|
|
|
@ -35,23 +35,11 @@ def init_es_pool():
|
|
|
|
|
return es_pool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 将文本转换为嵌入向量
|
|
|
|
|
def text_to_embedding(text):
|
|
|
|
|
words = jieba.lcut(text) # 使用 jieba 分词
|
|
|
|
|
print(f"文本: {text}, 分词结果: {words}")
|
|
|
|
|
try:
|
|
|
|
|
embeddings = [model[word] for word in words if word in model]
|
|
|
|
|
logger.info(f"有效词向量数量: {len(embeddings)}")
|
|
|
|
|
if embeddings:
|
|
|
|
|
avg_embedding = sum(embeddings) / len(embeddings)
|
|
|
|
|
logger.info(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
|
|
|
|
|
return avg_embedding
|
|
|
|
|
else:
|
|
|
|
|
logger.warning("未找到有效词,返回零向量")
|
|
|
|
|
return [0.0] * model.vector_size
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"向量转换失败: {str(e)}")
|
|
|
|
|
return [0.0] * model.vector_size
|
|
|
|
|
# 导入EsSearchUtil
|
|
|
|
|
from Util.EsSearchUtil import EsSearchUtil
|
|
|
|
|
|
|
|
|
|
# 初始化EsSearchUtil
|
|
|
|
|
es_search_util = EsSearchUtil(ES_CONFIG)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
@ -60,6 +48,7 @@ def main():
|
|
|
|
|
|
|
|
|
|
# 测试查询
|
|
|
|
|
query = "小学数学中有哪些模型"
|
|
|
|
|
query_tags = ["MATH_1"] # 默认搜索标签,可修改
|
|
|
|
|
print(f"\n=== 开始执行查询 ===")
|
|
|
|
|
print(f"原始查询文本: {query}")
|
|
|
|
|
|
|
|
|
@ -69,7 +58,7 @@ def main():
|
|
|
|
|
# 向量搜索
|
|
|
|
|
print("\n=== 向量搜索阶段 ===")
|
|
|
|
|
print("1. 文本分词和向量化处理中...")
|
|
|
|
|
query_embedding = text_to_embedding(query)
|
|
|
|
|
query_embedding = es_search_util.text_to_embedding(query)
|
|
|
|
|
print(f"2. 生成的查询向量维度: {len(query_embedding)}")
|
|
|
|
|
print(f"3. 前5维向量值: {query_embedding[:5]}")
|
|
|
|
|
|
|
|
|
@ -79,7 +68,18 @@ def main():
|
|
|
|
|
body={
|
|
|
|
|
"query": {
|
|
|
|
|
"script_score": {
|
|
|
|
|
"query": {"match_all": {}},
|
|
|
|
|
"query": {
|
|
|
|
|
"bool": {
|
|
|
|
|
"should": [
|
|
|
|
|
{
|
|
|
|
|
"terms": {
|
|
|
|
|
"tags.tags": query_tags
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"minimum_should_match": 1
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"script": {
|
|
|
|
|
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
|
|
|
|
|
"params": {"query_vector": query_embedding}
|
|
|
|
@ -98,8 +98,19 @@ def main():
|
|
|
|
|
index=ES_CONFIG['index_name'],
|
|
|
|
|
body={
|
|
|
|
|
"query": {
|
|
|
|
|
"match": {
|
|
|
|
|
"user_input": query
|
|
|
|
|
"bool": {
|
|
|
|
|
"must": [
|
|
|
|
|
{
|
|
|
|
|
"match": {
|
|
|
|
|
"user_input": query
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"terms": {
|
|
|
|
|
"tags.tags": query_tags
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"size": 5
|
|
|
|
|