From 5e04763f81228f8da83a23bd432623877d901784 Mon Sep 17 00:00:00 2001 From: HuangHai <10402852@qq.com> Date: Fri, 11 Jul 2025 13:09:24 +0800 Subject: [PATCH] 'commit' --- .../JiHe/graph_chunk_entity_relation.graphml | 169 ------------------ .../Topic/JiHe/kv_store_doc_status.json | 12 +- dsLightRag/Topic/JiHe/kv_store_full_docs.json | 5 - .../JiHe/kv_store_llm_response_cache.json | 10 ++ .../Topic/JiHe/kv_store_text_chunks.json | 9 - dsLightRag/Topic/JiHe/vdb_chunks.json | 1 - dsLightRag/Topic/JiHe/vdb_entities.json | 1 - dsLightRag/Topic/JiHe/vdb_relationships.json | 1 - dsLightRag/Util/DocxUtil.py | 36 ++++ .../Util/__pycache__/DocxUtil.cpython-310.pyc | Bin 1244 -> 2302 bytes .../media/image1.png | Bin 0 -> 211934 bytes dsLightRag/static/Txt/JiHe.docx | Bin 227507 -> 227520 bytes dsLightRag/static/ai.html | 9 +- dsLightRag/static/markdown/JiHe.md | 4 +- 14 files changed, 62 insertions(+), 195 deletions(-) delete mode 100644 dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml delete mode 100644 dsLightRag/Topic/JiHe/kv_store_full_docs.json delete mode 100644 dsLightRag/Topic/JiHe/kv_store_text_chunks.json delete mode 100644 dsLightRag/Topic/JiHe/vdb_chunks.json delete mode 100644 dsLightRag/Topic/JiHe/vdb_entities.json delete mode 100644 dsLightRag/Topic/JiHe/vdb_relationships.json create mode 100644 dsLightRag/static/Images/5d29d93325124e6aaea624b236a57e23/media/image1.png diff --git a/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml b/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml deleted file mode 100644 index d231bd14..00000000 --- a/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml +++ /dev/null @@ -1,169 +0,0 @@ - - - - - - - - - - - - - - - - - Triangle ABC - geo - Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - Triangle Inequality - category - The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - Euclid's Fifth Postulate - category - Euclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - Proposition 19 - category - Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 三角形ABC - geo - 三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 三角不等式 - category - 三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 欧几里得第五公理 - category - 欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 几何原本 - category - 几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 命题19 - category - 命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 点D - geo - 点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 等腰三角形BCD - geo - 等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 9.0 - Triangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides. - geometric proof,inequality - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 7.0 - Proposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides. - geometric logic,proof technique - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 8.0 - Euclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof. - angle-side relationship,geometric principles - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 9.0 - The proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction. - geometric proof,inequality demonstration - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 7.0 - Point D is constructed from triangle ABC by extending side AB to create additional geometric relationships. - auxiliary point,geometric construction - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 7.0 - The triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions. - historical reference,mathematical foundation - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 8.0 - Euclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof. - geometric principles,logical progression - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 8.0 - The isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships. - angle properties,proof technique - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - diff --git a/dsLightRag/Topic/JiHe/kv_store_doc_status.json b/dsLightRag/Topic/JiHe/kv_store_doc_status.json index 10b53545..1fd431d7 100644 --- a/dsLightRag/Topic/JiHe/kv_store_doc_status.json +++ b/dsLightRag/Topic/JiHe/kv_store_doc_status.json @@ -1,12 +1,12 @@ { - "doc-a5e3dacee89618f913c4948b6ffe64ec": { - "status": "processed", + "doc-86997193b152a15921e498b02550a63b": { + "status": "processing", "chunks_count": 1, - "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/5d29d93325124e6aaea624b236a57e23/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", "content_summary": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9z...", - "content_length": 1772, - "created_at": "2025-07-11T04:57:49.311633+00:00", - "updated_at": "2025-07-11T04:58:34.370868+00:00", + "content_length": 1770, + "created_at": "2025-07-11T05:09:11.662472+00:00", + "updated_at": "2025-07-11T05:09:11.665185+00:00", "file_path": "unknown_source" } } \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_full_docs.json b/dsLightRag/Topic/JiHe/kv_store_full_docs.json deleted file mode 100644 index ab93253f..00000000 --- a/dsLightRag/Topic/JiHe/kv_store_full_docs.json +++ /dev/null @@ -1,5 +0,0 @@ -{ - "doc-a5e3dacee89618f913c4948b6ffe64ec": { - "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。" - } -} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json index 0cfaa85c..a6e875c7 100644 --- a/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json +++ b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json @@ -31,6 +31,16 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "三角形两边之和大于第三边的证明" + }, + "b77e26c8086abbf8d809e39b1e55a4d4": { + "return": "{\"high_level_keywords\": [\"\\u4e09\\u89d2\\u5f62\", \"\\u51e0\\u4f55\\u8bc1\\u660e\", \"\\u6570\\u5b66\\u5b9a\\u7406\"], \"low_level_keywords\": [\"\\u4e24\\u8fb9\\u4e4b\\u548c\\u5927\\u4e8e\\u7b2c\\u4e09\\u8fb9\", \"\\u8fb9\\u957f\\u5173\\u7cfb\", \"\\u4e09\\u89d2\\u5f62\\u4e0d\\u7b49\\u5f0f\"]}", + "cache_type": "keywords", + "chunk_id": null, + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "三角形中两边之和大于第三边的证明" } } } \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_text_chunks.json b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json deleted file mode 100644 index 0f97e531..00000000 --- a/dsLightRag/Topic/JiHe/kv_store_text_chunks.json +++ /dev/null @@ -1,9 +0,0 @@ -{ - "chunk-a5e3dacee89618f913c4948b6ffe64ec": { - "tokens": 1055, - "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", - "chunk_order_index": 0, - "full_doc_id": "doc-a5e3dacee89618f913c4948b6ffe64ec", - "file_path": "unknown_source" - } -} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_chunks.json b/dsLightRag/Topic/JiHe/vdb_chunks.json deleted file mode 100644 index 42a2d8ad..00000000 --- a/dsLightRag/Topic/JiHe/vdb_chunks.json +++ /dev/null @@ -1 +0,0 @@ -{"embedding_dim": 1024, "data": [{"__id__": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "__created_at__": 1752209869, "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", "full_doc_id": "doc-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "8igHu6jy1zyArTa9TZs7vZ3K1bxdIS89YZBYPQooxTyQ85k8bifDPJYsE70GOby6MGOEPACAojvwHmi7hJw/uocL6TxNwLO8i3pRPQFAErtwTHy9tGTKOZ2lXbwv/n27g5y/u93OY7yDd4a8YCuPPFO5nDxR7wu8PbpgPMjZBb2fLx095Kw0OzR3hTz210A8Ln5dvB+dQb3fmDO9AaVbPNaVqbw3Ace8uh0jPd+Ys7yPToE7y8jPvF38d7xeRie9WjLnO/51gbs3pp67h8sXvTcBhj1iEDi8tu6JvZ/vjDxitQ+8YjVxvELzWb1Nm7u8nUr2vNSLCLxrODq9bqeivNyp67wElGQ9Q3N6uy0ZlLxILBK7yiM3vVP5LD0ElOQ7AQDDvQkDTb0ufl29obkdvZcRvLxtAgq9vjEkvCZ7UzsRhja8y8hPO0pRCj2z5Oq81MsYvSHnMTvItA08SlEKO+/5rjwl+zI8Rb0pvWmT4jy3E4I8eKosvPaySLyWbCO9b6civTKS3rz+dYE81bCAPBKrrjw0Ug09y0hwPehA1jvomz2926mqO6zGBz3TpuE8s2TKPGI1MLwPvGY9MEgtPRkJYTwOPAU9SIc6vJWiUzy853S9boLrO5gRPLvaX3s8JyBsPYCttrsjMSI9QU6AvPxrYrsu/v08aW7qPAoohLz4fFm8shoZPGkTAb04S3g8HfiovKwGmDwJgyy9WbJGPInVuDzQNzg933M7u52l3bxCTkE9YGufu3rZBD0qj1S9LVnlPEgsU70Yvy+8xzQuu4H35zyb24u7O/BPPPaySDyVRys9b6ciPU2b/LuEwTc71pUpPHIWzDvYuiG8gfemvFGvPL3W8FE97C+evP2QGbw8up88K7QLu+d2xTvowHY9ufjru38IHr1cfNc88Z6GPEa9ar1tQpq86wrnu0JzOT2vdUE9tQkiPBvTsDzu1Da8hwvpvA+8ZrvjB108kI7SPNVLejzeTgK8WTJnO26Ca7s1t1a8f4g+PXuZNb1GYsK8cMwaPS/+PDwVGti7Lj6MvDU3NjtBKUk7L/48vCqPVLvr5e68l+zDu1SexTtvp+O8idW4uqwGmLtFPYm9ZH+gu3u+LT3J/j69NBK+O9KBabwxbaW87K++PAlolDzzDXE8aRMBvZwlfruol3A8SayyPLPkqbwkVtu844e8PAFlCj01N/e7eM8kvZpbrL24uBo9mwDFvFR5Tb3Zn4m8JfsyPNOBqLufb6066QAFPXDMGrzXumK6lUcrPQUUAz1gK488ud0SPdqEczyjXjY9ritRPOzvDT0euJi8TcD0OzMS/zyglCW9R4e6vQ+hDbyshvm7qHL4vFPU9TwQ4d48XFeePLodIzwDb+y7h7DAO8MFFb3qwDW6dcWDvHrZBLzyaJc8XsYGPNqEc7yBUg48sr8xPJCO0jxwcbM7+sbJO5gRvLu957O7l2yjPP0QOr1mZIg8dKCLPESYsbxWQ949aEkxvQKl2zuJVRi9wNZ9PCkqC7yfb248bN3SvOB9G72RWCI59I3QOx54STyO6Tk9TNsKPVN5jD2roY86SAfbvDZBljyW7AI9TPYivtaVarwNcvY71pXqPN3O47sJqCQ9ps2evebR7bxruFq8DheNPLh4CrwfQlq9OcsWvHIWTLyGCyg7Bzm8PL4MrLxhkJc8LDQsuxvT8bzpQJW8XiGvvIyfST2AUo66OKZfPTHtxTwykl47Xfz3OyVWW7w1Nza7ukLcvIgwYbyRs8q6Gi7ZO+wvnjymzZ48l2zkvPLDv71jWqi79legvCy0TD2IMKA9H0IZvH+tNjx+CF+7vGfUvFcoBT0ZCSA9cxZMvZ9vrTuf74y8rpAYPeB9m7y4+Cq9nGUMvfnGSTwJgyw9Hh2hPJI9ijuVx0s9JyBsPFIUhL2dSrU7angJvRtT0bynTb86OKaevN8Yk7wXP4+8fH4dvYXBtzzihzw8zi2XPCQxYzz18he9+aHRu5tbLL1ABJC87RSGPDQSvr2JMCA85ay0PDAj9rvwHqe8CAOMu7pCG7yYEbw7O5WnvK0GWT2EAYc+dLtkPTrwDr17GZW902aQPFClm7sBZQo9dLujuwdeNLwgwvq7YRB5vJI9irsYv687MpJePAUUA711YDw8yf6+OxIGFj1CziA9Vh6lu3u+bjzom369hwvpPCQWijxkWqi9rMYHvZwlfrxQCqQ9OnAvO+FiA7sJA4y8LdnEvNZwsbtAqai7K7SLPC+jFLzcqWu7vOf0vE0b3Dz4YYA8bF1zPIoViLoGOX08KmrcuwpNvbzahDI8xk+FPD5fuDvndsU7yVlnvD26HzwCpVu96+VuukQY0rxa8pW9Kuq7vKaoprw1XG88qJcvvDhL+LvbhHM7JnsSPPPoNz2pvKc8OKYevWI1cb36Rqk8pIOuPDy64DxM9uM6gfdnPSagyzwkVhq9itX5POwKZz2zP1K82bohPUaikbw6cHC8WY3Ou0Lz2byoly88K7SLvDKSXrzi4iM8rMaHPOWsNL1/LRY9uFNTO2kTwrzcjhK9kljjPFhoFb05y5Y882jYvMNFJT1XQ1483CnLvNRLubwWmvi8FhpYvVmyhbvbBNO8BC8bvPJDYD0Y5Ke9k/37vObRLD0v/ry7yBkWPJAO87wqatw8bF1zPPGex7zom367t666PEy2kr0BJbs7RuKhvHeqbTzwHqe8ICcBPIkwoDwHudw8nUo1vEeiETyALRY8uNNzPO2vvjujXvc8jB8pPLndEr2bAIS9ebQMPb4xpDxCzqC85tFtPauhjzxMtpI8lsfLvIiwwLyaW6y7E6vvO9C32DthKw88sz/SPD5f+bpYDa48LyO1PBOrrjuIMGE8yNnGPC5+HDwfHeK8jw6yuiAnAT1ILNO7tAljvUWYMbz3fJi8HfgovZbHyzy6HSO9WI0NPYHS77x94+Y8TRvcvKMDDj2x2gg9CQNNveFigzuqvCe99rJIvOC9bD1S1LQ8StFrPZZsI71/CB696QCFPWQ/EDzn9mW8KEUjPUpRy7w3AQY9/3/jPOnAtbxobim9JiCrvHaF9Twfwvq8gO2FvKm86D3v+a68RuKhvGGQFzw9up87I7HCu6bNHj25eMs8Ko9UvWR/IDwyEn87/1rru6GUZj2ZthO9QAQQvQkDjDynjQ64i/owPFUeZr32VyA81hWJPKq8J71RisS8Pp+HvE4AA72ZdgM7m9vMvAQvGzycZYy89lcgvNQmQbw1t1a8dWC8O3UFFLwUUAa9JVYavFho1ruz5Gq9RmJCvE2bO7taMiY7CINtu+zvjbvJ/v87rSuQPE+lGz0Lzd27A++KPKiXr7yEHGA7k/06PTFILTykg648sv+APHHxUz2vUEk8IWdSvJUiMz2K1fk8gncGPZeRXLsKqGU964qFvDgmvzwl1vu6+0apOp/vDLtSFIQ8EYb3PO7577wYZEg9rQbZPAfe1Lzom/685xsdvVbDvTubgKS8yFmmvJ2KhL2YkVy8UhQEPGDrPzxSVJS86mUNPBKGNjseuJg81nDyvPXyl7wwyIy82TrCvI7puTxDGFK8nUr2PCbgmrx0YDw6PHqPPHFxdD0Dbys8yX4evZpbrDvGj1a7hcG3vHw+Tj0jDKq8oBRGvIFST70stEw9xg/3vHiqLDyzP9K82LrivKaoJr1S1DS9Q3N6vJbHy7yR2IE7Rj3Ku3dqHL3nG968XNe+vJcRvL1Y6Pa7fuMlOwxyNTtpkyG8ez7OPBqueb2e70073KnrvH3jJb09Xzi8IzGiO4Qc4Lr7Rik8aVMRuyYgqzyMn8m8gK02vbUJYzwh5/K8j+k5vKm8J7yshri8XsbHvNBcMD3GD/e7H0LavDlL+DwVtY686+VuvCuPk72b20w9e5k1vNFccbxYjU68/loqvVLUNL3QXDA9mwDFvBi/rzumzR49gvdnu0ApCL06cK+8wFYcOioP9TzTZpA64wddPecbHT263ZK7UYrEPCkFEz2Ykdw7E6tvvIsfKT0McjU8feOlu/vrgLxexoa9HfjpvC+jlD2SPQo9gfemvDU3Nr2sYcC7y0gvOGI18brCoM27SayyvAc5PLxwzNu8TcAzvWK1Dzw78I629rJIPCV7kjtXw/47Iecxvcsj+Dw78M+8T+UrPQ48xjyb24u8czsDvsn+fzyocng7LLTMPBbahrxHB5o8DVedvA68Jb1Ix4k8qBePvJ9vbrxpbuq8WA2uPE3As7wzEn88k/26PCEngbzcjhI83ClLPEz2Ij2VR6s7tAmiPFUe5jqQM2u8eU9FPKeNjrxyFsw6+aFRPULOYby6HWS9jETiPJEYErwfQtq8lmyjPYDSLj0GuVw8IOdyPLjT87njh7w8QakoPAqopDwOvOY8zxLAu0iH+zwN8tU8r9DpPF7Ghrynsoa86UAVvDim3zwa7ge8nu9NPCQxYzxS1DQ9JNY6vLbuCT26Qty8O5UnvTyV6Lxd/Hc8MW3mvBOQlrtruBm97K8+uoewwDt/iP88MMgMve3vjTzWlSm8wqDNOtoEErxK0Ws9gfemPDSSHb3Gj1Y80gGIvOFigz2xmjm8Qs6gPOvKFb2VotO80Df5vApNPbyr4R89HFNRPK0G2bye78285naEuw/hHb27Agu9f4g+vVGvPLxY6DW9ot7WPH3j5ryRWKK7D+GdPIoViDvcjpK7apNivRHGhTpRCqS8Eoa2PNMmwTyoF1C9angJPZbHSzyPKYk8GeSnPAdeNLyshvk8LDQsvIcLab1pk+I8DpfuO83txzv7Rim7d2qcPZ2lXTzpAIW7zS0XPT+EMDyVR2w8i59JvA1XHTw8FUi8cbECPULzWT1RCuU87/kuvbD1oDwwCJ29xWreu/ghMTxILNO8OnAvPWs4Or1fa2A8Z0mxvALKU7yYttQ7vgwsvSoPND3HNK488HlPPPbXQLwq6js9TPYiPSVWmjtcVx47BTn9OgQURD0Vdb+6k32aPfNo2LwijAk9q2FAuT1fuLyK1Xm8OKbfvB+dgLwhZ5G9/ZCZvPmhUTwD7wq8JvtzvC8jtby2Lts7YjXxOyEngTyIMGE8nEAUO1coBb1zFky9e5m1PQtN/rqPjlI8kVgiPf9aqj2ocjc8BBTEPA2XLT2DnL87pihHvDhL+LoDSvQ8HriYvVx8ljz4ITE87a//O4r6sLwHngO8YOs/PHeqbTyDHOA8rpAYPbO/8rvv+a68S/ZjvA48xrtrODq9ncrVOxnkp7xABJA8dgXVvN8YE734fJg7yn4evNspCr3BexQ9zMjPuoMcn7yPTgG9j44RPW4ngjzbhDK91Kaguipq3LxI7IE8SdFrvE/lKz3gvWw97AqmOvZXoDwsNG28TLYSPYvfGL3xnkc9hME3u5LYwrwJQ5w89tdAPL4x5TwstMw8sr8xPAjeVDzxnse89A3xvCFnkTy0iUI8NbeVPCOMyjxQigM9TcCzvA=="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_entities.json b/dsLightRag/Topic/JiHe/vdb_entities.json deleted file mode 100644 index 7e6af989..00000000 --- a/dsLightRag/Topic/JiHe/vdb_entities.json +++ /dev/null @@ -1 +0,0 @@ -{"embedding_dim": 1024, "data": [{"__id__": "ent-043d3380caf00eb2310dd3faa6a84004", "__created_at__": 1752209912, "entity_name": "Triangle ABC", "content": "Triangle ABC\nTriangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8f4c99eefe09648d35e0adb3a70e4e46", "__created_at__": 1752209912, "entity_name": "Triangle Inequality", "content": "Triangle Inequality\nThe triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-db5203dcd8d28444cb765e0a69fabc39", "__created_at__": 1752209912, "entity_name": "Euclid's Fifth Postulate", "content": "Euclid's Fifth Postulate\nEuclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-847c21da8ab5c456b960f60c394aa01c", "__created_at__": 1752209912, "entity_name": "Proposition 19", "content": "Proposition 19\nProposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8ba3a27004f706af0260e986bc6a092f", "__created_at__": 1752209912, "entity_name": "三角形ABC", "content": "三角形ABC\n三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8a5ebf15695060ebf00d53ab04833554", "__created_at__": 1752209912, "entity_name": "三角不等式", "content": "三角不等式\n三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-c28aba2ebce9095cd8d78f1df53c3cbe", "__created_at__": 1752209912, "entity_name": "欧几里得第五公理", "content": "欧几里得第五公理\n欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-33baeb08781cf03b07b33ac6f4b4165b", "__created_at__": 1752209912, "entity_name": "几何原本", "content": "几何原本\n几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-9ac5593950faa90a93f1b5feec7e9295", "__created_at__": 1752209912, "entity_name": "命题19", "content": "命题19\n命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-1c05bc513bda1ef4c9e16fbdd1e1776a", "__created_at__": 1752209912, "entity_name": "点D", "content": "点D\n点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-6864816e2804264ec4a684abb1343e5b", "__created_at__": 1752209912, "entity_name": "等腰三角形BCD", "content": "等腰三角形BCD\n等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "yVbxuifFmjyJJ4K9gOy2vCFgtzu7ioW88f1WPKM95DxT/B68QumlPJVk8rxOND+8vVJEPGgtbrxpkIs7moLpPLKzWT1dVB29XziNu1kalrzKKza9EmqSPNTKILxCavi7VpmiuncUCT3QOoK84UB1PVnTqbueLRa8XZuJPD/ogrx+CEe8hpiGPfXFtrxCavi8pXdrvC+AlbstHfi8z+UNPbkYPbwIZwg9Hl8UPaERhrzSn8Q8xqrCvAaSwzsYM5W8nFeuPMVj1rxjOtM7CBIUvPw5RT3rUAU8/2ShvDgfALxb/gW9VcTdvJuCab3U9du8un1/vHC9rbvuGWc8d+rPvJyQEr1lyCs8iDUKvPTwcbpSX5u8rgervLc0zTzgMco8ZYE/vScbsrtbtxm9VmFhPAMRUL0aegE5oMqZvMtyIj2lIVS8XkaVO+7fgDuV8kq861CFvM2Q+LvVkl+9UlETPcu5DrxGsYU86l4NvQxpTjzq0DQ9qcyAu5yQEr28C1i9ZpDqvKl3jLyQ/ow80y0dPfG2aj0vuns8ahHeO1JuRrxyE8U7VDWDvdmFej3pQlw8RIYpPUQUgrxN3ic9RqR/u+TBaLzA/nI9tCUiO2bXVj3X6Pa7HSYwvD3aWbym6JA8YLnfPGZlr7ztw089bUvlvCrHYDyzzwq9UyfaPB+L8rxinc87AJ6Fuw8V/bxzInC8xqpCvEOxZDuauiq9KnFJvbrg+zzmMg49O8uuvHKF7LzZzGY9rmqnvKwGiLw12HK9Rb+NPQ/bFr2xFta7ZKx6OumJSD0NsDo91UtzvdmF+rvXL+M7QyKKvHFLBj3lli0981PuvKWgAT0SFZ69uNFQPTuv/btPQ2o79htOPfj/vbxEhqk8cFkOvXfqzzyZVos9he78u26h/Lz4/z086yZMPSnjcL32Yrq8kziUuknP2zwl4Sq79G8fvBWyoTzPrKm8f88DvQhnCL2SjYi8DPemPBde0DyTDtu8X6q0PCbw1TsWCLk8dNoBPbcXGr3lCNW7NkmYOxZPJbs3LYi7kPAEvSq4tbxEFIK9rmonvSBDBL0rOIa84/mpvB4KILxvICq9MixEO3trQz1inU+9xVSrPDZmyzxYjL28MXMwvCPF+bzhFbq8bUvlPIDsNruuo4u8by9VvOB4tjwH2S89ZtfWPHsVLL3ExtK8winPPMYc6jz44oq8Cj5yvSThqrtLs8s8cC9VPQZ1kL1DB/y8eQYBPWyDJjt2d4W8QZOOPINR+TwQo9U7WYw9ugvb9TwmxRo9WlT8PAOfqDyhEYY9ZGQMvT72Crxcf9i63urdvMK3JzxObAC9GiUNvanpMzxjcpS8tqZ0vUnPWz196xM9UlETPbRQXbzksr280uYwPHfqT73GHOq8WgwOvEnP27xWYeE8LwHoukcy2Ls4A088td41Pf8dNT3stCQ8ghcTvbSXybwWTyU8tJdJvLmmlby/jEs8BC0BPDWQBLyLU2A9AjsJvdiSAL0RMa68XZuJO+3tiLuok5w8m56avNyFG7331GG9dU1MPLTBgryTDlu7PIRCPGIrKD0E2Iy8+pzBOjeRJz0PTb481BENviPF+buauqo80EmtvDjYEz3lQJY8BnWQvAKD97zu7Qg9iSeCPQv2A7zOHlG9GvtTvRIVHjyFpg49p9oIO5cBdrwgp6M8pT0FvVD8/Tk7r/28EvlsveV6fD2A7Da8sIj9POvfXzzUg7Q85QhVvCEo9ryfA928SesMvdHKf7sJvR+8AyB7vBExLj3IuW0882+fu2FHOLxV4I68cUuGutAR7DwXlpE9na3FPG2DpruQ8IQ7xVSrvD++ST3zbx89GtAYvQ+UqjuxXUK9auaiOxcX5LyRKmu96ftvvVB7qzvrJsw7E86xu5Y5N7sib+I8q/jeuvdFh71oArO8Clqju9a8mLxYb4q8eHioPIKJujvCUwi9wrcnvIfS7DxEhik8ZpDqPBB4mjwwSFQ8H1EMPLntgbxk8+Y83LDWu5rzjr1HXBE942vRPA2wOryMfRm903QJvPNTbr2ckJI8PvaKvN4iHz1JFkg+puiQPXcxPL2+YW+98f3WOvLSm7tkrHo76204vWoR3rxR0cK87cPPvFpwrbwEZ+c7ZmWvPK3cTr3ztos7mrqqux4KoDwvco09u5iNPGrK8TxOF4w8JCgXPQfZLzyNYYm9MXMwuz72Cr2xMoc9B0vXPDkSejwdJjC9HMKQPCq4Nbwb30M5gWwHPaQSKbwY7Ci9THoIvVe3eD1zIvA88yizPAECpTz2DKO8T0PqPF+qtLw1V6C8tnu5u+FA9TuTDls74RW6PMFhEL3WIDi96dC0u6uGt7zb6Be93ZTGvLcXGr2pd4w8/KvsuXT3tDx/F/K758+RO7YXGjxoLe681UvzvNWSX702vOI7ahFePWfzBz0njVk8K/GZPQ9NPj3piUi9RzLYO87zFT0NPpO8ZPPmPBYIubx6zj+9vn0gvYaYBr2sI7s76ULcvJ+RtbwDEVA8Cr2fvKCRNb0fCqA9JTdCPey0pLxW0ga9ny0WPWbX1jtqyvG74AYPvcXiAz0FrtM8QAU2vaQh1LwQo9U87e2IvIT7Ar38cYa9eb+UvFbvuTxJFki95IeCu4Z81TrO12Q8ZqybvA8VfTxWYeE7PIRCPIIXkzvXrhA9dneFO/YMI73+SPA8vAvYO+Ik5TqZc748k1XHvLXetTxW0oY9Td4nvR8KID2rIpg87lEoPEeIb7yhoGA8aRFeujctCL3XZyS9MB2ZvKVowDxeVJ07ZtfWPFzGRDy67QE8u7VAvZuemjzsNfe7hCa+O/ZFhzwbmFe8k5yzPAmF3jwjxXm8O2cPvC/WrDxsruG8LscBPFlFUTxChQa6KziGPDattzwzO2+8NvQjvefPEb2zQTK88bZqvWoR3jyMqfe81DzIPKb2mLxfOI09dLDIvHMicLsjixO8sRbWvIuaTLvKnd280AJBvUWVVD0snKU89cW2u4uLIbxb4lS9cqGduwuhj7zTH5W6MEhUvZM4FL0YXlC7QAW2O//