvP7AoLtLPwS8nidTvLXLWr08Ndo7p3QTPCSAkjnKh1u9m+YgOzJ7z7vDPnW93+P3u9N4EbtR2WE86y1ZPXBWpryscTS8KSEpvb7sgrytjYe8Mkvdu8gPfrx/4Tm8xYZgvUJmRzxWhQu9KTkiPMJFLrz1n/i8FJWavI+ERjmsuZ+9M/OsPDvgCD2mWMC7Qh5cPBWVGr1cbo08D0X7PP8IDL0bL3i8DTS7vMPVhDxGygU9WSLIPHaHkzzUNIC73dI3PQTyjT28dCW9p+gWvPLWo7zCLbU87L2vvJYVmDtQ+BM8Kup9PZYVGLxFPom7X4OnOqzRGLyJa1I4f+E5PJLF+DwQXXQ7ffwRPBvGBz2vEss6V3r4vByn1bxCTs48/UjDPF8jwztTCdS4/mQWPSjZPb0cd+O6A8KbOyuBDb3W6TU9xFbuvJadujzxLtS8/sCgPBQ5kLyVVU87IzinvAACUztpDcC8snaJvKVAxzuG4rS8tnOqPKIXDr2bti69WSLIvJehFDsSHb27Mev4u9WhSrz9kK68AQJTvWJ8br28jB48KJHSPMVuZzwCejA7Sz+EvN8r4zrCMQ88UbQCvSLwOz3DGRY8XHvzu3cg9jyxiqg9gfJ5O8Q+9btReX08vTCUPa1q+zniG549GR44PfROAb1DrjK830PcPGuFHTutavu86uVtPH6xR72rWTu8UsFoPL0wFL0aOos8GU6qOLNr9rzNd5Y8i+MvvRjuxTxasp66ruJYvKxdFb1XknG85+wmPfLWozwY1sy8cc4Du97Lfr2UVU+9YUz8u+0FmzzMz0a8CasdvBkiErxsTnK8AnowPQwEybslsAQ9VJmqPcxHpLsi2MI8rgGLvNIYLTzMF7K8FqZaPLjrBz3/8BK95ozCvBjuxbygt6k73pIAPVadhLv0ToE8dysJucpX6TyKy7Y79DYIPcbOSz09Zcw6OJRDPcMm/Du2Ptw71N6mvF0lWr0pwRO98AWhvNF5m7zwM5c8uygKPaZ7DDw06MK8e0zUvCYRLr3uy9g8fYacPBu8CD0pYvQ7R14rPb+nxrxi73A84VnPPNXNFL3itbs83eskPHf7jTz59To6/cIEvdhPBDvJLRW9VBhcPEsowrzBDwU7BQxYvXWWgr2IN667WtQTPRDukrn9v9G8wxXxPJcalbr64fU8H7HivAD6mb2O7f88KJOdvBDazbz2c0s8YLsOvMhsHb2RjFO9oVWJvZDOjjwIRiC9AuZUPb/EKjxoyAy7+kCVPDs0Sb0i6yo8tj7cvUABk73ZIQ69DYmHulbZU70Kqyu8K4ILveCbCr3d6yQ860npvDFmU7sKMtu85b7aPDhqMj2JnLm8vV8fu8fzzLzDcV06WVvDPKbudr3gUDC8VlIkPUnDNr2dWsk8GW77PIO1vjv9Zpg9YXwGPBxM1zsuqA48WXgnvDhWbbwZ+xA8bja3O2jIjDpgimW78Kk0vVL797wTm8W8aciMu/UrJDwt1oQ6TgYevCXJhjwSm0U9YiCavKw0Eb3TCeq86eRdPDhqsjy1bwU9HU8KvbtWADzZabU76OcQPXQdsjyRoJi7gfTGvEiphbzy8Vu7DGyjO+b4IrzgUDA9NWETvRZoDzx1wcW81cphu9WfnrxnNYu71UMyPOvCOb1Gie687vyBurIbDLzLGVC9lPSRPJOpN727nic8qA4OPL+nxj2yG4y8VlIkvXPVCjx1OhY9y71jvCz4KLwXCXA9su2VvWNowTwVHTW9S69xPJ5aSbrIEDG8PdjcPA7RLjzoXS48w81JO7IbDD18DUy9oTglvQR8CbzReZu71otZvFDyWDz1K6Q9VprLO4wBRT2xSYI8P+F7u6apgj21Ply9dZaCvGoQtDyGdrY7UbNQvS6I97zF1ui8psMzPIMRqz32F188Qb/XvHN5HrwGD4u9UnTIPKUCPDwGDwu9f487PMFovjzIWFi7vebOvDREL7v/gEk7xzt0PA9hfb1yXLq8dHkePbslVz3xBSG939qSPRakZDzhPOu8z4f6O/lRJ7w6F2U8AeZUPF8u+bzfrJy8OzRJPA4ZVr3qAcK6jB6pPE5iir13bvg7Yw+IvEXojb26gUM9SKmFvNAASzyYdgG8GryIvdCnkbxiIBq8Jv1oPMrRqDzdjzg8ZzULPeqoCD0CuxG9sCwevIe+XT3FNYi7a4mEPJ+/VDtF6A09sdCxO72NFbwu1gQ8BbDrvM+4ozw5Kyo9ZKIJvJXGm7zXYBa9SWdKveyDsTxGuhc92PBkuyiTHTyEEas8gOsnO9nzF71m6rC94qF2PEeJbjxpO3e92pR4PIUAmTya2Nm74RGou0uv8Tsexae87GZNvP5jZTpmceC8E5vFPPeQLzyF0iI9j9+gvCVtGr37tjI9yS2VPEAvCT2ohCs9xvNMvR7wajwHcWO8HWk7Pa86/TvPuCM8tj5cvGcHlT2OCmQ8KL5gPbzJ6jthp0m8rg86vVKz0DyOZlC9/AGNvfu2Mr06dgS8bRlTu8m0xLu7VgA9v04NPfCptLyMSWy9tIAXPWGnyToRrwq+iSNpvRNwgrsuAUg9haF5vB7FJz0p7wm9iDcuvF0lWrwIdJa755y2O8th97ye0xk9p+72u1g+37zJtMQ72uKFvNI6Ez0jNgU9/yRdPE0UfTvHEDG97A2UPavVcb3w1He99nNLPVDyWDyTIgg9lWovvWmXYzzlk5e9J1nVuv13KjsuqA49kqm3PIDXYjwPGda8fhbrvPlRpzyNSWw8uRw4PQZUfz27nie8dB0yPEM4KLuHvt08OxflPFxkYjxWIXu9Orv4uoLJg7w2TU47ReiNvYvnkzuaCYO9kqm3PBZ5IbuxdMW7jF2xvErgGj02Igs66QHCvdSt/TwY3iy9285AvYA2gjygOKU8729svC6ojj0NiQe9RFWMvCAqszwYJlQ9doK9PAgVd7wexSc9j98gPKUCvDsrnLw8vUK7vXBTm7zIEDG8Rl6rPPNqLDx4bni8Jy4SvdHBwrwLl2Y8QziouxHaTT53KQQ982qsPKAH/LsIRqA9OGoyvbX2NLzeM8y8FUh4vORi7rwhcto72lXwvGn2Aj30slO8gsmDu7qBw7z2GpI80XmbO9IdLzzWvAI9Go4SPEjuebx1gj09psMzvIGsHztxh/06sHRFvBqL37yN7X88HsUnvTGu+rw6u/g8dGXZPGBfor06dgS9KyPsu5DLWzyHvt27X0I+O19CvjqvOv07ScM2vKuNSry2t6y8RugNu9pV8Dy/xCq8dQntvHifobpGie67r7YAvQcpPL1DOCi9aZfju4e+XbsYgsC8BHyJu5dzzrruJ0W9icf8O0o8hzxHAr+8pwtbPd+sHD12yuS7LgHIPMhsHbuvLJ69n79UPT3YXD2MAUU9PNuPPdHBwrvCsxg9XvoWPGh6f7zCVHk8pOgKPfggfrxgp8m7SmfKu/+ASbz2SIi8MWbTvL9ODTxzAwE8+9MWPI5mUD1LcOk6UA+9vMcQsbxZty88TUUmPTfGnjwZ+5C86OcQPWCnybzPh3o8arRHvaTlVzvOQga8trcsPCR7eTx2gj28AqdMPQ8Z1rwVXD08ds0XPYwBRbw9rRm8pw6OvYyoCz0rVJW8NYzWuwljhDxUvO88K5y8PCycPD2U9BG8zj9TPVZSJLz3fGo8eJ8hPANL4Dzty1g8DxyJvVbcBj3sg7E7dB2yPKLI8zy6ZN88wQxSvMSOQb0NiQc9dspkPJMiCL0SQow9xAeSPDHfozxXPl89XGcVPFauELuPrve7OnPRvCwVjbx6qEA7Xy55O1CW7DqKiHS8ngEQPWMM1TwzoBs9AyCdPVK2A71JwzY8XvoWOSAqs7xA/t+83XJUvWmX4zveM8y8JRGuPF4ojTyJx3w8DBC3PPmZTjxkhaU8SQtePNOtfbxtNre8koxTvK71iDwfseK81otZvFKIDb2A1+I8cqRhvYX95bzUgjq8TM8IPVm3Lz31K6S8qkUjPadnRz2/p8Y8wqIGvNCH+jypKL+8Di0bPblkXzuMqIu7HGCcPQXhFL3a4oW8zJIgPapFI7vgm4o9TqoxO5yZ0TtpTzw7d254OnD3Lr1+VXM7Q9y7uvNWZzyvD7q8cPcuPSHOxjyfG8G8jAHFPHzFpDs1YZO8iIKIvNuGGTzNfls9dB0yvQwQtz1GFgQ9C/PSPKFVCb12CW27JG0aPH4qsLwUuCk9sUkCPCiTHT1z1Yq7bq8HvRKBlLxqbKC8/cKEvOectjwnLhI9T5ZsPD2tmTzIiYE86noSOnGHfTxFnTM8pQK8vHU6FjwVANG7xTUIvRgmVD2eonC8A6dMPG9+Xrw7F+U8m/W9PLzmzjuU8V68bPzuvB+0lTxtYfq8QzioPBlu+zqP36C73eukPA388bympk+9FAMEvQv2BTyXKyc92fBkusp1vDyJQE29xEYavaBj6Dqmw7O7YKdJvVgTnLynZ0c7egQtPU/y2LxOjU29PZnUuvHUd7xdniq80QDLPIRcBb0S9zG9WsBOPf13Kjw/tji8hmJxvLK87Dq63S+7EJKmPPwBDT0OdcK7+fW6PJIw5zx+Fmu8yxnQO8lbizvgm4o8QFrMu0Gi8zv27Bu7twIHPcKFIjtLr3G8TpCAOtSCOjwTcIK8ihWKPJp87Tv8LwO8egStvD49aDxp9oI8N8aevBZoj7tW3Aa8ioj0PK71iLyuayY90XmbvDVhEz3pAcI8Xy75vCrbxLxFyHa93ggJvU6QgL3wqbS8E5vFPPk94rwX3iy81Z8ePKGAzDuXVmq9yhwDPHWWAj3CVPm7MMK/vO9vbDwz6EK9GkM4PR8qM7w+mVQ9ScO2vQrzUj2MHqm8KtvEPFYh+zz5PeK87a50vGoQtDy/p0a81ryCPSh2ubxDgE88stnQPBmCQLpDOCg9+RKfvGoQNDz1F9887GkAPRakZLxurwc9qK/uO1KIjbp2zRe8OhdlPEZeKzw4K6o9TpCAPQLpB72pKD+9LYh3PLrdLz0lmN07KHa5vNQpATwFPQG9pQK8vIXSIrzO9ys8psOzvMOihryCyQM7LJy8O+f4ojwyoJs8KjcxvKL5HD0t5xY9IUeXPE+WbLzLwBa9BMQwvOkBwjveM8y9tK6NOyWY3buRy1u9q43KPI/foDyglJG9LbmgPEDTnLzXL+28xDLVO5UOQzpiIJo8/yeQvLzpAb3rHiY9yGydvHzFpDv2u/I8fLHfu2Bfojxw9y68zSLvPCtUFb2KFYq9YwxVvCAqszyO7X+9dGVZvLsoijwdfQA9VEmFvJ7+3Ds6zz09BQxYPYV2trxgp8k8dcFFvLM1vby1mkg9D3VCPWd6/7usNBG8oDglvBNwAj3aVfC8+hIfutHBwryme4w8fMUkvFPQtLxao2o61Z+eu00UfbuTBSQ8XGeVvOIujLyWz7o7YsQtvVs5nzwjNoW8Jv3oPGjzT70DA7m8E+NsO45m0Ly9Lna90619PFscuzxG5do7wAxSvTrsoboIRiC9C/PSO62W6TuGYnG8iDeuPFrUEz2Xz7q8HuILvL+nRr3+Y+W7h5MaO5T0ETw1YRM5z7ijvEQnFr3u6Dw8acgMvTZQgTtWrhC9OYcWvY4Nl7zuoJU82cUhvTrPPT26ZN88Hw1PvP6UDjz/gEm9ynW8PHf7DTyVxhu9UiwhPNI6E73y8ds8syH4POTBDT2/7209FFw9OjhWbTwokx09I1A2vbSuDbwAni29j98gPK3HkrwYJtS7umeSvNlpNTy0feS7mnztvCiTHTwAQsE6y+4MvJOptzs5Kyo9nRIiO4kjabvvb2w8Ji4Su9TK4bzrwjm9Pj3oO/etEzysMd474rW7vGz87jywV2G9nhvBOvOy0zxZty+9zSJvPHjnyLxpbCA9R6ZSu65rpjz9d6q6G4vfOxmfJLz5Ep88vG3+OmZGnbxaR/48qkUjvYWh+TwovmC9oshzvQcpvLzDzck8MWZTvc73K7xxuCa8IaMDvdaLWb25CPO80gnqu1WRLD0JMlu8nv7cu+dAyru/xKo8v8QqvJnY2bzmnDY9pU0WvOMAFrwX3qw7sZEpPTVNzjzdunu7UrPQPOrtfD327Js8nbY1Pbv6Ez35Uae83eukPJXx3jxgX6I8KcGTvI47Db1fLvm8qIQrvA8Z1jyVhxO8ntOZPBu8iDzVbvW8bWF6OkM4KDmcQJg8kwUkvAkyWzz+3DW9Uvt3vN0WaD39G747JTxxvEM4qDyCPG69vktavV8ueTsuqA48b35evNJI8jcesWK8a1hbvErgGj3duns7FADRPJDODj1khSW8zfcrPY7t/7xNjc27IaODvfSyU7uQJ0g9hf3lvMp1PLz7Wsa8c6eUO9x1B7wltUE8f3WKPPggfrwcIRQ9ZuqwvFKIDT1G5Vo936wcvGFOEDwDIJ28TCulPHSDzTuSkP+8epy2vKH03rtp1Ly8ZR/uu4rMHjz6Xgw907S6vPJHDb3vkcm7UY3VPKH0XjwVhO27hRdQPZOvJj1F4K68JjmBvOOwq7xlH+45qioFvQvBAT3oMYM8w4TSu5MVq7zAujM9SahjPKwJ9DzR6DG9viIiPP1bLb1sNu28UqsHvEmoYzshUqU8wFQvPLYLI711Ooa84X4ePb2KEDue9ki9flGFOzZI2LwiULu6bu+PvJ72SL3CHk69ZnCivNAxeb1RjdU7qtfmuyFSpT3fTQa9BnOsugGMULuhrYG9R97EvGqgxb12Bo+9dwaPvNpltTwfM/68k68mvLSniLxk2QU91UzMO+yTszzCHs68iDUCvcWihLwdaV89hRfQvB/NebxdWaO6Q4/6PCYFijvRUCC9nSwqvb+8HT1EFCa9LDNDPeAt6jy4o7S8jDC5vG28jTsxYXw7pw3IvC7LVL1obri8ovL0O/0poDw7lyI8epy2vA2Niryh4IO817DmvB+GHD1Pj7+8QBcFPJz6nLxjIVi8Bg0oPUMUpryjERy8G51WvXAfMz3fYWG8P5NOPWpsTrxTJWc94bIVPUra8DwWCRk98xIhPLtt07zC7EA8OUbuvJ0sqjxj7WA85uDOO4rMHrgXHH87DTl3vJGxkLymqS29kH+DPN9h4TvzEiG9eAQlvI38wbwtZdC8fuuAvYCWeD2601e8r/K5ObOnCD0paaQ9iswePMEguLzPZXA8xW+CPG67GL18NMi7okYIPW7vj73PMXk8kxUrvW1Wibl0g808JwQVOqAoVjy8BWW7z4QXPcLswLxBXW09flGFvfLhiLzRgi29zzF5PILnrLt+ym+84ICIPAN2i7xUV/Q8hH++vB5Uj7y3PbA9y5tRvSey67vdl0K7OTITu2GJRr1YPtC7wlJFPPorCrvQt5k9iM0TPGZR+zzOuYO81bLQvMWihLwvHAk8ZKYDvMo3N7yj8vQ8p0E/vZh3W72y7mU87vdNO3fTjLoWUHa9dufnPJr7kbweiIY8olpjvZwsKjwEVm+8KZ2bumEjwrzJ0bK7kMZgPIfOiLwXPBs9grM1vW/O/jxmUfu8iDQNvdtlNTzh+XK9md1funLruzu+IqK8FHEHPWqgxbz6PnA8OJqBvJlii7xlPhU8zh8IvEzFoLsJ18Y83i/UOigDoD3PhBc9msgPvWEjwryD5UI9jpRTvFvCBj21IPO8etCtPHWBYz2Rfg69ZnAiPJRHOL1b9Qg75hTGOzV8Tz3CHs68aW44vfbcP73EPAA9BHWWvDEaH7yrw4s9ia13PYbjWDx0tVq9osBnvaMThjyXEVc8nPqcvNSy0Dtr0lI9UFvIvGCJxjzo/gC9//O+uwOK5ryQxmA7Frb6uScElbuZYos8VnQxPSrPKL0Dima88ll+vLGKSz2p2VA9bPCEPI9MAb0V1ws8KGoZu5ySLr2u9KM7XI6PvMc5oTxsvQI9cB8zO11amD3xJ3G9e85DvMWiBL0D8Go9q8OLvaz2jb1cWw29pnU2PBjTNzyGr+E8z2XwOuWuQT3CUkU6hgIAuwTcDz2AtZ87o3gVvqlzzLx9zFm6B3MsPKN4FTyT45070hypvLNUajtErqG8hX1UPGy9gryb+hy9b4chvfGP37rEtl+6sw4COzre/7xsBOA8ryYxPEzFIDxxH7M8ujvGvPN6Dz0NjYo76artvBU9kDzqlR09f7YUPWqgxbuQfwO9ewI7vT1hQb0/xds7XVkjPV1bjTw8+7w7ji5PuyhKfTotZVA9M+anvCKEMj20DY09o/J0u/V4pTz7KhW9utPXPL5p/zxXdLE8flGFvMLswDvoEty80eixvHfl/bwg7CC72HxvvYxiRjyCgag8/fUoPNyXQrx4BCU9XDp8vL/uKrxobrg8gDB0vE5dsjyYEde8mnVxPfGuBr3wXVI9EyBTvVpwXTxKLoQ935VYPcc5ITxJYYa8DVkTPR3P4zvDhNK8eTYyPQ3yGb3Rgi29bWrkuwTbmjvggAg9AMBHvTFh/DsuMdk6frcJvYlmGj3XSmI+TV0yvNlnnzxcwRG9IOwgPQRWbzy0QA89GNUhPDcUYbyj8vS8NbBGvOyTM73t+Te7HgFxPONKpzwysrA8H815PKJa47xJLgQ9viKiPKRFE7xcJ5Y8HjXoOzCBmLyRkmm9cuu7u5GSaTwVHum74V/3vGyeW7z0EqE66ZYSPXgEJT2ro2+8MOiRPKRDKbyZ3d88jJY9vWMh2DwguKk8kxWrvJoP7bwzTKy8/sGxO9c2BzyppVm8UlneO8ca+rz2qjI94ICIvGS56bwVcBI79d6puhW45Lz6+Ac9VFf0vPv3EryUrbw8ZKUOvB8zfjyd+LI7ElTKvIkzmD3l4jg8epy2vOrcejwxtY88Lf9LvRa2+ju701c9JwQVPUNIHT2Yd9u7VHYbPX+2lDz8j6S8yQUqPaLA57wyGp+8Rqw3vPITFr1uiQs8Zev2PEmo47v6PnC7WNhLPAvBgbysb/g80baku1xuczxqoMW8RUYzPCFSpTwNjBW9V6Y+vIUX0DwBJsy8SXRsvFxuc73o/gA9N80DPUlhBjvG1JE6eTayvMLsQD2xvkK9Y3MBPScY8DoTus68/fWoO4RLR73wFYA8Kc8ovK7ALLz6Xow883maPKQRnLyjqxc932FhPHk2Mj2gXE28dBvfPLs53Ly8JAw9WaTUPEUSPL2sb/g8ryaxvDC1D72Hzgg88a4GPEast7wghpy8N67cOwfZsDxZckc8VXabPdHqmzyk3aS6lqvSu8ppRL3rlR28L/1hu7s53Ly1QI871zYHPYLnrDwMJhG9HQNbvF8lLD3O7AU9ZtYmPHsCOz1tauS8DfKZu0tfHLzpqu286mMQOuR8NDtYDEM7/I8kvL4D+zxT8W88L08LO1J4hTsmOAw732HhPJmp6Dwj6Ew9+vgHvU7DNjyBGyS9RBQmvegSXDyk3hk9u9NXPT8r4Ly4PbC8l0XOOlwnljxK+gw9e5y2O+DmDD2e9kg9hxXmPNr/MDzLm9G6wuzAu+gS3DydXre8WaTUvHVN7D1VQqS9mBFXvXU6hj2Z3V+9p9u6PH7rgLyINA0986ycvI4uzzzskzM9RXjAOwwHarz+jbq76ZeHvNgCkDyzIl27lnlFvVZ0sTqadXE8mscavV1ZI70aOby76P4AvUKvlrxDj3o9rG94OwOKZrxzT1a9MrKwvP9Zw7tsvYK8R95EPAz0g73q3Po8OmWVO1QRjLwW14u8+z5wOrijtLvvK8W7yzXNurN0Bj3cl0K8HjXoPJrb9TwC3YS7bdDoOmYKHr2dki67/o26O5d32zw24lM91hbrO6RDqbzxW+i8Qil2vbdxJz3ZaJQ8tHMRvNDrEL1ooi89jvrXuhtrybvoZIU8N+BpPIgAFrwZbbO7blWUuyhpJL352lU8uD2wunIdyTxm1ia9S9rwuqJ5Cry7n+C8kn2ZvGIhWL2He2q9npBEPKrEADlZ2Eu9FFLgvHXUAb0cN1K99UQuvQ7ymbySkP87kZJpvb/uqjyHNQI8HzP+PGqgRTx3Bg88mmEWPb7wlDteWaM8jMo0veOwKzsqZ7q7hzUCvBRSYD37xQU9xqEPO7hvvbwo0ZI9W9ZhO2+Iljw5Evc7gbWfOkGwi7yZYos7EPAvOw++IrpCSJ08bpxxvaDC0byhjlq8ILipPJtgobx5NjI84V93OiSCyDyEf745KGmkOz0vNL3OUgo9At2EO/SsHL2ZYwC7S18cvJxgIbwEvHO9T8FMu8LswDxzT1a9n/bIvC+Cjbsuy1S8XKLqvC7L1LzO/+s8MoCjvdiu/Lwuy9S6xaIEvYIbpD0U2AC8h84IPeR8tL2mqS09PMmvvEoOaD2LMiM8BkEfvLBYPrwIPcs8pN0kvYjh7jxTdxA9D4orvH+3iTwdm2w6kpD/O1Ml57wUUuC7WdhLPaHggz16NrK7oxOGPFDz2Twf7KC5tT8avOF+HrxmCxM9ksT2OmQ/ijovg4K9+aZevXg4HD3mFEY8uAm5vCvNvrxM+Rc8q8MLva+MNb2P+tc7+yoVvchrrjz0rBy9S18cvWQMCLwLJwY832HhvJliC70RiEG8M+anu4vKNDuIAJa8iJsGO+mq7bvaM6i7QsPxvWWkGT2ZlgK9Fhx/urJW1LsDiuY8WHLHuvr4h7tbPOY8qD/VvA++ojxuzv67a9LSPMw1Tb1zt8Q8kX4OPa+MNbyppVm8crdEvN+VWLz7kBm7BkEfPCY5gTzHtHW7UquHPDfNg7sPVrS8KjWtvEDF27ymdbY8REazPOpCf7weh5E8UPPZPBzP4zzxW2g9AxCHvN9NBr3nRtO8k0miO0V6Kj0nBJW7ElTKPLnVQby0um486MoJvYcCgLuzVOq8JOjMOtuZrDv5X4E7ryaxvDuXojtyUUA9JU7RO8HsQDugwlG9FdgAvYAwdLzE6tY8LsvUvF+/Jzy+A3u8MLSavEIp9jyRkum8mHdbPDCBGDt21AE8+V8BvXwA0bzhfp49r4w1u4qYJ71noi+8JUxnPBUe6Twzfjk8711SPE/BzDoLwYG8OGaKPH+2lLxCr5Y99ty/vCSCSL2V4bO8TfctvFK/Yr2t9KO6XFwCvaGtAb2CgSi9JUxnvONKp73vK0U9bYmLPXez8DzEPIC8NxThvM6Z5zs3FGG8r/I5vIC1Hz3z8/m7nirAPPmmXj0pzyg8fWZVPSfREj1RJ9G8pN0ku2vS0rxd1Hc8tEGEvW6c8Tu5oUq8MLYEPG6IFj3O/+s8XVoYO2Qfbrx5NjK8MWH8u6g/1TyIR3M8BKiYPbWlHjw5ZZU8vFgDvfmm3jua23W91RjVu8Ya+rsyTCw8e87DPOqVnboghpw86v2LvYdoBDy0c5G8vWvpvJQVKzud+DK8QUkSPdSAQ7303qm8oChWvE6PP70xGp+7IoSyvNSAQzwW6nE8iswePavEgL2uwKw8WzxmvdYDBb1uAna8dxn1vL1r6Tx0tVq9Y3OBvAk9yzt1tdq86ZeHPHJRwLw5Evc8LpddO7Mi3TtD9X47bATgPB6Ihry/aX+8s4hhPZNJIjsSVMq7Yu9KPSSCyDw3zQM9bdDoPJ6QxDx9ZlU9WAxDPN4vVD39KSA9i8q0vKs967ys9o09DPOOPLxYA72oP1W89HglPKaprTxIENI6kkkiPQwmEbtRv+I8E4bXuwQQhz0ltFW9g+XCPKJaY72IABa8DY2Ku+5fvLxbwgY9/SkgvdJOtjuSfZm8Of+QPLUMGLwXHP87YyFYPP71qLxd1Pe8kRcVPS6DAj21IPM7mg/tvBa2ejz8cP08VFf0vLYMmDysKBu8XVkjO2LvSr1rBGA8SS4EPbAkR7y9Ixe9UhIBPHyazDwnnpA8FtYWPHAfMz1u7488OazyPB9n9TzYSPg7NuLTPNC2JDx9ZlU7kLKFvHqNmby14lC7A/rtvI172rziQYo87R90vcvxszrDu4Y9yDrkuznKwrt6WLC81Tnwu57TbTy3I8S7bpqXvPl8SLvoZSg8sIlJu8SMojwNrHw8MpqavUAG9TvM/T09OnWIPbV4/jsNgKE7Ki+Euxrg8byTSj67jvG2O6NV1DtcDRu9pte6vPBs8TurZas6w+FcvIHyKr038yG7ALyDvDLGdTyo48S8TqQ8vUkWzDzlumK972xxPFP9Q7w61ky9BA8GvdxyJr1T/UO9x29NPfF7hLyMFJE97fOYvAdcg7woikO9uGS3vYnNGL2SCcu9BQZ4vQGNn7xkFOQ8eBc9veEAl7xBcMe8SHoZO5GfeDzDrPM8xFc5vfgbhLxJgJ67HPWJPUAG9bvy4s08LeNKvGuuXjy1TCM6fGQ6vSsAIDxqbes8BDvhvMkak7zaZhy8q2UrvDqh4zt1NBI8j8hXPFK8UDu3I8S8FzKwPC6CBr3NMqe7gmgHPbRsdLwfDZ68FLxTO/YGbLymbeg8nCWsvKiu27wMrwU8PYcXPffaED0fo8s67YnGu2jLM7yOvE09ZzUGvCJUFj3wCy28ybDAPPF7hDzvOhE9dZXWPJXs9bwNFs+7YcdmOv+s8Du/X3Y8yrxKPLDzGz3KRu47Fv1GPBeiB73ticY8i9kivX98zrzI2R+8IeS+vFWfe7xEiNu8knMdPDfzob3RupI9D80evUFwxzxHbo+8+XxIPUduj7zliAK9PVgzPAnJUTwL1du8y2ELvJ8IVz1l7g291Q2VO+4rfry1TKM7FVsPPMxhCz3Vblk9ZvSSPJXs9byRooE8iO3pPN8gaL1e5Lu8or8mvRRGd7zu/yK7kMhXvZxalT1BcEc8ZEnNPBZhFL1HoG+8H0KHPWgs+LwN4eW8x6S2PNPMITy1eH696QfgOxeT9Lz5EvY8qVmhPRMaHD3ooJY9p00XvaCtF721TKM8+lPpvIaAm7xICsK70H+kPNBKO7tC5iO9HgeZPHK+NbojMTy8DK8FvZy72bkV8Ty8aJZKPTYiBr1Gyc48BkdrPDNxO73LUni7+lPpvCm/rLye/My7TAIFvQchlbzzI8E7Z/oXvQ2AobvQf6Q8EC5jvWc1Bjym1zq8sIlJPOlxMj0NgKE8nvxMPCKVCTyNsEO9BuamO7N1AjpS8bm7y1uGPCBIjDsIYog90fUAPRLZqLzR7HK8pGHePGf6l7wTGpw9qIgFve8r/jw1IgY8nIbwvPjmGj3Yhu28V7qYvBUmpjuRn3g89wbsu6ai0bzmlAy9V0rBux/YtLrsKIK9yKS2O1zYMT0y1Qg7v1/2vBz7Dr3yreQ8K5bNPL3yp7yGgBs97R90PYgi0zw1E/M8FLzTvMBuibx2C7O7dwszPdRiz7xNY8m8xO3muxR7YD3j1ze9TS5gvfkhiTyBiFg9nwhXPAQ74TxIrwK9lLqVPKswwjzVOfC71kiDPL9ohLy+U2w6FHtgPRl/LT1bBxY9X7tcvGiWyrxXSsG8pjh/PITVVb0LqYC94Cxyvef7VbzOPrG867IluxkV27wcwCA9sS4KPQFYtrz8/i49obOcPDcoC77d6IK96aYbPa6yKDwjJTK8wQq8PKDiAL1bB5a8EQgNvOuyJbzhyy09YacVve7/ort7ZDq8Hw0evcW4fTu85p28RVPyPB48gj23maA7wxZGvMxnELxGX/w8xCJQvbx8S73dsxk9muQ4PduhCj2Dbgw8VQnOvPqIUr1NDg+91xmfuqUs9TxVc6A8EtkoPQ2s/LzaMbO8IlobPdCrf7q5L049NRNzPXpYsDzOCUg7XDn2vFKH5zzEjCI9pm1oPU1jSb0SSYC8t8gEPCgU57vVbtm8YWYiOTJlMb1Xi7Q8DYChPPpT6TyUupW8BHDKPBMaHDySPjS9nPDCPFBPgr0uefi8igiHuzPbDT0n6Iu8nFoVPVsHFr10Lo08unDBPDWyLj1v1QW6OkCfvKK/JjwE2py8ExocvVOT8TtLjKi955oRvOV57zxGM6E8GKiMPNiG7byaeuY8jrzNvL69Prv7aAE9fjtbPrEuCj1Iepk8xFe5O0i1hz1f8EW7dZVWO/UvyzzVblm9RmgKvRWHajsTsMm6g24MPSVyLzwsbe48UmGROsogGLxHoG88CclRPfl8SDxkSU29kP1Avd4U3jys2we9dFTjux4t7zuTtJA8XG5fu1fvAbys2we9hksyvDeJTz2xLgo9smDqvApff7pO2SW92FoSvNrHYL1mIG47AY2fvD3uYLz8lNy8vLE0Pb9fdrz7LZM8GHMjO2CVhjy3I8S8TWNJPbkvTrwBWLa9K5bNvF9aGL2zdYK8w+FcPNGLLr25xfu8YGYivLkvzrv6U+k6O3uNPNWjQjskZqU9QdoZPB2XQTyDX3m8HpfBPLUXur1v+9s8k0o+Pad5cj2MFBE9swuwvHXKPz1olko9EJi1vAbmpjstDCq8X7tcvL4tFrzDjCK7hD+oOyYI3TyrZas8t+5aul/wRTpBO948O3uNPLkvzjrAbgk8oyDrvBg+ujwOV8I62vzJvHojx7z68qQ8HMAgO6aiUbyhScq8N/MhPRvvBLy/M5s8yBSOvNsIVLxHdJQ8w7uGutLAFz3c02o8DbuPPNT4/Dwo3/28U2cWPG3v0bxnL4G7d0AcvImYLz2u55E8ExocPOEscjxRVYc9y1J4PAPUF7wfDZ68J+KGPemmmzw3vji9rn0/PU1jybvEItC8LQyqPLKV0zvVOfC7f+agve1U3TwED4a8RCcXO2vjxz1potQ8SNVYvFxu3zxmAB29Cf46POQYK7z/rPC8YnKsudWjQr2hSco7pkGNvATanDwLoPI8t1itO9sI1DyXLWk9vzObvI172jsymhq9VHMgvK2mHr2G4V+9Ny4QPNs9Pb2LOmc9mW5cPG0wRbxhx+Y7npL6O5gNGD1rTZq8XlSTPFJbjLxQRnQ8OnWIu+j71bzVDZW6VuDuOsHV0jum1zq9DldCvBZhlDxRVYc9Mcb1PNzT6jssote7WsynPDytbbs8F0A8reeROxkVW7zP1F49VQlOu9d647t1ldY9CIhevcwyJ72a5Dg9gBJ8OhRG9zzf9Ay8nvzMPJhCAb1vxvK7Lk2dPFxIiTw9WLO8RmiKvOsT6rp7yIc8hksyPQn+Orxz8x48h+1pvBwhZbya5Li8/mt9PEmAHjx4F728SruMPVd/Kj2ECr+7jRqWvSYIXT2EP6i8+OYau00IijyRogG9QRWIPSs1ibzSIdy8OcrCvDWyLr1yfcK7HFbOvA/tbzy5+mS7TxoZPPl8SDyg4gC8LeNKPPS5brx9pS28cNL8POVTGTxB2hm8KLOiPTcuEDxhp5U8s3UCvY68Tb37LRM8ou6KvOE7BTxMAgW9K8s2PREIjbytB2M66dL2u4NujDwMSzg8bVkkvY3lLDxGyc676KAWOh0BFD3iDCE8/P4uvS+66zqeoQ29pjh/vdT4/LpLwRG9Kb8svWnXvbwNFs88D/yCvWPT8LpBFQi8kagGvf4KubwTsMm8JtPzvJoZIr3oML88q2UrvUsi1rsZFVu9P/rqPI6HZDzpphu8C6DyPPelJ72cu1k7POJWvL/+sTvtH3Q8HOx7PLqlKrzwCy29CL1HPVFVh7ztvi8849c3PHah4LyNsMO8fjvbO1piVbzL8bM7gjOePOD6Eb3oxuw70Eo7vMsmnTzsKIK9df8ovDiVWbxkFGQ9ZgCdPEb+Nz11NJK8/JRcPNRizzqYQgG9kP3AvCOVCb321Au9G/UJOAP6bbzygYk8oyDrvAug8rwkZiW8L7rrO5KuC7u3WC290LQNPSGvVb3+oOa5j1J7vA2AIb0T5bI8qSS4uzKamjxQe129qe9OO6OKPbytPEw972DnPEMS/7w9woW7hrUEPV+7XLz3cD49GQlRvdqbhbwcize8lLoVvOQYKz0TGhw9JGaluzGUFT0rlk08MI4QveE1ADzZhm27bSQ7vE1jybuhSUo8SuHiPOZZHj0B7uM8WgGRvZD9QL0j/FI9pqJRPSSbjrzOqAO9hhbJPAn+Or345hq93d/0PI4mIDwcIeW7XEKEOx+jy7sKbpI7pqLRPJJzHb01SNw8ApmpPKZBjTwTsMk8IU4RvVsHljs3vjg8Fv3GO0xjyb0fQgc9QaUwvSJam7u6O1i7waBpPCuWTbzax+C8xmPDvPtogb0BuXo7TxqZu5D9wDxfWhi9hXoWPeEs8jxmAB286PtVu9ynDzypWaG8mnrmPDV9xbzj1zc9cKahvOWIAjsk/FK8QNQUPKqUD70V8by68a1kPEZoirwEpTO92puFPF7kuzyw8xs9xIwiPRcyMDytPEy8XlQTvMz9PT1fJS89Etmou1pi1TsU8Tw9Wi1sPaOKPTjz7lc8ktThvHiBD7xwPM88L7rrOwEjTT17yIe3fnxOPBl/LbwQmLU85ONBvcsmnbuO8Ta8DUs4PZ8I17vkrli73u6HvEgKQr1bBxY9sL6yvKkkuLyeoQ09rNUCvPl8SDrfVdG8BkdrPdZIg7wj8Mi8h8EOuyOG9juNsEM9yyYdPJN/p7zCSy+8pTsIvDyt7bwXk3Q5k38nvC2i17y9J5G9K8u2vE1jyTwQLmO9y/Ezu6LuCr1FU/K8E08Fvf1rfToveXi9qOPEPKDiAD3pB2A7am3rPIP+tL2//rE7nvxMPA7BFL0mcq88HTwCPH5wRD2aTos9HPUJPOvtEz25+mQ8sFTgvOWIgjrULWa9EaQ/PCOVCb1L7Ww7mhmivJLU4bzVOXA8qe/Ou4C9QTx92pY8fjvbvJqvT7wwWSc9aJZKO0uMKD3Vbtk8axixPHRgbTzyrWQ7teJQupWLMb2PyFc84cstPXLnlDxBO168MvvePK8Tbb1n+hc6+BsEvMPh3LykNYM8smDqvKF+szzxewS97VRdu8z9vTzhy627wG6JvBR7YDz+epC8Ny4QvWhh4TwjMTy9RPKtPD4jSr0HiN46VXMgvaq6ZbtSWww76308vZ89QL0RCA06F8jdvMekNjyi9A+9pACaPGc1hjseYtg7XiWvOyA5+bkkZiW8qHlyPKtlKz09wgU7TJiyOg2AoTvax+A8JqeYPGt59Txuz4A8sFTgPNVu2TxS8Tk9d9ZJPWvjR71BpTA7vohVu046arwTsMk7421lOWFmIr2EP6g6FCYmPd2tlLoJ/ro8jXtavIr5c7qJmC89z64IvePXtzyrxu+8+y0TvZ89wLzEItA8cyiIPDlgcLlmikC8DldCusGg6bxoy7O8jeWsPHGyKzw1SNy8VJPxvJQVVTtQe109rxPtPKnvzjtXf6o8wdVSPZ7HY7yZOfM7JxTnvPcG7DzoMD+9ZOgIPOYkNT3HCAS9nPBCvSfihrtuZS68jXvauXpYML3eFF68HcyqvL6I1Tw+uXe8S1c/u44mID3J5Sm6IlqbPMpG7ro="} \ No newline at end of file diff --git a/dsLightRag/Topic/Chemistry/vdb_relationships.json b/dsLightRag/Topic/Chemistry/vdb_relationships.json new file mode 100644 index 00000000..5d2a2c8c --- /dev/null +++ b/dsLightRag/Topic/Chemistry/vdb_relationships.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "rel-6b443b3a80386849e145e184d7723fc2", "__created_at__": 1752193800, "src_id": "二氧化氮", "tgt_id": "硝酸", "content": "二氧化氮\t硝酸\nchemical reaction,decomposition\n硝酸在光照或加热条件下分解会产生二氧化氮。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-88e1582585cb41e4c99e342d1a7febb4", "__created_at__": 1752193800, "src_id": "氧化铁", "tgt_id": "硝酸铁", "content": "氧化铁\t硝酸铁\nchemical reaction,synthesis\n氧化铁与硝酸加热反应会生成硝酸铁。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-cdf56991a150bcda5747c1b02a1b0d0d", "__created_at__": 1752193800, "src_id": "氢气", "tgt_id": "水", "content": "氢气\t水\nchemical reaction,combustion\n氢气与氧气燃烧会生成水。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-96f294412fa13fee115c74c742fda9e4", "__created_at__": 1752193800, "src_id": "氧气", "tgt_id": "水", "content": "氧气\t水\nchemical reaction,combustion\n氧气与氢气燃烧会生成水。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-8c210e4f8df26afd8f6c78fb0a9effa2", "__created_at__": 1752193800, "src_id": "硝酸", "tgt_id": "硝酸光照分解", "content": "硝酸\t硝酸光照分解\nchemical reactant,decomposition\n硝酸是硝酸光照分解反应中的反应物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-525b08f2d55f211a92680f4bffa2a717", "__created_at__": 1752193800, "src_id": "二氧化氮", "tgt_id": "硝酸光照分解", "content": "二氧化氮\t硝酸光照分解\nchemical product,decomposition\n硝酸光照分解会产生二氧化氮作为产物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-df1ac9538c5fd8f7f19d926c4303c6be", "__created_at__": 1752193800, "src_id": "氧气", "tgt_id": "硝酸光照分解", "content": "氧气\t硝酸光照分解\nchemical product,decomposition\n硝酸光照分解会产生氧气作为产物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-fc861280395558397a9a71ec52b38884", "__created_at__": 1752193800, "src_id": "水", "tgt_id": "硝酸光照分解", "content": "水\t硝酸光照分解\nchemical product,decomposition\n硝酸光照分解会产生水作为产物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-0fe87901ecf2cd07ea219f2bf7590585", "__created_at__": 1752193800, "src_id": "氧化铁", "tgt_id": "氧化铁与硝酸反应", "content": "氧化铁\t氧化铁与硝酸反应\nchemical reactant,synthesis\n氧化铁是氧化铁与硝酸反应中的反应物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-9ee8210cd08469b6a726efd4b11b6716", "__created_at__": 1752193800, "src_id": "氧化铁与硝酸反应", "tgt_id": "硝酸", "content": "氧化铁与硝酸反应\t硝酸\nchemical reactant,synthesis\n硝酸是氧化铁与硝酸反应中的反应物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-34e93f683c4535c1ed694273c0527ea3", "__created_at__": 1752193800, "src_id": "氧化铁与硝酸反应", "tgt_id": "硝酸铁", "content": "氧化铁与硝酸反应\t硝酸铁\nchemical product,synthesis\n氧化铁与硝酸反应会生成硝酸铁作为产物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-fb7c290e5e1dec47a7c6afc087aa6297", "__created_at__": 1752193800, "src_id": "氧化铁与硝酸反应", "tgt_id": "水", "content": "氧化铁与硝酸反应\t水\nchemical product,synthesis\n氧化铁与硝酸反应会生成水作为产物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-da3cc2cc1afb71eb8f722a0a48b7922d", "__created_at__": 1752193800, "src_id": "二氧化氮", "tgt_id": "氧化铁与硝酸反应", "content": "二氧化氮\t氧化铁与硝酸反应\nchemical product,synthesis\n氧化铁与硝酸反应会生成二氧化氮作为产物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-7c26f11db772fca4c9dc5ae207ce3826", "__created_at__": 1752193800, "src_id": "氢气", "tgt_id": "氢气与氧气燃烧", "content": "氢气\t氢气与氧气燃烧\nchemical reactant,combustion\n氢气是氢气与氧气燃烧反应中的反应物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-bad2db4c32c28ae1aa93ed4ea7b319f7", "__created_at__": 1752193800, "src_id": "氢气与氧气燃烧", "tgt_id": "氧气", "content": "氢气与氧气燃烧\t氧气\nchemical reactant,combustion\n氧气是氢气与氧气燃烧反应中的反应物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-52c22e2b935ccfbafce9396d47088a8a", "__created_at__": 1752193800, "src_id": "氢气与氧气燃烧", "tgt_id": "水", "content": "氢气与氧气燃烧\t水\nchemical product,combustion\n氢气与氧气燃烧会生成水作为产物。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-48810230fe07d017dc4c3bb394067a60", "__created_at__": 1752193800, "src_id": "Δ (加热条件)", "tgt_id": "硝酸光照分解", "content": "Δ (加热条件)\t硝酸光照分解\nreaction condition\n硝酸光照分解反应需要在加热条件下进行。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-8c364f540e4aa0c56e4da09c4a048fbb", "__created_at__": 1752193800, "src_id": "Δ (加热条件)", "tgt_id": "氧化铁与硝酸反应", "content": "Δ (加热条件)\t氧化铁与硝酸反应\nreaction condition\n氧化铁与硝酸反应需要在加热条件下进行。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-255dbfd614e7d00967c403fc63a9e1fd", "__created_at__": 1752193800, "src_id": "氢气与氧气燃烧", "tgt_id": "燃烧条件", "content": "氢气与氧气燃烧\t燃烧条件\nreaction condition\n氢气与氧气燃烧反应需要在燃烧条件下进行。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-8d8a16cd47f7399ef84bb4b69c0af114", "__created_at__": 1752193800, "src_id": "化学方程式", "tgt_id": "硝酸光照分解", "content": "化学方程式\t硝酸光照分解\nrepresentation\n化学方程式描述了硝酸光照分解的反应过程。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-f816f9e8437b05b759bdf575e707276b", "__created_at__": 1752193800, "src_id": "化学方程式", "tgt_id": "氧化铁与硝酸反应", "content": "化学方程式\t氧化铁与硝酸反应\nrepresentation\n化学方程式描述了氧化铁与硝酸反应的反应过程。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-82848fb34ed640499178a376ce64f468", "__created_at__": 1752193800, "src_id": "化学方程式", "tgt_id": "氢气与氧气燃烧", "content": "化学方程式\t氢气与氧气燃烧\nrepresentation\n化学方程式描述了氢气与氧气燃烧的反应过程。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-93a428c0fe08e0f4f32521d53ffdad60", "__created_at__": 1752193800, "src_id": "二氧化氮", "tgt_id": "气体符号(↑)", "content": "二氧化氮\t气体符号(↑)\nnotation\n二氧化氮在反应中作为气体产物出现,用气体符号表示。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-7b696884a602154918f6983d6740fad1", "__created_at__": 1752193800, "src_id": "气体符号(↑)", "tgt_id": "氧气", "content": "气体符号(↑)\t氧气\nnotation\n氧气在反应中作为气体产物出现,用气体符号表示。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}, {"__id__": "rel-5d263c8deb0d535ac8545ed4a0153701", "__created_at__": 1752193800, "src_id": "气体符号(↑)", "tgt_id": "氢气", "content": "气体符号(↑)\t氢气\nnotation\n氢气在反应中作为气体产物出现,用气体符号表示。", "source_id": "chunk-7367de1960fc3eb00672757c23990f62", "file_path": "unknown_source"}], "matrix": "dKAEPTwzczwDGDa9PDNzvC4BF72WGpK8kZ97vEt2Wz1uZjY8XokHPBf6Lb16Nwq9OclovNJawDuUf9M8zQBKPFA+Fbz3tKW8oY22PO96V7uSBbW78fR1PPzdZzyMMSC8yLZnPEeCHrxuEYm7sZ/qvBZ4BT07F4S8jyXdvI5em72WIpy9p5oJvUsxwjy3pDM8UDYLvXgCBb0p/M28QL6dPLekszwotzS8jDEgPYFILryzj9Y7gY1HPJyIbbzNy0S7tX9CvXcKj7z0Gee7gwdmPB1MGj1iB/c8sK/+vDXVK72DMJC9pYHzvHiUwbx7Q2W8G+7qO/YJ0zwuAZe8P3kEvT9YZLw93kU9OD82PXhPKD00mBy9OMloOthzbjzSn1k9hLK4u49OB71zsJi8S3ZbvD3exTyrhry8gdLgPNNKrD2BSK68QTi8u6U8WjtHPYW85ywkPByZvTzF9687LcQHPSlqETzJHCG9ggMVPIm/izurEO+7WnQqvN4zHrx6U3m9ft4jvbBq5Tsya6E81rS2PHZfPD3UGfg8i+yGO7caAb1XAha9b0YOvLku5rwNm248Q7JaPOkwdby+Avs8fTNRPP54prv9QyE9dOWdu15oZ7ypltA7JZLDvIuGTbzibHS8LKtxvEC2E70NVlU9TvD5ORzeVjupDB69bhEJuvbEOT1DbUG8ipbhOqJAkzyywIo8YjgrvbQ6KT2ZhBw8gvMAPJiUML31f6A87BDNPBWAD72MMaA7uS7mPIim9Twv+Yy8MMDOPAPTnL0a2gU8IcJ/vaWB8ztwFVq8FsWovH6RgLurEO88kRVJO8aiAr2L9BA9hPdRNkXnXzzrIGG9zzVPvboOvjt6DuA8Gh+fO/dObLx9eOo80CU7vZTtFrzWTn09WPoLvRjJ+bv46So9ft6jvCLjH7wDXU+8N9n8vG3w6Dwnx8g9HYmpPLTEW7zqlq66VCrIuxjJ+byuNeA4J9fcvBL1ZD20Oik9zbuwvHgCBTxfWFO8stAevGUsaLs2CrG84BsAvIWiJD2deFk9s9RvvWXnTjzfI4o7Xe5IvE+LuLy8zfU8DZvuPFR/dbxUf3W8Cnb9O6GNtjyoz467kNAvvemmwjwgcQu9UcA9O/Mpe73BWCC97orrvPm4dr1ySl89YtLxus1FY732d5a7FJCjvAtm6byeIyw94ViPPFg/JT2KQTQ9qseEvVL1Qj06/m06JwziPAuXHTzKUaY6ne4mPXUqNz3Peui8uFcQPdHQjby5Lma9JgCHPY41cTsn11y9r3p5u9b5z7zFPMk7n2jFPHZfvDuYlDA9OITPu7mUHzuMKRa9H1h1vcKNJT3sVWY8JQgRvYjXKT2kOIk9u1NXva27QbzHLLU8ccAsvAOyfLzETF08otJPPdZO/TuRg4y7EDYtPRZDgLv01M06Bddtu6wxjzwcmb08jQDsPPH0dbyEKAa9PWj4PCHzszy3X5o8SMe3O2zkjTyXpMQ900osPDPlP7wGPae85oFROqx2KLr+iLo8dKCEvaEDBL0LIdA8vLkQPOlhKT1s3IO9fTNRvZmEHD13Epk82aQivY7wVz3Z2Se8A9McvrO4ALzBUBY9kgU1vF2pL7oJpzG8dtUJPNguVb18/ku9ZDz8vMU8Sb252Ti9Kuw5O8qmUzzPNU870CU7O5R/07vmxuo8kgU1PBofH7zFdQe7aZbyuPoeMDxXlFK7Rz0FveOFijzdzWS72R5BPGqG3ryn15i8CmKYvRDpCb3ibHQ8e1P5vDKwujzNy0Q9tPUPvcEnbDrT/Qg9UQVXvL0zLz2DB2Y9CLdFvXHALLuZhBy9t6QzPej7bzsA80Q9hPfRu1JzGjyyBaQ8JF0+vIaaGr2lPFo8gUguvbhPhryRFck8zFX3PP47F70we7U828kTvIq3gb3R4KE7kYOMvU3MAL2xiwW81cTKO+RMTDyb/jo93yMKvegkmjwBriu8ftaZvD4TyzwC47C8IHmVPWvsl70zoCa9EWsyvBFrsr0F1+075pFlPDVfXjxUf/W7pYHzO+m2Vrw3CjG9ZxzUvIWipDz77Xs+oSd9PYvshjxTOty7i8tmPblj67xsAP085oHRO5EVSTyZhBy8c6gOvYJ9szyo6/08PDNzvLcagbzm9x49DryOPELzIjxMu3Q9TdQKvfmcBz12pNU8p3FfPXJzCTz3Pli9kZ/7vHnJxrzzShs8US6BOp9oxbzQalS8HN7WPAMYNjroJJo7t/lgPDOgpjyCfbM8z6MSu25WIj2tKYW6qgQUvIQohjxkKBe8v63NvMgcIbqf8ve7C2ZpvAj8Xr0yayE9+mPJvDwz8zzfIwo9B/CDO+CtPLwrn5Y7KHIbvZyxl7wTKuq8oOLjvFXVmjxRwL27MSYIPaRtjjxAvh299/k+vHypnrs8M3M8xbKWvasQbz0RazI9Pd7FPIZx8DyB+wq9R4IePRnijzx5hC09n2jFPFp0qj1z9TG74mx0vObvlLocqVG8E+XQu2qGXjxq/Ks87XYGuqU82jyKtwG7RRAKPUc9hbtoxya8ylGmPEbXSzysdqi8udm4PEQYlDxE93O8BviNOEbXy7xwiyc9dqTVvOW6D736c108j04HvTkvoj2ciO27zDkIux5Y9Tw2CrE8hCgGPZFaYrs1X148OD82vYSyuDvlug88ykmcPMnr7Lwb7uo7IfMzvRe1FD35LsS8ei+APCZNKjorn5Y8bWa2PJkeY73W+U88VJiLu+81vjzCQII8t+lMu+qWrrx4Tyi9gUguPVWQAT3ibPQ8II16PSQQmzwBriu8RQgAPSF9ZrsX+i087orrvNTUXrsxLhI8xyy1PAglibxlLOi8edlavA/Q87p+aFY9h2FcO2qvCD2Mdjm9VRo0urPUbzv/KwO9z3rovPMFgr1IDNG8UDaLPBNbnjxGHOW84Z0oPd54tzro+2+6TatgPFXVmj1Z8oE8tm8uvamm5DyaybU8WD8lvUu79DtRLoG8MrC6vIEDlb30QhG84eLBvLmMlT2faEU99NRNPKmmZDzn54q8vIhcugXXbT1fzqC8lDq6vEt2Wz2MAOy7HKnRuy0Rqz0L3DY7I23SuulhKT29Q8O8vM11PeGdqLxO4OU86WGpPFHAvTwCnhe81m8dPVcCljzrSQu9SUFWvSvcpTiJDK88Ygd3vGT34jwZuWU8x98RvIH7Cr1UoBW9S6cPva0AW7wWxag9R4KePHoO4Lvuimu9ssCKPBwHgbyfrV68jXY5uuwQzbx7iP483s3kvCQYpbwYP8e8LSG/u8RMXTvzSps7rUX0vBxUJLzo+288u1NXPa0AW7yCfTM9XVQCvboOvrti6we9GITgvOdxvTza2ae6hTxrvIPCTLx21Ym9+qhiPVJzGjzF96+8oY02ut4C6ruvevk8xsb7vGPzkTw0Ktk8C9w2vPTUTbyq/Am8BKJovYccQ73TSqw8hpoaPc7wtbzHcU68iNcpvQtmaTzkwhk9qBwyu4418bwVX++84xdHOwSiaDw7udS89m8Mvfpjybsrduw5TfD5PALjMDyZY3y7RQiAvYPCzDwKdn07hlUBvYvshrzaY9q8whdYOzkvIj1t8Gi7wVggvdqo87yW3YK8fO63vHZfPD36c908HwNIPNvJk7yuqy09/hLtOxGwSzx6dJm7QuuYvCt2bDuP4EO9xsb7vMgcoby6HtI7trTHu+m2VjxaucO8kRXJujcKMb3HLLW8TuBlPJBOhz01GsU8oJ3KPN7uBLzcQ7I8hGWVOh48BryJvws7Ox8OvVWYi7wYP0c8aoZePO81vjw56gi9cXuTO8uGK7wYhOC6OxcEu3gedLxdmRu8PWh4PeGdKL26hAs8A9McvenfgD0ot7S8cnMJPTYKsbyjfaI9DZvuu9EVJzzyWi+89I+0vJ3upjy2tEe8m/66u0LCbj0OtAS8uZQfvMtBEjz8BhK7avwrvTsfDj2b/rq8EDatPEwhrjyHcXC8FUOAPIaamr1Pi7i8G2Q4vYpBND2+Anu8WD+lPNEVJz1hjVi6N72NvKwxDzuzj1a7DrwOvZrJNb3nxuo7HYkpvUBIUDy0xNu8NYiIvNikoruyBSS96WEpvYFIrjsWlPQ75jw4vblj6zwyayE9T4u4PJu5obtReyS9ZPdiutjpOzzOq5y8lvnxvSLjHzyxn+q8ZixoPB48hrylPFq77FVmvWdh7Tv6Y8k7t6SzvCQYJTx9oRQ8I7JrPHDQwLzotta8C9w2PFA2Cztxi6e746H5PBg/xzyMdjm958ZqvCcMYrtW6f+8uZQfvT3eRTzjXGC8mlPoO0lBVjuRWmI8hG0fPaALjrvo++87G2Q4PRAFeTzWCWQ8LZtdu6PCO7yHYdy8gJ3bO1n6iz3vNT67XHj7vIjHlTzTj0U949KtPCyflr2O8Ne8oOLjOz/OMTzAEwc9HFSkPDB7tbzmPLi8+8kCvSTbFT3Sn1m91k59vZEVSb0S9WS5zQBKvdmkIj0yayG9b06YvGT3Yjz9QyE8a8v3vFq5Qz3Ewio5lO0Wu6En/byyBSQ8Pd7FPBIej7yBSK48rmYUvSHC/ztvmzu8C5edvLdfGr1N1Io8FRpWO8+jkr2/rc260lrAOs0ASryi0k+9Wv7cu1KwqTx9mYq8r3r5vBFrMrw77tm64Z0ove/wJL1BOLw8EhaFvFHQ0TrFPMm8ksAbvdXESj2hjba8c/WxvPNKGzxtZja6Bj0nPbDgMjz7UzU89/k+Pff5Prz60Qw94SdbvIFIrrywr347ireBPPPk4TtPVrO71TIOvbhPBrxHPQU8yQyNvO4AOb1AthO8gQMVu5P1oDwbqdG82mPaPNZvHb26HlK7tiKLPKSyJ7ww8YK9UrCpvChyGz3/vT+7JKJXPNNKLL0u4PY821NGvX/OD7xyBUY9JBglvHiUwbtekZG8MvXTO07gZTyVKiY9wkiMO6r8CT2gExi9ne6mvJ/y9zwzoKY7q8tVPeW6D7zYpCK8Iii5vCQYJb2eM8C7RaJGPWUYA72frd68rHaovBkvM7yUf9O81k79PHgChbwZueU6NFODO9nZpzxJt6M9qaZkPNQ6mLvUGXi9gjiaPGQ8/DyVxOw8whfYvIQoBj3bDi28Fk9bPeEn27rtdga8bLvjO29Gjjy2tEc9nIjtPFjZa7vTSiw9QEhQvAgtEz11tOk8DhE8va41YDuhA4Q7JBglvZP1IDxUoBW8hCiGO59oRTxoDEC9cnMJPeW6j7vzKXs7AX13urtTV71Brgm7j2p2PLLAirwyOu07IfMzvXgCBbuNZiU9r5sZPIZVATwtm1294xfHPMHi0ryl98A8HSNwu78bkTxd3rQ8Kqcgum9GDj1W6f88+qjivL/yZr28zfU83RL+O5ypDTu9My+9NW9yPL/y5rstVsQ8SoZvPC3MkTyrhry7r+CyPCgtAj1uq886+1M1vDEFaDymLEY7P1jkvKJaUD0An/M8WS+GvRyvqTrBLXe8LRuUvByQ2rxXVGg9Cd+vPNQ24bvgy8y8Jz9nvTEnZLvLwdO6haLZPNJvUTtE91282hKOvF0C5jwc5Hq8u/JovPAcBz205Yk84oebvK18TD1Jiis8tipKPPENJzskBWg9WS8GvdSp0DuE20m98rVnvcWllLx+SPw8mWcSPSMzl7smlya9r9DsvL5LNz3r0hg9Qr1evbHVmjzD3oQ6lB2kuwvB77tHUCy98Jq3vFU5OLs49DC9uUoovBpLmrwAvkI9R1Csu98Evbx0AZ67XJOVvTxJ4Lue25C9q3u9umok4rvxDac77rTYPAKkIb0Ev9G8faA7PRCNrTw+2x49yIfUvEK9Xrw3LSE8z42RPeglKr0jPti8bsaPO3l1nDz0R6Y8hfb5vMEt9zznWns8EnMMvXzZqzsGJ4C78HtoPM370joleFc85wZbvCBcmDyoQb68th8JvXmfrLvT4sA89ylmvF+UpLvLFXQ8NUdCvbwRuLxCEf88YgP1PNh1jjuSN8U8ZLQCvQ6If7yK4Qa9uvYHvY3DRr1qJGK7mtqBvGeWwjyqCM68N2LyPJ/MMD0kscc8OWegPNX9cDznsjo7Ya9UupAclTuBTao81Z6PPK4oLLzQNVK8u/JoPaLNvzsEE/I7tn5qvbueSLxpfKE8UMW5u/f0FDxAoq48b5jgup/MsLxfahS8gU2qu8MTVrywDgu96wfqPPB76Dyp6f68UIzJPFi8lj1k3pI9LpnEvI64BT3b5N69rELNPGtDsbzgIww9AoXSPHl1nDxMxCq990g1PH9nSzyS46S8XyE1PS8MNLxS4Ok8eZ+svZ5ZQbyONrY8s/DKPJt3gTyrmoy7b0RAPatCTb3MiGO6n61hPZj/Y73T4sC8MfKSPNX9cL32Yta8cSofvW9EwLwq7NU83wS9PW9EQLuLiUc8oHTxvKwj/ju78ui8fC3MPC9Vk707glA9X2qUPLZ+6rzecv66Xq7FuwJ6kTyVAwO9RKO9vNPDcbviBUw9tGM6PYMzib2E20m7Cd+vvDZmkbt82as7y4wCvOglKjyZPQI7u72XPL2Epzwf6ag8CTNQPML4pbwsRSQ8gaHKvIj7Jztdj3a99e9mvXOZ77y2Ksq8v2qGPTDTwzt2Rl69Lu3ku6IGMLw0nwG9R/wLPfUONjwhz4c9qv0MPQpSn72Q8gQ9/S8jPM4aojySN0W8S1E7vI4XZz1stiA9WgHXvDx3jzsgXJi8mXJTvP8VgjwS/H251KnQvFTlFzwhBNm8UW36PC8MNDwikng67eKHPQqmP7xqxQA9GksavUrTir0xJ2Q9t525u79qBr0CpCE9Ux6IPZ4FobxyRc+8FI68O0zEqrzSb9G81KnQPKzuLD1Gvu28NShzPNc3cDw5D2E8dGB/vAnfrzviBcw8piaOu9IbsTyGwag7QtytvDuCUDxmI9M7ZXsSPfGAljvCa5U8hU65PXzZKz3GGIQ95euqPAGzAT1g6EQ9AJ9zPBSti739BRO9TQ0KPBMbzTsS/P07TJoavT9ODr37oQM9Mw1DOyEEWb1o6mI9C/pfvJLjJL43AxG937CcPACf8ztzme+6Ys6ju+XBmrsRVD29o3mfvDxJ4LuPita86pT6vMiH1LxstiA9hfZ5ui0mVbwXcPw53FfOPG7wHzwgkek6xXuEPPmCNL2ONjY9b5jgO3gsvbyI0Rc8vdjHvPaBpTwWdJu8tdapvCJsh73J23S7jcNGulTGyLxktAI8un/5PF2jhLzqs0k8CxmvPJrlQrz9ZHQ97mA4PensOb2d5tG7g4cpvQjAYD1zuD49wxNWPfCaN70QOQ09RRYtPdPiwLv6Y+W8zFOSPEOEbr22H4k7B/lQPNQ24TxnCTK9fkj8vHLS3zyoQT69G74JvDzW8LyE28m8TMQqO7OcKjxle5I85FnsPC1FJL01R0I7sdWaO8iHVLxXczc98e7XvAmmvz1fIbW9I+q3vIluF7xnQqK9jaR3vBNvbTu4Rfo7G5BaPELcLTxXczc89JtGvGok4rvYVr88DTRfPqZQHj1Rbfo8kY8EvMspAj2xtku9DG3PPJY41DzHwEQ7jPw2vL3YR7yl6G+8MppTPKuajLy92Ee8s3IaPagib7sdA8o7k8kDPY9VBb1cBgU9CTPQO464hT3F+TS8lXFEvfXv5rzihxu9VTm4POJdi7u0RGu8zm5CPK/Q7DsuuJM8dvK9OxVVzDzaEg48gaFKPHLxLrzQKhE9i4nHvJuhET0ibAc82MkuPMuMAr1rjBC8udc4PPcp5rwOUy696UDaPIo1pzv8SUS8Uv84PAcYoDtkCKO8hZcYPAUT8rxa9hW8XVolvUv9Gr2bAHM79Hx3vNY7jzyeBaG7nHPiuyrsVb0lJLe70ccQPTcOUr39EFQ9a4wQPRKo3TxWrCc9QNf/vBUBLD3yYcc8LSbVPJt3gT3ih5s9i1BXvNkdTzuGaWm7Ya/UvPXv5ry92Ec83KvuPFNyqDxjdmS7v5SWvJ9OgDzVng89HK+pvIVOuTzecv484MtMvOf7mTvHtYM8mgQSuybrxrxUGmm87n+HPKUHv7ul6G+7p3ouu1kvBr3SZJA90ajBvLZ+artkCKO7FnSbuh52OTy/83e8dNeNPKAVEL0tJlW8XJOVPG7R0DwN4D69XgJmOzSAMrzLjAI9vxLHO29jj7py0l+8RUt+O/f0FD2wYiu9gZaJupbks7xFFq07mB6zPEUWrTwvVRO9h6eHvM/hsTztQWk91cgfPPfVRT2KFli8Gqr7u4GWCT1WrCe9ihZYPJuhEb1xKp+7Z3dzPPm7JLyp6X67TtQZPbWsGbvmk2s7D2MdPeBNnLyDaFo9XVqlvGGv1DuaOWM8L1UTvYFNKrzIh1S926+Nu+IFzDy9uXg8JLFHvUq//Dy1C3s75Hi7u5nG8zwadao9Zc8yPUVqTb0+vE+8ctJfvA0pnrwibAc9/WR0vE4z+zqcH0K9tayZvDdi8rznsjo9c7g+PaWUzztNDQq91RzAPMsV9LuyKbs8EAAdvXAAj7wmlyY937CcvDB/I7oZIYo9/tdjvJTzk7rT4kA9gzMJvSh9BT0yuaI6OtqPPGN25DvZ/n+7WvYVvAqH8Dw8oR89qQhOvZj/Y70KUh+9CIuPPNiq3zvBpAU8HfiIO7IpO7wwyIK9plvfvLG2y7tPRwm91wIfPaWUz7xazAW9XTAVvdIbMTyGwai8xxTlO67+mzuGCgi9pZTPPJ9OgLxa9hW9AlCBvYj7J7xsCsG7c7g+vM/hMby3vIi8FK0LPCtfRT0D7YC8YVs0PTq7wLu/vqa8fYFsvBu+ibxMGEs99EcmO2IixLys7qw7kiyEvf3bAj0bPLo8ghS6u4TQCDwKUh88PWgvPd0e3ryIT8i8ATGyug0037zJpqO8cX6/PA6nTrzZHU+9WgFXPIvdZz3GTVW8Mu7zvEK9Xr0pGoW8sA4LPW4l8btpXdK8Mo+Su/yd5LupYA07Wq02PAGzAb3smSi8h4g4OxKo3TtnCbK8fr8KvJw+Eb1fahQ8OrvAO/w+g7xm7gG8iDD5O8XaZburQk09+GcEu1/dA70xJ+Q7ym0zvJ3m0bojCQc9NICyPJIsBDs0nwG9qYodPb7z97qsCV28jFBXOlqtNrwWSou8MEYzvRcRm7ytYRy8IJFpuoeIuDzAEke5VTm4vK5d/Tu7nki8mXJTvF0wFTzhwIs9yXwTO3oSnDx4LL28e2a8PLNyGr05SNG8AGqivJY4VL02ujE8P06OvJFwNbx9SHw97M55u8mmI70mzPe859GJOlzI5jkj6je8Z3fzvCEjKD0J3y+9R1AsPJTzE7wNKZ49haJZvCxFpLvQAIG9BTLBPYuJx7z4nFU74MvMu+RZbL1ZWRY9wYU2vOqzSTsjCQc9u70XPRcRm7wLjB6799VFuzKPkr1OUko9Xq7FvNcCHz1+Eys8LEWku6Zb3zszDUO9nBSBvZdXI7w0gDI9NNRSu0cxXTy4EKk87wj5ujMsEr20ROs7HJBauy3xg7yDXZm8g7x6PPfVxbvqs0k80hsxvTMskryiBrC8Lu3kvCl55rwhzwc9biVxPCklRr2RcLU7DIyePKWznjyzcpq7/0rTvEul27rAB4a7SKTMPNlx773qqIi71jsPvTcDkbwqt4S7z+ExO9GdAL0KUh+8gU2qu5wfwryu/hs9HK+put49LT3vCHm78Jo3vI2kdzssfhS9VTk4PMV7BD1uxo88q3s9vFtVd7xwty+9p85OvAExMr1ipJO6NIAyvLW32runr3+7qiedvA9u3jwZVlu8NJ8BPDYDkT2W5DM9eUsMPS3xgzy2fuq8//YyPINdGT3j+go9LRsUPA5TrrwHGCA7u/LoPNpx77whWHm9Tv4pvciH1Du78mi7OPSwPKzuLLwxJ+S8tdapPCxUBL1G3bw8hgqIvTdicr3WN/C6GK4avX1IfL3Np7I8St7LvJdXo7zqlPq6Rt08PJqhEbxjF4M8LNK0PCfgBbwqmLW8biXxusnb9DxLUbu74eobPBNv7bxG3Tw8vvcWPGQIo7yZkaK8nB9CPGOVMzyPita8waQFPWWw47wmlya70Z0AvTMNw7rYdQ49Xs0UvfkEBL1G3by8eCy9O+x62TwtRaS8obKPPJus0rr9L6O74HcsvBcRG70CehE9B/lQvL3NBryVA4M8Hz3JvKmKHT1Lpds8E2/tPAJQAT2RcLW8fC1MPBlWWzwAn/O87wh5uror2bsrC6W7v/N3PLQL+7xL/Zq8NUfCvFk6x7zCaxW9LRsUutuvDbzMU5K73cq9vAExMj1O39q8Ic+HO0SjPT2C9eq8bvCfvaWUT7w5nPE8pZRPvNPiQDzekU29PKGfPCh9Bb0w08O8QPZOPe8IeTx+v4o7w94EvUERfzxTHgi9TBhLPaonHbwk0BY9EML+vJIY9rxdWqU8ZOlTPM1jgT0kBei876kXPd3pDL0HGCC9HK+pvOB3LD3wmre8v74mvQ6If7wo0SU829mdvKpcbjwTEAy8IQTZPJ5ZQbxPcZm8LUWkPQnfL7yrxJy8/QUTvf/2Mj0fHno9aOpiPf1k9Lxy8S49PHcPPeXBGj1QjMm6yrYSuu3tSLtGvu06eZ8sPXbyvTxdo4S8KAb3O4enB72C9eq4NroxO+glqryWOFS7/WT0PNAAATysQs27evPMvHFf8LqNw8Y8R1CsvS4MND03DtI8jhdnvFdzN7z+g0O9ZD10vGeWwjuGaem8XyG1PIo1J704oJA8zfARPUD2zrz0R6a80DVSvS9gVD2kIWC96yY5PVr2lTtVObg8X5QkPd6RzbzYyS48abHyPMvgIrnqXym9tA8aPb4s6DmNb6Y7uivZvDx3D7xtfTA8LysDPe5/h7zZya67yfpDPOBY3TzEhsU8aXwhvCtA9jp8TBs96UBaPNJkEDuxOCM9JyY5PZ6TBr0aP5W8c+eLvLzASr3tLYO8rGsvPVaoBz16imS8a0REvEi1Pr3fOro8F8X4uwaFc7x2vXC8YqeGvOQHrrrYi7y7M5lKPJZnljtlbvA8WA0fupwcr7w9M7I8GzAavYpol7y/q7S8us/FPNTBjb2L3Kk8YKpcvOndgb1OCAW95P5NugcOC73wgx+9G6HnvAlqwrxHSgw9O86aO6mM+7y/Iow86s6GvMsexjtrNUm8eKsfvVv4CLxHu1m923ALuxbmszpB/WA8BSyBPcCEXruxOCO6ESIgPJo6pb0oFHm8cfyhve+P1byuZZS7IV9gPfJ0JL1Ljmi7koLHuz4tlz1nYjo9VwH6PEEYgbzeQFW9/PxLPEe7WT3KHsa8cPlcvAiCnbsONzY7dcZQu4b99bxsJs47nw20PL6ZdLwSEyU7QQZBPDIumLooBf6830m1vEmvo7zbXku7tvw2OikgnjpB/WC8SL6ePIFLorxYmQy90Mr+uqHX4rt4qx88dq51O0uXSLvUr828kKC9PMETkTvtp7A7+hQnvUqd47wdjFG82YUhPTOiKjvEV209tfnxu5GRQj1/aRg8Ko6VPAcOizy/qzS8yw/LvG8IWLwON7Y8TJoNPdxV6zuWXjY8Hn1WPYQkzDwJc6K7lmeWvHeoWr3tsJC8jMppO7EmY7sU4+67Q+jKvNTBjbtE4q+9vqLUPIFUgjyXRts7E/tJOmrKljxOc7c815FXvPoUp7wp/2I8LtW2PNWgUr0Epi49Mi6YvSz8jDwavAe9Hn3WPHPb5rshX+A8a0TEvGwmTj14N428jVOBvBT7ST3qURS8PiQ3vYnxv7yqd+W8QQP8OpVkUb0dpKw7/vCVu6xizzzGYxK9w2/Iux+AGz0SEyW9jzWLvDhvHjziHMS7TBeAvTxCLTt3wLW8S47oPDUZgj2QoL08ECsAPJk34LvtpGu9QRgBvbHEkLvjBGm9dq71PI61Uz1ruxu9kaOCvLBHHry289Y85e9SPF3I0ry8w4+8bxG4PIIqZz0yLpi9sEcePYrrJD2XWJu82JQcuujI/LxrPqk8w4EIPNWvzTuRl108qhUTPcwSEL0RFvu8CvCUPKPRRzwaPxW81L5IvUfEOb28ww+9e5aJvTdjeT3VoFK6ySThvELuZTx4oj+8ayzpvEEPoTw/Ene8FPUuPVW3gj2J6F+9ppt2PPJi5Dws86y8I1yKPUN9GLz4Kb07c94rPRs/lbr5LIK8d5/6vAlzIjy6z8U8T2pXvJo6pbw2cvQ8us/FvN5SFbz7Dgw9q3qqvJV2kT3/2Do9QQ+hvHmZ37vl+DK9mjFFPQlqwrxpSt+8syDIPEPxKj1c10299jVzvJ+EiztHxLk7dMzru0PfajyELaw8mTfgu8/6tDx8bG48A7UpvZk34Lzwgx88yCr8PJGaIrsNRrG78mJkvF7aEj2dE088e5YJve+PVbspDl68u8kqPZGjgjwdlTE9BJRuPScd2bxEbp08cAsdvBfgmDtIvp69gFE9vfNrxLwT8mk7LOHsPC7elrx7lom9rPccPS7MVj3qxSa9tQJSPeT1bTyxOCO+U0CrvFBh9zyvXDS8/9g6vHe3VbwTkJc76rxGvcETkbwSE6U7vyIMu9SmbbxnUHq8w4EIO3exOjxx88E5i9PJO481Cz0LZKc9NJOvvI+4GL3bZOa84DSfPeArP7zSUxa9976KOx2DcbsRIqC8Ok7jvE6LkrwpDl69GNGdvLE4ozvjoha8G6pHPHbJFT3/2Lo730Oaur2xzzxLl8i7cfwhPTSTLz0muwa7j684PHALnbxqO+Q8wI2+O4vKaT2HADu8jM2uO2WJED2aOqW8PTnNvObyl7wZv129NgoHuwvhGT2IAwA975g1vB8MCT1yeRS7EwSqvKiVWz3Ygty8/22IOw43Nr1lgDC6j6bYPKVChDzp3QG94qIWPeX4MrufBxk88mLkPPJ0pLwGoBM92JScvUyITb0Enc48ZBuZvYvTSTwasyc75PXtu2tExDsmu4a73WGQO3qcJL19bzO9MMY7PX9XWD55KBI7LerMPPJo/7zR1iM9VL2dvEPf6ru1AtI8mzHFu7jk27xey5e86cLhu84DFT2bIso6epykvN5SFT0W3VO8F+azO05q1zwZsGI8dN4rPDaB77snLxk9zY8Cu+2nsLyUhQy96lGUuikgnrgej5a6KQjDvAO7RLy52/s8n/64PBjRHb31RO66qpKFO2tHCTxWEHW9cuRGPcRXbTxeV4W87aewvMF+w7k9M7I5215LvFzXzTwL4Rk8jVMBveQHLjyMzS48OVfDvCFxoDvAhN67qaEAvHALnTy62CW9pUKEvArwlLxtJk48DTTxu54NNLkdg/E7KZ0QPUmvo7y+MQe9N3U5unPb5rwfgBu9Di5WPW21AD31PtM8yrMTPSggHr2UhYw9l1gbPSn/4ruZSaC7yicmPTpOY7xAA3w874DavDC0+7vrtis5Z3G1PNLEYzylQgQ9Zm5wPF3RMjuf7Pg8xmMSPEfEubzWmjc9cPlcPaak1rwnNTS9jccTO49EBjxADNy8ehmXvPz8Szx2t1W9I0FqvFccmjy1CzK8mD17PS7eFj3ZjoE8JNCcuIrf/7rZc2E9CvCUvFaoBzxdyNI6OmAjO8B7/jw4Zj49bQ5zPIj6Hz0zmUo85QeuPamhgLzmAZO8QAxcvNYvBb1NeVI8vMBKve6PVT1rPqm6Yp6mO5wlDz3Tx6g8Mi4YvSXKgbx3sTo9KBc+PcVI8jzXiHc9xG/IOnmZ37v04pu6FfWuvXuEyTw2Coe8JE0PvcRX7buGBlY7cQI9vOu/C7z6FKe83d4COlFM4TyaQMA8QgAmPeu/i72zKSi9JDtPvRbU87uL4sS77bAQvFUo0Dug5l0774k6PR591rw2Cgc915FXPXTeK7pHu1k92m1GPZfkCD07USg8/XwDPfoLR7uBQsK8dVWDOyNTqrwRnxI8ZW5wvaxiz7xgvBy9CWpCPV5XBT2xL8M8TYIyvAh5PT0yqMU8hwkbu8sYK7xJpsO8RG4dPZsrqrx9dU68XcjSPWjojLzmfoW8KAV+PXLkxrzbZys9iIaNPO+Smjyreqq7dVWDPMZjkjr1PtM8ImjAvJk34LxADFy9JDtPPeyk6zzLGCu95BAOPeA0n7zxABI7OewQvQaOU7wCu8S7KAV+vYQkTDzoYA89IV/gPI6107uRkUI9S6AovXTeK7xd2pI7QvfFvKTUjDkT8mk8Z2hVvJ/+OL1kfes7pNQMvP7Vdb262CW9cP93vG4pEz3JJGE9Dx9bPD0zMjzP4lm8l0ZbvN5YsLpSTyY8epwkPZC4mD14uho8Sb6eOk4Ihb3c5B09Y5VGvFvdaDwnLxk8BZ3OO3x+Lj33vgq9pNSMPGpNJLquZRQ9xHINvVrsY7upmCC9TnM3u24aGLx8h448HK2Mu3koEj2hdRC9RsF0PM0JMLwavAc9RG6dvM/rubzjDUm8Z1naPKVCBL1gvJy8r005PBPy6bzdT1A8MbdAu1+5V72Ppli9vyKMPNlzYTzAe/67CGd9u1gNn7whZfs8odfiPG4aGD0ejNG8/f+QvVp7Fr31UBO7w4EIPCH9DTxTPea8j6bYOw43tjyUc0w76GAPPeME6TtAmw474MCMvNWvTbyVZFG9XOkNvKmPQL2hdRC9SaZDPTYKB71oU7+7h/favHuNKbzZhaE8hg82Ow5AljynpFa83VgwvTOZyjwNPVG90s3DuzxCLb3kEA682Y6BPOArv7yzF+i8cfPBu9WpMr15KJK8VwF6vGGkwTzTvsi7W+bIu9p2Jr23gom8TnM3vbb8tjwcrYw6k3lnPbpkE70Hdvi6aUpfvfkjIj22kQS91D6APcgq/DvYgly9z+LZuWhTPz1QW1w8t/NWPFzgrTxjjOa8UV6hu/gynbwSHAW6it//u4YPtrsEnU49GU4QPdWX8rxy7SY9tQLSvCcdWbzTtWi71a/NOy3tkTxLqYi7Px4cPUqd4zyMza689ETuPFccGjxlbvC8jVOBveME6TxrNcm823ALPTGuYLxz22a8fHtpO4+d+Ly2/Da9cvYGPbnnoDn+8JW7u7fqOtYvhTyyMgg9No2UPGwvLr0h/Q2814h3u5IXFT3k/s290HEMPRKQl7w1ik88PrkEu5sxRTyuU1S9W93ou69Nubx3upq8ueeguq9NuTtjjOY81yCKvXeo2jvvmDU8t/YbvScmObuCRYc8Ft3TutiC3Du51WC7f2mYvDKoxbyY1Q29O1EovB2eEb2A1w+9AsSku0x/7TxtKZM7DExMvVrsYzi423s9OGzZPLrYJT0h7pI8N36ZvEPoSrsKbYc8f2A4PQeIODzwer+8OeyQvOnLQT0yuoU7LsxWvcqzE73cVWu72YUhvGGb4bs4Zr48Gj+VPWdZ2jyK6yS8e40pPQLEpL31R7O874/VO7rPRTrdVWu9v5w5PEfNGb0Rn5K8t4IJPGR967vKMIa7jzWLPBIBZTuMza68TXnSvAWXMzzTRBs9asqWPO+AWjw4b569ehkXPRlOkLwvz5s8yx5GvMmzE7tF2U88BqCTvJ0WFLsej5Y7ArvEuia7hrx/YLi7p567PFNAK7w3+4u7gFodvW0mTrwu1Ta9TJEtva5TVDuXTzs8WA2fPIvixDubKyq8LeSxPJyoHDwqjpW7mTfgvO2V8LvFWjI9QQbBPH54Ez1fSIo9zvHUu/0FLLwhaEC8CWFivZZk0Tx6kP+8bhqYvO6hlbxqypY6ImIlPQFQkjtVtwK9VTEwukugKD0nrIu7Ft1Tu9lzYbz+5zU94w1JPOT17byBQsI8YZvhPBIchb0ZuUI8drdVPdTBjbxwAr088XFfvaak1jvz4hu9JruGO2joDD08P2g7M5DqO5o6pbxSZ4G6xGktvDhjebyI+p+6IG7bPPdBGL3LBmu9FmyGvOMWqbwIcN09kaMCvQ1DbD3EV229gULCvHkoEr28Rh29JcoBvQDZuroNRjG9v5w5vYUeMb0p/+I85AcuvV+5Vzxy7Sa8FXuBPGKepjwysaU8hv11vDldXrwboec8OG+ePI+4mDwCwV+6/PxLPWGkwbvZhSE9Ie6SPB8MCT3fMVq8XOCtuizzrD0AX428wITeOkXQ7zyRkcK8KRGjvEZZB7uRkUK8oemivCHukjw2jRQ9OG+ePDlXw7wPKDs8hhgWPZZeNr1F0O88hS0svDlgo7wiUGW8eDcNvcyVnbvo0Vw85f5NvKDd/TtQbRy9Y4zmvP7V9Ts+G1e6UWeBPKqShTzwej+8GMV4vefX9zw6Wgi8WuzjPCFf4DwYyD29itlkPThmvjzjBGm8qndlvamYID08Oc07g7mZPAWXM70jSko8/PPrvE5zNzuI+h+8nDSKuzYKhzqzKSg9xUhyPLOmGj0t5LE8VqgHPT0zMj0TBKq8MKcNPR5bPj2Y1DS9q+UDvbR0rbzffE695dM2vH2+Oz3Tkg89crGou2XUbbzoLky95qTMPH6PUbw2FqK7MTJ7vKfRhLyweFq7IW89vB/9aTyol/I5cprqPJfsYDs7tKC80RSmPMR9E72qZxq8+z8bvayrcTxjVZa9K/JQPH9Iu7yqIXK9WQ0Dvfc3MryLJuS8HkMSvRGVwbxRIAW9uvvtPK1vAzzLvb28iw64PFBnG7yyMcQ7aC6VvKS9Bb0weCO7HKJUvdqv5bsZdik8zEc9PF9wgT2LPSK8dcUnvC2rOjxsB5S9kja2vFN7mr1FIPa8FMyUu4sOOD1keVi98Pj1u8Ot6zvxvIc9hZMNPZWoCT2mJLG89PRIvVLmcjyn9UY9DaSWvBzRPrwWYiq8+eSFu3p70jqI4gy9DZiAO/nZ3TyiV0i8sKdEPHtXkDyyMUS8qjgwvfztXLz+X7C8z36Qu+nnNTvWylA7IiinvGuJKjxzO6i8FxsUvXtXkDuyMcS7YDUBPK/u2jmVeR86Gke/vOq4yzxET2A7P7wJvGa8Qb1Dlva8TumxvCvD5jyn3Zo6Q600PYpt+rsmDTw92rqNPAZx8Dy0jFk8lO+fuxTYqrzMdie7/cmaPP533Dw3uE08uVlCPFLmcj2LPSI95QIhPNRAUby640G9zS+RvKSasbu6Ktg7/O3cOvc3MrzIS+o7Uf2wvao4sDy5WUI80s59O/M73zogtlM8IW+9PID1jrsSQpW8oM3IO3tXED2hV0i98cgdPWgulb3Xm2Y88rHfvFK2mjzoFqC7gxWkPNEs0rxtEyo9jbBjvOguzLzEZlU9u8sVvOnnNb23qwC942HjvEhuBzswkE+9dC+SOyl/D7yKVc48OKChvL7fFLyf8Bw9tWgXvTiUi7zzakk8yFYSvMOta73nRni7ZBqWvH5g5zxiwG49af+qPCyU/DtzO6i8wSNsveqUCb1jVZa7Al1xvfWtMj38HEc9hOY5vToT47vRFCa8VfrxPFeDgzw6E+O8ioQ4vJYyCT0JtFk9L+KNvXgJ/zzBI+w8sKfEvHdnUztHksm8FjPAPHUkajyf8Jw7IkDTPEUfCD3IS+q87fs0vbPqrTyweNo7YdcsuxpHP71kMkK9fnclvc9+kL36boU9x5GSPN7aIr3l62I8nZWHu+BN5LwM04A8ztE8vK1kWz04lIs9W4BEvUu+9DzkMnk8thbZvNEsUj1ew626YDWBuZJlID0tWA452g06vOQy+bwA3pk89cXePK/WrrwRlcG8TIIGPZ/l9LyU7x+87oU0PZZKtbxVb4Q9kaw2PULcnryVqAm8rJNFve6FND2xYK68AyEDveQazTwXBFY97CofveNsi7zO9JA7tKOXO+akTLzLjlM8WFQZPDe4zbzquMs8tIxZPMRmVb2Iy868t7cWO3AnqTw9Vsw7AdKDuwHTcbwPOqw8L+INuXZ//7yKVU48USybvCvaJD2U7588v6QUPbr7bT1QRMe860JLPNrGo7v+XzC8Zd+Vve9WSr2Bo9C8U3uau3dDET2U44m8Z2mVvaC1HD3FHz899CMzva/uWj0v7iM7lXkfvppetLxG5Ac925c5vGn/qruI4/q7d0ORPHAnKb39vvK7wTqqOwDeGbxerG+88A+0vEfBM7u6Klg8nNH1uw2YgDsY4BM9d0+nPVebr7x6e9K8UuUEvcO4kz2OUaG7pjzdvGHXLDy3txa8bcyTvHzhD710L5K8Ea1tvfmpBb02Cow7BnFwvCCeJzxZJS89Us5GO6FvdDs/yJ886olhOi1kJD07tCA9U6qEvNrGozxvVpO8oj+cPMeRkrsslHw9M9O4vLR0rbsSN+08PG2KvMepvrzMdie8mXZgvXdnU7lblwI9s9PvPMepPrsbACk9RJZ2vHT1f7wGfBg9W6MYvSvaJDwgtlO99n7IuxsY1TzDrWs8AN4Zvb+Z7DzHkZI7SHodPH2mDz1CDPe83qs4PegWoL0hh2m9jkWLPN9kor1MggY7xR+/ukrtXrt/MX07UvGau7PT77o6Wvm8J95RvaiuMD1G2V8+4qj5O6yrcTyorrC8kPNMPXHgEr07qIq7Dy6WPO9udrySWQq9yTO+vOXr4rtOMEg91rKkuivy0LzHweo8kX1MvD+8ibpsK9Y8tvIWPBcEVjt1xae8O7QgPWUOALyb6LO8BoguvZZtCbwXBNY5z7kQPAJombymRwW8da5pPAsPbzyTH/i8wS6UvHgIkTxh71g8bCtWvXaWPT1kSu47f2BnvBy5krytTK+7xUKTu8hL6rs1Rno8QTthPKY83by0jNk7TQwGPNrGo7xgNu87Qgx3OhcEVrs/mbU8lO8fvTEye7wJtNm8XDkuPHXFJ7ygzci6jkULPPNSHT1K7d68oXocvUYIyrtMXzK8wtxVvaiuMD00jKI8eCC9PFN7Gj0n9v28g0SOPQpVFz39vQQ8BoguOzlCTT1ax1q8STR1O90Ke7yiM4a7S+3eugJ0Lzx9vrs84dfjPKpnGjz9pkY8jwoLPVBcczz2oZy8QvRKPVBccz3PfhC91uL8vKo4sDsWYqo7yQTUvA2Z7rtHqYc88eBJvS4GULyQz4o8s9Pvu1eDgz3l0zY9CPtvu0OtNLuwg4I753ViPQmcLbzW4vw7TF8yPNn2+zqRlfg85dM2PTigITzNLxE99Qx1PPWtsj0eQ5K84r83vOE1uLslg7y8XQpEPBsYVb2hhjI9MUm5u7+ZbDyCdOY8ceASPD73Cb0cACm8Q5Z2PQ9SWD0OXYA8MWyNPUu+dLqTB0w6WRkZO9xQo72xSfA8b1aTvHNqEr2NmDe8vG1BPEhLs7zFQpO8/l8wvJi9drsOXQA9ST+dPAZZRD2WM3e98pkzvBDcV70qCv27lMA1ODCo+7qgnt47Ex9BPHnZJj0lm+i85dM2PckzPj109f861RFnPXQkaj02Cgw9BP4uPPXF3jxOuke7JYO8vFX5AzwweCO9DYHCO7SXgb3Dlb+8QtwevQcqWj313Bw9LXzQPORJt7sXYio9nKGdPIWfo7lbo5i7gAGlvM/p6DwI+oG8tiGBvBV61j1h+oC8n+V0vNq6jT2r2tu8dPQRPYcSZTyzu8M8uxIsu28/VTwuHny7OuT4PHAQ67yhb/S8cPg+vdbi/Dw1Rvo8im36vOqUCT04oKG7b1YTujB4o7xCC4m8DzosvPBudr1SzsY8ST8dPayTxTypf0a8argUPc7RPL3O0Ty7Uf0wPHwcEL1NMEg7r8oYPGBNLbwpaFG9ljIJvI8KC7wc0T69Dy4WvUxHBryVeR89Ye9YPZ/kBjyQ26A8Ka9nvNEsUrwGWcQ7AbtFPGLA7jzm9oo9wSPsO3wcEDtLvYa9T7pHPaGGMrtEZp48tIzZO1whAjykyRs9iacMvVn2RDy1RUO8q+UDPQzfFr0M04C7AlwDvVX5A7yB0jq8Zo3XPNLlO7w5KqE8/dUwvXjx0jy648G2UubyPKF6nLwB0/G8Cm3Du+qgnzy4iCy9mwBgvPHgyTttzJO880aHPGXU7btVKVy9yTM+vdOepTxV+nE8SRzJu4sxDLzHkRK8l+zgPPQjMz1VETA9vJAVvWRJgL39vQS92fWNu8+KpjsFtxg8QTvhvExfsjvvVso8u7TXOUrJHD3hNbg7lO+fO7lBlrznvHi8NV04vc+iUrxAgve8yuwnvWnzFD1ZDvG8U5/cuy1Yjrw7tCA72DykPO9u9jtTh7A82Q26vMrsJ733T948beQ/vQKXgzvcUCO991qGvEuOnDxax9q87z6evHzhD7wJkBe9UETHvLycK7zRFKY8YfoAvDydYrvvPh69r79wu/XFXr3UWH0871bKO+OQTT0LPtm8xtgovDCnDb1R/TA9mYEIvQm/gT0pf488uVlCvSi6DzzV+To9BnFwPJYyCTwU2Ko87BPhvCf2fbxgZVm8Ay2ZuxzRvrueW/W7q+WDPfpj3TzCC8C8RGYePQMtGb3UQNG8H+W9uxpHPzxet5c7lOOJO0fBMz2Q88w8ioS4vMbYqDxWvoM7vG3BvECCd72Rfcw8VG8EvSlo0TyWSjW8oW6GvNhUUDtkSQC9mBtLvSpEDz1ET2C72Q26vFn2xDsgnqc8w8QpPa1vgzwr2iS9+B+GvNbK0LvNMP88aqHWvSDO/zxgNYG8sg2CPGLLFrtVKdw7hohlvZcDH7wDFtu8fnelvMCBQDxMX7K6AyEDPZi9dr1p6Gw7WQ5xPJTY4bwwv7k7yGKoPDigoTuwjxg4l/cIvJjUtLz9yZq8Y2EsvRG4lbz8BBu9iOP6vEFSn7ukyRs9FjNAPHaWPb1OAd45m0d2PSFvvTz+XzA9e2MmPCGSkbuDXDq8XqzvPAsmLT3kGk08ML85vE0BXryorjA9YE0tO7FJcL2Jpwy9Uf0wulOHsLucoR27Cw4BPTO7jD26Eqw8T4vduwT+Lj2Js6K9BoiuvB8IkrvYPKQ7zRhTvfc3MjzoFiC9Su3evMLcVTwB0gM8TFOcu+gKCjxK1bI6238NvYDq5rwKSYE8yFYSPVOHMDx6e9I8a32UveXr4jzquEu8ilXOPJ4fh7wgnic8WFQZPFEsm7yPIrc4af+qutOepbqsq3G89dycO4ABpTyUH3i8ILZTvIABJb1gNm+7lko1vZ2K37xdUVo8t6uAOVBbhTz0Cwc8iPo4vLVFwzw9J+I76rhLvAG7xby9Jqu7DbAsPXmqPDyxSfA8lOOJPeXTtrtQZ5u8a4kqvGqhVr0XGxQ8KMYlvUCBibxXg4O8JLKmO6/5Aj2/yFY88oEHvaGGMrxjYSw9gbt8uXQMvjqzu0O8DyNuPZDbIDz0I7O8TQyGPLVoFz0hkpG9q9pbPBV6Vj352V284DW4PIz3eb0oxqU6nXIzvduXObtXbEU9hZ8jueaMoDysk8W8fzAPucU367t87SW8v7CqOyfe0TxMRwa9CoSBvUh6nbx1JGq8hojlPWR52LymDXM9OUJNvV3b2bw3uM28SG4HvfH49bz52V28HxQovZ5DSb0MyFi9faYPPbIZGL0iKCc8Y5CWvKo4sDyY1DQ9kPPMPHgIkbySNra8TFOcPPkIyDzh1+M84e4hPAptQz25QZY7tvIWPc66fjxwJyk9/PiEvEeph7ybF549WFQZvOtadzvIS+o8U6qEvIN0Zrx52aY7QvRKvJmBiLyB0ro8hln7PFH9sDyORQu9OHE3PF6s7zyDXDq9cCcpPU7S87sn3tG88fcHvNUoJb3YPKS6+eQFPMeRkry5NYA8t+fuvC+/ubzt+7Q7entSOSvOjju+90A8Xqzvu/XQhr3C85M8ZQ4AvER+yjzysd88gy1Qvd+Uej2bAOA89Qx1vBZLbL1ypRI9KVAlPDigoTwNsCy932SiO07S87yqCUY8fB1+uyYlaLshWP87edkmPdrGozxCCwk9qiyaPHZ//zyX9wg9d08nvYqqYD1affQ8pJwJvRUoBL30gSG9CF3cvIEteDz2TYk9RjbaPOE9wLoRkDS9pvwRvQyrG70fza08HCMVPZkx6jz+S9O7ppAyvYC+3zzT3ne8Dfjku4nMrzyfJok8B3+rO5gusTyxNdy5VXNTvPQVQryKGfk8WeYavFhVM7yFVq+95Y44vTJbn7tn/gs8CzyDvL8DvbzNYgW9+p4BvDCxBjzq37A8ApoSvXEPFT3gOge9Sz3CuqayATozFMi6IKtevMmD3rzO+d68hyKXu/iLQrr+S1M9FSiEPIDgLr2tYwK9DuabvcTo1bxQItu7nyaJu2Np9bvOHuc8PP0PPEIKar1C5eG8DBo0Pae4cz1I/wg9tvXsvI2uj7ugYQm94dFgPVHribxR6wm88FjqvC58+LvWmJY8PbnxvP3+CT229ew8dmPGvBvGxTz2TQm9oonKuwc4VDxyy3Y8siOTPOviabwpb5688SEZvVS6qjtI/wi8+WnzvExQgTsuCqe8GzVevTwASb1F6ZA8Z/6LOybqjTyA4K48Tx8iPess+jzEMuY6YJcbvRLd/bwEiwK84UB5O1oz5DyPRem8bQtmOybFBTzsPIA8aEtVPc2vzjyPanG8GegUvPMSibw93vk7HNkEvZi/mLzIEY29ivE3PLkeJLwq4e88u7X9vCCG1jtZVTM9sOvLOy4Kp7zIyrW8gOAuPBFuZb2HIhc9YCgDvF+E3Dxey7O8KZSmO+WOOD3qc1G9XoEjPQw/PD0j/FY8tWHMuR+oJT3v5pi9Yx/lO1WY27zDLy08QOIoPJqLAL183P+8YCiDPMnN7jzOjX+8nX+pPbWG1LtGW2I8eyNXvQzQI73xIRm9v03NPGjfdTu/uaw7Fis9PC2bDr26ssS7RcSIPcMKJb1/TI68UCLbPAs8A71aWOy7ZI59u0xQgbwHWiM8FgnuPU9EKjzljrg7RjMhPPTLsbxgTQu9dxzvvJ2n6ry/vGU9+p6BPeu94bxNmhG8k7iwO3bPpbyFVq87oolKvNZzDr3q3zA9xJ5FPSpgjr12GbY8rFN8vP6V47xot7S8nadqPBG1vDywMiO8hVavvGJjg7xVLPw8aEvVOsSeRb0TEow4DNAjvb/eNLw555e87zCpvAIuszxPsAm96gS5PF5cG72iZEK9+Wlzuzge6bw1cRe9Y2n1OyA//zsCmhI9cwCFPAyuVL0yW588zBuuPCkDPz1GDpk8nadqOvkf4zxkRG09HCMVvflmOj3hPUC8+bDKvBoyJT39t7I8IKtevaKu0rvX4ia9lHHZPDf2pzx/uya8u5D1PDzYBzwrOwY9DK5UvW2cTb2/Tc08OENxPJdQgDvO1NY8qO0BPUGbUb17ai692dOWPMR89jkMrtS8CPF8PAzQoz0DwlM8Tb+ZOd3/Bj0uCqc7p937PBUoBD0fPEY8WcRLPQJ1Cj09JVG8ECEcvLB8Mz0C5KI8VCYKu5Rx2Tq1qCM7VAS7PX9PxzxZwZK8b/kcvACEGrzqcJg84dFgPae4c71GWCm9sDXcPObYSDzvVTE8Z9kDvThlwLxZMKs8+PehO1C2+7wpuS49/f4JvICWHr5SNZo7rHXLPHMAhTw1cZc7gCq/uxvrTbw9Stm8M4NgvYUP2LxzSpW9dojOvJ8mCbu+KMU7N9EfvazkYzydpLE7YJcbPU2/mTydp+q6ykyNO0BOiDz0qeI7PADJOz4TCL0p3rY8CKfsPA1n/bqYLrG8G3/uvL/etL3l+pe8saR0PLbQZLzNrJU7R4DqPMpMDb1lngM8Yx/lPCmUJr3YL3A99Rh7Pc+dhbx7I9e6FlDFvFBpsjzd/wY9EZC0PBXhrDoygCe7yfL2u9zHv7xVKcO8cst2PLDGQ70EsAq8YxwsPbWG1DxiiIu8yRRGO+pwGDx2O4W9IKvePG3mXb39AUO9MjYXvaZrKrzgzic8q3KSPQhdXLwIzHQ8omRCPL9NzTzJzW68JGg2vVQBgj1fGH29WunTvOGs2DqK8be9C2GLvOaRcbxeX9S6/zkKPf23MrxL87G8BNUSvcMvrbw4aHk8Lp5HPo5CsD34i0I8G+vNvBz+DD3l+pe8G8bFO3E0HTxWPII8/bcyu/QVwryFoL88ZcOLvD0l0bw41Ni6caO1PMX7lDzX4qa8+WY6PeSOODzXCug6cX4tPdcHLz1sT4Q8MuwGvSuFlrz9t7I7zYeNuu8OWjwDe3y8QZgYvNflXzw8tjg8doUVPKKu0jxzSpU8M6hovFXiazrwWOo8l3WIPEvOqbzRkS48lExROYDjZzye8Xo5IBp3uqya07xxfq29DKubPTy2uLyxf+w8v7ksvJkM4jte8Lu6gLumPKIaMrxQ/VK9qys7vAT6Gr3WTgY9FlDFPA7BE7xj1dQ8S9FivRqeBL1V4us8bAitPJzGgL3sYYg9is9oPbw0HLu/BvY8H16VO81ANj0rOwY9Ar8aPagSijyOQjA9w5sMvKLT2rrIpS29yMo1vKduYzymsoE81+ImPI7Tl7zNrBU8b9SUvKe48zx2z6U7qBIKuwthizxdX1Q9F2MEvbWoozp4doU8LeWevLr8VDycxoC9yV5WPVCRczwlkHe8ttBkPMNUNb3m/VA94KkfvXKm7rt2GbY8Rg6ZPOVpMDw8AMm8aJIsPVUs/LwzqGg8xiAdPdIlTz2Jgh+8Y/rcPNfA17wDVnQ8WcRLvNd2Rzy6/FQ8LlQ3PEvR4jsS3X29sX/sO2pelLx8km88DR3tPFozZLsL9au8t74bvQw/PDuaiwA9kyQQPc2KRjyBLXg8dqqdPNgv8DwS3f07bOOkPBZQRTr08Dm9herPuy12hjwMrtQ3fJLvOz44kDtBmJg8d2b/PJMCwTogq149G8n+vNPe97kWUMU7yRd/vCSNPr2d7sG9e4+2u9ZOhrtQjjo8cTQdvZrVED1jQbS8EzeUOyBhzjt8km89AuSiO1Vz0zoYrZQ8nyaJO0j/iL3sqxi7u2vtOntFprwpbx69t76buxDXCzyJgp89OGj5PJidSbyVhJg8v7msvJh4QTyi09o8mL+YvDiv0Lyr4ao9hXu3vFZhirxyy3Y9M17YOxFJ3bzSJU898SEZvfCygD2Tkyi9CPH8OV5fVDvIgKU85thIvBitFD2KqmC6YCgDvYmCH71aonw8+GMBPcle1rxBc5A8zKwVOSFPBb2O+B+9Ar+avCly17wSuHU8172ePY74H7zO+V68JWtvvYfYhrvqlaC7M++/vPNcGb08kTA8ESRVPQfrCr1hiAu98xKJvEeA6jucEJE7xOjVvCglDrx8t3e8pkaiuvlmOj3+cFu8GlctPW0tNb2nJFO8aNw8vVuyAr1x6gw9pmsqvG16/rxVc1O8GzVevWgmzTz+3Lo8oj86vBpXrTv/OYq7UCJbPfB9crzsYQi6F2OEPMNUtbvSb187z+cVPPEhGb0yWx+9cci9PLYa9Tyw6JK8BzjUOny3d7xKqaG79pcZO79NTTpy8P68gHTPvBsQ1rtHpXI70m/fO3u0Pr3h0eA7MLEGveYiWTz+cNs87pwIt9fiJr34i0K8hVnovFHrCb3XCui8+PehvEo6iTytrZI771UxOy4y6LxGMyE8GsMMvNoOF70ypS86sFcrO+opwTy1q1y7jJgXPQinbLvDVLW7QuVhvLEQVLzsPAA92a4OvUGb0byO05e7Qb0gPA0d7bucxgA9H4MdPACEGryChw698DNivA6cizxaonw96rooPJ7M8jz5i8K8sTXcOy5X8DumkDK84poPPJ2kMb26jTy8z50FvHLtxbt7+xU9UGkyvcA7hDx3Qfe8Y7DMukYOGb3SAMe8GegUvPmLQj0De/y8q7wiPHaqHb3lH6A9WlhsPLd0Cz1y7cW84KmfPSrh77uk5hk8/UiaOghd3Lzm/VA8qDeSvEbsSTqiZEI9uo08vHy397u1htQ8GsOMvP9eEr04+WA9N6yXu7L+irzJF/87B8k7vFDYSjw828C9odChvOX6l7zqKUE9hOeWO+UfID34i0I8N0A4vBpXrbxiiAu8IBp3vBFJ3bwygCe9Wg5cuzz9D72iZMI8wDuEvCRoNjwGfyu82YkGO3Y+Pr1VLHw8SqmhPJSWYb0kjT49ONRYPSlKFj03G7C8N9EfvXI3Vr2ma6o8sDIjPMkUxr3N9iU7nyYJPC4yaLx2qh28yFsdPImCn7y18jM7sDIjPC55P726RuU84DoHPHYZNjwNZ/28XqYrO7U8xDtGNto8ELKDOnE0nT2YUzk9QuVhvOq6qDsWU368/Ugavc3RnbxGx8E85bPAPBpXrTw3G7C7ESRVvG6KhD2hhpE8PblxPJS7aTz5H+M87w7aOzKAJzyyI5O8zUC2vM2vTjw9JVE9LsPPu+cQkLzzXBm6mAkpPUEsuTysmlO9RlipvNd2xzxzJQ28X/N0PPgcKrywobu8bE+EvAfriryh0KE8DGTEvQNWdL00J4e9DNPcvJ1/Kb0aMiU9X/N0vZ7M8rwlId88SP+IvFD90rvDLy09GletO4DgrrtiYwO9mosAPdfl3zxtnE28kMQHPUZYKbqnJFM8xDLmvKuXGr1n2QO9xHk9u+rfsLvlHyC9Z0gcOyYPljzls8C8SCSRvNzK+Du6ssQ8sDKju0j/iL1okiy83KI3PAxkRL0S3f283DbYOi4KJ7sghtY6N9GfOnvZxjg4aHk9ynEVvaId67wWBjU9+GOBPANW9Dwpl988q1BDPYJihj26jby8nV1avCW1/zyoEoq8tYMbPWcjFLzlabA8mrCIvL+8Zb2cNZm88H3yvPGyADzaDhe9urLEvCYPlrxB4qg7JEMuvZ1dWj2FVi+9omTCvMMKJT3Nr068FeEsvV7LM7xtLbU4KbmuO2qDHD2i+GK8cqbuPASLAr2mRiK9KUoWPf3ZgboH7sO8zWIFvUFzkDxKYkq74PMvPKsoAruJp6e8lOBxvLpDrLzudwA8VoaSOxvJfj2mkDK99fPyvKtNirwWmlW9JNfOvEXpkD0Q1wu9FeGsvAPnW7ykwRE8mQzivMPlHD349yG9mrCIu5i/mDxlnoM8aLe0PXxt5zy+b5w65mxpvTOD4Dz9kio9LujXPB/yNb3idYe8mC6xu5rVED2PIGE8EWssPFBH4zzEDd47yRRGPeE9wDz496G7/W0iPRitFD3ZiQa75bAHPGx0DL0uDWA6t3QLuxpXLbsw+xY8ukOsvBa/XbyEMac8vDQcvDiKSDrsqxg7d61WvNcKaDqCYga98+2AvJ1aoTu3vps8QgpqvI5nOL2sU/w6yTnOPMPAlLyKFsA8Et19vWi3ND3AO4Q8DGREPckURjxeFcQ8gCq/PPvokTuT/4c9gOAuuksb87xkjn29sMn8Oy12BrywMqM8/ZIqvDfRH7vWToY8OB7pvGzjJDuOiYe8VJWivJS76TwD59s8Xlybu9d2R7zIpa289ITavJDEhzvT1Mc8yOd3POxXdb0L/Yi8ZdnrvJZ657zifIO8fBmWPYYXyjv+VJI8a+k4vXqiHb3Vj+68UjMGu5okKj2O86s8cizGu4k4+7y6pjY73LApu1O7pzvcnzs8DDCOPAj9fjyPN1o8/TK2vGo/ALysuhG9dZIVPUW+lLxqcgW9Zch9vbUNYr11kpW8cnD0u5ybIjz73Zm8k9CuvMtv3rxMZ6w8IvhPPN5a4js0ORs9knuSvCFfhTwcpBk77TUjvGuUnDv+mEC9mK2xO4NcozyAOke72bEPPUmshTyFBty8IrQhvZ0Brb2D5P+873lRvDrisryo3Y47YWOePGw+1byBj+O8oXglvNKQGT2JsB49tVIAPYc5Jr0pCB085oyLumm2bj2m/2C8RySfvBfH0by66uS8p1R9OzXj07tk6wQ9Oo2WPZgCzrziN+W8yF+bu20tZ7u7Ha+8sdvCPOHiSDwOuC89rqh4PMnWE71EnLi7w6RqvPeI8ztDraa8+90ZvLpiiL1T/1W9l/FfvJkTvDxmpqs82hcaPWeVAj31Zwc9Uu7nvCCB17y+P4u7tskzvMKTfLtLAaI80hh2vImOhzzabHE82RdVOl3KDj1ZDyO7SiP0u4r0zDv/qS69qUMZPFbL6rzHktu7L1wYvfp3Dz3xReY7A4cxPUjfxby/pZU7CYYQPX1dRLuCBwe8/LuCPEOcuDy/LXK9x5JbPYTCLbzRw1k8lYvVvLDbwjsls3Y8a2EXvcFgvDx6op08K3+VPJ007btZ/rQ82BdVvW3Yj7u4hFq9ZC8zPIpJ6byX8V+8X0HCu1V2zjzUoYc8nawQvQhkND1Argy76lggvPuqFL0lxGS9gX71vJZ65zzfJyK5w6RqvCyQAzz+7dy8sB9xvCT4lD3qWKC8wQugvPp3Dz0pbie8kmokvK655jo9SD28xj2/PNo5sT3DxsY8mjUYO7YeUDzmFGi6tmL+vOo2ibzDCnW8l/FfPQdTRj3p8pU62eSUPAIyFTwo9647fbLguz+ux7wxFz+8cIINPT8DZD0hX4W9fn8gPM7m1jqZV+q7XIYbvaqHRzzQGaE8q6mjupGd5Ly42fY6OK/oPEJ63DszF4S9kIz2OMaBbby82QA7JF5avUvfCryZV+q7MRc/vTJb7TxbZL+8+ncPvWzpODmXnMO8BO27vBwK3zyCOow8Fh0ZPdD3iTzDxka9PjcUPYyvc7zNTQw9pDORPLz7FzxiySg9jGtFPdKy67x7TFY93xa0vACZBb3vmy09eG9TugkfW72heCU5ek0BvSQJA7s8jGs87a2BvOxX9TyZvh88th5QPC3lH727DEG9aj8APSjmhTzEG2O8Bf4pPeKemj0wbQa90SqPvAFlVTwHqGK8Wg+jvCZvjTyJ9Ew9sf2ePF9BQrymZhY9DIVlPKkyqzzdsKk8U6q5PBUuh7olxOQ80V2UvEwSEL3O90Q9zjvzPMijyTp/kA48aD92PO4ktT1UZWA8GJSRvIpa17zKK7C8FnI1O9Ky6zyj7x29g7E/vdxbDT088yA8w08TPdr1gr0gGxK9eMTvPL7H5zyiiRO9FrZjPTNsW7wMMA6+xGCBO4mfMD22HtC8B7lQugeX9Lui7x08dqODvWIeRb12tCy9OBaevbhALL3nFGi7u8gSvNdtHL3HPT87SIopuyc73TybirQ875stvD0EjzyuZEo7MLG0uzMXhDtYQuO8UYjdOyXVUjxVuvy7FeqTvIZb+LyP0ZS9CtssvSuQgzyl7vK8DfzdPEnO1zyRFQi9UpnLu+pYID3wNPi8PASPPZi+Hz1X7Ua9YskoPJJqJL0F/qk8b7XNPDJbbT2X4HG7Q0ccvJwj/zzHX5u88xImvJwj/zyheCW9s0HNuf0yNj1OiYg91QcSvBVhRzy52fY7H+iMvTFb7bgkb0i9a8fcu2aVvbw9ndm70rJrPG9xHz2u/gS9em+YPINco7v5/+u7c5JQu1JVHb0poWc9vNmAvVJVHb1Lmmw7gku1vc6zFrydNO08papEPK0gHDllQCE89jNXvLgeFb27UO+8L1yYPFVUcj6ivJg9sR9xOjzzoLpchhs9RySfvMOkajw2wYE8HrWHO1Z2TrzaFxq9SHk7PInBDD2fEhu8HV97vIApWTxCi8q6wT5gPDXjUz0WtuO8026CPLIw3zuavXQ9b3GfPLbJM72zDg29WP40vDnRRLxnyIe6tVKAvG8+Gr3KXvA8sTBfu4NcozxMVr48NJ+lPOCNLLxQAAE7yl5wPThakbuxqIK8R4qpPNdLhby7UO87NvTBO2amq7xwtU27rzGKvZoCkz12xRq9vC4dPRFz1jx6gAY8/4eXvI2ejzqJwQy9mALOvCoZi7yrupG8Kl25OwwwDrusqaM8z/dEPA9iaL0QHrq8WNzYu+DR2jwwBlG9NX2OPaKaAT3KGkI8lYvVPBal9bzKxSU9rzEKPQxSJT1j2pY8Ijx+PRu1wjuCB4e8KkwQvWKnkbyoEJQ8DnSBPE2JiDzJcAm7qCG9PBZhx7t3TXc8whyOPGuDrrt01v486fIVPFdDDr2hEfA8p3eEPNZcrjtBFBe8VFTyvA64Lz3HPT+8F8fRvEOcOLyV8gq9yqOOPcijSTwxW+26QeGRPDwEDz2X8d887WjjvGpywDwn9y69NDkbO/GKBDzweRY8NgUwvQswyTuO8yu9X4VwPEAUUry/LfI7WDH1uwOYnzwFMWo8p6qJvdo5sboG3JI7YFIwPZpo2DtK8LO8g1yjvPUi6bxd2zc9d013O4mwHj3O90Q9F8fRPFhC47whXwU9NePTu9KQmTzNTYy8BNzNvKyHjDuBj2M8NZ8lvWb7x7nsvqo7ARC5uUeKKT1P7xI731piPbVSAL3qNok6EpWyvMn4ZbxGE7G8hbGEvU0A97vHkls83gXGO6ghvbzCYDw9g6BRvJ+adzxzklA6opqBPRpgJjyx20K8Q5w4PbhALDxDi0q92bGPPDnRRLxk6wS906GHvU3Ntrt2owO8L1yYPe41Iz3i87Y8Wg+jPGuUnLxIeTs8O/MgPXgrJb1JeQC97jWjPaBnt7tygWI8MG2GPUvfijt9suC7Q0ccPWdQ5Lzga1A93Z8AvU8zwTzq8eo7wqRqPe6KPzzL54E9SkVQPExWvryHfVS9Bv6pOzHCIj2jRDq8FxzuPFj+NLv+qS68nEYGvSZvDb1Lmmy9SL3pu7RjqT1TzBU6jp6PvDnAVr3HTq07yOf3vBtPuLyOjaG8LvaNvMeSWz131gi9Bu0AvfJW1LtOvA08zNVoO7gvA7y1uMW7kxTdvHgrJbyzQU092AbnvGBSMD0sKU69MQbRu3OBYr0786C89ImePMsJGbx/f6C8cMY7vCfVl727lQ09mJwIPEjfxbzHTq07N/SGvHP5BT0rGOC8Eqagu3k8Ez373Rk8hbEEPPoQ2rwzBha9soX7vP5UEj2NwOE8tbjFvNVLQLqgvNO8ENqLPH1uMjzfBYu7huQJvCHn4bwTtw68R3m7Ok7epLzX9Xi8kmqkO6WqRLyJ9Mw8RVffPKQzTLyH0vC8yQnUPCPFj7yFsQS9fgf9vCA9qbwL7Bo8wmA8PbS4RbsdxjC9BUJYvT2d2bvsnBO9VSEyPTQ5Gz1Zl388WbqGvMSCGD3Xscq42fWCOj/Qo7wwoEa85SaBPEStJr1nyIe8YsmovEDhkTvSsus7kRUIPSfmQLwlgDa8aT+Avcn45by4UZq7vNmAPfSr8DyDbZE82bGPvBr6mzzffL67csaAvAC7HDzKxSW9qBAUveaMizzc9Nc8YJbePAOHsbxPvI07IfjPuuEmd7wYLVw8uVEavYHUAb1WMqA9TyJTvOrg/DwnO1295QN6PWuUnLsho7M8th5QvOlHsj0N/N25OFrMO6tUB7xMq9q7uupkPBZhR7php8y5ZvtHPcXGi7wzFwQ84uLIPGaElDtl2eu8XcoOPUmshbyhEfA8Q62mPB5wabzLGsI8q5i1vVftxrzKxSW9SawFPfgRhbxs2Eo8i/QRPZBISDsMUqW8GpPmOeo2Cb0Utw69k9AuvayHjDvO90S9yhrCO3G1ErwODcy87L6qO7tQb7z5/2u9EqYgPNkoQzypy3W96608PVd2Ez26yJI8xz2EvA1jE70h52G8/odSPEIlBbyOJuy9ek0BPIl9mbyT0C48BtySvPDObbx1kpW8DFIlu5QU3Tuu/oS82mxxPEjOV7sg1nM8OBaevINco7wPyR28cz00PO0TRzx8GRY9t9ohPL2DubyyMN+7vQwGPOPiDb3djhK9O54EPUk04ruV8go9SM7XO1RlYLt2XuU8rQ+uOxqT5jvO90Q9Sol+PDGgCz03BTC8+yFIu9ZLQL0xSv87V9xYPTWfJTyYvh+9nxKbPKxCbj2lVag8oryYvX9dCb0voMY7jGvFPH4H/TydNO08ZqarvM/3xLwVDCu96QOEPPVnh72nzKC93gVGveUmgbzKKzC91wZnPdU6Ur39Mra8/4cXPa91ODwDuvG8kDdaPcaBbbyzQU08yl7wvCzUsTy4QKw8pVWovPGKhDwODcy8s6fXPBtgJr2r3OO8PlkrvXAKarscCt+7cnB0vdgGZ7ySexI9Tt6kOzie+rx8GZY8vS4dPE14mrzv39u82jmxvETxVDwOUXq94nwDvfaajDzsviq95r/LOVyGm7yuqPi8Ijx+Pf125LyNFf68mgITPal22btCNi49IF+Fu3LolzuhEfA8eZGvvDfjGDuMfDO8xoFtvLxh3TxA4ZE72o5NPO69fzveBUa9iknpvI7zq7wMp0E6l62xvOaMi7ykVai7XcqOPHM9NL2QjPY80rLrvIP1bbyc39A8UZlLvIRtEb2r3OO8w3EqPRkLCjzApRU9YqcRvQxBtzzh4ki94DgQvNexSj0zKC27C+yavClMS7xT/9U7M0oJPfbvKD3lA/o7scoZPQFl1byoEJS8Kl25PBnprborw0M93xY0u1xkBL2AOse8YqcRvdPlNTvifIM9ihYpvU4RZb0ZPsq8Tt6kPCxt/LwdxjA9Oo0Wvab/YLySjIA6kVk2Owq5lT06jZY8gdSBOit/Fb1Iebs8EoQJPWdQ5DzovxC90AizPJm+n7ytU1w9WNzYuzCgRrxgp0w8XHUtO3nVXT2sQu47qCE9vBa24zxY/jS8oGe3PMXoIj0BZVW9B5f0u00Adzu4HhW90V3PPCoZi7xy6Bc8pTMRPVBEr7zo4ac8jAWAvINcI7zo4ac7yQlUvWH8aDwvj9g8z/dEvENYirwikgq9A9zNO+QVEz0/row717FKPNkoQ73QGaE8dvjavJ9WyTwHIIY718K4PCRvyDuA5aq7KrJVPfMSJjx2+Nq8UCIYvdp93zyuZMo8hdObu2TIfbzlne88re2WvB1f+7scpFQ8yiuwPAOYn7x85hA9YskoPYmwnjsEy1+8zoARvNYYgLwtfmq89HQXPbZRjjx5gUe9JTgnvdAhGb3jwfK8oTcJO9fPkj07rXo8zlSrPEtUDb1PhFW9S5u9vOdbzrv6IhE9NKy+OxqZCbyrAa28iGsEvOYAADtIwj28GyvwPCW+ezyGmpA8chb4PE+E1bz5oNm85wwSvYyXRjyCvQq9nJEbvDZ9Mr1tJVS9Db9kvA2AwLyDFFO81l1zvJzUxbziJwC9BDTlPEzqeTxeqTC8iGsEPdM9QztPhNU70GxPvA7P/LtHAeI7s8NEvTqd4rtd6NQ8npUhOzc2Aj3WTds7a1zsvGjxBb02fbK95UMqveUAALweehW96eURvPAl8jyW1w+9J4/vvMTJK7yu4jg9DTkQPft52TzeF/+8CN5YvBytp7sJHX092d8qO2CCMLvmkua8sfLQvK4h3bvlitq8onYtPdAdEz0eepW8lirSu/GfnbtD4bG7KmhvvNAdkzwt8rK7+VmpPBha/Lux8tC890WLvMt7q7yAM0e8mDpqvBFhzDqIri69tpQ4vfGfnbzLwts7tNPcO7GrID0MMQQ9YHokPV2hJLwSGhy9xMEfvRutp7y1lDi7WokAPdXDgLy1lLg85pLmPEra4TyQOa48nIkPPKwRxToLcCg7ldMJvbwDjjwSadi8O2ZKvHF8BTzZqBI9YMlgPPL25TzzaAW9KFjXPD7sBz37Kp08tlUUvbm89LsUcWQ8+yqdvQ7H8Dy0SQK8iocuvEY4eryXMl47SdJVPFPbBr2gbqE83hf/PDtmSjy3XaC8bi3gPE+EVb3i8H68T7vtvL1OxDzy9uW8JG+/uqSO0bynpvU8xo4Nu6UQCb1vq5E9TzGTvGDJYLzG0be8+VkpvbhlLL3OVKs8mbCPPCtw+7u9VlA8W5USvSgBD7xRBo09bq8Xvdv/2rySkPY895DBvNnfqrz+A507ltePvDd9sjxvt6M9GdwzPF+5SDwI1ky6t2Usu9jntrw/P0q8ZFswvdJ8Zz0I3lg9Q9kluB+OMzzNQA08gUtrOlvYPDzJ6du8Hwz8vLacRD0A1ZA90rN/vVEGDTxlsng7aPmRvMyLw7xwBuC7JwWVPGNTJLx0oLu8EWFMu42XxjxuLWA7Uk09vZioAzuHLPe8FrwDPOaa8rxAAKa8mwtevGj1C71YTvk8B8a0vCUsFb0FBVk7saugvKBqG7w0XYI6XwB5PMDgEz2xMXU8fWJTvdqwHj01dSa84FaMPIvW6jxnPDw8QU/iPGVrSD1OKYe8wfArPSKm17yIri48EAoEPXnId7ujxWm9LrMOOhutJ72t0iC7QAiyPEqLJb2swog8V/+8PHEGYDzEvRm9FDJAverlET2YqIO7YT+GvNJ8Zz1M6nk9ple5vGh74LyrAS07yrpPvPfX8bwxiAg9OY1KPQneWLvtvpE7QEfWPBszfDuBQ988o0chPcjhzzxvqxE8ZzQwPfPuWbwboZW8Upz5PNYOtzwGzkA2RvFJPBuhlbzVBqs9bq+XPA01iryV0wm9WLiMuiUwmzxIwr08cs9HvZOIar0ktu88jFAWOyRnMzwlbz+9+rDxvGHR7DwpUMs8qThFvYWWij0ktm+87sIXvto287tAwQE9HOzLvNicADsFvii8Y5rUPF+5SL00ZQ69GMybvOcQmL0oAQ+9ldOJvJUaurwjrmO9+RoFPOrhC7zwk4s8FwM0PbSAmrwHxrQ8iocuvM5UqzxGsqU8rcoUvXh5uzzqa+Y8LfKyvAIs2bykQxu9cg5svTWsPr3asB483omevPJsizzw3sE81PoYveNyNjzBrYE8ZjSwvOMrhj1VbW08bNIRvT0npjzqLEK9ScrJPEbxyTw9dmI94V6YvMjx57wbrac895jNvPPuWbzf4OY8Op1ivaUUjzwuQW89BK6QPYIMx7yena08zpNPPFRtbb0kLJU8II4zvZApFjy0hCC9np2tvBR58DxnLCQ9JLbvuzhGGjyjxWk8ekKjPCgBjztJkzG9a1xsPYtMkL3eiR69KtKCPMHwq73re368mPM5PGCCMDzoHCo8XmKAPMO1jbzVwwC9lRKuvJOI6jz/WmU+ymuTPWvSETzhXpi7rcoUPecUnrwXxA87KRGnPGwdyLtAAKa84rHavPWAKTwXUvA8wvArvNM1N7t6QqO7AiRNvBIiKLxKiyU9hNUuvBncMztkW7C648FyPQIkTTxOs+G8k4jqvPoiEbxBxQe8E3HkPAW+KLxmJBi9ZJpUPOhjWjxiR5I8TKtVusjx5zyXMt681VXnu78XLD22UQ48G6WbvHKIlzzGioe8lFFSPF74bDxfeiS8lml2vFKceb2HpqI9b7ejvPCTizyxq6A7w8GfPPWAqbqJtro86GPavN/gZr0alYO7zUSTvLZdoLk6GxQ8IIYnPNjntjwlLJW9f+QKvTfM7rqPIQo9gOyWvVnAmD16QiM9wrWNu78nRD04Tqa8mwtePawJOT0oWNc8LrOOPOprZj1AT+I6C3Cou8P4N72Kh668nZWhPJExorsvSXs8KBEnvHxiUzzxp6m7iQX3PIWShDxo8QU7NrRKPe+TCz0SaVi9s7u4u85MHzwQUTS8Lvq+OqE3Cb0vClc9uCKCPGvSkbzRZMO8CNZMvOUAgD1sZPg8axW8vGkFJDzLus88onYtPciiq7x25+s8ZRwMvTVtGjwpESc9fuAEPcaOjbzf4GY8rBHFu9qsGD3TNbe8TzUZO8HoH7xxv688mftFPK3Omr3haiq60BkNOw01Cj0NOZA8YMngvI6varwa5L861k3bPPdRHbxt5i89is5ePVuZmDpSDhm9q1DpPJjrrbxL4u088vblu89cN72iO486Db/ku0qLJb2DFNM7xAhQPNXLjLuzw0Q9q1DpOSePbz3MOAG91UVPPM1EE71aiYC8ntzRvLhlLL1tLeA7PB+au0YB4jo5Ewi91AYrPQ49FrwV8xs5mTrqPHZpoz1mc1Q8UQYNvIj9aj0Fvig7xL0ZvbekUDysSN283cA2vClQS724ZSy8gwxHOzZ9sj0C3Rw9IUuJPNBsTzwMeLS5xMkrPLZNCDw5Rhq9sDH1vC23lD2zuzi8q1DpupP+jz1NJQG6qDA5vMKtgT1sFTy8LfIyPVyVkrz1iDU8ndRFO9T2Ej3JskO7uXVEPf/MhLt/9KK8lRq6vA01Cj3YJls9cQbgvM2Tzzw4hT67xo4NvFEGjby343S8sKMUvQ7PfDpGd4c9UU29PBvkv7z+QkG9wCdEPD3oAb1CEL68hBTTvDhCFLz8eVk9tIQgvQtkFr018+68HXKJO3SgO7s0XQK9epHfOSRnM7x3aaM7rtosPQ+ITLxcmRg9EWFMvWtU4LwMv+S87sadO2cspDyepbk7dufrvMOxh7u0gJq96+0dPeFinjtVdXm7X3IYPOt7frviaio9BX8EvWOa1Ly5tGg8hZKEO57c0Tqw6sS80SWfvKBmlbzmmvI8UUUxPdQGq7zuFdq7RTj6vCcFlTxMo8k8kHDGu9VVZ7yM3va86GNavFqJgDya+8W85ks2uwfOQDxSDhm9+N/9PNmoEj1yiBe94OjyvAM8cTzmkua8LfIyvVKc+bzGmp+8z5tbPKtAUT0r2o48swr1vMiiK72frUW89sfZvIxIijsbK3A8VG3tO7L6XLyrvgI9NWmUvAeDirvLc5+8cb+vuz4/yjzjKwa9HbWzu7m0aLxBV+67Uf6AvIlzED0REhC8Naw+OioZM71aF+G8qX/1usiiqz1AACY9D0koPFdGbbzYJls8GNSnvPjXcbwPSSi8ekIjvbHy0LwrcPs5mbibPGAA+TyGJOu8kYDeuwIkzbyCvQq8FfunOsljB71J0tW85gSGPSGWv