WSD16zj+8xqrCvGTIqzzTLR29vZkwvJUqjD092lm8PJNtvKDYIb3s+5A8WG8KPa3czrzb6Jc8MNYsvWieEz3CKc88+sd8u1viVD2FCq47VtKGO6QSKbuaSAM8T6bmPHT3NL1BhQY9twkSPB4127xLs0s85zMxvEKiObrP5Q29jG+RvAa9/rs0rJS9FXrgvKjMAD0q/6E8dNqBvD+hFryIYEW89xtOvC/HgTxKs0u76hchPEHpJTpRitY8MeXXO0hOCToR6sG899ThPChiHjxQeys8vOAcvbtDGbwPMIs8+UYqPZAbwDybnho9ZgGQvD/ogjyzQTI8BpJDPM90aD1uS+W7HSawvPqNljwygls98praulVStrs+rx67THqIPb8ZAbwsZGS8FXpgPWUPGL1oSR89RiMtPB4KIDzj+am8gwmLPKDKGT3neh29zzoCvUolc73PLfw6I8V5PCpxSbyhoOC8w3/mOSs4hry5Xym8eEDnPGh0Wj3rJky8JeGqPCKLEzlaKUG8RlwRPOfPkb1SGK+82qErvRwmsDuM4bg8ueD7u/4AgjsGvX47YscIvcFhED2l9hg8oz3kPM7XZL0htk49DT4TvShinry40dC8iO6dOgF0zLzdlEa9RiMtvbL6xbwcbRw9gtCmvKfaCDw79mm9uRi9O5ksUr1ou8a82cxmPS3jkbwkU9I5tIiePCSavr3QAkE9zZB4POBA9bzw7qs7TJe7u1/xILyfggo9JRoPvdERbD0hpyO9J36uvDK6HL05Lqu899RhOzgDzzlHiG+8DbC6uz72ijzu0nq8DWlOvX35mzx5vxQ83IUbPfPEk7z9gLE9+3GGupyQkrxX0oY6OEo7OlJuRr374y09Tl/6vMTV/bsz84A8gWyHvLWm9LwcwpC8GiWNvCv/oT1QtA+70Ektu3oVLDxYjL27xjgbPZDwhDysTvY8Iv06vHcUCT11TUw9o4TQu3/dizwhp6O91iC4vHNpXD1Borm7eUBnu2EPdzxuoXw8gDMjvXaUOLuvlQM9iW/wOmhJn7p8QAi9dzG8vJpIgzxCork8+g5pvT3aWbpPbAA8iLbcvAsTNzxEFAK9BnWQPOEVOjot45E8CYXevd7bsjzAxIy8Ba7TO/H91rwCWLw73LDWvOV6fLztmBQ9iDWKvQ8iAz3wp7883U3aulGmh7zu34A91tnLPKU9Bbw4Sjs9rWqnu4UKLj31qAO8Tl/6uxl6ATx197Q6wbaEuxQHFjxj5Ds8lNUXuvFEw7wNk4e9ghcTPde9u7w+vsm8SAedPe5RKDzREWw9TJe7OOw1d7x8+Ru7WDYmu4ClSjxAW009aLvGu/ZFBzw42JM8oaDgO8JTCL3hXKa7YQ/3vJks0jy5GD08Fwg5PAz3przpwQk9/BySPC0d+DxEFAK9q/hevWPkOzwp4/C8ZtdWvBdPpbz7q2w7CYVeveZPQTxjrHo8sF3CvEKx5Dx8a0O7gbT1u8TG0jxm11Y9sF1CvPAnkL3ZoSu8Tl96uQgvxzz2jXU7gtAmvLp9/7xFv42831sDvGk7F7pMiBA9LJylPIlEtToQo1W9ahHeu1Lgbb2cVy69XA0xvUnrjLx5QGe9aQIzu/O2i73lweg8vScJPWasmzxW0gY9xA0/vZwf7Tsx5Vc7jTdQPLLdEjzp+++8q4a3PYfSbLwKPvI7pWjAOiqbAj19eu67gkJOvJpIg7ywQI89q80jvTp1l7wLoQ88+OKKPaiTnLyC0Ka7UYpWPArMyrvXoAg9MVf/u5Vk8jzRkJm8Cj7yux5RjD1r9c08Pq8evTBI1LvDOPq8DyKDPI2pdzwVpJm8iW9wPQ0+E718si89NjsQvabokLwkmr47suuavI030DyqaYS8wEVfvPkO6Trtw888ljk3O6RLjTtou8a88osvPNQflbwBdEy9hQquPZ6Cir2NYQm97t+AOhxtHLzZPYy4vMRrvOczsbwE2Ay9eb+UPMhHRj1q5qI8tMGCvBL57LwzELQ8IkQnPSJEJ7zB4uI8rWqnO0jAsLx1TUy8KVSWPYH7YT2ckBI9V7d4PbwLWD0ugBW9Q/hQPSs4Bj09BBM9Q/hQPXrOvzyIYMW8NKyUvepeDbxSJ1o6+XHlvCYMB72+78e7CFkAOyAZyzslYn08y4HNPMM4+rufA927lCoMvGz1zTuooke953qdPGhJHz0NePk7GDOVPF7Vb7x2dwU8j0b7ukSGKb1BzfQ81MqgPGzKEjxw6Gi87Qo8PfrHfDxhD/e7RIapvDkuqztg45g8QEyiO1Q1Az0Ybfs7ZtfWO5KNiLsBg3e8LfI8PR58R710sEg98dKbPOrQNLm7tUC8KGKeOGwtjzz1xTY8ZcirO4ClSjwfi3K57Qo8vUjAMD2SRhy7u7XAPNMtnbyTfwA9FJZwvIucdrxS4xI8b4ZxvTty8Lpl3S+7RCTyPD3ILL1xRhQ9SHAZveATebu9mG69BBqzvI2RjLwuEky8DxmxOjhaZzzl4Y89tTypvBJmrTyQ3oi8e1m8POWtcTz0Y1K9GAAmulfxBj1GGYg8N/nAutuaST0rzg88N8RNvEkxkTx+EJ+7HzC4vNLoRzo7Pf28uhb/O3I9VDvjyQa8uR+/O14XBDyH95O8FR0QPBvjuzyvojC9UMJJPN5RLLyQqRW79k8ovUMtMjg4WZK8p+duPEELFLxT2tI9WtQcPKnTRLxR7nw8f9GWPPdG6LrffIq9ycsKvYEoqLyKeYM75CAYvd59X73BpY08Y4dzOjsRSrxd9jq79PgWvNkY2rx0kxA96+bDPG/vgr1feCq97DyAvRyuSDyECz69Mf6hPLU8Kb3+3ws8OGOnu5vxMLyEdSQ8N8RNvOvmQ72/ubc8GGqMuoEoKLyHWLo6Sfwdu+cv4bwaYcy8YNlQPStkKTt4FYA7ndRGvXZUCL2GN/G8qacRO+6UZjsMLVs9QRUpvEJ2zzynUAC9sxtgvP1/OrxBC5Q9Zj2BPIvQFD06EUo722VWPVZcwjy9zIw8L3IdPfZPKLzpuhA9+dEXvJfZJzuFAn49SvPduwb9yDxYveg8OSX0PHvDorv3EXW85Ouku+eZRzyX0Oc6QRUpvDZCXr3dhh+9H/vEPFneMTwB+JQ8FX42vQqqFr2SAfw8lSLFu+wHjTm2M2m8sJnwPGdzSbyn5hm9hTacvQZnLz04Wue8E13tOx1E4rznA648DSyGPORMyzw0Sx49XVdhPC0bjLysv5o8dlSIPFBYY730xHg911aNvak9Kz2QdKK8vKEuPbTm7DxVO/m8e1m8POHKW73duxI8mSakPZuzfTq2Bza98824vGWoPLuNJya94J6ovIY38bzxtS89xR49PaaGSLwAmMM7PvTfvGL6Gbu8zeG8NUEJPd6Gn7sFnCK7rwyXO927kjyworA8Byn8PNXKiLzP+xy9V71ou2+7ZD0btwg6jojMPMUePb2RCry8H1zru1YwDzx1Kaq8Q2IlvcCw97zMGAc95m2UPKDsz7xEjti8TH6NvSdMoDzJYnk8bo8xvIXWSrqR1ci8hKoXvX8GCj2kmnI80+jHPDp7sLwA+Wk9BpPiPODTmzvY4pG8RO/+O+0zQD2eaQs9f9srvK9tvbzgnqg8kgF8vCoDg7zhaTW9EA+cvfYaNTwW6Bw964UdvQwtW7w724E7hNbKu7tAiLp+pjg95OskPY60fzy6VLK84f9OPdWVFb1cwcc8XJWUu99HF71zB4y8zOTovKlynr3c++88tzIUPOc4Ib2b5xs7L3yyPBJmLT072wE8pxzivFkTpbwAzba80kiZu2E69zpPYSO9kgF8PMUePT2qad68alZfPH+d+DwYyzI9ei0JvV/iEL30Y9K8PcisvAPlv7uOiEy8ubSDPew8AD2Gode7G02iPHUpqryH95O8sJgbvQxizjzYtzO8bA1CPU/LCTu/Gl68NaxEvUVYEDyj2CW8u0CIPJvocLvYTU09sAKCugJPprt7+JU7y4NCPDL+Ib5Kkje92m4WPVo+A7ynWhU8FklDPfM3H7129Da82jkjPYJThj3zzbi83rJSvRsYL7o+KdM7Ntj3PG6Psbusiie9HUTiOngVgLtZqT685bYxvbvWIb3/oIM8+pNkvGkgFz3e50U7rCDBOcnLirrp7wO9It0FvN2Gn73D/fM8qqeRunC6j7wEEfM8f534uicXrbz2uY48VTCPPMDkFT06sCM95OLkPAwtW7s/v2y88824vLED1zvvVAk8J0wgPYnu07ySCjw8GDWZvDiPWjxN3zO97HzdvFBYY72RoFU8fLpiPa9tPbtBQIc8L7Glu03fszsq2Xm9A+W/vBLHU7rYGNo7Ny60vDLA7jwtGww8d+t2PLoWf72/Gt48OSV0PKEhQz3aOSM8AfiUPEim4Tz50Zc7vcwMvHzvVTxKKFG9T8uJPcFwmjwOuIq65CAYPXerGbs2zQ29eKLZO6z0Db3Jlhc9S/NdPh+QCT0i3QW8kXSiveS2sbxWxqi88qzvPBx4gDxi+pm8DsN0vHM9VLxBQAe8OhHKO0VYEDwkyjC9+pPkO1SkCr1IpQw9Uq6fPJmQCj3D/fM8xelJvTFfyD0sW+m7tmhcvfmcpLwawR08Rnquu0uJ9zx5bWa8DAEovTmP2jplEiM97Z2mvDYCgT16oQS8tOZsvEryCL3w6iI90VKuO4Iekz1EJPI76DghPGmLUjsQr0q8ArkMu+V4/jzdUay7OuWWu/Uu3zwYlj878RbWvAzMtDtBQAc8ZRIjvY3yMr0qzg+9eW1mPZfQ5zveUaw8H1sWPe0zQLwKSkU9JMowvRZJw7pAq0K93xP5vP6qmDwj3lo9u9YhPfa5jj2BiU49r209vQH4lDwyKQA9zOOTvGS85jxm1O+85wOuvOCeqLwawvK875Tmu80Z3LwrkFy97f5MPO6TkTw6ezC94TRCPfmcpDypCDi9kmtiveUX2DsZ9+W8/LStvL5Ykby8bDs8w/3zvEEVqbwtG4y9jZGMPCv6wrxjJs28PKfjvKC33Dw4Wuc8Uw9GvQxiTjw4j1q8WROlvL2Y7rwuEky90bwUvL8jnjxxewc8y+0oPJodZDz8HhS9QEocPaxVtDysiqe8y1ePvAp2eDpYvBO8hjdxPD2TOTtJ/B09Byl8PClCC7sqmRw7hECxumdzyTxVMA+9KQ5tvfM3H7zvyVk8K2SpO/OYRT3CnE084crbO3h2prwJ6R68ltmnvJzdhrzxFtY7sDhKPL5YET3nZFQ8ie7TvAwBKL1Dl5g7/B4UvbMb4Dyj2CW8N/nAPNhNTTtv7wK9qdNEusyvdb0cedW8Td+zPL+NhLw+9N88IVGBvbU8KT325UE8/avtPIzQFDxwu+Q87f7MvCgObbwlyjC8m1LXvFSkCrwGZy89rb8aPTvbAb2zsfm8IqiSPJektDv27oG8bKKGPB4EBb2XpDS86xL3PEgQSD33sE690byUvGCjCL3SfuE7MvQMvZVOeLzlF9g9JvUOveRMy7zozjo6RnquPI5ShDzkTMu8VTCPPEnHKr2yJCA9Lke/PO2dJrxvWj496e8Du7CZcDywDBc8Ft4HvBhqjLxn1G+985jFPCKoEr1Py4m9oIupvM0ZXLwGnKK8TwoSPH1FEr1mCWO8O3EbvRphzLyRNu+6QLSCPHnXTLyb5xu8jr0/PBuClbxBdk+8Zd2vu8Xpybze58W7Zj7WPH8HXzwREPE8IkhBveguDD1d7fo6tBtgu7m+mDzleP68junyPJWCljxaCmU9o6MyPWt3qLze50W8hyyHvBXonLwN+Gc9sxvgPHLTbTxQLDA9Xu16PYf3kzxwu+S8J4ETPIHHgbwF0ZU7Zd2vO93wBTwOw3S8hHUkPSGypzxO1vO8y7i1vAQRc7y5tAM9Ka3GvIdYurzDMRK96cX6u9oEsDzXIRo8tLH5uw0sBr2LpbY6OhHKvMI7p7x7w6I8RxBIvK22WrfSFPs7viMePPa5Dj0Q2/28Zd0vPAEu3bwW39w8fLmNPBza+7yK2qk84jRCO7yhLr3rEvc8/UpHOxiWPz2IueC8EQUHPJcFW7xBQAe8EvxGvTEq1bz0mEW8xDJnvXmhBL3+4OC8Ntj3PD1exrz6kg88DSyGuwrg3rwEEfO8NBarO3/Saz1dIu683n3fOzRLHj3FvZa9H/vEPMNn2jsiqee7b7tkPLVxnLwr+kK8vM3hPN9IbLyQ3oi8iLlgvaaGSL1hOve8H/tEvUZ6Lrsk/6O81TVEvWJbwDsGx4C73ufFu2tCNb2LO1A9lngBvW05dbv/Np29Ak+mPYCdeLy/ubc8ub4YPdujiTvIoKy81cqIvEcQSLxd7Xq6AM02PbTmbDwfkd47SKbhvBwYr7z5Z7E9TkDavBWzKT39FdS8Joz9vLDOYz1IpuE8OFkSPWXdL7wZjf88Uq4fPKaGSDtpVt+8qmlevGvhDryc3YY9AC7dOzvbgbxOChI71D6EPAAu3boLdvi6qjMWOSb247wxKlW8glTbusXpSb2Ut4m7m/EwPGkhbL32uY68HE0iPIR1pDxXkTU6lFe4vD8p0zwCTya9DAGoPLOx+b2LBl091J+quLYHNrsoDu27+ZykvLm+mLzefd+85OukPKTPZb2+Y3s9OxFKPOH/zjziaTW8e8MiPV4XBD2nHGK9d6sZO5S43ryFoII9y05PPGY9AT2Xb8G8tTypPLkfPzv6ZzE8hyNHvP5KR71Dl5i8pM6QvGY9gTwW31y8D6/Ku2DZ0DzLuLU8KgODPZjQZ7wylLu8EtATPZWClrwuR788Lz7/PC/cA70AxPY6F3X2u9gXBT2BvsG7rkx0Oz3IrLyyujm9N/nAO7nqS7zGUzC9wXAaPetGlbtJZgS8lO3RvFLjEr1a1Bw8D+Q9ulbGqLx6bWa7zeRoPPEWVr14QTM8YG/qPNgXBb3eHLm7DSwGvXIIYT22aNy8IqiSPZDeCLzDZoW9m/EwvMWIozz9Ssc7cCXLu08KEr3/ASq8EsfTvCtkqbxjJs08DSwGPAddGj1Ms4A8gccBveSBvrydPi29U6XfvGDZ0Dt87gC8AfgUvaQEWTxzBwy9LMXPPK22WrlW8ls9NazEubTmbL0ERRG7Mr8Zu/9rED3Qx/68zORovRbeBz1byoc75RfYu/OYxTzGf+O7tjPpO7Xbgjxh2VC8WqB+PLw3SL1olBK9Z598PG5tkz3cxnw8A3qEvEbkFD1DYqW8uR8/PWlVCjr9fzo7obYHvU5AWjzUPgQ9K/pCPb2hrrsv3IO80YchvXhBMzy6fxA90R27PD70Xz0oeNM741ULPVyM1LwoeFO8BjI8PFD3PDvukxE9PKaOvDR30bzSfYy9tgc2OvNskjxwhRw7SvIIOtdWjbt7JMk8+QYLvSvFTz2QP6+7N2MnvYNTBrwSmyC9NEuePBEQcTu8zeE8EBkxvas0a7v0+Ws8a3eouSe2hjxj8AS9VDv5O8MxEj2HwiC9P/RfvGkhbLxb1XG9e44vOxRSAz2LO1A993oGPbPvLD1TRDk99uXBu/SYRTxxESE9wtHAPL5jez1URDk8+dGXvH/RFr2mhkg9fjxSOhd19rx2HxW9aovSvK3rTbzZGNo8BpyiPDBoCD0ywG48YNnQvIR1pLyjo7I6iE/6uyrZeTx5OHM897DOO4If6LsTkYu8fnHFOy7dWDxjuxG99PnrPKEhwzyb8TC8fISavLCZcD1GryE95CCYvFbGKD2LBYi7yZfsPJVO+Dugi6k9/FMHPbSFxryo5+482888uytkqTzleP68hECxPBB5Ajy/T9E7zOOTPBB5gjxikLO7o24/OzXY9zv3sE67F3X2PEfkFDy6Sp08K1vpPAjpHj3NGdy8Ak8mPaAqA71BrCa8v087ulSID7zXqcc70ta1O7fSzLw6C4k8hx60O2nUVj0X7hk7ErcfvT1mMr2AWpw7j82WPDBO4bz11mU82++7PA4ieLgV/RM8gL4EvaYEqb2MVa68sPH1vEtvCT2IVmO9RhvQvHuHCryIVuM6MLJJO4qrUT2ZUEA91bIGvV9mYjvRbJI8nWr7vEwLobycljS9OYQmPBcgjrw2PrI6VhWtujWF27ypSh09TjRWvbb+BbybLBG982YHvPCf67xD1du8OeiOvJN9rjqsD2q83wl3Pb+zo7zsPge9VhUtPRc7/rw22kk8QKymvSU+Grt9FCi9rh0vu1NrUL1ggyG95KRZPOjVmDti8387HoA9vNJyTTrzZoc8RX+4ukqZczv8GyW9hi0uPfSeNr0J0A28qJHGuk/Q7bvTDmW8DgeIPJbDorwDdhk9vG2vPJS13btttuK7qJFGPRmtK7zp29M8K3vPPJdfurx8qoS83XzZPIi6Sz3RuXa8T1GVO5GMqLuFw4o5I02UvLiLozzQyPA8YIOhPNo2ZT2moEA8BgnyvC7BwzxYBrO86dtTPSAHoDyzuBE9UHSPvKKhdTy5w1I9HHL4PKKh9TseFpq8q9c6vESOMjwn/as8m/ocPHRfirwotoI8rcjAPD67ID3nBw28WVshvZoJlzwyP2e7/+DxumqNLb1UiA88CQICPQR8VLtdPa08bVL6PP4Mq7x4eUU6SWHEvF6Smztub7m8JHCOvVSIjz3raPG8CU9mvF09Lb2BLmM9seL7vIBaHD1ttuI8aynFub3CHTyKq9E89J62PE78JjztdjY92jZlPAIn5jzGWvy87wNUPaXnaTwRE349Gd+fO8sSHrwqdZS8BBhsuWdHuTykrzo7Ff0TPEBIPj0BUx+99SWZvYpHaTzAh2q8U8+4OnD8VrvoP7y7zZ+7PO4SzrqVbjS85MEYPDCdlL0y8oK7wvkXva4dLz2ioXW8iXOiu5VuNLt0+6E8W34bvWx+MzsUdrE8BryNvCxs1TriT+s8hmVdPUGsJrzfip68NE2sOrsDDL3C+Ze782YHvUq2sryPzRa9UjOhuy7egr0VSvi8QQEVvYfmhL37sYG8SpnzPIr6BL2krzo8ebF0u+owwjvdfNk8oc0uvZ1PizxBARU9LsFDvJ94wDtJxSy8ogVePF7ED7gGJjE9PrsgPJt59TtSl4m8FHaxvLvRF713iD88P49nPNWyhrva6YA8B15gPeDCzbwFNSs9ynaGvJN9Ljtvp2g86SqHO8r1XjvyEZm8QYBtvaWaBT3fih48ZGWtPOF7pLwyXCa90jqeuijR8jupfBG9gkuiuwgXNzyYl2m9RMZhunR6ejpxGZY8k32uvHJRxbyhzS48uuARvNDI8Dz6qfc7bGH0vE/Q7Tz+qEI9vkkAvBO9WrwV/RM7xIY1PSvKAr3WVFk86pSqPGh/aD3NO9M8l/vRPD46eT3nOQE8pEUXvNPBAD39U1S93ESqOVHBcztSFuI8T+0sO2KmG7wEGGw8TIp5vT9XOLxJYcQ7R9QmvREwvTxpnKc8MLJJPZA3Orxy7Vy91vDwvGcq+jwFNSu+b1oEvYDZdLwcVwg9MOp4PGAC+rcC2gE6QKwmvWrxFby4iyM9gD1dvSL+4LwJAgK85uSSO56/aT3RngY8TAuhvPnVsLwY9NQ70ta1vKVokbw0sZS9Lt4CPeAmtrsmRNW8h+aEvHEZljtMCyG9I5r4vFna+btDVoO92f41PENxc7sRzFQ8DBaCu1uwj7zRnoY7hNg/OeQlAbwagXI8iFZjPXpqSz1gtRW9Ph8JPWdHOb0wTuG87mEBPKKGBT0O1RO9VcC+PDJcpjtUB2i7dPshvdsna7zqzFm9qp8LPQitkzxDVgM9J/2rutsn67s3kyC8r7lGvYtkKD19sD+7iXOiuwj6d73DzV661f9qvPF1gTz18yS91qMMvLquHT17hwo99+SqPIDZ9Lz6XBM9hcOKvHbsJz3EhrW8f6FFvU/QbTwrygI7RhvQO0EzCTwyXCa86SoHvfvGNrzNAyS9AP4wPaagQD6ZiO88Mj9nu2UehL1pnCc864WwPNX/aru4bmQ7YLWVvLFGZLx5ZJC5RrfnvEnFLDx5loS8uRIGvcGkKTxvWgS9A0SlPOWVXz16aku7VhUtvYMf6TtXnI89vxeMPPQ6zrzpd2u7iNeKPNTHOzvEHBI9J/2rvLHieztmD4o88pBxPTDqeDuMOG880yskvB+47LzraPG864WwPGIQvzyX+1E9rrMLPITYvzwU2pm8iqvROrL/Or03xRS9qC3evMIrjDtP0O28Nj4yOpUKzLppOL+8CBe3u1XAvruDg9G6bygQvWC1FT3BQEE9UKYDPYi6Sz1KmXO8n9woPRhDCL2ORrS7+g1gvUfUJjz9t7w81GNTPaIF3jwFNas9g6CQu6u6e70dx2Y8EJSlPPH0Wb26GEE8bGH0PEgMVr1o41C9zlgSvG03Cr3uLw06tCjwPFaxRD3Q5S88AdJ3vNzgQT0+7ZQ8K3tPvGnU1rwXn+a74rNTPF3ZRDx/BS69WpPQvDJcJrt+mwq990gTvQN2mbyb3d28ogVevA1OsbyvVd47yvVePO4STr0tCO27yVOMPHRfCr3O1+o8JQwmvVtMJz1COUQ8zTvTPJGMKD2O3JC7ifJ6vIH2s7nPkEG9CQKCu8PNXjz/xQE96+mYPIeCHD3/xQG9GFi9PFlbITqYGBE9Q1YDvYhWYz0ShSs9+g3gvDCySb3B1p06jDhvPfZ6h7yXXzo9jQ4FO1PPOL1sfrM8BgnyPApsJbzt2p67g6AQvVWrCbxIWwk9vG0vPcjMKbxa4gO9roGXPB4WGr0o0XI74k/rvDeTIL3DMce8EmjsvP2ih7zEToa8EoUrvLvRF7xwYD+9RmoDPfcWH71+6O48xxNTuxefZj3WVNm8Ud6yu8FAQbwcJZQ7vUF2vDq81bsJnpm8LNC9PSeZQz3gJjY9nU8LvPx/Dbz6DeC7qcl1vFHBc7uniws77q5lu5RRdT0wzwg9ECoCvcFAQby1Ra+7Pu2UPcuutbyy/zq9HxzVPSeZw7sStx+9xIY1PT+P5ztKtjI9qJFGvenb07yQmyK9gNn0O5bDojpXahu9xIY1O64dL7xfyso8clHFO6gt3jwUEkm9T9DtvCw0pjwL84c8CK2TvavXOjy9Joa74d+MPC0lrDsywA49Cut9O0/tLL3XcZi5L6yOPGLz/zt7ovq88LwqvMQckjsUdjE9P/PPPMgEWb0m4Gy9YIMhvHGYbr0JT+a7xE4GvdrSfD3VsgY6LxYyPZf70TraNuU6ztdqO7FG5DxSlwk9S+7hPA7qyDtsFBC8oc2uPF8uM7wjGyC8IQ1bO4qrUT0e5CU90R3fO7TwQDz1cn08BiaxvIny+juWwyK9bgtRtxe8Jb0Lj588o/bjOzCdlLwXn+a7PPwOvbs1AL0L8we9lW60uOLQEr1wYD+8pBOjvYqrUbxUuoO74rNTvSjRcr2WwyI8d3OKvBwllDorygK9Y0juvL5etbzrTQE8eEGWOsYNGL1UugM9AP6wvMbbo7zEhjU90OUvPZ9Akbwy8gK9hslFPeg/vDy6fKm9Jag9PK/WBbw/V7g8BoqZvQ1OMTz+Ph+9KO6xPG/EJzy/5Ze8vkkAO6dZl7wUdjG7UKaDvHsGYzwqQyC9XpIbPRhDCDzgJrY6QN4avSUMprtCnSw916nHPJbDorzmTjY9PPwOvXdzijw2opo8MM+IPbQNgDyev+k8eN2tvKKGBTwbOkk8ynaGvPiAwrzDla+8Ianyu7GVFz0WA8+6TS6bOyFcDjxmD4q8tIzYPIXDCr38mn293wl3Pc+tAL3fbV+5hwH1u807Uz0Vyx+8mEoFPeJP67y5w1K8Fme3u43xRTz/k427b8SnOsVxgDx/oUU3QYBtvYQ8KL0e5KW7nr9pPZmI7ztVwD49T1GVvNDI8Lw6vFU9+DkZPevpGD0sbFW9OiA+OxB3Zj3M5mS9FHaxvCTvZr1kndy8ooaFPbu0WD1KmXO88fTZvPF1Abzi0JK8Ga0rvBX9Ez3nhmW9qcn1uzm2mrvfCfe81YCSvONsKrzUx7s85flHvCuYjj27NYC8aZynPNGeBrwxa6A8vxeMuwPD/bzAh+q9seL7OsLc2DyAWhw9SX6DvcuutTtWeRW98kONvBj0VDz8G6W9r7nGPHMKnD3YlBI9gq+KvICMkLt3iD89xXGAvUEBlTuf3Ci9J5nDPCRTz7tYBrO8/XCTvK+kkbtub7m8HmN+vIC+hLwyjpq8HCWUvKNazLzLEp48xlr8vIy5Fr1WscQ8UjOhPNiUEjwX7hm8T9DtO0XjIDwk72Y8h+aEu918WTxSesq8rgBwPEQqyjyiIp08nDLMvBUvCD3BpKm8NdSOPMbbI7tWeRW8F59muz46eT0xBzg7aDKEPKc8WDwtuwg9+o4HvNn+tbyNDgU9Q9VbvCrC+LzFPwy8zIJ8vFdqmzyw8XW81bIGO+y93zu5Ega9HxxVO+uFsD2j9mO8yvXeu0CsJj3LRJK8Mj/nPN41MLoShSs9yllHvE6Yvrwc1uC7ShqbvMf+nbv+qMI9JT4avCmnCL1O/Ca8eEEWvG+naL14QRa9pefpvG03ijveNbA8uRIGvb1BdjtQJdw8+2LOOTogvrsCqA29hcMKvObkkrsTWfK84Re8vJ3OY70LQOw8ZR4EPXT7oT2skBE89VcNPWJ0JzukE6M8vkmAvMCHaj3186S8HHJ4PM7X6rzmTjY94a0YPWk4PzlbsA88GzpJPe12Nj1EKsq8T+2sPFFCmzy/syM8F1KCvMxnDD2Q01G9zJkAvQkCAr0/80+9jka0vK6zizxlOXQ8AdL3vNjh9jzEhrW83HaevRYDTz1FFZW9Sz0VOyO3N7n4HNo8E1lyvOg/vDxbTKc9WAYzvYTYv7zmFoc88pBxu4Zl3bzfbV89YVdovLL/urzd/QC8NxJ5PPAgEz2befU7/XCTPBM+Ar0Stx878XWBvc5YErwdx+Y88CATvUiobbuIuss7E73aOgffBz21RS89g9KEvPyafb25Jzu8b1qEusAIkjz4HNo7d4g/PcYNmDpnqyE9WAYzPXsjIj2jWkw7MQe4PO/LJL0m4Gy8Ud6yPFFCmzyJ8nq6HXqCO0q2sjz4a405+IBCPOnGnjzBpCm8gkuiPBoCmrpHcL68q7r7vFFCm7zDMcc8tA2AvNvahjzvy6S7nJa0vIkPOrtnqyG8/VPUvDt1rDwlDKa8tChwu6O+NL1EKko9neuiO9LWtbsegL28GUnDPLjvCz0MFgK934oePcOVLz3YRd+8hDwovI8a+zwhXA49EJQlPFvovjshDVu8QCv/PH5pFr2N8UU8M/g9Pd2ZGD1by3+8PWYyvJgYET2gMRe92JSSu0V/uDtSZRU8rWRYvZam4zw9Ako8ZlmPunB1ZzyMWU69clkkvQZRBL3xBZi8xsgtPV1OtjyCJ2C7HoZhPAjUYbwaOLe7hLKuvPBTuzsCBrS8wz1fOyecBT3wUzs9HuqaPAUtybv/N429QZwvvN7si7zCC3+7R5y2O869cDws3+S8DNToPOusIryA9f87+4Wpu+usoryeb4C8Qw6OPMLIpjzu3gK9vIt0OubI3rug5Li8PU4FPbm9zbsSLd68q704PUwcwbzzngs9T04hvRE4qbwkAxK9ENGVu11D6zz7LDu8ejIdPfYsND0cuLq8peQ/vXenTrxCQ0G9nmQ1vLLvH70a38g7994QvQe4lzmRZKC9LbhWvWIZirsLVGW7abIEOvGsKTzISDG8eM5jvNzTmzyhPSc8SHUovUecNrzlhQa9QkNBO6sWJ71yp8c7/yzCvNaWaT2LJ+47rBYnOcdvP7wqBnO9t+8muzLDqDxhnOA73SE/PHTO3DzIoZ+802/Uu8Q6hTuLpBc98V4GuzlDMz3rU7S8xEgqvcTk8LvS71A9dIA5PYiytTvf+jA88aHeO9GW4jxgWYg8B3iZPBxfTD0akSU9XtkEPWGnqzmRAOc8AlRXPKE9J7wH0Qe8KrjPO+4spjwPERS8Jl/aPC5qM7vaSM289yHpPIoyOTzd7As9rpaqu5Vkp7xeJ6g7J0MXPDzOgbwCBrS8MDjauw/7fTtAas+8nmS1O5q9nD3bSE297SFbvbyWPzypi1i8OxHaPCM4xbzyxZk8vhZDPIm9ADyLi6e9Gi3sPNNvVL07dRM9sYiMvPPI8zyRCzK9badAPNA6mrvuLCY8wQv/vBLU77zuhZS66dMwvYeAVT1U9Tm89fpTPEuR8jx5J9I8PI4DvffTRb2EWcA80pZiO0nnhrxew2490JOIvAQtyb1bHNY8odltPC/DITyXizy99AWfvJPkIz10de48IV9TPHgLCD1t8ok8hFlAPCycjDtIdSg98cUZvS/ckbxCnC89nrJYPCRcAD0xXBU9zr3wvLhk37vHbz+8Cd8sPTbDLz2xb5y8N2pBvIinaryxvb+820hNvUeRa7yvliq9l32XvGIc5DyGzni9wboBvcoW2Lt12ae9XxxdvKNZcTz9Xhs74G9pO+hTrTuU2Vi8/qFzO6tZf7z/LMI8WQAMu+Z6u7wvwyE9J0MXvf96ZbxlnGe8ChENPJjkqjzV+qK6994QvQDU07xyp8e8M19vPONI2zu6yBi9TGcKPICypzzQb828IzhFPMZ6Cr2mlpw87oUUPGh12Tw/zgi8rpYqPI+A4zqzCBC9J0OXvMiWVDzNllu8T06hO1ecUjwlEbc8H0OJvUqcPT03HB48goBOvSAGZbwD0QC8pdaaPAzfMzzSluK7gs5xPNwsCr0M37M7N1/2PEucPTx2AD0870WWPTBDJTwTEZs7DXv6O8cWUT2GMjK9ahmYvDVDrLqyljG83CwKvCtDnrpJ5wY9Og6AvPBehrmdi8M9CIa+vJKn+Duclg69tMgRvGfOxzw/HCw9oTLcvOVvcL2m7wo9JOohu8hIsbzqRY+8yyGjPOpvdz1c9Uc8R5w2vehIYrwhuEE8oJYVvraWOL2u7xg9wb1bPbQWNTyy7588JRG3uz7qS70PEZQ8JrjIPLgL8bx+5IC9LzUAvWlOy7xgpys87FO0O4bkDr3xXga8yKEfvFBnEb0PVGy8i4snvdJIPz1/C5a78FO7PNhv2zuxFq68Ia12vIekELy2Mv+8H0OJvaUviT2IWce7ymR7vIeAVTyB2Tw9dwA9vfRTQj3R+pu7tG8jO26nQD31SHc8+ay3u+P6t7uPJBu9V5xSvAjfLLv33hA9nT2gvO9FljwlHII8aU7LPM3kfr2UVgK78KwpvZEAZzxP6mc9BS3JPG9yDT3AYZM8iADZvJELsr1RHMi7eAuIvVF1Nrp7WTK9DlTsOkjOlrks32Q85wWKvcYhnDwBX6K7kbJDPYBZuTxpsoQ7UPWyPM1IuLxSHMi8WychuxqRpb0TuCw9ijI5PUfqWTvc0xs9NPUIuufvc7wHVN48+ay3vIuLJz0duDo+oYB/Pc8W3zxHZwO9r5YqPWSZjbwcwwU9vEicvOj6Pr2hgP+8GYOAPNghuLwzEcw7htnDO/wsu7wUreE8uAvxvEqnCDxsHHI9ewsPPBi4szxIDpW8gPV/PahkQ7xNJwy9oDJcPBXfwbxWavI77shsPYD1f7wJ1GG91u9XvN6WdzzFYRq8HBGpvJjZ37wa1H08Ft9Bvbhk3zyrvTg9Z9kSPbkhhzugPae8CrievLOLZrwPuCW9WichPFUcz7s9nCi8Tc6dPI99iT2WFgS91NONvCARML1H9aS8dUuGOzbDL70CuBA9tovtPNTIQjx0J0s6Aa3FumCnKz0RkZe8Aa3FPE6R+bxdTjY80e9QPOXTqTyv75g8NhwePQTRgLyVZCe984WbPIekED3Jug+7nmQ1POF6tDv9Xpu8+Uj+vPWsMLzYbAG9p70xvVWAiLyVp/+5fYDHvK49PLvfbA89dCfLPD6RXb1HQ0i9XFkBPYLZvDwTagm9+Uh+vSKDDr0e6pq7QurSOZq9HLsH+28850hivWansrwoXIe8O8M2vMTkcDzTep+8NZyau/D6TLypPTU82G9bvDscpbwdrW885kUIPbWye7tuTtI7AIawPM3vSb00Qyw9MIb9vEx1L7xpp7m8E18+PLbvpjsKXzA9gs5xve9FFj19gMc7IGoePTK43bxzywI9XtmEPPkFJrxLkXK9Bga7PE0cQT0oA5k7aac5vcnk97vDIRW81yG4O5fZX7y+yB89hSQNPV0ZA72ist88yeT3ueKhSTxizkC9qFl4vEXDRDwgA4u8A9TaPHcAvTnjrJS70VOKO1RD3Tx1Swa9LzWAvWGcYDzphQ09FeoMva+WKj30BR+9z29NO1wAE71RJ5M90aGtvNpTGDwa1H08iQskvbbkWzzmyN67PrUYPPSsMDq7oYo99VPCPBzDBbyY5Kq8puS/O0ecNjx0J8u8pxagPHtZsrzcIb88WychPVUcz7pC9Z28GYOAvMZ6CjzaU5i8QkPBvIWyrj17siC9VEPdvD6cqDxB6lI8cqfHPKsWpzzGFlE8o28HvRStYbuWsso8ETipvOOhST2fb4C7MEOlvP/TU7sCuBA8MJHIu0h1qL1bHNY8mJaHvB24Or2YMs46NrUKPOF6NDyJsjU9zZZbPWr1XL0E36W9+beCO6HZbTxZp528uuGIvVtAkbxRgIE8k+QjO3B15zw1nJo818hJvUucvbvu07c8o2+HOgH7aLxUQ108NsMvPZSA6jxAHKy8usgYvB6RrLwPVGw9Ll/oOogAWT1o8oI98FM7vM2hprqPMkC9kmQgvRgGVzx7sqC8sMgKvPbI+jq9vdQ8yO/CvJiWh7v5BSa6RMNEvQx7+rxGkeu8p28OPMW6iLzm06k9BNRaOxbfQb2wsnS9kQBnPM6hJj3WUxG9fksUvQSGt71TQAM8F63oPE3Onb2vPTy8oT0nPWjygryECx29suRUvLVvI7zGIZy82G9bvbrIGD1Sams8jABgPM2hJry8SJy8nrJYPL9IIzxNzh0850hiuxgRIj3Nlts8QI6KvRMRGz2CgM65iQskPcCWRjxEHDM9/bcJvagL1bygPae8XAATvb/vNLxNamS8sMgKOhNqCb3uIVs8DlESvc698Lt/Tu68SHUoPCfqKL2Q/Qw9nmQ1PPOFmzyfLwI8dc5cPb+hEb0yHJc7T04hPbWy+zq0IYA83MjQPNLvUDsyajq7mVaJPNmWcLxpACi9JRG3vCVfWjxdnFm8v++0vHAyjzs0Q6w718jJvHDOVT0pEb68/PeHvWSZDT1bJ6G8EjgpPHPLgr3p0zA9PU4FPfwsOz1iHGQ9Y9kLvb291LyoC9W8eCfSOxWRnjwAInc9togTOj5DOr3n+j46yO/CvGcygT1ZwA299KFlPMbIrbxCkeS8PfUWPTd1jDyiZLw7Q7j5vKk9tTwyX+88zeR+vP8sQrzBZO284NMivW3yCT3p0zA9XxzdPIkA2TtdQ+u7B1TevLLkVD22i+08GtT9O9FTCrxVwAY8eouLvUGcL7zaSM08WnVEvCaDFT1gTr08iQBZvMW6CD3cyFC9OfUPPRwGXryvPby8yeT3vQQi/jv83pc8M3UFvb29VLww6ra8ec5jvfCsKb1XnNI88t4JvVrOMj3/hbC5JrhIPRBftzwNOCI9VhxPPV+ZBr3jSNu7wboBvccW0T32LLQ8b3INvFf1wLy9FsO8BS3JvNSTj7uCMqu84Xo0OzCck7zLFti6X5kGPQ77/bw2HJ67Ll/oPPwhcD3CugG8IV9TvP8sQrufLwI9gtm8ODJqOjyxC+M7ynoRvTU44Txfzjk82ewEPXnZrrz8et44bk7SvI8kGz02EVO7KWqsO7xhDD0F+JU9F7gzPPX6U7zuLKY8fYBHvdqsBr0PuCW5KtwKO73In7pQZxG8nm8AvVNAgzoKEY07V5zSvM8hqrxznPy8WxzWvPhTyTvn7Jk9dXXuugSGN72RWdU8QTh2O27147yNZBk7FTgwvdZTEbxTTii9aQCovB2t77zl0yk9mOQqPcHIJjyssm29C63TO88WX72jvSq9rMgDvMchHLzqb/e8PpHdvPx63rtagA87xPqGPGuAKzx28he8iE58vV2c2bwjhmg7X4AWPKwWpzuebwC9PDWVPN+W97sSOCk9S5FyPaCWlbzhyNe8sb0/vNahtLxHZwM9L2ozvU7njbtRdba7o1nxPD91Gj2UVoI8Vc4rPOysIj1CnC89xPoGvV7ZBD1q9dy7mOSqPP23CT3wSHA9PLhrPLRk2Lza+im95no7PL9Io7y9C3g8oe+DPIKATrxngKQ8sb2/vM4TBb2hgP+7+aw3vZJkID1U6u68ZUP5vDXqPTwMhkU9AIYwuxxfzDy8SJy8lf0TOZ8A/DyYgPG7cvVqPZ/WE72Nsry6tpa4OtJIvzv5BaY8ck7ZPLs90Twr3Aq8B9EHuXXO3LmEWcC7854LvKxkSrzFYZo8/NNMPKOy37vVSMa8L8MhvDvOAbxRdTa9J5wFPXVLBjwjQxA92NOUPWvZmT2m74q9HGqXPIbZwzxzADY9I4ZoPYin6jxCTgw8RM4PvbuhCj38hSk9OUOzvBKGTDyd2WY8qBYgPGCcYLsQKoS5ybqPu9hsATyzMvg7NUOsvL1vMbz5twK9YE69u11D6zyC5Ic86XpCvPSssDqLiye7VYCIvHVLhr3LvWm6IGqeOAfRh7yoZMO8TWpkPQCGsDwoA5m9oe8DPQdUXrs/dRo9PZwovEHqUj1wdec8D1ESPHQyljwXrWg840hbPGAAmrsa6pM7ndnmu1Zq8jyovbE86dMwvaDkuDtmWQ88QMO9PBKGzLs5Q7O87t4Cve4hW7zWlum64wUDPaMLzjsUKgs92xMaO0fNBz002/I8dadYvaefsry9HIK7lEwJvIb1VTzd9BI7w7UePPGIfjyz6AO9IoFYvH0Uhjz805S8jKUKPD4fGD3o6jU9K67lvPc4M7wb4cq8b4gtvd88Rju29KC8tea+u+twxLzgQzc8fk7Xu24JkD0lpI08UertvAbx+jzer8a8gmqbO903mj1OXW68xrrKvFNEDTsgAru7Mt23vKyEDD3YlUe71E0UPYR2OD0sRJu8KnSUPA+2Ar3VAde8NKiSvOEOErvUCg28aObaPOjqNbxl00w9A+Xduuvv4byiBNG7SVMWvUe277zjQXK9G1n3vLNZv7vY4YS8g/CpPG2BvDvmXTa9+T8kvN+BkryxS9073r2ovAHe7LwA5yI95iiRPLpFir1SgKM78IpDvfcqUbuFQRO974PSvOpwRLxDIv88wqe8vJZRNTv4uRU7IHP2u2FPA72BLgW9E0OCvRlbvDvG/xa8LTtlPJ3q0bynlvw8erpmPaH9X7s26VS9PApFvZRMCb2ssHu8L0nHO3OiLD0rPSo9VIXPPIuXqDxJUxa8kz4nO+XOcb0qe4U9o4pfPNL8Kj2JzhK8jZxUPWK+eTw5BRm8A20xPYR2OLyDuwQ9A/M/vQBY3rswlYQ8I5arPP5ZIz0xIoS7+MAGPaSK37yEdrg7s1m/vE9tFTxyE2i7KSjXO/g/JLu7DiC8g7sEvE7lwbwb4cq7FLlpvKQJ/bxFv6U8LbxHPbmBILzFNDy8ZmkCPf3ahbuCahs85tVivdIDnD3Rbea8uw4gvJ1ypbysP0A9qzoUPUlD77zdr0a6RLHDuZretDy/ohA94IiDPXanWLwnm1c8vAXqvFDzIz0Y44+8EruuOv1LQT3aqhq7VhQUPSRhBr3sSQE9rYSMPYmQN7yDu4S8DRlcPGu/Fz2BLoW9r8y/vKs6FDx4Lec88AnhPGn2AbzNppU80/P0vDHWxryzWb+85E9UvFBr0DuZI4E8V5oivdfakzwUuem8VI4FPA8uLz1SAQa959zTvHSpnTvpYuI8AOciPPaypLyOJCg7UXJBve+DUr0VSK6879aAu+DEGbz5P6Q77nxhve39QzuzYDA9hX0pvcIf6Tv2KlE9DiDNvF6r67w5yQK9JY11u4b11TzGQp66oMMOOT+etbwYzHe6/2cFPYPwqTwZ0+i8WyeivEEd0zsMmr485FiKu6aYQb3Es1m9FcBaPfAZCD0geme9BPO/O/iw3zw26dS6O4unvGJGTbtgOOs8Ph8YvHSZdjyUyyY9pBkkPdpnEz1ylEo8GNyePVcL3rzYFGU8hoSavBnaWby+m58803vIvBRBPb1PZN+6oAaWvDHYi70wyOQ8eLU6PIBcOT0hig684IgDvNoixzz+WSO9+0TQvPm3ULyxnou8ZMxbPElTljuTRRi9JZ0cPc8zlTxTgCM9BvH6PFyk+ryzYLC8BgGiPI+xp7qotAW9HXU7u2jfaTytRrG7gmFlPYb11bxK0jO8Cwv6vOblCbya7Ja8YUbNPHvB17vgxBm7n35CvK7OhDz6PV88hwO4PEgQDz25gSA9FUbpO31H5rxUhc88bn/3PJRMCb7iwlS8PILxOxlirbxN3tA8vgzbPKefsrz805S8dCFKvGKSij2gd9E748lFvc8zFb1WkzE8W59OPTf3NrwMmr68oMOOPEWDj7ylmEG80sCUvPOWYL3+0c88F01avF0sTj1WBO283j4LPQbFC7zHQh691YkqveHLCr038MU8hO7ku2jvkLspsCo8JZTmO9QBV7y/E8y8G1n3vCxEmzxgMfo8SlqHPVKAI7xVhc+5EPkJOjnJAr2/E0w9DN8KPQbx+rxSgCO88pbgvMJyF7w1rwO9xC1LvdokjL1eq2s8YtWRPCWUZjxcNYS7gvApPex+JrskF469pN2NO6clwbz9UjI5cI1ZvPASlzuCcQy6e0mrvLn5zLyLFsY8YsXqu+4LpjvyHrQ7YD/cOp1yJbwheue80ntIvPYzB7yeaW+9jqo2PT2J4jt2Jva7tG4Svez2Urz5RhW9Bw+EPNobVrwoMQ09bgBaPqywez1kzFu9XbShvUlMJbuJkDe8JRVJO31O17yNJKi8kLGnvB58rLxAnHC8G+FKu46jxTysP0C9mCMBPGFIkryUy6Y8DJo+Pb4aPTxjxeo8pAn9u7BbhD2No0U8/kl8vW+Wj7zcMKm8u8uYPXWgZzwxTnM8EjNbvRfVrbsCZsC7xsE7PDHYizxTcPw76/ZSvSMO2Ly9jT09i5eoPHQhSjy15j48Qys1vPaifTxHRbS89zizu5dYJrxuf3e82htWu6qrzzwsCIW7oowkvZgjATwd9h08fA0VvZ//pLx/21a9RCnwPPIXwzz8w+27bgBavMvUyTu1Zdw8aGDMu8JyF70xz1W9hXRzugL1hD3BoEs9Qiu1PDZxqD0kFw49/Lz8vAPlXbocdwA9uogRvVx4Cz1kzNu87IUXvauyQLxU/8C7ft2bOmC5zbyI1QO8A2T7PBfMd7zMY468RClwPZPENT0fgx28MSIEvaGFMz2x2qG6NngZPBx3AL0ookg9GNwePd0u5Ly4AoO8Rb+lPGC5zbyZ1f68UeptvTg8g7wLk8081VSFvSMXDjzeLmQ8AvWEu1YLXru9lK48XjowPFXRjLx2Jna8YLnNPF46MLyZ10O9ekI6PcEYeDwDa+w8dq5JPC/RmjqlkdA8m6mPPZtkQ71V0Qw98ZG0PMvUST1gP1w7G+FKPGNUrzwH+Ou8jiQoveppU7wQJfk7+5CNu3CNWT1ix688ft2bPPKP77wQLi+8e8HXvAJtMTzk0DY82A10Ovo93zwvyqk8qiP8vPlGlTtTcPw8qyptu/ai/TuzWT+779aAvG5Mlzt3PY47At5svH9cubxV/Xu9ZFugvLoAPr1SebI8IxAdvQbFizxJFwC9xLNZPSaU5rySApE8+j1fuzdvY7w9mQk7qvcMvUhMJb3bsQs9FD/4PJ/4Mzzvg9I6ukWKvamkXjwnm9e8Of4nvIZIBL3gPEa8gNTlvGn2ATsV0IE8PApFvFX9+7ya3rQ8PILxvOTXp7v9yl49qJ1tvdqjKbzAqYG86mnTPBvhyjw397a87gumPCYcOr1AnPA8RPYPPEY+Q7rl1eI8stFrvC/RGjzdqNW8H4OdPBIz2zyrKm299rIkPVufzjyWSkS9VQ2ju5K2U7wWVpC8ae8QvVaMwLx6Qro7ZlJqvYHix7zaG9Y8KbAqvJgjAbw38EW6a78XPPy8fDtqdR+8Td7QvESxw7vWCEi66GsYPJtkw7vynxa8NWNGvOFDNz1BcAE92m4EumhnPbxgP9y8OXZUPY+xJz0/H5g6m+wWPcziK7zU+uU8oMOOu2zy9zuGSIQ9KCFmvKmrTzwGxQs8CyKSPWrtS7wbaZ48U4cUvHxXjT2MHTc8FUiuPMjILD3iURm9ebP1PJS9RLvWCMi5MBsTvbHaobt1L6w8Y1SvvDuENr2swCK9zmFJuywIhTyxyno7U4AjvbRX+jsHh7C8RooAvUavfrv1pEI9EzpMPKUXXzq6y5g8fMjIvH1HZjxT+E+9n37CvMpMdrwrtxs9Ztq9PHiAFb3zYwA8mCMBPDj+J71r9Ly6DKGvOUIrtTyssHu9ytaOPXb6Br0XVEu8uHO+vH6hhTxZqAS9RTDhvB32Hb0Lk028EDUgPTyC8byEdrg7FUZpvdaQmzwD5V29zukcvNwpuDxbn8681oD0Osm/9jzzHrS9G+FKPUBpkDq/E0y9rhEMvFykejyNG3I7m9zvPEOzCL0VRuk8K65lvXauSbyJAfO8vxPMvG4A2jqJkDc8zFpYvAqcAzrQ51c9h3tkvQ0ZXL3Qb6s8Qyu1u1N37TpQa9C8oxKzPdQKDbxWC1682OGEvNwwKbtxlEq9TddfPQcPBL0A13u8u9IJPbKeC7wKGyG9E8KfuhEzW7wm5xQ9uo8CPQiHsLqb4+A8JpTmOWJGTT0RPBE9AvUEPGXTzLzqd7U8PpDTPF6yXDvAqYG82B2bvWLOIL0SM1s9LcM4PBppnrtYmiI81QHXPDj+J71J0rM6ErsuPQyavryG/EY8hwopvfEQ0rwjj7o8NKgSPGJGTb3FNDy6s9hcPNUBV72eaW88fUfmvPGRND3QOoY8xgaIO59w4L0/D3E8kq/iu7ZsTTuTCQK9jiuZPJdRNb2jC8K8XDUEPcEYeL0OmHm84UooPWx6S7ksCAU6U/jPPFwlXTxWGwW9yc8dPWTcAjw0qBI9gmqbu17CAzzwisM8ZNNMuzl2VLyLl6g8zGOOPPYzB7zXD7m8owtCvXQhSj32siS8h3vku3/dmz29jT08m7AAPdwwKby6eGq8sUtdPMGgy7tO7DK7IgksPU7sMjzvg9I7g/caPcDll7t6uma8esMcu1YLXrxBpSY8Z6WYvJK/ibxM0O68QGkQPUW/pTvGOy09u4ZMvZ9wYL1rbOk7ANf7uzl9xbwX3J67OvXxvL6ULr0Z0+g7YEiSO515Fr27/ng8zemcu2ZpAjzHOWg8mV+XPZVD07tCJES94kHyur0VEbxYEk89GeqAuxbHS7w4/qe8pZFQvCECu7wC5d086nc1PVqoBDxo32k8kTBFvUEkxLuPImO9UXJBvc7Z9bwe7ee8Y8VqvTj+Jz3+HY29ebP1O5nV/jxGigA9BQGiO6IEUb0QLi88yMisOtA6hjmvVJM8O4Q2vcDllz1pMhi8MVepO969KLvQbys9VQ2juw6oIL3c9BK97/t+PeRI47y/kum7VQ0jPFmohD21Xmu7ChQwvH1H5jwzZQu8ftaqPIaEmrtvj546Dy6vvLsOoDuxS109XKT6PGAxer3JR0o5HkCWvWfhrjyRqHE7+j3fvDBQOD2OJCi9bn/3PA4gzbwY3B69ChQwPLrLmLyffsI8NzyDuncmdjvoYmI8lZaBPM/g5jwV0AG9G2fZvEIypjutP0C87gsmvXo7yT0csxa99rKkvFKAIzxCMia92hvWvId75Ly/kum75NA2vD4fmDwffCw97UKQO/5Ssrz8w+28/dFPPMOurTs+kFM7JZ0cPQZ5Tjyb5SW9+DizvPEQ0j0PtoI9Rq/+O2xzWj3Jk4c9KSjXvPWkQj2XUTU9zekcPQkNPz3d9BI7AOAxvbqBoL0b4Uq7iNWDPPACcLsCZsC8BHQiOw5sCjwllOY7OwNUPLRuEj16O8m8A+VdOpXLJrw16xm85aKCvRdNWjyxS908A/M/PDXi4ztTRI28QR1TvOZdtrxGioC8EzrMPDXi4zvRfQ0834ESvaCFszzz6Q48aGBMvdWJqrz8w+26y9TJPH5VSDwTwh89xDQ8O1UGsjsXXYG7NK+DvMU0PD2StlO9iQFzPTh2VLqgBhY8oxKzu+bVYjrDJto8RYOPPOp3tTzyXI+8RjdSPC1LDL1tAh898AlhvLf0ID1IPP67FD94PecvAry6Jjc81VOePIKkML3BGLG8QcuwuttFGD2l68m7gqQwPUa957xsM/85b5hBvW4Ehzs9bTQ8MLj7vKe1SDzOF4c8fRBwPbKgAr1y9r08AyGvu4f7ZrokCsw709oCvbBq+7zz3oE8du86PDh09DvJA2U9JjnKPBkmGzwChms8fHw1vOnzirsjpUy8OA+4vBpVmbx9RrS6z5DfvBCFhLqZopm7y5divFaa2DxJogs9n2UVvfNDvrf1ofe8S69hvBfBG72AdTI87htDvLxVtbtpQQu9vYSzPapJRjopMse8p1BJOz2cbztgVpS7vp+VvUbzK70uxge9iGCpN9qq1LzHJQ29M4I9PKgaSDw7o7W8LZBDPOOcETtRw4O9FpIdPRO0Aj3NK2C9A+utvKnkRr0mnsm5zysjvfTXO7wl1Eq9eeg3PGh3jLxhT867kRyiOy4k/rz1oXe94gFOPWcSjbuPHF+8IXbOO+8U/bzH1Oa8znyGOXGYBD38k7S7xUCsvHroN73p8wq9FotXvA6MB7xmd0k8LSuHPUC3FLqwoL88cva9vEjs5Twy53m7f6RtPYUxaLybNtQ8D2rfu12MUj2xO8A88UoEPXD2ejywBfy8AfIwPRXjgLxm3Mg7bmJ9PcfADTxscAk9O9k2PVLXXD1s1Qi97IcIvQunpruKWWM8TK/hu4mP5LyglBO9vToWvRHqgzziAU68PDdwPL2EM7yjvEu8csD5O02biDzp84q7ZOPLvKXyjzzRq4Q7rHjEvJXfnb29ujQ9DgXgvFb/Vzw5qri8k0ugPPia9DxvmEE95JXLPFbQHDzYsZo8l6mcPHeDdTxXmpu8AY2xPcEYMb1W/1c82UVVvMCzMT28hHA8khVcvfbQdTxwMwW9aEFIPUSOaT10LAK8DnElvZgOHLwTmaA8ydQpvSaeSb2EU5C8h0wNPWCFTz0AKDK8//HtPJDSBL3gN0+7r3HBvOgpDDy+Tu88radCPIrFqLyTS6A87FHEPEq2p7vfbVC70SRdvXkDmruFMWg9yzLjPA6g4DxxkT691R1aOs/1Xrxm4448SrYnvKgaSDy2LTq87xR9uzv0mLwtYYi8zGHhvPVyPL0MQqe8/PjwPL2Es7yBWpM8Y37MvN9tULupUIw8gaQwvJbY1zxqcMa8uVy4O/JDvjxsn8Q8bs5Cu54vUbzC/RE94G2TOi5aQrx5npq7W8LTuznFGr1cJ9O7dMC8vGBWlL0XXBw9isUoPYVnLL15svM8d4P1PK1Cw7zDdmo7insLPY/tozzzcnk8vR+0vJjYGj0Lpya8MCRBPS/1BTs4Rbm8HE7TuxJj3LzP4YW9sGr7POGczjy3LTq9uVw4PDHuPz1K7Cg9v58VvHeD9bzVglm8wRgxvVvC07y2Yzs75fpKvX8rFTwOcSU9xEDpvC5aQjxfu9A8v+kyPQp4KLyxO0C9LpCGvEwUYbxc8dG7ifspvXAsfDyCCTA9gD+xO80rYD2WDtm8lkSdvA7xBr0nzcc8zvykOiBHEz3LuQo9ucG3vGqmCr3Ib6q6koEhvQ8FIz2MWSY9maIZPVhkVzy8hPC7mtHUPBfw1jwhRxO+9aH3vB590Tv0DT260UaFPBMtWz1sM3+958SMO/z48DqRnIM9t1z1vNH1Ib2S5qC8hR0PPBnwGT1v/UA5xtssvBAghTzdPtI7sjR6vE5KJb1u/X28sTvAO9BaXrwAV209h8yrO3CYBDrNxuA8zhcHvcQRrrxMgKa97+XBPAK8rzuNdAi9p4aNPEL6rrsMQqe8ulXyvG0ERDyVFZ88eIM4PcDOEz20Y/i7je3gvFzxUbzOxqO8P1KVPP7CMj0w9YW9X7vQPIxZprySels8ALxsvRO0gr0rK0S9ciy/OankRj1RQ6I8/F3wuzSCvTzf2RW7AVcwvQd/qzqSsNy8hFMQO7PPPbxeVtE8gm4vOsBOsjyPbYW9wE6yPAgT5jyQgd48VPKBO8B97Tw7ozU8PCMXvRfBm7y6QRm8gNoxvYB1sj146PQ8ebLzPOkixjwnOY08RvOrvEhR5bstkMO7x28qPVf/Vz4EBhA9pfKPvJk9mr184TS9SYcpPEtsCj2sp386je1gOpBSo7zEdi29rwV8vL3VljxDFZE7AoZrvU5KJbvuG8O8TBsnPczNJjxopsc85sTJPMFHbL2V3509UjzcPDC4e73+J++8eZ4avC4k/jwW9xw85fpKvCjNR72nUMm8Y7QQPayuCDxSPNw889f4uz6cMr2COOu8SL2qPFUGHju3XHU9IHbOPAmuKT0ISao7O48ZuzhFOTzV7h48FeMAvabryTzXHZ08usE3PP7CMr2gXk+8i6oJPXIsP73nKUm9jT4Hvflk8zzg0s+7oPlPPMzNpjzf2ZW8nABTPWo6Rb1ewpa86odFvTcP9bxJtuQ87q99PQxCJz0R6oM97OxEPXi5Ob0AV+08jPQmPdH1Ib3jZpA7tGN4vE2biLw4Rbm8kdIEO0+vJLtd8VG9tP47vUKVrzwuif08uCZ0vTh0dD0cH5g8TkolvdH1obzdPtI7c/Y9vMZvZ7tWNdm88UqEPOnzCry3wXS84dKSvbE7QD1XyVY6jYjhOweajbu59zg9UXLdPHIsP73VCYE8qRoLvD8cFL2yOwO9U6FbvfY8O7mJj2Q87q/9PK9xQTz2Bro6VPKBvXVU9zxwkfs8eE10vCB2zrwOjIe86r1GO92qFz3I1Km7gAntPBb3HDzvSkE8UQ2hO6sTRTzLHgo9uos2vRHqg73RWqG7oijOuodgZjxLUSg9LMbEPAxCp7t2iru874AFvdkWGr0ZulU8eB65O726tDxQDV48uVw4PB5OFrsbhNS8f6RtPO8U/bzVCYE8lZWAvKtJiTvVglk7VZpYuT8cFLwuJH69VAZbvae1SDu6wTe98ah6vOoiRr30PPg86r1GuykyxzyHYGY7SNiMPN4IUb3v5cG8yNSpu8J9MLxvM8K7rHhEPVMogz29HzQ8LMZEvZLmoLssWv87e7I2vQ47JDwyuL68oZSTO6lQDDzOl6U8ehdzvQzCiLw7bfG82g9UPDNTAr05qrg6Za3KPXmy87yqtYu87ID/u7TPAD0IeGU7BX9ovY2+JTz9wm+9BbUsPRxO0zz8k7Q7zvykPHHHvzxkfo88X1YUPXsymDxumMG8RPPovK0TiLvVgtm6gjhrvaIozruhXhI8ZtxIvNPu27wQhYS8tTQAPTLugr1/EDO98UoEPAC87DvFpWi8EmNcvL26tLvdqpe8iGCpvLuLNrvJVIu8O9JwupBtBTzdo9E8UQ2hPPPX+LyXqZw87htDvNEQBDxhhRI9+TW4vGMZzTyIFow8S2wKPViaGz3Rv128zDKmu/oaGb1C5hI8i1ljPdS4Wj28H/E8d7m5PFqTVT1YZNe60EYFvR2El7zPkN87RSktvD1ttDu2Yzs7Y37MvK6nQj3nKck8uiY3vOGczrwgEU+8f6TtPBCFBLwcTlO8F1wcvc/GI7v+XTM8t1x1O1YGnryH++a8TkqlvKpJxry7Cxi9R3MNOwf/jLlwM4W8l6kcvLkmN7shrBI9Es8hvZgOHLwmOUo8rXF+Pa+g/DwT/h+9zGHhPG4Eh7z+rha9dh52OiHbTbx8q3A9hZ0tvYcxKz2bbBi8T0Pfuxm6Vb2I+6m8puvJvJapHL3qh8W8LZBDvLyE8DzVHdq8rULDvLE7wLwYwZu6zvwkvQOGLjw2RfY8NoIAPDh09LvkMEw9Mh0+vbGgPz0MXYm8JaUPuhMZAjyHMau8jA8JvdS4Wj0KeKi8FMiePPY8u7ypSUa91+ebvNsPVL1cXZc8r6eFupNLoLxmrQ08gJAUPQoTqbzG2yy9ufc4PRhVVrzUiR+8BOutvbctuj1AATK6Ql9ruk9D3zxqcMa8hTFovDWCAD0NjAe9i48nvOX6Sj296W88uXeau/MNvbxOyoa8K2FFPQ47JLyWc1g9CGSMO9SJn7vEQGk97oBCPXz8Fj2wBfy8N3u6PKPyzDroXw28bWlDvcBOMr36tZm8eZ6aPXbvujw14PY7WDUcOwZrjzzJioy8z/VevM58hjuURFq9h5aqvD3tFb3w3vu8/l2zOwgT5rnPKyO9O/SYO4UCLbwOoOA5U/IBO4y+pbzttsM8F/DWvNp7mbu6VfK94pyRO8/hBT1od4w8SD0MvRX3WbxFRI+6i77ivAS16Tz7/za9ThSkPPOoPT2xoD88+f9zvE5KJT1AMO080lohvXTv97tU15+6n8oUPXIsvzv8yTU9zsYjPPXXu7qKvmI8eZ6aPMrNY7w3qnW8Ds/evHNbPb2MWSY9vk5vvMiKjLrJ1Ck977YGPDBT/DxXmpu8YbTNvPEUwDv6UJq8gJAUPV5W0TwVXNm8Z3dJOVjJ1jvmX0o8cJF7vOdfjTq5dxo8mKLWvJ2bFrsOjIe80EYFvey9CT0OVoY8JwNJPRSSWr05PvO8DgVgvLpVcrtVBh699Wt2PEyAJrxWNdm8jdkHPT3tlTsMpya9KyvEvAeaDb2K4Ao9BFCtvLummD2LDwk7LGGIvQ1xJbyyOwM9bs5CO0R6kLss/Ii88Xk/O5NEWjzZRVW8inuLOM8rozyY2Jo8kFIjvGpwRr2YPdc7PQg1vb/pMr0StAK6Ql/rvO6v/byYPVe6DdYkvbT+uzy2kvY8cMc/PM8ro7y4kjm9tDQ9O85hJDzRkKI8o40QvNl7Vr2W3x091+cbvFB5ozo05zw8xKwuO8jvCz0w7r88dMC8vG79/Tw7CHK9Uo0CvUqA4zxLtic99tB1PLLPPb3wr8A8x55lvAjkKj2PbQW9RiJnPMQRrjqa0VQ801NbPbI0ej1RDaG8Z62NvCrNCr0aH9U8adwLvFENoTw6o3I8g53quhbB2DxUoR69swUCvT1tNDxK7Ki8C90nPfMNvbuYota5nWVSvS+JQDwnOY08Y7QQvVS8gDz6UBo7lN/aPK8MwrzOfIY8OOA5PLTPALwLkwq98t4+vSmXxrsy53m7cVv6PIwjYr3qvcY8OEU5PH6rszwMDKa8VTXZu/5dMzzjnBE9rKf/vDLugjx4TfS2DQwmvQPrLbxaZJo8OdnzPCQKTDyhw866TkqlPQuTirwl1Eo8krBcPYDT6zwZulU9UqihPPPegbwbhFS9BBppPRCgozuDOK68IHbOvPhrubqof8e8h/vmu5DSBD0/NzM9hZ0tvPIN+jyemxa9SgcLu2hBSL1lSMs8bmL9PFQG27o52fM7Muf5vFb/17z7/zY82BZXvPqaNz0V44C8tZk8Ox590bwX8FY9NIK9PPfQ9bwBjTE9RI7puw3WJD253Bm9ofmSPfcGOj2K4Aq9FUgAPdEk3TzcdNM8QZVsvf2MbjyVMAG9exe2PK5Chjw8I5e8x9TmOz3SMzstkMM7IH0Uu4ixDD1YyVY8JQoPPYHT6zsX8FY9tmO7uhTInjzzeQK8hNaaO0rCmTwv8qq8S9BdO53YxrtqBSq8lSG7u4fjXDxdlpA9Fc4JO8w2Pr2viki9liA5ujsd2jsjPaO7FPEAPRWrEj0dttA7xcSeO6KQ1LwcLXq9a4+CvCmwxLwlgQ08rhShvRNFs7zLN8C6KvQuvPBV1TuBPwA9fOjmPGuPAr3H9Nc8oRsvPNl1Hr1L5I62OlSCvcCzczyufIS8wcYiPAkFUbz5UU29ibEfPfOZP73Hw5y84XEWvbu197vGsO28MyFivWVNnLzTZPO7La5AvIO0pT0PjCO97eExvYVutzwdtlC7TAYEvJVmp73Vd6K8awUqvSmwRL3fXme9ug6VvQ94cjsoJ2489sl4vFBXMLzbdBy6TMGXPJ1in7yrjEw8Yn/ZvCIq9DxbyE29ihiBvOdaX7y3QVQ8a8A9vYiecDtnOGm73C4uPRLyAj30RY08TZ4gvS2uQD1Rzde8DUg5O7uEvDwlgQ29yGr/vCyuwDytFSM98EcRvSf2MrwrOZu8fh4NPIKh9rzWmRc9vcimPLFE2juqFiU9AsNqO9TfhbwbywM7bTVjvcvyUz2oBPg7cmmFPTgQmDvYYu889VNRPXu4rTwa/L47DvSGvBlCLTyVZqe7n2GdPCmwRDziXOO7w8UgvC19hTwAQIE97kgTvNDhibzBgbY8o0vou1PgBjyrjMy8T7+TO2jz/Dx07XC8hrIhvEMZ0jsVRLG8T+KKPCyuwLwf+rq7LX0FvSeAi73/HYw9PNjtvDgQmDy/DBG9p12VPZkfN71ePfM8a8C9PJeW4DxaP/c8EvKCPLvJKD2xzjI8P9ZpPXbsbrx1AKA8Y8RFvfRFDT2P8wW8oZFWPdul1zq8MAo8kmcpvG++ubyJsZ88I4KPvHW7MzqZhhg96koXvX/nZL3Tqd88lyA5vfxBBb0n9rK8MSLku5DQjjy+tHU7nU5uuwGTsTwHGoS9URLEOp3YRr1REkQ9yvJTvKGR1rv3yPa8E8+LPEwGhLwmXhY7AvqSPKeOULxq8nq81qfbPDM1Ez1R4Yg8EYuhvEMtg7z9T0m93Bv/vEehJr1fxkk7Jfe0vD+lrjrlFnW9M2bOvMfDnLxwJZu9QJH9u63QNj23EJm8F/7CvKNfGbyGn/I7YraBPXV2R7042nE86W0OPZ+S2LuI4to7a8A9vB/6ujwlPCG87kgTPcX12Tx27O48ucqqu+8R67tadZ28gqF2vLSHQrtXD768sohEPBGLoT0Tdm68PWFEPRf+Qr3x3627QaSsPAKSLzzrbIw8mZXevJMivbwralY9IKYIPBNFszxjxEW97ZxFvVS9j7xFoqg6/k5Hvd/oP7y1/ek7B0u/vLoOFT0zq7q6OzGLPAwDTby0h0K9H4STugp7+LyUU/g7I/g2vJbNCL0Dkq88uQ8XPc2s5bzpbQ69K/QuPZJUej1/tim92mHtupuU3DtrNmU9aZAEPfFV1TmA+hM9U5sau3BHEDxXmRY9K2rWvAbB5jwqXJK81XeiPMkHh7yI4lo8E8+LvIknx7z+QIO8J4ALu4WzI73Lrec8ls0IPRhzaD3FxJ67+x8QvZlkI71wR5A8ibEfvnsuVb1362y7l5bgPLCJxjqFsyM7N+6iuUYJiryHbbW75VvhPAywHL0dQCm9i2sxO8+rY7xF5xQ9FqsSPHl0w7u/gri8fh6NOwd8+ryaYyG9geZivcrkjzwQrpi7XVEkvGQ567z/Cdu8QpD7vPfcJ70NjaU7Cnt4vdaZF7yOmui6K2rWObGJRrwnOx88U0J9PCs5mzyhghC9yTjCO4ErTz19cj89ycIavakXJz3OZ/m8AgjXvPchFL1XDz49L60+vWhuDzzN8dG8wrJxO6SPUrwBk7G8QRpUvQOSLz1xAqS85ymkO8P227s03PU8tjOQO4G1p7y0NJI871bXu/sfkLwiYBq9P+oavFqD4by/Pcw8S1q2vDHxqLwPAks9KTqdO+meST19cj+9KyVqPa1G3rz4/hw9uVSDuyCmiL0Dkq88pknkPHrpaLxyd0k9hBsHvdlh7bz8/Bg84JQNvZeqET1HXDo+LTiZPDYRGjwYuFS9A5KvPAfBZrur0Tg75Bf3O9+3BL3NNj67BX18PH1BBL3tawo7x8OcvO4Ra7xSQ/87zGh7vA8CyzxnwkE9E0Wzu6mNzrxOwJU8ZvT+PKoWJTw5Y8i8wcaivC+tPrzyD+c8v/jfPLURmzsPjKM6uvpjPNulVz3sJp48mWSjPD4bVrwcLfq82boKvWvAvTvXdiA8VEL9PAKSL7vFKwC7Naq4vF2C3zyE1hq9P2BCvOdaX7wGfXw2XVEkOwDF7rsvfIO7TgUCvOudx7xYuws89pc7vIfj3Lx6c0E9oktoPJuUXDyxicY8s0PYvC7fez2wWAu8ZvR+vE9YMr3UqF08I27ePP8JWz0OefQ89sl4PeOhz7tTVi698sv8O2cHLj3WmZe8GrdSu1498zxxAqS9Mt13vSeAiztHoaa8qX6IPBGLoTxD6BY9i/WJvPEQabxXuws9U5saPStqVrxfgd28bwMmvErCmTsLSTs7/k5HvXECJLwsW5C8OWPIvG8DJr1pSxi836NTvD1hxLwdtlC7GamOuv5ORzwwWYy9nhwxPIKhdjxy7nI6q4zMPIO0pbyqFiU9526QO0+dnjz1U1E9nxyxPHghE7zV7cm8JYENvQvTkzw1qjg7LK7APLgyDj31DuU8uQ8XvYTWmjzvEeu8W8hNPT2mML2VITs99Zi9PIoYAb1K0F29Hyv2PCcnbj2TIj28L62+PJ/XRDwBTsW8bwOmPFKbmjyqfgi6072QO41qL72pjc68ZcNDPYVuNz3526W8BPkQvUBfQDzpnkm9BUzBO0XT47zuVle9d7qxu0BfwLzrJyA6xOeVuyyuwLzvaoi77ZxFvT4NEj0l9zS9Z5EGPXcw2byZ2so8B8Hmuy3zrLoHS7883Rp9vMl9LrsFTEE8M6u6vAJNwz2RaKs9nxwxPZNTeLyrR+A8GLjUvDkyjTyuFKE6ibGfO0GQ+7ltek898VXVugu/4roOR7e847WAvCkmbD3Zplm8Dkc3veAsqj3F9Vm9/dkhvR+1zjyO0RC7FrnWO+viM71cuYe8Naq4vGc4aTxitgE9TAYEvYUpSzzW3gM8mR+3PKcYKbt2ZwE9nIUWvTM1E72SmOQ802RzPDmotL0oXZQ7zcCWvB+EEzzxEGk9pknkPDxTAD33DeO8dHbHu4JvuTsFG4a7MXsBvc7ii7yzV4k81N8FPXjr7Dw37iK9Gf1Avc2s5bvokAW9zDY+vEQKjLq3/Oc8qdK6POOSCT0OefQ8z78UO3S7szw2VgY9d3VFPXwt0zzwVdU7UkN/O+tY2zrXMTS850sZvKgEeDwnsUY9K2rWPG5IEjzglA08rVqPPIuwHTvDO0g8wPfdvAeQKzsNjSW7V1SqPEbEHbrGwxy8SdHfOz0cWL28MAq9/U9JvRCumDkrr0K9P2DCu1q6ib2nooG5d/8dupeWYL27hDy9j2ktPJNT+LwORzc8EPOEvKOkhbwiKvQ8/5OzPDljSLz9lDW9I/g2PIdtNbwQrhi9+x8QPU6KbzyuWQ08mWQjvcw2vjwXL/48vflhvTfuIj2d2Ma5J2zaO54csb3D9lu74ysovTPwJj12Z4E8urb5vEEaVLvBgTa98Mz+u/cN47zBgTY9rItKvd24Bj062e87noSUvKgEeL0lPCG7pIEOPME8Sj0LGAC9pI9SPfNUU72Ul2I8ntfEut6jUz0HkKs8/x2MPAkFUbxduAU8b3lNPCBhnLtN44y8I/g2vVeZlry/gjg9RRhQO3Az37sVRDG8hW43uzMSHLrfLSy9h+PcvE8TRj1fxsm7X8ZJPCGDET2/PUw9fLervHJ3yTwmXha9W1ImvI5WfjzblpE8O6eyvJcgubzjXOM8TIvxOt9eZ71VVSy9FHVsPJ7JAD1tvzu7ZDptPcf0V7pH5hK9sABwPQOSrzwRAUk9BQdVvUehJj1Ej3k9wYG2vGcHrrrCsvG8CUq9vJ6EFD3ftwQ9PescvdV3IryW20w8o0vovGdMGr29Ps484JQNvY5W/ju6+mM8SsIZvc0FA7xZhOO8WYRjvMA8yjsVdWw9cwGivGVNnDyWiBw7MKw8uT8b1rs3qTa9OR7cvckHhzwPjCM8E7vaPGGUjL2y/us8q0dgvNVjcbwFG4Y7IGGcvZ3JADxSh2k9oIMSPbJ6gLxtv7s8J2xaPX1BhL2bqA08PZL/vF+B3TxBGlS8x8OcvBEBSbwcqIw8HYUVvZCZZjl/tim8rQFyObND2LyXILm87lZXPRu30rz5IJK8Sozzu34eDT21ERs9JKQEvA+MIzwvrb45b765PAoYALv7UEs8wzvIvF1RJD3joc88CY8pPAu/Yjn5lrk8hCnLvF0MuDznKSQ9/ZQ1O7uEvLsiYJo9Z8JBu65FXDxpfFO8WFMoPW4mHbyrW5G84SyqPFVVrLx8pPy8d/+dvCSkBLydk9o8L2hSvE1ZtDwM9Qg9WED5u4+umTx/52Q9dDHbPBtBK7uti8o8s0NYvGhuDz2Zhhg8HYWVPNtg67zyRg+9V1QqPFGcnDs7MQs8wOmZPePmu7tjCTK9La7AuzunsrxpN2e9DvSGvQlKvbyiGq28sYnGPDRXiLweP6c86JCFPO5IE7wC+pK7O6cyvUYJijqfkti8qUjivHnq6ruR3lK9WFMoPZjMBj3dcxo9+v0aPP/E7jxzAaK8ZX7XPP5Ox7wL05M9uVSDvBq30rpYQHm80uAHPQZ9/Dz1DuU8wi0EPeNc4zwNrxo9kyK9vPVngruuN5g7YLeDPNF5JjpYQPk83aTVvKsC9LyD5eC8h+Ncva8AcLyt0La8L/KqPBhzaL0o9bA8+SASvAXCaL34Qwk9cTNfvS3zLLyqFiU8Tc/bO3UxW7x/+xU9ISp0PdRkc71Nz9u7MzWTPD4bVjwQ84S7cTNfPUXnFLwbcua8+dulPLQ0EjtKjPM83aRVPIX4DztTVi69X8ZJuxZDL72TrBW8YYDbPI/fVL0VdWy7+1BLO6bTPDyF+A+8LCToPO3hsbwDw2q9c0aOPNmmWbwrJeo8cGqHPF64hT0g+bg81WPxPO5IEzy5+2U9RY53PI2b6jwp9TC92JgVvW8DJryHsqE8RV28O/FpBr36Qgc9+x+QO4rhWDxDXr48HcqBOeOhzzx27G4622DruzsxC7zEsW+9Nx9ePWhuD70Lv+I8GXPotnpzQb1gtwO8JYENveqPg7z1IpY8nU5uO7a4/bszZk69KlySPd4afTqPrpm8mR+3PLeGQDt3MNk8/dkhPEUY0DwDHIg9F0OvvJ6EFDzBgTY98cv8PIfj3DtOztk8Ouyeu04TRjwdLHg8jyTBO6eOUD2vzzQ93aTVvA+9XjqSZ6k89Q7lvKCDErwzNZO89d0pPGUIsLwBk7E8jWovvOPmWj0hvYU9xtsCvPKtJ71thnW8RayGvGj3Cz3Y9YQ7oUgGPDVNgbzodsm7q1ygOzteJ7zoawu9AkZtOzeJtTxT2hU9uNrwPNQ3FLr1DKC8Pr0fvXmmUr0A0HM9ci1lvGs+frxrVgS78sQou7mVbToUPjC8SiRvvBL2OLxNg+e8az7+PMFW0jv2ghm90sGaOylPY7ycuBc7U7fRvPQ6Ij2c5hm9RAiLvDIFCj3lxJu7+oUNPL4lXL0NOEg78Dcuve+TMjye9Eu8/Z79vFFYWbouJFU9kXX2vIBQNr1XukW9wW1TvV+SK7yZTdy8f364vDFhDr0eoxA9tZL5vFSJz7yMK5A8n7sLvMkuODxJl/Q8bkHyvKbjMjvGCYU8F28mPKeHLjwqOGK8Mu4Ivahwrbpiw6G8gq+uu8b9Qb1SCBg9Vv9IvGAfJj0Xhqe6VInPvCjC6Dz0OqK8dKNevP5xgD34JpW8m9pWvCMEeL0mTO+8g4EsPSdMb7yq5qa8XGG1vOfSTb34a5g8vK9iPcxfLj1X0ca8GFilPWsnfTzIRbm7FuIrPZ1FkrzSk5g85S7SvIKvLrv3mZq6FSevPH7Duzx5M8273j/rOuMJn7uOigg9gfSxvOb1kTx4hBO9prWwO5ZK6DoDGGu7cVtnPf3NhLyzkIo7GBOivLoi6LxS/NS8o5u7vOVFUzvSk5i8birxPN2EbrwSyDY98tspvdjeA70TmjQ8wuPMPPnhkTxXCwy9RB+MPDL5RjyGmyE9MhyLvVIfmT0Lws68OHK0OhENurx1ddy7ouwBu1kwvzwfMIu6+A8UPMOqDD14shW9oIFGvPqcDr2AOTU9tx90vFklgTxYXsG8Rk/9O0XDB7zZx4K72w51PJv9mjzvk7I8zF8uPTEnybxthnW9jCuQvPN/Jbxp4Ao8mXvevJMC8bkmTO887GI8PXltEjsO88Q8ehGOvGR+HjyRdfa8BWDiPKq4JL1dHDI8WRk+OzRYvzts4nk8VVAPO9HYGzx4eNC8DgrGvBedqLyNz4s88E6vPKwXHboK/BO7UWQcPfEgLb2Dgay8X2SpvBhYpbzeKGq8NRM8vRkTIrxHUAI8YqygvXvXyLyGySM9icwXPWHxo7wlevG7YqygPBQ+MLxXo0S8QpIRPXfUVLyZWR+9pIQ6PSvFXLwFd+M8Esg2ve+qM7x2Ate7006VPJjAYb3YDIa9P3icvAYbXzwS37e7RmeDvE/5YLyVYWk98sQovYwUjzyAlTm8VKwTPW209zz2mZo8Al3uOwJd7rwPl0A7Et83PPA3LruHhKA8v+BYuyY1bjwBi/C8qrikO19kKb3ZgXo8w7XKvMC+GTmAZze85KHXPB6MDzyHsiK8ImGBu83sqDxewK28RyH7POGH4jlz/+K8hQ6nO10csj1+/QC9/BKIvEsN7rvCKFA992sYu3r6DL0wppE76Y3KvJiS37sVEC68WSWBvG1vdLxjUJw8YQglPaCkCr0yYY46zQOqvE8QYjxHCvo85lEWPOVF07qf3Uq9oRoEufBOLzyriiK8MvnGvHDObLv1IyE9dKPePHCgar0hjv68aPcLvTt1KL53yZa9TJpovGQLGT2B9LE8ZDmbPJl73rrmDBO9MuLFO3YOGj2sLh68Jx5tvVheQb2XBeW8lL3tPDuMqTyLQpG8O14nvYaboTzwZTC8ove/uwlMVbziQl89+ykJvbisbj3dhO68wijQvDu6KzzBeRY8V90JvT0CI73EWca84XDhuyjZabtfkis9rdKZPDotMTx6HEy8MLFPOjTLRD2mtbA802UWPROaNLwEGGs8Wg6AvGgODbxv5W082lN4PemNyrzDzEs9838lPU4n47sdupG7Ind9vKUoNr0xSo28wvpNPDigNjwuMBi81cQOPTCaTruoWSy9/Mz/u0/54LwfXg08YdoivdWtDb3K0rO8RawGPZiSX700ZII85hfRu5lZnzzZsAE9Lg1UvWzi+Tss8146UjYaPU4n47ySXnW9lY/rPBeGpzsIqFk8AOd0vLTvgr2TGXI8C8JOPVejRL0so508dIxdPj3rITwL2c8676ozvcUrxDzjz9m8gGe3uk/i37zFToi91zqIvDblOTy2NnW96IKMvJvxV7yC3TC8zqelPCcH7Lw8MKU8zRqrPXruSb1Mmui8b+XtOIQlKD3KuzK7nUUSveJwYbw7Xqc8sb4MOfn4Ejx6+oy8BNNnvUjF9rybw9U81dsPPE4n47y+PN26UJKeOivc3bwPxcI8VS3Lu1L8VD2gmMe7CvwTvZS97TyoQiu96vgFvSMb+TzTfBe9JkxvPfgmlbxtnXY9jxb+vL4anrw+vZ87VLfRu5F19jyeF5C8C+WSPSGOfrwYKiM9e8BHOxEkO7x7wMc8q1wgPEciADvC40w75X8YO4XgJL2oKyo9oFNEvHNEZj19NsG8xSAGvSS/dDt+8T09QnuQOoeEIDwu9lI99DoiveRz1bziK9481a2NvS1eGr3HuL483W3tO3IW5DzO1Sc8/nEAPXyeCDx9QgS97Ke/vPQjITyi7AE6tMB7PF7ALb24w288zQOqvNXEjrso2em8ZCKaOVPOUr0gAom9l+7jvEzI6ruMK5C7ogMDveMJHzogAok8vhoevIayorw+pp48uMNvPJ4ukTxGfX+86JkNPV9kqTw5FrA8oTzDPOfSTTsKKhY9MSdJvPaZGryGyaM8YDYnPZjAYb1MyOo76T2JPIOYLT05FrC8yuk0PQMBarzD7w+9CTXUvFrUujx6KI88CgfSuuV/GDxwzuw7gq8uvcb9QTw66K26EFK9uyWR8rz2mRq8F28mvAlM1TwMfcs9FFWxvan9p7ylEbW7OHK0vJvD1Tx4hBM99VEjvZof2jz1DCA9Mu4IvdWtDb0h1Ia8fR9AO/nKEL06uqs8WGoEPJfXYjyujRa9fR9APW/8brymtbC7RyKAPIqHlLxSCBi8bbR3PFSgUDuX7mM9L9STPTRYPz0eoxA7DSFHvI5zhzsCRu27heCku0aVhbwhvYU8MGzMPI3mDD04RLK8BXfjO4LGL7z1OqI9FfksvD1HJr19NsE9sb4MvbsL57zCEc88NRO8vFTxlrzmF1G9U87SOZcF5bzy2yk8OFszPC1S17vEh8i7BY7kvDhyNL3u2DU98QksPEpp8rzR2Bu9nLiXvKE8QzrGCQW8nIqVPHYOGr0v1BM8puMyO0jcdz3lXFQ9x4o8vcxfLj3QS6E8CioWvaObO72b2lY9KNnpvDBsTD1X0UY9WkdAPPEgLb26Iui6BY5kvDt1qL3b9/O8v+ybPF7Xrju8r2I902UWvAoqljxUoFC8RpWFPR9HjDxDNo085IpWPa0AnDqP//w8JZFyvMehvbxVLcs7FsuqvINqKz0TmjS88tspvMRliTnN7Cg8VVAPvPtXC73PpyW8nKxUvdQJErwO3EO7PeshPXVTnTyhSIa8eWFPvV9kqbwMlEw9WUfAvYtwk7y6Oem8EIC/vI8uBLx7wMe9HdGSvYKvrjt/CD+8ygA2vGqEhryYkl88mMDhvMCQFz2Q6Hs8m8NVPD3roTwAuXK8MJrOvHV1XDzcsvA8bbT3PMIRz7yB9DE9/ll6PM95I73jCR+8MhDIOxOxtTl2Alc65S5SPfN/Jb1YXkG6Ai9sPODMZTyHhKC7g5itvOb1ETxECIu8FScvPX79AL39nn28wx0SPClmZDpa67u8PDClPIX3JT0H7Vw8M53CvAlM1Tx9TcK85JaZPEvfazwJWBi85K2avAJd7jx+8b083/pnvDFKjTzDnsk6vJhhvCvF3LxYmIa8eW0Su5MZcjstO1a6gt0wvB9ejbwr89481mgKvQPqaLzvwTQ9L72SPPKtp7o/YRu775MyPekxxrx6HEw9otUAPTuMqbwMiY47NuW5PHVe27yt6Rq9LXWbPHfJljw0WD+9NTYAPOrsQrxX0UY8Jx5tPGQ5mzzEh0g66g+HvM6nJT3N7Kg8n8bJPLKni7zDwY07pFY4PWngiryRjHe9dXVcvWtWhL3MSK07d9RUPbmsbjzEk4s8wW3TPJAXA73Y3f67V6NEPJ/dSr0966E8Po+du3xkw7x0o167Rzh8PEHAE7y07wI8oKSKPAC5crw7Xic95JYZvQiRWD3XUQm9ulBqvW5Y872m47I8Rn6EPKeHLjxYagS9IdQGPS4NVL2gasU7BNPnPEZng737QAo9kkd0PVRyzjyQ6Ps8MgWKPOuzAj2eC8288E6vvIKvLrwxSo08KiHhO0cKerxQhts8eI/ROyW/9DsyBYo86F/IvKCYxzxnahG9ThDiPGptBT2/91m9ayiCvJiS3zyl+rM8g2qrOx51Dr2tABw86THGPCKPAzwPl8A76T0JOwft3LztHbk8Oi0xPTwZJDxPy968E7E1O4///Lyb2tY8GokbPJoUHL1pyYk8BklhPXV13Lu0BgS8EQ06vOfHj7xhCKW9f6y6vClPY7zbJfY87IUAvAh6V72eLpG8Io8DPMhFuTzV2w+6LlLXuuxiPL0mY3A8xULFPb2vYjt8ngi9y40wu9mY+zy5Z2s8WtS6PPwSCD16KI+8EF6AvP2fgrySMHO8ro0WPaRtuT3mDBO6VKBQvQr8EzwUVTG8Ch7TvDuMqbw7dai8birxvMVCRbzrnAG8YsOhO3xkQz16HMw8tmT3OoRTqr1a1Lq8g5itOyGmBD01TQG7fhQCvebpTj1NbGY856TLPHruyTytABw8m/HXvFVQD7t2Ale7jc8LO1Pl07zmDJM8XHi2vDSSBD17tYk9hsmjvIwrkDywA5A7eI/RO43mDLxa6zs9Jb/0u/5w+zzPYiI9XDOzPTigNrxv5W27gFA2vQiR2DwaoBy9L+uUPPpuDD2/A528e9fIPEXDB72hDsG8kYx3vFO30bydUNA7wLLWOijZabxXusU82yX2O+xLuzwy+ca8S/ZsvD9hGzw4crS7Vv/IvG3ieT3Y3gO9NIZBvKX6szg5/y68eI/RvC5p2DyCry497ti1u5vaVjq1wYC7d+CXvJTrbzup/Se9IzJ6uwftXLwbWxk9NRM8O2Haojz7QAo8pfqzvI6KCD3HxAE9jbgKvDt1KD1SCJg9tcEAvcVCxTwg64c7szSGPWtWBD3xIC09j0UFPKFIhr1OPmQ7ImD8PDGDTb1Gff+7SmnyOwZJYb3iQt88Qe4VPfXeHT0tR5k6djDZPIdtH72gjYm85MQbvX0rgzsW4iu9tNf8O4H0MbzgzGW6V7pFvSDrB7z/K3i9DtxDvfKtp7wzqYW8GBOivJ4XED2XBWU81cQOvQk1VD1HOQG8gSK0PNA0IDsowug8osm9PMwxLLzy26m81n8LPSyuWz3JALY6YpWfvGnJCb2Oioi5FuKrPIQ8qbzwTi89oKSKPMRlibqGsqK8gsYvO/nhETyfxsm7Io8DvbvdZD2B9DE7zQMqPVe6RTujdoG7KNq+PO+GAr0m7kS9R/wtvYQx4bt24Dw9Xz0NPYidgbsSLYw5ZDwmvVR6BrtU3NY71oDOPHq4sLydshM8lkwCPUWVNT2Wx4A8epV/O1obQ70KM047p6bCvLOpnLxjRik8f4YhPOwpjbtkPCY9FyylO0jLhbx6hwi8QoIWPI4XGb3lb6I7fXf2PGHVLb0z8R68BG9guwjC0rwT2bI8j5IXPDDs9rwcUuM8MIqmvGQ8pjwKM064fgujvP0vdL1nmRu9VFdVPZH5j7tPMRc9qPCYPWxnjLxOOxq9kaW2OoBZ7bx6My+8mdofvfFPSzzIOa28Guvquv1Spb2npkK995i6u5tBmDorQbc8bGeMu5ADk7srQTc83B2XPKGKhzxryVy95HmlvItmSr1Ku/O7fRUmvYLA5bkIaoU6m6PoPOLhBDz+zSM81DyHvHbgvL2eqJC8y3NxOyfkQbvubdQ8jc3CPMtz8TtEGre7KxAPvLQkGzxTYVg8pbrIPOhRGb0jDE69kiC1OWy/WT1Iy4U83b86PduiGDy5QFY8UKISPRLjNbwIR9Q7ovsCPdKoWj2mNUc9ufILO7jZ3Tz+qvI8NOcbPLVy5TvIOS08G+Hnux802rxSa1s8JXNGvHTDGrxc1hQ9xDARO9snGj1cB728vp1LvYM7ZLwTqIo8srOfvC0tMb266Ii88spJOsO1krzn1po8a8lcPeykC73qlWC9haLcO45Iwbuh4tQ8EPe7vC7yBT3bJxq55PSjOxUder3MjB89+k19vStBNz1Id6y8/bT1O6x0M736TX26OohYu2Mj+DtL1KG8mDzwvAUDjTtnmRu8xVc2PQC6HbySm7M8jpwaPLeBED3E3De81Q9TvWYoIDyv26u7fPz3O61qMD0UrP460Mbjvcg5LT27WYQ8fgujPEQaN72Vfaq7j7k8PXA/AD35Uww8COUDPQIhljzfqzS8QoIWPF39uTyrfja9MOx2vI3Nwjx4IBA9ldEDPWLLKj1gMwq9Y552OUq787zMESE9pbpIPUdQB72qDTu7wfpAO61qML2AfB694ZcuvJV9Kr2YXyG8rmAtPGQyo72w0Si9bL/Zu3nCs72rTQ48UwkLPPvI+7sWu6k8mkubO/Unv7zTI1k9/kiiO63C/bspVT28ooCEvNwdlzxAx0S8qog5vA4Lwrs2ThQ7VznMPMoCdjwIR1S9dPRCvBWie7wP0BY9+VOMugfM1bxBOMA8TcAbPZNqC70IR1Q7wfpAvVobQzywTKc7W2UZPUKzPjzUwQg7VmYAvRQZhrkLpMk6AJdsPPjYDTtGizI8EMaTPMe+LjtlBW+9BtZYPRl6bzunpkK9055XPLyx0bteRxA9bL/ZPCQCyztYL0k8jFxHvYoYALkFZd089axAO+131zyW1Xc9t17fPJkybTtEn7g8sb0iPQZbWr0tLbG71/vMvChfwLz5/zK7FaJ7O189DT0eaxG8kxYyvUQatz1ZJca8LiMuPB5rEb30hZu8GmbpPFklRj0a62q93EQ8vUk8ATzXdsu7EHI6vX2apzuonD89HPqVPUBMRjtDqTu9FUCrOi0tMTxQJxS+iITTvJSHLT1S8Fw9oA8JuwP04TzZ58a8GKcjvQozTjxOk+c8r9srvXyBeb39KwC9JIfMu4Yd2zwue3s826IYveTR8rviCKq8FooBvbEVcLo05xu9xGG5PJVa+buvM/k8VfWEPNliRbyarWu8IhbRvHq4ML2jdoG9RJ+4Peo9k7wn5MG8XIw+vPLKST1lrSG95kJuPX/e7ruOFxk8yS8qPVwHPTzHm/273oQPPHhHNb0SXjS8Mvshu9rdQzww7Pa82GzIPLjZ3Tv2Hbw7Z/FovStBN7rzwEa9mx7nu0KzPj0c+pU8+sQHuwspSzx4RzW9FCd9vRTPLzzCdT+9i2ZKvZdpJL1NwBu8u1kEPPiOtzx7+IO9Fpj4O/iEtLyHE1g99qI9PDbTFb2J9U48egwKvfy++Lzjg6i76UeWvWb7az3RN988PWpPvHVlPj1rcY87deq/vOwG3DwPS5W84XT9PHhHNT74CbY9lGAIPYQxYbwgr1g9MA8ovVVN0jvLG6S8RBo3va+qA72OFxk8VFfVuwukSTx6My86e64tvcuWIj1Rdd68B3SIPG3Yhz3k9KM8gHwePcmqqLwUJ309Y0YpO2S3JL2uuHq8YlAsvWziijxDJDo9yqAlPMNrPL3lb6I6Tw7mPO1317vEYbm8YyP4vGWtIbtH2fy8qog5uylVPT1W64E849t1u7tZBL1oj5i8+tJ+u+c4a7ybQRg9Xf25uhsEmbw7HIU8gFltPYpwzbwd8JK8+XoxvMuWIr2GmFk7FhN3vQ6GwDz7uoQ813ZLuPFPS7zfJrM7h47WO2JQLLykSc087fxYvGCuiLuXRnM8qPAYPWpY4TiFolw9a3GPO0nF9ryzhms8yQx5PeTRcjw4F108QyQ6vK60Br11uRe9MIqmvAm4z7wAEmu9EHK6uxa7qTlhpAU78spJPLbtYz2bQRg9tu1jvRMjib095U09gztkPDDs9rwc+hW9TzGXvHyBebxyCMm4yQx5vLDHpTuIpwS9XkcQu2liZDr5U4w73ES8OUaBL7yYwXE8UATjvPQxwjyhBQa9ge2ZvK9WKj1/hiE85cdvvIFPajyXRvM8St4kvf3XJj2TFrK8N8mSvJwUZLwvcXg8w2s8PK05iDwG1li9llB2O2ziijxqWGE9Hj7dugukyTzDazw9LS0xvORW9Ly5Stk8BOpePePbdTz8Ofe8AY3pOr4YyjvUwQg8WuqavJm37jwp0Ds9haLcvCKbUjy7NlM7gFntuviENL0H74a8fPx3PN+rtLmA1Os81JTUvDTnm7yCRWc8bTrYPK2+Cb38OXe98U/LO92/ujzJh/e8RZU1PR+5W71BEZs8CdsAvCZzRj0S47W8yAgFPHnCMzzx1Ey95r1sPMeNBjzKoCW8t4GQPNUPUz0l+Ec8SW2puy38CL23Xt84iAlVPC0tsbzlb6I8xpcJvZhfITxMLG88HmuRPN2OEr2+GMq8mVUevEBMxrwkAsu8ZiigPUbfi7wQQZK8JXPGO00i7Dydj+I84RItPHN5xDzHQ7C89Se/OxItDD2UDK+8jc1CPenClLyuYK28x0OwO3ggELwl+Ec8/kiivbDHJTyJnQG94VyDvTx0UryFJ947HmuRPDic3jyKGAA9SUp4vW5Thr0JuE+7r6qDPPaivbxJwYK9E9myvH6QJLyRKri7c/5FPFc5TDxblkG9qlcRvGE3/jyg7Nc8HFLjvKoNuzyPPj49WapHPM5VaLw3RJG6TcCbvLlKWT1yg0c8SUr4PCbuRD0Yp6O8TUWdvH9jcL3wWc68x0OwPCfkQb3zO8W8MthwvMoCdjyxvaK8PY2APM9uljzDOhS94uEEvYJomLwXCXQ8HPqVu8uWoj1+C6M60i1cvM1fa72cvBa8a8lcPL+TSLwZnaC8QULDvUTzkTyys588vhhKvReOdTySmzM9CylLvDuhBr2QiJS74ZcuOT7byrui2FG9Q/2UPDDsdjzNBx68SW2pPPM7xTpkMqM81/tMvBeOdTywTCc8BQMNPS2BCryHjla9MYAjPfYdPLzh7/s8umMHPRVAKz3j1wG995i6vAyaxryoIcG8rMgMveFmBr0vGSs8fO4AvI+SlzxlraG8iJ0BvMp99LyTaos8egKHveNSAD0thf66Za2huon/0TtwHM88RRA0vU1FnTsUSq48ZqOePA4LwjxmgG081MEIvJMWsjsUz6+69h08O/M7Rbz/Pp85OQ1aPEux8DrGyDG9CjPOOFVN0jtPrBW8rTmIPSnQO70YhHK9b8SBPbMLbbwe5o+8N8mSvTchYD3iCKo8HfASPWKagj2Tbv+8X+kzvf1SpbzKAva6W5bBO4RUkj3DtRI5zYIcvVvgFzz8sAG8pElNPfcTubyIp4S8deq/vLBMJ73aWEI9lAwvOpXfejz7XCi9j5KXPCw3tDyNUkS6hphZO/LKybyV0YO8WC9JPX5t8zwAl+y7UXVevEVkjbz0McK89xM5PZb4qDy4dw090lCNu0aLsjwew169sb0ivKEFBjwthf68Ksa4PJZzpzxLWaM6HNfkPOChMb1e87Y8QgcYvBUd+rvUPAe+4ggqPH139jqcNxW9B1FXvJ/22rwdSOC8x5v9vN6EjzzqlWC9sNGoPHuL/Ltq0189sR9zPPWsQD1CLj09g16VvFOECbzNX2u9kDS7PVwHPT2S7ww8e4t8vEde/jsFiA68xk2zvJdG87suAH08iuvLvGjn5bstLbE8WqBEvdE3X7vLliI9+k19PUnF9rr/Pp87GP9wvKBx2Txjwae8+f+yPMWhjDy2aGK90rJdPGMVATvICAU8zBEhvDPO7bshQwW8P9HHPEG9wbzJ/oE7jz4+PKtNjj187oC74mp6vE62GDy192a9mksbvMn+gbuPDRa87XdXPGBkMrsZnSC9UKKSvIVAjDx31jm97ZqIvK1H/7w+YMy8qJy/u6lhlD1aoEQ7jpwavcQwEbzYbMg7FoqBvLMLbTtXvs27Gg6cvBpmab2QNLu872NRvH5t8zywpPQ80i1cup6oEL17i/w844MovekkZb0fV4u8uc/aOprQHL0cUuO8aWLkunozLzwl+Mc64HAJPLOGazw6A9e8mOQivDfJEjzKAnY8LxkrPIc2Cb1CLj08lnMnvHuuLT0im1I9GpOdvGQP8rxt2Ae9+XoxvPFPyzyBT2q96KnmO3CXTTwQcjo95kLuPIXFjTwbXOY888BGPd06OT3Pbha9CylLPAOclLzw3s+7JzibPEMkOj3+zSM8FEquvGMZdb0cfxc8mVUePC9thDtobOc8rrh6vFAEYzya0Bw8sy4evdKy3Tvx1My800YKPfs/Br1BjBm9zYKcPGy/2TzHjYa8bbVWPVsRwLtttdY8lQKsPHggEL2DO2Q9s6kcvSfkQTtGgS88DZBDvNWKUbsUzy89mx5nPKawRTs6qwm7OojYuwN547wCIRY8lIetulZDTzzIOa08EWi3O6KABDui2NG86STlu8ZNM7334hA9b6FQPAb5CT1UV1U9HmGOPfy+eL2JnQE9w+a6O3uuLT258os9Y0YpOh3wkjyxH3O8f97uPOTRcjx4R7U7XIw+PGMVAT2342A7PHRSPBTPL7wG+Ym7Yxn1u/M7xTxhWi+8RBo3upjBcbxNwBu8jc3CPGQ8Jry0nxm8kxYyO/lTDDzN5Gy8z9BmvfnOCj2bo2i8XvO2u0aLsrxIRoQ9QyS6PNDplL16uDA88AGBvGMjeD0LKUu8zV9rPf7NozxtXYm7nxmMvM2CnDysdLM8zV/ru92/ujzUwQg7FEquPMbIMTzO2um8YssqvBcspTxUeoY8QTjAvLUamLvoqea8SmOmvIaY2bxRmA89+XoxvI8+Pj2dLZK7Jb6FPTzsHzwqP4S9OsoGvWvxdbz+ilC8b+wMPRSX0Ty0XEk8iUTHOkYoS72Wewm948upOyRCiTww8ik7gMtPvINcXD10+/m7WqM/PQRzuzxwaAm96UwoPFLDWzxZeZ+7q4cKvVLOAL3iL/i7E2UqPSMiVD1NOlY8gP12PFzNX70U/r283w1fPH3bXbxwr8A7xwnlvHqHnbws0BC9Fo9KPXKnubyZz0k8MPIpPe08Gr10Bp88rttKveSO3bxUu9S848upvMo2I7yBZOO7upYQOzrKBj333zG82iiSuhrmqDx921290RPpvHNqbb3EB4G8uwfovG6FoDzyLAy9XpMxvPvPIzwyUY88J6tZPHMGnzocd7W8rHxlvOQncTqAoS89nPFivN6xlzvIPiq9X2EKvW1Q27vpfs+88V6zvF7ljTyLPMC8GRhQPOPLKTwVMwM8brdHva5Ctzt8GCq9JoE5PbkP77uW19A8A7AHvei7m7wWj8o8Fva2vLd+4rzBIXq9fGoGPBAOTLvWnww899+xuxSX0TynjPM8+K0Ku1LDWzyZiJI8MBxKveYfaj1eLMW8IlT7PNafDLxcm7g8gP32PCfLjjzflAA9lnDkuw7kq7zgQqS8pZ+fPGIcN70tk0Q8IAA7PSh5Mr1SzoA9KzTfvNSnEzy+NKY8CCZhPFqjv7v2eMW6cOSFPMfXvTp44QA75DKWu0GnTDzLYEO96hqBvNKvmrt7StE8cK9AvJ70gLxFUAc96g9cvagTlbwPQPO8cOSFPZoEj72icuE8voaCvAad2zx6IDE9ow6TvJhzAj3Bk4s8cmCCvKFIQT0iVHu8EdH/PLJk0DyDXNy6zMevPDxQbr333zG9YU7evFgSszx0Bp88IAA7O5gMFrrFeFg9W3EYvF4sRb2mggg9i9XTvKB6aL3zqAi7ePYQvDsmzjyRVlI9ZXD3u0TJ5Tx3ehS8MMCCvKEWmjyV/wy9d8FLvQpGlrz+I2Q8qrkxPBx3tTyyhAU9DjaIPAM+dr2Qk566TwgvPW96+7vOWDy7S9EFvenluztkrUO9+XA+vKoLDr3wKe67fUJKPAGtaT2TB5S9+8T+vOaG1judJii9Gn88vPgJUj0WXSO7p/4EPRSXUbzwKe68IyLUPOaGVrztJ4o7poKIvMUckTz3Rh48ihIgvOftQr1Z4As9tPXcvD3XDz3Di4S8gWRjvHwYKjxoBKI848spOxb2NjyulJO89LJzPEvRBb30svO84jodPVhEWjxsJju9jGbgPKmE7DwxRuq78CluvI3NTDtHjzc9NkGBPAYEyDzWOKC8rA3yOwbSIDzjyym9/vE8vbyOCbx2/pe8xXjYvKzjUT2/91k7AINJPBK/jbvAF487rxCQPNukjrwVwfG8ZXscPZZ7ibxwr8A8Ks1yPfoBSzyXPj286TcYPbLLPD3Tck67vNVAO+l+z7xek7G8xwllPVORtDzDGXM8JxLGPBnRGLw2cyg9y2DDvF6TMbv1TqW8TXeiulS7VLtc7ZS7nvQAPQhjrbzhbMQ82Vq5PEWXPr1naPC86LsbvWRmjD2deIS8aASivfs2ED0xtV29P88Ivnnr67zETjg8Yhw3PQ9A8zxZeR8977gWvWPfar2KeQy9ZgwpPXFydLxq54q9QlgOvXAWLT0y3/08ltdQvBPUHbxQ1oc7/CvrvLizp7xcmzi8mAwWvD2FsztCWA69IcaMuyRCiTwPSxg9Fl0jPc+NATt+BX6851QvvSBnp7yWcGS7fHTxOm/h57wjItQ8truuvOvdNLzxsI+82RMCvYD99rsNuos9swCCPFDWBz3Lkuq8lIOQObUqIj3zqAg99zt5vVl5nzzVA9u6+/lDPGyNp7zJDIO9EZ9YvY8ssjv6Acs8R/ajvFazTb08UG48Da/mvIp5jLuVRsQ7ihIgvWQUMLwHLui8fGoGPDLf/bqjDhO98iFnvRFDET05LlU8poIIvC2TxLthTl68o0C6PL0KBr1zOEa8eVLYvKGvrb1W04I8NjbcPA26Cz15cg06jl7ZvIflYb2c8eI8/JLXvJpg1jwVKF4+QadMud18Ur0013a9ltfQOwAnAr0mT5I8aJ01vWC9Ub2yyzy9xBFsPK1/Az0y6iK8inmMu/q6E70o4B49cwafu5Z7CT0pw4c9rA3yu9odbTwHYy29v5BtPfkph7xfVuW8+8T+vDDAgjzRmoo8xLWkuQtbpjyDw8i7jyyyO6CFjTvvzSa8mmBWPNUOgLwy6iK8rwXrPIPtaLz+tPA8YedxPcwunDzoF2M9if0PvB89B72OApK8BCyEPa+MDLsm6KU8Z3MVvKnBuD37xH46VYmtO2idNTq2VEI8By7ovHx/Fr03BLU73y2UO7YNCzz6pYM8ZXucPHZa3zvbUjK9FJfRvHx/Fr3PG/A8+roTPfH3Rj1q5wo88zmVPVXwGT0TOwo6wF5GumODIzy63Ue8VYktPUvRhTwKRha9SF2QvKnBuDvn7UK8GRhQvLielztX3W09ut3HvI00Ob29zbk9N51IPei7G7wbqVy9Olh1PKSKj7zdsZe886iIu0xNAj1tW4C7TqHCvPIh57yGfvW8998xvOgXY70+Uwy9gvVvulgSszw4/K294i/4vDTiGzswTvE89CSFO9odbb2g4VQ8qxX5PHm5RL1r8fU7aAQivNCs/DtucBC8lUZEuzHVkjySi5e8rEq+vHJgAjyx/WM9dJ8yu8/pSLs6ygY8Z8/cPDRJiDug4VS6fnePPDTX9rzcFea8feYCvTDyKT0RQxE9SkpkPZ14hDy63ce8wMWyOy8k0TxCONm86qjvvN5KqztHSIA7U18NvRp/vLx56+u8BUGUvMKLBDw+Uww9EdH/PNdiwDwM7DI8yp2Pu/A0k7sZGNC8YrXKvCjgHjuTtTe8r6mjvJTfVz06Yxq9QQ65vNAejrxsv049bHiXvbeJhzoHOY08jpulvOKWZLwtTI296LubO/HFnz1exdg89qrsuyBnJ72UeOu8gvXvPFfoEr0IlVS8/LIMvB7Wmjwsu4C9BTbvPKJy4byM/3O9NOKbvJqVGz3+8Ty8R/ajvTDyqT2i2U075rh9vFsKrDxxcnS8AjSLPVLOgLzvzSa9XJu4PCC5g7waf7w8jGZgPPvEfj2mgoi8QNlzu9f707s1xYQ9jYaVu0GnTDzMxy+8pTgzvCkKv737K+u7L71kvOQylrzMxy885I7dvDtGA7wa5ii9Y+qPvL7Nubxexdi7/vG8vB2h1bwQdbi8DIVGvB89BzsbQvA7ABxdvSHDbruUeOs74AVYvaWfH70ZvIi7GbwIPYSRIbyJ3dq8MUZqPLqWEL1x2WC83LkePWdzFT2XPj097pjhPJnPST2RJCu9j8XFPOQncT36pQM9gYQYPRAuATxkRtc8iBqnPFpcCLw2cyg9aPl8PH6pNjysfOW8AjQLPdbRMzzZrJU90qT1u4NcXL3pTCi821IyPSjgHj2G8Aa9Pq/TvIoSIL13Wt+8HTppO9vrxTzVA9u7z40BPEmHMD1aoz+98+8/uxm8CD3JDAO6O426vMTny7vSpPW7ACeCvDhgfLxxp7m6QXUlvFYaujyp61g8Hm8uvR066bu+Zk28GFUcveSZAj1XgaY8lRQdu9bRM71hTt48CvS5vMkMgzymYtM73ZyHPKJy4bp+EKO7RlryvMAsn7ylBoy8ZK3DPK0YF72kio88Fo/KPIW7wbzBiOa835SAPJ70gLqvnn48my4vPGPqj70ZvIg8jTQ5u9diQL0KjU27870YvMAsnzzOJhU8vI4JvSh5Mjxz0Vm8d2UEuhmxY7xvevu6hJEhvHIOJrzz77+8OGD8u+oP3DwJyhm9Dn0/vW63x7wY7i89HHe1ueoagb0pCr89eoedu8o2ozy09Vy88CluvLxu1Lvj/VA9MuoivGODozvOJhW8fqk2PFORtLxtUNu8780mvbLLPD126Qe7gctPPYmrMzp/OsO8LSxYPDWlT7ye6ds8Bp3bvE1sfbtZbvo8EZ/YvFirRjxXgSY7vDwtu4AyvDyyZNA86BfjuzY23Lwtk8S8Mq1WvOHTsDtzau08DD6PvHFydLwWXSO9pNFGvZX/DLv1tZE7M3svvZoEDz3DgF89eIR/O45eWT0BRn290B4OPU0QNrwBRv07W2bzvasgHryZnSK8oUjBO0nuHL1aPFO8mvnpvOCpkL2fHqE8zC6cvHuxvbzYJXQ9GFUcPdgwGb39Lom8j8XFPNwgC72vBes8+88jvb3/4DyNzUw7G6ncukt/KTr1tZG8a/wavD7h+rw7RgO8Rf6qvEYoS7p5ucS8k7U3PK1/g70jItS7TNvwPK+pIzz2EVk6782mu55QSDwxgzY9DjYIPOftQjymyT88gYSYuwIU1jxseJc8qFrMPFAyT7w+SGc8homavExsfT3OJhU8smTQPEBLhbzYMJk812LAO7w8rbkLwhK8yNe9u/kph7yp61g86rMUPXIOprwrAri8LMVrvMatnTzqqG89u6sgPQhjrTwpCr+8EA5MvQ4W07zRmgo99BngvOYqj71qla48b3r7u7a7rj0Pp987QOQYvbkalLxj32q9fGoGuleBprykalo8kweUPFYaujwpPOa642Q9PVORtL2M/3O9jpslvLuroDvcFWa7NV6YPAW9kL1H9iM9SuP3PAJ7QjshNQA86LB2vZTf1zyHBZc81QPbPGj5fDxN3g672KyVO0ypSTtCWI48LUyNPGZehbyPLLI8ut3HPMSgFL0VwfG7BagAvb2jGT08Hsc8t37iPJO1Nz1c7RS9wlY/PCs0Xz3WOKA8HtaavJxYz7yTTks8nCYoO5yKdj2BZGM9eOEAvZuAizwM7DK9NV4YPVP4oDxFl748e+PkPKJ9Br1DBjI9CSZhvdF6Vb0D4i47poKIOho4hTzDJJi8ihKguxa56jwtLNi6hn71PPXnuLzWOCA8xd/Eu7sH6LtlPlC8HMmRPeElDb2RvT68acfVPIMqtbuCmag7/7RwOqOnpjwCe0K9UlzvuUbMg7xK4/e8gvXvOoGEmLx921275rj9uzpjmjxNdyI8bHgXu9yu+bvTK5c87KBoPRT+PTz5cL48xLUkPflwPj1Hjze9VfAZPEGnTDvpN5g9e+NkvMZGMT3YJfQ7I4nAu7qg+zw97B89IGcnveCeazzmw6I8vf9gvEbB3rrbUrK8eI8kvfO9GLzb60U7JbPgvBZIkzz2Edm8qSilO3BoiTxxcnS8e7G9PLcX9rsviz074qGJu+NkPbxf7/g6yjajPOoaAb2BhBi9ZddjPWRmDD245c46noJvu6aCCD3oIoi7igf7PCC5Az0I/EA9kxwkvNod7Tmjp6a8XFQBPb3/4DqfHiE9cmCCvMTny7sny448sGzXu9bRMz1ypzk8HN6hPDpY9TsSvw099IBMujHffTzfdEu8id3aPNmsFb0DSZs8yKWWu8bKKz07Loo8eiFzvbDjsbxdE3k8yeHTuyLY8DzpC4g8Hxv+O6TsjDx81vm8NQcKvNNyYTuRxV+8QVD4u9xewLoptRM951HvvD6UITw/Sai7IX47vdupuTzfbXw8vea4vNyxJbwCYGm87MNovQ1MSD2xPgM9cOPKu5flDz2ZR7G81CfoOxERJz2/QO48cT6cO/VU9rz6IcG8uiHavLYKsjxJh9A6Gv0FPUTDjT1teT27Dq5pvFiaL72hKyS8lYLSvCsXtbtCWOS8rMyJPFY4jrz0+kA9LScNvByxcLs6Iqg88UW6vKZKuLzhJ5W9gQKMvLi/uLyPrrc815IRvX2MHL1VMCK992TOPHkeGbz6fBI88pgfvQh/fbzcZiw89lziPG6BqTu3ZYO8btgEvX9JD73lTpW91S/UvNAIVL1FFde6v+4kvRPOmTyqYWC6UiBKPKzMib0Zmkg8ZUJlvNUvVD1Gyt07LoFCOqVKuDtHgAA968AOPcMNubwEFgy9D1ygvGLY1zx6JgW9dQJfPG8uRLrUKAQ9lzfZO+ZOlbtVitc8INEgvfNNJr31VPY7D1ygvGpqATyexYy7zEN1PZR65jy9OR68NQL4PD6YF7r9i8487Xhvvf+bprxVMCK8p6WJvMRsgD26zxA9DfliPTJGobydXtk7M0qXvNJq9TuTewK9+3v2O6oTjTvw5w68NQsAPevAjrxEvxc8mk+dOwV4Lb3Z9LK7xW9aPbkZbryB/hW74twbPSWdz7rbVlQ9t2WDvdjsRj1qvMq94oVAPeb3ubyYP8U8WD9eu0bSyTsRvkE8STRrvIqW8zxRa0M8oX6Ju2j/17yUeuY8QPZCPODIzTzl7828YSs9PeKNrLztJia8uBqKPPWvxzyxkEw9c/+EPd4TR7z7Ka28W1eiu23Mojzk52G9veY4PODITTpaphE9y5ZaPf+jEryYP8U7yCxNvSIr1rt1At+8VzwEvQZ4LTwRESc8cT4cPOtpszzDYJ48V+WoPFWK1zyrHtO8LB8hvEVwKD181nk8IzsuPLuEl7zaTwQ7sZBMvV0Mqbz5ywG8XFsYPGpqgbxmpaK8NbCuvbCI4Dx72ws88vLUvMjWDb1u0/I856TUO1xfjrx9Obe8bR5svBWHljzv2yy8YYIYPTzjkLwbVzu9WJqvu7E95zyHJPq87i6SvO/brDwyRiE9ggXmvNPVnrz1WQi921ZUO2haKTy4bFO9oHoTvYmHtzzu00A80hisPLSshjyj4Co9kcKFvJ0QBj2+QQo9IzPCPFR6/7rTH/y7OG2hPQ2nmbteFBU8HF+nu1qqhzzN+Rc7p1IkvfGQs7yklTE9S5eoOwk1oLzXN0A9xRkbPcjR+zz+7gu9M06NvGxxUbwY7S29w7rTu/a3s7xPCSK9lHrmPA4BTz0u23c6iCzmO9IYLD3+6pU8DJ8tu2Q/Cz2Npku80x98PMVv2jzvLXa8JUJ+PA1MSD14bGw7YdBrPa+AdLzjjay7Z62OvadSJLxPXAe7ZviHPLKYOLyVLBO80b1avEvqjTxQY9e8+9bHPJEQWT295jg9OyqUu+LYpbyeE2A8A7POPHgeGb6XN1m9dE3Yu5pWbbu5dL88r9vFPF5mXr2BqzC9HLaCvUMFfz2seSQ9WD9evaphYLwdZnc8OL9qPcCrFz2nUiS95kofvFFrQzyrcTi8q2nMvBy2AjrxkDM9kyAxPeEri7pJ4iE9d2kSPWxxUbuvhQa9jPFEvWb0ETyOU+Y7OG0hvJmiArzCBU2786CLPD05ULzJNDm9Twkiuyf8FrwfybQ8Rh3DPZmigruW3aO84COfvBlHY7zhfVQ8yo5uPQNhBb0lQv68wgXNO4RoozyDDVK9LHIGvcUZm73x64Q7JfA0PHLzIrwNVDQ7v/qGO9QoBDzynJW9i+lYPJ0Qhr2pByu9TlgRvSxyhjyKPL68+Gy6uw8JO71mnbY7jUwWPFqmET34EWk8MJGaunKY0TtduUO99lxivLE+A7xFcKi9zfmXvKis2bv1Ai28btPyu705HryaUxO9wVDGPOPgETxB/q48u9ZgPp8bTD36e3a9o41FvWoPsDwnpTu9XhP5PLhs07xYmq+8ZOgvvI+ut7pTxfi8zaYyvMh/sjzscZ+9Os/CPAJdD7zBUEY8WqF/PRUwOzz6e/Y8+L+fvJr8tz2OVIK6bcwivTNOjbyW4Rm70m+HPUbSSTzDYJ470hgsvP6bpjtcBL07HWZ3PMXCPzvYlgc8uR4AvUzxXTtnUr28fNb5PLa3TD29OZ48eSFzPK6BELzMnka96P8lvAnaTj0GeC28dxK3PLavYDz2XGI8Z60OvS0jlzyeZkU71oolOzKZhrya/De95kqfvB7BSLwWOCe715KRumdSPbx7Kd882OxGu6x5JL0tIxe8LMTPPEqPPD2rxB09+4AIPa3L7T0qvGM8N2W1vE9cBz36e/Y8pqETvA5UtDzorMA8AVEtvcd3RrwdZxO8w2QUvd7A4bzSxUY8iuHsPGoPMDymnZ29ZqUiPb09FD38g2K84HXovJG98zx5Io+8rMwJPam0xbzsw2g9tPrZO3keGb0TIGO98eL8PIrh7Doj6Ei9TPlJvFG+KLyVMIk86P8lvY1QDLyGysQ8OHEXPEBRFL0duVy9Bs+IPHgaIz3Gyiu8rdNZvAeAGbnfbfy8+BFpPIVv8zz5zts7EmvcPAbK9jx93uW8W6nrO7gWFL34wxU8OnzdO7yMgzyYmpY8YoVyOkh/ZDzgI5+84twbvfWvx7saqiC81uTaPFc8hDxEww09lHrmPK7TWbs1AxS7Dq8FPN7AYbwmSuo7CC00vdWCOTzGIQc9v5u/O2pqAb1FFde7qmnMOsUhhzt0qCm8tFUrvbLzibsDDiC75UIzvVtXorxB/i698DVivPLy1LwNpxk9BXgtvZsEpDtcsde8So+8PCwfob2hfgk9TlN/u8JYsry0p3Q8n8mCvPt7drznUW89XmbePFUwojyfwHq9o41FvRyxcDvCWLK8eGzsO2HYVzy95rg8jVCMO64mPz0vLt28ieKIvaF97bzqDmI9VjSYvDKgVr2zrIY9iH/LvNUv1DugyGa8HxyavBQoT7z3ZM68/DGZvB25XL2Cs5y8/pO6vAk1ILtx6zY8OcfWO4RoIzyNpsu7NPsnPUYdQzueZkW93238vKF+CTzduPW8aKxyO9upObvIf7I63ANvPB5riTzKkwC5OXRxvNBjpby4bNM73xuzPN0LW7pXksO8C5dBvUd8CjwDDqA72k+EvC8uXbzY7Ma779ssvOPf9bxTzoC80GOlOz+cDT1+QSM7FM39OwJZmTvvLfa86P8lPL2L5zxOATY9Jp1PPeZOFT0/SSg9QljkvC7UJz14GqM8HyCQPIH9+TymnR08POMQPH5Bo7wraX48/YvOPPLqaLxfG+U7NbgaPMVv2juwOg29i0QqPcH94DyUKJ08w2SUPBtXOzqTILE8nV5ZvFmiG73Lllq9lzfZvJIYxbzJ4dM7NriaOwgtND0EEpY8hyT6vActNLwTIGO8UGPXvC0mcbw2t/66MT41vX9Ic7tV1dC8mk+dPOx1FTw0TXE9bXk9PEk1B739OGk84o2sPOdSC71jOnm8wqp7vGetDjwlR5C9NPsnPHCI+bxeFJW7v+4kPMjWDT0ebuO8URByvActNDwv3BO9HblcO7opxrzaTwS9Wk+2vH05NzwtK4O9EWPwvKakbTzRvdq7jJ5fPHgaI71QFYS9Bcp2O37mUbsiK9a84o0svIGrsDzOshS8/TkFPc+yFL33EWk67oDbvEclL7yRENm83b2Hu99yDjsteVa7wVBGPGQ7lboptRM9sZDMvAmH6byszIk8Y+DDPHcSt7shfrs6oti+PV0MKbym7+Y7bibYuzcS0LsdZve8lSwTPUCjXb0Zmsg8h3ffPFqqhzzYlge9j643vYqW87z4v589cJEBO05chz3tfQE9y0N1vMBIWj34v588bMQ2vLA6Db1QY9c7sDqNPBflQb3xRbo8KAQDvVG+qLx83wE9ojOQOxr0fTxdXvK7uzEyvMVv2rx+QaM8utbgPJLF37wb/Gk82UcYvAzx9rwx6088arzKO66BEL0BUS29zfj7PMRsAL2GdIU9+Gw6vZJzFj1pYhW7tgqyvJmiAr4wNsk8n26xurLzibyX7N+7UGNXPES/l7yLlw+9hspEvJ/FDL1GHUM8N7f+PIYdKj1sGxK8Dqb9PFMoNjyQYz69Aw6gO2wfCDzh0Dk9XmbeusRn7jw71668s6f0vOweOr0UezQ8Y+BDPYnekjxgyH+8e9uLvQfSYjyJhze9PN+au05Umz06Iig9+L8fvEeAgLz/7e88QVkAPeoOYjyfyGY6r4B0PIqW87yN+TA93hNHPGIzqbsvLt28G/xpu+KFQDzVgjk90b3auq59mrwMny29zUthPdpPhDyBAow8WD/evG4mWLz1VHa8L4kuvVMgyrxa/NA8ax8IvSoPSb0Wiww97SYmPXi/0bxLl6g8gw3SvI4BnTzh0Lm87HGfPdeSET1PW2u9EhmTO/HrhLzcCIE9mwSkO7VcezzbXkA8P0kovYbKxLxllUo8pfACPTsp+DwdZ5O7xW9avOZOlbx2tIu9gQIMvYcpDL31Aq27jZ5fvcCrFz2Rvo+9xR0RPR1nEzw1sK67fkGjvJn0S7395h89XLHXPKZKuLwTIOM886SBvBr5Dz1ewS+8Vt28O0VwqDzugNs8R3wKvC8u3byhKyS9MDZJOyLg3Lwteda8+iFBvLcSHj3sw2g8WD/evC+JLj3cA288MqBWPQ4Bz7w/Sag7VdVQvId33zr4EWk94+CRPLPy7bwewcg8So+8vRlH4zt0+nI8RHAoPDrPQj1g0Qe9yNqDPL3muLx2r3m86g7iO+weurzw4ny8PDHku7JFUzspB907KQfdPNjsRjx+k2y8w7LnO0QN6zzvMog7By20uqWhEz1ducO8MpmGvDzfGjoymGo8PeeGvJmigjxwjYu8nyM4vJJzlrtOATY8xsqrOym1kzwxPrW8QwoRPAvqprzy8tS8MpjqPCToSDzTzTK8pp0dvV/NkT0+m/E8f5tYvIIGAj1qD7A9x9IXPJC2ozu8jAM99VT2PP6Turp1VUQ7Ehh3u7NNP73WN0A8etcVvUFVCr3BUMa8s6Cku5lHMTy3ZQM7ZvgHPaONRTzkOsc7AaN2vKPgKry7hBc7xBWlvVftFDxTc6+7sDqNvO8tdrtm7/+7nQt0vERoPLqXN9m8+XSmPFY4jjyjN4Y74oVAvVWDhz3/8oE8bBsSvevEhL0aorQ8qx7TPFbdPLyX7N88vT2UPN8bM7vRvVo8dKgpvb09FDzpB5K85kofPWsXHD0DDiA8eXRYPBjtrTxFxwM92Ub8PPwwfbuTILE8nLG+vOHQOb22ZGe8+cuBPHrPqT0v23e8Jp1PPUd3eLw="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_relationships.json b/dsLightRag/Topic/JiHe/vdb_relationships.json deleted file mode 100644 index 1faa8874..00000000 --- a/dsLightRag/Topic/JiHe/vdb_relationships.json +++ /dev/null @@ -1 +0,0 @@ -{"embedding_dim": 1024, "data": [{"__id__": "rel-8c1c7a535667da54717cfc684a29b3c3", "__created_at__": 1752209913, "src_id": "Triangle ABC", "tgt_id": "Triangle Inequality", "content": "Triangle ABC\tTriangle Inequality\ngeometric proof,inequality\nTriangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-b46d74f0796c8b6fef0de58539f07c35", "__created_at__": 1752209913, "src_id": "Euclid's Fifth Postulate", "tgt_id": "Proposition 19", "content": "Euclid's Fifth Postulate\tProposition 19\nangle-side relationship,geometric principles\nEuclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2ef66df36fc7aa71e1374473e20fdd1f", "__created_at__": 1752209913, "src_id": "Proposition 19", "tgt_id": "Triangle Inequality", "content": "Proposition 19\tTriangle Inequality\ngeometric logic,proof technique\nProposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-e3c9f606eb2d48c5e37f2c2d8bff69ed", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "三角形ABC", "content": "三角不等式\t三角形ABC\ngeometric proof,inequality demonstration\nThe proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-de9c692983018a15521f9ccd2f7c6a7a", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "欧几里得第五公理", "content": "命题19\t欧几里得第五公理\ngeometric principles,logical progression\nEuclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-37e6f8ce2b52adfdbedbf5458829145f", "__created_at__": 1752209913, "src_id": "三角形ABC", "tgt_id": "点D", "content": "三角形ABC\t点D\nauxiliary point,geometric construction\nPoint D is constructed from triangle ABC by extending side AB to create additional geometric relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2a9cc6a702126e537b2447867dae52f6", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "等腰三角形BCD", "content": "命题19\t等腰三角形BCD\nangle properties,proof technique\nThe isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-039ba025f89bcd6d36103f7ef75d76ca", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "几何原本", "content": "三角不等式\t几何原本\nhistorical reference,mathematical foundation\nThe triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "ZDFVPKco+zxTcES9806qvECiFjqWZ+o74mngOyCLpTwD32S8Dc0HPAw7K739aYq8nmUdPIKZPLxdKh68GWC1PE4lND2m7qC8nDTHO2JYgbznBee86kPaPD8gSry6Ppu7TGmNPOpDWjylbNS794ydPXF6mDzOjpW8oX9XPNH5RboXgFW83BEzPeUsE73vVJC89rnauvWsvTtA84y8SAfhPIfXr7vaVQw80Eq8PMkfzLwVBRU811HzvGDzYbtTU5e8XmuEOvYKUbydkto8DkhIu5p4oD0nWII5qrfkvIXKkjsmaBK9YgeLvL8UfL3QLY+8u3+BvLRxPrx/j5K5cmP8vIG53LzttRY8c+XIvJUJ17u9WFW80fnFvH5OLD3nKaA8lQlXvaedqrzQSjy9k00wPK6kYb2BaOY7XWT4u+bLDD1Uzte8zF2/OwEGkTw9E606nQeKvEkU/rucFxq9hroCPVgwhLybJ6o8kUATvfl8jTtLlko9dfLlO7evMbvapgK9yqGYvPtifrz9NcE8LxvgPEGShj34xnc6zz2fPMnO1bx2xSi7t68xvWbtez3bBBY99S6KPTPOArzW8189KGUfPPtVYTzyHVQ9ZKYEO+ZW3TwfuGK8K/QIO0+DxzmcNEc8K9DPPJ1B5DpLlko9ofQGvacvB7w8QOq74rpWO3vzC71wHAW8emGvvAyMIbyNL925daFvuXpEgrmjQgq9E5NYvQYdWDyLIsA8Ll+5uyjw77z0/TM9YnWuvOFcw7sotpW9NRV6PejYKb3kmra87z30u2YRNT0S5M47qtsdvbK1l7vg4QI9wZZIu/jNAz0AFiE92HUsvU12Kj3quIm97z10PUB+XbzzQQ08NpfGPIfXr7rt0sM8Gm1SvRVWCz2aeKA97z10vA9V5by7f4E8YGgRPS5fOb3H9YG8nViAu9PZJT2gBBc8n6aDvEBRIDzpyBm9lmdqvElsAL3UiK87sITBPOFcwzzyHVS8RpwwPE9mmrvNu9I8G+IBPTL7P73oY/q8XB0BPd0e0Dz0/TM8zEASvbMTq7tYGWi9eY5svABXB73GVgi9G5GLvDTbnzs7Vwa94K05vNnTvzzuMFe91kTWPJGRCT18bsy8FQWVugjZ/rwsjPa8ZKaEPIjkTLsc7567RT4dvS/hBT2OPPo8qI0aPC8bYL19QQ+8gArTPNZEVj0lsvy8Wps0vS5fubzTtew8y4r8PKOTgL09E628B3vrPEuWyjwQeR69eVQSvBQVpTnRqM+7uEGOPEKvszxdZHg9Cf03PeuhbTsQKKg9aJOBvFauNzxOCAe8WuwqvVpKPjxNxyC9SWyAvX5OLDsq0M87LKOSvTqEQz1O1L086cgZPfCyI7tKOLe8PRMtO8e0G70aD7+8AMUqPLqPEb0BIz48erKlvGTgXrtPMtE7UJDkPMjBOD2dWIA8LC7jvDy1mbzXF5m8t5IEvLxLuLxW/y09OQJ3PIzRybsQs3g9olIavYm3j7yoqse8/GL+O1aK/rtMGBc9RpywvLCEwbwaDz+9rwkBPFgwhLxEa9o8AzDbO4I7KT369028PLWZuxVzuDxy2Ks8HO8evtfGIr0U8Ws8AzBbvABQezyvsf486TY9vQ+m27wBI748TzJRPfmZurwavki9B5IHvduznzzL23I8CNn+un8+HL2o+707emEvvaNfN7wOK5u8Vq43vZhHSj0eWk+7xxIvPcaQ4rw1iqk7AXQ0vAu53rz7eZq8wOc+vQL2AD118uW75lZdvLaiFD3p5cY8OoRDu/g7p7yRQBO8q8sNOzl3Jj37eZo9S7qDO7snf7udWAC8WDAEvRcv3zynKPs87oFNvZ4UJzyjsC29PlSTOrZRHr3F4Vi9/7eNve+O6jt4gc88nvBtuzS3Zrzf2vY8exA5u3phr71V23S8losjvTbovLybuQa9EWmOPJZnajsZ8hG8coc1vbLvcTxHqU086TY9PcosaTxNUvE77SO6PBwpebw+ccA809mlOw8bi70tsC89ZhE1POxXg7wVc7i8EdexuSdBZr1rrbs8XAblvEtFVD03RlA+OBmTPcqhGL02y4+9+UhEvDWXxrvxUZ08L+GFuit/WbzzTqq8cbTyvHW4izgeWs+7f6y/PGDzYb0kA3O7IcyLvFk9IT1amzQ9OBkTPF217jys6Do8zF0/PbGRXjwTt5G9KGWfvERr2rzaVYw98yrxPN/adjwsUhy9AzDbPBg8/DtYat67BRA7PZp4oDxhouu8JAPzvHIpoj1dte48KGUfPZ1B5DzBRdK7LxvgOz5UE719zN+8T4NHu4Fo5rmCxvk7ubzOPNRrAjz+CIS8Hfy7OiXWtbzsBg29Wpu0vAF0NL0ITi495HZ9PBje6Du+K5g5Wps0PKbK5zx6Ya86858gvTL7P71yaoi8TVJxPdRrgj1Yu9Q8I/bVPWkrbz3F4Vi95lbdO8Kj5TwL3Ze8TiU0PY0v3bwXL1+9nUHkvMUyz7yOsSm8wHmbvODhgrw9nn27WT0hu8cSL720A5s94QtNPWZiq7olsny9lsX9PEFRoLweWk+8RGtavb+Jqzxam7S8IcwLvXXy5bzfTyY8OXcmvRAoKL3L/yu9PsI2vKNfNzxNUvG857Twuy0BprnZZZy7TgiHuk12qjxG3ZY89gpRu8UyT7upzoA82jFTu7m8Tr1FePc8hiimulE/brwLuV66vEu4usZWiDuI5Ew9JdY1vdgktjxRtJ251De5PCcHDLtIB2E8zt+LPBuRC71m7fu8lKvDuxcvXzyJxCw8fk6sPE3HIDzbsx88KGUfvZp4IDzLUKK8KaYFu6O9Sjwby2U6C38EPXWhbzvznyC8xYPFuq5T6ztw+Mu89n8APDqEwzu2LWW77wOaO3kDHLlOCIe7lKtDvX4q87yFypI5KiFGvVp+Bz2AfwK9O1cGPNz0Bb1qkI49FcSuvGJ1rjvBuoG8Qq+zvLxLODxhomu8UWMnvVgZaD16PfY8EATvvGPTQbzmVt28+DunO0DzjLnzTqq76rgJvaj7Pb1W4gA8XXuUPIT3Tzvt0kO8qrfkvOR2fTyHhjm9TQF7vHUWnz1JZfS8MMrpu/zXrbxFfwM9c+VIPas5sbyCF3A8gjupvIHdlTyQbVA9o7AtvMuKfD1PMtG7/0JePOCtuTtyaog8U3DEPMlDhb3quAk9JHiiO3QJgr1eNzs7ogEku/01QTqYKp28yn3fvP4IhLx3Izy9VSzrvDkC9zu4QY47gFtJvOMY6jtcBuU74i8GvN1vRrwBtRq81IgvvFL1A7wcKfk8a627uwAWIbt9e+m8WY6XPO8Dmjvb7Xk86rgJvWIHi7yriqc8wZZIPccSLz0/RAM9lFpNvFv5x7w74la807XsPP2GNz0D3+S7g+qyOzPOgjz8Yn49NNufu7zdFDyzE6s8hEhGPbOlB7vqQ9o7KcMyPQF0NL02epk8dRafPHVnFTv1Phq9IIulvGEXGz1afge9W0q+vK6kYb3Blsg7sZFePHvzCzvze+e8Ze37Ojik47rIwTi7G8vlPCP2VT2lbFS8Ue73O5P8uTwu8RW8l8wJPRptUr0FELs7DxsLvRbRyzxHqc08jo1wu71Y1TvcETM8u5wuvas5MT2/FHw7g3yPPHbFKL3QSjw9DmwBve6lBrxZd3u8YLmHu6NCirxPg0e96cgZvex0sLwYAiI9UT/uu2Wzobo/IEq9bjylO/jNg70U8Wu85UlAPXF6mLyP8o884JCMPASyp72COyk9KcOyOkXtJr33jJ08/TVBvOx0sLzaj+Y8x53/vFv5xzzu32C9Re0mvL58Dr1Ituq8rsiauzQsFrzsxSa9KZ95PFbiAD0W0Uu8XWT4vGr+MT0pFCm8KGWfO4UbCb18bsw9LKMSvKAEl7zYJDY8iOTMu3LYK71Yu9Q8UbQdvRWngbw1Ffo8kKGZusfu9bykvcq7VwzLvLevsT2PYLM7QdzwO+zFJjwdTTK81ZVMPQXzjTvcwDw8qI0avJYW9Dxq4QQ9pu6gO2geUrzR3Ji9bWniu3uilT38KCS7dnSyvFb/rTsC9oA8j2CzvFv5RzznBWc8kp4mOxAoKLu+tmi8+OqwvOM8ozzWxiK87HQwvRAoKLxqT6g85ymgvAifJD1wVt+8IIslPbHi1LuetpM8QH7dvdaiaT00fYy8PsK2OmWP6LviL4a7308mvf2Gt7zJztU8rhmRvUGL+jyhf1c8euz/O79l8ruS7xw9buuuPJu5Br2CzQU9RT4dOh8JWT0tQoy6IR2CvMnO1TvBlkg8qPu9O0U+Hbw0fYy77bUWvC5fObwuDkO9cFZfPASyJ7zcwDy8mRqNPUJBkDyTMIM9busuPHilCLzgkIw8LUIMvBFpjjzIUxU9t6+xvEKvszyxkd48DmwBPABQ+7wc7x677jDXvCmmhTmHaQw5OMicOzkJA713Izw9X5VOutcA/TyNL129yFMVvZ9yurpxy468nUHkvASyp7xf5sQ7wvRbvbkaYjzi3g89TBgXvfl8DTyo+z28E5PYO8DnPjxQVoo9nONQvPKSg70NzYe8l+k2u9ZoDz01iim8pu6gvNwRs7xdtW68JoW/vElsgDymeXE8wwH5PNcXGTsd/Lu8jw89vM/sKL2rFXi9su/xvH+sv7zJzlW9Ql69OzboPL2aA/E8eQOcPJ9yujzSKhw8EYY7vdB+hTqfpgM6UT/uPGb0h7s5dya9Pe9zPevyY7v4xne7DxuLOmUEGD2jO/67mCqdvFaut7x3tRg9fG7MvG3ekbuLc7Y8Qq+zPWIA/7zLUKK7losjPXphr7uGugI9ZFUOvL+Jqzuen/e802R2PJIpdz1Wiv47fJIFvV1k+LyrOTG9AFD7OpLvnDwh6bi7rfVXPT5xQL2asvo8t5IEvZ7w7bwHzGE80dyYvG2NGz3xUZ28mgNxvBzvnrv1Lgo9ogGkPPU+mjykDsG8rnekvM4ZZrx532K9W/nHPWHGJL0tQgy9oX9XPNxiqbyDmby8uo+RvGTgXrzF4Vi9jS9dPA1IyDzp5UY70dwYPEu6A71HqU08VwzLPCRUabvjjZk8jIDTO/zXLb1dZPi88pKDPWJYgT3xohM9bLpYPXLYKz1wp9W8kRxaPQNUFD3oh7M83yttPSCLpTySeu28qrdkvTWKKTyrHAQ8lKvDvKO9yryHNcO7DvfROtPZJbujkwA8RGtaPSt/2bsZsau8n8MwO9RrAruKFSO9U1OXPEb6wzwejhg8NLfmO9sElrwEA5684QvNvDTbH70l1rU8BaIXPFvcmjywZ5S80flFPcY/7LttaeK89VvHujboPLz02Xo8BLInPPLMXT3Livy7Bh3YPAd76zpoHtK8w8cePaZ5cb1q2ng9v2XyPAPfZDyJt4+8av6xO28slTy/FPw7s8I0POx0sLva4Fy71ZVMvUV49zyo+z08hcoSPMp9XzuAW0k9NpfGvO1AZbzSsAG86XSFvNK69bvoIqy8yP2UvPIllTytKYY8rhRwPQBoHrzJ3gq94V5jvK4IH7yWZYI7EAwMvQSpmzw74NU8R8S0O4OOxTyw57e82w1bvbKl6bz+Bxe9/gcXPS8hmLyjdhm9aZdyvL0pQTwzvuI7BTT+PN5AKj0Jxfe8NZEqunmuoDq6mEe8qDiFvLbaFb1JU1E7cC4DvVr14Tysg/a7zitZvSMQAT16O+C8yS6HvCMa9bwSSc+81e3EvAWpG73s4F08076vu1vKBjvFekk9dOy0vObCJL0Xq7M8zfpmvT4TJTwOicC9bvuzu1Y3ML2SAcG7b62UvXrfkr2HQgM7d6xDPL1WebtcKLE5TLNYO3K7QjxO5Eo8j5/cPIFdU72i0uY8cYwtvTFe27xPOIG8yzy1O8trSry9Vvk8EkfyvEXA+jzub3o8qiXMvMVLtDs4T9w8ei+PtzmjEj1vW7s8yP2UvPmXBL26mMc8TrU1PWc3a7xuiPM8CGkqujqv47zTvNK85u9cPX2dxDy2B848otJmPWc36zumt5a8rVa+O0tVrrwkvic9JyAMPffCXz0bbZ+8Oq9jPP/kUj3JC0M9uAsIvDZDi7x9Pxq9Io01PDOykTx+nyE7JXp8uzO+4ju5luo8UaL8PFKmNrvxokm9r+XaPE9C9TqrJUy6Ml5bvSmvKD0qDdM80C22Og38gDzwRB896POWvAUHRrvzAtE7fW4vPPUzQ7zf8oq9oENKPQg4OLyseYI858SBvV1XRj1zvR+9XtqRPF2pnzxEhRS6TKeHvP8T6DulBba6ExwXPRqY+jzUHNq8XVmjO/HRXr2wuCI9QPQaPWo9Aj05JAE7YbsHPQEYIr0J6hi7fp8hPdsN2zv89wu8x3ymPcneirxNV4u9H38HPO0R0Dv5Iuc6u5qkua6HsDol7xk9gIAXuyM/FryRMFY7CcV3vSFeoDxFYlC8WyZUPbmW6rz01Zg6w7yXO0ZmijtCJQ29a+2FPEXAejwcy0m8eM+HvJHSq7qbslA9sBbNu2NrizzzJZW7p7cWvT4TJTsLJf+8d30uvdBa7rwxL8Y7UqRZvR8rUb2j1EO8Z/yEvVBEUjz55wA9BAVpvFQpAj1EBKY8XrXwO+bARzynZT29G8nsO2z51jykNEu80V6oPOVinbysg/a5oBaSPNDPCz13fa48I74nvBfaSL1VBj69UETSvPjEPLuJrlu7SnaVO+kkCTyFERE9AXbMvGaqqzx5DMu86CKsPD9zrDxnCFY5w7yXvKAWEr0tzWG94gC5PBbaSDvf/ts8upjHvBerM7zDPQa8sUXiu3ENHL2CjsW7qcehuwUFab0uzz48XFVpOxJH8juAW3Y767HIvJ+2Cj1e2pG7MzGjPPjEPD3WHre8m+FlPBEMjDzkM4g7jUEyve5v+jth6D89kHQBvWLqHLuHUDE9tNZbPFKYiDzkYMA8D9uZPbtrj7xuKsm7ttg4PaOlLr1kGw88GppXvHVvAD3I3C01cIrQO3Aug7w4T1y9NWKVOlypn7v69S69ABbFPP/mrzwhi1g9pAPZvLR6jr3kkTK9HD4KPHd9Lr7hog69/eL1u5F0gT3yAHQ8Pm/yO9ownzp2e1G9ZHm5uiiAEz2BAYa9zctRvcJHerz2tg68wLq6PDXAv7sTHJe8M75ivMZNEbyXFQa9E3jkOseru71WNzA9f842PJpUprqIULG8Ls1hvGALBL29+qu80V4ovJ7jQr2qSBA9FnyeuSoPsLsffwc8E0lPu2NIxzs4o5I8zfpmPIBbdjyPznE9O+BVPfsmIb2p9Nk8Lp5MvV4qDr1JR4C8WOmQPFZk6Lyftoo8i+EqPFBEUjw/cc+872WGvDmATr0KmL88YxmyPAxW8TwvIZg81T8ePIqDADxIxLS9NsIcPXaeFb004wO6h31pvTijkjzGfCY6dBvKPG6Ic71xDZy7ELqyPNNgBT24Z1U9H04VvFjpED1ZaKK8vVjWPI0/VbsdH4C9ZqqrPFaTfTvZAYo8BKmbPOCgsbypFx69ummyOrWpI73YTyk9oXQ8Pth+Pj3+Bxc9ZUyBvZ4SWD16YAE8j3IkPFQzdrtchP68gICXvHgK7rk74NW8JR4vur2H67vwxY28FXyePAJ2TL107LQ8W8gpPTMCDjyCXzC9bvuzu7V6Dj1JJLw8c70fvTmAzrsOrIS8TKcHPNJeKD0Q5+q8GTpQu6J2mTwIOpU9yK2Yu1tV6TwKmpw8jT9Vu2pqOr26miQ9sqXpPJDQTj12TDy4pDRLPLhn1bw4fvG8bGwXvf/k0rzLPLU7iYGjvJ8UtbwUeOQ8IV4gvElTUbxgOhm9H4n7O8g4ezwT66S8o6UuPekiLD1Q6AQ9TrU1PZIkBbzkvuo8EryPvP/mLztPc2e9z82uPIvfzTzMnDw9gFt2PB0pdD3SjT08qJYvvbhn1Tx++2484KAxvVvIqTy6mMc8oUWnvGpqOr1Td6G86lMevQF077owALG6k4QMPQxW8bptKGw7YbsHPaBy3zyj1MM7/CahvPz3izyY9B48QtMzPBfaSL0T6yS9F9rIPEQGA71IxLS8JBzSvFXXKL3DGkK87bMlvdvgoryhRac7xElXvXk7YLy4Oh08UGcWvdreRT1gF1W8BHoGPcppbTnGqd67uphHPfHRXrwnq+68MS9GvAFFWr0Q52q8GmtCPNQafTx4Cm48AOkMPElRdL3r1Iy7o9RDO3HeBj0TGrq8sekUPfjzUTw8NIy8+SLnvADpDDxdhls9RsJXu9K6dTz2NaC8DyuWvcO8lzzAuN08+SJnO8apXrxFBoO8Lp5Mu2XLkjxEBgM9I+vfu0AVgrzar7A8S1UuvWLqHLzttYI76PMWvQxWcbx6YIG8OVG5OhIY3byoOAU8gV1Tu71YVr1gFXg92E8pvR9OFTysg/a8b1lePTWTB72kBTY8ZwjWOxk8rbxOtxI68wSuvO8TLbxXOY09WvVhPVmZlD1O5Mo7njUcPAz6I7x7PT08M+13vCZPoTyZdQ28VCmCPbdbhDyUMrO8aj2Cu2k5yLt4riA9ZEqkvNqAG72Wwc89HPreOs8r2by2qwA9VdcovEjzST2i9wc8WyZUPAbaDb1NB4+7ZUwBPZ1B7bwygZ88pjaovDkipDySUxo99FaHO8apXr12TDy9B2fNPDcgxzwmTcS93BEVvLNJnDwMy447oUWnPJH/Yz0XrZC8v/wIvS/yArwNe5I8rVibvArH1LznxIE4OSIkPP61vTyCvVo81Utvvav4k70zvmK8aZdyvUlT0TvY0Be9Jk1EPWmXcjxJJDw9dR2nutkBCrwe/Ds8ThPgO81tJz0dy0k9wunPO5OEDDyQ8xK8xqlevZvhZbzXTUw702AFPTxA3Tyk1iC8YDqZPJ8UNbuHQoM867HIPLgLCL1Ms1i8gr3avPHR3jsPWiu7CAsAvEqCZjzOTh293/5bvSK8yrxetfA7sXT3vM3L0bxgW4C9bZ0JvPSFHDzEeGy9i+EqvUaTwrlC0zO8L/ICPOIvzry/WrO7TIYgvRvJbLwpMBc9QMUFvaUFtjwl75m5ZwozvKQD2TyyGgc9A6VhvLTKirxQ6IQ9QQDsPPBEn7394vU8UHPnOyQc0jr1M8O80YvgPE61Nb3GfCY8d88HuyrePbzoIE87mPLBvMRJ17wenpG8lDSQu4K7/bxgOhk9bcyevIFd07vQWm69g45FuhwpdDw8NAw91L6vvPBEHz0F2DC9UBW9PHG55TyBXVM9+1NZPCjc4Dx0HSe89WQ1vNYetzw4ciC7R/HsvB0fAL0UeGQ8uxsTPJjFCbyrVOG8Csmxu7YHTruzdtQ8fu+dvEZkLb1NB489z/4gvb8rnrr9s+C8dOw0PRs+irxy6lc8IC0uvVXXqLz589G8RIWUvBq9G7vE7Yk886YDPdPrZ7o+oGS9s9T+vDWTB7mdhZg9/+RSvCO+pzwgXEM8KH42vUr1Jj1POAE9iKIKPPIAdL0HZfA79VYHPVmXN729exq9Nh5qvR9aZrzCR/o8x9pQPeSP1bylNMs57hOtvGpqOjsUp3k85sBHPAxW8bxEhZS7chltOrE5Eb071IS8XVkjvQTWUz37dh28ioOAPRDn6rzXfGE9AekMvaTWID3sD3O8leQTuw2H470twRA8w+usPJhEGz1rmc+8yd6KPCo8aL3zMWa86CIsPL6Ha721BfE8ZqorPbppMj3WHrc6CDg4O2WoTj2Y8kG9fMr8u0a2hr3VPx49f/3Lu736K73IOli7+nYduwTKAr2NP9W8Ls8+vY1wx7yqmAy8DofjvBDn6jshum28PRMlvU/mJz0CRzc90S8TOvxVtrs8NAw9DSm5OQqanDymkvW83kKHO5Qys7ychZg8upokPQR4qTxAz/m8+MS8O3M+jrxOtTU9BMoCvEfENDyl1qA83sGYPbmWajwVqdY8Z9udPFiV2jw9QN04MdGbvPki5zz481G8dntRvEzibbwwLWk7Xog4PPmXhLyF8Kk8yAnmPJSQXb1QRi88N/OOPXfbWLyXwyy81cAMPW3MHr2NcMc8dErfuwPKAjtAz/m7mrDzvJnFibxeiLi8bywmO3KMrT3AiUi7usfcvHQdJ7xr7YW8ioOAvUNg87z0YHu8k1OavI/Qzrs14wO9101Muo2TCz2TX+s78XM0vEr3A73iXuO7JUtnvOWRMrwba8I79AQuvf+IBT2LMwQ9OYBOPT6g5DzXfr484V5jvID/qLtZl7c6nRD7PK+2xbyyGCo9ZqqrvLPKij0EeCk9LECiO/IAdDxFBoM8/bNgPbq7i7ygct8822ERPVBnFj0nIAw5BjbbPNONPb1nrAi9dR0nvR9/B71kSqS8V4kJvLA5ETzu5Je89VYHPTWRKr3gISC9uDjAPJcfer3/E2g8GppXPEZmCj2bVCa8QwJJPcg4ez2aUsm7YpogvcKNAjzqr+s8nbQtvLargD3454C86XSFOp4SWLvYT6k7UnchPZ20LbzP/qA84NEjvZfDLLyv5Vq9YmuLu6+2RT0MVvG8BwmjO4vhKryW8OQ7JMAEPTqv4zyCX7C7BtqNvZkjNDw5gM68QwLJPNdNTD3KDSA9j0OPu6eU0jwvIZg8IC0uPeMxKzxu+7M8+ZeEvFcIG7y4OMA7Y3dcOn6fITx8ynw5Lp7MPJF0gTx4Cm67LEAiPTAAsTrAiUg8iz14vODRo7yZdY287bOlvKdlvTwEp768rYcwPO5vejythzC96CDPu9QafbyWwc+8EUdyPMMawjwRR3K8f/1Lvf6GKD2Cvdo7LW83ugSpG7t32Xu7JD+WPHfZe7rgIaA9irC4PHpggbynw2e8qkgQPQ5aKzzJXRw86H75PBk60DvGTRE9EOfqu3o9vbwQuNU8bllePCafnTtcqZ+7JZ+dPL1Mhb1Y6ZC8Hs2mPLsbE7zofnm8UccdPbdleLyLHHM7BijuPI/sgrwZLLW87NOLvC5JC7v6jBA9i0QgPdR//7so9MI7IHxlvfEZNrxtll28/z5kupjfkrz9Ktg7j+yCPO7smjzThBc9QDSuu/9S8LzLguk7nJFmOQ+gy7xBueY8q2OPu2++iryAmqQ80mtzPezJcLzGt3E8AuxJO58+TL1y5qK80mvzvNSJGr2lCUS8MoAsO1bbv7zojcw8GJPbu/lzbLt747g8F4nVO1XRuTxihTu8wY9ZvD2RzrybfVq73xXvug+gSz0FLYY87/ujPRPmCjxTLtq8Z8FfvLGpOb1+98S8NCOMvXpA2bzB9v+8FNzvu2wRpb0qCM+9CMvNO5faD7viuE47NTKVPNHcNLxIonC8Hc//PABnET3SYW29oD7MvG2MV71CzfK5wx4tvdlUEjwYk1u8Ll0XPSlvdbwhn488E1c3PQvf2bz22qe7ZjynuyB8Zbxn1YA8KxJVPI1OpryKEu28lUE2PBZ/T7zJ8yo74T0cPRLchLx3rBe9pIR2vEA0rjy00VE8F4lVPRX6ljzFPL88SKJwvDMPgLvKh4G8lcEAPVGpIT0XGKk9XLC9uzhfMD0CAFY8oVJYPPn4OTwc3h27z8govEDIBLyH6lS8KYiZO8r9MDzFt/E8avOSPLcICD3eKRC93x8KvarUuzzJ8yo8FWtDu+3dEb1vqmm8l8ZuvJlpTrwx51I8grg2PW8vN73hKXu9Rx24ueTWYDuGb6I71ZMgvSRH3TxtG6s7Ek0xPIEf3b2RCpU9gj2EvUpF0DzvbNC8IAs5PeiNzDtbpje8NiN3PD0RGT3ZVBK90mvzvOXgZjySFJu9BzyPPZfaD72Igy495W86PM851TtxTUm87d2RvH6BlTzA7Pm8Lr86PLgNdj39ryW8ZTKhve/dfDveKZA8l9UMvXPwKL1/kB69lTcwPdFrCDw5abY7h+rUPHvZsrzryYU82s/EvPTBGD2DTA290E3hOz2HSDwOIBY9uqbPOxTwED0jwqS6Hc9/vDOKsju3AwU9gaQqPZOU0LvfFe+8ywe3O82W9bxBuea8gq6wvCbgtrsFLQa9cLTvO56b7LyX1Yy85NbgPNUOU72Siso810UJPPQ3SLxkFHq8NCOMPKBIUrysbZU8P6XavKDNHz1rAhy92mMbPbiIvTzu5xe8rosnvRYEHbvt4hQ9rG0VPWhQs7xmPCe9HWhZO4ZvoryidYI8MxSDvQY3DL3r2A49NJQ4PA4H8rwNDAo71zYAvd0QATybDK482mMbPQYe6DwPL588iqFAvO7Tdj3I6SS92kp3um+qabwPL588uIi9O1ZvFr3xnoO9c2FVPC0w57v0LUK9ZKNNPG2MVzxC3JA83HwqPLLHy7wiuB48/823vLIu8jtoWrk82UDxvKnArzzDKLM854PGPKWYl7vt4hQ9dX9nPShl77xx0ha9iiuRvMuC6bx9dw+8h3mou4/sgj3MjO+6+5aWvFVlkD3ng8a8PptUOm8vt7yBpCq7VEyBPJ6bbD1urwG9tEJ+vMEKobwIMvQ8q2MPvZhfSDpko028+4d4PQ39azw9Anu8BZmvuwvfWTzcciS+5O8EvcyMbzwwbKA8SaLwO1THMz0ZsYK73O1WvcnzKj2VNzA9UakhveiNTL2LHHO8zZZ1OhLXAT3+NN47pY4RvVwh6jv8kf68BTIJvRRhvbxmt1m9uisdPVMu2rto1Ws9Rx24vD8qqLzrxAK8iQjnvGvz/bxHooW9paKdPfwgUrx8aAa9+HgEPRxe0zskzCo7YXEvPEA+tLuAFVc8SKwLPReJVT1ttIS7uBKOu7ApBL2VNzC9wQWeu3lAWTzTf5S8kPaIPGHs4byCKeM6sSRsvYCaJLtp6Yy9cb71PHLI+zy3+ek7pZOUvASPqTyLtcy3wo/ZvUDIhDvIWlG92mMbvQ39a71nUDM8XDoOOxLIYzu7sFW94KRCO5D2CDt4sRo91qesPAc8DzyqWQk9vl07PJ4qQDvmA5E8VWWQvRXmdT1BzYc8fO0+vFXRuTxImGo7/JH+vPIjvDx747i8/1cIPWpuRT6Xxm49n76WPKzoR724iD07hVH7vC/TRr3T8MA891XavD6bVLxr/Zi8iI20vOGuyLilmJe7fFRlvQDYPTyyPRC9zSVJPQ6WRT3yqIm6mOSVPB7tpryTBf08Amf8PKUJRL2Ig6680NIuvVGfGz3K/TA9TE/WPOxEOL1oy+W7VVsKPUYJLLyvnzM9o38IPGa32TnEMrm8J3SNPeeDxjywKYQ9izUXPBtAQbxmt9k7GbFtvEV62Lsmaoc8/1JwPBLSabrPOdU82MU+PTIF5bzSdQ48Ih9FvZjuG72S+/a7XUkXva2BoTzYxb674rjOO6xZdLtAzYc7oMicO4kciLw1KI+81ARNvSh+kzt9fJI8Rf+lPeCkwjzNJck9HN4dPeb+jb34fYc7ovU3PXpA2byFYBk9jlgsvBmdYbxSJNS8Ll2XvDMZhrydr428QtcNvExj4rteU528/JF+vBiTWz0m4LY8hFEQvYNMjb1r6fc8wPuXvJ80RrrqMCy9dQQ1PEeO5DssOgK8GafnvAlaoTx+fP28A/ZPvCd+k7o3Vaq7c/CoPH+LG73J/bC6sC6HvC9YlLsiuB6803V5vLgD8Dyysz87FfUTvHadDj1anDG7t+/jvG++Cj2DM+m8WZIrvAHiQ7zjzNo8+5sZPNUY2TzqxIK9xKPlu24lMTzZ2Uo8/KWfvLkclDyjegU7lcEAvEisi7zLmw289+QtPSqXojw6c7y79LeSOr3Y7bpE9Z+7NqjEOnvZsjtZiKW7xst9uhcYqTyRdj49Ipr3OvoCwLxOgQm9HErHO7M4eL0bSsc64a7Iu/GZgDqBOAE8sj2QvOvEgrxwOT29vdiCvNexMjyvnzO9X9hVPSZggb16xaY79dAhvfh9hz1X5cW7E9LpPF/Y1by8P6m8kg8YPcqMhLsTVze8iRyIPe/7Iz17Y4O7oD7MvI5YrLy0YCW65FuuvHT6rjs7/Qy8ltCJvQBJaj3ng0Y8KHmQvFGpIb2u/NO8uBKOPPugnLy8SS+9E1e3PdJr8zt3nXm8IBW/u+TW4DwV5nU9y4Jpux5o2Tz3VVq8Mw+AOmv9GD2MOhq9T4sPPapeDLwJWqE7+HgEPCuhKDsuSQs7Kxxbvfh9Bz1TLlq8ekBZvWMUj7yJFwU9nzRGvEvUIz3RV2c80nALPF26Q7yMJnm9BjIJPFj50bsC7Em8sBpmvHtjAz0axY67IRW/vMU8v7hMY2K9IrgevDY3GDwQqlG7lUE2PPwgUrsndA09lKhcPNUY2Tuq3kG8DRENvZhfSDzYRYk8po58PSO4Hj3qodi7mwIovX+LG71tG6u6VMezO5MZHjw1LRI7KGXvuxtUTT0xWH+6lsbuun8L0TxaJoK7/jTevBLXgTufvpY8AuxJvF5OGjzScIs8zKAQvXDNE70bypG83HIkPfOtDL1oWrm85/54vapUhjx2k3M8OwcTvSQzUTkFozU8jDqaPK8kAbzgH3W56qFYPZMjpLspjRy8iiYOPP0qWLzBhdM8UZ+bvAzz5TqdILq8EtyEPIomjjxAPrS8rXwePHUENbyEPe+8jLVMPflz7DzRa4i7uRf8OpEAjzy4A/C8rounvIVR+7sAZxG93gHjO3pAWb09Fhy91A7TvG6vAT0Fma88avP9uvTBGL0gFT+60nWOvXC0bzuLq0Y9pXpwuyGfD7xKO8o87mJKva8G2jywGmY7o+sxPBmdYTyvBlo78AWqvGIPjDzyqIk7xa1rPPXQIb1gZ6m8zi/PvEYJrLxjCvS7Ywp0vE937ry3CIg7kpTQPCTMKjw4xta8Rx04PTL73rxF/yW8HmhZveLCVD16xaa80E3huxcYKTozD2u85gORvB5oWboQOSW8mfghvJEADz2DTA07mnPUvJsMrrwYk9u5+O6zPZjklTx9Xus71X//vOGuSL2s6Ec93wtpu8IUpzypO+K8tw0LPT+l2jy/Z8G8HMX5vNUOU71ihTu8HgGzPS9nHbylmBe8HgEzvIGkqjwFMgm90dy0PJF2vjzv+6M8gzPpvOvJhTybfVq9H4aAPBxeU7vpq1680NIuOwWjNT3QYQK8DyUZPWhaubyH6tQ8/jTevMOZX7yWvOi9Q+sZPUFIOrxXdJm7dXXhu4K4Nrx3GEG93XwqvaNw6jzVDlO9dGtbPVRRBDxC1w09PRacPN+aPD0jKcs8dZMIvT2RTrzVnaa8V+VFPUtPVjxOgYm8VEJmvAJ7nTzJjAQ84a7IOtztVrz+uau8RXBSvKN/CL1vuYc7gj2EvLK9xbziuM48xbdxPYPCvDzLoBA8O3O8PL3YAj1C4ZO8R7EOPOTqAT2xqTm9s1EcPRq7czzximI9oM0fvDMUg7wGKO68y6AQPFd0mTsjpP27vEmvvGrzkj3NqpY8w7KDPHg207wA2L28Z0atvGMZkjwhmgy9GJNbulZlkLsMAoS9mfghvFw/kTwFKAO9vMRhO2QUery93QW9iReFPMuWij0RtFe8yoyEvTa8ULzekDa8cM2Tu8yM77r9Kti8IaQSvGsHn7zxD7C8P8MBPKP1t7sbVE098Q+wvJ80xrzXsbI7uZxJvaWdmr0hhuu8hVF7vJdLPL1/i5u7ROH+Ow4bEz30vJU8Fn/PPJ80RjwcxXm9g8K8vL3OZ7z8kf48WzCIvGWjTb3QQ1s9NRlxO0YJLDwcSkc9a3hLPBLI4ztvquk7o3oFvNvjUD0lUWO9/1eIu/XQITt2Drs96jCsPMOyA717St88l+QVvExZ3Dwy8di7dpiLujBnHb3GRsU8ZCMYPRvPFD0RQys8JD3XvDSUuLz5c+w7zSXJPLcDhTv6jBA9csh7vTYj9zwASWo7KYgZvSfqPDyLJvm8XDX2PFCamLy/4vO81X9/O+y/6jxGCSw8HNQXPdhABr09Avu7LbU0PJ6l8rxKO8o9hFYTvYPCPLzcfCq8xtCVOtYi3zupO+I8bqDjPGBnqbxx15k7xKNlPGQjGDySFJs8w60AvV4/fLuJCOc83pA2PBmxbTytgaE8RQksvatoErxC1/g8tWorPFkD2DxyV089nzRGPYCaJL0684Y8/jTePKWYFz1eP3w9Z8FfvDUZcTzVnaa8ynjjPN33XLy4DXY72Ls4vBvFeTxoWrk8KgjPO8ha0TxSJFQ9DpZFO1ZgeL3l4GY8hMzCu7NMGTuJFwU9kg+YOwYo7rsAYg48i6tGvbZ0MbzXIt+8uA12vW2WXbvHUMs7ZS0ePJhVwrxPBkI9LjrtPO3dEb3vbFA94KTCPOTW4DzfJA28h3moPULhk7uxQhM8csj7NnDNk7y5nMk73gHjvH8BSz2S+3Y7XCHqPNY7g7lfXSO9VELmu+VvurygSFI7DAeHvKtP7jwbyhG9t343vL/2lDwU3G88eUBZvJbLhj2P7IK858sHPdv1BT2qyc+8xeYsvPRbA7yzKMQ7/Cm1O0oZwTysgK+7VvLcO98DCr2sg8k6vj6YPJTa37yXTtO5q8zpPLMlKj3khn+7VDt9OxTWuLwD0sm8ReUfO/ENLTvL0a28rkN3uk5ElLt96NW7zkKHPTMnNz2zJaq7RCumPOi0bLuYCM060r9IPXt3fLyKbwO9B0zxu5gFs7qBEI+8yhc0PWf2S7zkgEs8hx4TPcDVjryvzgU8Yr8Qvdlq97ygqq28HTvhuv+gwruG/ik9FZAyOzgvhz3otOw7qeMEvdN5wruGR0q9nTY6vRckj71s25i8oyfvvJZIn7zMiI28fd+HvHLJM72lkhQ9rvEIvA03cjsWR5K85vQ+vYtPGj0H/Zw87ZxTvQVGPbyLdTe9OumAvO2cU72ibXW88hb7vM1FIT16dOK88semOzJtvTz0gSC8+bXBvDkMhDsT0x69ghZDOz/6Hrw+SfM7d9GDvBdKLDydDQM95/dYvOLAHb0+Q7+8MWcJvdN2qLsycNc8fAILPSdUTz32GJc8/3eLPOSGf7vqa0w8f6JPvUG3Mj1khXI84b2DPUhZk7s+Gog9d/egPFQ7/TwjJmI9uFYxOwpxED0sgjy9ppWuO+losjz0h9Q7P/oePaMhOzwKw349FyQPvdUKhbxwVUC7d9EDPL4blbxA1AG9E9CEvGSF8jp/nzW8tehxvGU5uLvzzVq8ayEfvXwrQjuhZ0E9uFYxO3PMzbyWSB89PWAOvWv7AbxEBYm93phkPcXmLL2iHiG4TNbUu5PaXz0//bg8siIQveJ9MbsYBKY8MmqjPL5BMj3Sxfw8oWENvYETKT2NCRS9vWEbPd5sk7z2GBe6yfGWPPiyJ7zsK3o8BIkpvfPNWj005Eo9hZDqvM2Lp7yU1Ks8Dus3PeEPcr0OxRq930wqPJdLOT3RuRQ9lZG/u4+gCj003ha9kWNSvAm6ML2qxjW8fqJPPJ0Ngzygqi29LDy2PBrE07x39IY85u4KPZrFYL1UO/28bN6yPHWM+zx2F4o8cQ86vZTdebzn+nK94Q/yvBjeCL1396A7X1HRuyaa1bwZDXS9b6F6vCCv1DwD0km9tpkdu6rDGz1YrNa8/eOuuxWNGL1fS5280AXPPAPV47plObg7lpdzvQ+lsTwXTcY8kh1MOxgHwLzyx6a8jDJLPKyJ/Tzc29C8FNlSvVkdML2HB3g8khqyPKFqW72IAcS7CNoZPUvQIDyAXEm9FmoVuzXhMLrucAK8ceaCPCWRBz005Eo9EhklPZWLi7sVkLI9anBzvALvmDzQ/xq88semvOU0ET0fqSC92V6PvXf0hjzrIiw7zNdhvRrEUz2beSY8jeYQPUJ0Rrx4sZq8XyUAOwWMQ70M5QO8nTzuu36ZAb3/oEI8IWMaPLXl17zNkVs88FlnPC02Aj0Dz688oyRVvHEMoLxqcPO7HFUWvHf0Br1rIR899TgAPEyqg7vABHo9432xvJrI+rt0gBO93NtQvM5CB7vQCOk8kiBmu1G7IbvJEQC9GApaPFN7z7zgCb48c8zNPAPPLz0nS4E7anBzvLkTRT2tOqk8lyUcvnmOl7yv9zw8ReIFva/3PDyBEA89Mm09vZIgZjoSFgu8DegdPfPKQLwLel69zZT1vEeiMzwl4/U8yhe0uxB/FL3xCpM8GN4IvNLCYrw8hiu8bnIPvdlhKT01u5O7h01+PV5rhrwKlJM6csaZu1Qvlby3ouu8khoyvbCuHD2MMku76yXGuz2PeTyIBN48kWNSuz5AJb3Cb5+8TIcAPEvQID17d3w92hsjvGU/bLz7Jhu8sK4cvcJsBT0GQAk986GJvRSwG7zYsP28KA5JPKvMab3qbma9tnaavY+mvjsDzJU8L/99PH3o1byVaAg9mAUzPO3iWb3Ccjk7d/QGvW6bRrx0iWG8TZNoPNenL7xumKy71vPpvDkMhDwsWQW7ghbDPMDVDjycMyA7VumOPKI+Cr2AXMk7MYoMPP7sfL2p44Q9WWZQPFbsqLycgnS8HvJAO9lkw7xORJQ8CnGQvGptWT0D1WM+AQ+CPcGPCL0CG2q9ZT/svBLzh7p0g608nvAzPGiqkbxn9su8CMDkvHEMILwPX6s63LKZPAcDUb3yxAy8ShlBvCW0Cj2+Phg9kTcBPK/0ojzb1Ry8wbUlPYIZXTyEhIK99/vHvG3hzLypCaI9oKqtPIm+1zsIwGS9feIhPH28BDzABPo85vS+PBWTzDyWRQW97eJZvDJqIz3m9L485REOPeU6xTxs2xi8b0+MusyrEL0H+gK81vBPPLXlV7xULxU8xCyzPDTeljxZPZm8sLG2Og+lMbxxFe68GpiCvKBkJ72e8808dkNbPBdNxjw7z0s5enTiO26bxjwzIYM7fpwbvYm4I734sie8xelGPQOGjz13+jo9UpUEPp7zTT2f9me9/Cm1vLGLGT2Jvte88hb7PEMoDL2+GxW9mAhNuslg1LtpZyU5u9PyvAm3lrzCb588FK2BO4Fi/bzr/I49qQw8Pe6f7bssPDa90AjpPITW8LxpZAs7Y3++vEyqAz3c1Zw8UbgHvQ+r5bzL1Mc8Ehy/vHBVwLyyIhC9NZiQu+3l8zzVCoW9uRCruxm7BTwPpbG7OuwaPNiqyTw7zDE8msLGuykOyTrBj4g8tpaDvMejQL0tNgI9td8jPSkOyTwYAYw7nTxuPN6b/jse8kA9FZNMvZ0Ngzy9jey5P/oePXSDLTv7LM87DeidPPpGBL1s3jK9EK5/vPi7dTx2RnW6z/wAPWskuTz0foY6ayS5vBxVlrzZZ928A8+vO+J9MTxBukw8XZEjPQLvmLwl43W8md8VvN5PRDxr+wE8ibijPGzesrvIXTo46mvMO4EQj7vSxfy7R6XNvNskcb3aIde8OumAvSgrGD1qQQi9lN35OqFhDbzBuD897eXzvJnflTymmMi8w3XTvChX6Tw71f+8P/04vef3WD2zJSo9w0wcPLXl17xyyTO9yhpOO6Fkp7wN5QM7TkrIvI7sxLxxDzo8Vu9Cu8JsBbwqyMK8MnPxvEa/Aj1wLAm9PY95vAPMlT0T0x694AakvDJqo7xqbdk8HTvhPMbv+rzKF7Q8/eZIvayDyTxJYuE8qCmLOhLzhz2/+yu8tCveO2AFFzr39RM9m39aPKdMjr1XqTw8Wyb+PKCze70H/Ry8Z/bLvE5HLroGHQa9GAEMvSCvVDzfUl69SF/HvFlpajuO7946B0zxujXkSruDzSI89IruOmN8pLwSFgu8UsTvu+f32LsZDfQ6ShnBvNAFzzkjI0i8vj4YPeURDjywtFA8+kaEvCCv1LxHn5k89/gtPbei6zzIWqA8FLAbvE2Kmry3U5e8+bXBPPf+YT1Wxos7xCwzO/m1QTvotGw9/b2RvKdSQjpos1+77pk5PWfNFLi+G5U8YsIqPYBWFb3MiI08beRmPEd8lrscMhO9Rei5vIIZXTy03Am9pbWXvBdKLL0yRAY8aLZ5PEN34Dvun229GASmPFesVryLdTe86LFSPJWOJT1XqTw7zY5BvNG8rjwzJB29uDCUPNleD70amAK901ALvIwvMT0yaiM9WWO2vHf6OjzV5wE8VDIvvVU44zsBEpw87NwlO75HZr0gsm49Y3wkve6Wn7tWxou8rkDdurkQq7x6bi69VDIvvSyFVrvRuRQ9d/cgvGskuTu14j29iZIGPPsjgb1JZXu830yqPJP0lDoLd0Q7oK3HPFD+jb1EBYk9/eOuu75BMr0WahW8HvJAvP3pYrwGSdc8TZPovAZGvTxORBS9QbeyvByB57yAX+O8OhjsOjumFLxDS4+86kIVPNDcFz1HqOe8DDG+vOSD5Tw0LWu82KrJvM2OQb36b7s9G3szvGU8UrwYB0C8b6H6vDJz8bzlNJE9SFwtvayAr7xHpU09B0xxO+AJvrx2RnU8wNWOvF9Uaz14rgA9E9MePMbvejwPpbE6XN3dPLyEHj0f+HQ730yqvAPV4zyYBbM8lyWcOwIY0Lx396C9QZGVvNDclz0jKXy7KsKOvGAIsbscMhM9JZEHvbCunDs+Ggg9H6mgvC02grxnzZS7/ux8vBWNGD12Q1u7ZTYevVyOCbz3/mE89H6GvDQt6zw9YA68RutTPRdQ4DpDd2C7ebrovWK/ED30gaA5bbiVPHm66LzF5iw77pYfvfPQ9LxKGcE831JevbyBhDvt5fM8GAdAPPSEursu+Uk888pAPD5DP73gBiQ8Reg5PC/2Lz3c2Da8eygoOwOpEjyavyw8XOB3vL5ETLsmlKE7v/7FvCMmYrzohYG9Cb3KPLd2GryH+4+8+K+NPVis1jymlS49QNSBO4+giryFkGo8feU7u+siLDxb9xI903lCu6yG4zzOQgc9Wh2wuyufC73/pnY6AF7WvAjaGTtzz+e8IWMavHixGr36bCE9EFyRO75ETD04W1i9SFwtveSD5bygqq28j6MkvbyEHjmwtFC8Dus3vVlmUDyrfRU8ghbDvFXvQryydH68LIhwO8zX4TynT6g99TsavI+mPr0tPLa7msXgO95sEz2gsGE7CAbrOnwrQryO7MS73wMKvcNJgjxc2sM8u6QHPQf6grsv+cm8rkN3PNvear1A1IG95IPlvJgFs7wGRj296yjgPL/7K714sRo9sLG2PPm1wTrfT8Q70AhpvZWOpTypD1Y8nvNNPK+xNjz/o9y8cCyJPWU80rxyxpk76yVGPIwvMT3zykC6C3revMbs4LyEhxw9iAHEvGseBTytOqk8FkeSPUhZE7wXTUa8Y3wkPZrFYLxXpiI81QqFvP3pYrxKFqe8ghldPNAFTz20Lvg8lWiIvIb+qbwEiSm91TbWPC0/UDvny4e8bbgVPWEOZb1Tfuk8QnTGu9G8Lr22lgM8R6KzvMJsBT0IALc7enHIu+6WH7xrKu08syjEPDCzw7sXUOC8MLCpuwgG67viwB29cRLUPY+mvryG/qm8/uz8O4b+Kb2I2Iy89/vHuzJwVzy13yO9GsRTPAp0qjz0h9Q8nvCzO4wsl7wGQyM8uRNFPGUTm7sT0x490AVPPHpuLr1+6++8V6OIPf3jLj0uQuo8FZAyPW+hej3c29C8YshePQzlAz0Y3gg98RNhPcepdDw2m6q8RDR0vbkQKzy4VjE7MyrRvArD/rwFjMO7Qb1mPOURDrxoras8zkg7PXPPZ7yv+tY7rICvO7JrsLoYClq9hIecPGv7gTyKch08j6lYPPbSkLxAANO816evvOv8Dr270/I8MWeJvO6WnzyC7Qu9i3U3PUN6ejtW7Ci9QANtPOiuOLymnnw8i3trvJgITT1UO/07WR0wPD2Pebyybsq8ib5XPSJAl71wW3Q9SRMNuwPMlTzHqfS7VsaLvDG23Tx94qE8O6aUPCt/Ir3zysA7isHxvMyrkDz8KbU7iATePGlnJTzpaDI9r/e8vN5jPLyV7/460J4OvAszybx6e8K8kf0hvDOzxjzUZC27alOFPTra1buLeWC9UkYWvaW7Ab3Nxo48NqHlvErqVDzApK48D+PIPJPVoTuk5aC8xWpNvWri0rzQno67molfPKERX7162hO9rEMBPOmtHLy89K48jw+DPNG46zwudpg77OYMvJ5LQDuor/28yRaPvLkcL71A04c8iV8Dvaa9ID3t/Cs8uSDtvETDxTyplaC89lwrPPUR2ryFrwO8pmDuvHSzhL1nHDS6DvlnuxbymTw0QHU9h7PBvDPJ5bxsLSQ84rJLval/AbySdLG9lpeCvCBqV72aElC8iYtBvSFUuL2eH4K8QV4XO/E5WjxcvDS8MPFlPBR7ijxI/DW8m+aRPPqpm7z7DKs88jlavfaI6bwPcHe8Exw5vCQsOLx7aeE8i9aSvEiJZD1h40M9R4WmvEWbRTup9hA99Cd5vEQktjsgVLg8NhS3vJy+kbxktwU8NBIYPaoMMLwMlLm6c1QzvMfLPbwFa4u8HpJXPRR7Cj0P48g843KNPcvujrscMee6BoPJu2D1JL0ektc8McWnPG4XhT1+tDK6lcPAPPrBWT0rK8c82LO8u7NqELvXOg69OUsIPOV0LDyAotE7+4EbvDs7RjsfUhm7L2KYPU+ENbt+QWG9hK8DPQR/Czvpsdo8He8JvYrWEj02oeU8U6eGvDHxZTuluwE9gKJRvafBXrzBAwC86MO7u3ajQruVq4K9iV+DPcTdnrw62lU8QNOHvYHtoj2yCz+9Cej3PGVIcjwBMps8fkFhPGiTw7y253w7xvd7PGPLhT3fOZ2879hpO1WrRL07xDY9Ys2kPPA1HD0Cp4u7mShvPK3Szryews+8lauCPMExXTx/uPA7KrQ3PYDrA70v7ae9vFWfPFSnBr35Hgw7IsvHvOKyy7vXOo48GeLXOwkvi7tsQ8M86MM7vXVCUjyDThO9vT+APSpTR70pTwk8OdrVvOyFHDwW9Di9bjFiPNqdnTyLTSI843KNvJx3/rlFOlU9VjhzvAM4+Lu2LhC8NEB1vattIL3kiku9IFIZuvhg6bz30zq88GFavTOzRr3tiVo5NEB1vaa9oDssFSg9Q0y2vMVSj7jKoz08T24WPJETQT1elDS9vswuPN7warlko4W89eUbvDs7xrxp9LO6A6tJO93WDT2fT/48monfO68bAb2EOpO8UVy1u02w87vbFC07H9uJPLxrvjzBpC49Ilj2vGNa0zxelDS9nTUhPZ9P/jyIoWA8RMNFO+ubu7wbule9rPrOPNwY67tI/DU8E6UpvWri0rx6YwQ8C6pYPMsCj7wFDDq8uiBtuoU8Mr2V7/47VZOGvErUtTzBpK463trLvGLNpDxtF4W8N3WnPDo3CD162hO7bCsFPOSgajytzpA7pkpPvHB8Mzy+4k09sTf9vE/jhryh94E84SWdPLiPAD0b0HY85V6NPSd7R7yXx/677gBqPRG3Cr29+Ow7CsB3vAwLSTuT0wK887DpPFRK1LzAFwC98iO7vKoQbjyJdSK9xlQuPJATwTy3GpA9+wyrvBQyWL1OsPO89loMOQlFKr5XIlS9hSaTvM/gaz1UNDU7iLd/POgijbuuphC95OmcOz79pjzOPR69qa99vaTPATqB7aK7XgcGPZqJ37oyrwi85V6NvOMpWzt3dwS98U95vBIumr1kRLQ8ZKMFvJMB4DvbGOu8+qkbvE4Nprx1y0K9bMwzvNBXe72vGwE9t9HdumqB4ruQhpI7LYw3PO1dnDxWq8Q8px4RvXplozzBMV09NCaYPWNa07xsQ0M9TQsHvQsbi73vS7u83OysPB58uLxrWWI8JCy4O1QyFruIcwO9mp/+O2w/hb06Nwg9PbJVvOOGDTwMfpq7Vwy1PDObCDnj/Zy9bMwzPYp1orxryhS9iLd/vdDKTLt94HC8RCKXPKKEML3ewg28nNSwPJVQ7zomY4k9rqYQvTeLRj0DChu8zWWePDKviLtkt4W97fyrPEFelzzLeR67YPUkPe7Uq7xZ5DS9XR0lPGCY8rygOV88Z5NDPlYiVDxBePQ8DfWpvDSdJz1nHDS8ge2ivCGzCTwg3Si9SPy1vHVC0jz51/i8aJNDPIoC0bxOsPO88rDpO4eHA73ZJo48hd9/PXgEM7zxwsq8QtWmPJko7zuS60A9u5f8vHaLBL3YPK28wQUfO1D7RD1LM4e80y/7vJiFITxok0M93vDqOZ6ssDuS04I8KlPHu2LLhbxT08Q7M8nlPCgI9jx+tLI7GSsKvUw1JrzOaVw7jw8DvSncN7wxw4i8RbFkvOZeDTyAdhM9FX2pO18hY7zeYzy9mp9+PLGqzjzmeOq8aWcFPZ9PfjzJGk08tuf8PJlvArx3MPE89BFavCpTR7z6wVm97J/5PHgEMzyhJ349aCDyPJHngj2eqpE8GFUpvSDdqLtaceM8sDM/vSKfiTwPywo9G9B2vVZ/hr1rVSS8OWPGvI4lIrzSjK088iEcPZXvfrwZ4le8f4oTPaYyET0DHhu8Hnw4vZko77tFOtU8ldlfPGv4cb3/cdm8ct0jPJatIbwNmPe8+df4vJxdIb3RFR68VZUlvAhDi7w/dLY8sZQvvXKAcbzKAg8899M6vAM4+DzgUVu72ipMPb1rPjxmpaQ7MHpWPU/jBjwBMps76MO7O95NHb3KBC67Z3sFuz79Jj2ZbwI86CINPVXBY723uR+879Srumd9JD2cvpG890YMPdKMrTybAO+72xjrvK3SzjznwZw9emWjvDo3CDxA0wc5bC0kvT2aFz0EItk8GFWpvITbQbwTu8i8S2FkvO7SDD1OmtQ8njMCvQE0Or0cjhk8iLf/vJpvgjxcvDS7yblcvYCMMjuZn/68lyQxvKoQbrzhJR287PyrurW3gL00KlY9bENDvT/nBzxzUpS8dbUjPWVI8rzo2Vo8WeQ0OmwtJLxmpaQ8NJ0nPM+yjrwOapo9sfOAPSBqVz0u64i8KGnmuk6CFr0Fmeg7yhpNOdoqTDxB68W8TrDzPMRSDzuYm0A8uiDtupix37swelY9JQIZvEzCVL1sQ8M9+sHZvGpTBb3lF/o8jGPBuv1tGz1AAWW7cAUku9GizLtDraa5LusIPbAzP73cizw8KxOJPI6akjxGm8U8dcvCO6viEL06TSe9m+aRPNKMLTsCq8m9+yLKu7qTPjymYO48uZEfPaXTPz2rgz88jWf/vOqbu7mVw8A8sQs/vLxrPr1SRha8FKlnPD79Jj2T1aE8vFMAvcgWj72qDDC8KuB1vd1527r3/3i8iHMDPW4DBT3xlgw9T+OGPEvCVLxg9aQ8khf/O/mrOj2xN/08rFeBPKJuEbuZhaG8wBcAvUStpjuzbK+7bC0kPYVS0TxZ5LQ7RZcHPO/qSjtP44Y8ToS1PNApHr2z34C89fu6vC961jsMC0m74j96vKuDPzyR/SG99VqMvQWZaL2MY0G8VL0lvc3cLbyaiV+92hStuzlLiDxr4lK9z7IOvV7A8jy2RC+8vfhsPJr6kbxXEPM6lTYSuTYUt7yHnaI7ntjuuzPJ5btR6WM87XO7vBOPCj1GKPQ7w5LNO0thZLwxwwg9trkfPc3yTL15BLM8CLoaPDRA9buUYtC8dZ+EO5ApYL2FUtE8XgcGPKS7gbzTAz08CboavdmzPLxYbSW80aLMPKn2EL1Jc0U9+NM6uzhfCDuHEpO9lpcCO5GKULwfUhk9xyoPva7STj0dG0i9OsKXPJ6qETv0+Rs9nNIRPWLjwzxs0PG7sJKQvE055DzjE7y7bxvDua8bAb3GPo882irMPA9w97wZzDi8CFvJOxV9KTvAjo865OkcvViDxLzqJKw9z7KOusDQ7Dvwvgw5OztGPdMve7slo8c8kf0hvZ9P/rxpCtO8/vpJPKl/gbwTHDk8yqO9OwBGG7z36Vm9PZoXvGLjQzyxqk49bCsFPRDNqTwmAhm7upM+vYeHgz1qa0M86a2cPAkvi71OhDU870mcPSjyVrzUZC28coBxvZ6qEbwARps7FX0pPa6mELwMB4u7/+Squ9uJnbzwYdq77tIMPfCqDL2CkHA7I7WoO3rcsrwM84q6kaDvvM3yzDt0y0I8mvqRPZaXArxiQhU9RMNFvPyveDzSAZ68ek8Evf6H+L11QtI7UPvEPJGg7zxDTDa9SktFPOMpW70Uk0i8NCpWPCSLib07xDY9Tg0mPZXvfj1jzaS7FXuKu7OCTj3sn/m8n8JPvLmRH722LhA8BhD4u/9xWb0bFwq7AkpZPPHCSr2yapA7M8nlvAI0urvpmRy8ZS4VvEUOFz17aeG8KWlmvHrcMj1VwWM9emMEPIj+Ejp3o8I89lwrO65FILtHElW8hDqTPIl1Ir2K1hI9mhLQPGprwzyGPDK8pVywOMqNHr3N3C09mZvAOuubOzyFxSI8alOFPdizvLvAF4A8rryvO3vcsjuCelG80bhrvOKcrDzjco06FX0pvbqTvrx+QeG7+gqMO0fmFr2OmpI8qK/9PDyy1bxi40M8bheFPaZKT7zn7/m5VTS1PIxjwbyNI4M8yqM9PBni1zx/FaO8t6MAvWhnBbqR/SG9inUivA755z0depm8iP4SvZcOEju7aR+9QzaXvZD7gr11WHG83sKNvBg/CrzAuk28upO+PItLAzxZ4hU8Nf4XO81p3LzM8kw8EUS5OS961rutW7+72qFbvaANIT1sLaQ8zO4OPXFmlDx04eE8KrS3u0AB5Tsp3Lc7bwUkPSyi1rwcAwo9asoUvLxTgD330zo9BhB4O+UB2zzpOss8pP/9PK1FoLzrDo05Dpj3O/9bujwR0ee7z+DrPAuq2Ly4pZ+8YssFvYezQb1MNaa8z7StvL1rPjzzDRy9Ec0pPS7/iLsmGle9nUvAPEkAdL09+4c6+GDpPHllozoo8lY8bhtDPQwLST0W8hm8+jQrvYabgzzDks07Uc8GvC/tpz0nkea8LIqYu9PtHTyqawE8U9PEPMqR3DxLvpY8wnoPvSk7Cbs9E8a8Ceh3vFJcNT10VDO9YJjyO6AjQDppZ4U8wLrNPHWfBD2fT368OF+IvdN2jjy5qV28c8cEPf9bOj1vqHE9ybncvDOzxjy+yo+8o+OBPeCuDT1kRDQ8HKS4vNApnrya5pG7eWUjPCo9qDxYbaW8E0j3PDzI9Dz5wdk6KeB1PPZcqzzewo084j96vA/LCrxqU4W8aoHivGJCFT1NI0W87BJLuyncNzykWhG9l8d+vIezQb1vqHG8+zhpPL7iTbt8PSO8L+0nvV6qUz3jKVu7vT+AvDMmmDwwYpi7k+vAPJqJ37lVwWM9nTWhPN9nejz1+7q8pUaRPEkAdDw5Tac7GMoZPQySmjxH5hY9cO+EvFnilbxWlaU8+sHZPJGKULymSs+8yCoPu7iPAL2flpG8z1d7vCOfCbzUA728/eILPY0jg7zq/nY9fCuBPErONb0Slsu8RL2nvHf3HrygoQ49oDUwPEYGsjyV95U7SphGvf1PBr2tjTs6hSARu4X25rvatiS7CnIiPaVpErzB9lQ9/51/PB6lTL07LaA8i8yWuzfW6bz//Ri9uFoIvVTKm7vMlAg96vkHPUrOtTt15AO8hBk7vVgmwTsyDua6wwnwPI/yTLwYyi26i8yWvBPMOr2XTGU940YsvQy7LDxdWiM9qmx0vVzuRDwooTK96LXsvBbtgbzHKjc8V/DRvPOJD7y8vYM8aWmkPIZiRb01+b070cEUPb+tSr1gFHu9p+16vYxnjrwUc3e9wwnwO4aYtLzefqg7W9upvECc4DwgGIE8gZrBOroIm7w0UgG9q9jSPMWykzzdBgW9s1yVPIFk0rxfbb68yt8fvdzQlbyXpai8tUCXPPajAL3/0268J2vDPKgjarwGRZa82BTXu9XuoL0DYRQ9a+idu1qlOjwZ0QO9gC5jPA1iaT10eKW6rpQRvcVSer1Gd/+75jbzvKhZWTx0QrY7ZUhdPR6lTD3ZgDW8k05yPEWaUzzjt3m9jGcOPY3fsbxsj1o9kWUBvG4CDz1p/UU8th1DPPzjpzxn8QC5aTqLvEIb2rx8KwE71Sn/vPevxTyc2Qo96jRmu+N8mz2OsJi8slU/PMlzwTwr/dc7XO7EOy0LBL3FUvo8ynqXOtNvJzz/mJC7xVJ6ujkahbuitKm8paRwu10ktDy6Poq8zxjxvI3fMTzAGSm931tUvJqV77x+5Vg9KHKZve2z3zyuNPi8sengPPXSmTtCqgy8UkuiO3do7DyOS5C1bLmEPZ7sJbxX8FG8hSxWPOjrW7y50is90c1ZvaeynDyDd+28xr7YOuEzET3l+5S8pQSKPDSNXz1xjc285fuUvGP/Uj2VLYW7FNMQvY9Qf7zwaEg8BJzyPAtDiT1wgYi85O3oPC1GYrxKmMY7VAV6PNvJv7zaXeG8j/JMuzxAuzyf/8C7j/JMPKJ+ujwibdA8DzomvWM1wrxJ8Qk9unnou05gyjwWtxK95fuUu0/MKL03Qki8s8EdveRGLLy1sWQ7l6UoPeFpgL3FF5y8Ar9GPAnQVL13Mn28V+QMPQo8szw697A7LUbivN9b1Lz1nCo8EYMwvTGdmLzziQ+8VGUTPXUfYjyEhZm6wixEvWe7kTzo3xa9dVXRPD6Jxby9LtG8AawrvGfH1jvy58G5szLrugKJVzsJ0NQ8s/cMvdRMU7wrVhs8Y/9SPK3rbbxVO+k8OVVjPIHzhLuHnwo9jT3kPDRSgTwNmFi8on46PRsm0zu50qu8jrzdPMBPGL3vJpS9ukN5vPsL6zpjNcK8DZjYPDvIl7eFuwg9SE+8PMHAZTz/CV681YkYvUli17zY3mc9hcB3O0mMATtAxoo8fQgtPGYgmrz35bQ8vFElPeLazbt3aOw8o1vmu5NO8rxSHAk9znG0u9B4Cj0d/g87w84RvNZfbj05H/S8XLhVPLUKKL2BZNI7W9spvFuC5jsqICw9k0kDvdxw/Dw2ZRw8denyvIOt3LzfTw+8ZXKHPc8TAryxs3G9SIUrPZx0gryHBBO+WZKfO5BeKzxiIqc8G7r0PEmMAT2oWdm8QQg/vFNePb0dyCA9KX5evdc3q70vWf286o0pPfiMcT3roMS7NcPOvKBrHz12i0C9CCmYvNDwLTxCdB29MI/sPPXSmTp79ZE8SphGPLlmTT3s1jM9eeflOijXIbyifjq9rpSRO36vabpzDMe6ZiAavUW9p7twsCG9l9sXvT8rE71LBCW9WCbBuyrqvD1rI3w8nBTpPK1XzLyX25e8zt0SO74L/TwBHXm93HD8PKvYUjzOpyO8W9spvTRSgb0YO3u96OvbOkTzFrzLvEu8BNLhOxaBIz1gSuq8h86jO5rL3rt5QCm8wmKzu8lzwbtwgQg9wBmpPHAhb7xWSRW9IBgBPeN8Gzw5VeO8q9hSvKwVGL361fs7r6DWvH4+nLz7awQ8F17PvXL5qzt7Who8CPOoPMVSejmS3aS8b6J1vWj9RT1y+au85jZzPR1vXT471Fw8ayP8vHod1bydtrY8qI9Iux6lzDw+U1a8IgFyvEiFK72XpSi8zxOCPFBzZbxNgx68QMaKvBSp5jzXN6u8FijgPA7ORz3zU6C8t8T/OzZlHL0SKm09EwKqvPr4T70vHh+9c9bXPJm/mTzRYXs8e1oaPYIGoLzDmKK8hSARvI09ZLyzaFo8kAXou/iMcbzjfJu7SphGO4PjSz3zHTE9YErqO2k6izyHP/E7UTgHvQaqHr3nDjA9rVdMPIKhl7wYyi28JimPPdNvJ7wrjIq8CL05O4r02TpNHha8dEK2vFfwUbjs1jM8+S6/PNdtmrsrJ4I7nr2MPEmMAb1ntDu9zTtFvcaIaT2YglQ9DIU9PZKntTxUZZM9WTncPAhkdryzwR29sbNxO2VIXTuz94w9gwYgPGYgGr1Ejg69+2uEuyL8grxz1lc8tJ7JvHGNTT0b8OO8vS5RvSZYqD0E0mE9uZw8OyjXIb1Cqgw8D+HiO/t3yboU05C8dHglPHPWVzycPhO9I9kuvAjED7yrDkK9uZw8vW7YZL02ZZy8o4UQPdjeZ70d/g+9aWmku5Twvzyp+yY9aWmkvKMl9zvvxno78QqWvJttrDzc0BU78J63O/YN+LsCv8Y8NwxZvG96srz/mJA7s/z7PAyFPT18nM68d8gFvHgKOrzeSLk8SLsavKpsdLyr2FI8WS0XvY8oPL2/d9u8hmJFPU70azyhElw9wE8YvCZYqLwfESu96OvbOxBNwbxJVhI8dUmMPFTKmzz1nKq8orSpvFYTJjyMZ466Mth2ul1aIz0Ih0o9TwIYPVe64rvUTNO8WciOPAe9ubyLlie8w2mJPGTcfrzK3x+9hmJFPT+/tLwTAqq8tyQZvbwijD2tV8y9uggbPXyczjzXNyu9OvewO0etbr3K35+71G8nPeZsYjyIq88800AOveNGLL1QqdQ8XgHgvCzH6LvTbye8N0JIPP+YEL02mws8vgt9vPlRk72Qyom8GJuUPDS3CbsUbgi966DEPTkfdLv1nKq8hpg0O4I8j7w3NoM97d2Ju6mPyLtDdB086NjAudzQFT0t1ZQ8mIJUPVBz5bypMZa8zc9mvKORVT2HP3G8Ss41vY6GbjwIKRi8BT7AvTiuprtLBKW8lc1rvLnSq7t5QKm8ElSXu3VVUb28wvK8sAy1uqJ+Or0rVpu8TR6Wu7fE/7xYXDA7YA+MORHvjrzI0fM46LXsu17LcDwtRmK9f1G3vLOSBDt+efo8H4J4OhSp5rtuAg+6AyslvfZ51rzT4HQ9MPtKPaA1MD3ZSkY9e78iPa6UEb2UJq889+U0PWbqKj2GmLQ8tNS4vBBNQT06wUE8uGbNuwiaZbtUAAs9GJsUPHuJs7zB9lQ9QNJPPJNJgz2sIV281l9uvSdrw7s8QLs6eeflPPYICb0LGd+82oeLvB057rsEnPI7qmx0PI8ovLzteAE9fj4cPAgpmLzHlpW8V38EPd8lZbzf6ga9d/cePUKve7sQF9K8IO5WvDjkFb2hElw8JsQGPf/T7jtrgxW9pc4aPAbgDbvkTQK9Pef3O3pTRDxvejK8XSQ0vTabiz1J8Qm9/2KhO9DwLbvFshM9WTncu8gHYzuMc9O8Ar9GOktwg7zxRfQ6JEUNvM0F1rtGPCE9DcKCvSogLL3ralW8wYp2uyuR+Tyay168EBdSvR8RqzzqNOa8RnIQvZ7spbt8nE68pP0zPGIipztfbT689+W0PGEPDLz3r8W8dy0OPFgmQbzEmCI8utkBvNWJmLxJ8Qm9X8aBPDQckryFVgC9hz9xO6/WRT2/QWw8a7IuveXFpT2Vzeu7YsljPJzZCr05i1K9bfu4vNDwrT2zaFq8Yo6FuWP/0jzFFxw8Qg+VvBsmUzwRgzC90ZdqPLp56LzZgDU97h++PN60l7wXXs+5SYwBu6XOmjzViRi9+pqdukn2+Dwj2a68fJzOvApyIrxgFHs7UkuiO7zCcjwR9H07ZXKHvNijibwyOBC9RC71PPZ51jxCdJ28/wnevEIbWr3RJh29XVqjO/rQDL3h/aG8Hf6PPDjkFT1J9ng7b3oyPeynmr11QjY9BJxyPArQVDztffC9uZy8ONqHi7xOVAU9ZGsxvTYvLbyLYDi9rmpnvTZlnDwiN+G8IO7WvHSuFD3teIE8aRDhvCtWm7xS5pm6o4UQvV+jrTx3ntu7UrxvPcgxDbyGmLS8jobuPOlXurtg2Rw7G/DjvGKOhbwRuR+8LQsEvIoqSb1w6388V4RzvdgUV7zDCXA9CnKiOVK87zw9Hec6VMobvJ//QD12wa+7rvkZvNIDyTx+eXo7xuiCPKCm/TzV7iA9c9bXvD1HkTwQF1K8gtCwPVuCZjxgFHs85Easu7+tyjuc2Yo7/wnePM07Rbunshy94ZgZvGB0FLyA+PM7RPOWvMHA5bxHrW68iirJPDue7Ty+mi88k4RhvPZ51rtoMzW9tduOvJqQgDzfT4+8ZNz+vEDSzzyMZw67LDNHPSuReTp2wS+9K5F5vG4CD70KqBG89DBMvBTf1TwkDx49YHQUOdW4Mbx8MPA862pVvZ22Nr2+Bo47ORqFvAEYiru/rUq8YBR7vbYdwzxL1Qs92YA1PB0D/7lbEZm9gPhzPXVJjDy7GzY80fcDPS6ywLxXfwQ8sa6CPBJg3DzRYXs8fuXYvEqYxrpsxcm7k07yvFTKGzloM7U76vkHPelXOj2FLNY8+2sEPaA1MDxoMzU87/zpPHXp8jzxpQ29vCIMvIJBfjxhtkg8Ds5HPQoNmj3+9kK9wYr2O9SCQr2Vl3w9cwxHOyvxkjwbtQU8Qg8VvWyPWj0yDma9Vt02vUtwAzy2HcO8Hf4PPN5+qLww74W8eNTKO3ee2zzcaw09/51/OuCRw7y4MF68XSQ0vHVV0bmRO9c9mSQivRnRA7zNBVY7vMJyuwy7LDxTXj07LdWUPHSulL1ggFk8Z7Q7vCIB8jr0MMw71bixvPytuDzIB2O89g34O4PjSzwKDZq7MjiQu9oncjzVKX89fGbfOk2DHj1bRwg98UV0PZd2D72BmsE8RnKQPG37OD0dyCC7T8woPVZJFTrFTYu8LQsEPTYvrTypMRa9GxqOPIkXLjypxbc86Otbu9io+LvHKjc5tUCXvApyIjz6mp28cFfeOzmLUr141Mo8eh3VPMJiM7xyZQo8YsnjO7j67rwG4A29CPOou77QnjsCswE8Wc19vJWXfL0nNVQ9MtOHPLMya7xvejI7FUu0O89O4DuOvN08SfEJPaJ+ujwGdC+8KiAsPN8lZTz4wmA9QkUEvDDF2zxG15i8gqGXvCI34TzZSka8K8doPfQwTDvgx7I8Nfm9On9Rtzw7yJc8fQgtPR1v3bs3DNk8MTG6O5xK2DzI0fO6RfomO4dquDzjv0C9iAAWvUB/67zhA0y8xGJgPfDVqjyQ/BA8wIOmO4WuQ71/Oay6yaiKOx7NBrz9ESw8kcHbO8CA1DyzcA681uQLPDLZx7vRC1a9FjuuPCjvGL0lB+m8GYfcur0x1LwAy069tZalPKYxOz1urqo8zrzVPGk2wTs6dPa7hUQhPLLdAjyLubi8+foOO8yWvrwLTi29nEQ6PVpntLz1GIO8xGJgPU0o4TtdI6m8VoUovRHAcrxNKOG86sq1vOEDTDzet508fQ1xvLX99TxthcG8UqOcvGTBqbwQxha9ICivvODdtL3bZUu8Z9uYu/VNFDxfRu68vcexvb3Kg7zkjYE8B9NxvJtHjDwY96K8Ibhou5hf3DzXrCg9gcnlvLPX3rwDh0O9KO8YvUyVVb01/167YW/XvGVUtTwo7xi9vP+UPOpgEz1w1EG8rc+7vO0Ztjy9xzE7/6FlPQBeWjxIFJa89uCfvH19tzwlncY830opvKN4mLtRd2E705WLPImTobtes2I9vl2PPOVPejsSU/47TucnvAVGCj1pM++8eAL8vNcZnTwU4AU9jmmFPUUjELwFQOY8rjAIPeDdNDzy+G87TJVVuz+FD73KbVW8+S+gu3ON5Lvf4IY8hj79POazGD1GjbI8/OsUvdv7qLyEGOY6rvikO7p4MbzA6va8gF9DPPVH8Dtuq1i8ndfFu5uu3DwmmvS82HcXvWByKTw6RYk95VLMO/qNmrwG1sM8hQ+QPC9YiD1UXL+93YtiPX85rL3KcCc9gclluwHIfDtBqya9RM7rO/0RLDs8M707jdz9PJR6frzhBh69ivEbvVyQnT3C0iY9fFF8PB1vDDsyRrw8RiOQvHqPg7xBFUk94pmpPF25Bj1D1I89jgi5O4n6cb3pNNg8SEmnO3gFTr13myu84HMSPG4YTTzckQY9yEc+O28+ZLyIZ+a8GY0APXrBwrvimam8cvrYvAakhDu3uWo8B2whPdM0vzz/N8M8NpW8PBut87uMSfK8LD4ZPcLSJj2tzOk8a1xYvC9YCLzpNFi9kCv+ujPcmbvSoTO8PTBrvJY5xTtJRlW98++ZvEAVSTkAy868UzNWPDEd0zyAz4m8t7y8PPBoNjy9xzG8ug4PO5uxLr16j4M8F2SXvBDGFr16K+W85xETvK710rvy+O+7TR8LPe2vEz0LhpC94yw1vY4IOb1CdhW8ym3VPN9KKb2/uwm88ckCPcexYDyQLlA8zb+nvFyQnTYPmls8E+nbPBmKLj13b3A81F0ovDjnjrsZii491xmduwu4Tzkp7Ma7O9gUPWXqkjzpzQe9+AY3vUCCvTzlT3q7Og2mvFKdeDy+XQ89bIVBPKfERrsDHSG8dLbNvCnsxru9ygO8gWIVPc5SM70S7C09FaXQPPu/2Tzc+FY7PllUPcRlMj11TKu76/Oeu41yW7v+pLe8847NPJnyZzxZPss88ckCO/KRnzwdpJ09Gh26vDPcGTpb+j+9jN/PvNv7qDqaG1E9jXWtvB7NhryBXHG899r7OzoNJr1w0e+76sfjPGmgYz1etrQ37VEZvcmoCjwJkri8iZMhvrUsA73pzQc8bz5kPQVA5jynkgc9NpU8vXSEDr13b/C8p8TGPAu4z7wqGIK9aTPvvHzqq7xNK7M8jzGiu5zal7wHNxA8NZiOueBwwLz7v1m8Um4LvdTHSj0u+g094QYePa5f9TkVONy7MbYCPMIKCr2v9VK92440vP86FT2SuAW6lTyXu8TP1Dytz7u7l2KuvGcQqrii5Qy8io19u99HVz1FYXc99bTkvJtHjDs2K5q84HBAvXzqqzxZ1Cg9ft4DvYLyzryeAK+7esSUPG4V+7x0tk28L42ZvaQLpDzw1So9CSJyPEX6Jj2Vpjm8BLCsu2TBqb1IsPc8ytd3vX6mIL1fF4G9q6mkPCp/0ryNBWe8S9CKvbAevLzpNNg8TJVVPZ3XRT34A+W8/X6gPCUH6bxZO3m8EcByvI1AnL1oDVg8Y5Xuu1LJs7tXGDS8rvikvFpqhr2LSXI9nNqXvPJcDj0rEl4+8vtBPbAePLzTx8q78vhvPdgTeb1vooI75SANvMe3BL2tzzu75rOYPMe0Mr2HbQq9AvHlOahapL0myYE8ubAUvQBe2rsoVmk9ndfFuybJAbxqzB69e75wPTujgzx8UXy828aXvCWdxrx+3oM97VEZPfIkq7l859m730opPCPh0TxkjJi8TSszutI3ETzCCgq96AvvO6/DEzy55SU9ljbzPPgGtzwgKC+9UqBKvOZ+h72d10W8HNyAPEezSTz0uog837H5PCLkIz26Dg+9jXWtPOpgE7xRDT+8NAWDPFJui7wUfOe75n6HvISxlTxHths8Kn/SuymCJLvX5As9FqJ+vKG8I7xrX6o8ZIyYPDvYFD13csK8TCuzPbmwFD1AGBu9+ZlCPZQQ3DxcW4y8L40ZPFpqBj31R3C8XI1Lvat0E7ukdUa9bqtYvXSEDr2XzNA8dt+2u8X4Pb3AThU9pZ4vPSmCJDowh3W9NisaPbp4MbxpNsE8EDC5uyFRGD2RwVu8eS63vG2Fwbxs8jU8+S8gvA+a27y0Axq85VLMvPtVNzuf/dy8nmpRPLnlJTz1SsI876nvvERnG71AGBs9qPCBPNXzhbtkwak8iP1DvDvYFL0p7MY84NpivN0hwLyWz6I8Ken0PNcZnbwFQ7i8hQ+Qve4W5LyiTN28uFIaPcLSpjx14og8GPeivB3WXLzPT+G8mhvRPFENvzyrP4K7fwQbvD+FDzz9Eay7NGxTPCuoOzwQMDk86/OeOyoSXjy4HQm9jgVnOiG7urvkVR48ixqFu2VUNTwbRiO9j5tEPAakBDyY+Au9j5vEPOk02LwWONy8KFbpvMEWsry8NCa7q6kkvahapD2iT6+9ifrxO3MjQr2VOcU8pjE7vVM2KDx1s/s8xiEnvcnayTw7oLG7DXTEu0rZYD2IywQ9OndIPY0F57x9EEM6iSYtvPzowrtoDVi8M9nHOogAlrwpTZM8/REsPWrMnrzZPzS9YmaBvO6swTyGQU87cGqfvSWgmD1XqG28kC7QO4rxG7zuegK8beYNPGrMHj0brfM8EuwtvWmgYzp2dZS7TP93uknfBD3kjQE8ZVS1PGKYQLxNHws8JAdpOvFoNr1TzAW9iV4QuqWer72nkoc7xovJPOzteru0bby7eNOOPAVA5rt1TKu8qepdPDdUgzzHtwS8ueWlvH8EG7vXFku9AoqVONcZnTzimSm9mhvRvE5UnLu1zoi8XSBXvKRydLwiS/Q8OOcOPZLtljzpzYc8UqOcvNXwM73mezU8KFm7PIR8hD1tgu88It7/Oy049TsmmnS9RM5rPVh5AD02kuo4b0E2PO4WZDz9SY889UpCO2gN2DxP5yc99uCfOyDznTus0o28ixqFPF7fHb2LuTg9fX23PNv7KDwgj/+8ixqFO3SEDj0sCYi7pHJ0vKfBdL37v1k8+1U3O7tsibwByPw8O6ODPOVSzDzTlQu87IaqPOKZqTznDkG8cNFvvNisqLuLTES8o0OHvP6ktzuNclu7Hf9FvAq7IT0G1sM7BtbDvFRZ7TzGWQo7XPdtvaoQ9TznEZO7kriFO/tYibxwZHs8O9gUvQu4T7k0bFM7OXqaPBcvBjynkge9tc6IPIdqOL2vizA7bnmZvDJGPL1/OSy9pjG7u6PiOr176qs6MbaCOuvzHrwj4dE86TcqvXVJWb1ZO/k5FgYdvE0rM7vLk+w79qsOPTudX7wZh1w7JHRdvG9ECLxjK0y9quEHOZzalzvy+G+8PuzfvPbdTbyTgCK92midO1RfkT39ePy7yEe+vHXiiD0wisc86TTYvKw53rzRC9Y9k4Cium2CbzqDhVq8FgadvEiw97zjwpI75uXXvN9KKTtimEA7vl0PPcRohL39fiC9TJinvPmZwj0i5KM870KfPN6CjDxzI0K9skRTPcRlsjxuq9i8/qS3vAq7oTzrWm88aKO1vPW05Dz5lnC9pZ4vvHKTCD32qw686sq1PNcZHbzYQoa8ZVQ1O3KTCD1pORM8H2CSvNmggDxrXyq94HBAvcsA4Ty4Upq8zSnKvFJui7wzQ2o9N7tTvNeAbT36KXy9KYIkPdk/tLwXzrm8aQQCvpN90DyiTy88cyaUvLLaMLz3Pho88pEfvYmQT7up6t07CY9mvRmNAD1/Oaw8AV5aPYFccbzaMww9UXfhPEHjibwlnUa8FaiivMaLST2BLQQ7qIC7usZZirtykwi9VxViO4x1LbzKbVW8IVGYPB2knbtx/Sq9M9wZPADOIL1TzAW7xGJgPbHdgj2H1Fo7zJNsOuZ7NT1s7+M8yQaFO/VNlLqdZ3+6P4UPvSuouzwNd5a7kC7QPB3W3LwflSO9fqYgvEhJpzyeatE8It7/uxJW0Lx/o049CY/mPGRRYzzO5b67kcHbvKQLJL1Pspa8kC5QvG9ECD3z75m7fwQbvSUzpDv4ZwM9479Avb3HMTwc2S68Lc7SujDrk7zkjYE9W2RiPLsLPb3et507RZAEva74JD0z3Jk7krgFvURkybtvRAi9sCGOvEJBhLt14gg9ungxPVcYtDtUKoC8r8OTvBCRhb3/N0O9jQXnvBWlULz85XC9fX23PC2cE71uq9g7rvgkPFEQkTyFDxC8LdEkvURnGz0wise8Jpr0PD5Z1LxdI6m8YQiHPRcvhjx6j4M85egpPfDVKjvkT3q8PDO9vIN8BLywHrw6TC6FvP7cmruuMIi75I2BPUlGVTyT5/K7IL4MPeIA+jw54eo8uB0JvdcWS7zkUsy6s9qwPDsKVD1VvQs97j/NusaLSTyOCDm9Nf9evPbgHz0zQ+q6ls8iPTwzvbuVPBc9fg3xvOgL77zGISe6vccxvSOvkjza0r86x7cEO7ni0zwxHVM9G0YjPPzoQjw29gi9ygaFPPDVqjxltQE7VoWoPeuGKrzP5b46+ZnCO6sQ9bs1KEi8CvMEPIOILLyDiCy91u1hO+2D2Lsbfga7T1HKu1RZbbx8Ufy5/FJlPD+Fj7xM//c86KHMuxcvBrxkvle9lN6cPSp/0jufk7o8dLZNPZQTLj3Ux8q8bhX7OwolxDx5mFk92dWRPLmwlLzO5b48ywMzvSWgGLzqyrW8GfRQvABeWryZG9E7paEBPKPfaLvDnRU9AvHlPLWWJbzkVR69wzxJu19Gbrug9Ia9uFIaPHkxiTwC8eW8zrzVPEyYJ73+pDc7iZOhvFDkVb3tGTY9GYouPSVrh7yfkzq9ifpxPdmgAD1JRtW8GYouvRjCkTorpWk8Fgadu3Fkez0jd687UHozPMyT7DrBFjK9/zqVPOtdwTxrXyo9WdQoOtyRhjsiTka848KSvH6moDx3csK8Y8EpPCmCpDxoDVi8UzNWvSVrB70OCqI84N00PXO5n7zPT2E98NJYvKJ8tTxoShc9/+tUvcV9nrwAKjO8mxyru+35dD3KY7I8j0z3u/f0qru6kge9GGz+O8HyEbxgcBa9w+Q4PADumrtOIy89WsRUu+h+hzuWcq+8JxEwvXF/H7oBSSI9cMkQvc/wBDxFZtc7HX9aO+YEET1XO4488kqvuxzLEbxjRRS9F9VePbacVD0IQMy83M1CvRzoOrsJQhI5+3+3vKcJCD3pjVe9CF+7u0zlUD2qlBS84Xc+PHahS72CQnG8PwgTvSPfZLqXkZ68b6ohOQXUrryIV5M9XrqHu+DQ/7waqty8kwYSvfQfrbxno1i9LvmJvI6117wfVFi8z/CEvOmNV7w583C8lbygPNTWmLyu/us8t2ICvDcPI70gkjY8kcizOqDGprz8nia9NJNmvXq0p7yCMyG9DFOovFE2C704xTE9YAXwvEFy6jxC3ZC7JEqLPFpMpLuA9UI8ISnWvD+d7Dss9f08oV1GvACD9LzSWtw6AUkiPVd3Jr3BPXq8eXbJvAFJIr366Jc8LPX9PHxLxzxAvNs84FhPPexiVTzqU4W8nP8BPewoA72lcCI9pwmIvA0JN7wOR5U4RqQ1PU4jrzxyFr+7mUctPWbtybu2nFQ9BZgWvFbQ5zyovVA8N4dTPGEk3zxzNa48PNiNPdtF87xrl0U5Fz6/OuhPeTvlqQm9lLwgvCycvDswc4C6Ksc+PBRpwbsQv0U838GvvEFT+7zmBJE8Fh9QPZLnIjz5jZC8qL1QPXRjbbto4TY8iJOrvdX1hz2kUbO8B20UPNrbmzw3DyM9/7ECPJGpxDxYlpW7xbm2PEuncj2gig480eKruquxvbtB20o99bZMvV1AkTyyuAa9wT16POwJFLzRxQK83xpxO4JSkLlnhGk9jP9IPe0Y5LzySi+9CxXKuxDetDu5CPK8onw1vYY23rpmzto85gQRPQm4fLw4TYE9a5kLvVDbg7wcyxG98FiIPBqq3DvnX5g8XZnSvK0OCzxV+2m8OgMQPBe2bzyvtHq9xxaEvOnZDj3VTkk9mSoEPVd3Jr1Xd6a8u0ZQumJiPbxHwyS9SXmzu+85mbyw0+m8WJaVvJw7GjveosC7PDFPvU1CHr3Emkc9tlJjPCUdQ7zry7W8I2c0vIvB6jtuEwI8AWgRPbac1Ly2nFS85ONbPQPih7uvPMq7ItCUvG5sQzu4+SE7dK1eu0tOsbzEQYa9NP6MvMFNGTw8qf+81QTYvHru+TsoiWA9bdUjveItTTwpMJ88LpApPDeHUzw5PeI8yUTDu2y2tDzxsw+9E2lBPeGWLb0hKdY8r+MIvWoAprzkays7VaIoO/pBWb0k/tM8dsA6POF3Pr16DWk7/a12PdVOyTzVbTg8I6WSvDN0d7z21Tu9V3emu2bO2rwJuHy9tzP0O2uXRT0xKQ+9eDjrOw9HlTpV+2k9KqoVu7IRyLzDXOk71ownvNcjx7v93IS868s1PI0BjzxYDsY8H1RYPVfvVrzRphM7Mb7ovNIBGz2wmZc61LepO6JAnTwbyUu8EjuCvGgrqLsZ9M28+WBIPAlfOz0v6Wo9WfGcPCiJ4Lyrsb08DuyNu5ASJb7FMWe9jtTGu3XOk7vry7U8uPmhPIyWaL0PN3a8feLmOe6/Ij3QpM28jJZovRH9I70Wa4c6rWdMPEPuJj2mj5G8ZVYqvPwW1zx0rV68S6dyvCWVc7zUtyk9UHBdvNhhJT2iQJ28xlBWvf1zpDwAKrM8j9YMvNQv2ryYCxW8664MvPZs27soEbA8hhfvPOPEbDwOCTe9biLSO3kdiDz045Q8/wrEPLg3ADyTFeI6glKQvNv6Cr1ubEM8z4VePQqdmbyECB892GGlO6MT1Twy3Ve9ZRoSvW9uib0y35070xDrOvQfLTy+Way8MZ95PDnkoDzTmDq9md7MO7IRSL2Mlui7n6c3vZMVYjrBptq8qpJOO7lzGL2Mpoc8jrXXusw4MD160xY82Re0OrqvsDs7uR69kalEOyfyQL1QcF29uidhPUTupjyblNu8GZsMvcuRcbxo4bY8q5QUPUoSGbx16zw90xBrPtSaAD0RwQu9NXiDvVkttbyMd/m7ZRqSPIYXbzx0rd68IbGlu/0YHbxYDka9b6ohPMAPuzuQEqW8RLKOPLTJHDp5/hg8E2lBPee4WTwZE7066uokvDsSYDySfsK64DlgvXru+TnHFoQ8GF0uPRBmBD3yo3A83c+IvZv9O7zyDpc8b6ohPe7ekTwCHqA8fYklvFbBF71OQp48i+BZvKcmMT28ZwU8R1pEvNOYOj0+UgS9787yvHHY4LtjgSy9KqoVPU/ZPTzM/Bc9y/pRvQ6BZ7zjpX07MAjavM/wBL3vdTG9rWdMPbTmxbxxfx89Dzd2u0IZqbzqrMY8U0XbvHFgML1IAQO9wlzpOoRh4DlcIaI9UNsDPbeemj00OiU89Zddvc+FXjx17YI9sHoovZKrCj3NsGA8y6EQvV24wTpQ+Cw8h+zsu9Gmk7wf3Ke82YCUPLqvsDxlVqq8FEpSPd3PiDz1Phy9zDgwvBhdrjtqACa8x440PEovwrz69+c8LX8TPAL/sLz/CsS8UTaLPF1fAL1hJF+9qhoevd9Yz7q32rI8dMxNvf2t9johsaU7Cbj8uxKUQ7tQ+Cw6+vfnO4poKTwq5q07FPGQPBTh8TuIdLy8aCuovEun8jw9MxU9AuDBu27kc7vz4xQ8V9BnPRqLbb0ZE7087oMKO8nMEj1Voqi873WxORhdrjx6tCe9J3qQvSyeArxJXIo8/VQ1O5SdsTuM/8g8hr6tvCBzx7ys75u8qt6FvNoXtLyA9UK7OMWxu96iwDyXCU89c47vvC1/k7wgc8c6Qt2QOxEckzyb/bs8MmUnvPLC3zwOKCY9wU2ZvKSq9Lz39Kq9lICIvGejWL2ZKgQ9nFqJvA3qRzzHb8W8feJmPZscK71Xd6a8DuyNvJASJbthyx25YI2/vAfIm7yXVYY9O16XPY0BjzwJ1+u8oMamvOD/jTyCQnG8F9XePFwhIr232jK8agCmPCCSNjz5Imq8BfMdvX0B1rzT8Xs9z/AEvYSAT7pduME9cX+fvIDW07x+IEU76W7ovDbTCjxaTKS7u+2OPNE77bzB8hE98qPwuxtwCjyovdA8KTAfOyycvDsTacE8xtglPeyBxLo0/oy9HH/aOyUAmjyv4wi9KqqVOit9Tb2d0rk7lPbyu/CUIDzlqQk91ownvZW8oDleugc8bHocvADuGryOtdc8xbm2vEb99jwzG7Y8TARAPGz0kruEYWA7HH/avEyMD73FMWe7664MuhwHKj0CHqA83qJAPNMgijxDVwe7Ksc+PF8VDzytZ8w73QshPWG7frwWxg68HAeqPM2w4LsYfB09IsD1PF66Bz1vItI88+HOPF5PYbtem5g7HH/aOw4oprwnavG75iG6vGAFcDwLvAi98kovPScRMD2AfZK8pKp0vfiLSryTX9M8gjOhveRrq7w8M5W7nfEoPD1vrTxzjm+95plqvSYfiTt0rd683c8IvAnXazwELfC7Lsr7vLj5ITwF1C492XB1vNMQazxW4Aa9DerHu+okdzq6koc9EpTDPJW8oLx+Axw9BwLuOl24Qb1nlAi9Cbh8ur46vTzg4B69CV87PVGuO72b/Tu8B20UvA2RBjus75u8sjA3vXM1Lr0Tlgk7nbUQPRVMGL2P87U5yURDuy9Ukbx/XiO9BC3wOmbtSTtdQJE60nlLvHXOEz35Imq9Nkn1PMyRcbswJ8m5erSnu8V9Hrx9AdY5OeQgPcVBBjwdJhk7Qfq5vBYAYb3jpf28s08mvdZQjzwjZ7S7n4jIvA5ieDxvA+M8pDLEvDwxTzspqM87xLk2PJHIMzy8hC69nwB5PdqfA7vMOLA8W4qCPPcTGr0C4ME7WwIzPekVJ70/rQu9agAmPWNFFDyblNu8yAblu4GMYjrWUA89LlJLPZscKz1WWDc984iNvOTjWz1JXIo8fiDFPBC/xbxsehy8lurfPPNpnryaVn29WkwkvZp17LxfFY89WkykPEYshbzj1Au838EvPSycPL0BwdK8u+0OPW+qIb26zp86W4qCPHEkGLymf/K7GNXeun0B1rwELfA54rWcPETPN702SXU9uQjyu4TMhj0Dd+G8G8lLvQu8CL4RddQ8ZL8KPUVmVzzMODC9epU4PGgrKL0lABq8Zww5PQCiY71x2GA85C+TPXRUnTv3bNs6KajPO+kVJz3mQCm9vRvOu8/whDxvbom7T7pOOxF1VDz6YEg96SR3uwqN+rrhWhU8SVwKvccWhDvkxOy8gjMhvI/WDD028LO8IbGlvJ0rez2bHKs8cWAwPcQil7z/sYK8K33NPImymrz0eG668+HOPNxVEryO1MY8iQvcPDxQvjzlAsu83M3CO3XOE73sYlW8IyucukoSGb1wufG8nwB5PWlphjz8NcY8RqS1vC+QKb0HbZS9WfGcvEoQ07wKfqq7nmlZvLSNhL3jTLw8jHd5vH0BVrvk41s6JtPRvGAF8LvRppM7AA2KPWnCxzms0Cy9hYBPvL3CjDsOCbc8KPSGPGbtyTz1Ppy8XbjBvNfKhbxoKyg8c45vuplHrT1sepy7HZ5JvfR47rsQohy9I99kvao5Db3dzwi9t56avHP5FT1KEhm9JP7TPPNpnjx3ocu7dSmbOycRsL2aVv278bOPO50r+7qO1MY7cEHBvGpZZz3ug4q8SOKTPMz8lzvu3pE8xbm2vMPHj7w1aGS8R8MkPYWfvrxRB3082fhEPNQvWj2tHds8yHELvckl1DyECJ+8+ItKPOnZDr1OI688rogBvFUa2Twsf5M9Zu1JPZ+nN7yCUhC89OOUvFEH/Tw7mq88WsTUPEBjGj194ma96NfIPMCXirwzGza9aKNYvA839jjT8Xs80Bz+O0nx47vtoDO8sjA3Pf1UtTzKYzK9W8aau9Ac/rzSWlw7NJNmvHXtgj2l6hi8ozLEuyhPDrw7mi+9xlDWvFBw3TpM5dA80cM8vZCK1botM9w70Dttu47URjypv5a8BdQuvP2tdjvRphO8pehSPFBR7jsFt4W8Y2SDvBoyLD3XqxY9OeSgPOjXyDv39Ko9E7Myvd0qED3J6wE8eg1pPfpBWT1AJwI9RQ2WvG+qob0V4fE8S20gPP2tdr3xsw+8GovtvJeRHrvMOLA8eXZJPXqVOD2RQGQ8jR64Olrjw7xlN7s7nP+BvZ+KDj1u5PO5VrF4POmN17wQZgS92CWNvZ5p2bwYEz29x440vMW5tryWNpc8+SJqvMPkOD0Cwxg9OnvAvLz8Xj14oxG9Dzd2PGOgG70TK2M9tSSkPH8/tLx0c4w82tsbPPR47jyP8zW9A7U/POfXSLztoLM88cJfPMUSeLwWAOE8pq6APJ+nNzyzEw69mIH/PN6iwLsJ1+s7m/27O/bVuzxCcmq86qxGPd+FF70="} \ No newline at end of file diff --git a/dsLightRag/Util/DocxUtil.py b/dsLightRag/Util/DocxUtil.py index 960403b4..ce62e5f0 100644 --- a/dsLightRag/Util/DocxUtil.py +++ b/dsLightRag/Util/DocxUtil.py @@ -2,7 +2,41 @@ import os import subprocess import uuid +from PIL import Image +import os + + +def resize_images_in_directory(directory_path, max_width=640, max_height=480): + """ + 遍历目录下所有图片并缩放到指定尺寸 + :param directory_path: 图片目录路径 + :param max_width: 最大宽度 + :param max_height: 最大高度 + """ + # 支持的图片格式 + valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif') + for root, _, files in os.walk(directory_path): + for filename in files: + if filename.lower().endswith(valid_extensions): + file_path = os.path.join(root, filename) + try: + with Image.open(file_path) as img: + # 计算缩放比例 + width, height = img.size + ratio = min(max_width / width, max_height / height) + # 如果图片已经小于目标尺寸,则跳过 + if ratio >= 1: + continue + # 计算新尺寸并缩放 + new_size = (int(width * ratio), int(height * ratio)) + resized_img = img.resize(new_size, Image.Resampling.LANCZOS) + + # 保存图片(覆盖原文件) + resized_img.save(file_path) + print(f"已缩放: {file_path} -> {new_size}") + except Exception as e: + print(f"处理 {file_path} 时出错: {str(e)}") def get_docx_content_by_pandoc(docx_file): # 最后拼接的内容 content = "" @@ -15,6 +49,8 @@ def get_docx_content_by_pandoc(docx_file): os.mkdir("./static/Images/" + file_name) subprocess.run(['pandoc', docx_file, '-f', 'docx', '-t', 'markdown', '-o', temp_markdown, '--extract-media=./static/Images/' + file_name]) + # 遍历目录 './static/Images/'+file_name 下所有的图片,缩小于640*480的尺寸上 + # 读取然后修改内容,输出到新的文件 img_idx = 0 # 图片索引 with open(temp_markdown, 'r', encoding='utf-8') as f: diff --git a/dsLightRag/Util/__pycache__/DocxUtil.cpython-310.pyc b/dsLightRag/Util/__pycache__/DocxUtil.cpython-310.pyc index 1281b3680345149786c2736cf020674247e4562e..e3f46baae82e5ed52ea46f6f479f35edcde60005 100644 GIT binary patch delta 1390 zcmY*Z-D@0G6uLQ9L~ZHUcY|wcpI6dAvsj17@5e#4WuJ8ZOW#ygmu|W znd%bK6%$`XWvwTojF&N&&pSrV>Man2dcR?Wsv_k6Dgu**JqkN`9<(Nor4V&+gf{Rw z^!~L8DWa-(AG)irdSe<`2R640h-N2uX#px(r zS0_lU#hEZ2;Yd4%A`)eep+ypBqpV40WOg=<-b1ED5k-p<27WdlYLOOYhtVPiE;Hb! zNSuq(olHB*g-ShJ&q1<$l<(w4DvZK{Nh5U)nR1j{L*LOwkR1-|sxP9zX@OKcmtc!T z6othr*D;C<7|jns45c3<6&{HSi})bUB`7d1d{CIpo9#Z+!Yy#0O_>tltTyigbXo~k z@54`$Pp|H*Z6*)D{NusL-Iayz`bx64y|c2M{Csccms{N%+sQ|Fy4RMI&2N)CTgmMQ zeZLXkV1`pNZDv(Nk6o$wMmRlE8h8%E{dxa(vc06WMVkN29b>N2vQ1&xU0+CU{*Y`w zOt!v198s7|TXtC0m>V9ok25Qyd;JdYXdTP?~f!6G)9!vuoZ)Sid z_wV-0Z*Py3=4t7LGo@xqh;J_Ke15gm6a!T1eswQd-s;`>W~5Xe;=~I$Z5fRjE;qcE z#kgv@X3(<3X--9ZoYp@#7Seq*j``JwHBYY?(>QP2M$OrCy>7S|3?(TkUjhHX}?xzKV0 zaEF?i=Y?!$i2m3lbfGXnv-hB T2;>z5!-;`|frF8Qk%t)owNX@N diff --git a/dsLightRag/static/Images/5d29d93325124e6aaea624b236a57e23/media/image1.png b/dsLightRag/static/Images/5d29d93325124e6aaea624b236a57e23/media/image1.png new file mode 100644 index 0000000000000000000000000000000000000000..dd26f14bd8be6ecce7d2ada6dd898b764c862354 GIT binary patch literal 211934 zcmZ^~bySpH_XZ3&4-O(-N)9lTq!Q9Ozzi)Q64Kor(jbl0&>a#YAPv$jAOh0eN|$u= z-MqgC-*>I=`~G0La4qh$&p!L?eO=eyCsav68tW11BNP-AECd{;jDiAsj)L+421Wz^ zhaN&p5B!7bs4Ojx@@0U01Na5Q4zA&df`Z+7_k$YGj7^4ua$AjniK)8jY+p~flCPyK zM5%olz~g(5!r8_0N@H5aWANmI>8)Uk;q7>N(?G@GK}Dk1OIMv6hSg!6=CV>xeX1x^ zlZS{OxiC6qLZ&c0*g*DB#6bMuX~`yfE7%vM2Yr8(O$;lmezRmy>!)|iwcx_qQunuS znp#?X(;+B$5Hy%C7#EdB6y$<}I>S||q9U>2Ip?