7wLcKg8gTvTvN/gZj0V85u8axW8PPGfHbwPSag9PTe+vLecxDyHpiI8Jb57vD/0Ezx8Wkc8k1FSO78XrDz/WmW70Fy3O6tQ6TwGvqg79L/NvDobFD0y28q8rtIgPWRjPDvRs3+8Ul3VPKcorb3apAy990ULvRqVAz1doSS6g8UWPRIiKD0NORC7rMIIvaIzA72eYg+9/v8WvRCgcL1SnHm7h6YivfNsCzsIFXG8bz34vGc0MDrqNE474rFaveYIjDws4ho8/YFlvU+7bT1AACY9Ul3VPFMWpbxgeiS90CEZvVzgSDwFRP07113zvR1uAzy1lDi8jVgiuzGMjryuId27IyADvd/YWro96AG8W9CwvPtxTT2e3NG8V/ewPFFNvbxt3qO8YkeSvOUIDDzYnIA8BK6QPaBuoTxhP4a8yV+BvLPDRLyf7Om8rtosvSHd7zykRyG8Vi7JPFoXYbvuFVo8NbTKPJ2NFbxb4Mg7s3gOPZ6lOT2ZsA89x9nDu6p/dboEqoq8NzaCPDyt+jzZLuc7/kLBvLuFXDyd1EU9ERYWPCpob71vtyO9CVyKPCBPjzzbPn882CbbPO7OKTympnW8X3KYvBQywDx8G6O9mKiDvdbHBr1Iwj28IZ5LvRfEDz3984S9uSYIvb/YBz2Z+8U6LruavJOIaj103186WLySPGzWF70Lt1g9IZa/PExkJbzSfOc8YTsAvfDWtTzKbxm9d7DTvHe437zHlpk8nY2VvCCOM72elaG7RrKlPJB4UjpL4m28+ajlPFi8kjvuVP68ntxRvadv3byjxWk8S+JtvaJ+Ob3sRGY8TGQlveGx2rvGIHS75ppyvM1Mnz1G+dW83dDOvP5CQT14eTu80+6GPWpU4LqTkHY8/HlZPS0547wU5wm9ScrJuQSuEL2F3bo8WcikvHLHu7tOs+E71x5PveBWjLwMeLS8h+1SPMeSk7zxLf672e9CvArucDzeiR696RwqPWGCML0q0gK97bYFPTwvMrv6aUG9LDFXvB/N1zwC5ag78N5BPXxaR71Ie408ZKLgvBTnCb1tLWA99pBBOhcTTLzC8Ku8j2g6OxBZQD1j2fg8tNNcPHEG4DwQDoq8PXbivOR6wjuiMwO8msStPdo+/7vw3kE7SdLVvL7UAb0OPZa8u31QPcbZQ70cM3y9vPsBvaOGxTuZtBW943I2PVJNPb3B6B+8HbWzu6r5oDzVBqs9pl/FPKWeaby/2Ae9MhrvPCGWvzwNORA9p2/dvAT9TDxjksi7ZzQwPbm89DuSgF47VzbVOwLlqLyjjlE9fBOXPEtQh7t03988CmicPPoei7sRqPw88S3+vCePb7wgT488aw0wvE5ssTxeYgC9eYFHPFqJAD08bta7CBVxPAx4NLxxv6+84ieAO9P+Hr3DuZM847nmPGkFJDsC3Ry8SkwBve0FwruY8zk8xtnDOvyBZTs7Zsq8MdtKO0Tpvby4Zaw8eonTPDRljjz+QsE7e5lrvApYhD3uFVo88N5BvMqyQ717Sq88T4RVPD0npjwDpgS9ir7Guyf5grzoFB67AGNxPOdbTrxcH228Zzw8PYtEBD3iKwY8Sps9O8prE7whnsu8T3zJvJjnKz3gHRA91idAvUYK/7zxFuS8K83/vG2Cyrw7fYI9a5bgPNYnwDzKida8TQkuvYo+C739F2u8BHq3PBO2rzxnDOg7YM+evIa0kjvAJl66IAa+PATd1DwhVUU8f6vYO1tu/jxCuku83YmMvLCGnLwc3+I8O+Afvaz8I7wsB0W9X4AXvT1+LryFIbu8KODpvPQ8E70Evge9CASwvAzcAz2Eb5Y8btFRvBzAFT0PyZm88lApPKpz1zpGkp+8eSA0vGAyPL1IzZA8XKjDPMP+MTw0GzY9FZiOuWHkYLy3w2W85wHHvXBanrz0PJO6RkTEvFaVfrzEE/Q8YjNovFKo6LzQTkC55GM4PWf3JT3csuQ8TLomvVP377lyRoi8kb+kPWooDLwFj/m6kNO6vIZwQrw384m8+xY/vEKlCT2/uAk9IVXFvNXYuLy1wjm8ll7fu8dO5bwC3Kg8G8ogPKgkULzp7TA8Z/elvPjGC7uqc9e67XcpvMid7Lyi/Eg6+LwAvTfzCb10XHa8zBKjPJ3AqzzXYQU9BEDyOl4xkDwf+4a8hSG7vCvNf7x0RzQ8cL07vFYdHz1tH628JPPTPKfAhjxbC+E7NgcgPWWonjuY56u6+RWTu7Ikq7x++TM9fFulvNXterzNYSq8EHs+PUjXmztT9+88kIXfvN47sTv8ZUY9r6/0PMbgkLwuCPG6byDZPP89mr2fXjo9KcxTO7w5yDwrVaA6BmYhvIBd/TzZYrG8+SpVPJ3AqzzAiXu74sWpvOweFz3bnaK9CbbUu++yGr2QcB08VcSMvHOVD7y3pJi8xBP0PN/OiDv6ZBq8XVpoPbnplLzTT+y8k8BQvU9YNb1n7Rq9McuCu9HrIrzz44C8ewITOwGi47yXreY6Q2xwPb+4Cb2lN7q8cw3vPKYjpLx6s4u8RfU8PEqU97wJGfI87B6XPUZERDy7LpE8Kn54O+o8OL0SZyi9qq0cvWEeJr0Y8kw9LAdFPY8Xi7xJlHc8uK/PO9+KODzDYc87JaX4vIus37zF6hs9zXZsPWx3k70pL3E82rE4PKtfQbxeMRC9uBJtvNV1Gz0lI446WQq1vBvKILyi/Mg83juxvMNMjb3N/oy6LVbMvMNhTzxrgR691CaUO/EBIjtUzhe9zrAxPRtxjry7Td68nyT1O9CxXbwVt9u8hrSSOUuAYTwCeQs9lA/YO/xlRr1kAIW7YWyBOuQp8zz+UTA9o0tQvCCjIDxmIP48q8LevHK+5zt0R7S8goOsuyIH6jz5KlU6k8BQvd5Q8zsx4ES9J8unPDfziTyVrLq8xy8YPVIwCT0lQts8ymoJvUK6S70Y8kw9QLmfPPPjgLxNCS49N/MJPfEBIr3Zd/O8kA2AuwGNIbp5IDS8ZiD+PPg+az1iFBs9SJNLu01sSz1PnAW8vdYqPPPjAD3xFuQ8mOcrPLSI9Dwny6e7P2qYvBB7Pj1o4w+7BY95ubr+VjxCpYk850WXPWipyjzasTi8/wNVvY8hlrzJdJQ7qV4VPf8DVb2sEWa9G3GOPIa0kjvBdeU77mMTvd5Q87y76sA8CbbUPJjnK72JqzM94XaivHTkFr5PWDU8DPFFPQpoebzDQgI7uK/PvDqmWryfrBW9UVlhvY3SDr0m9H+9+gsIvesoIjwhuOK7iPmOvbLLGLylewq8xZGJPCgaLz07h428Nc3aPHC9u7xusgQ9XZStumx3E72E5/W7jPtmOpsinbxRkya8lfCKvCgaL71u0dG8Qc5hPJ7Vbbxyvmc8hb4dPcSbFL0Uy/G7FbfbPAEqhL2M+2Y9DPHFPBEt47z9n4s8d5fnvAR6tzyXNQc9aFtvPbVfnLzfiri5etLYPKJfZrwIBLC7OfS1PFq8Wb3FTTk8McuCPdCcmz0Djk28jzbYO7YRwTwPcIe9ZagePUwdRL1UlNK6u+pAvQ+P1Lys/CM96jw4PeDZv7xo4w89t2DIu28LF7pr+X280BR7vUZERD1Gkp+9QWtEvXEMQzy5TLK9i5edvDR+U7sfVBk8+HgwPEVY2jtlbtm8sThBvdPsTr1rHgE9vJxlPmHFkz2QcJ08kyPuu+GL5Dw8Lyc8fFulPGYg/jxd90o8dIsEvQWPeTmBNCU8LqXTO62uyLxMHcS8t0sGO20frbp25cI7H1QZPVBEnzxXbCY7aEatPI5Kbj1oqco8+7MhvDIvzLwgo6A8k8DQuYGXwjvF/128wWCjvGjjjzu91io8ZwxoPKJf5jzuxrC8SDCuvPWg3Luwm149cp+aPPeMxrxLa588NhxiO2f3pTwANI87lPoVuxzAFTv22qG9nlODPQPIkrzYsAw9UjCJu3rSWDzSnce7bm60PG3GGr3bRBC9v9fWu7Fyhrzmsr876jy4O9PNgTxwvTs8xJuUvRstPr0NK4u5TwpaPGmVNL2b1ME9D3AHPentMDxBrxQ8jxeLvENscD0DyBI9UZOmPNSeczuu/U8920SQPN5Q87ps0CW92ChsvGB2DDzmsj88Y4JvPJ8kdbmlN7o8bm40vMISyDyx6uU7cAGMOk8KWj1hHiY9CvAZvV1a6LmTwNC7rPIYvGOCb7zmsr+8a5ZgPXlkBDpxUJO8nHGkO/LtC70X3Yo9pUx8OkwdRDynGRm8FGjUPNLXDD2t6A29lHL1PGftGr1q5Ds8wAcRPaU3Oj2ectC8UVnhPBEt47u6m7k8bHcTOuvPj7zfzgg5yCWNvKwR5rrS14y99u9jux/7hrudXQ498rPGPIQWhLteRtK8Yx9SvDVqvTzVil08RogUPXsCEz1BVgI60YiFvJXwCj2TI267HcvMPDS4GLv8ZUa9+tz5uyykJzx/q9i8r+k5O3qzCz33jMa5nHEkPY3SDjsRtYM9UjAJva3ojbymIyS9whLIu0Id6bzZd3O9UZMmPAjK6jsoGi+7xeobvehQTj2PmfU8LblpO2Wonjy4mo09gzVRPDt9gjzG4BA9VEZ3OicuRb0oGq88iHFuuv0X67y4/Sq9yRsCvY+ZdTuro5E99ykpPYGXQjzLdUA7myIdPODZPzyiX+Y5Gy2+vLw5yLw9zIk9Z/elO0W7dzuJq7M9uJqNvOGLZLzP/zg9XTsbvFGTJj0HGEa868+PO2ULPLz/5Ac91e16O9NPbD3TibE7/z2avKD7HL2WXl87h79JPckbAr3ibJc8qnPXvNqxuLxoRi29uZACvXjRLL2Hqge8o65tPbHVI7v8Zca74sUpvTilLjwA8L68lfAKvblMMr27sHu7O4cNPbvqwLzZYrG8E7YvvL3WqjwncpW56jy4vCNBL7t8cOe8/KkWu42YST3m9o+8T5wFPc70gb2HDaW8Mi9MvVaV/rzMEiM9PeHLOyvyAr0USYe8252ivcPE7DzqPDg8kHCdu/kqVTz+lYA8M8wuPQZ747zIJY28DPHFO/+gN7yzt4I7siSrvMY5o7xJRXA7oUokPVqdjDx+XNG7i42SPPoLiLz5jfI7+mSavM9iVjpZbVI74CcbvfOfsLxURnc84Nm/PDe5xLxZToU8ymoJvRfdijy4r888YhQbOaFKJL1eqe87kHCdvMJWGL2QcJ28BmYhvcgljTxn7Ro95k+iO66aMr1rgR69PeFLvLauI72DIA88L1f4PKHxkbqa6Ne8d5dnPXZIYLxWMuE6A45NvB3LTLtb9p48uv7WvHjRLL3QTsC8AtyovIVli7xbbv48eYNRPGAyPLsoGi+9+Y3yvJ/B1zxtHy09o67tPBRJhzzWxCK9n166PO4KAb1NsBu8RpIfuxHKxbw8L6e8izQAvQA0DzybGBI9FgbjvA4hgDtmvWC7EgSLvAUXmjzrKCK9KbeRvOTGVT1c4oi8myIdPeV4+ryI+Y49YHaMu7rfCTxLgOG8zk2UPc6wsbxAuZ88iQ5RvPjGi7yfooo8DiEAuwhnTTzYKOw8l0pJvHZIYLuvTNc7qq2cPLO3grzf7VU9nHEkvJZe3zzQFPs7rzcVvcvY3Tz1i5q9kNM6vHeCJb3XYQU94mKMO5JcBz0SZyg8QWvEO/+gt7ww9Fq8jkruvICMi7wHGEa9iaszPOCfer0+k/A8/KkWPObsBLx9qqw71e16PGHkYL2GcMI8XKjDOzdWJ70pL/E8D3CHPLO3Aj0C8Wq8Zr3gvHKfmrzpihM70uGXPCWl+L2ZNrM8vdaquY01rDtPClq8/GVGu7Nzsrzenk680E7AvKfABr0Mjqg8NBu2O7suETzgn/q8k6uOvGmVNLwspKc8s9ZPPIr6ujy4mo08LVZMPJT6lTykmle84Nm/vBksEr0yfac8JJA2vLiajTwOehI7Qc5hOSTUBj3leHq8mOerO36/bjxJf7U8jTUsPWB2DDy3S4a8HBkovcAm3jyLl508hwMaPFXj2bxsM8O8N2tpPXmD0TxwWp69I1bxvB9UmTxJfzU8QBw9POJiDD3jd068ajKXO/KzxrwcfEU9wIn7vRxng71BrxS9tBAVvd/t1bwTUxI9x4gqvfLtC72NNSw9BEDyO2S8tLzUHAk8ewweu+5jE7xnDOi8YYFDPZ4PMz3+ZnK8LUGKPKM2jrwNQM08sXwRvQuiPr15ZAS9/z0aPLPBjbqLNAC9+xY/OoLmyTx40aw7OAhMvMqJ1jwftzY8pzhmvO5jE71WuoG8Na6NO3sCk71R9kO9B1wWu1WAPL1Lzrw6WQo1PDAuIDw2/ZQ9oa1BvKMsA71/lhY9pOiyO7ivTz3lAJs7dfnYPEIdaT2Hqoe8jOYkvSYZAzvnnim9PeFLPX2qLL2Y/G0841gBvKaGwbxdO5u8ZiD+vNLXjLoA8L68iUiWvNQmlLzq2Ro8N7lEvU67Uj1oqcq8K1WgvNiwDD0nLkU83ewpvb869DmE5/U8Cz+hu790OT1H4Sa9punePJG/pLzXdse7MPRaPXqzi7vjFLG7JS2ZvMARHDvBw0A8CpeHO1WAvLtmIP48Qh3pvMCJ+7zFTbm8n146vKYjpD3wKvq73eypvCCjIL35jfK8Wp0MvM/Fcz3gHRC98wJOvSKPCr13NEo8LvMuvSG4Yj3csmS95k+ivOweF7z22qE8+MaLPRRJB7piuwg8cL07vXZIYDwlQts8dTOePF2ULb3Xdkc8oUokvK9MVz2JqzM8YcWTPNkU1jy+JTI87XepPcCJ+zzXE6q8pP30PIrA9TurX0G8gTSlPBhVar0Gyb68ejX2u8Vi+zscGag8BY/5vHFQkzuZS/U87sYwvHGpJTrhi+S8HhrUvN+KODsvQja9YwqQO3blQj01ar276QLzO4lIFr2FNv07hb6dO6iH7bvL2N08HHzFvPcpqTzEsNY7siQrPXo19judI0k8myKdO/2fi7xdO5s93n+BuxEYobzjFDG9+sc3PZmZUDziKEe8kyNuvJBwnTxgz568v3Q5vDZ/fzsi8qe7fHDnvAJ5Cz0ZpPE8gOUdPNLXDLydXY68faosPMwIGLwJk309XAHrPBRKib29EeU6aqQhvH9l6rxSKRW8+K1sPZ/dPj0pPuO8XhHevJ4QUL1yoD87IP9AO3R9IT3xsU48/0Pouypx9LwSoLg8ec9uO8/29bza32g8dQWbPJokpbwhDzQ9aqShO6eDLT37AGS8030oPXnPbrwbRqc8vd5TvWcdb73E6468InXWPBbAnjzxsU48yaQovepO5LwdvLw8OTaCPI2RYb25aL48wDHLuxJtJ7xQ5ea83Ik5vefYzrzihgE8KdhAvV6IHbwXjOO800ltPcVzCLzDYxW9d797vHqs0L2aV7a89dG0vaVigDxAEMm7GpxWvDokHj06ikC9yGD6vA1NQT3togU9P903Pf9D6LzL+ZC8uPIoOgmTfT3045i9+XmUvJ4QUDxVfIw82RMkPUP9Hb0PxIA8RcniPE6i4rzOkNM8PbyKvLRr9jx+zLa7oHbyO1U43jpFllG82XnGvOB15LxNPMA7Txh4PA0sFLyCqO65q1/lO4PsnLz0BEa9J/tePTKghjspx4a8ehMdu6rGsbzZ4JK8g0EFvUSFl7yxwk+9Rx2EOtms17wpPw09vRHlvIExEjw5NgI9Bg31PIroujwGUSM8q6MTvIUvITv+EFc8IdwiPHe/ezytswY8klsYvSjYwDzD25s7PWb4O+Treb2somm8uQIcvLfyqDjxfj08YN0FPAIgg7wEDh+9WPKhOwYeErwX8y88keTYvBJtJz34rew8m71YvamTID0qcXQ9uTWtPejHlDqNGgU9C9ervRRKCT0MPc67+EfKPEO5bz209Jk8XlUMvbV7abyngy09fO/UvMEgkT1Swki88lsfPeqBdb1eVQy9tAVUu3ZZ2bsTBls8CpN9O7D2Cj0McN+8D2+YvKEPiT3Z4BK9Va+dvDlpkzwfmR692AMxvdNKF713jOq6rAk2POjYzj1Ua2887JKSPPrw8Lwvbjw8xYRCveUu/jtlDXy9nkNhPb3NGT0nhAK9buZ7vP6qNLwrG8U8QKqmvPs0H70p+pc63/9OPZqKRz0CIIO9TJLvunZaA72mpku81VngPIB2h7zGhEI7aMc/PKHtsbyxfoQ8NCfWPHhYkjxR9gO9DjyHPCLcIr2Vnhw8LvgmvdicZL3gD0K8j10JvYz4LT2jUo07k+ORvWH+srxXFUC8DyqjvGrXsjyotr48TNadPW4qKj1p+lC979TsPGznJT3g3LA8Ysp3vJXRLTxPGHg9Q7lvPVm+5ryfd5w81VngvDtXr7yvf8s8AcsaPGHLobz+ENc8ZVGqvL9UaTyWa4s8z/Z1uQvXqz1stBS8vyHYPBdIGL0zW5G91zZCPQ6zYzvxsU68mopHPEyjjD0YNrS8KnH0u/PBwTuiypO8X1WMumPblDtQf8Q8YpfmvK8ZqTyeENC4CGGWO4zFHLyK14A8KxvFPF3eTDwcI4k7GpxWvPVrkrzDQT48yde5OzMoAD0Auv28S8YqPXAHjD38iQc9fzJZPdnf6DxeEd48mEfDPDgUKztmhDu9W5tIvShynjwJLds7r+XtOww9TrspPuO8kX62PHGgvzu4vm29JR79PBgDo7to6Ra+GWlFvYtOXTx5z248kygHPFoClTs8ZyK89xQ5vc2A4Ls2neu836mfvINSv7wxSx69vSICPXLCFj1UBc28p4MtOsfHRj3zwUG6az1VPD3NxLueRAu9sCkcPRIGW7uQfja8L268u9R8fjy4vu08nxDQvFwSCL35eZS9ma1lvAJkzrqrcIK8M8EzvDPBMz0N5x68toyGPHoSczzAZQa8zLSbPbPBiD0dVhq9RUAiPBxF/bzN9x890QZpPUJCEz3l/Ba9tDjlPMVziDx1fHe8M44ivdJKlzwA7ji96U5kvB2Jqzwocp48sBj/uyr6FzvbVqg8MxdjvZoj+7tTBc27mWkavYlPB71m6l27YBCXPFvO2Ty9zZm9K4FnvMb7gTslH6e7KwoLPeB2jrxq17I99DiBvdHTV7x3A6q8u0WgvQpxibwjqGc6okKaO1KxDj2qxjG8OEe8PIHcqTrZ4JK8TqLiPOFCUz6Vnhw9zl3Cuv7dxbwhdgA9qLY+vePsIzwUSgk9G0YnvNJKF7wTBlu99mrovHYVjjzsXte7zLNxOovoOj0PKqM76dcHvIO4YTzCDi29FLArPBH2Zzxbm8g8O3mGvDdqWr2h7TG8atcyvcnXuTzV4gM7WjUmvHnP7jwX8y+8/7onO75U6ThQ5eY8TtXzPOhPDrxJtre8yaQoPYYu97zvods8P0QEvFubyDwW86+8Kk8AvAaENLqBMRK9UY83vfP00jzLo/67I9t4u/WeIzzoxxQ8/4cWvD4z5zyfQ+G8xvuBvHwi5rxzSea8ec/uusAxSzxqpKG76bUwPACIFrsidVa99uEnPGMOJj2T4xG9towGPccuEz1JgyY8EfZnPbkCnLw2BDg9sbEVPRPTST2SWxg9y3BtPZhHw7y5FIA6BKfSuxfzL7zpgh+8UrGOPCmlLz30a5K7xbfTO8MwhDs1Wuc7dsClPdngEr1Y8fc7uptPPedyLLy6aL67z/b1PIRSPzuIPmq8aywbvYsbTDzROqS7GpxWvPZqaLqihuW8HEX9PHe/+7yn6U+8Tl4XPL7djDuntr46RwznvOPr+TzcVf689nuFvDRaZzysb1g8pUApvRQWzjwfmR69gf4APW7Ehzyw9go90Tn6Oou0/zrp1wc9XrsuvaPJaTsTOey8+2cwPIeltjztbko7YO4/vXwjEL224jU9dY2UPdZZYLo+RAQ9yLYMuo1NljydZyk8cMNdvYxe0Dyy9eC8p4MtvGCYkDtVr527NCfWu7nxfj1lUSq711gZPS6RWju+iCS8T7JVPfwA5Lydzcs87JKSPMuBCr1040O8dcAlvZ1nqTsmLxo8bsQHPZu9WL2UjX88DD3OvAbrgDxGlQo9/3Z5PVrPAz2SKAe9rCuNvE1eF719ViG9ALr9PKgc4byYrg88n/+VvDPkUTxFUoa8A/4rPV7ezDv/dnm876HbvCsKCzzgdWS8IXYAPRNs/bw2BLi8u85gPZBLJb0wXQI5tDhlPfUERrxdzZK8LpFaPacdi73jhVc91lngu3yJsrvOXUK8tntpuAJTFDuFyNQ8itcAPck9XL26VwS9GdCRvblHEbwXjGM8XHiqO6wJNjz6vd+8LJKEvVT0krxkdEi8qNgVvemCHz2MkeG8D8QAPKK5dr37zVI86k7kvKG6IDyyKPI7H5kevQZRIz1XSFG8KHIevdrfaL1cqzu8YWTVuzhHvLz7AQ68KrUivRYmwTxC7So9nnecuyq1Ij0XwJ67BWMHvFRrb7sYv3S8z9QBPTF+rzyGlUO8pNoGu8+QU72D7Jw8qvnCPGsKRLtGlYo8f+4NvPEoDj0G6wA768Uju9R8/jywXK07/syLvBRKCT0UsCu8xrdTvT93lbvWnQ49g4VQvBt5uLy7Eg+9k1uYvN0zCj0RB4W7anEQvXI587tcq7u78BgbvNUVFbwRw1a91RWVvNms17sstPi6kUulvK2zhjw0Wme8eWlMPD0zZ7xGpkQ81VngvAIggzyVa4u7yQrLPHI58zsnYiu9PZqzPAyjcLwgMlK8CC4FPSpPgDyPOzI8rkw6Oprw6Tyg7bE7yj3cuwiUJ7s2awS8ozA2vCDuBr09AFa8vt2MOxTjPDyBMZI7brNqPNtWKLwwkBO7dVoDvPEX8TwKYGy7RQ0RPa2i6bu6m088WjUmvf0RgTzdzL28qU/yvOGGAbt3v3u9QiC8PDAHcLyvGam8uWg+PUlP67vCyv68EfZnvbe/F7skuNq8rTzHO4bIVL3HLhM9cjlzvMhhJLwyF+O6eSWBPXFtrjtHpsS7QYZevXOwsj1wB4y7lI3/PKYMbjxkdEi9B7dFPUnpSLvIx8a6BHRBPZ93nDzSfai8i9eAur1Edryngy29c0oQPWdhnbxVa++7ItyiOuTr+bkxGA07DjyHvXwjkL0Y0BE8b107PYPsnLvc71u7He/NPK7ml7yvsty881r1PLCPvrs3Jo+8ESl5vB2JKzyLTt07CMe4PK08R73cqxA7BNuNvBJtJ71FQCK9xqYZPW9duzxbNaa9dlnZPIz4LT0K6Y88RnOzu2xNSLz8zdK8qxsaPA/3ET37msG9pNoGO0B2a7xiyve7ayybusk93DwI6ta8Va+du6KXgrzkLyi9r24RPXoSc7x4Nrs8s9JCvHwi5jliMcQ83FX+vH6ZpbtvkEw9gtt/PEB2azo7eYa8b5DMvIa3mruwwk87BQ4fuz3NRDwVSd+7MJCTuwpg7Lxcqzs9/qo0vNkTpDyo2JU9K4HnPJxnKT0PXbQ8us5gvA0aMLu0r6Q8jwghPXzvVDlqCkS8JOwVvLkCHD3v1Oy8d797vbKfMb01awQ7rzsAvBeNjTy9RHa8WPIhvMWEwjxiZNW8XZqBu7yaiL0hdoC9ov0kvPcUubxqCkS9q5L2PAOX37zVJs+8opeCu6ViALvqtTA6/ADkPGy0lDyIPuq8PQGAvN7MvbvXz/U8pUCpOunowTyVN1C8OOGZO4NSPzwlHv27fzMDvbVI2Ltnc4E8q5J2vIuBbjwPKqO8OHrNO34zA7zJPVw8g7jhPH7/x7yr1iS9YjHEvBHDVjz34Sc9C9ervJWd8jsXSBg8XHiqOy73/LsWBZS8bOelPPlGA70O5565bLQUPMW307zFcwg9Qu0qPXR9IT3p6EE9CC4FvAqkmjvsGgw9A2TOvOBCUzwOs2O7UlwmvGuj9zqWBD+9g+ycvIgMA71rPdW8PWeivDdq2ruDUj+8hy73OqeDLby6Apw9MbHAvIsbTLytCTY9966WvEJCk72FyNS8qxsaPRV88Ltn6t08rbMGvZqKRzxcqzu9abYFvU7V8zyKTwc8pNoGPFT0Er1p6RY8V78QvaGHDzypYI88tQSNOwQOH7zHx0a9RfzzO4rXgDywXC09NCdWvQEQED1w9m68QoeIvUBD2rwqtaI8U58qvL5VE71rPdW8gnXduiQfp7yYR0M8Ji7wu2MgCj3sXlc7U2yZvCzFlT2WN9A8+2ewOotOXb0YAyM9PjNnPStOVj0U4zy8UsLIPBoC+TzC25s8NgS4vHQFG7uPO7K8dhWOvCJCRT1B7Sq87RoMOulPjjxCue+8F/MvvP1EEjx1BZu8aMc/vPh62zzA/rk7yvmQO7k1rbyi/SS8MuTRPDFLnr3jhVc97Pi0PAGYCbtJgya86bUwvRpYi7yxsZW7tHwTvIPr8rv4NhC9HomrOtc2wjyJTwe93FV+vMTacb2XFDI9tGt2vRrPZz24WMs8q1/lPJdHQz3jH7W8V7+QO07VczyYR0O8FsAevc5dwjxJgya7ItwiPVLCyLyvGam8wP65PApxiTwgZg29ESn5OpBLJTs9vAo9k8E6PZSOKbzJcRc67gf+PFH2gzsaAvk8f4mFPZ3h6Dw4vS+9TnhRvN6mprx35/y80LDIOpelZT2YWCg9TWRQvCLhI70IyRS9uXfPu7Ly3zuTfeM8xI6XPM58nTvETQO9PsTHOwUC0bu44aW8AQORPFxuLzzw8Nm8QSE1PWnFyzvVDbY8SKakuMSOFz0HFtK88dgHPKZFbr29yJO9LiQ/vJJRED2C/sQ7hrzwu9aLDb0EbKe8GbKJPAxSVTwwOEC9oSYEPcD8vrzoyZe5Wrtsu5x0Ab1cOcS8ty5jOwqoKr370ja8ZB9yvH11hD1+ode6+fMgvXjDAbwKqKq9kdO4vB+5ob3ZNTg8khylvHzCwbtkH/I8M+JqvTyknbw50TA9Q2ohPdchNz3lQ+i8CF8+u6Qx7bv9fGE9OmdavR9PS7u7wLu7GhPIO5OyTj2xXDa92km5O0FWID2qbfC8J1ISPWsOOL0DhPk7STzOuolOSTx+odc7WrtsvPXLnrzdvvi8LiS/PK99oDxyUpO8H7mhuvPsiLstBBW9pq9EvbmsOj0DhPk6DIdAvEvmeDxHkqO74gMUvDCiFr0JwPy88BkcvS/vU7yvfaC8kccPPTge7rxXsAM8F54IPebqgTzg7xI9rTS0PBj/RrwdO8o7sMaMOw7EgzyA3ho7khyluXUI57xAAYs8zrEIu+t/a7wfuSG9Tg57Ony2mDqV+zo833G7O+YrljsVVZy8UPYovQMjuzwxzuk7H4Q2PHzCwbzVAQ09tRpiPTRgQr1JcTk9lnmSPZ/dlz3sk2w7lwMTPez9wr2uyl0899+fvMZhhDy1hDg9DFJVO4tiSr3KVJs70ntdPU1k0Lw7T4g9gkcxvH11BD2KAYy9WvDXvKQxbTp5jha87PGZPHiavzsr8BM9ymDEvF5NxbzT7Ys9SxtkvZIcpbwuWao863/rvAEPurwJ9ee82pZ2u+igVTyRns09Kvw8PElxuTyf9em8t4yQOwa1E72Rnk07LiQ/vf3ajj3RsEg91xUOvWcbobx2u6m7iAVdPMYsmbxFPQ69ddP7OwUCUT1ofF89PkKfvVmn6zpyXjy9UYxSvBWKhzwXnoi6RyjNOzBtqzu69Sa7i/jzOpm55jwSw0M8eY4WvSVW4zvlDv28ZmjeO7WEuLw3Jwa9gxJGvNaLDb2zO0w9xO9Vu4eknr3Wi4287kavvKEmBL2w3t48wwSXPDqQnD2/3BQ99ONwvchMwzyUZRE9VX/pPMEQQDyT2xC7ihlePTRUmT3tsAW9/mSPPL01+7w/Qp+8M63/PBN2hjwIiIC8UtU+vBL4Lr2K5PI8iLgfPFhGrTpkH3I9STzOOfHP7zycSz+9IOV0vSGYNz3EJEG7ty5jvN7bEbudrH09NIkEvY3gobx5+/07pJvDu1NTFrxtuOK64pk9PWxXJLw/Qp88qQyyOzP/g7uqotu7AESlOx+ENjzQnMc842TSO3mOlrwlwDm840yAPHsP/7olwLk8LBC+u3Gr+TzheZM9440UPXcc6DzrnAQ8mmAAPAQ3vDz/xc08qI5avZdw+rzGbS08HaWgOzBtqzuhCWu6fUAZvVS01Dy4FpE7vZ9RvVOg0zwkKpA7QVYgvttJuby1GuI8gN6aPMQYmLodZIw7a0Oju+CFPL0J9ee8VUr+vLmgEb0Qo5m8Gt7cvJA9Dz1ug3c8W6OavA6bQbsnamQ9ftbCO1QeKzxNL2W8Bku9vKBzQTwq/Dy7G5GfvBYUiDsPTgQ8Cz7UPDZ0w7whjA69Pw20vZpgADtau2w7zSeIvEgHY7wY/0Y9DIfAvNRa8zwpMSg9PS6evKoAiT3RGp89+9K2vGxv9jsNHeq8lg+8PJIcJT1qpOE8cpOnvPmyjDyjZti6t5g5vAUrE71jvjM7ZZ1JvTi9r7zbSbk8fPesO6uKCbpmaF68460+PKSbQ70dcLU7xBgYvWexSr3k4qm8YnXHOwrdFT3I4mw9vTV7vfJiiLtg9287O+Wxu97bET1flrG86h6tPWSyir0EbKe8ZQegvHz3rL0HrPu8I6APvKZ6WToP/P88+YnKu9Zu9Dy+6L04uaCRvCxFqTzyBFs+YkBcPX1Yazzizqi8VB4rPbwJKL2pols8swbhPMSOl7mT25C3fqFXvcLb1LxqeA48P0KfvCGYtzu7VmU92kk5PMWFf7zsyNc8xjjCvJmEezxyUpM8wcfTPIdvM7zimT29Do+YvCtd+7yow0U7zh7wO7VPTbwkDfc8s3A3uu+PGzwhLmG8Y/MePcJ6ljydP5a7PlrxvCpmEz2gZ5i8Bku9PNPEyTsUotk8ltpQvLeMkLyGTwk8Tq08vdajX71pLyI95XjTu5Fp4rzMdMW7pU6GOxaB77vbPRA9UYzSvFbI1byZ7tG8DLwrvfBOBz1HUY886Aqsuwes+zxU6b+8RyhNvaEmBD395jc9l9pQvYYmRz1Q9ig9rrKLPOrdGD0v14G8YGFGPZAg9jyeX0A9OL0vPbtWZT0EbCe8uBYRuR4G37xzv3q8qMPFO+wmhTzXVqI8zfIcORqpcTwY/0Y83wflPNLZij1sjA+9n/XpO+/wWT1IpqS8X8scvBN2hjwGtRO77txYvF+WMb1HUQ89V5Pquuz9wrxj8548cl68vO+PGz1CgvO8KdwSvP18YTyKAYw8d+d8unXT+7yxXLY8x+sEvYLJ2Tuotxw9kccPPWZo3rzS2Yo8tuV2vBlIszyazee5BoAoPactHLuctRW8XkGcPAHaTr31y546gsnZvMgXWDxDAEs8s3A3PKUZG73ntRa9Bks9PSY+kT1dgjA89WHIPLeYuTtx4OQ74XkTOoKU7rxsV6Q8QKPdu8/RMrxJcbm7VOm/O3n7/TpWyFU9rBQKuzPi6jy4d088hrxwvK6yiz3hG+a8kWniO1nEBD3P0bK8RyhNvLK9dL1hFIk7WlquOyHNIj0nyBG9rTS0PLFctrykZlg8wGYVPeV4Uz0ps9A8V3sYvQy8q7yPVeG8Keg7vQyHwDxwf6a8QRWMPETL37zKVJs8IBrgvJo3Pj2EBp08/DP1vISo77tS1b47iYO0vJ7JFj1YOoS8BoCovHCXeD2gnAO9wPy+u/HPbz2A6kO7OpCcvJ4qVT2/JYG9/5BiPX+Jhbz58yA6OQYcO1hGrTtbo5q8svLfPDywxjwOm0G9kD0PvTEsF70kKpA7nl9AvA0dajwRRWw8GMrbvCVWY72zO8y8uQ15vLw1+7vdKE89pkXuvGD37zueX0C9GRNIPFM2/bwCuWQ4gB+vu2BVnbxxFdA8g0exvA5m1rwApWO9qUEdu1hGLbsYlfC8yBdYvE9D5rx0CGc8DFJVPbtW5bwsRSk9kcePvKsgs7zpNv+8r30gvJyAKj0W60U8iuRyvG6D97cyQJi98c9vPHa7qTw3Jwa8xm0tPL5SFLtU6T89c/Tluz6PXDzxbrE81I9evEHsSbxS/gA9HL3yvKy2XL1hqrK58PDZPAqcgbthqjK8bqAQvWcbobzOfB08Vd0Wu74RAL0g5XS8j1Xhu+ci/rvQnMe86KBVvfPsiLyeX0C8+AtzPOP6e7wWgW88a0MjvcRZrLyisIS8xFmsu6JS17zXViI8VBKCumsCjzz3dUk7j7MOvdkAzTy07o683fNjvMwK7ztNjZI8/bFMPMiBLjs/Qh89NyeGuuV4U7tVnAK8XhhavKhZ7zddgjC9+EDevDXemTw50bA6CRKBvJOyTjwa3ty6998fvB07yrxPQ+Y8IWPMO4z4cz1Cn4y71yG3PCl+5bwgGmA8QIsLPO46Brwnn0+8HL1yvQesezwwYQK8Ic2ivCWLTj3ZAM28yxOHvISob72taR+6u4vQvIZPCbxBFQy9c/TlPN9xO72riom8jeAhvIoBjD06kJw8uHdPPMpUG72C/sQ9q4qJvM8Gnjym2Ia7pNAuveg/Fz21T828MbYXuu7cWD1qeI48rLbcvNZu9LoO0Ky8sZEhvfXLHj1PeNG8rsrdu/mJSjvnIv67i2JKPP4vpL2Rx4+9IAKOuqzrRz370rY7+9K2O26gkDz9sUy8R5IjvA7EgzzF14O6BQLRvIWQHbxYRi08MANVuwvUfTw5Owe9WhkaPJN947tL5vi89E1HvRFF7Dwc8t08NyeGvVLVvjwYKAk9AlgmPaavxLswbau8QIsLvc58nTuJTsk8LiS/vWsCjzpaJUO8C9R9u9FPirrRT4o83b54vC3DALtTyRW8Po9cvTCiFj1VnIK6GqlxPHyNVrzimb27nICqPFPJlbxfigi8/kd2PTX2azwnUpK80/m0vLcu47wwbSu8p/iwN0XfYDstBJU6JiH4u6CoLLwXnoi8RyhNPcRZLLwSt5o8CwlpPdUNtjwuWSo96rRWOjpnWrxAAQu9tO6OPMY4Qj0i4aO7MG2rvJA9D7xTa+g8vh2pu2JAXL13OQG9Nd6ZPOLOqLy9UhQ97kYvvG82urwQelc8QzW2vNLtizunLZy99WFIvUNqIb0hmLe83V06vYKU7jxyyBK9bqAQvdp+pDt5rsC7vD4Tu71q5jz70jY8EwywvNfsy7y1T008mmwpPSfIEby3jBA9B+FmvMhAmjvf0vk7/ea3vOsyLr3s8Zk7Ao0RPDqQnLxjicg8+fOgu/RNx7wrx1G6EuyFPGO+Mz1kVF28iAVdvfJiiLzk4qk6ehiXPHccaLx0cj08kAikPIp3Czzzt528F54IveLOKD1PDvu86P4CvKKHwjxcLZs7FNdEPLbNJD2nYgc9gslZPf/Fzbx0pyg87bAFPdBn3LzCRSs8zh5wvFrw1ztz9GW8VB4rvZHTOLx3UVO88Ltuu2cbIb3T7Yu8PKQdvDADVTyyvXS8S3mRPaQx7bx8wsG7XhhaPUTL37yzpaK9g0exvJQwpjxoZI27qgCJPPeqtLygnIM8hZCdvayB8bxxSjs9Wk6FO9Ccx7sN6P68lg+8PA7QLL1BIbW71dhKOsGvAbxIvna8yivZvFoZmjwZfR49AQ86PbFcNr3U2Eo8onuZvGMoir1kH/K8rLbcPBoTyLtksgq9yEzDvJVceTlJPM68DpvBPHTck7x2u6k8n/XpO86IRrxvNro9oJwDPVdef7pN+nm9OjLvPC4kPz0LCWk9ts0kvHzrgzsXngg85vaqPNNjC7ys60e7Keg7uvxoYLxN+nk9Uv4API+zjjsQ5K08nl/AOhl9njvnV2m77qdtvFQSArt3HGg8QwDLPL+bgDyQIPa8PEZwu600tDwSjli9EHpXPQ7QLDzJ/4W8ibgfu3TcE73lYAG9TM6mu4wtXzu69aa7DPEWvW82OrpsVyQ9a0MjvbdjTrxtFpC9EUVsPWkvoryMLV899oqKPAaAqDxZ8Fc9dzmBvP0bozw6Z9o82TW4vJFpYr0mIfg89xSLvOF5Ez3/kOK8vZ9RvOP6ezzF1wM8MeuCvJ4q1byk0C48BDe8PLwJKD29n1G8GyfJu3XTezwMh0C8RyhNPGAzWj0AF7o8IfGGvRSCmzuXFVS8hrzzu+Bj1LyYxJY9ovoZPfuiHzzs+su8wl8xvY6QXbszXY27DYUAPdqNIDpXrT461hkGvanPqLvWe586s7fdu6wIET2C+WU8JYwIvJvXPD2Clqc6aLcrOyonCjzZjkU9PR5bvbDyBbtHUzm9ahpqvfQdqbyVZMc8z6e1PFoNDjvNbAO9eBP7vHyG8DwOD6Y7amg4vXE8ojwpT5a70QiqO2gtBrxfgSi9b1EIvLO3Xbsd3wW9tsg5u35cGr2irEs9G1l0vKwIEb35QtA6lLO6vTziA7w2voG9b43fur2dyLwPwVe8jkHqPJAXFL1ryay8XW4CPY0uxDxHoQc9PWsEvSY9lTtRiby79aWEPdBZZ70y1la8XHBMuzWZZDxhMrU7/7QgveISlzxTOaQ86eclvfMdKTo1NQG9qB6cPK/0T7zEwu87+JAevDAkpTs1mWS8uJ8IvRdHczvzRBA854h7Or2e7bvED5k8rOEpvcyVNL1ZDrM8S2QVPEkDIbxxPKI8xHP8vHvV47v5QSu94YmWvB9q0LzO9qg6lbO6vIDlGj3jw6O8t3nGPG+MOj0uE8k8QS6SPLUXrTyhIYE7jpDdO0pm37ur4/M8FDRNPPuiH7wDKuA7Jz0VPXz6gDxjRDY7ofxjvXcT+zrxbcE8PZOQO+PqCrzuW8A8Q5ArvMH9F72/nCM88by0O9d8xLtzn+C8eGHJPHNQ7Tyr4s68zOQnPYDlmj2ch6Q9XG+nvK2StjzxvLS9RqPROzy7nLxmVrc8D8CyPB3fhTyGCR29wmF7PMZwDT1x7/i8S2ZfPf7bh7yJHWg74WGKvXskV7wWlUG7yTRAO2vJrDyJQoU6z6YQPXHv+LyKznS8TcWJPck0QL04+ti83KHrOxn2Nb1EkVC874ECvUXxH7wYRs48qoC1PaLSjTiPQMU8MzfLvIrMqjyXFC+9jS7EPAXZIr3ybmY9df8vPeeH1rvUzFy78AoDPFhf8DzZ3t28qc8ovfC+/jsVNE09LcRVPQQpu722Fgi8k1EhvXtxgDvkdDA813zEvLFUHzydOvs7/FRRPJN4iDzjxMg8Cv9uPOxJv7xYhA27kBcUuwaxljus43O91BvQvM4dkLxaDY68zUdmPQLuiDtMx1O9BzqXuyF8Ubw/z+e8px/BPI6Q3Twj3cU9dq+XPGi5db1GpPY8WQ6zOhWCmzzoXYC5i81PPHRPSD0GPGE9O73mvFzlATwDxyG90VedO5koejzaQHc8KQLtuzoM2rhV/vu8VUslPcMQvjtwPmy8hliQPdgrBzz2VhE9gZUCvbAakr3dUng9QpL1ud2fIbyaJQs92rSHPV6CTbwqAci8LcV6utTM3Lzp6Mq8eBJWPHwiDT2YO5a89+HbO6vj87qMLZ88gx6DvCsAIzxkp/Q8LnXivCeheDzYLdE7TMfTvG+MOjzg2Ak8sgbRPFVLpTs7Mpw8jC2fPR24Hj1JBEY93k+JO6W+TDye6Bg9SxdsPIFJfr1rySy9Q5Aruh64HjyUA9O4aRpqvDQOGr1Ribw8NknMOkKSdb19qw09b9qIuoDlGr6wpLe86uYAPYwuRLx5wj07UIrhubbJXjvvvn69i81PvMJhe7zdnyG9KrLUvBn4/7xmpao8nTlWvBhGTrz+tUW8thYIPQOfFTwwJCW7wmDWPCvYFr0bfhE99M61Oz9/z7wy1Ay8/VIHvHA9xzxfWZy75tbJvGYIab3XfES8Oloou3awvLwktBQ8BCgWPYDmv7xKZbq7j44TPZrY4bw7CpA9NZlkPfALKL23eUY8iWs2vS0SJD3ybmY9hVpaPWpoOL2jqgE9YpOpPA/AsrxVcgy9YuKcPEdUXr3wvv47EiEnPXzUPj31fp28XSHZvKVw/jyqgVq9k1EhvMNejLxhMjW8rZNbvIgdaDyBbhs9lmMiPSc9lb3hYq87EZcBO4FHNLzbPQg9YOPBvF+BqD23x5S9TMh4vOhdALw8u5y9G1jPvDM3SzvlJT0854fWPCDKHzkLsPs89X4dvKBL17wHO7w8RUJdPhtYTz0Nr9Y8wWBWvM71Az17Jfy811MTPf61RT0y1la848RIvK5E6LySobm89X6dPDBLjLwFAAq8nIjJPMMQPrw2bw67O71mPOFhCr18hvA8oSGBvOQmYj0k3UW8iRxDvQBmrbxb5QG9n5klPFDZVLuYxJa7KFHgOzu95rkzN0s8Hbgeu1I5JD1jRLY854axu4SnA71mpk89ofu+vNqNID3WGYY8n8CMPBBxv7xegk28AsehO13RQL1cbye9dq8XPVVN77pilXO8DhFwPI3eKzzMRkG8uozsPFlcAb3m1aS8ALWgvHyG8Ly/TbA4IXssu3OfYDzWGQY9EOcZvPNEkL3vXGU8VJxiPW/aCL3QWWc9qs4DPYrO9Dwap0I9pr/xvGNENj3a3BM9foMBPZkoej0qUDs9P82du140fzzUHPW8VJzivO2sfbt/Nlg82N24PCIt3jwgGZM78W1BunnCvTxcvpo9CO3tvIP3Gz0y1Aw9hKcDvXHu07vQfgQ8jd4rue2r2Lznh9a8yNEBPV+BqDuOQeq78L5+utQcdbzWfEQ9FQucuQmcMLwW5LQ7RfLEPAC1IDyYdki9p22PPDI48Lx2Yu68Tne7POz6yzxhlXO9MzamO+74gTqfmso8V9MAPEXxHzzhZPm8vk/6unWx4Tx5w2K9WlwBvNnck7z8VNE8KgFIPAg7PDw9bCm9pyDmuypQOz1nBh89o1wzPAnDFz2p0E28V19wvMiqmjxYXSa9qfaPPMMR47ydOVa8pA1APBODwLuYxbu8c59gPcpagjtUmhi6t8nePHsjsrzaZZQ95HSwvD1sKbymvSc7bHq5vAjsSLzfABa9HAeSPMKvyTx81L48mk0XvYMeAz3GI+S7sgZRPDHX+zyyB3Y9KJ8uPcWYGb3ajSC8v07VvLzt4Lzm1SQ9vLEJvP0EOTx/NA69cu5TPHgS1rzm1SQ9nTr7PIYL57vq5oC8udq6PHUBerynvac8LRIkvarPqLyZJ1U9T9nUvMZxMjwnoXg9uttfvFSc4rtJBEY9jC0fvQ7C/Dw9bKk7GJQcOyDKH7xcIVk8K2NhO4rzET3XLvY83lAuvahuNL0Kmwu91EGSPIVYELyEgJw874GCu5l1I7zq5oC9MYfjvEOQq7yTA9O8NDdLPU8nI70k3cW8hVk1vYEMAjx90xm9Anr4u6p/kLvt+ku9YDPaPJl1o7wtE0m9X/eCveitmDqBbpu7SrQtvcNeDDxo3hK94mKvOR8aOD0x1ta8CcMXPXSdlrwqULu8kwPTvKFJjbx81D49XveCPMWYmbwm70a8WV2mvXX/rzztq1g85SW9u1gQfTxOxi48t8cUPfiQnrwT09i8zWyDPBFwGrtzT0i8qdBNPGi3q7tfgSi9C7B7PIe6KT1C4MO7WV2mvFisGb2pgdq7Qt8ePHavl7wVMoO8SrStu8xGwbzMRsG7sKQ3OjoM2rylvsy7TsYuvP+MlDpU6Qu9+WgSvHsk17zsSJo6QX2FvFScYryuQp68df+vPDqBDzxwPUc982wcOivYFr3CXzG7EHLku1gQfbzSuls8zvUDPWNDETzhFGG8FpVBPRn4f7vOqFq865cNvDPp/LtXX3A5pr0nvXtzyrz+tcW7hKryu2EyNTzIqho8rZPbu+jp77mnH0G9tsg5vEw8CbzFv4A9PZOQOyIsOTwVNM28ARjfPD1u87xC4ei8swSHvAUAir0ScBq82d5dvGWmz7unIGY98b3Zu/G7j7xr8BO9kD8gvLCl3Dq0tZO84WIvvWpoOD2gmAC9sKQ3O0kDIbybJrA9zvYoPIrzkTuN4HW9XtHAPRpZ9LxnBp870mvou62SNr1JAyE9MCSlvGzKUTvO9ig9MtZWPCY/X7xW/vs7rkToO9neXb3TaR49xcClvCcVCT2qgLW3OVxyvBIgArsNYGO9D8CyvRtXqrobCVw9cp9gu1au4zuYd208JCsUOw2tDL0VWo870QnPvLYY0rwOXz68o6qBPHZibjxcILQ8pr0nvXNQ7bxAfqq89c61vOfWSb3zHSk9uJ+IPJ6bb706Wqg8Ph5bPD/NnTxUmpi7AslrvBiUHLyKGx672o0gPck15b3XU5M7Nm8OvbFUH7yv9E+713xEO16CTbt/NI68UIphvJfG4LxU6jA92o2gvEbJEz1JBMa7XOUBvNRBkrz7oh+9COsjPBbkND0MrrE7jo+4u24qIbzLC4+8ke8Huz/P57zwC6i6qoA1vPV+nbt3r5e7HpASvenoyjwx13u8TMj4O1xvpz2NBRM9DWBjPQXaR7vZj2q87tGavH+Y8TzRWEI9JT46PLd667w3l5o7XoJNPfV+nbz9epO9v00wvaKt8DuLfly7DV++PClQOzo5XPK8uJ8IPPV+Hb3kc4u6YFmcvaPSjb1+hUu8xXEyvQmdVb0Qwdc8nDnWvALJ67xYrJk8hrvOO9cu9rvgY9Q8FuS0PAPuCLzMllm8myULPOc44zzMllm8c09IPKOqAb1CL7c8RqT2u+PDo7zrmde8UNr5u8MPmTsI7W28hKnNPK/zKrsWlcE7eGFJvLrZlTsoUeA8OPrYvMjRAb2C+eW8iWu2O8ZyVzyZdaO8qs4DPVley7nxvDS6Hd8FvAlO4ryXFC89yNPLvA4Qy7tPJyM9A8ehvBC/DT2HuQQ95HOLPK719Dzdxgi9f+dku380DjzzRBC9InoHPKhFg7yuQp67Qi83PLWNB7z7op+8T9r5vOroyru4UJW8JT66u1DXCrzbP9K6c59gvEIGhj0gyh+80H4EvLIsEz38VNG87dGaveBj1Lxk9B09P39PvM4dED0iLV69j0BFO1Tpi71gMRC8SQMhPU53uzwL/kk7A3cJvW/brTxDkvW8YZTOPOys/TuGCR09COxIvLFVxLySUkY8Jj2VPL3sOz2Ja7a8ZPXCPABlCL2p9g+9X4GovCF7LD0/f0+86uaAvdYZBr1x7/g79c61vL2dyDyEzw+9K7GvPK6SNrx2Yu680FedPfFtQTzL4wK8Dg8mvXROIz1acXE9S2ZfPT4eW7xGoqw8FTMoPUkqCD0jAwi7POKDO+GJFrzvXOW7+EN1PZvXPDrOHRC8lQKuu2ZWt7zGcle8+/ESPLY+FLy5KlO8XJYOPcXByjyiqyY8+UErvc4dEDyWigk9OdCCvUkDIT1nVrc6/2ZSvEWkdrwrACO9k1EhvEzHUzyrMcK8rkKeu0/Z1LxIUhQ7gZYnPXnCPb3wCoO8QDBcvTLWVj0L/km9WQ9YPVzlgTylv3E854YxPe8Mzbz78ZI8VZs9PDKGPrxfgSi9JI0tPZcTCjxRO248sVXEvLrZFbvjddU7yNGBPG5RiLw8bvO6SxbHOyU+Oj0bCdw8u4xsvE8pbTr3kug8SLb3u+UmYjwzFl09kdoePWsdnL0gjDM7mu/Ou0bpbLwofw69CHpqPc3ONz0Fv5M85hKEvGrUNb1OjCy7slhovP0ytzyFodU5k/U+PA/UQ7xNPBG7XRKZOzLN9jsadAs9K3yWO84Au7ydU1U90V0MvFm8/DtOjCy8LU5QPQmsbb2gt9s7UKfMvN9YYb3d3fe82ae3O5HDu7nVWpS8JlRAvQ90+ryEsQM90QR4PMoaFr1qhJo8KurJu+/XGDvP+QW8W05JvRgAV7x2ZE+8F2Cguepfp7p3poC8ZxBmPaStrrxHG/C8NwwwO49I0r2WWUW8JyZ6vQuHoLtxzsW8Yb+FO4BrlTySvAa9ojJFvC/JOT3zK/E8NKgpPcmBFL3RxIq7RkKBu0txjD28tn69aaIyvGKRv7n48308GmRdO8khy7xeq5o80k3ePN9Y4bxt2HI7KBiQvKV/6DtarhK9b1NcPGzvVbzzK3G80WTBO4sSkrzrMeE7tq6EPP57HTpugaK8nZy7PDj1zLxUTQS9xKKkPJrvzjsw+zy8EjGVPHeWUr1hX7y8BORgvQuHILzA9Te8L8m5POGK5Ly5+yc94AGRvGQMqTzrQQ89w7kHPGcnyTy6hPs7eH/vO6KSjjvlgDc8ql5YPaunPjwUs7O71vOVPHV7Mj1Vhjw8S8jcu7z/ZL23IHW8T15mPLjJpDyEAZ87X0QcPJ38hLx4yFW9VJ2fPEaSnDzbwlc8IrcBvFCnTDxY4w09rz3IvMRC2zyU3ls9I+mEPajj7rwmtAk9H0PNvdX6Sjxbl6+84AERPGi5lTy/c5k8U2scvbvdjzz0XfQ8cwDJvINvUj0nPV28fvCrvOf7oL1hzW+87WNkO84Au7wyJou7XptsvHkRvDwAN/S83m9EvI4WTz2TPiW9H1qwvFE5mTxCnMm8mu/OvHr62Lw6WVO8B5HNPKYomD0jkHA8AJAIPdB7pLxsBjm8N6xmvX1ujTypLFW91bFkPR5xEz09vdm8mbYWPES3abqbgRs9wie7vJM+Jb1kw0K7pshOPfwAND0fWrC9/LAYvM9Jobwulza6atQ1PDuiubz/XYU82aCCPO0MFDx+R3w8llKQPHkRPLzdPUG9Mi3AOx4RyrvKarE8k/U+vXCcwrxzSa+8WDMpvTRYjj1Jpoc8OhBtvS437TsnhkO8iZeovHh/bzzcq/Q8aLmVPXatNT2hSSi92F5RPPDHajz1Two8llKQPPH57buhoPg8TTwRPcHe1LzoLSS8DpsLvY52mDmbIVI8e4wlPOEzlLxllXw8J+YMvdTBEj2uC0U828LXun2+qD2z6rQ8Q4XmPGcglLxA2Hm9HnGTPQ7rJjzn+6C8NZHGPDppgT0GX8q8s5qZvHLHELwJDDe8oBclvC6AUzwJw9A8B/GWu4H0aDxTC1M8q0f1uwzQBr139ps6xesKPXZNbLwW3gG8+FPHO1jjjbzleYI8pd8xvOIcsTzM5Zq7h2UlPQoFgj1qhBo9fadFPdJN3ryY1C46RBezPI+om7prvVK9JWsjvT10c7sQZhC7qr4hOpfrEbw3rGa9crfiPFHZzzytwl69f9nIPJpPGLwH8Ra+iZeovL6RMT3oLaS8Yc1vO/izkLztcxK8QlNjvSULWrx7LNy8onurvLrkxLw3DLC8CQy3PDybhDtLcQy9GEm9u2buED2qXtg8sbgxvGrUtTsae0C9wKxRPe8nNLul37G8GsSmvGY+rLxEF7M8rgtFvBRTaryieyu9Sa08vJ/OvjoBgNq8X/SAO74xaD0rM7C7W0cUvBWF7Tx1xBi9w7mHPR9aMD2uaw69wAybPB9aML3ADBs9kXpVPaGgeD0fQ029SA0GPV77tTyrpz68kXrVvOIcsTzSlkS9n86+O+IcMT1b7n89kcM7vJ/Ovrt4PwI9RC4WvWTDQjysoIm8Y3pcuzFEI72Uh4s6VD1WPVm8/DwQZpC9POufPAV2rbuAaxW9ebHyPBw/EL1L2Io9SMSfvYz7Lr25skG8Vc+ivaWWy7wsBWq8C4cgPKNkyDxTVLm6onurPG3YcrymyE699xoPPb4xaD7QeyQ90pbEPLS8brwWLh09YvGIvMtMGT0WzlM9wPU3vKijAb2qbga93oanvHV7sjzu9bC8wsfxvFiK+TwKBYI7rz1IOvS2iDy27nG8UiK2PJDxgbveb0Q9JrQJvGcQ5ryT7om8HKYOvJs4tTx6WqI58N5NvOayOjxN43y8VX8HPDItQLxWuD89039hOgTN/btXsQq93Z2KPbCGrryiMsU8jl81PA5C9zzV+sq8wT4eu/izEDt/2ci8imlivcmBlDwrMzC7KbhGu9nwHTwEzf07ASkKvCh/Dj16+li9XHkXvIpp4rzrSMS8OnA2u/4bVLtx5ag8gfToPFcBprxDlZS9bmq/OfvOMD106eW8WOONPe/ezTy0HLg8tBy4PCUbCL3c9Fo9ufsnPfyg6jw6cLY8VeaFPV2yzzu8tv473T3BvI3dlrxUPda7/sSDPE9uFD1zAMk8KupJPA90+jtJ9qI8ixKSPUcy07yoQzg9C4cgPa5rDr0ZMlq7GntAOUfbAjuQigO94EF+vLDd/jwlayO8+FPHu+P+GDwYSb28TLF5PWxPnzrGHQ460a0nvCmxET1lrN88SygmvT3UPDxzAMm8L8KEvBz2qTwDm/o8cJxCvdrZujwYAFc7z0khPWdwLzya7847ZfXFvME+nrx0kpU8JlRAvTybBLt6+ti8qnW7PBw/kDyv9OE66RZBvU2jj7zhimQ9anRsPXUbaTyWUhA9aoQavOLMlbs18Y88kXpVvQs+ujyCPc+8T26UvLKhzrpfRBy7JRsIvSA8GD2wJmU8D4tdOlSdnzzzhIW8wxBYPTImC71gdh+8G016vONONLyHZSW8iO74vIYzojyRw7s8yzzrPJjULr0OQvc8sN3+PCvjlDw6uRw9lIeLPZ2cOz3QG1u8hAEfvKHp3rzr6Pq8NsNJPZaiq7x4KJ+6k+4JvY4WT7uSrNi8AclAPYyb5TyRI4U7/LCYvMmBFD2EsYO8sN1+PGbukLyLEpK8EjhKPdWxZLzRrSc8DuumPTtC8LyJRw28xnRePVSdH70QZhA9chcsPA6LXbtJTXO8ClWdPPsXFzzbawc98Vm3PHuMJb1PbhS9tNNRvaMbYjyAa5W8eCifPBC9YLxxhV+8aUJpvQ25I71PXua8EoEwvX2+KD1+R/y8ygpoO1jqQr1AIeA8e4wlvRsNDbx6Cge8DaJAvSM5oDzlIO67QpzJvACXPb0Cwgs8C4egu/Mr8bwdyGM7B5FNvXjfODxVhjw9onurvHh/7zw6cLa8KG9gvMpTzrzNt9S8FFNqPXMAyTx9p8W8oxviu5Hanr2B9Og8SfaiO8pTzjs9zYc89LaIPANEKj3Nbm68DbkjvD9PpjwWztM7pPaUvHA8eTwhvrY69AakvPS2CDzx+e08ceUoPIH06LqvnRG9m9hrOVHZT7wSMRU7w1k+u1yAzLwMEHS8O6I5uwHgIzvJgRS9Il7tu3Euj7y/Y+s7llIQvWi5FTzNbu68ubJBPPS9PbswWwa8cS6PvKnVhDoJbAA8z+lXPYe89TmCPU+9qdWEvJUQ37zKU0683Au+PLIBGD11G2m8+TxkvLhpWz1He7m7vP9kO5F61bsj8Lk6WOpCvO8+F70pAS29NYqRvDq5nLyqbga8lXCoPA2iwLuJlyg7cPwLva15eLsUU+q556sFPUb5mjycCm88s5oZvRXltjwUszO9wnAhvNAribyR2h698MdqO5HDu7zUaH68vagUPX2nRbxM+t+8b7OlvDYjE7ykXZM8ywpovHZkT70LNwU9OO4XvZEjBTzupZW7pPaUPdB7pDx3ltK7MeRZvfFZtz3FK/i86OS9PMtMmbrjTjS9xwYrPcwuAbyKySs8nMoBPf5kOjyehdi8OmmBvD108zvFK/i8wT4ePbgSi7ywNhM9VE2Eu+1j5Lw86587GKmGvZNViL3g6i27+LMQPaLSe7byQlS79jinPKoV8jubOLW8npUGPBdgoLzOADu8dk3svJAx7zzgARG8FxAFPX2+qLwkIr28rgtFvOV5grwzX0O9PR0jPTO/DDyAwmW9nfyEPCa0CTuXK/886OQ9u/Lrg7yqvqG7DHA9vJiEEz0Xt/C9opKOPNI2e7x4yFU8KbGRu43kSzxpojK8GUIIvSF10LxxzsW8OlnTPCjPKby5q4w89e/AvMMQWLxSGwG8a73SvGnrGDz3Go88MZtzu2u90rpuaj86zOWavIYzIrq+es68/nsdvD292bwnJvq7MZvzOlML07yw3f482F7RvG5qPzyRI4U956uFPGG/hT2Rwzs7ZAwpvPRd9LxugSI9G036PCvjlDya7868jd2WvPMrcT1arpI6ismrvUsoJr1bTkk7rJDbuxnbiTzWQ7E8zbdUvCTCczz7Fxe9oBelPCF10L234Ie9kgwivH8iL70W3gG9lRDfPJrvzrxrZgK9JCI9PMLHcTz+G1S8OwIDPG6BIjxPXua8oxtivGxPnzyvPUg9PzhDu79jazx3pgC9RpKcPKq+obsGWJW8TPrfvGmLTzsVRYA8VX+HvAV2rTw2euO7DovdO+Ugbrpm7pA8SU3zPAZfyrzFK3i8XbLPvMcGK7wTypY7AhKnvLsWyDtxbny8I5DwO60iKDxrZgK8/LAYPT5mCbzHBiu8zqBxPG2YBbxIDQY98ou6PKmMnjzg6i09IDyYvKIrELwQBkc7PzhDvZTe2zwDRCq9UdnPu0z6X7p8FXm7egqHuz/v3LyRetW8E2pNvNmQ1LvIOC68jKsTO3MASbxx5ag9EL3gu2be4rtj2iU9bE+fO2Koor3r6Hq8pE1lPYtS/7vfaA89pE1lvTP/+TtSwmy9kqzYOp2cOz3r6Ho8W5evPCK3Ab3F6wo8KVj9vAISJztx5Si7tWUePfyg6rw5J1C9tHyBvEKcyTthWIc9eMjVvH8iLzyvVCu9tyD1vLDdfrwVnNA8eqOIvPygar0j8Dm9c2CSugLCC71sBrk8YqgivcD1tzvKU068Z8d/vAs3hT02IxM7e0M/Oz9PJr0B4KM8vpExPfpuZz1sTx+8BXYtPSZNizzoLSQ9kz4lvPS2iDwdf/27PgbAu5s4tT3+ZLo7hFhvvEHKjzy3N9i8L2lwvP57HTxVhry8Y3rcvLOKazxnJ8k8PR2jPEPlL715sfI7QvwSPSmhY71LKCY9evpYvACXvbyyoU68L8k5vTZ6Y7xVhrw8ofkMvf9NVztgze+8NTF9O5wK7zxkDCm9mIQTOuf7IL1Ezkw9gp0YvQP7Qz39kgA8rgvFOkn2Ij34sxC9gAtMPRjp8zuIrou8yDguvXjIVT00qKk732gPPFE5Gb3tw607BC3Hu23YcjzRBHi8fBX5u0fbAjvUyEc9NdosPTppgTv9kgC8onurPDHkWTzTf2G6gXs5PflvIzwJtZm9S6ZYPMqgQLz5byO8baK5vN5Ldj0XMIs8yT2APGfsGr2psxO9w2z4uBhpBbxrAvs8QVywu5s4Irt6R/G8zhI1vCxV5jvq/OI6zRK1PBPGRzxsaT+8YR8XPR+Zybt/8t88xSMcvLpbSj3FIxy9MC6fvC/eP71Xp6S9Qj0avS53ezynjfo8KQaMu6RgtbwgbwO9hiaoPBKvYjvv4Eu8CZ60PHkl3LxUuwo8ByzAOqC1Rr2bOKK7IrtevApdibyFqP67qQukvK2fLT2bpxc40mUTvWyXibwjRLi9mMYtvP7VYr0o7ya8I0Q4vLDM8rro2k08PMimvIga87ty9Rc9rVr+PHVnDD2U7fS8akcquyphm7qJalI9VLuKvUXwubxsab+7Peo7PFS7ijx0qLe8sUocPGngZT0cbAS91hACushQ4bxF2VQ8iZicvN84lTtR8YW7nfPyPCyDsDtMDR29fiCqO8vZujvoCJg8Qn7FvN55QDxw5mO9liZvvQ5JIzxdi4080tQIvBszijy7Znq8SCEDO8cXZ70edzS6GxwluhOcgTtCUHu8xToBPVZXRbxg5pw83pClPGdbELxLvb083FcrukgdfzqTtHo8fa41vKj0vjwRY4c7awJ7u/gI37vufQs9nqoWPOIkrzsQPW69jk47O42ufDybIb261LHuO225njy7iRS87IU8vR+wLj0anvs7XUbeu2Zu8bw7Sv08PtPWPDqmEb2u2Cc9oLVGPTHWjj0x1o68mv+nPEI9mr3AEWk8oq0VvXgDxzm9ttm67W5XPJhMCL2+HZ48zx3lPLpyL70Pazg9c0Fzu4OG6TsRY4e9Q86kvGLHBjwedzQ84b1qPP++fbyIrwE91hACvftj7ry9jJM9GZ77vIca87yOTrs8H4JkvP7V4rsD6JW8LZqVujAunzyirZU9dWeMPKPmjzyygxY7KQaMPKaZL71p4GU8wrGnvApwaj2qRB49cM/+O0lWeTzBM/46iUAMPWnNBL1+Nw+9L6XFOxT/QT2qLTk94ySvvTzfi7u1TZu8iBrzO67BQrzkXam7VgfmOkNn4DspBgw8tI7GPEg05DzUAU48LmQavTgGUztqJZU79KIfPOVRdL18xRq93mLbvFoZGb01q0M9JjwHPNdcXb2qFtQ7+5G4vN84Fb2Ty9886NrNPDAunz2KgTc98lJAvQPoFT3PhKm7xvVRPL/FjbuOZSA8UqxWPZroQj1kY8G8tI7GPN0S/LwL1668i3kGPXjsYTy6RGW8nnxMPMSSEbybT4c8h86XO8QBhzqjPqA9jtQVPHjs4TyKo8y8jed2vSP0WD3T3zg67/ewvBh85jyjJ7s9lPmpvHlTprrR1Ig79KKfvOt6DLy0YHw79cS0PN84Fbw25L07qv9uucwpGjygnmG8zmKUvDXZDT3snCG9ECqNu5TiRDohkRi9AV+8PEwNnTzL8J88K0o2u2yAJD0LloM913PCPKWwFD0tQoW8hah+uytKtjysJQi8+B9EvYGSHr0o7yY8dC4SPJrowjwx6e+8RsJvvTV9+TwRpLI8E8ZHvbVNGz18rjW6jtQVviLdc7xkeiY9oLXGvAKB0TtPf5G6CZOEOyZ9sr2MsgA68dgavUgd/7zPCgS9u33fvGNYkTwYfGY8VldFvD86G7y7qyk9m6eXO3I2w7tS2qA7hO0tvYNNbzyKo0y77tWbvOPjg7zb8GY7V5C/PHSoN7zTyNO8wTN+vaQy67z7v4I7L8favM8KhDxg5hw9NhKIvCNygrvkXSk9jJubvKawlD2NFUE9KNhBvUKsjzyzVUy9AsYAPZZUOT2npF89E8bHvDOJrjx0WFg8aJQKvEKsD73AP7M88mklvf7V4rv5hgg9hO0tPd55QLtMJAK8uQvrO+++Nr2Nrny89oOJvAzLeTq+Bjm8TkaXPHOGIj0LqeQ8wrGnva1afjwNuBi8K0q2vER2FD24OTU5lmuePXfVfL1i2ue8X5a9vBrjqr1QUce7PZpcPLRsMTwxnZQ8NWqYO53z8jzRj9m8dWcMvS1CBT31lmo+JrYsPf8lQjxLj3M77tUbPTIPCb2eZec8C+4TPaG1Rrxb1Gm8Ns1YvdehDL3o8TI9VR7Lu/HYmrx5UyY9Johiuz7TVjxb1Ok8hNZIvRA97jxc+oK8d+xhPS28Kry3LoW9ZGPBvO59C71Z94M8Eq9ivCnjcbxTKoC8FOhcPKw4abqFqH68Q7c/PbRg/DxddCg7lDIkvQNXiz2rT868ELuXPM8dZTyRkuU7I1sdvYybm7scPjq8+kHZvA5JI72bOCI9wWHIvA+CnTvVaBI9nqqWOkd5k7yXds48StQivVhi9buFqP68O4+svEuP8zt2oIa8trDbPLt93zyq7A28IdJDvUPlibsyOU89Jk/ovDAAVT3sCxc9HRDwPEEbBT0IZTq9p9IpPcvwHz08sUE9nnxMPZYmbz0H65Q7D4Idu0rUorw1ffm84tRPOyjvpjxVB+Y8yH6rPNSxbjyBZFQ8FWaGPCNbnT0HFdu8GHzmPBP0ETzCyAy94iSvPMh+qzxddCg8FnG2vF5GXryr7A09pliEvJ1D0ryirZU6olUFvAXzRT2+NAM78mklO0POpDywESI9KO+mPN+yOr2ZhQK7nRkMvV9/2LwVIVc5+Qjfuu6QbL0ujmA7D4KdvKZr5TyzPuc5I0S4PNl+crwTFic73mLbPMhQYb2Dhuk78QJhvPIk9jwrSjY8GwVAvFT8Nb0CxgC9SCGDPae7RD34CF887+BLPWGhbTxLfJK8Fp+AOwKYNr3Yw6E8Lbwqvafpjjups5M7FOjcO6B0G70KXQk9ELsXvM5ilLs0RP88TA0dvNiVVz13Giy9Vin7u+tjpztflr285mjZuwTRML1POuI6HknqPAZaCj0upcW8/tXiPENnYLwcPro8CYfPPFmyVD2JmBw9q30Yve7VmztqGeC8KQYMvdL2HT2T4sS8ILAuu84dZb3QCgQ8wP4HvfEwKz0tQgU9DjI+O3cxEbyUMqQ7WfcDvGsCez3QLBm9qQukvHpeVj3pKq28MC6fPCd1gT3DWZe8cdMCvEpDGD1kY0G9O48sPb/FDbtAIzY89v2uO0UHHz27iZQ8oyc7PdYQAj0L7hO9D1RTvT0BIb2o9D48gXs5vMsHBT1faHM7YP2BuiVmTb3ekCW9GXxmvROcAb3WDH49SVb5vNGP2bvnoVO9R+iIPFU1ML2gdJu756FTPHpHcb1/CcU8MZ0UvCLd87xmnDu9/Moyu6CLgLq4UJq8xSMcO6RgNb3qE8g7T2gsPSDHE73zERU9ULiLvIOdzrtixwa9pR+KvKndWT1T/DU88ev7uz0Bobs+qZC9QS7mPBszCjza/Ju82msRvIBwCTwllBc9MADVvO+Q7LnVOkg9TQFoPIqYnLtPaCw7lPmpvNeKJ72XpJg8jf7bPOPjg7uUG7+8s2wxvSyDMDxjKkc7Z77Qu/b9Lrthzze8svILvJiNM7wrSra837K6vIcx2LubOCI7fwlFPJ0s7bxEHgQ7WbLUvBxVnzzGywu8p6RfO7aw27xXvgk8oxDWuxTRdz3iDUq8vgY5vTXZDb2SwK+8QHOVvFAngT1KhEM9xAGHOzbkPbvYrDw9ty4Fu0myjbqUSYm8I/RYuqDjELw1ahi98LYFvTbkvbva/Bu7f8iZOhOcgTxJbV68iAcSvAcVW735H8S6fecvvBiqMD1ff9g8BizAPIzcxrziJK88sWGBvL3ko7xnvtC7XA1kvT/1a7xWKXs82JXXOqR3Gj2JU2282x6xvPe4/7xWKXu8rygHPMAozrz3z2S9s1VMPXI2w7x0vxw8MADVvD/iij1sl4k887mEPDVqGL18l9A9qv9uvKZYBDw4HTi78RnGvLLyCz1jQSy81VGtus3kaj2R1xQ8MC6fvMNseDtsgKQ7Q7c/vcS81zz/JcK8NcIoPbgiUDxguFK8gXs5PF4cmL2COo69lPkpvNBW3zwDVwu8dL+cvHNY2DxpzQS76AiYvNF49DxjWJG8uAC7vCiqd7w8scE87uyAuxxVnzvDWRe98mklvWBo87o/Iza9w4NdvXaz5zziDUo8IG+DvbNssTxH+2k8akeqPAS6S7tMyO28dKg3PJr/J7zCN4I89ZbqvaotuTvS9h29JAMNPHHPfrs3SwK8eowgvNkTgby9ttm6h+F4vNLfuDwM4l68yH6rPFBRR7wHFVu8HSdVvEmyDb2dWrc71TrIPAXzxbxkY8G8AV88vKG1Rjz1lmq8jyDxvDJQtDs9cJa8tcfAOuZo2TtCPZq8Jn2yPOyzhrwyImo8y9m6PbgiUDygtUY9GbVgvKndWbs5VjK90G1EPLVkgD03S4I8y6vwvF10qDwULYw9+7+Cu9L2nb2nu0S9g4ZpuxU4PDwq0BA9C5J/PBiqMLxOGE28dspMvYFCvzvCsSe9iZicvVAnAb3+vv28bGk/vWNYET1op+u8Xfb+vBAqDTwWcTY8YgiyvEZAGT1XFhq760xCvGSRi7yu2Ce6LwwKPQ5Jo7wLkv87ZrMgvZQypDywESK7NET/uRVPIb1g/QG8bFJaPI8NEL0sbEs8NcKoO7VkgDs9AaG8V5A/PDfkvTy40nC8HCfVO0Jn4LwcJ1W7MiLqOwFfvLzWEAI9kFnru0um2DuOTju8tI5GvT2D9zxPaKy8u5TEuue4uDw96ru8KO+mPCxV5jwo76a7ryiHPDbN2Lyyg5Y8kDdWvHlTprxQikG79hSUu3cDR7zSyFM7HklqvNqki7xmNXe8kdeUvCnjcbtPI/06X8SHu1LaoDzfsjq8kDdWPUrUIry2sNs7cdMCPV0NZLw6ppG9bmEOvXQukj11em27dXrtPBZaUb14Giw8i/OrvejazTtU/DU9gXu5OxT/Qbs5P828u31fPL/FjbzpQRI9BfNFPCIiIz1T/LW8CZ60vG2LVDyYTIg8kxAPPc8d5bzS9p07x1wWvVBc97xCfsW7UHPcPGY1d7whpHm96MPovFvBiDsHFdu87762PPSin7x42YA8pHcaudr8m7xIIYM99v0uPLXeJTvzERW9u6spPYArWj047209p9IpvODJHz1u8hg8baI5PQS6S7zMKZq82qSLvCa2rLv4CF89Et0svPgfxLveQEY8B+sUvb3NvjxWbqo80mWTvJBZa7yCOo48XCRJu9lrkTz63hi9xSMcPGklFT1lNXe9OB04PRvu2rsGQ6W8zhK1uwXzRb3up9G7UfGFPBTR97wOYIi8+B/EvPpBWTszW2Q9RsLvvOQv37vVI2O9mMYtPT/1a72Mmxs9uVCaOqHXWzwGxfs85UbEvPlvozzzEZU8Qn7FvEUHH729+wg9dviWPNHUiDy0Pue8GMGVPPMRlbrHXJY8yJWQu/e4fzyhwPY7nnxMPcFhSD1p90q79a1PvP8O3TzzuYS88QLhu7AZRD3YLOE8ZMKCvK5SFrwvNq28UYSAvSw4kTyygEc9yfyQPK6CK71V6pG8zDINvWq2bzyuEms8ZlHQuJzcM7tfTFu83MrSvLa+DjvLY5Q8ljfpu7/Bnzy0Vwu7E725ujzXrzwIs0+9DehZO2+UjLwB5yw8SQjyvPvpAj1g7LC8BIaQvUcRL71L3zU7rNv8vOypHLxaHxy8cVs6vC3QmzyZ1Vo6MZ0wvVMbGT0CTrC89+SNOyI1AL1kWg29/38pvPp6NL1c7hS9+kHiukbiC7yXnmw9OkEJPIQxR7xbR2a6jDTYvWRK97xp78G9dwCFvGTqTDq69Ao94W+dvPUMWLw3chC99nyYPf7fUz1Lb/U8SLEEvJR4hr3oO0A7FMUEPd/YBL0GrPa7HTALvNSeBbu07xU9D39yvYU5kju69Io8QwP9vIQ5kjwYi8C749YgPHRZVrsqMbi8dPmrvAa8DDw4Ob68U4OOvIAzq7sc8F88FyuWvJcHVLxVgpy8Sdhcu8Eoo7yh4Sg9LV9pvF4lA72cFBQ85qQnPRG24Dw0+/a8/3+pvJOpDb14/xI9EVY2Oxf7gD3JZIa7lBARPY7ULTpT6wM9eSfdPJcHVLyt6xK92ASXvG/EoTyAM6s8KGoKvJp1MDz0fYo8jjuxvC4vVLz6cfc6uRxVvYAzqzekqFa80fdWvO3ZsbzbKv28MzyUvOWlmb1ApbY8OTm+O73q27vOyaW7GZIZPX1c5zxa5zu9b5SMucbt7DzD95s87wfjvPXcQj1tXR69TnbOPJSom7xg7DA9KPpJPMFYuDxa57u7QXUhPefch7vc+ue8aY+XPeXNY7yLnT+8vhpxO0EF4byAM6u8/Ug7vd84Lz14Z4g80meXPF1OP71nKJS8o+iBPe8H47y5fH+8D39yPOw5XLxQTZK9oNpPPAiLBbyfCmU8KjG4PRyQtTx6jmC822qou6V/Gr0+bsi8J1r0u1FEVb3pO8A8BiSCPUuvoLyaRRu9L26NvMa9VzwoyjQ8fizSvMa9V7z6cfc87niVPdT+r70Jen09fvy8PNLHwbw0BLQ8IL7mvFkQeDs/NXa8xIZpvESrnToRtmA9oRG+OnWZAbxDo1I8QjxPuodwALsvxuy8yCRbvXIi6LwZ8kO9pnbdPKV/mrwN6Nm8Wkfmux4nzryqFM+85qSnPHkn3bukP289EI+IPTKUc73om+o8vbpGPYs9Fbz+D2k9II5RO/EOvDz6Sp897uCKuSC+5jxOpuO8Y+rMOxyQtTyXdxS8ZlkbvEkIcjyWN2m8+KPwvAcT+jx5J928z8BoPb+RCj2fOnq8ZSG7vKXfRL1UEtw86cv/vI/bBrzeoRY8wbhiPR7HI73HjUK8uLVRPO8HY7r6Sp+8pa+vOy4HCj3eMda8MdWQPEFsZDvoQ4u8+arJvLiFvDzV9fI8xfYpPHL7j7rO+bq8OUEJPa2rZzxr9hq3IL5mvPmyFL1K2Nw8dvDuPL8pFT0OiC89dmCvO4k2vDwsOBG8Z+hoPBxhkr3qEoS9oKq6vMzy4TsTXY88Hvc4O2zt3bxtxRM9C7HrPMG4Yr1rhlo9qkTkPFhQI75498e8qYWBPMzKFzt+zKe7pt/EOgjj5Dv9SDu96DvAu7MXYLs1m0y8bS2JvO5IAL2Ilua7zjEbPYudPzwBtxc8xo1CPUdKgT3vN/i7ZfElvVoX0bkexyM9OtBWvLZWGb1ApbY8jmtGPdfMtry7s+28MZ0wvZByn72a1dq8qK1Lunv1YzpPDWc7WrcmucFgg7vPySU8v8GfPKq1Fjz7EU09IP6RPVvefjzfOC88yFRwvMxiojyyULI8dCnBPCQswzx/NB28Sz/gPKdOE72zUDK95P34vI47Mb2jGJe7nBQUPQYkgjyHBxk71M4aPeHPxzoW9Ce9mD5CPWq/LLyeE6K7CroovRiTCzzilvU7JIztPLr0Cr3py388A4YQPE/lHD3YBJc8seDxuzkJKT2hQVO9VVKHvD7eCD227qO9lmd+PBXEkjyWN+m7DoivPEmoR7wZ+o48yyu0vIgvY7z5shQ9xSY/Pm/8ATtIEa+7K8hQvSD+kTx/k9W8l3cUvbSHoDxIsQS8ktkivN0BQb2/wZ+8sBlEPVVShzwvNi08mA4tPf9PlLwRJqG6uFWnPMFYuLutgx08jdQtvAYctzzGvVe8pU8FvVYZtbyussC880WqOv7fU7pcrum8HidOvPOlVD2/kQo99H0KvfTVabwZwi49XE6/vCsoe72s2/w8xu3sO/8/frzpy/+849YgvEhJDzzd0Su8a8YFPR7Ho7xSFMC8OGnTPMctmDhi4/O8BiSCPDkJKbzucMq7OtDWPIk2vLy98xi9vyFKu8q7cztFClY8vYqxPG0tibwb+Rw9KGoKvMmUmzrqci48v/G0vNTOGr1ZuBg9NwJQPZFyHzyAa4s9COPkvJrVWj2feiU96qsAvLzDgzskLMM8dpkBvcP3Gz3Ku/O8zgGGu/DXTTxCFAU9GItAPER7iDssyNA8WoeRO7TnSjv+39M8OJnovA64xDxbd3s9HMDKvEvfNb3u0PQ8mA4tPK8igbwNuES9EY4Wui82rbwmw1u8jGTtOxdbq7tTq9g8zZoCPf6vPrsBhwI9cZOavBEmIT3lPaS87ngVPRxhErx4Z4i8uCUSPTnZEz1+BAg9Ms1FPbiFvLw1C409QwN9vP1QBrx490e7AEfXus4p0DwxLXC9XK5pPYwEw7vMMo07kkEYPduaPTxaHxy90AAUvaR4QT1pjxc9ImWVPD6eXT3hP4g8YIyGvBUkvbvMkre9OwDsPIulCrwunxS9h9cDvEVDqDvbogi8AYcCPR73OL1jGuI8p06TPHPKCD1yImg9mq2QveBoxLyarRC9yrtzvFiwzbu/kYq8E/UZu1HkKrzr0lg9eSddvOpyrjtnuNM7OUGJPH78PD3G7ew8vRrxPGRaDbw7EAI9N3KQvBdbK71BBeG8l3eUvN/YBD3BiE29PNevOoZoNbw1cwI9IC6nPBf7gDzXXPY6DIFWPPmylDxcrmk8gGuLvLLwB714V3I9yltJvZXQZbxUG5k9jdQtvA/vsrw5QYk9nXNMvT81dj35qkk7yrvzO/R9CryMbSo8J1r0u3hX8jxNFqS8VnnfvI2kGL2Pc5E9DiiFOkEF4bwqASM9G8kHOTYy5TlNfhm9slAyPOYE0juSOU29eb51PIkGJz2hsRM9Ocn9vHFbOj16Zha9d/BuvPUMWDsHHDc6Y+rMPG0d8zt+BAi9Sw9Lva0bKDwOuMS7XR6qvbbuI71gfHC8CUroPKoUTz1ApTY8IyVqPPPV6TvMype8tU7OO6FB0zxUQnE8v8GfPTkJqTx+zCe7o9hrvVd5Xzw5OT68gpouPHxlJDxiU7S8boT2PDiZaLzHLZg8RqqrPHJSfT3bogi9GolcO/LeJr1DA/28DFmMvCgClTy7XIC7yfwQPbnsv7zX/Eu8IC4nuxgi2TwIUyW9NXMCvIkGJ7xpjxc9+RqKvUkI8rwmMxw8MZ0wvfU8bTzjDoE7bY0zvamtS72PO7E7PzV2vPdzW7v/twm98T5RO5ysHj19lTk86hIEPTjJ/bsmYzG9i/3pvHPKiLwLses7IsW/u1epdDkqOQM9LgeKuu4QoDxdHqo8kAJfO0KcebxWUge75mR8vJcH1Lx2wFk746YLvaSo1rz3s4Y99uQNvYlmUbt2mA+959S8PHFbOrsGrHY8BkxMPJRwu7ucfAm9SOGZPMsrtLwEHpu8e/XjvNI3Ar16/qA8Buyhu6FJHr3HXa07gipuvT4PkLvXnCG9vykVPU49fL2oDXY7kAJfvQYct7ysG6i85mR8Or/xNLwxnTA9QXUhvTjJ/bo4cpC9PNcvPRgi2bsRhks9QKU2PGlfgr15J128VOJGPdljTzzFJj89lAD7u0RDqLxCrI88UbQVveRtOTvkbTm8WYiDvLzzmDoBHw09DrjEusctGD3cytK8HPkcvHydhDz76YI8++G3PAXlSLwkLEM9D+8yusa917xjixQ9N9I6PAZUF727U0O9HciVO+BoxDs7EAI9yWQGvWpPbDxMD0u89xMxvZ1DN71Mf4s8lAD7O1QSXLyzF+A8VklKPVpH5jxaR2Y8DsAPvX78vLzQMCk866JDPbDprr09D5A893NbvJ96Jbw+Dp679QzYPKcWM73/T5Q8ycQwvC/G7Lwvbo27NmJ6vKFx6DxQpH+9PGdvPDPUnjz13EK9AR8NvGVRUD2Hz7g7i/1pPECltrx2MJq7EVY2vWCMhrtoiL66N6IlOsX2Kb1RHAu8gtIOPN/YhDzm1Dy9ktmiu98Imj2UAPs8rYMdPQ3oWTxftUK8JCzDO0MDfbycfIk91C7Fu2CMBrxrVkU89XwYPY3ULbxX6R+9TRYkvTZrN7xTq1i8QWxkvC9ujbsNIaw9T32nPJ4TIrsPT107z8BovSuYO7yQAl+7F7vVPLaueL1l8aU8FutqvcOPprwdMAs7F1urvHT5q7uu4lU9f/P/O4AzK7xQpP+8dwCFPCHuezygqro8CvIIPRlihL08Z+8849agvFCk/zyUQKa8++kCvS+WV7tM5wA60fdWvNOO7zsG7CE7arZvvEwPS7xCPM88DsAPO3FjhbxniD69D+8yu+TN47wAF0K9V7kKO/CnOD1aF9E71cXduRJWtrxqT2w8byTMuxVU0rph7LC7fYx8vJoFcD0mYzE9s1AyPaKhfT3wpzi8wWADvKKhfTwbKTK98NfNPHj3x7vu4Aq9F7vVuzULDb24tdE8qR2MvGRajbxU4sa6JVzYPOnL/7vsOdy7nhOiu229SD1fTNs590NGvaoUTzxaR2Y8K8hQvVq3pryjSCw9e15LvOqiwzykP++88Q48tubUPL1+BIi8dsBZPKpNoTulry+8AYeCvNf8yzuMNFi6seBxvF4lAz10iWu8cfuPvAJ+Rb1Lr6C7JmOxvEBFjD1EA329+RqKPWAcRrwW62q9zilQvUcRL72LDQC9yWSGu8wyDb2YDi29i20qvZrV2jx8xc68soDHPCgClTvQ8P076EMLPNcsYT1mgWW8txX8u4AzKz1TG5k8KjE4PE3W+DsERfM8KmFNvPEOvDz5qsk7Vhk1PM6J+rw7cCy8YHxwPamtS73pq4A8xfapPP7fU7wEhR69LKAGPF69DbsR5vW8+bIUPXFjBT374bc8WLBNu43ULTvQ8P08TH8LvVVSBz0gLic7jjsxO2mPl7yugiu9KpHiOnPKiLyMBMM7eJedvBO9Ob1txRO9QkQauWNK97sbWUc8K9GNO1Xixrx+jHy9KMo0PR3IFTxcVgo94GjEPE99J71UQvE87DlcPLDprrwD3m+9RNNnPIdf+Dps7V09vcMDvbuD2Ls2MuW7cYtPvJECX7zTXlo81P4vvLDpLj1eVZg82AQXPX4s0jwnWvQ8TOeAPAJOsDzU9EY984DAPDb397yxE9+8KLv6vO9Xjb3kJOY8pvc+PeiZsTwdasm8WKPOvOytML0ev7c8Wvg8PB8aFTwrXIG7pxecvGMgu7y+T1y66DjlPFstzrxGHkE8Scgdu3U7JjvuAp88Wvg8vUjOjDxB1TC9YTVvOxdr/rw4eKE8vLwGvbdcb717bwK9kegxvLfdmLwxNQC88mBjunZwt7wI+m88oa4uOw0O77wVYig9hBZXvAsFGTyjAx29JD3ZvMAFl7ud9Qy97K0wvZRG9jt4znu8Jad7PX4uEzqaetK84DBEu2Wqur0D3Rq9J+e1vdWqgbxXlAm8wlqFPGR1Kb3lpY+8qkDPvMAFlz3aXTQ9XagIPX1pk7waSmy9aAj/O9+mxDy5sd28WA1xu1ErnLzId9q7WsMrPcjhfL3Tv7W7Eg26PEzx0LxWCgo9ueZuOmieXLyNqHe8Zd9LvC7P+bxW5D0712mSvPOAQLzy4Qy8uyapO1NaPrxrKFy8FjZtvCF+yLugw+K8dw/rPKVhYbwWvQW9eC9IPJb8MD0l85M8ymImvU0m4ryXUR+95wPUO0tnUTwTDTo9F+ynu6pAzzwdkJU8Tbw/PeutsDx8bwK7dkT8vIFXRrukWIs884BAPPiUP7s/H/Y7pizQPKX3vry0WYg7B3BwPD5LMb1ORr+6bH3KvG6dpzqKFaK7FELLvCtcAbymUpy9ihWiPD0cD7wVzEq8iulmunggAz0f9Mg8RekvvcGkyjttbgU9yS0VPY4pobxxXDg9zCG3vEhzrzzTXmm8AeMJPU+wYTzeu3g8lZKOvHykEz0adic7ddEDvSZdtj1WTmC8XjKIupGHZbsohum8XOzevGR1Kb3WfkY9l1GfPGyyWzzn4/a8NljEvH00gj1v0ri8WpdwvJp6UjxMUh28ZECYvTz2QrvdQpG2vrAoPLa9uz1cgrw8N60yvLd8zLyuNPG81+jovA/EqbrD+Ti9c3wVPTxgZT2DS+i8PWDlvPXVLrxebYg8uTKHPCFvA713D2u8f81GPVS1mz16qoK97qFSPROs7TuylAi96PQOPdzns7wF94g8NO4hvFH2irzbuJG7k9xTPdkoozy+sKi8mtsePHdVFLwf3xQ8KqbGvDuhVL3/WAq9mSVkvVy3zTwrEOm6K9tXvUYeQbzugXW8PFePvMJahTzTGhO7yOF8PR/flD1pnly97jcwPdm+AD06kg+8HdTrPETpLzzYnqM8pY2cPeZEQ7o1IzM9oQkMvcP5uDyC9vk85nnUvPtTULwo0oE8hAEjvaTX4bwx2iI9mVr1vAYGTj1iNe88FreWvHqqAr3hMES9ne+dPEvR87zAb7m7ESLuO4SAeT03F9W8CeU7vDvBMTwNbzs7FfiFvFFmHDscNbg8W2JfvW/SuDzNwOo7eqoCvSFJt7wxNYA8bjOFPHggAz2YWnW6Hr+3vKEY0Tw3F9W6VwQbPAzZ3Tu5nCm9J+e1PF/XKj26O908AVMbPenuHzzZvoA8GXanvFWvrLu694a9lleOvSo8pLxnNDo7BQZOPD6mjjuYhjC9m2UePV5BzTy7pX+9GItbPff1izxJyB2+Dx8HvWgIfzxxxtq5A7HfuSOeJTxMh648vrAovZEdwztWGU+6GQyFvEnInbzOdiW91m+BvAqwKj0c1Os71jQBOpSnQj2144c9Y3uYu+au5bwO+Tq8D2PdPLKUCLx2RPy84BDnPIoVIj0A8s68pvc+vTfiQ71B1bC95y8PvbOOmbps3pa7qgs+u3K3FbsI+m+7OYF3PBPYqDzag4A8PGBlPREibj2VMcK6W02rPAFTm7xBMI47rolfPHDyFT3vbME7S9HzvHykkzw4CBC9kegxvVy3TbyYu0G9f83Gu3ZwtzwQzX88015pPIw+VT2b5HS8sgQavZmmDT2MPtW8H6qDu78aS71Izoy739tVPKkg8jxUehu9bzxbu1+rbzyn4go9bBOoPGZ+/7x6uUc936ZEve7NDb1+Y6Q8cVy4vZbQ9TpMUh08v+U5uz5LsTzZvoC8FKxtO6lsCrzDxCe8XaIZPU57UD5cgrw7xoO4vG/SOL1bUxo92J4jvYC4Er19YyQ8crGmvMpr/LsbFVu9jpNDvK+JXz3HoxU8feL6OybH2DwSbga8W2Lfu48y9zzfzBC8c0EVuVNavryvepo8pcKtvEEwDr1ElMG8mVr1vI8ydzrI2KY7A0e9vDz2QrzpuQ49sL7wPL5GBr1BdOS8KLt6PWRVTLxTJS29R6hAPAUyCbvQloK8qLbPvB4ghLxeohk7VwQbvAa8iDwxREW8TIeuvIZcgDw0OGe8xyLsvAX3CDz2P9G7JZJHu2T0/zx0DIS8uZwpvbZcb7sa0QS7gcFoPFyCvDzFzX28TxEuPYaRkbzdUda7tlxvPIpKs7uL6Wa9T+XyPHQGFT3VFCS6cPKVPUTpr7za/Gc9RJRBPcms6zsQmG480AAlPdBK6rzhMMQ8hOHFvCqXgTthYSo8643TPG1IuTxIkwy8KA2CPCfntTzozkI8NG34PKUdC70j07Y8gkKSPVI64byMc+a8sc8IPX/NRjxLWAy83Oczvf2ovjuDd6O8sUhwvO0CH7oX7Ce7DaTMPJdRHz3NwOq8q2YbPfAcjbxB1TA941l3vEQz9Tw293e6tYgqO7wmKT18eNg8DloHPYSAeT02jdW7+e+cPVI64bz11S4833EzPEyHLjw+FqA8ih54vf2oPj0gk/y7cJHJOwEn4Dxdgjw7haDWvL9P3LxLnGI9wNAFPVIrnLqz0m89KhBpPF9BzbseiqY638yQvaLOCz2FAaO7lccfvTitsrxBCsI72J6jvGrkhTzwjB69no7RPJhadTxtSLk8Q/WNPaVhYb24Eqo84xsQvUxSnbxfDLw77s0NvGRVzLu3Rzu8E9goPQ8fh7yOk8M8GFZKvB5VlTxbYl89a94WPSccxzwRqYY7x24EPV2imbzwjB69ASfgvOruH72mYeE8hlyAvXEnpzseiia8qqrxPBQzhjxigYc8APJOPMEO7TpT8Js81qSSPEc+HrwPzf+8ZPR/PXj6Nr0MOqq8e9mkPYWAeblsfcq8eMWlPcBvOb1BCkI9K/s0u+Zqjzw17iG72AhGO9T0xru0WQg9PSvUvPcqHb34/uG8Ee1cPfMf9Dv3qXO884BAPca4yTwA44m7kbz2vBUBXDzHMwQ87oH1vIEitTwmXTY9WR4JPdyyIr3Sn9g8eMUlvU0XHTvYnqM7xeSEvNcd+jzQf3u7D83/vLz6bb3JLZW8t6gHvDZ+kL3U9Ma8YKvvul2oCD1z5jc9yr0DO6aW8jxQsOE6yazrvJdRnzzKAdo8Etiou66AiT2vVM48hZeAO2T0f72p6+A87wv1O4UBozzxjJ47aI+XvBR33Dy6cO67KLKkO0ZTUjz4/mE9H+UDvfkev7v3Kh29/D4cvWKBh7y4bQc9ge0jvCzGozznzsK8XSFwus52JTyW/DA8d1sDvQtPXrxkRoc7dkT8PEW0nr0VYqi8ge0jO2gI/7zP0YI8Mq5nupSnQr1PoRy9crEmPEGgn7yhri67b9I4vV2oiDx0BhU9GkrsPPxzLT366a28c1DavIj1xLz+yJu8mLtBPAVnGryjolC5eCADPSEd/Dk3F1U8ok3iPEJ05LkBJ2C8SZMMOiOepbyIKla82J4jPD+AQryDdyO9csZaPdFbAr3mao+7ZgWYvE7cHD2fJC+779bjPOuNUzx5uUe8Qj/TvArluzx9NAK8K/u0ulVFCr3RWwK944WyPNCWgrsOLsy84DBEu6MMc71kVUy8tR4IvQ0O7zzDY1u98haeO9GfWL0oDYI6x6MVvSb8abxuHH67wTooPToL97wM0Ie8I54lvWznbD1iNe+7qLZPPerC5Dy5sV295dogvLh8TD2D0oA8YCwZPRdr/rvYcui87OLBO3CCBL3YCEY7/QOcu6dMLbwV+AU8AhKsPMC5/jskcuo8PMExvSfntbzfEGc8IX5IPNdpEjzM7KU6uveGPX9s+rubZR69IrPZPGd+fzuRsyC9cZFJvQp7GblJyB28R91RPD6107y6nKk7iMCzu+GaZr0AnWC9Wy1OPBghuTsadie94cYhPcGkSj1Vryw9LyRoPL8LBr2igvO8RDP1O2veFj1/mLW9fKSTPG4c/ru5sd27HlUVvBCDujxa+Dy9PhagPOOFsrshbwO9U/lxPAgmq7zWbwE91n5GvasxijxY2N88DcoYvW9x7LtBqXU9nySvPFstzjp2lgO9CCYrvBvgSb0tIQG8Q/UNvC8k6Ltm0Aa9HZCVvMduhDzSkBM97jcwvTClETvL8pQ9VhnPPBfsJz14xSU5Pkuxul/XKrwf5QO8A22JPe8L9bsJRgg6FWKoPF4h8DyBwWi8HZAVvTuSD70nHEe8tSdevLHeTbzTv7W7t92YPfj+YTz4/uE7wy7KOajrYL0vusW7oa6uvPnvHD2KtFW9Eg26PHdbg73IMwS9ikozPGkfBrwzZKK6XII8PYKsNLt6T6W82b4AvdznszzakkU7gYxXPHwONj3jJGa9eCCDPLu8hryeugw9q2CsvB1qSbwUd1y8+3kcvAnlO7zCWgW8kj0gOSjSAbylUhw8GwCnPD/qZLxfZxm9Y+spvRpK7Ds1uZC8m2sNvUMqHzyC9vk8ix54PDfiQ7kG0by8VwSbPA6PGLzAbzm71ZN6uhaXubvP4Ec96sLkPIWXAD2gRIw9pvc+u5kl5LuFzJE8ZHUpvUhzLzuASAG8g3cjvV8yCLuPMve8umeYPGwTKLzYCMa8CFu8vLTS7zxvcey6pY0cO1I6YTuGXIA9KkX6ux4p2rwnUVg7JsfYPAiBiL0a0YS8YZY7PV23TTpLnOI8ULDhvCZdtrv93U+9owzzvCPTtjy4Mge8s/4qO/IWnrwQmO47wUP+O9koI7yR6DE91BqTvJXHn7xhy0y9MwNWvCoHk7y9tpc9bjxbvYCDgT18b4K6GkpsvaF5Hb0hHfy8uEe7vGXfS7ya2x69JZJHvZJSVL1uMwU9XBiavBC4yzwfqoO7GMBsPCXzEz3EH4U9U49PvNPlAb0WAdw8zFbIPH8C2DzuN7A8+R6/POwIDjotMMY8rkUJPJwwjTxzUNq8RLoNvZ9ZQD2xqTy9PuEOPVfPiTyngT47iV/nvIulkDz7U1A7JHLqvIoVIj2znd48cxvJPJD9ZbszLxG8cVy4PIcK+bwGBk49Di7MO8LKFrwjniW8AIgsvaFNYjwxRMW87eJBOYulELyd9Qy98cEvvUtYjDlVryy7QTCOujqh1LtBCsK8o9dhveKa5jwoDYI8HZ/aPDBZ+Tycz0C9KEITPXEnpzyfWcC8WG49vWWqOjzOBhQ8nDljPRViKL0VAVy86JkxvNZ+xrsKsCq8+R4/PAC9PbsVlzk9bW4FPUuc4jz4/uE8vrCoPDaNVTyaELC6MFo7PSMgJD2eu1K9ItISvGSVuLwjHWi9USAgvMIJYT1ZHHo8prpoujapNbw3qTW95CATPNyAS7x9SA46U9A7vAKqI7tp5DK8YtGjvImT4jyyH6474PT7PC5cjrtyk+Q5mljfPBCoT72d9728lB3evLan1zylDYm910iGPPHQLbxck2a9eb0ovZkNirws98e8mSEDvXxFUrv5p9G8bVjjPLFHoLqZb5S8Ix3oPCszs7wOIKY88OFqvP0yN70UHzy6W6dfvTa9LrxENJo8VlshvLANiD3D4W68B+Jou57jxDyIu9S9SQpVvEdaub1gDY+8IZW+vCPSkjxjqTG94fc3Olkceryha249COUkPddFyjwqHH68cffBvMflEzz1MGU9u+WUvOZaq7s1pvm7JCAkvFnjSrw04mS99hzsuRse0jzuMc+8PiELvD+DlbshWdO78dAtvQNav7tnDKW87Gr+Oy+TajuWDCG8nAj7u/mqDTw0gxa89FjXvKVvE7xC+gG8dpeJu1cw8zoW98m8ZJW4vCXh/DxhgxI8E28gO89DeL0Bp+e89guvvN1Y2TxYRyi7kzFXPd1Y2bsBXBI9wTHTPCz3xzx7bcQ8I0Xau2uAVbzcqD27JPX1ukvRJT0t0hG8BDWJPHNrcj2UNBM8rbn+uvQNgjvZ+CG9V0RsvMP4IzoFHtQ6F89XvOOn07lE5gg8hUekvXeXCT24Wi88jg0Lu8ExUzyDbNo850P2O5qDjbwTR647yR+sPMS8OD09vES946oPPe8JXb19XIc8AOYOvSQMqzwX0pO8ALtgPA2+m7wkCW89jKuAu3DjSLwEMk09qwljvK+AT731MGW8VoDXvAptzrwFHlS99hzsPLP0/7sk9XU8fVyHvPOASbyX5C495wrHvG4ftLwTWyc89PkIPEWTaL06DKk7Eg0WvLhD+jy3IJc9KURwPLDllTqTRdC7gPgpvS2EAL3qW5S7Ir4ZvfogET3/4lI9OFlRvOAI9btp5DI6FoQCPVLNfzybMym9aOF2vPxGMD1P5oc9o0a4vSNIFj1ck2Y8eamvvJscdDwBqiO9uEP6PIQzKzvfM6O7DQwtu8lHHj0fqTe8ckgPvX0xWTv7biI9ZzHbOwtFXL3lWqu8C0iYvPRYV71YCz09GWt6OyXh/LxXWGU8AZPuuwptzryQWxw87tIAPNP5iz3fHG49QTMxvV5Gvjw2qTU7bGzcO6a6aD2PvaY7PdC9ORxJgD1kgT+6RqqduwFIGb0I0Ss92fXlPLduqLwiMeG7cc/PPDMNE73CDJ28UNIOPckI97xCM7E9qG1APS+CLbxfHky8wvVnvWHiYD09v4C8IISBvF1r9Dw0zms9dFq1vBCU1rxo4fY78JaVu/tr5rwm5Dg8J7+CPNe+ibxizmc8ToFBPEFHKr1vMy294QuxPHH3wTxfMkW8xM31u+40i7w80L08lDQTPLHlFby79tG6OFnRuwmVwDw50hA92ZYXPfUwZT1yp928QR84uw31d7wuvpi7lNKIvRxJgL2nvSS9+iCRO2nksjyI0gm8UuF4vX1IDj3Vfvk8NaZ5ve1ZQT1Vq4U8bVsfvtn4obxySA894Pe3vM2TXDqwbFa8hgs5PFSUUL2Db5a7iLvUu5YMobzjz8W8oDQSvQjlJLxm0gy7aCAePHf21zswliY9nR+wPVtcirx2Hkq8F6dlvLy6Zj0z9l28MUZCvWANDzx/4XQ6BDLNvMEd2rygf+e8D9BBvftr5rysDJ86L39xvOxq/joW41A8bhz4u7MfrryLbqw8jauAvNdFSj1oDCU9W0iRu/mqjTxRNBm9L6qfPAtZ1TyJSI09NA2TvJwzqbod5SI9IjHhvMxIB70cSYC7C4FHvVgfNjwi5gs9+pNYPSPSkrtdV/s8SDJHPFYNEL2B0Dc9a7zAvOAI9TtNgUG9yR+suwC74DwmvMY82fghvQzmDT2P0R+8tqdXPJDRnzzJMyW97h3WPNKXgb0JvTK9oyECPTsMqb2/lbC7NOUgO6ltwLqjIYI7j+UYvMFIiDjpbw2945YWvYQw7zywWF0+3x+qO7H5jjwj0pK8070gPT9sYLy3qpO8vr0iPbeWmryQpvG8jB5IvAf24btizmc9TZU6Oy7P1bwm5Dg8hR+yvGuA1Tvjp9M8MiGMPM2CHzxxcAG9p70kPS+T6rvEzXW8fVwHvVnjSrzRgwg700edOw/4s7xfWre8kKbxPERwBT0vNBy9epU2vLvi2DyNCk+7ZG1GvVgLPT0/WGc7t26ovJeoQ7ysHVy8qVlHu02BwTpcu1g8oYIjPPVvDL3JMGk8mzOpu7P3u7uW+Cc8X1q3u4i7VLxzf2s8WEcovVO8wrxx90G8i4IlO5bQNbxQ0g455jI5O4ogGz2NDQu8pfZTvP/lDrtza/K7XWv0vDj6gj3X0gI99/e1PPHkJj14DQ29tkiJPcaATT2+kvS7Emxku6FX9Tx5uuy7p72kPH1IDr2vlEi8ZVlNPFEMpzxFu1o8iZPiPPD4nzzT4lY8EKjPPMaXAj1D48y8vn57PZQdXj2xWxm9+gyYvFBcizveW5U7BQrbvBmCr7yUIBo8Us3/vO7SgLtHf+86neNEu02BQT39L3s9aeSyuwS/BTzg9Hs7eOJePcG+C73fMGc8S/kXvP/2SzsjICQ9x1jbPLHllTz9Mjc9t26oPJr5kD3x0C28hOUZvAxckbwW98m8ox5GPIIhhb24big9pApNO+OWFj1RCWs8j7pqPKq+Db0z9l28eaZzPfKl/zzJCHc8NOJkPUpvGzze5ZG8iX/pO98cbr1BMzE9iUiNu7v2Ub36f1+8HeJmu2qox7zka+g8Xka+vDFutLvjk9o8o0a4PIIhhT0vf3G9gZTMvGENj72mWxq7dw2NPNmqkLsuXI48n1yEOofPTT0hlb68+M9DPYC8Pj1bXIo8ETUIPRxJAD3bvLY8z0N4POni1DwUMHm8qzSRvJb4Jzw7IKK80QpJPMFIiL2vgM+75jK5vE9wBD23bqg8BUkCPY/RnzsDgjE9LkiVPL5++7tQMV28SR7OvGgMJT2hWrG8KGziu9aBtT19HeC7x2xUvLVcgj1SzX+8KUcsPZszqTyMRjo81oE1vBen5TzGlwI8JPgxPdfSAr2rCeO8Vg0QvdBGND1Abxw95kP2vF2WIj2Dgw+9OPqCOom+EL3Obqa7DiCmvHYeSr2ibqo6UEgSPbH5jjxUlNC8XzJFPTaVPL3E0LG8TZU6vOj2zbxARG47GWt6PDP23bw3bUq9v4E3O+/147svqp+9tUgJvGHi4LxfMsU8hDBvPdZZw7veb448Us3/ux7237wCa/y6GX/zO9KXgTyab5Q9aPXvOymDlzpBR6q9lL4PPbhD+rsXXJA8xM11O8rjQLwUM7U88OHqvHVGvDsogNs764EzPVLh+Lw+qEu8C0XcvJUMobuxMOu5aOF2PB/RqTtp5DI9IjHhvCzjzjkNCfG87yCSPEuDFLwqMPe8ZJW4vERcDD2LgiW9mlhfu8cNBjzARUy93x+qPIQw7zrJHHC9u+LYvIk0FDyQkvg7VKjJvJNF0Lwz9l24ryEBPV5GPj10WjU9g2zavEP6gb3lV++8RqqdvGj4K7x0a3I87r6HvD6U0jrclMQ8OEVYO2ZwAj3BXIG7p5WyuiHmi7kM5o28CNErvQ0MLbwdDRW9zLvOvFWrhT2hWrG8kX5/OWbSDL1MqTO8mZcGvHI0Fjy8zt887VnBvOVaK73azfM8NNEnvfYfqDtBHPy8YArTvJ9IC7wxRsK8rdCzvBwyy7vVqSe9iZaeu8rjwLuJlp488bw0vMaXgryeu1K9tjQQOiaoTb0H+Z08BDLNuylYaT10bq68uyGAvLoKS72ERGg9nuPEvL69Ij1o4XY6iLtUvT3QvbqpRU49sGzWPHxF0jxOgUG8ePmTvM9GtDvSgwi8L6ofvA319zmCq4G7i0Y6PRULwzwBXJK83zDnPBfmjLxHWrm87jFPvAjRKzzklhY8OeaJu7W7UD2Jlp48SR7OvHBwATsI5aS7U7zCvDeBQ71fHsw8RL6WvNi+CT2+gTe6p72kvBmqoTlxvhK8fR1gvW1Hpjwi5gs7eG+XvBseUjzUlS48GL4aPfoMmDxibxm9VlshuyJwiLvlWis9a5TOvUBbIz1Hf2+8y0iHPH/hdLvHWFs8v1nFvKFuqrtXb5q8gLy+vPuCGzwnqE283vkKPT6UUr3e0Ri6r5RIumdIEL1WWOU7Ys7nPFgfNruwg4s8B/ZhvBe7Xry1XAK9P1jnvJmXhrxjkvy8swj5vHKTZLtbp987e5W2PF1uML1Xbxq85YKdPZRIjDxOWU89i0a6OxGA3bt44t686YOGPKlFTj1o+Cs8sIMLvQJ/9TmQkng9k0VQu3chhr07ICK9jpeHO2nQObvUqae7EEkBPRhIlz144t48MFq7vF81gTxXW6G9swu1vPXRFryyMGu8sVsZveuppTwgqTe98JYVveO+CD07IKK6Qws/vE2SfjwFSQI8ciCdvM2+iryeu9I8bh+0PPmqjTwcgxg9S/mXvRMw+TwdIY68dgrRPFhHqLzxzfG84Ah1vD6Xjrtizme82+QoPE5tyDtqqMe7zLvOO50fsDwhXA+8bhx4vFgLPb005SC8fglnvWbSDL0+qEs8FtKTu02S/jut0DM8iadbvANavzy6Mj08q5YbvChs4rsGl5O7IkVaPWY0FzzTvaA8MFd/PQW/Bbu6Cku8h+YCvPG5eL2lg4w8pc7hvC+CrbwscIc7bW+Yu+SCnTwjHei8ALvgvMkfLLywgws98rn4uya8RjvTR507hERoPeni1DwcvwO9EJTWOyJF2jwhWVO9cXCBvCMdaD1JDZG8yFsXPTBaO72Jqpe7aqhHvTa9Ljz0+Qg9N21KPHqS+jtRDKe8hFsdPFpwgzkoDRS8fjHZPLP0/zyQpvG810VKvWo1AL38RrC85m6kPYmWnrzVbTw9A244vThZUbx+9W28p7povIwywbxmcAK907pkvayWG723a2y9H6b7PDTiZL0Dbjg8InCIvAKqIzvrR5s8CKb9PHm9qLuaWN+8HDJLPKGCozzRMrs8Zx1iPP0yNz1/4fQ6AaojPY0yQTv3Hyg9hDOrvNKDCLw15aA9O+Q2vQGqozuPzmM8iZNivNAewrxbSBE8rOSsvPm7Sr1o9e888fgfPRxJAD0FSYK8l6hDPK3N9zzazfO8LtIRPUgyx7xT5LS85CCTvEPjTL0rHzo8UNKOPAcNl7w+vwA8i24svXRX+bxdV3s88PifvMdY2zuEMG880C9/vPf0eb1jpvU8mJTKO4m+kDz39Hk8mlhfvcXQMT1D90U8+26ivF8yRb0jNB099gjzPMoLszuDWOG8x+WTPMf5DL2Zlwa7XVf7O9mqkDyvl4S8pc5hPZn5kDznHkA9D/izPO40izw0lw89gZRMvHKwvTxL8NE7xlQxvXyguLygTha9ilwSPC4g4TuUTI08SUIFPRulw7y120G9mbdvveG9G73SnGk8b/MnPbv/XTxkSMU7I4THvMTtKj2QgC68TP+avD/v3zzz4ik8/W/6u1lWHD3xJ0K7/zgUvYU6pLxX8UM9A01QvMgOgrz2nz+9kYJcvchWX719omY8RiLFu3YmDb2RLE28m3LXuzrajDxOrec8iEsbvfkGRj2b1QE7BrTWvIQrWzspYR27HV8UvZOTU71uRwm9pnGbvOFacbzDl5s8rlLNPJ2RgLxZrCs8/MPbvJdfMryEK9u87mqsvB1gq7wYkp48+VzVvFbvFb3+fsO8yLkJO6ZxGz2vqFw8aMBCvBctxrzLE3U7Q2UvPX8HPzwQ+mA6beKwvBk+PTkSC9g8LtgDvcZUMT2wtyU8zYcWveMVWTtRzJA6dRdEPPB7Iz2bcte6SDM8PP84FLxFzDU87hQdveuge7yVpMo7gymtvOaKEbwBSou8IB3BvK6mLr2g6tS7GJIePX74dTwn7fs8j38XPVEhCT3qnk08qHV3vdtFnrweYlm7F4NVPV3OmTzVvCm9DkyUOmdbajzCMsM8h5JhPdfNILy1L6O84VrxvDe6TLxbBGk8/Sg0vZEszbwWgae90Zq7PMvLl7xRIQk8dRfEvMAhTDwZlMw8GupbvITVy7uXCSM8WQI7PKGlvLzFRWg7j3HlO//jm7zdmy28KQsOPYQrWzxTz1W9iKATPNCL8jxX8UM88uESvM0kbD3FRWi9Z2gFuydQJr1A/qg8NxDcvFF3GLwXLcY8vh6HPDgfpTwschS9IclfPTOmkLy+ZmQ87bFyvfeuiLzyfVG9+xc9PZSiHDx9TNe7dW3TPANN0LxqwvA7g9MdPZSiHL0Rpv86P+9fPU2rOb3nN0e8owqVvDCH57w2uB48/MPbPXNc3DvDlgS80O6cOuG8BL0+Q0G8uZjXu9MBQr0llT49vbrFPBCyA7yp2k+8AksiOwyRLLwB9RK8Zq/LvFF3mLvF71g99fMgPSbrTb39KmI9E3CwPGA0Cb1RzSe9jcMYPYdKhDwwh2e86wKPvU5liry2P4M8LHIUvQ2TWrxk9GM8ilySvfHRMrzIuYm8jcMYveBYwzzuaRW9gF/8PLJyDTx7O2C9p8nYOx5i2bxkrAa9NP22PEntjDz1kPY86vRcPLpTP70tdEI8lU47PU2rOT2lcAS86vTcu5YIDD1eerg8jhvWvEYiRT141Nm7Ng0XvAFKiz3UV1E7IcnfvPXyCb2dLb+84b0bPdyMZD37wa26KPzEPKCjjrx78wI85d8JvZazk7318yA9IYECPJHYa70BSgs9Kf7yu9CL8rwSYee8KWGdPAT5brwjhMe8180gPQ9OQj1NAck8Bm0QPGls4Tz7wa27bNNnO7QgWj1DEU49rU8IPajXCj1TMxe5mW+SvCxylD33oe08zt0lvPAYeTx++HW8wojSPenxFz1+W6C8irIhvMVFaLtbBGk7tIMEPeY0gr3jIwu9NKenPDJCTzwL2HK8kdhrvRg8jzzp8i49yKzuO8LcM72xY0Q9YDUgvbSDBL5LmsK87sC7O3FZFz0scpS8JD6YPIqyobxs4AK92zZVvU5X2LxMVBO9oPgGvdndgD1L8FE8oU+tvJpwKT3Azeo6flugPOV8Xzx79Bm88jYLPNd3kbqjtAU8/uIEvKbHqrwVKoE9UWp9vKNgJDqV+Cu92zZVO156uL3+1FI4QWOBO/afP7wjLjg8aMDCum/zJ70ruVq8CtZEPJEszbt9TFc98M+EPTwyyrxxWAA7BhcBvCsPaj2nydg8kjuWPHnjIrwKgLU8LnbwPEruI7ztvo29mAvRPN6dW71V4Ew8rEFWPcm7Nz3lfF+9hpCzPD00eLogx7G9kNa9PI8qH71lrR29fwe/OUMRTrwOoQy8m9WBPQNbgrx/Xc680lSMPA6hjLqyZfI69vVOveR6sT2AFoi9dRfEvO4UHT2dg869v3WtvIzCgbxnsXk8WJ3iuu0FVLuVTju9eNRZvZcJozuH6PA81QNwPggbXT1jnCY9OzAcvK8LBz1mWTy8dGulPBVy3jo2DRc78dGyu5SiHLebyOY8h+jwurjsOL0RYWe8WJ3iPIWBajzPmI28zzVjPauVNzqluOE7hNVLPM/tBT3UZYM8irGKu5HY67wfGxO7BxkvPaD4hjsCoTG9aSQEvQ+kUTvDNPE7TlfYvKcsg7yflEU8r6jcO4/H9Dx2GXI8/Si0PHs7YDxOEBI8UzOXux1gq7wMkSw7TroCvDCUAr36CHS9FMa/PAqANbxgNaA8VN6eu6csA7x75/67aGozPJdfsrttjCG9fKA4Op2DTr3qSD49+muePLQujDtA/ig8xv6hvGUDLb318gk9yFbfuwDmSb3wGHk9aMBCPXh+yjy6Uz89Yo3dvA6iIz2AawA6hTqkPL7JDj3+4oQ9D/gyvek59bwgHcG74xXZO2zTZ7xpFlK8zjM1PV4kqbuWXQQ9ZQMtvN+spDz0RwK9f11OPANNUDwpYZ08qNghvOpIPjsdXxQ9NalVvWSeVDwkhnW94mk6PJdfMjwgHcE6iEsbPNOrsrwwMVg9BrTWvI/H9Dy5mFc84yOLuznLQzxr0bm8gGsAPSoNvLyOxca6fKC4PDLsPz3c7w68bzruPDWp1bzF79g7iaPYvK+o3DwfDvg8anuqu6XGE7wEXJm9tdvBO6Dq1LwCoTE9QKgZPf7ihLyktrO8huZCvZ3ZXTx+WyA7ZJ5UPMXvWD3PmI277sA7POFnjD2aHEg8jbb9u/qy5LwLkJW8Fy3GO44b1jrQ7hy9YeE+vFFq/bu3M388TroCPTJCzzzKvWU97K9EvAlx7DxTJeW6/SpivK1PiL1CDom9nNevOFB2ATsEXJk8iEsbvSMuODxbZxM8z9/TvB20DLxNAck9ybu3OXv0Gb1aWMq7bpwBPW+dGL3+1NI8MD8KPEypi7y/yzy930l6vBTGvzspYIY95SZQPRFh57pt4jA95CQivHygODx8Sim6jRmovJCArrysQVY9PIhZvCWVvrxxBJ89GC90vHxKKTzEQzo954uoPKYduj2U6WK89p8/u3YZ8jyZGQO66ZwfvT+ngruKsiE9Fy3GOuUmUL33WRA9GOitPFOIj7wptpW8VTbcvNCL8rwkMOa8M5hevGrC8Dz5XFW90ItyPbFjRDzUV9G8IHEivW/zJzzcmpa61GWDvKjYobwk6Ig8JkHdPMsgkLxEvWy9k5NTvOibiDvyi4O7RXamu9+spLtcv1C8dW1TvO8WSz2wVHs8ZKwGPU2rOb3tvo28n5RFvYihKry6U788lvpZvCwes7wmQd27Zlk8vQvljT07his9LtmaPHrlULxV4Ey86ZwfPXGuD70sHjO6OXU0PD2Wi7y6pyC8Ly+quxctRr36age9Vu+VPJkNfz1JmBS9TPL/uek5db1V4Ey86wIPPV3NgryZxAq9oEDkO4PTnbzQ7hw95+G3O80kbL3mKH466PCAOqgf6DziE6s87Fm1vClghr1+sa88z5iNPADmSb2Bwqa8VTbcvBJugjq8DRA93kdMu78fHr1OZYo8bYyhO4hLm7wPTsI8VeBMvIdKhDwAkLo7gRi2PGPyNbue5488SkQzu8oRx7x5gHg7WVacvOYofryLXkC8s3S7vO1bYzyYtcE7QP4oPPlc1TyTPUS9yLkJvcvLl7sHGS89MIfnO7QgWj3bNtW8sWNEO//jmzvJuze9/n7DPNW8Kb0rY8u8DfaEvC8vqjrwwuk8J1CmvNs2VTyPfxc9huZCPNDuHL14fso7+QbGO5Iu+zxs4AK9vmZkPMhWX73BI3o9M5heumDS9TyR2Gu9GpZ6PbG507osyCO8182gPLHHBb0gxzE8sFR7vCPa1jqp2k89EQkqvbR26TpffOY8ZKwGPMt2n7w3ZD09P0XvPL8fnjxvOu48rO30uyEsijxzBk29y8yuu9St4LwruVo9RRN8Oz/9ET02DRc92+BFvL4eB71EZ928180gvNzvjjs1/2S95dBAu0xVKrz8w9s8+8EtveBYQzyrP6i8E7d2vO2+Dby6U787NlX0PFIjN7wCS6I8ZxMNPVu8Cz16j8G8K2NLvLdAGr154yK8jGBuPKgf6L0aTQa84yOLvP1very8Dqc8pLYzPDwySr2uUs08zSTsvMGFjbz2STA8yWWovN6rDT2YYeA7SkSzvDNE/Trp8q68MUAhvJ6FfD38w9s8lggMvIzCAb2acKm8lKIcvZemeL25+4E5KrcsvDcQXLwidX67KWGdungqaT0fuOi7ATxZO/B7ozy+Hgc9D/gyvesDpjzwGHm5JD2BPEypCz14fko9hCvbu2cFW7wHwx87oaW8PPwZazyHPFK9Lsz/vAOjXzw2Di47w5YEvdQQi7vVZpq8Zlm8u3rl0LyXCSM88CUUvagfaL3mNZm9Ftc2vH749bzhWvE7qjBfvZOTUzp7ke+8tCDaO3EDiL0fcAs9KbaVO56FfDw1Yg+9MkLPPPSOyDnkerG8t0AaPHbSq7xDZa87NrgevMTtKr0Hw5+7HPtSvN2brbzGm3e8b5D9vH749TyH6HC8zSTsvLQujDoMkSw84QRivLfqCr15jZO8jyqfu57oJr2Uohy9FoEnurupzrxV4Ey8mRqaO/prnrsbpUM9j34AvBjoLb17SRI81xTnvHs74DxDuz48S0ZhPQH1Ej19oua8uOw4PPAlFD2gTpa8tHbpPLdAGr2luOE8QQBXPO0ThrxSI7e6crA9PO4UHTsx3fa8SN0svH2iZry36oq8QP6ovPcDAT08iFm9rOvGvHJaLj2yZfK8GDyPvMTtqrx75/48Gk2GPEK5kDwtytG8GJIePY9xZbx2GfK8p8lYPYpcEr1Xm7S7xVKDvMAhTDyxxwU8ELMaPWlsYbzo4+U8F5EHvdl77TvbNlU772xaO6+oXD1MnPC60O6cvDnLQ7xCuRC9GZTMvICzXT1+WyC996HtvFHMkLwTGiE8aSQEvXbD4rt2Jg29s8pKuhMaoTrwGHk8Q7s+PccAUDxBqke8ymdWvaL7SzxYq5Q8v3WtOuFnDL0Ykh49DDudPI1vNzzja+g8QP4oPas/qDzUZYM8o2AkPcRDujzmNRk8mQ3/PFZFJT1FE/y82t6XPLupTr3F/Qo8dtKrPFidYrsrudo8yLmJOpwe9ryyyJw8XXgKPFHNJ7tk9GO8j34APG3isLyWCAy9AksiPRtPNDzKZ1a8zTGHu9JUDL2mHbq8tYUyvCm2lTtxBJ88Q2UvvW3iMDzHANC71r7XPKs/qLsUHM887VtjPTjJFTz493w9h/WLPA09y7vA2gW9v3WtPKS2M7zTVSO8t0CavLfqirziabo8Se2MvJhhYDwEsRG8ufuBvMLcszwLguM8NKcnPX6xLzzGVDG8TPJ/PKrpmDvXKEI9TKZpO2QgmL3V8La73RekvNctqTyVlF48nsUZPHuGKj2LAsK8tFwCvQwcVL1HyyM76usZudoLCD0R0yq65KKLPMYVjLzumCI9C+kvO5WU3rwfDek8wzJGPO6dCb2HUFI9am6Nu2eLx7vfglO8A71bPY06TbwbW3k7lgcOvf+Cgr3xNna9VQXiPDi11Dul3VG89SMKvcasqrzH2uc8FoqBPM80eb36Yso834JTPC4on7z37Uy6qmEEvVHLCL2R4u68A73bvCAS0LwI3RO9bGv0PC4juDtNtZ68wij4PMH6Or0ynZy8DCG7vY+l/Dt6Th+9DCE7vEaTmLt2QgO9SP7HvB6noLrLh/A8gGHwPMMyRrxXdfi8jTrNPCg+JD0Ywgy9NTtwvNOzRLzdF6Q80oAgPesjJb3uAYQ8G2DgPL6KJL0iVKk8puK4OytUjjw9Yt08Pw0YPKphBDpbxoa8XPRDOwPw/7wGCQO84vJpPKXd0bsijDS8zvztOqAwybxEVia9KD6kPH3DHD0TEB283AjvPChxyLwqpOw7PWLdvEMjAr3KVMy88Qg5vP4UujyD1u08wPDsvJgEdTvgjKE8HqegPNb1HT3Kh/C6zwujvHy5zrzQrI88H9rEPGxHBbwiWZC6BgkDveGRCD0ukQC80DlgvCSRG72QtLE60oCgOp7AsrtEhGM8pRD2PGVTPLyF6gm7OcSJvABSrDwmAbK8M9DAvAGFUD3Nm4w8GpuEvdlqmzwnL289HtB2PYBmV7yKxU89ghGSvXQFETxL4Q29o6XGPHgRrTtEf3w8YtnXubxISzzJJg89WFEJvQrfYT1ni8e8dkKDPKbshr0V6RS86K6nvF4xtjzMv/s89rqou5VmIT0uKB+9s+45u4IREj30gh29C+TIu+jXfT0F/zS9IBc3vNvVSr23kfS8Ec5DPFv0wz3N/G08q73+Ojrt37w9OYe4WrJqvOjXfTwrVI69zclJPXp8XDwjh827mQlcvE66BbwD9WY8HG8VvaE1ML3bQxO73RyLPTGYNT1yJzK9qVwdPZCvyrydKZS8brI0vO1glzw5v6I4gp5iPIPWbb2LAkK72ct8PK88yrwOYxQ8NrMGPSQyiL3tiW08wfq6vHwnl729VwC8UC+DveekWT2diCc9IBe3vZRXbLvYZTS8TH2TvI5t8TzH7gM9WEwiPR2dUj2z7jm96h6+PBaKgT0K2vo8yUp+u0ym6TvNxGI9GSPuPE7tqbwZI+48voqkvIYdrrtrPTc9KD6kuynfELz/Hoi8Lh7RvE21Hj1b9EM9GShVPLLkaz2oJJK8nINAPMlZs7xzZKS9mESAPZHi7jpN3nS9Arj0PNwI7zwuHtG8agqTvC6RgDzSgKC8DBxUvJxVgzziyZM8tswYvJ2IpzxSi326V0c7vLF+I70aMiM8Zl0KPenmsjsBuPS67zmPu0BKirwqdq8878vGPEEKfzxgcw87opt4PFTN1j23aB49lWYhPTsq0jydiKc8wzyUPJ2IJ7wgElC9XV/zvEyrUDwep6A7VgpJvBM587x4ES07XjE2PdYjWzu7Pn29nsUZPYrPHb27fgi+EQs2vZ7FGTzZbwI9XmRavO/QrTxZvDi8puI4vXGQk7wTOfO8YA+VOz/S87wF/7Q8q73+PIeD9jzJWTM8Obo7PGg2Aj0FBBw8HG+VusJl6rutcge9RfeSPF47hDvYZbS8+F1jPbwaDr0xmLU8h4P2vLG7Fbx/M7O9uz59PHInsrkNK4m8+Vh8vO6diTxscFu82qKmvCAcnjrfglM8pRB2PTZPjD3HTRe9XGIMPNVZmLzo3GQ90KwPPbQh3jxYTCK9oAIMPd2ABT1BD+a7YuOlvenhSzyZCVy9jagVPCinBT1+JH48dkIDvTU7cDynH6s7Mp2cvZHi7jvxNva8fCcXvQBNxbrfgtO6jDXmOgGAaT0Ve0y9hE4EvV42nTwNVN+8bEIePeMBn7wRzsM9sX6jvTUSmryY1re6wMKvvUfLo7yim/i8w2XqPMpUTLvmcTW7aMg5vDGYtbxH0Aq8hRhHPMgScz4SC7Y8saf5PBe4vrzgjCE9m/EIvcTdAD2cg8A8zwY8u1YKSbt3B9+88kWru76FPTxpzSC9ffHZuaqPQT1mWKM8T/KQvO1gFz1NHgC9cOq/POjhy7pPIM48qpSovJG5mLz60JK8rQS/vCAXNz1Tlcs6JTIIvQBSLDwrrjq8R9CKPEo7Or3GrKq6c1rWPEtzRTwaLTy7Zl0KPSX3Y7wTFQQ92JNxPAh0srspcUi9BMyQO9jOFbtJQCG9AY8evQLCQrveuJA78Q2gO2n7XTsNXq27bqhmu1UFYjw56Pi8sh8QvMWiXLy9e2+91LgrPbdtBTyOSYI82WobPG3jijz1tUG9HtXdPClDizwE9Wa9Z4tHPXlJOD1oNgI9m7SWPQDzGL3lOSo9o3IiO82bjDzp5jI9KD6kPSuzIb0I3RO8fciDPKBmBrwR0yq9ZVO8u5Iaej38qQo89ujlPBHTKjzXVn88G2XHPIeNRLxzZCQ8BMyQPBkyIzp/nJQ7zP8GPXRpC71YTCK7APMYvWChTDvDMkY7eURRu33IAzwkkZu8I4dNPRV7zLyqilo8TKbpO1h6X7ytcoc7EMncvM8GPDxc+aq8jkSbvIeD9juewLI8Gi08vV42nTwaMqO8AVeTPDDJi7x7hio9LLiIPJ2IJ7w5urs7STFsvRM+WjqD1u28iMDoPHEd5DxoNoK8dKEWvb5XgL0XvSU99YcEPXy+tbyA2YY9j6rju5ejEzveSkg9PdWMvJIpr7u0+Ae94wGfO6aIDDxYdfi7MGAqvWeLxzwTFQS94LX3PF42nTy5QRY77cF4PUHhKL2Uj/c8OyrSPBaAs7y3bQW9IUX0vDDJCzztYJc7IlkQPVJiJ70Au426OLq7OjiHl7y50808Vg+wPWxHhTzCKHi9x9rnvB7VXbubS7W8+S8mPYhfh7uZCVw8uAkLvcMyRrxp0oe8YKFMPR0QAj3m2ha8puefPCZqEzxUAHu80KyPO6caRLzNm4y8Wbw4PSrc97wR06q7FOmUPQdvy7z2uqg8UCU1PQxP+Dqqj8E9O/yUPNqiprvdgIU8TuhCvOOiC72Jkqs6GihVPVYPsLy4m0K9n8qAvOsjJTmUj3e8v7jhu/ldYzu3yX+8nrtLvaE1sLx1nK88e7RnvW+3Gz2Amfu7/dwuvMTdAL2f7u88voBWvJZriDsXs1c7KnYvvBCbnztto/+6cR1kvUbGPL0y/n28lWYhvGZYo7nC/yE8EDwMvcyWJTt2z1M9WyoBOzBlET0CuHS81h50vEWJyry5pZC7gnWMPHcHX7tZf0a8rQQ/uk3jW72Xo5M929oxPcteGjzTs8S7hlogvNzfGD1nw1K8f5wUPFqy6jy0XIK8RFuNvJkJXDybRs685DRDvZgE9Tvq8IA9bHBbvBuYa7x/PYG9b7ebvNS4Kz1XPW283RckvYwHqTwuIzi8iwLCPE0eADzRQy69meAFvI98pjzB+ro8v7jhvNqnjbtH0Iq9RFamPLibwjxIA6+8/KmKvKbnH7yFhg+8D4xqPStUDrz24/68LigfPUfQirt22SE8dkIDPcaxkbtEjjE8e4aqPA+WODy7EEA7jAepPN99bDyWB468UFPyvKE1sLzZapu84smTu/cgcbyZQec806l2vNKAoLsWgLM8ugbyvEMjAjrQPse8P59PPdcowjpCHhs9mQ7DvPboZTt6fFy8opv4vDKigzvj91C90nZSPJG5mLyD21S8nsCyPIeNRLxJaXe8v7N6O9ctqTxxkBO9FooBN76KpLzJWbM8ud0bvfZbFbyVz4K8clVvPfJARDzsW7A7DSaivdS4qz03fUm8WrLqu7+4YTzSezm93N+YPNeWCr1DUb87LiM4PQPHqbw0dpS8RPeSO6SlRrsR0yq9NRcBPbKxRzwpQws91iPbPLaWWzswZRE85TkqvZjbHr0vUfU5CHQyPSinBbtkGzE8OyVrPdmY2LscmOu8clXvOmnSBzyP5Qc7tSssvd1AejxQKpw8U0AGPdb6hL0qpGw7ffHZvAPCQr3OzrC7Q0fxPDtd9jzA9dO8hlogPMV0Hz0UQ8E87gEEPLUrLLuIwOi7j6rjvL6KpDzU5ui9nY2Ou0NM2LyxfqO83RekPML/oTyb8Yi9kB2TPM03Er3Gp8O8Z77rOwC7jbxEf/w8kyTIuMMyxry+iqQ8nrtLvY0/tLzJWTM9agUsPA/EdbwwyQu9FoCzvAGPHrxJNlO9qVydvMWi3LwfDem8T/IQO5ZriLveSkg9o9sDvQMwizuQr0o9o3IiPcanQzszA2U8YtlXu6lXNjwEzBA95C9cPZMkyLtkGzG88hKHPJQuljz4JVi8voBWvaI6F71RLwM8CHkZO4rKtrxvtxu8mkFnvEIZtDvOzrC8F72lu+6YorzTrl29m0s1vV9k2rwt6yy9gw75urQc97yb8Qi829oxvejX/TuZCVy9nYinPCuuujwDx6m71ObovERWprvdEj08ylTMvM90hDxx9A29BQQcvHbP0zxeNp28PmwrvHvvi7wR0yq8ajNpvE2wN7wxAZe7n+7vu142nbxvt5s74y9cPF4xtryI+wy8sruVvHSXyLxdLM88GOvivKvC5Ts5vyK5VdckvNvVyjtWCsm8U8jvPG/g8btusrS8SDFsvEkx7LyniAw96vAAPbibQj0QBAE9Fq7wvCzh3jxeNh09omjUvGs9tzuOSQK9KqTsOw6RUTycVYO8H9rEu1OfmTylEPa85nE1vU66hTv3Kj+8Qh6bvF3+Ebz4XWM9pd3RvPcgcbw2RT49MwPlvEurUL3A9dO8wPVTPQmsPbsuHtE7tPMgvfAD0jwf2kS983jPvM8GPD1v5Vi8fcOcPOnhy7zQEIo8ac0gvAFXEz0CwsK7mNsePYozmLyIkqu71PA2PAY3QDxaiRQ9Qh6bvIfDgTzb0GO8Js4Nva4y/Lxp0oc8XjG2vEf54LxjFsq8JfxKvLmlEL0rqdO8STZTu8Io+Dxurc24/uEVvE7oQj2kqq07qFwdvMMyRr1GvO48NnP7PJOSED2iY+26KqRsPckhqDxWD7A6We0OPOrrGT2FGMe7x00XPPI7XT2YBHU8LigfO+Siizzp5jI8lFfsvAKKtzn4mAe9AYBpu5u0Fj3zShK7x9pnPFXci7zorqe8YtnXO19uKL1teik9PmwrPDZPjLs36xG9PmwrvWLjpTzwA1I6ySEovdXrTzzyQES9ylTMvBVNjzzMv3u8EMncu377J73Lkb48RIRjvdOzRD3gjKG5q8fMPJZriD3ffWy88XYBPWf5Dz3FeQa8bq3NvGf5Dz3v0C26o6Dfu4daIL339xq9sHm8POrwgDzPdIQ86BcJO7T4B7qGS+s8o9sDPcgS8zwzA+U8/xmhPK901Tx8J5e64sghPbDWljwaHhy993GNvKUq/rySqqW8h4NHPA2XtjyD3vY81uMkvdsEs7zQm3O9kyTzPCVfwDzDtvY8bndsOMQ8qTstQN282WHSupMJtTx6P7u82WHSPMWbODi402m8yXj1PBw8Qr3In5i8rNMuvd4GIzxrnB+98+f6Ow2XtrxtnZe9nqpgvczZdDxrPRC9KwaBvERKyLqhMoO8YLgaPUgMR7zTPlS9NegVPdjlFDsFj3a8rO5su/nSjLx23ru8cDd7veEJC72kbF+8xfrHvCJd0Dy/2bk7zHxVu6mzGD3OOnS96whOvAuVxr3pp868jQPlvAD0mjyCf2e95CexuSyCPr2/2bk8pVEhPZ2NsjztTJ+7yBlmvWs9ED2Ix5g8unbKu4XgZrzIn5i84sihu0nxCD3XAFO9KWOgO3j7aTwxAly9YZLvOemnzjz3L6w5TIr0PGTYsLxc0PC8pfMJPZ0uI7t0v528kyRzu0+MZDwMe4C8m2+MvLn6jLxote27sziOvCYCoTpD6zg84eNfvEgMxzx7/dk86ATuPA87D7261Vm96adOvEItmjsjoSE9LeFNPSk8fbySxeM8rzQuO7u6Gz2tMr48CnkQvDanLL1SMbW8Y1J+PDiCeTxye0y8GttCPD/MmjuZbRw8wXwaujCGnrxVkjS9zsCmOzVIHbyJQ9a8pvSBvEoONzvT/HK8ttF5vVCO1Du0EWs8TbKPvBqZ4bvQY4c9nItCPBl8M71uXC47SWvWPOXKET2+G5u8mCpDPWmaL70PV0U8Z5i/vClkGD00BMy8sNUePJxJYTvQISY972lNPP6UC72F4GY9Jh3fvLGwa7ztTB+7a/k+vEQvCr0VGcQ7VDMlPd4HGzxs+y491V1yvIIgWLv2EQY9Ro8RvRvAhLsS+qU8DZe2uk5vNr33qfm8r3eHvEUwgjxfFrI9mW2cPG79Hr3dSIS8fOMTvQP3Ary7ups8L6FcvROdBj0LlUY93YBwOHS/Hb09yqq7Tm+2PBx+ozzr7Be9zR1GO2maLz3g4W891YSVvWK6ij1fdcE8VTOlvOMnsTwkohk8tbTLO92AcDsJGQm97k2Xu225TT1RE4+8ctrbO+JpkjyF4Oa8Jtt9u6TyEb3cppu9DLJ0Or84Sb0EV4o8nS6jOxY2cr01pyy8dB6tvILedrxDzwI9BTJXPMl49Txhkm89C5VGvT9G6DxZEGI9f79YO6NPMTykUaE70j7UPCmATj2NpNU7GF6NPC8A7LzOA4A8MUQ9PUQvirwHdii8o/EZu5FKHr1bEtI75KNuPYrJCLxk2DA96CsRPEyxl7zyDp68N0qNvadTET3/Uqq80MEevcL4VzxFZ/Y8UnQOvb68i7yZidI8B3aovLEP+7yz9Lw5YNTQupNoRLxOb7Y8dsENvBkdpLyz9Ly89krqPF0UwjwJNMc7UHGmPLL0PLwJk9Y8PohJPDBf+zwqBoE6dR4tvOsITju4dFo9DNmXPOztDz2xD3s8hyQ4PHc9y7z0SHq7YLiavcVZV72EIki8xVlXu+WjbjzDfRK88w+WO6/wXD0i44I8hIFXvdPhND2iT7E7EJkmvkNKSL2dLqM7MCcPPdDClrxUTuM8F70cPDanLL1D6zi8DPRVvCakCbzpLQG9EZuWPOYC/jsjADE9jYkXPdlEpDxT0x09XtJgPeYCfrzwJ+y8URSHvJyLQj1Y8zO8ep5KvTYGPD1/Hui7HN2yu3J7TL28eLq7lWq0vZMJNbwfPjK7u5N4vIlDVjw0wuq5xN2ZuOlIP7vXX2I7Z7P9PKb0gT2kk4I96YuYu8Y+GTxfkH+87AjOPJ2o8DuNYnQ8Sg63vP1QurqptJA85aNuvIQGkr2oz866qex8vdm+8btid7E8Pcoqu7VVvLxJymU9AfaKOzIoh71wGs08lgslvVWStLzxrpa8kqqlu1FMc7z0ils9DJc2vdUkDrx74ps8rq77PFav4jwKGgG9iKB1Pb8cE72E4Oa7VTQdPdahw72BAyo7VDOlu4ckODtCzoo7azwYvIQiyLwhggO9vXg6OiGCAz3cwlE+a5yfO0fvmDzQ3dS8O2krPShjIL0KUXW8sNUePHqDDLylKn684Gcivdulo7vaAkM9Fdfiuny7eLm5+ow8D/i1vAd2qLwem9E87auuuznGyjz+Dlm83qgLPbkVS7ys0668GR2kvFjzs7wXesM7I6GhPGZUbr2mbs+8CnkQPV7S4DyOK4C9H51BvUUwgj1lehm7jisAvWJ3sTzr7Bc8jiuAPHD/DrywUVy9qLOYvG25TTpab3E8fwG6vGycn7wYXwW8BXS4OhB0c7w0wmq70N3UvA46F7sNVVU8Ai53vJFJJr19Xlk7v9m5vEittzzaH/E7sjcWvIADKj23cmo8Ai53vN7f/zy6F7u85OVPvcadKD08hlk9QG4DPfYRhj0YXg29iqJlPfQQjjwMOCe7PmyTO9vAYT3f4e+8WfWjOwp5kLzEV+c7NaesvL422TuI4tY8oTKDPPMPFj3+beg8jANlPAQVqbqTaES8B7mBPKFNQT3n5z+85YgwvdPhND2i8CG9I0ISvBuZYb0Bz+e7uNPpvOmnzru+Gxs8oE3BuuqMED1Apfc8g2SpuzOlvDwvAOy87I0IPSRDCr2lD8A8HH+bO3kjBbxQL8U8MucdPQUy1zy7k3g91f5iu7UTWz2k8Zm858wBPYdnETwT+504+I67PEXtqL3Rww49vHg6vNDd1Dyp7Pw8zh+2OVOQxLxi8f68tnJqPe4KPjxl9V689nCVPYUHCjyKyQi6cdjrPJLFY71ft6I8BbYZvPhyBb0jG++7CnmQu6AxC72z9Lw8molSvTfE2jxtGF08FzbyPM46dD04gnm9ELZUOww4p7xjGpK8fx5ovGG5ErpR7eM6+gp5vJIHRT3G4IG8rTK+PHzjEzwdPMI7e/3ZPG0YXT0f4Jq7GXyzvKrRPjxbEtI8ZvXevGj3TruQqLW84oTQPLeahb3fgmC8+u+6vFR1Bj25uCs9dsENPIPe9jzwysw82OWUPCcfz7sWNnI73oDwvK52Dz32EQa9lodivO2rrj04CCy7uxe7OgLPZz2yD/s7JmGwParsfDwuhC481uOkO/oK+bs4SwW9oE1BO1IxNbvrCM67jCoIvfPnej02Bjw80N3UvE3OxTyd7MG7T4xkvPSK27yoLt47LCMvPXaaar0RWTU9ZfVePQW3ET3IGea88uf6PAUy17w9DYS8wtupPOxnXTtNK+U74ILgOwVYAr0ePjK9a1jOu6UqfryqEyC9NkgduyxA3bsCz2c8nuxBPQ/bhzyVC6U896n5uyudfLz6q2m8xDypPDYGPDwpIT89UUxzPAARybpxHD29qHA/PUMGdzzP3VQ8rHSfu91IBL1ZlhQ9a94AvSZhMD2ocL87l8nDPIYIAr2gMQu7WbFSvWk7IL3mKpm8trRLPUfIdbxmexE97O2PvZkqQ7xMsRc9UHEmPBRbJb3sjoA71kI0vMdbRz0SF1S9qM9OvYckODwJ8uW7hsUoPV7SYDs16JW9lE2GvZro4Ty5Mnk8VDMlvM4fNryEgVe53qeTPOyOAD1MsRc9pFEhO5VqNLzdSIS87SV8vCyCvrvPYo+8MF/7OR+dQT1SkES81uMkPMq8Rj0XekM7DtuHu0UwgrsggQu84QmLvJxJYTyoVAm9vzjJvPbr2jxKDre8BTLXO0vM1bzvyNw7WjcFurn6DD06JVo8zh82PHyEhLwyRD08F7wkvBCanryw8sy8dB4tvctfJ7zBHYu8iOLWvDTC6ruBYjm9G/hwvKrs/DvPYg89DLJ0vZMkczy+eqq8K2YIu5osM73rSq87ovChvNAhJj1kGwq91OE0PFr1o71ARmg9R6vHvJULpTySqqU8ieRGvXNgDr0eWXA8xp0oPBN24zwTuMS8RmlmvOtKrzxcVqO8G8AEPAyydLymbk88jukePd7EQT2w8sw7ZzkwPV8xcDuWDJ28jCqIPFVQ0zy4V6w7lE2GPJQJtT3VhJW7MucdvRhfBTyUJmM86YqgvBt+I719/0k7omrvugFVGj0FdDi9If5APFg2jbwmAiG9yZ8YvBGbljxU1BU8l66FPHk/O7tpmi89+zIUPWLx/jw6hOm8yLrWvMKZyDtU79M8lcfTvWz7rjugMYu8uvuEvKrRvjziof48xp2ovUmtNz0fnUG9lihTvDiCebxIkQG9prCwPL4bG70XvKS8dt67PEwrZb38M4y8JsA/PVEUBzwEthk79G8dvdX+YjzlRF+99i08vab0gbxR0LW8BvB1vSRfQLwhnzE8s1PMPM9iD71weVy6I3p+PUMuEj3RgLU7e1xpPBrbQjzHP5E88K0ePPeMSz00iYa78CdsvJRNhjzIGeY8rzSuvDsLFL1KUBi9R04oPMY+mbz8a/i8bZ2Xuu/IXD154Cs6TRAnPBhfhbxkuwK8oaxQO6CPIr1u1ns8hMM4vRKcjjwzwHq9lw2Vu2wW7bxw2Ou7mMszvVxWIz2IhTc8xDwpPCAZ/7x2fyw828BhvPep+Tz6q+k8oTKDvZQmYzw1pyy820eMPKIL4Lt+vei83MJRu2baIDy0stu8rTK+PBqZYTxIkIm8LSWfvHV9vDybzSO8LIK+vAD0Gr0jALG8DPRVvJjm8bzLvEY860qvPFNO4zriyKE7zx+2vLbR+TtHaWa7c3vMuykFibygaP+8TG1GPdahwzwVGUQ9bblNPdqjs7zrqT47pJOCOM9iD72kDdA7MeUtvdahw7yZidK7nzATvBq/jDw7C5Q7GXyzvBkdJL0J1yc9iKB1u2eYv7xJKXW6nqpgPVHt4zrJ/ie9BXQ4PDzIOjzhaBq9lofivJhsJD2LRca71COWPIiFN71sdXw8DJc2vdfknLwjoSE9pcvuvFQzpTvhaJq8pm7POwQw5zwMsvQ81OG0PKnPzjzy53q8Tc7FvN3CUTxQ63O8cQCHPe3uB71SkEQ9/VA6vBX+Bb3UQES9CfLlu6qNbb2J5Ma6iGkBvZgqQ73XX2K9gwUaPCzFl7z2LTw9a1jOu1ByHruOpkU8ff9JPZTH07wO2we9yLrWPF9ZCzvKG9Y7IbpvO2c5MD0tJZ87/fGqOetKrzx5gRw9QG6DvIvKAL2HQWY9XtJgvGI1UD2nEbA8k0uWPA46F70gGX+8tRPbuvGvjrzo6S89a94APdUlBj0Legg7ff9JvKuP3Tupz066qc/OPCRfQLyJQ1Y8osn+vE5vNr21mBU9WW/xuALP57xxHD08r9UevXI5a72d0Au8CJNWu9GAtbq5WZw8C/TVvPOwhr2OpsU8yv4nu/vTBD3xrw4952P9vLDyTD1+Q5s8jeimvAQwZ73X5Bw8hWaZOumnzjz/Uiq9mYnSvG8aTbs6q4y8qHC/PO3GbDxTTmO8EFdFPZDqFjz4qXk92EQkPe2rrjy1Vbw8DJe2u2YeMzwGy4M8aMJ4vJicN70qui2930NVvU+QhjxY/Oc80RA1PRMsgbuiFSm9zJ00vezSr7scYaw8ADIiPFpIKj3xH0+7jXeEvGuRM7wx0fO8ui5KO5FfkLzg/CY9LwfNPIOEc7tRgA68P6QUvM6NPLtI/yA9EyyBvJIDVrxoDju9jf1kvVKZX7w0DT488bK/OjIdNjxFMOa8/q4pvOQj5TzYcz09YGyAvVcyQT3YNIu8CLuLuivxYzy1Tjq8ps/XvFpIqrxKHQa98YzeO/TuCbwcYSw9fG0tu1ylQbzO1Oq8dht6vbVOOrwHAjq9Mh02vTgTr7xcOLI8L+HrvF9OG71A48a8tbtJPRs7yzwCj7k8mmbevCZtDjo7SuW8y+RiPU+D9ru91yO8OUGMvDfH7DtjCEo824kmvSVHLTxoe0o9h3mPvA+LozxGfKi6XMsiuz7zPruEPUU9pSsSPb3XIzuMWZ+8O0plvUuCGTqfkrA8021MvBbIyrz2/968cxodvYxZH70KGCM8T6nXOh2YYjzllYi6nyUhOgKPOT0bzjs8y1HyvGDZD72YLyg9FomYPBlxJD35O6m8JfvqPGfXBD3vVag8aVKBPTiAPjzJ24m8GpeFvAKPOb24PkI8oVxXvbv48DuA4K29ZMGbPMlIGbywbio8OIA+vWNP+DzQPhI9XDiyu5CmvryhXNe8IWedvPa4ML18bS09caj5vBKhjDzQV2M8oVxXPUcgbj2GB2y9DOJJPfMP1zy6COm8NMaPurhkIz0tF8W96IWQPAiVKr3n8h88Cl/RPInWJr3GBFM73VPNvJWGzjxANwW9Zh6zPeD8pryNdwS8VK9IvbCch7zXJ/u856bdugTG77t1CiW8CbMPO0qKFb1qUoE8kt10PZd2Vr3gaba65hNtPGk0nDt1dzS8deTDvCq6rbwKGKO783zmPfhcdjxvS+I87gnmOzFkZLwYkvG8dht6PHQr8rxZ4xY9ltIQPa7rMb0R6Lq8t/8PPK7rMTw6ph87IK7LvGgOOzx1CiU8vbHCPEhGT72yf388Eei6vJx8x7xeAtm8E7LhPMpAHT0intO83yoEPMH+4byasqA8HRICvZqMP72VGT+8ZrGjvcDHq7yZ0228S4IZO6Y85zxUr8g7YGwAPdi6a7zLUfK8ciIZPAoYI72U2gy9VWgaOwdvybvxjF49LRfFPH8Wh735YQq8V8UxPYgEBD0dBXI75JD0vP+/fjxkVAw9Mh02vV4CWT1y9Du9t4XwOfgVSD0bqFo9HZhivZUZP70r8eO8mow/PcjOeThwlyS9PhmgPLFuKj26m1k8kpZGvd3AXL1Bdrc8kfKAPORJxrxvxQE8d9RLPT5gzrwOrHC85EnGvKbP17wbzru8eTHjPGfXhD2hNvY8DE9ZPP6uKT0yQ5e7JtodPWw1eT0oyiU95J2EPXV3ND0Jpv+72/Y1vNU38zywCZe6/WLnumfXhLyCBo87sQGbPauWFj0NLow8ps9XvRGpCL3B5RC9yM55PUGcmL2guJG9DHW6POIaDDxBCSg8A7UavW2BOzvrhu08v6HKO6GwFTs3kDY9iqBNvHybCr56o4a8GXGkO8ydtDy5ioQ8N5C2Orir0Tt8bS26usE6vZTaDL2wnIe9T4P2vBneMzzY4My8L5o9vew/vzydyIm8MorFOyroCj2QE067ZrEjPUj/oDsmbQ49O0plPKFDhrzHUBU9ZC4rPCW0PLpowvi8ShD2vDZRhL3g1kW9qjEDPDvEhDymPGc8sQGbPMcqNL1jCMo82rcDPW2Bu7yDF2Q9y+RiPYABe7zMMCW7lawvvX/KRD18bS09INSsPGq/ELvsZaC7d/osvHSlkbxhGMK8OVpdPdNHa71j4ug8pxuaPIZTLj3bY0W9klcUPS09JrqOb4i8f4OWPCd+47xcODK8Mw2+OCV1ijyzXrK8QKSUPXKHLLyHeY88InjyPO4JZj0RVcq8VdUpvZTNfD2cPZW80aOlvBvOOz1NcqG9wiRDvYx/ALtabos7qykHPUbpt7xGfKg7ZdLwvGk0HLwlRy095LZVPjlaXT3RNpY8naIovDIdtjxDjCA8IWeduAxPWTxtgbu8lGDtvDIdtryDF2Q8xGiJvA6s8LtkwRu8cxodPP+//jyGLc27jWr0PA0mED3lb6c68bI/Pe97iTz6viE8VPb2vFvsbzvREDW8J+tyPBnes7x/ysS8/1Lvu/Q1OD2VGT87CaZ/PBeBHDzCtzM7LKq1OyonPbyS6gQ9aOhZuj4ZoLv4aYa6pJghvQRZ4Dvdea48N0mIu26nHLwQsYS9HRKCPVt/4LwGAro7ZWXhu5+SMLt/8CW9RyBuPPb/3rsPi6O8gAH7O8TVGL2fkjA9HwoGvAJD97sxZOQ8AcUSvb976bwFErI8I1elOw4/Yb0xSxM9Gd4zPYgEBD224ao8ojuKvPdxAj39iMg8yfTaO59szzzif5+7Q/kvvYRjpryf/z+958y+u1dYojujMw68ciKZOw4mkLu/oUo8+GkGOrUC+LoMvOg8iUM2u9+w5Dw+YM489iVAvdgGrjxQ9Zk8nyUhvQ9lQjz4aYa9mow/PVN4Ej3Ld1O7xWANvO/CN71RgI49R439vJ2iKD2E9hY7oUOGvN15rruJ1ia9sowPPduJJryU2ow6k7wnPepPNz3aJBO9wO0MPWE+o7wMT9k89riwvJgvKD2S6gQ8aDyYPLOEEz2NanS91qmWOwU4E7yov188EnurPAziybwwwJ67h+aeuw/S0TvWqZa7rRkPPfsFUD3h7C48LT0mO4SJhzzHznk8lawvPKSYITy6Lkq96SlWPJnT7TzpvMY7MrAmvTFLk7voGIE8Oe1NPX43VDwZcSQ9Ab0WvFLloTy38v+65/KfvLPxorxyO2q9SGywOlQc2LoyisW7ZWXhO+ripzwExu87/q6pvH2Tjjw3I6c9s/EiPSILY7xLFQo7Xtx3OpXzXb1Ur0g9NHrNPMwwpTxHjX28LwdNvfRbGTqKemw9HlE0PYZTLruYnLc8lawvPSnb+jxNuU881jwHvKHvR7wM4kk9+t/uOy9bi7z5qLg9TzxIvbFuKr2GB2w9tnQbvTrMgD10UVO8U3iSPDXGj7t4IA49JY7bPIj3czz9SZY8ZEwQO36LEr0i8hE9sqVgvOS21bwZS8O55AoUvEWqhb3+QRq9UM84vBKhDL3JQB28UGKpPY9afDvI9Fq9sLVYvQnMYLwR6Lo6pSuSvHf6LL1zGh299kuhPf/l37wqJz29JtqdOp8loTxW8467G6jauVQcWLwoyqU8Y8mXuzyWJz1uOo07B0noPBz0HL0FEjK95AqUvBlxpLy3hfA85zlOPJicN72GU647AmlYvbvnm7x9AB49cb2FOx8bW7zyaxG8cocsPZddBb2iFSm8rTLgu3/KxLyIcRO8aTScur/1CL2JQza9MfdUPOzSLz3+QZo6bVtavFD1Gb03I6e8JUetvLouyrstPaa8pJghvYlpF7xIbLA8lmUBvOkpVr3qCAk9FqLpvJWsr7zjpQA9k7ynvJzpVr1hGEK758y+vKscd7vUymO8bcjpum/FgTz6WY47RcNWO8xWBr2ov187hNA1vFQc2Lx7jvo8Ip5TPNuJJjwMNgi9XgJZPbbhqjvW8ES7geCtu3/KxLxAvWU6TXKhvNDqU7tMAP68uu+XPEZ8KLz+rqk8H0E8vJnT7brxH0+9WtuavG8ykTkbzjs9fEdMPDa+Ez2XUPW8iw3dPATG7zuuWEG9zDClu/u+Ib0wwB696uInveBpNjuH5h49V59QvUQfkbsljts8D/gyOyN9Br18IWu86IUQPaI7irxpNBy9cxqdPFD1mb0U/qM9VgzgvHDe0jypeDG9shJwPaRywLwRVco8/c/2PNF9xLzCkdI6DZsbvMiHy7zMwxU9l3ZWu+Bptrqsjho9WeOWu/zkgrzbY8U8FjXaPMJKpDwYkvE8XF4TPB1/kbxsNfm8GxVqvP1iZ7xgzP88bhSsPIOq1Dy1u0m6B0novGBfcL1PFue7x70kvN3mPbzpluW8JvgCPFBiKb2P7ey83p+PvEDjxrxLXLi7QicNu0rJx7wBvRY84n8fPQziSb1kVIw7bqccPLrBujxcEtG8cxodvb/o+Lyopg68yUCdu0Aq9b0+GSA8OMdsu6IVqbyVPyA7dygKPMvLEbzG3nG8cAS0O8XNHL03thc9mFWJvAiVqjwjV6W8jFkfPE88SLzGBFM8Md6DPHRR0zzHUJU8zArEvMbrATz2uLC7ERaYvNqq87vZmR49I+oVu8brgbwK8kG8LGuDPKf1OD11d7Q8+BXIPLvnm7tt7ko9cAQ0PMcqtDtW5v68BygbvBai6TvMwxU94n8fvDQNPryObwi8rRmPPNQmnrxhPiO9tQ8IvTNUbDtXMsE7ES9pu/XZ/bzTbcy7sNu5OaUrEru6COk7p66KvUVWR73+G7m9wt2Uuw65AL0hZx09bEqFvYlpl7x6EBY7yduJvLDbubrAWhw91YM1PLxEM7xowvi7Gd6zPTtKZbsRVcq7ZC4rvLbhKjxcXpM6pJihvOem3bzFOiy8z7MdvJ8lITzunFa9xIHaPAJQBzupeDG9Paf8vLIfADs6pp+8kBPOO7qbWb3GBNO8Km5rvCVHrbw73VW98digOxKhjDw1xg89mC+ou/a4sLtkLis9F+6ruwfc2LyQzB89unX4u8cqtDtPg/Y8qQuiPCpNnj2N5BO8wf7hvAs+BDtyYUu86uInPZdQdb0BxRI8D/gyvB2+Q73Hl8O6v+j4u/pM/rrb9rW8qXgxvZofMLzC3ZQ8GUvDvGGrMj1h0RO9sqVgvE6YAj0cYay7wO2MvKGwlTwReyu6AHnQPAs+BD32uLA6D2VCPEUw5rzgj5e8tQL4PCAb27zHKrS8d67qOk0m3zw/NwW7VUI5PM+zHbxWDOC8b0vivAnMYDrIYWo8YwhKO0EJqD0WD/m858w+OmskJL3EFEu9VnlvvPu+IT2EiYe8gbrMvLfyf7nVgzU9oTb2O0sNjjvrhu28CbOPPAx1Ojxy9Ls8I1clPZ0PuDuVhs471TdzvQL8SD3knYQ8xIFaPFn85zvBeIG7knBlPIv0Cz1kwRs9lT8gPXiNHT2ov988dDiCPZCA3TzZLA+9ya0sPc7UajzzD9e79dl9uy0XxbswwJ48jSPGOz06bTyUYO07FEXSuX/wpbmE0DU9uD7CvGX40bvFOiy9DDYIu52iKLsIlSq9TgUSPeIz3bxQYqm8XBJRvFX7ijtzrQ26jtwXPO6DhbxFnfW7UQZvvdrQ1DxNciE9kgPWPNMAPb0HKBs8CaZ/PN4ygDx5xFM9CcxgO7f/D7yA4C29IK7LPBm4Ujw0es26bVvavKsph7ys+6k8rTLgvITQNTzb9rU8v6HKvK+1WDw2vhM8Lk57vDyWp7tcyyK7SGwwOxRFUrzxSAE9ynQ9PDXxQL3fgaC8l7aNvDVtEb0j7GA7kK7mPBYKVD3QfBK8cHmYvLQ8KL07fRc9nqvDO43cg7sxow090it0PPKW4rt1rE28c2bLvHQozLsblli8AHnvPG+cR7o7AUc8z+XxujaQEj3x7zG7z+VxPaiFzbzfKNE70WnzvGftb71sEJW85jjXPAakRTzGj+k8V+AwvbBX1Lw9hcg8/WgNPcNchr2FEtw8bHn0u2lOwrthujo7kYs3vSoyB71ZogM8OWL1vF90ODsseAm981hjPYgaX7zYcZq8Hdzau4UtrL2bZcG8rE/RvY6DtLxVXC+9J/Tjuy+Ia7slRQK9T/PZvMaqOT2MGoM8a04UPfAS4bxaZAQ7ZWluvLy1Xz0viGu90YTDvAzyyruLWAI9XdVmPP/RPr3bgXy8JXBiPYqWAb3GAwk9aU5CuwbixDoM8sq79z03PZ3pQjyr5h+8mELuvOHHIr2+FjI7ZZ8OPYElqTt+HSa8VjmAvACUP72lNxq9CQUYPSZog7v+D767Mek9Oz1qeL2ZBG88PUfJvGJha7z3Ime9QHL7PJ7GE7v/0T49jBqDvFaaAD3+Kg49CzDKPKjDTD12iZ48jp6EO/XUhTqFLay8BuLEO59SdLzKl+w81owYvbNf1zxkAL27UZIrvJpdkL3omak81hBIPMRkt7pEch+88+8DvJwnQr2/kgK9vLXfPN9DobwUoaI7cqTKPATakz1Uf1498syCvb77YT0LMEo91isYPVF3W7sw4Qw9G5bYvTu7ljxP89m8+dyIPAO3kj06+ZW8PUdJvJOLCb3GxQk9jP8yvQ/6zT0a1Ne8sHKkO2HVir3YEJq7qKAdu/RQBL0G4sQ8ElugvFY5gDxzZku9RttQO9Rxdj0M8kq9ujHeu/yu6zvav/u7K9m3vG+cR71KZ9W8jkW1un1+1D0EGJM8CigZPaFtlrzDvQY8OiT2vLQ8KD32loa90ghFPdGfEzz+Dz695XbWvCSu4TpYSeI8domevPzJO72T0Tk8iBrfPEd6ojxC0029gszZusRJZ72Xmz28ImhfPOZTpzspVbY8w1yGu77QgTx9mSS7UXfbPGiMQbzUpxa9NbPBu8R/h72BY6g7m6PAvGG6urxTFi04ldGLvDBlPD1wIMk8qIVNvWWEvrvB2AS9ZT4OvDm7RDvzc7M8zLKOPdLtdD19QFW904SVOggoRz2QgwY8Z+3vu9RxdrxFNCA9NfFAPevfK70THSE9vLVfvUb2IDsbltg8QRFNPZPRubz11AW98akBvbK4Jj3YO/q7NKuQvC6bij1yvxo9WmSEPBYKVL1sr5S9pj9LPfr/iTs/sPq8sDSlPOAFoj3TykW8RFfPO1rN47yXVQ29M20/vIElKTy+++E84azSu0df0jxIPKM781hjvO0KXruHWF48qu7+PBwa2jyXVQ08ru4ivDdSE7yhzpa88syCO8RktzwJ6se8YZ/qPGhGkT3JbAw9lE2KPaokn7xKgiW7dcedvKlinjy/84K9aKeRvZPsCTvMsg47obNGul3VZrxu9Ra8DNf6PGoQQzwE2pO8XxvpPDTW8LifiBS+f98mvdhxGjzbt5w7vvthPPjk5zumP8s7h3OuvA2Z+7vThBW9v9iyvAOB8ryYXT69WSazO0adUTwtBGq7NbNBvEd6ojwE2pM8ZyMQPNYQyDwmyQO9wuA1PejXKDucDHK7i1gCPUU0IDspVbY8lXALvY2m47zhrFK9YLIJvY5oZDtzZsu74/JUuhPfIT2INS+8UlSsPIwaAz2WFzy8/K5rPcVBiD2Xvuy85lMnPMCaM72qJB89LQRqPT/Lyjxdqoa8Ybq6PI09hLzxSIG8IabevC0fOj21pVm9ru6iPOyhLDx0KMw8QTT8vFf7AD3LNr484zBUvNaMGDhBahy7br92vF90uLtrTpQ83ol/vPnBOD1J41O9bxgYPCVw4jx3MM88BV5DPJ+IlLywcqQ906/1vC+ju7yku0k8WaKDvWO6DL3ysTK7mR8/PL4WsjzmU6e8kQcIPZb86zp41/+8eNf/PLKdVj4hwa48toIqPJ/plLysaqE8S0QmvIzkYjzKjw09nicUvWVp7rzHbDq9AtrBvODqUTzjMFS7kK7mudB8Ej1zgRs9OTcVvCVwYjwSQNC7I2CAPDJlDj2INS88ELzOu67uIr0g5F08NEoQvSMq4Dw1s8G8dazNvApuyTwkybE8wdgEPHXHnbqi8Zc8+WhpPG7axjsg/y29X1loPX1bJb0um4o8F8xUu5ujwLx5z6C8EgLRPFR/XrtcE2a8+P83vWeEED0kIgG8x2y6vA52zDs+JBo7z7oRvR97rDyOngS9DbTLOwIzEbwP3/28V/sAPdhWyryQg4Y7wpqFPN6kzztaZAS9YjaLPPFIAT3zczO90kbEPKigHT2lfUo9a9JDPaMc+Lwa1Nc89z23PHQNfDyOYAU9JsmDuj1HSb3j8tS7JUUCvS+jO7xjuoy8v73iO7sOrzxvnEc80it0PJPRuTxfjwg6o1KYPfHU4bz8ybs8qKCdPAwNG70ykG48M4iPPEa4obxzZku82FZKvXnPID0FBfQ8xs1oOyk6Zrz2eza9MaONPdDdEr3o16g8oi8XO271lrzev5+8WeACvQOcwjzw54C8PD8YvJUPCz0UoaI8+dyIvV4uCD3ZGEu8Ybo6PcRkt7tBEU09PUdJOu+przzWEEg9/9E+vcyyjjyG1Fy806/1OrdEqzufShW9dZH9vG+cx7wFOxQ9k7bpPOWRpjvXeXk9aQiSukLTzbsLSxo8VgPgvEqCJTwykG67CCjHvCh4ZTxZQQM9d0sfvCu+Z7zwEuG8NQwRPUQ8/zytLCK89jUGPevE27ylfco8ZYQ+PP+27rwSWyA7BSDEvNevmTztCl48nxR1PG6UFrzWjJg83eLOOZeAbby80C89pBSZPcULaD2k1hm9t0SrvOyhLL0igy+93cd+PayNUDuwGVU9ZHyNuy5dC711x528E8RRPZ3pwjzGj+m64OpRvE5vWD0vvgs8CxX6PFngArzPAMK74AUiPUX+f7w5oHS7sfalPcL7hb0UhtK8Q5VOPYv3gb3GA4k9/7buO52jEjygq5W8wVy0PBfnJD2ry087bDv1PF82ubyMuQK9XpfnvN39Hr3UjEa8Cm5Jul7NBzyHWF69uOtbvRC8TrxVXC+9blaXvPGpgT3omam7pKD5vPZgZr2sjVA7n21EvBeOVbvwLbG8xUGIvVVBXz29krC8l9k8vY/BBb2SDzk8A7eSu3TP/Lsum4q70ghFu4rUADzHbDo932ZQOmiv8Dyow0w7dQUdvbWl2TomTTO81owYPab5mjzcOx69vjECO4lzgL19maS8NxzzPKU3GjybiPC7muG/uwbiRD1r0sO8xUGIuJmbDzwokzW8NW2RvCKDrzz0GmS8X1lovUERzbvQPhM9n4iUPIg1r7zWEEi9iz2yvLy137ukdZm8+YO5vGQbDb0wJz07B4EWPCNFsLwAlD+9JYsyPA/f/bvVyhe8YZ9qvOPy1DsokzW9MGW8uweBFrzB2AQ9fUBVvATaEzy6TC48ZAC9PJLJiDqPBza9domePJRNirzFC2g7g6kqPXWRfTyIGl877EjdvAgoRz2qCU88Q5XOultstTu/VAO9naMSvX1+1LwEQ/O7LTqKvHv60jxBEc0613n5u9w7nrzXt3i6xOAHvXAgSbpnCEC89DU0PfTcZDr8rus8br/2vJEHCD1Bapy8dzBPvSlVtrwokzW9KTrmu1Y5AL1Ecp+8I0UwPT+w+rw6+RW9JXDiu3H9GTzKWe28LELpu3HiSTxq9fK8ec8gvYg1r7ur5h+9OZiVPZGLN7xifLu7ovGXvYaxrT1FGdC8UvvcPMaquTwXqSW9dzDPPECoG7znFai8Dh39PKjDzDzGj+m81EYWPJLJiLw5YvW8TOvWO5RNijsXjtU8NNbwPDTW8DwJ6se89LGEvP/RPr2/8wI86gLbPIsiYjuK1AA8vZKwPCr85rxZQYO9ZwjAPKLxlzzRhEO8m4hwvIq5sDxkfI27ylltvPh7CL05u8S8pNaZvEpn1bwxBI68BSDEPEb2ID37g4u9+v+JOzLGjjrEZDc8k9G5u7/zgryGll27cyCbvPvs6jp0Dfy9L6M7PBSG0rzzczO8ziNxOtt5nTy9VLG7YpeLvN6kT7ygDBa9/QcNPTXxwLxF/n88npBzvDNtvzzcIE67qN6cvMAWBDz39wY8jwe2O4pg4bzfQ6G40MLCu+Gs0juCzFk7br92PEg8o7yK1AC9zwDCu/sHOztt0hU9WQtjvJ9S9Dw9R0k9uYotPSyAaD3iiSM8JmgDvdg7+ruOKuU7+wc7PRwaWrz/0T67ZKftuw4dfTz5ngm9hrEtvaCrFb1+HSa7ZBuNu2G6ujvxqQG9VJquOSx4iTxj5ey6Tw4qvPoqar3O+BC9h3MuvdLt9Lsvvgu9ARjBPNray7wkybG8VJquvJk6D7wz6Y+7yxvuPDc3wzxB9vy8w70GvMcmij1fG+m7745fu17Nh7tM61Y7EZmfu9Gfk7h2bk48dZH9uzGjjbyG76w8XBPmvPsHOz37Igu9oZj2vMnwu7w6+ZU7ZHyNvKxPUbq1wCm9KHjlvPsiC73O+BA9Jk0zveMwVDyq7v48MErsPDBKbLw75va8Cc93PIo1Abo3N8O7FKGiPClVtryjUpg8lhc8PczdbjvGzWg9UNAqvAdmRryKnmA71EaWvONLpDy9OWG9o7OYvH4C1rvOWRG9qGr9uFhkMjtwXsi8UjncvAOcwrwFXkO8oC/FPDVtkbkni4Q9GRLXu5dVjTtZJrM8Khe3urQhWL0+CUo8QRHNPDh1FDzLNr48KvxmusvwDTziblO9LpsKOtg7+jw38RK8z+XxOxkS17tHeqI8/g++vJe2jTxojME6zpeQvAR5k7wP3328idxfPCZoAzylYno96LxYvXOBGz3JbAy915RJvSqTh7xvgXc6X1GJu6DW9byLPTK8jcGzPEa4oTvSwpS76VsqvAUgRD39B408+we7uoLM2TwkyTE8JAexOpL0aL13FX892RjLPLN6Jz2FLSw9+yKLPK7T0jzHUeo8Ex2hPMWiCD0AlD88K77nO2eEkD3Z/Xo81WkXvTyo9zy+0AG730MhvMEetbw5mBW74ceiO/X3tDw6JHY8gSWpOmMj7Lvo1yi7+wc7PQWclL3qHSs9npBzvIdY3rvgBaK7PYVIvdOv9Tw4FBS9Ex0hvdw7HrwbWNk5WSazu6Pe+DyDjtq8CxX6vHQoTL0feyw9ziNxvIRrKz2eJxS9AtrBPCSDAT2BCtm67IZcPIFI2Dx1kX27V70BvYv3AT0XjlU8NfFAO+lbKr3rxNu8ON7zPNu3nDszUu+6Ws3jPHKJ+ruDqao83qTPPMCas7yXvmy634EgPbaCKjsjRbA6wNVkPPcLmDw7kN68/doDvS0vAL23wX+9iXyOPAyTjDyKxC09QxvrvFnn2LuuSCS9CLJvPV4QlTxLn5G8DQq0PPrgz7pqJZS7EUwHvQgisbvPdNa7L+ugvNfmyzz2Vl08kNgSOithLr0bSxU8/PMavIbZBD0evxa9bClUPNYYerz2tG29xb3nvDlzBzxubk28Ohk3PGEU1br92oO8/POaPPckrzxdsoS97jsSPcqM07uqYKE7coEYvOz2GL3X5su8SkEBvSEaAb3MQY48GmSsvPa0bT1O5Aq8F2r4u1koEjzrD7C92F3zvLkG+b1OuUK9H0yvvBkGnDxry0O9reqTu3dQBL0kvYo9Ohm3PAAn4zxIA268m48BvaAHwzstpic9VeY+vLtLcrxYK7i7CmeqO1O63Do1wXK975mivChOYz0UHhm94526PBiSmjxZ59i77QyKvPZWXTxpsRI8VP9VO32d/bynGyi9MkaLOqMaDj0NCjQ4ZfzXvPckr7wyjqq8BTeIvIuZ5TwRlKa8xioDvJML2zvR0ma8zEEOPZXAFb3o4028tKdOvWgoOj2wpjQ8IQSQPSIh57t/a089CJnYPLQe9jxkQDc9hPXBOjlL5by0jre7t0rYvHA8nzssv76871EDPSPWobux6y28N49EvP5RK7wECIC999yPPORZW7vvgIu8uNCKvFLT87x1EvG8wUKAvfXfNT1YEqG8jGc3vPs+4Dw9XrA9gbDIPEK9Wr1mbBk9sV6VO4dmnboHVF+8xC0pPTuQXr2iM6U82IUVveFYwTzBih896piIvP7I0jo+M+g5msGvO7V1IL3Fi7k9bGoNve9Rg7xOQhu8y1olvMYCYbxcimK9Aa0VPR9lRrsGxKA8GmQsvQ9PrTsxwFg9k3scveBYwbvw97K7gfEBPchHWr1psZK8B3yBvJXAFTycfdA9XBO7PHw4BzzTXNm72M20vMCjtrz+yNI8A7FVvYTKeTxWVgA9Hr8WvddvJL0i77i64Oj/PODPaDxqJRS9j3qCPETpvDtZAPA8j3qCvZqoGD1sag28TLWCvN6cIDx1JCI7M3z5PJuPgbxDi6w8aYbKvIBSOD2wjZ28JewSvX8NP7yCfhq94T8qu6Vfh7zX/+K8ZPgXPBFMB73WGPo8qmChO1ii37zdzs46cCMIvenKNrz2rQc534MJvODofz0FN4g9rthivextwDskNDI9/gmMuy973zwDIRe8/gmMPF7ocj0MmnK8xC0pPZuWZ71i4iY94fcKPWAmBj1Q/ju8a0LrvGZTAr2IZh03QdbxO+KdOr0Wang93SxfPSmljbzinTq9gSdwvboVBD3GciK8jPAPvYXcKjzayo49U0M1vHRW0LtTKp68LE/9vDBJsbymTdY7bRC9PJFPOrzDRsA8hTo7PHUkIr1KSGe8xLYBPeP7yjw1MTQ9Rr70O72inLzhWME8tosRvCDD1rvLA3s7lcAVvfKzUzznhT090j8CPeQ8hD1gFNW8jB8Yu6B+ar0HO8g8pdauvSfXu73R+oi8wDN1PEa3jjxmbBm8ZlroujTTIz0Imdg8a22zvEBfSj2G2YQ8XMsbvh0gTb18UZ47AsOGuzUxNDxJA247wEWmPNsSrrxQ/js78jysu/slybwhGgG9yC5DvWSex7y2XIk8b1W2PC1eiDpmc388TLWCPYzeXrsEmD47Hn5dvGn9cT33Cxi73/qwvDoZNz03j8Q8Mh5pvBmWWr2XBQ+9PO5uvTBiSL3+4em50Fs/PBWVwDvvh3G6sI0dvGCdrTuwHdw80Ov9Ox9lRj2NBoE9L3tfu+ImEzyzMCe9qxzCPOTiMz2wHdw8HcI8PJuWZ7x2OpM7PiwCvdN18Lxry8M8DoFbvdUqqzz3rQc8mfPdPPQ5Br38lYo9LTZmuxscjbw+LAI9pWbtuqXvxTviVZu86cq2PGn98bwS2R897f3+vBnXkzzRWBk9O5BePRF7Dzo/Abq80EIoPbAERbz8nHC8eZxjPdXii72mxH28a1QcPKwDKzuJfI48aJ/hvLUF3zwywFi8N3atvCmlDT3H6Uk+mPPduw2B27o87u68bvelPD5bijkvHc+8Q4usPAV/J70RTAe9mwYpvT8BurwyFwM9BAiAPA0KNLsPB448rLsLPLe6GbyS7oM8jQaBPDm7Jjxii3w85ictO1pFabwqk9y8Bt03u/VW3bwfTC88i/d1vOeFvbziFGK82qJsPWX81zzaouy81v9ivCy/vjx/DT87osNjvZuW5zyL9/W65w6Wuw9PrbwImVi9o6pMO81I9DwEmD48tezHuYuAzryu8fk8mHw2OUx0ybxAX8o7dD05vJg0F73FpFA85t+NvHdpG7z6V3c88ip7u+4p4TwdkI68sI0dvJE2Iz1vVTY86w+wOx9MrzyKmeW7JDQyveKdOjyOrDA99Jo8PZjzXT0eft28wUIAPYl8Dj3Kpeq8+WmoO9BCqLwDsVW9DJOMPKIzJb16DKU7sDbzOlCOejzKjFO6pjQ/PIEgijz8lQo9Vnb9uoAKGT01wfK8L7wYPfIq+zyawS+9cDwfO1aFCD2J3cS8TY1gvBRQR73S/sg8GKgLPLV1oLjAWxe8nqmyvF8tbD1gnS08e2q1PHSXCTwZBhy9LBmPPFkoEr2wBMU87G1APBdjErwMI0s9ACfjPH/idrzrhlc97ctQO9EpkT2Ok5m89ZcWPZp5EDteWLQ86ihHPcdgcb1vVTY9okw8Ou1UqTveVIE764bXvBg4yrzCGt680EIoPT4sAjzeE8g5Ck6TPScxjDySJHK7AH6Nu8BFJr3x3ps8052SOxZjEr2+d9Q7kN/4PJE2I7qsNdm8sB1cvZz09zwDyuw8wl/XPLjQCj2l70W9XbIEvNN18LxTocW80oehPJqvfrvYXXM8HcI8vBUFAj0IIrE8pCF0PB7uHjsdBza8K2EuPavXSD09XjA9XnFLvPwlSTzDRsC8aiUUvQiZ2DxtED26J2d6PUOLLL0VBQK9uBgqvIoJpzxF0KU8cCMIPJY3PTyJsnw9yLcbPaekgDyYfLa7fMhFvAusIz2MH5i8jPCPvMSk0D3JjFO9yZ4EvevHkD1QoCu9XJyTPVXmPjxTocU823A+vP7I0jxQoCs9xhQSPKpgIbyGCA28xb3nvFZWgD0nCWq8Yov8vM79rjydZDm8BpUYvSS9Cr2HNxU8uo/RvEn8B72EU1I9CYBBPUK92rvXbyS9qk5wPMvRzLwz7Lq7SBWfvMWLOb1knkc9I2bgO1XmPr3WGPq8In/3O5jz3bt+DT+9SAPuvBPAiDxM/aE8a+RaPTMFUjwWDGg8fa8uOwX2Tr2dHJo8zZ8ePFn5CTyi64U9SnCJt1MqHjsiIWe9tMDlvOgkhzyfwsk8FDcwu+W367zgiu88kh0MvRdqeDxqJRS8GQacPB/c7bx1EnE7POcIvddvJL3dbRi8WMoBPW2ZFTzYRFw8wEUmvU10SbwkNLK7Vnb9usJxCL2Jqxa9yRUsvBZjEj2JfI69SKXdvMZyojxe4Qy9Ohk3umO3XjvbiVW9NWNivdqJ1TsYHzO8CmeqPFe0ELw97m48qWAhPavXSDwD8g49xUOavNTMmrz1l5a88jwsvHfgwjz0gSU8FQzouvT4TLwVBQI9a1ScPPIq+zwe7h67mRsAvX0/7bz8riG8NIsEvPzEkrzShyE6UnXjvN5UAT3E5Qm9HSBNOsdZC70vo4G6H2VGvF36ozwe7p486YIXPOzk57ybr/484M9ovEXQJb1xUhC9fg2/vGgourz+P/q88G7avL2Q67shw1a92ETcvBfzUDyEU9I8/687vYd/tLvT5bE8oH5qvZc3Pb19P+07XhAVvV7ocj23MUG9oQfDOGjgmr30gSU9NGPivGH7PT28GcQ8KL4kvX2Wl7xhVQ49sXtsvCt6xTzvh/E6tmNvvOP7yjxcnBO9kKkKPDeo27xKQYE8aCg6PdEXYD2aONc82ERcPMJ47jx09Zm7c4h+PFpXGjwwYsg84M9ovF2yBD2ZUe685GuMvV2K4jwUUMc8A/KOvJuv/rxM/aE8j/GpvJVQVLzbcL68/K6hvE4Tk7v6x7i8v+77vGmxkrufOXE8FFDHvOBxWLw1ugw80TB3PE5bMjzSPwK9vucVvNdvJLztVKk7ndvgvduJ1TxfLey8fT/tuvkhCTpfLew87rK5vGAU1TvdLF+7/doDvfOaPDwATwW9GZbaPB0gTb0RTAc9y9HMOzRKy7zFG3i5egwlPB9Mr7tqbTO8tezHu00TEzviLfm89saeOyRNSTrrhte8rXpSvYhNBrx4xys9S5+RPDDSibwRlCY83M5OPanwXz2P8Sk9TluyO+ppAL0PPfw6wugvvAiZWD0fTC+8QHjhu/SBJTzRKZE8ul0jvUHPC72YNBe9DDxiuwiZWLsYOMq8ZnP/vKB3hD0Ff6c8tlyJPIzeXrypMRm9gTkhO/+vO72wBMU8tlwJvV8/nTwB9TS9IghQvLjQCrz/r7u8rkikOXFSED3rn248HamlvE1bsryBOaE93hPIvE7rcDxHpV07L7wYvYd/NDxWRE+86rEfPV36ozpUiC69ousFOlXmvrxvVbY8EqoXvCk1zLyvNvO8EXuPvFZET7xqbTM83bU3vVSILr1gnS29TrnCvH99gL22dSA8THRJPXUkIj3VQ8K7xKTQvOWwhTsjZmA8Pkx/uzPsujsPB468NekUPaaODz2PrDA8B6uJPSIIUDuM8I+8TY1gvH4Nv7zOhoc8oWVTvTznCL39xBK89q2HvKMh9DyVkY08Xs/bvJHG4bxZEiE8R4xGuwgJmjyFOjs8bYdkPfI8rDw6qXW8d+DCu8dH2jyLmeW85yctPLVGmDzzPKw66p/uPE65QrtEchU7StE/vfwlyTv+OJQ8wDP1vEe+9LrML906h/ZbPABPBbp74dw7qvBfPLF77Lxry0O8vaKcvP1qQjupMZm8WleaPZx9UL3Ohoc9I3gRvSy/Pr3Dzxi9VoUIvWtCa7wK3tE5qxzCvJnzXbw/ipK8qxxCO51kubxPF1M9OGT8O36dfTxLFrm7qWAhPcqM07sn1zu9YBRVPZ1kuTvP5Bc88ip7PemCFz3gyII86p/uPGKL/Dy20zA9lcf7um2ZFTpQjno9cRHXvOyGV7xUQA89pAhdOyII0Lz2Vl288jysPGZa6LuYNBc9NwbsPKh5ODwKVXk70Fu/ujIeaT0BDky9djoTPe1UKb1PMOo7tR52u3qDTL1kJyA9EJQmvbxL8rxngoq8RxUfu2fKKb3Xb6S7WkVpubHrrby+Xj27DWQEvApOk7xziP488PcyvaLD4zyq8F88FDewvCGRqDxazsE8Qc+LvAMhF703dq08GQYcPQeVGDxry0O9XnFLvD6jqTuRxuG6qJJPPBV8KT3885q8iTvVPJ+psrveE0g8vDLbPF2yBD3H6ck8PBaRvGsbGrzq2aM7tJRFvYiIQbsiBF46izYQvbYZeDx7P6k97LZgvMlD4Dy6SjO87TlNuwLpZzxe0gE8SrL+O8Irg7z299m772OMu0YnczyziwM9jUB1vcdo6TsJyjc9bMsuPXMGzzvrXta7hYCiPEBEXb1GzaI8RPEIu+f9Cbw6NmW9UGhsvSUMfbxxg2I8qB4FuxU2E72Zf6g8H0uHvL5QjDwg/D68ZJLUujqwDz10tmO9H3eMPCq4hbzCsvu8bfhWvDoJPb3nVre8V/GxPHlBb7y78YU9IFRJPKyrVr1pP4C9617WvS9wOb28zZ+9eenkvGKJkjueNZY7f8x6vaJol7zkyoi8xAjAPEv/AD25H1E9/KsBvayrVjsL//48OCyAPTUlBL0FEgS8PIwpvKh4Vbwzo7o8cYNivdEkMDtazKg9fMIVve4Mpbxy2+w6FJBjvGSS1Lpe/ym5ijjWu7E0HD1Piy87WXQeOx5Mqrz7rce8Zb/8PJ66yDr1yjG8bKDMvGZkCb0BDCs8VpmnOyYKN719dHA8JoUEPQGR3TxX8TG9L0ORPGEyKzxSZiY96VUUPP0yejxkv3w6RUmTPBHXjDuqgPQ83W3IPFr3irzTp5w6smFEPFXzdzp65x677Im4O5DBmzw85DM8dNgDPPR07bz9BdI8KuQKvd+YKrxAkoI7lqSxvBQKDjxhXQ08FLKDPMllgL3Hto49WswovS4YLz2KC668pshAPZb7GDxDTPy8kMGbPDuObzw7YUe7YokSvKIacj13DKi8hPySO1HiFr23RFo8ZDrKO7dvvDy36gk9duHFPIlbmbzHto68Z7wTPW6o6ztCb7+8GJY8vV7+Br2EKBi82bfavHMGTz3o22k88++6PHa0nbx24cW8BZl8PcQzIrwjBF68yWYjPeswizy1GXi95U4YvK9ZpbsNKuE8xNuXPRZA+DwtvwE9MnhYvDWr2bycsqm7AQuIvMyZpLvNHBE9k3CNPOeD37wgJ6G8+XiAOt+YKjxjtRe8xNsXvb1/+jsUkGM83GQGPYvoar3mWP08rda4OwVs1Lz2cYS89J9Pu1E7RLxnvJM8s4wmvcUzorpPi688HE5wvPsolbxUFZg8biIWvVWZJzzcOAG9lqSxvMQ1aLzkygi9y5mkPAGR3TuNQHW9Y7WXu3CmpbwRWxy8tr8nPbNp47uKNpA90qliPT2LhryrJqQ8In8rvHiRWrqhat08MR4IvHnpZD2ch8c84yO2vHxqiz02qZO8VZgEvZJxMD0n3Q48/jA0vDV+sTvzagi9P76HvIYFVbzHtg69Iy9APAylLjtIJa27ULYRvSxoGr0IR8s8HvQfPGPiP71OuNc8Uxa7PbKLA7q49O48777/Ov5d3LzRywK8nN/RPMTbF71RaOy73GQGvMQ1aD2D/bW8KRJWvYcvlLyWow49KuWtO6VDjjzE2xe9EVscvOy24DzVVg49shHZPDOjOr2oo7c8ucWAPazY/jwO/BU8Gu7Gu5aksbwi2Xu8s+Z2uxU2E70uRVe9zcSGvDzks7xYSJk8zkgWvENMfL3KbkI9/DL6PECSAr3sDus8CBmAuglxCr6rJQG9zMZMPSME3rzTp5w7NM4cPAnKN7zAWnG9r1klvEfNIr1gX9M8j5Y5vRU2E72ch0c8FTaTOqZvE7v7rUe86dmjPKBqXT0Iyjc76QZMvODDjLxpmK08pvVovZ2yKb2+qlw8mwIVPfl4AD0lh0q8KAkUvYyOmr0/vyq9YDRxuzYBnjuziwM9tMFtPZ5ivrwtv4G8w91dPQvSVrs3hlA9sISHPd7olbzaDR889yI8vRtxMzwwm5s8xDXoPNbc47ybXOW7uEKUPAaXtruKkOC8q34uvDFN9ryH2Cy8vqrcO2a9Nj0X5YS7bKBMPaVwtrzoVje9VcZPPM90m72vWSW9m7RvuwK8Pz3U/ya8pBeJPDdZKL2pzhk83erbO45rVzzemnA8rda4vDTOHD0q5S29pBgsvRlpFLq3F7K9wS1JPHQECT0ub5Y8mtaPPEuwOLzQJDA8pHJ8vKt9C7xwpqU86NtpPrkfUT1bUVu8vqpcPCVaoj0O2vW85XvAPFHiljw3Lka9Eg33vDOiF71dp5+8+aWoPRmWvDvbDZ87cf6vPHeRWjk6ju88f8x6PWO1F70IGqO7gk0hvQELCD25x0a8N1kovRruxryo0N+7pBgsPIs2ELyN5iS9v9W+vAkiQj0wIE48m7TvvFmfALvorkG7eY8UOkOaIb3pgRk9pXC2vO+RV7y6THm81SoJPTdZKL3MS3870PnNu8pD4Ds4LAC9oT01Pf8N8bxpHWC9+qSFPKslAb20PLu8bfjWO99rgr197z28gnpJvaypELtKWvS8EQOSOzcuxjw/vyo9cjN3OzN2kri3voS84yX8PFfxsb1Q4zk9dDExPYe1aT0cyb0822fvvMZeBD3FuFQ9k05tPHS24zwbnts80nw6vCgJFDxC9PE7KY2jOyfdjjy/fBE9TuV/PLKMJrxx/Qw9acMPPfManTxRO0Q8wq8SvdoNHzw6Yce8nudwvDbWuzr82Ck9lqSxPOyJuLyQGSa8H3cMPbkfUb3VKom8h11fvPzYKbwMTAE93L95vGXqXruRRk49HnnSPN0Vvjxtygu9gE9nPO/p4byAyZE7GJa8vO20GjxzgRy7TFcLOyQCGL0VYpg9ukqzu0L08Tuw3BG7pshAPZ5iPjzeFT69Le1MPc/Oa7zuDKW7NQNkPOzhwrxmvba8ZryTvUmomT1bI5A8hSiYPKvYfj1HzSI99yI8vEaiwDtXxIm8FY4dPQ1Vw7zOdJs6O2FHvN1AILtLhda8duHFvJu077vW3GM8+/wPPWZkiTwGag49vX/6vKZN8zy0we28K2rgvPLE2LwlWqK9h9gsvDIobbw6sA89U76wPNySUbwquIW8y5mkPEpa9DtnmnO7biO5t1rMKL1dWfo8qs6ZOyDPFr1w0008tMFtvR8p57x4C4W964t+PPVypzylcDY92AUAPQhyLbt4Y486xNuXvMpD4Dtu9pA9uJqeOkVJk7xmZIk9Bxzpu8Ld3TyeCrQ9lvw7vIJNobyiGvI8vc0fvXS2Yz2vsS+7Yoq1PNm32rv0Gh27YYo1PJJxMD1L/4C8q1PMvA/Yr7zjI7Y86a5BPQOPl7p8xFs8zPP0PFmhxrtrzfS8qvvBvP4wNLwJyje9aECjPbKMpjwIGYA8WSZ5vWrvFD05WAW9eueeO3508DxHJ/O8Le1MPaDlKr217M+88BREvLTB7bxkv/y71IRZvPHnm7yVSwS9pHJ8PBQLsTwfKee8HHAQPZl/qLw2fY46rrP1ugJkNTxtyou8uZoePWKJEjyfuAI8Pjw+vWA08Tq4bpm8Xlc0vOrYgDy4QpS8PYuGPHlB77xd1Mc8pOsDPSY33zweeVK7f3IqvYKncb1tUOG8iOBLPNiKsjz1cqe8s+b2vC5F17wEFEq8yptqvL4lqjtCb7+8my+9vMxL/7q+JSo8hzJ9vcrpj7xAFzW84Ug/PFWZpzyG2vK64nOhu4mzI71EH9Q8SisGvYKncbn1cie9WvlQOtFPEjxdhNw88T+mPAXE3rwaRlG8KbrLvN5AILxYzm49dDCOPI3lAbwgo5G8bcoLPXa0HTxuI7k8BEFyPJAb7Lzic6G8wQChvJhURrxtJX88wYVTPHrnnrxRaOw8eWOPvHTYgzsfS4e9WM5uO6h41Ttp8Dc9sQm6PKE9tTxiXQ27GhtvPKijNzyWo468dmZ4vFn50Lx6bFG8LGgaPVE7RLyQwRs83DiBvEpa9LwQ2C88/jA0PEqyfrw95DO9x8DzOsWN8jydhYE5RMUDOzR+Mb2Pw2E8tTsYu5EZpjyK3gW9sTQcPeRQ3rf3yQ49oZU/PM124byjGKw8drQdPQr1mbyQGaY9cKYlvTxfgbzcv/m7xDXovIreBT3Zt9o8+dAKvVA7RD1nbcs8XVl6vEV33jx4C4W9zZgBvX2WkLsXa9o82jrHui6d4TyIiEE9uBYPvVORCL0msYk9TduaPIYy/bwoCRS8tTsYPEEXNb13DKi8bSV/PBtEi7xhijW8yr0KvaI8Er13OdA7909kPDRTT707NB890qliPG341jypSgo8uvIovdfanTyJs6M7dNmmPK+z9b1ARN08sTQcvTCbmzypSoq81P6DuyJSA7011ru8rFEGvBTeCL0gz5a83ZALuxU2kzx0BAm93GUpPMOwNT043tq7OLP4O0BEXTxGosC81q4YvBZA+Ly0lEU919odvcub6rsoj+m7v6pcO9gyKLqUIUU7YDRxvHIpErzle0C9oT01PM90mz2w3tc8M9DiPKSd3rvcZak7RB9UvbTjDT21GXg9xzvBOzfVGL0twCQ9BOehPX0aoDwquIW80yzPvCiP6bu0t4g8TmDNPG9Omz1FSjY741BevI89DL29zZ87AjcNvdrivLugEtO8UA4cPTOil7y8dZU87TnNvKZvk71cAXA8HU7wuzy5Ub3oVjc9xossvd5AoDtUFRi9b6YlO/LvOjysA+G8zcQGu+kGzLvNSTk91wUAPCs8lTzlAPO8E7MmvCgJlLyMjhq9YNogvTL7xLzH47a8G+wAvewO6zwPrc28mNl4vJl/qDv3IZm8GxmpvMPd3TtHJ/O8OVgFPfJsTjyh5Ae8SrL+O/4wtL1ue0M8FxPQO78C57w1frE7RqLAu6DlKj3gHd082w0fu8FYqzxe0oE8pUMOPIxA9buFVUC9kUbOO7VnnTpHf/26SKgZvEXP6LyX+5i7wlirOw2ki7wp53O5s2njuyQvwLt5vDw9h9isOpcpZD15FEe7VZgEPB1MKrvAqJY8x7YOvXCmJb2GBVU9zZgBPS5F1zxYduS8AxTKPCs9uL3ECMC6UcD2PCoQkLygElM8HMm9vNhf0DwtGK+8oLgCPaqA9DzCV4g8SX23vC6d4TrMS/+59sqxvF2nnzwM0JC8FY6dPNtn77w/GXu8HnnSvBpzeby8SRC9BZl8vahLrbzT/oO8xztBvTOA97oHHOk7bnvDOyJ/qzxJfTe89MKSPMqb6jyx3BG8/7Oguvh6xjysqRA8SrL+PJxaH7yN5QE9Q5qhvCD8Pj0VkOO8GhvvO82YgbrWB8Y8DaQLPTYDZL2L6Go8G57buvTuF70N/Tg9TdsaPWxzJL2KONa7viWqPIH1Fr3YirI8omgXvDo2ZTvz7zo9njfcvMoWOD2kRdS7cSvYvHRe2bzHEN87RnWYu/l4ADuuLsO88xqdvCBUSb3AAme8ipDgPNtn7zzo22m8CMz9vJ41FjwN/Tg703sXPU8QYrxNCMM8ZDpKPRDXjLzBWCs8CHKtvL1SUjs+Dxa9FAqOPD3kMz3vuxa8kRkmvTmECj2wsIy8kyHFugr1Gb3vNwc88OebOlhImTyEKt47x7aOuz7jED0J9987CvWZPNKpYrze+UM78hr0O6UoUL0eG8+8svnou222Gb1ynZo82amsPS2xJDuUvbY8bR+wu9hcrLxKCe08sfqDOx9JojuoLIK8gvb2u6SSgbt/ikk8r1/oPNBkib0t0NE8mQ1OPT4cPj0Rs0w8OMwmvG6ojrxxuTC9tXS8O3p1dbxynZo86pnyvLULJr14v967xFcSvINSnbyl3wG9TofXPL2Mp7zDwKg8tpNpvMWkkrzlAA09EdMUvbb8fzwmFA297xfdvFm+77tgIES9NOUlvbNi/zwm5jm842VxPYvTHrugE3y9nSIiveVJ272A10m9wXOovUoJbb0kAlC8QLa+Ox7gi73bjZa8Uk+rvGKNDD16DN88IJYiPWlz8rzF39W8NhaQPOWWWz26LWq8yeJsPDz9kLx6wxC6LqMZO5aTlb2URfo6Y1EuPXu1Bb3cf4u6RbnVO69faLwu/qQ7RecouteYirw4Y5A82RLDvHRTMTztM/O8pnXQvIs8tTybEOW63DFwvApR+LozTry8mIWKPJKrebuP1jW9M+UlPF2mCz3TsQk9Tf8Tvf2tsjvOjqq8mi0WPSoXJLvPRME8IuMiuxaazTyeFJc8xpaHPSDSgDyZpLe7KvuNO89ylDwi4yI8g9rgOi1Ijjz5QQW7++h1PVy0FjwcZbi8PrMnPKlZOr2GVbQ74BmMvJk7obzAvZG8LO0CvGgKXDyKeJO92cVCPZ25C73f+cM8XLSWutfhWD2/2Se8y8bWvHHnAzxfaq08uxFUu1bpq7ycEGU92FysvA45FLyb8Te8kULjPHH0czuVoaA8FQPkPLJVDz21wby8F+fNvAmbYT35TnW8LYPRvPRaBL0RSra87TQOvM2OKr1S5pQ9hHFKPA84+TyaiKG8IR7mvHp1dT3/dQa9Rm/su+UADT0hliI7Ax6SvVZyCryd1SG8mXbkPOOzjD1WUsI8kkJjPdKRwbwKRAi9LEgOvGjPGLzae9m821/DPKnwozw+sye9XaXwvCxIDjzZXCw8mlpOPJZzTb3vrsa7t+GEPFIhWD1mvVu9iSsTPTRuhDxw9Q69hEN3u6720bzoES+8m8PkuypkJL2bp068sa2DPCdufbzpmg28clCaPM+tV730Z/Q8sye8unM0BL1Jzqm8yeMHvYREkjzHWqk7QB9VvWruRTz0Z3S8+slIPBCUnzwkmbm7HaB7PcGPPj1/qpG84a/aPM4lFLz9NXa8gAUdPT9pvrv2eTE9BMYdPRCUn7yLPDU9OVUFvXwP9juxQ9I8itMePCLjIrwSLqA6myz7vHcpkLyxQ1K7Pu5qvc4lFLxndI08sAiPu28DGr349AS92C5ZPKrhfbuZ3/q81qYVPZPriT3mWxg8ui1qPLVYJryMt4i8fIeyvBQf+jwoyiO903WrvNd4Qru03VI9t6UmvUcGVr2J7zQ7+UEFPeGv2jxvbLA8GWIhvaOulzzmxK47R52/PKejozz0WoS9SleIuyqggj2gE/w8QU2oPPxEnLvDwCi8CDLLuj3uart5hBu9iR2IvbWUBL00boS8+PSEvPnlXjzt+C+9pVYjPRvq5Dz9rTK9/BZJPRW2Yzvr5w2+/cxfveOzDD1ndI28FprNO3u1hTul7Yy7qJUYvaATfDswHVK8wkVVPF8BF71BTSi9m4ghOkTnKLwBLJ272Jdvu65ggzwwS6U98d+wOvMsMbwka+a80pFBPRIuIL0zTjy99CyxPJFwNj1C1gY9ECuJvILpBr3jZXG9+C9IvRTktrupD1E8Cq0ePVRuWD2exvu81AwVu4LpBj39NfY8hr5KPWaeLj3vrsa7jfLLPMbDP700Tjw6Qba+PNskAD1xi129/mPJvPkTMjwoM7q8e7UFvbMnvDoTlza9SOo/PHDVxjxN/xM9NLfSvMC9kT1YCNm70SgrvU5oqjxoc3K9itOevHM0BL3mWxg9x1opPKNE5jyqpjq82VysO3ftsTzae9k8L/6kPPLfsLwf7fs8moghvXOPD72cefs7q4qkvceV7DrQrdc8k+uJPKY6jTyjrXy8KMqjPJY4CrwfOxe8Nn8mPXxZXz5i1lo9ERzjuhcxt7kaYqE94pPEvKyKJDyWc808czSEvYXsHb01bem8okRmvOr1mD08oWo8wPjUPHftMboH5Uq8yD4TPC2jGT3P2yq8ERzjvFkaFr2Jhh49H0mivOYtxbxSuMG8Ks26uuAnFzw0boQ8q/O6vI+oYrwxLw89S7ITPe1hxrz2AhC9EXgJPLOQUrvVlFi95ElbPFxLgLx06hq8uA49vKl45zzfzIu8z0RBPFPmFDtuqA47xkjsvJG6Hz0m5jm8CVKTvcAmqLu2k+m8ktlMvFPYiTwg/zi9hzkevXOPD7178Mi7dykQvTw41Dw5NT08NCBpPb4VBrziZXG8UGtBvDDwGT2TJs29QAAoPdnFQj1fai09tKIPPR6yuLwesjg9xPtrPZKrebyU3OM8mlpOPI9tn7xmB8U7vtmnu/DN8zu0C6Y8q/M6PL0jkTy2/H+8sdq7PNEoKz1w1cY87fgvPKXfAb1pc/I8nsb7unwP9rxNo+28Bny0PNhcrDz6yci8+BOyvChTAj2YDc68c48Pu9nlCr31S148ucTTPC5nOzsmfaO8gAUdPZssezy99T09vcdqvEllkzxd71m8xJJVutAWbjufQc88wa5rPJfuoDyexns6TNHAPQ0ZzLtsaZm7nou4Omhzcj0SLiA8ODU9vdp7WT2LeBO8ljiKvF88WjxvmoO8qfCjvLR0PL2C95E9LEgOPEi9hzxnGYI9RXCHPGqFr7zj/Nq69hAbvTNOPD1vbDC8CGCevGcmcrwSLqC8UrjBvCLjIr3rfdw7JJm5PIWDBz1HU1Y8u6g9PRn5Cr1JGBM9hwtLvQqtnryl+ny83n5wvXxZ3zom5jm9GFDkPI8R+TuG3hK8i3f4uy45aLqaHws9HK8hPOaWWzvey/C89LUPPZD1YrqqxgK9ZusuO2BAjL1TuEE6YtZava9gAzz4L0g8Q2xVPY8R+TwhaE+8U9iJN0wbKjyg+AC7QU0oPf36MjtP8Yi87nODPaD3ZbxpClw7ALHJPckQwLxOh9e85HcuPWSM8bxuiEY9TFZtO73IhTziKi68Jk9QvBIuoLrOjqo8oVMMvW8DmryOP8w7cbkwPYMkSj3QrVe8hoOHPAHRET3Aj747iqVLvMYs1rtspFw8M048vWwOjj1FUD89tXQ8PNFjbr3yGvQ8ex4cvSkXJDw+s6c8ELPMvGI/cT3sjxm9izy1vHtZ37zlAA29CGAevKD4AL2u1yQ7oPflvBuvoTw6Gac8ktnMu/PDmjzpjAK9WFVZvHG5sDwIBPg8NG4EvVZyij22k2k8bU2DO7elJr2peQI8TmiqvHWBBDujcrk8/EScvIIkyjwYufq8fPDIuYW+SjvXeMI8InqMvCoXJL3KixO947OMvKzF5zuERBI9ZuuuvHEiR72Enx28c0F0vLBxpbxGNKm6Mjz/vEIDv7xQAqu78rFdPPvpkL1jjHG8wL2RvLjg6byubo48AiwdvDZ/Jr1Zgyy9sKzoPKvzOr08OFS8TrUqvZ3Hljzkdy48aaHFPHFQGj2PEfm8bVpzuy+Hg7x+axw7myx7PPa09Lrjs4y8HzuXvGIELj3l4MS7okRmPCo2UTykkWa8MmpSvKG8orxC1Ws83stwPJmkNzzcX0O9jxH5PEW5Vbzt+C88LFX+vCmAOjzhGPE7IC2MPc0T1zwCLJ08KYA6vK1Auzz7yUi783aavHHnA739Fsm84iquu86OKjxlzIG8QwM/PC6Vjrx16hq9/foyvGRwWzxchsO8MEslvQuRCDwA35w8EyCVvKOgjLur87q8uz+nPOHdrbuHdOE7Ka4Nvf2tMj3JMIi8cD5dPTOJ/zxpOC+9EGbMOyufZz2HOZ68TNFAPSjKo7ylSJi8iYaeuyJMubzGSGw9Wb7vPN+QLb1JZRM9NdZ/PG1ac7yVCrc8/mNJvRe6Fb1eAZc7unsFPSFoTzxQa0E9f4pJPckQQL13Vki9rskZPc33wDyJweG8egzfvFW72LqMxRO9tVimvMD41Dxx9PO6XqaLvIzEeLzksvG8xJLVO+h6RTz4fEi9pb85PRfnzTwf7fs84liBOwUB4bwgLYw7Tf8TPH64HD1uWvO9/a2yPAWYyryaiCE8/TV2vNYPLDziwRe9zffAvAlSk7y7qD29PGanPOler7zugPM8bFsOvbR0vDzaqSw9TBsqu3NBdDzH8RI9BMYdvDJq0juURhW9VNgJPYc5Hr1tiEa8WRoWvKfe5rtDIwe8lEYVvMUNKbzoTHK8aTgvvV1YcDynLII9TrUqPdFj7jyeXWW7FsigOyAtDL3eQy09ufImPaKulzsB0Pa8SWUTPRPSeT0jbIE82ySAvMsv7byVRfq7WRoWPHyHMjx/T4Y9B+VKPGPoF7nHwz+8lPh5OpahIL1DA7+2tsE8vMGPPj3DwKi8CGCeu+hM8rxXzZW9Q9XrPG/VxrsY5029ie80PadHfbxUBcI7iR0IvcHcvjzn41s6MZglvDRtaTwIBRO8/EQcPYHXSTsiTDk8NJu8u8/bKjzgRsS8RCJsvFi/Cryf2Di9/pGcvACxSbycehY935Atvf+DkbygE/y8JMcMvbWij7xBH1U8QAAovcIKEj0Hqoc8IZaivKP7lzyolH29kQegPBgHFrt16hq9eISbPN5+8Lv76ZA9kayUPFc2LDxHnT89wdw+POmajbzpjAK8czSEvV7TQzy2k+m8xFeSvCOZObsxL4+8SBiTO2cZgjtjfwG860IZO7Svf7vMqkC8bNIvPYrvNDxl2XE98Ckau5EHoLzwkjA81SvCPF7TQ71WJO+8KLwYPXgo9Tw8/RA9XB0tvXcpkDy3PJC9f/NfvMvG1jwwS6W86HrFPGHlAL203VI8d79evAYTnjyVRfo82FwsO+PBF7ybEQC8dbxHvAz6Hr0MYzU9X/MLvcqLEz23PBC9R4EpvJ9vIr2/2ae8msPkvPiqm70dkwu9FbbjvP+wSb1Ph9c7n9i4u/Xix7smIf06Ih7muzpU6jwd7hY9j155vNd4wrun3uY8W1mLOjcIBT2uqdE8R7zsPGmhxTqH0Ac9lu6guyE6/Dw2uwS6eXYQPG6Ixjz14ke96D+CPPJ2mrsX5028ZgdFOx+E5TwoyqO813hCvEY0KT20Cya8cecDPeHdrbvEktW6o0RmPbBxpbwQKwk92zILvE1oKr0cgc68h6K0PMqLE7wwS6U783YavF3vWbyTVCC9xEkHvfr3mzvA+NQ8bACDvA/9NbyRuh+8gW4zuhPS+TxjusQ7pd8BPdPeQT1hMoG8IoiXPJbAzbyAnIY89P5dvZL5lDt+1DI9N7rpO7VYJr3AJii8631cvF8gxDtgQAy9ysZWvOUADToZneQ8jcR4OxLSeTrlLUU9kIzMO/N2mjz+kZy8S5H6O+O6QTw41ta8VmqNuu+KfzugBje9KD2DO76Xpj2HYC26GfI6O/IFCrsaRWe87+LMPEqVLjyxbxu8b7uQvKbse7lpI1e8/i6CPJlysTy4q1O9gXPtPJyTFD1ikwU9B95cPG9habzXOfy8yhWlvJ9cqjw4hYS8RVL7PHvjm7yHXWa9gXY0vIcNATyybxu9uK0tvUSsIjzEfeu7gR7nPIrWlrwEbRS9x/cIPdfmT72sgls8XKeyvIEhLr1EAam8B99JvSAv4Lwamm08iFx5u9H7aT1j5Nc6DR82vRO1Fb3+LgK+u3kKvZnHt71vYla9PmtJvONluzwMyxy9pZ2Du3LaGb3Ef0U9ONoKPZkfBT1Q1Zq8YpMFvT5sNjzivYg97+HfvFcRUzxj5jG86KcBPHWjLzs+GYq9uAHHufUjJj1i6Au93CepvI2dUjp1TxY8GvHNPEnrIbwfiQe8adGXPMsR8bzLEfE7jZ+svHs4oruOm3g8VxFTu7iswLz1yus6kzWMvIHMpzz7DDK8dU4pvdGl9jsymh49lDFYPdBTt7wmbfI7mXMevBwUiz0ZSC68yhQ4PYezWbs+vvU80VHdu8ehFT2acNc8xIKMvFB9zbusLdW7dUtiPM3hgTxo0gQ8O08HPOmjTT2HYge8ONdDvWPk1zv1dWW9GZ8OOnve+roI3e+8MkYFvdBSyrwymbE7Vr+TvfUgXz2mRba8dfbbPERXHLwyQlE9x0yPO0SsIr2+lcy6UXzgPAeNirzBYwO9DnJiPWKTBb1Eqsg6h13mvESo7jxcqQy7jpv4PNx+CT1Q00A9GfUBvQTDh7x7i04908oNvNGl9ryi0pO8UH+nvHKGgLygBF29LAF4PaAFSjxiPCU9MkM+vTUQiLw1u4E9rqYFvWPifbucPg49XftLPBbVi72sg0g89c+MvA3MCT04LqQ942PhPJobUT37tVG5uAMhvT4Zirscv4S8vj/ZvLJr5zuovAw9shbhvHviLr2oEoA77o8gPMTS8TvEKyy9+wj+u2KSmLs+alw97HCXvb4+bD0sWjI9h7PZvNN1h7w1EAi9CN1vvG+6I7x7jSi9OC6kvAc00DxK6Nq8rNooPPXJ/jtvZDC9H92gPBrvc7yHXea8HL4XvERU1bz474I8uFe6vBqb2ryHtiA8AZ/dvNeQXDrdetU8UH46vAGgSj0fhy09EwsJvSDa2Tr7tr48yhYSvI31nz37t6u8Pm0jPazaKD1pJbG86KcBPaWavLzQVRG8jUqmPI3y2DxEALy7B97cO0SrNbyUMVi8UCqhuzLsXb3ZCQ08h7WzPCyvuLoOcfW8IIXTvPu05DzvjjO8EwsJvXX17jygrmk9HBQLvO+QDTy+7ga8gcpNvGOOZLygruk8e+ObvIEgQTyya+e6gSBBPT6/4rz1dlK9smxUPFEmbT11n/s7hO2KPBlJG71QKiE9YzrLPMTUyzuZHhg7pphivUQBKTwBSWo9HzInPaCtfDzWPwq7aSPXuxpHQbygr9Y8Sj5Ove/gcr01EAi9YpKYuYe1s7x190g8vuj4vOn6LT1iPRI9uAMhvQfhIz3ELYY8DSEQvsq+RL11SvU8DR1cvDKXV7vysAO6+wvFvPu3K73vkI28ONmdvGnQqjwW1Qu9ONbWvIEimzsmGVm84r0IPCbGrDpr8Y08bw+qPSbC+LoaRtS8DsdovDgqcD3v4ky9shV0vabt6DpdpkU9wbgJPfXOHzugA/C815BcvWtHAb2BH9S7h7agPOn5QD2mRTY9MvARvRMIQryyxCE9YpMFPHX4NT0HiVY9lIZePHVNvDtQ00C9ONdDPG+6Iz11+aI8vuj4vBNetTrvjNk8PsG8vC8mD70ymh686aUnveJnFTw+xAM91j4dPTtPB737CWs9VhMtPN3QSL0TXUg9xNU4vRy/BL2+67+85TEYPdfl4juTNQw9AUtEvPXNsjz1Ijk8jpzlPFmJFjyNR1+7oFh2PCYbM71WaLO8PsKpPFNKl71vtm88kGsJPa9QEjzKFaU8OC4kvGkh/TzjYvS8nwiRu8prGD2BdFo+B+A2PVNLhDwHiVa8uKl5PTKWarkHjJ05YugLPU1hC724WRS9uAOhvKzXYbw+vnU9OIWEPLLA7TzWkrY8bwt2vMQsmTx1+g89LK1eutFQcLx1Tim8OC4kPWgnC7tpeN28UIGBvOK8GzxjOzg8DXaWO8SCDL2UMGu8jvB+PfKvFj3ivBu9741GvA5x9bvdI3W8teWEvSAwzTyZcx68gXchvKlmmbxNYQs9kzMyvMpqqztK7I487zoavFa9Ob2NSTk9uAQOuVxUhr0TXcg7Dsb7vAeKQ7y1Oos8b2NDvfsI/rwH4La85YcLPGkj17z7Ybg8Iv0WPIEgQT0sBaw7h7NZu4osCrxrR4E7XFSGvRSwdD2K14M9oARdPe+PID21jxG9jUomPXs1Wz24rhq97+SmO7FvG7x74cG8yhS4PD7CqbzX5eK7EwqcPPsJ6zx7jLs6e99nOrip+TyBeI48wbgJPD5rSTuUL/686KaUPIey7LtcU5m8ymk+vagSgDwHisM8ac+9vJZVAr0NzIk8hO0KvW8N0LsB9dC8uKxAO+lPtDygsEM7VmoNPJPgBT3RpmO6kzJFPelN2rxEqds8MkSrvPjvArwmxFI7pfIJPYcKujyfs4o8Vw95u2M7uD2gBjc7KDyWvAc0ULylRxA91zppPF1RP73cfok9350Su+84wLw+a8k89XoGPPu5Bb2+Pmy9lDFYPVAqITuywO08OCtdPWPi/TyORvK82V6Tu3KGgL1WviY99XZSvA7Ge7yaG9G7ymwFvftiJbzRpXa8pvAvu0RT6Dw41Pw8QY0ZPdboKT3dJGK9gcynvO83U70ymp68E161vBDrkr1jOHE7rIJbvTJEKz0B9yo89XbSvJPeKzxc/SU8jZ3SPERWr7t1pQk8FLHhvPV6Bj2N8li7+7crvZOJJbtWEsC8PhZDPL4/Wb1y2pk5shdOPPtiJT0cvwQ9IC7zu5pu/bu4q1M8B4rDOwH4Fz0g20a7SpTBvOvGij1Q0lO81uipOyAwzT2yF868hwjgvDJB5DyHtw29+wpYPXLaGTzXkNw7mR+FvCYcILzKwB48e+HBPHX4tbwZniG8AaIkvFDWhz3W6Ck9xCjlvCyvODw+FOk71+ZPPFxTGb2W/466DSCjPPuzd71KPk49AaE3Pb49/zvE1Ti9XaVYPRQH1bzp+cA6VhLAOzHr8LvXkUk9pkajvLhWzbyl8Zy8B4rDugFOC7x1SnW9e4l0vAzLHL3WlJA8IIXTPMFjgzvKab471+XivHWjr7tpzWM70P+dPIdiB7x7OKI91ue8PFmKgzuHtEa9744zvD7DFr1ikhi8+wvFPOn6Lbx+WQU9u84QvSyuyzxXD3k8iAfzPJpxxLsIh/y8b2QwvT5sNrxQgBQ8daOvPCAwTbwsA1K8ONgwuyYaxrzBuAm9ONqKPPXPDL2aG1G8OIDjvPsLxTzXkFy9+wyyvAQYDrx7NzW96fdmPET99Dv1zh+9YzhxvXvhwTxK7A69U0uEvKvcAr2+QiA73/KYPHuOlbt1SvU8dU08vMQp0rxWZ8a8iAfzuTjZnTwcFAu6yr8xvBRbbrxEVUI9iAdzO4ez2TuQwI884hKPvLhUc7yBzRS8gSMIvOIRojy4BI68AU0evSxZRT2Bd6G8HGmRO+lOR70BoiS7SpRBO2M6Sz1Kl4g842L0PB/doLwH4pA8kzOyvF8eCb1oJwu9xICyvJpxxLvc0TU8uK8HvfXMRTyNnr+8PmrcvF/JArzjudQ8teUEvdx9HL1Q1Ro7E7O7Oi/RCDigA3A8XaP+vA3I1TxcUqy80FM3PPV5mb0EbRQ9vu6GvLhWTT0ufII84w5bvQ5xdbssA1I90yCBvKyDSD2NoYa8q9yCvJMyRTzQVRG9oFh2PZMzsjzZCQ2942aoPKyB7jyBH9S8ZbIOPUrpx7yBIEG8rNuVO6yDyDzHTA896U7HPFF84DwTCwm9kzQfvelPND01EAg9XfnxvBRb7ryBzgE8PhewvKLTgDsEGI48TWGLO9x+ibxdUFK8KOePvFdkfzu4WKc8vullvJrGyjxBOJM8JsNlPBlKiDwcFAu9SkGVPFF78zuBdFo93XnovURVwjzc0iK9iAfzO+ISD7xRJu08oigHvayBbrz1d7+8b7ojvcoTy7tToAq8rNfhPJpwV70+wqk82bQGPQGht7y+6tI7XaXYPG+277zXO9Y8r6WYvCywJT1T9RC9uK6aunVNPDt74xu81jzDvIdiB7zpTke8k4fLvOn5QL1Qfyc8AfmEPdleEz2s1vQ8KweGPIdgrbwOHG+8LKzxPO+OMz07Thq70P4wvROyzjyWVYI90aV2PDJCUbxofBG9YugLvI31Hzssrks7GptaPQFK1zzp9+Y73NOPvDLuN7sHikO9pkRJuweI6Tsg2ew8gSMIvV1RPztWvbm8XfpevQH4lzxj5Ne8Sj87vQeKQz2mRMm7adGXPGPi/bwTss47euBUPD6/4jslyAa5qBKAvKBaUD3TdQe7hw2BO1z9pbvv4HK8eziivIrWFryTM7K8pZq8vPXMRbyfXZe8Y+NqPBRb7ryZb+q7V2ZZvGgnC72E7Qq9r6WYOyJTir11Tqk8r/sLPVcPebxK66E8xH1rvT6+dTy4AyE8aSH9vP7YDjw41la8jfaMPWI8JT2Hs9k81j0wPeO3+jryBYq8INwzvI7xa70g2P88+w6MvL6UX7y4AFq8vpiTvLt5ijxEVNW7AfVQOmxGlDyTNJ+6aXukvJ8IET0sBSw8aXo3PQeLMDyKLAq9qWaZPGOQPjv47hW9YpMFvZw+Dj2Ht4080fvpPOK9CL3jusE8AfmEvRpHwTsBoTc8smtnvK/7i7rKaNG8UCsOPN17wrx1oy88GfOnPPthuDvlh4u8PsQDvCwFLLyTMzK9VhQaPeIRIr0ymws9VxFTvUT/zrvvNXm9DXPPvMprGL2ybFS9PhgdvY3zxbxEASm9ac1juVCBgbx1TTy79c2yPBQHVbzjZE464mgCPfthOLy4Vk08SpYbPbvOEDrKEl48k4dLOxaABT2gsbC8LnwCPcpo0bqgr9Y8dU28O7EaFT1j5jE9S5F6vZOJJTzvkA25OH/2vB+Hrbs42Z08b2LWvJob0bwymMQ8GvHNOBrv8zx19e46ssUOPLj/bD2gBcq8xCyZPET9dLw4hQS9KOcPvQ0d3Dy4Vk28pZo8PJZVgjkNHdy8n16EvRlJG731zbI7zeCUPKbvwjpdUFK6lDBrvF38OLwsWFg947suu5lzHj1p0Co9Dsb7uzgvETzBYwO9ezmPPI7xa70KV408Pm4QPSbFvzqN9gy9zeGBO+ISj7zdI/W7FioSvTjYMLxK6ce8gcynPNGl9rt+WBg8YzpLPZ+yHTyfXgQ9eMSSPA=="} \ No newline at end of file