~&?YSUP^a-Pe5#4`Cs41PQapL+U zHMB+zk>HAgQQt*M0~!6PZpL{3$N%|KDx$S~NBkN0!SyN5pf3DagiD5Qz}~I9JS@*i z*XQpjh`-d}1i@oRf2jTxz5f8PlQMHqbVYn-D%s6V z!$VzfzSBiN9Tt8TSi4vPM1h7ka(mw!5em!kvs1@43;k-&DaPPUit4_&UiV*DgtYQ7 zpol5M`y+I&oA-`L98dS2bouvB5%1}_f@YSi&2V+0vkqrJGjJBH*LU&h4q~kirE|t@ zqPP$x{osh;|8wYnY$8MW=2`U*Dqgu&-?l#m<5xzn@M7|Ju3D>V#&BXI*yBEc2SjsQ0bqU9oVC@t&p|L1&kUZ8f{f1ld!jIhKR%uH^&4$siCvpSp5 zXis3BOfcI*8cSaf(OwD&pOb>@x6TJKBoUVbs8 z&Z77cF-@5_u)FcW=z;&9JFed}jju5Dx17oHH^tNDvyoqlBIZ-YhEsjPjCPHr;Fo)R zUvF1LwuIk3OM)v02dK^`y+Av)kNKk z!Ayy?+%$y-N_twXj1|#g?k}*K@uw*t3JwVVn2x}I^@pzB!^P|D)mmXKO@w@oTnSuf zNOj0K5f36S9`)dV?5X(&wfnhjSDlCJ#h~YN@10-+i}7;#(MfSXR*B`uF_j=4r7`u1 zFT1*4qvrz+F$u)4Ue$D^kH}lSL-V&5F>sqccnN#?zs^pVMtNNmUBT^jI`Do(_p$CZ zTc!yfenJ7=eoarR6^UCWmA}!1bf%NfevzFlrzG5E-cY&0m1R+*WNv7v=YQ^+C`gT_ z6@)0~I9#0Xa5N3_Ib(a7Sz$F}Kj9|Wjmg74-B^6KoIW>4qNE>Z?A<#USeW~Zkd|S;k^q^w5En!Y-%;Q z&!6i}H0()gX)%dcEX9g4yk$TghHio2whVt$Sx9RURL?@w!mjLgIB#gLWl&LZCaBJe zDX@ezMtWByPH0jw?L?Y=sV(kt!BHfcUox=+R<8EVoWuZm$=v`WI&Foh{Q- zera?ZIMkO>KU=m|Vv2$1mY0{0&1q_C?h~EQ%gf7`t3S3U3W<$qMDS01#`ubd&&nw{ z>vO)`nirnDgg3%r^>r%d^FQ*-b~%RO6;G^eHa)k}=c7c5W-6sm&Z84*H<^F>!4{1P zAo2$lp(Drl5l|f8D*F?vh}|2W(`w<5^$5fdvdI1T(eQM4&f{czs@js|2q8!r?4DiL ztI6P$-d!12G8EG$OY)FS7xt<1nI#Vatz2v?K1iMh)8JEf_H}x#tJl%1xp^-c4!C2L z!s^jUKRx8;SofA&_@AlmzMtoz_x0G1gkFg)kxI~Qf6jHG|HqHw5ygu9=Vc&j0w!_I zY$bTXh+XC5$B$=Qe5ja=uCK2h9UaeD2{GR?g3F3GemL!85|qht3h?o{oewYOVFG2R zq|xmeF?7i-hQL3xzNU75^ZZwAeUnEr#J-5+rxeH{8O0o_nL$BHcAs{n7GIkqe;;KB zW{Gm(Cu!vu6g+(RaBr?*VqzjuCR_LGPM}Jb-1^~}yq6I*oH(DJ%Go`YV+;S-j@l$QW3uqrnLWF*Rnq#3$a+1`FIjR zF(wX}f|Qh$67Kd=M{wO+Y=028n_{w+AR0ey_d7h~jcs$i>uPvlHmcTypjgFMKTk-q zmB8`pywB0h#q}kVxVU0JF^y=75vDvbR{X!PhS4u&7#i;AyAQs|6OE9QlY# z^6?>2m-)+iu>^OB35b(P6f|b{*_h|Q<9o%E47#?NK>TH5uiVH20&1x*{4vH=#Xx0Si&2b zK0iZfG`xz^$MBRPle@{~Nfg>UxXZVXW*GrK3Oc*04*1I36OQ9p<)aF4e>MhRaWirgN? zGAQOeOPnCfs5!><_59I4@Zs&b$ywh>;iYR|S6c5(O)Cquu?Vrx&P{A7@aJMTO2ksw zbCe_^=gXn{7x*3>8ha*irip`TU*Pw5*!s>YFtYLbWajo};r3D@7(1JH?{KhLPyx-@ zAB+))!PA5PWV~S3+S8N#sRrX=;Id{kqYn5V+qd?!PcUTATP}ASe2(Av{1Xvi63%Rq zOEg#)i-Y3$6KYfY1XjCssrDS&FEp=cV#Ze(POdHnA@D0G+~r`U zB7QHOt5+>Uh*aSJqI&x=8nXqy>WZY(vdB&Mt=n=ZMy_oM+_Lq70Vw4k5S|h z&(kSymVz66E>>on1YD@2(gfDUbFIZFAIZgnEqG_$j(VC!Zo?C3Z2|(&RM@|z%pZTo zi0;0AJ&2;6`7c^*l>w<8eU(7Z3SD|g<>{-o6%s4@pxFCxx_0HU8*P<5$CD3IA90BQ z%<8%~Pb(b>IT@ax$8G>e{uyq{(#ha7f~iL1@CXQC>c2l?&5d2E`o*eYj-3)1(rGDf0LkJ1T6|4nt2Qys^hU!y>Pwj zdV8UJyVY{l*8xdKf5ITHnA-D$X?%wxiXz!xCc&%sTVjKcY(pOJYmU0xk~oB&wf{IXC*Y!nB;@?M$26wao(2$xZ(k$(Jt7gc9R z&DG21qeY{?jcUkNTz1T%!=>&ysDF33+7(Xnsu7d;{8-2PvYD#5>aEM_H^uk5SI?cV zrA>udNr^w-&?NUYnLkv+pBe;V@K?JwU-MufcP?4BI|XRvD+o-}ca!f!+#L+zK%?-N z(Or)SfwDEaDWDn|^H0Y~@4yTXEf?i|&}zL$kuh&OzL{CL zIa!Gkv9Yr9j0~ipyl!r8-fO9uy!fw?AaJKJOI$lskRX!{Wd zqp0HdBm7MEskzFnYhC9IcV_hkQGX-LtC*jRZ{&TsdOyD!^7{*2TR(#I*r%F2PE9kt zf^;Gn39eWSF~(;%oG!jake%)=NIz$L6wgusCPkmFn{5!WTWUW$raC-4%->OOY~`=^ z5W~+PA>tkiMCYP%Za!A{S|=H2?2aGW%0mm(vQ&A-Iqdt0Oq53H`>n+2bhJLCC~{5s z^zERzxW703`}gnPl>|q+A z&U>3TW8K<&%~aOb1Vq1o%X4Ulf*V=x7$>oL{oj>#;3!O5>*@!qskY63zLA-U`Fjdkd1Zh4 zkV;BZ6A@jU{Gv%e92X*AAxR$=bdUA2)G*w>A#3N|F?BPko;@Wc6~|)BwH@0mX>7EA zE~d;fAhfKK+v#Q0e+U`q-y;A71|2jcw7R;QLcoP3Sx%VQ z3v+^zI2;`RAtGYu*QVBwQ608HoX6O2>$whgY6E)_^Bjw0_L#S7T%nAJ^6~L6uJe1| zd+*gf3ZSvUMom$SO)cLrqUj6&VB{>}-NOn}P|gtJbiJ#qs|bS^W|Is(1H&sX*^#Oe z`!}f^GBX^*9UTuy*s;AljP)I6xv(CNd0V?mE8?F`(+LmH&R(B*2<`cVIA|dUgQvAp zIdJ*u@IFxkCv0K%;=h_r4I65J3_m}Abo1}i%S>ky_>}+1HGsPU#q}SmEwr<0)eDOV z9_(KQww1E6e~5Y-6sfjTjDfLf`CP*QlZMK|YS(+u>qzQ@>mKsz#`Jf)^_+B|lmaLN zdZ+3wRQG|G8xp1E|}yLRw4%6yYVCjQo8%wFwKAq2H`$4x3CcZ z@k`@lU@S=CG&wn$!kDQLj2s%e>C?q}+nkn~762)P7?^7m(_ygp`sL@Jyju0}^kBZr~;(MI38 z(Mvsrj*fo^4&n9vB%vbe!OOMP2wS(cFcUad8!Q!8I5|NE8wKAo?X=D?$X7gINVoZ$ z15NOJN1B?NuK9Re;doG+{(*sAa(RD+kg1KrHrtk`XPXCC`_YAoO|2odZDTgF{-e=W z?kf@6Ef-(C2X*N7f4F~7<+gSL>IQ%y=--WTicZ|K$1-hjt1=oVLRK~$Codu%Tm*O}Kf=dIM-a{fkn3?IB(Jf>fxJ#@6&V*CTgy2_Qm+& z3e*k>@xn|oBI`z2t+RoVd(G0n7o2W=RmP!xF;@9}Ni6#Qu>I~8R_Uly?<4yaZ^dXO z!_J)pQ_<6MmpjTn@L^u;U$cF|g6~lhrr`_XpMLSxX@$fBl zsEV-=)dL_r_Q5Q4-wfVIMl{|Oi6k1%be)g(;4Fv;`mh}@HtY285pz~!azsJI4LHSU zq;n#qBX@7kMpiqdugjk#PwQS+4S{vIfeKmbj=p~J*B>OPTyiiUv z0*7P?k_x^j#1OPW`o*!)VXhrMdwe5nu~@+to;N$3CfaHT=NkgGRA~Z2-q#lIs3Wwb zKNHi?hD0Sfq4mI`n1AFF-Mpn+D46mhk`kpi5-ETKq3fA5TIaM@44{A~G4 zM;1D8RF+?8V>~T7k(k3N5UQ0c6Q%LQFZPGrDtkL*mU)pYjGr}YiwaKPP&qdt{EaS! zHk_o%EFg zM=p$t8u4r;2<{{@rIP@9x;HQ4<9@bTdtUdHE6;Q&=KJbCIXkmOMNz})dz^;(cMQ|h zG|$2&UdHeMH8cZ=GYlcJ`^XJx4Z`zHHfoz&bn+QT2+89=Mz2llrU>g}Of;nw{OWUZ zwCK8EWLm&F;yZ1p6{D&eoW(fwMY}=xB6sUOPR`B_^0Q6d%xqbKp8^b|_WuU5GNA9j z4*;Cx=uj)jiQpwaIrr3JR%qY8{MyjmeB)@^-F*E;kh5i!EQuD>zO8{px}PIqA?-0tj0nNC>$N(Z#bGsnsW0tHnOwZ!V{&Mujxg& zce1cB`X=yy7R~j~Ec0n#RXaH~9kzWr75-4`DpPTglbCag=a&u#LPa6Xx!&|1$fSy) zP~t;vuyAm;>Tik)26|1x_E@{Qk%PxX%!Utpt#xAHB3h4xj&F2$_`7BLUVfG?~Jidig4$+84GJ`$&2v>j<2*(A}zV~%=yI{FgPo13dRcq}$Z zZ9Ry5D7MdnV_`lL5;Lgm>0LLMid?B0%^m?WFH7#N(TGG8aM=Sxe=Nw~faVTRA9u__Q=VIB9|Hcegs z>2_{#?eiAFKu%{UlWNNY{#PCuk$C@Cgrozv&It<(-vG>-+G~rCVs@yZsiC2vq@?5< zCMu`c3%=(^JMl}*i6l}%aw?pX197}s`*Kho28^2vqpht1cae)+{XJnfI6T@a^kF=@ zM&(^+a(nb=>wSP)VWHVY8NEm*duelZbvU@LctFmH06HC(rA@@4Fbh8WzKG}#IG$eT zOM#A+*IxN*6};WJyqMwi83-I5_F7w8~lu$jf8voY&u8P1W59 zH>ulM1#_E8)8fMc8v2fjuxO9>&$nFw3<|ozv4Y?Esi~y$(mHKYi2L4zx%9wBtp9Q> zLbRSy@#b+Hk*j@xVz(#Z(;8=m5ZV-&G_T=H3CW+iv755cr$;#Xx07?1Yct zQ~a*Gvx|$1j+%7h!L0~~tFu3Df;y?m3SS_}6hMXQ2wz*JJQ0g_tFE3+X^Auv!0*1K zDgXAd+r{h3z9aknBiX4O=TUSagi{KIqVG+D%N4CC%KZT~GNKw;2zj3EhqE_}M*lju zM*M8JULX4Cak_ha?#cZLLEiT)cU7v?>vq3=YU<(X2jw9GsLqsb55AENwS3W^o+ZF% zpG7?3fpkI2H9AM-*+3d$0H8;9f&X9l?1qPC21k3)yXSLzS!p^b+~O+W1Rm{~v2B?f z9#($8GeZpzJ1h*fT)@c?5pq3^)KRb6;MDLRZmH?%D~ERs(F$dH4m%x%kcJ~6?_wB& z<|RNGKo-XkqPV{#A+6J3h%sga-sQ!`&FS9c6Z4~^M*{+Tt#bH5 zwB&(B7UmM))%1nA-FF&-O+_;6yj1#3cPs(|qzUl1(b%PFj-?}yJWn+GLRW5JZ*jXc z>mQI};!R=$=VKMDk?R5Zw=nMygIl{Y`b})-8_z{<*KV%>k<3TPZC`YxYHjpZ^0%&$ zb<^p*hncLhr5Jv9xoq-}$*4D%0~r}#9hr51kfj-NvbGoRoRRSG5nAy(83916nnGkL zDi-q29EVif%oM*x2I1X`W+C`+g$m+UQ9{zfIYH-M^5b+i8v1`q36 zb_8J%!W|tsLA{rIEm1b12CR94l<(Hn> z`Axu@XXZ2Iv28GaS^0Us;iUQ7D=MT{&j@^{$q5#nMiYidi{8=%G}g?a}AzL zYAfnNQk~b)v*dz~CcEF{nbV2nq^sUdxy+`=Qp^_wk)CYtU5^z|FenBho&6bie5dlY zplGEZP@-=0AuWgT+L>%}e_2m43=-R$)j0NVlWwcf#(}Wr;%p`AcEsmGkwGC%w0=}( zO>60NSA5}HpdKNjV1)6D^WJnA{6^s|JpRdQ#qVkcdihFCsOCkt~ANqPQ zuQ{lQENqKh|NaprLR$E4au&;PL~@)8k4X!c!CUu}&7j{dFj3&O)vu)Tk+E+JCUe&< zUOWe!{gXia-#ulGV_4PD`?ZR4fM`Gl4~B5mVGu#3c~_uA!CkFKDi+E*2|qX&jC|Kj ziYoJDij0g5$a@{YW^XsNY?}g4b{LzgsY6)%#GughF@`lvg2TWKCwn%nfnU|)Q(SU= zTXu|(&|q+0NOy;YHq2b%LJOJw&5Z+Jl@Q_UsNJ{5;C)lK*Ed+;(`b=9+-SaJy&tJA zIJ>hSvtPkJ`Sr5(i=wc#&t-|8;R6gLRa|F34NC#V zpsG#>S_55(G2WNN@1fD;@a}`7&{K)VeVtN_N8>l^68?<+w%&)SgTj|qgBe2EN@m=f zW?e-n3DL^fOvaK@6QpJ%1%sw%W)#!;kB6kGmY8*D z^(sistCo9X61n4ty}vf>d-+)K#Syfd1X4+!+jC>kPxd`(r9=p zq}2i#_tC(j1H$*7;C#XrMFB~<98vPwEusup-Hf$dyt&<7xE6?;i7ZG7_6t3Y$_8tWn`{YO_x8RbxDb?lPt@WLFk&Z z>Nk8VCoNMKywacJoXz5~5T0dYw#7FC2Or0SaoSwzZhr&+rC9N?{zLs2w#0| zu9VJ?DOB_qU0ab^eEtKD`M%gRKZN~#IJ@D;+Tj{Y$1ke=XNIion_nUe66Fxle(jn7=cqW|m^%26&5#uSzi zLVQTfp2Bj786V)>%Oin2yT}MyXquSOq!LfY}N$Zgq6~TcE^t+j^gQIIQD8$!rn|SjdCHlKvMN2H}Zz&3g)G zDijQ9T?fjZx_|t0Mcro{N^+_``s{3+fF+d#;~h2$mu(}b;O*_D$^Pz>;hIK#t?5K za$_}_HgwlCP{+K}!LlX0@41niB%myfkH{LCx9P~w9vt;D<53QZC9!WT%#z+V>;)B& zJgzP1SzdK9H^oDaRXukLsL z;Nn%BOQOf&Z1)W`UoZ>9V%JODPW83bF44wM@DdFCS=;Pf#oR|-FTxE}hpQTmN@R*o zUVnSu=)|r##G;0Eg2ob(G)Zi$kz-C<(zo=p(THs@Dt8FgI6hr*y$y;6(_6Wd=H2q0 zr0%N(Y_SXcD|}V;vk|F{s*$-z#rJW{w2Wiswp}SLmWOn8lh|)U)rULlieCpYQolYx zd%M93)1$o`i3Eo^VgLOKkQ=PJnc_;E2C5ciO9`hmA3GIaZf}EhuGz+`KqU%p8G$lZ z0rGMM(Jy6<&G7N*$l8+?#6jbCs$ELV5ZOIb!}aTj=xNHu#yQV_c`}vxddF3W#MGN~ z{8xZPbY~f;V-;&=$Vr0P+)XUSNXTlV2{8Xo0k(HJQuwbe4=~gdRK_X#h?9-f5ByjX zuC?=$jRNtgeZnQ>lFB>9(mL^-!z*g(G1k&-X5^z_XL$a6n`2Pk;LuEc`Q^KRt_fI&c*;M@3L1SknR}X^ z2*&jzx*N=u4)|{c!9bI9WFdeQbJEO|m*eZ}EG?UE7sb%Ud%)5r^h)bu@qSV3? zAd~)`e^kL==_wzOb`IRhFs1_nbKLjvDTNmDh}^wU0-{P5Yt@+9S<)D&hheq5`-V7P zj6jmB#Gy|T{w(6pvS92rU0J=Pibstd z`me=GVJg4A(-dH0^VfaEq}_Xy>r3;9Y(;&lb!fOSq*Z|$u%zGz*BryWC8P|#Y>{G_ zgeM=xY09C@s63AJ9;@& zm`CG*L2D1az|2cWE{1fpgkqu^D93 zlJ*h(&xuIphS$yZVZdKxiM0IB6bb}wCQMW`UTcfCHw4Gq)%7s!y#080H{POY>!7)^ z9{A1yk}2yVf$@(54I@|A^$T;P^)cg6ztwXfOVvyU4B6cWj+G%=1(c`reL9wY3rpC( z$3FcanP917;_S44-8bGc|T^-XVMJVZ3&PP|$n zfOY(J(0g#J5oOe;rjntHvfTar^>ws|OzkegFUd2wd5SL)q(Vm?i) z&W46NRxyNMrF3JFpcm&F9mD?c-QV z2(a86WxhJ*;gq9Z8a~AMOVcA8nlhWax)u?w03gkO*^?CnwY&VNA|u1a zBq;7ENi#{M%HK*n0kZTcS!;JdGn}R67w111eMbf}w4^~(aAfm@YxhZQaJx6gGqVT5 ziUmLwU;GCMxp$~$z<~SxclA`jype`+eU1;VX&2sppS{pY+IT}uAJ^WP^ZT_*qIx#V zOa$_)AM!KoooXfv)?@$9xj92^4gW(~ngulyH%r}>KlAlQ0o=9=aRS+~cNLlV&T{ea zNVvadbl2c ztC&-PygqEWB+VxBD|`~;3Iac^3fZ#)H&wSRMKm4v_h!L_5Il}N8?!LI<2xLeK}7N2 zN@GQX+Q&8W@gokK?)L3&>g?H9B^GppS|jQl}pm;O^HY6a31>?8>28i>$^20 zNGRn0dobvzFgS5g@I&@=s*97Nzzsx48Quao$ppqM6}F*gBh~W(GmkHR0#x)vgKmD@ zt#6Sf)|F)xQ%WIm#u+48Z#7`@iZDhxlx_S<`pc1PCRrSW_;!$`Kh6bYI7 zppol{??*z{8WkB?Q(fJ(KC|KV_a6KwZrub~vOjY*^a$Nu*?K zsr)n)EW2$Nw2y+ae&t1Hm_6R}C^?^Gs&=069Fog(JonF!FILuIw+u4Y;F)0|+e5-M zklYgN@!vx}_B2kQK!>L zNQv%C#*QLN6DB4B0j=pEc6tlPOD?5xS;iP+Ou@%AO7vg{b#ZtY56_;!toxbW*UJ7! z!A@PK2k}|x}zc^w3|*=7JpWmpPw96-Smlw+}woj z`YO)f$ZcSUwvIzZDNjrIY`HA%Z>&}t@G_>7vqM*x66mZ8{j`mj`APT#Z&@@pBqhs; zLIV?OC{)T#ObX~PTI%g?uShC8aGXol z?aUzlH-S0*nCR?e%Az4$qkG;ZTa&3n13Cgvn8U%TV8&d!EJ+N1#+ubhx{MLyUR64> z2Ab*5X0n3M?4Rnl%)X_H3i9&TTMN&N>8(pv9f#SF{QoSUh@xELP^t1@!Q1)vYK`;3 zX`kkhgQbamS`Q|Y_F2thqCb{(LlimhiM#BZTJlGeX3yI{er2!xRLK@<<`aV78rjvr zN~lpo5+w|cX2#`7qX{Xu`&5`MjQ@DQM*EqiA?Ln$*0m7zb(~eqKca4M z;&pt=CBiG(eO$&fbfGzoHQ1XG(Gs}-y2_}pNOZ`zm6#`+H`DoiKx$OTJCwwlnEs*% zbPQV)=)!h?y%7x2 zXhP29C8{sNyk73ByA-sEB=V|s>7Ipp~-;;8U>qL zslroEKq32oPtguW?>P1DQX6Z`7V{sD)u}%7&={Hs=F6T zfaP%t{-ch-|BefN;R!|KPvFp4#=w6m)Q6eKvV#kax5axQR)l}1qK;Ln_cJjh_*xk8 zsx$B{>R4?>9X?l|<~M~qmbU-mu3kTl+aSG9_AV@_^zh-0n9MH=B0eS;1B33u){a3; z)Ac=Dg250BhVxOS#_T4Ky>fyQk5j&EB@N;}WLCI86Gj4K)+gd(s9coWpXm5k?gIpD zxcl6r-9&-4tU|H|?>qI;w z8zC)RDt=sWPgZ{Ab&v}6!^?^Fs*!(90}m-iER6VksEO63p#qb{SyYFR_$NXm&f z8Fq*1yEHyNzaJC%7LE&y>&9jY1(ajliNRdNMBE0Zy**8(-3b8ia@i3+ zQLAvxjD^RkX0jp7p8MPE+Gwzn@2cIDY|A3Fh!hclZ3bN>-N~W}t;)lb>U(cqYaqYZ z|09p=CF)gH-crPgu)Uj3syJLt+fBN^?DPb_kfDRX(9~K=PkZ-+izrPCg@C|L|4a&M z90b1VD_71A# zj^rGA86fdVT#dJ@yRc1ETXtr?!}=jM^Dzc())V1gB_kElP}Xq_yvP#<&+Vwuo8w8A zEyZ@&kKtM!2FZNHWTGA8=Z)U!VVm(cm*ok&P2el~VP9W-k*ZlAnPxTZlcYGh@i|9U z(14aWmPjtT>?|a;@%7Z_Ch3fjWR`}eF#mVZPiPu6`;ClX;n(u?%b~EhF?0bk`6iqM zoQHAE$Imjb>*?{_?w+{oxb8zkfpilyvyLc&PJb(`AqY=fsew|#ey>hJt?tW z;&$30_}6SU3|h=~?nBJ;wjm8w(0r0dekHJK8QxvIgCzOyhvNLw<$-BxDUH+}GST>w zw!M~K@o4oFI*8!%lS#U^Xd{U~=VYk@QIwVfp6Z`%8JR3J;%1FliHX`;ps71Ld90-` zX>jD*L4BOez)Okxnf~-d5cT@0WIOdMqox(dz=NNiZ|SwNj!M$6e+isb!MT%E&v;Prc^}ymTG8H5O|c z`#ShV`;&x;fPnL$Wta6L1OIS z_dgke^cDJz8PtziE8?u0Oe3TkweOUqFPyTce}_DcaqVcK#=vZ^c0KRW^+ezXMjI^L zMay?llnP(0oRx6)(Kn=!(8Ku+UOSmWTkg0l)?R$?@QRlBZz1tNn9Xp*U9H}PvwROX zt}Xxcin6lN!&a9b{x(J>qLep`g?{Dv_LFGyX~)BY!EV`SAA&Oqd zy>|#~@hQkkTM-8f=WQcb7`XS>6Wh2~CnU=6E6Ha>TP5t>bQ$MIoA>Ot{5t$r)#gYT zdvn+xB`|U@U_866XPwqC>WuKo!nMmI-dFxU?l@el?mh0fy~nZ&%$+gPC?G#bFR?zy zqHR)ol9{5b*H6HtDz3wBpFG{gF7w*ekVj-`)4+4zMB`P!cWMo z{whQ-k{}?Fpcx}bim!2VBE4zzu1?oxJJ33su7V~f(?k2k(i^XQzpz%!*vhA>3+~Ue z5ApYh=|Wl~?_TIh%fFmsxkvpG)Ot^)Oq_~uX9Ke_Nh&@{YiO10felfK?`OC9e$;C>Uj_eTrQzN9+9mvxfI7061_lBgyQM}+U zR#vWcy}0epl}$X=Uxo+its@I%6X^L;Sdu>HjE-^di2QUpQZK92k{i`{@!7V`m5pPs zp}$fXS~C*{x+0$WBGP`qbSMni=ijLYzf@F{<;($8=C!-aD5G_t*zhIudX zf#*elBUaRhlm8+C6to`_FZjlMev_FYkJh7Y;vUbxpgW>2ckUfBo(D6EYv$K~ixW9f z{xkbI2&i-clsJDcf?hSqs_(mkB97;!_3fL)wP5rg4nr<1gi{WnadVg>ugV|9A0q=- z+pQtmm@hy#zS4~dp-nGN+n8GOdhV4yW(-ui z-c)&x?SYCl$G};aV-ib0Yb}viy({YYWgNF>s!oTYXf-~ zRFi>%pEqf4WtL&{G4d)LtQuIITJ80A+R`Y{!hil!M)n7;z409He*E8CTzussB98eqy+|x1poR5ElLJtji znE^~?Z+>sx7}*HM**2hz!NcG%cSBEH4`-Pp7YgVJ zoGWs{jY-UA4?Z$g#BH}0q}bGr16Q)J`f2u`|8qRb-Mf`YYZ8^hAIT&rhUQO&2N zhzOcNVO)og4-$(@l0q8uQHK8`K`lloYy5!7&vZl;&+S-6R2tt;{!YeLDH}%o6>A@& zMXG43KLKV4ACe5p&$no^m^jUINOs^3g>{bqjMI)!b7PqwnepCs^E}mIPWzeb%XWsP z^PF#JIiPE{Zks4g`_E zzl6C!ad*u&1iiWDEBhilxw=X*KU4R7x(aU&0e^6#Ms}q%lRcm8c5h*(so}ZNN=dIl0GbkbM~|qjj{Zy1QveK`92i68)97*0 zS13?>Wc6*_S$l*vc;wxe9zOoGr^4LxQ}Z4NZY#Sw+@vJX*SJJlgzAC1#q8?9tTCRO z0y$Z8r196cAA?P4{}fZkr+w+7sz3J2BqYn&RR6Q4nEvELtKZ=NL)JSu=GAvg!;Rh8 zb{gAF8r!yQHg03vcGB2JW3#cH#!lnp-Ffc2&v(9a{(@^?8*8nZH8VeaGtrO9ljl-o z`LW{iN#r51H6_p1t>Or4O}D5r9BM$&L;UO`Jg`Ikm%42?2CXC-j##@tTyJ5CZ~Df5 zrP0kSf*a*BzuQ~AM1Kz&I{)X4R1D|t1ldSIRzX-m)CX-A98FxrtXUImBM%+sX?Vvs zWUt4lggO~_((NQlEh4fUYsVfPW|<<7E1znl6fX)qzb1z4vZ#N&Kr%mG!yl*h=kD(a zdNJ^%cLmP>i0Y`OebndK8|&GfyYuXjDj#9UnOCt9B`xIKWAAx zl)#WJTcA_{o^)MsJTZpdVxI?-O~B8P zZL5C$DHR4qw${BH!=~Pd!(@)o&U|Cd{lLxpoR2<W&jZJ|OB0yL@kxnkg?TKQ_ zy_8mC#f3-;6od`s59#z+ZM`)y2X|_k&@Ej-(X{A)3L;>*Q;{#W`unRtBtS(=Sg%J< zgNxT^Z#2-cACrybFB5eCy+?+850T+Wd{&6`sb>nKYL)T&1%XblRNoeEUq3A`)}&^5^M+}kyDxQ+%=MZ zT)f)<$nEfci+!wov25>GBsqvYfG*uhS~T0=4+{>pPxdyEAcZS^`_zB6FSsdIrJ^^Trzwg`DDca1>!jD;PKTXW~vpI9Yd`;dNvyNRLWiPVb> zV+g0C;(ugoN(nR;3heVZOHN$zaCSNd<%t{1bud&iQdF51pB_TLHk!FkweD`TGCeqM zu>t0oMa%cgXu!_D{O@JRgJuz>wtoc_+)n=dI-?8))`Rt2D@eJbcrwl-Bzg%Vlo%G= z)j#*T1PUvc6ooL(g`}LzPepK3wLsx1r^s|6Hka4+-3$`D{v@w7ME$q1Cu@fP~VE zA}o}|`jeV%VS$i4X0>T>VR7gIG>IzR@54F7k)?zBbQ_E=`{Yg}J9lASCi=QgXIq7c z>S{Lky5wD4KRbn-d-uuBnF-;B2FSLUs~lS{Rkcl7ScWu(Az*Vl4q}QQiIOQ?+Yd#f z*0}7>1q9!g3T zl*bvWejU5eDw}!Hz@gO*fDlGwbx>&v-CVjq=mcM9)>5+^61%CJ z1$COKNANRAuLN0fWGLeALrs>J1hLugyc7TzbRdB~&QargYgv&dUxWTTZ#E!*Cz813 zZ-3j%7VYd%%t+g0lWD}`6audou18x}rIStExjhw&swdz&v9qcnA=XKRhw=Fug0#y| zrxVq$Qu?GMeP)HbAWHDkoEjiOMIo+!5wPP`T2)drObFd&u19;k!vZjm#<7LQq-NhI zM8H+wZA+z$(*pm!6WAb9GrtM{bt|_U4pX#BdstQ`C26aHCxEQR zP2jh%j{M8;ex*O9M|3;3?TKST3MmA5|9J??{I#w_MX~BrMJ7rY%@_S{6xSKh$tUG+ zLbdc*(BRLVio;l`DU*Iu~LhEHM^ z-gHb4AROz$_FD-SMuS(mo#S9X=U?==5N|GtkI(-YjO8b1uUz1gd&OWSXsBi!ib?Fg z6{#`)nQPZ$FWC;LMFB@WmE)N@An3j(3h=>xNMwFQDMf)tS~KPcQHDeR5sIJySKX8O!mjxFNfL@cgOh%)?1LK_)h%y26R>`C(@{uNupfn?V% zda%+e9~nuQO}Bjy`0!)F5b1KhCXfg6tH7(AKj(p$(%rp zoH&BikYtD91@t()nI9}rJedD>X&~4w$)s>_@JyHY>suLINe!_M4T;dO&I?abS0V%@ z!?m_|-ors|)Iv05>++3#HLVn&B*`7!5?<_q@amT&U@NU|JJgc$MBlRPp$KP+8SEc6 z95Y5WBwcSP6*8q$;auN!mqEI*7nddztR>4yQfJq~!I9XzGAV^_Cw-+pps)%8x@1}^ zEY5$wJsHyP2^E2tp}~6IFPm3|HwPhw7H3y@mj0jM!*@pG`Y5+=pYG}j`SFe{#g_DB z5?w@oiL4(BDLTYn_yw+qRGO-FEI;oKGCQJ;}~} zeDZ?fg+{q}m84wldBX7(ZFgS@xbbXk_MUyDQ0QjCP1(K~K$__yPF{h)>=fGCpw;em z#ug9Au^$P_Wem<4+x`?&**ZpvZFNHf9H$bBaQ(TL?!e8k*gfnM-uwh~i7BJM7FK;8 zATEf8gYEOpIN;QvH-UU?F_ZvM{^+UDws=N<4tnTrIEU-WA(vZuZim)Q;8X!PpDRZ} zHSLd0!7JloZtK%B!I!vJ`r1(<>0NO@EEou**pRTI+mFFPXQVS0UJWJg+oeU}A4x!Q zzX0V2@=Jlz->>qA45)dxLP|RB2QZN$6;)CL zhD=`h8uPneuEyN?3PN`ktl6yd74Hta`7C~%&wnd^F^WBH8Dlce^I02I@y`rTdrZH+ zZFr^XscQVhZ(G_7;dw>(pmg}BRhc0!H=Mo!#E|gNC<3Bq7?Q85a>wPmN!BGTU#dei zjESU>C}YV!VT6+%$Hi@!U9DO-GO}jsQduT+HWcnBK(+Wq@C#+o1EDy% zaZ;1xt(H0`#PjsRj9zRE@KAGrJ-CmfIs%099UVIt)8-5GlxQ5n+1;b&U;IXXRuV0F zxT}}>VA)%Ra}1T@m)MFyg0Tf*^W(2Jz4O~3)o)Iy2hGOum5>iaf_a~6Vc3475d=E!S5MEuE#bL9%<5DBkQw-j zV?Ss()S{pHa49Nme_N}kEWk&%smYSz&HWxi@q%RnL{&|mg9u}}ew8N&FT6vC|2a6C{qzWi zEY5F4F>y7onJQchnRwJQh}Q*;p+xn38K!&>Uw2gOtCLAEkz=fQbqO)@RT-6x>X?;L z{GoKCxzgjjX7#U{cOf6p8JKKu=>Ha<29Xbb1sUT}Z_Ycfn0jN+UNZqiOwz-y`f9&z z=7alOy`r$fI9$*8A5D)dJ38&9<(1Jg{m=~PUF|k})4$G~tY_+fu_%=ac;O4(kt8>= zCix5}1;ggN;VTERcJ+T_In3YDn#}4wwn}4>-5O(^MK>$N{_7X2FZ;rTlz}4ONS0^U zTsDoR&WYI+2PJ%hlMM>&Wk|B5c175m!nfn%cSU3`OV@kTevz6)npCtPS&N{=P3!Bh zQo*&GsI!zj-#Zs6&->n~M8;N1fxAKjOgN8m-XZ%xU|xR(<${C^mH+K|^W-p8i{GLJ z9`I4NM5?fdnWyGikASQYhBn;(A@DAKo7=&F<^Sn3m_(bL9(??_qnW{Gld|jWy1L>T z8Bu&>XJ-eXRT8z>(7A{bgVU(^!BJ1gnsi*o(51e$Kg)ed&|u(Ec`6KA%qT8-&!FSF zwxed*pjk$X!y<1l#TO|hwFPFx-uXmd0FHL~OV|;ETD=piGR+72f1fRz@CRg+4)wHF z&%5rH8B~59x?)p2t-2UjGR~l(kyi|pnq9Tor2UDV!Ih8rs<>%%=zhZU5XiA;{!Y>y z!nJH=rWH;k7$y>Xyz-P(LFGe+yaW<`q*yE!ems=)@ zZCa`9Og*fujQpF5NKdyz>HpKV!vXY=dg{6O^>y_CaUrHdn&BxAQNN^ zH=g)$#E6O7ur93=rra$Q-wI)%g{h{|;n4is!a$T3fK3{KV2szDjfICFhqEsXg6|Gs zGM~1YOX%?x*81JKqw^FMbgacit`8(BX<4g1CbhjRuQi^|+0^7dL=BEQLzRAb^0vhH zI_u6MyXcQ&=S`K&&uwd%DUCn9AN2juF8q$^NvvDZ{%%(6zzoMl4w=?`e~L| zIYY}N&_qH94X4Gim{8a12h8g7&L#&$XI`8WNQ#mB(iHEA@L=g z&MOrIk1_UecC)-o&QjCVyqr))4b{1zqDs=iv^#=LQU@g%b3bc)67Wzf3WNDu{H0*y z@%Up+$$&3iP--x`i;X%|$%Cf*3f^#43trqF?`g9CX9-r7@F6@V0{&KqoBw9K@OhSM zfx3Urnp?5i1#n%8+q6`u%L2<%ps}P0}Y4oUhe;y zNBl+RJ*kp~Z~pDJu$uhi)wt&!6i!;Ayfiep zOXvc*Gm(S!oje88>P>}7iR6w3 zYq`>+s?1x>)Fu#m1h~q-o|*6dGYnL}0NNMYh{#*LR#vw|K_9p84Cv&eN!Ggd!U-=8 zoO20alC`-G8@~HsP%qP{{5e;zAS@&l1O%v$Y-jvGSlPLz0S^$dpdk@2N%N7>k}6xgvKE=` z6j9Tf1@)B-%7Z$qvYy`W>k{_C-{BOJcH^d37%JfFu1c~T%5cE+JKIA$_1_nbSGKFM ze06qqb8i$3bAlfJcBPO6{*?Du19&RtOC!>3^LHc*b1wV(hfRfVPQj>AY1F7>t@^ll z?TZJC6OF~Ow`omE5S5fmw5lLq0z&V~EJ-lnApAo(64`926SLDsEor^OmnnY{(jqVF z10OOw7FA}{UvlmdrrFQf<6>mt1#_}6_=&EfD|ZCrJO$5?sFwa=Bu-D3707!2)q1Y} zqsAYxA8*bMHg7npoAN>GHaF{&)I9&lsV5}I8Uhe;b66qFTtelulC+O`Q&ZyHsZJqN z>ur{Gc9ICNvR5NhGl73UWZuN@Mj8)?satlP*v(7vs07

yntO_}UL%G-%ivs%{f({RPgnOitP3Yz%;$-gV zL#!tXegq*WV+ZK4fqgQ7sPg|Js+=Hb&c@7aDTHtTS)C{%5~dXT`R71!H^8-jf;Lg0 zhK)lHV?A5ja6d3FFO0tvqZ6pX>#mho8!f9;5dysZ!9C2)ITF^R2_k&RFi>993>V~U z87bo=-lL2^NG|3x)Nx!8-eusu@j^oX$iRK^MZb%Po07uPCMQi5sE$Q-=@f zjL_7!xYvn7AA*@VjD7UXo!NJI`G%o|%0$J}&g{%$%ywzpjg@gaw z3cWz@wL3Yp310s^K^0F?1a-nXUOgE2sAVh<3QWD8y7hR zzQ(3{DH^({EH;Er%&f>uM{N`Zsl29zJ9wK<`6o~bmg>$kpH7b<&*@2?6<|jw%urT=enR# zI~%i$zOkX&(QY;#OU8uvu|JnrXzk*(_;2SRx?wV$Md z`d9=&Z?|kB)cbd%`dNL5VDqT-^ZCfE+)}jJ)VQ)lGA|U7{6N?+6jgi!WgH)_HV>?G z3ltvbajJji3hR>t_g7F9F%^!u)bh^6e$S4fW&_K2SPn^lG|JtI3yhp{A==QA_lTmqWQ5@(Y0f0tHP z#9bt0ODFfy{Gac)M~Aie(H%cUF0c*Hl8>U{14N3-oLA|u)kW_UH>q<0wuDXaW*oG7 zbg@*rdokgC5{GttHP@B6>Ik~>0td$*=)!V~rH_Z{#Rl#A9}2>gA4OJBKvb(DZnK@e z!hUIIOA8C}8mbks#gBZ9oIK<%w40t01ZR%`h$jRg3CjOsJ`Yg!v!jRS-AG(-Js+l* zYZ-3?kWrn4F+uJm`bCpi8gV}Y=)N}3*61v0=RYCD^T7c-CJG56AK4mHa=PBa!|#tI zVJN6qi$YN}qqK^YXwghfC9kgqHR9>C>Qikm1A?2>`r#!#4S=K;+N~fI?M7OdOLMFw z6cN)0`&2J?bKb<_n~FL9GiM;a>D|(l2t9rNw^Uk#g5=9*ygnqqGE7daH(Qu6#~ILI z6cf>mqF4*i4_*1`De&+ZSe`F_(~e}rDK(@jA4vksXX_!Xj_9J=#*t8e#JG-UlnOOo z3acDm3hdeJ4Lw#f^LZ>`W$i1R5v-wF#NgW>RD)@SFu|BHzl60eJBm z7rcJ0{Zo6oREhM7f*g*MUuVpUzC8|)8N1D(*ysjjuc4SYi=ZXMl|J%tYewT+EqZrh z+SKml5Qhi#Xpuk}7_{|&TXTb&L8cYm9*{7Og1Znzii(?EJ*mKrU+Bbr-9LVviuhP@ z^&}JFMEQ?yUY6^?JNm@^VMZ&oiy64?0|$UD{?9hz;tF~*-c4A1-=~G;VlQ>rYGLI1 z8sj?mx;pp^e$Gi1F;x@;md)Y8XICJxkC+^T#T|L=NnNTh%%MQ>;%m)K6^DnL6q>?~ zM4S?Bv6v`E5WzBw(O!*jiC!iD^I4g%m0H*im?Rg2Mi7l<4$s9$W1pH#Y-M$l#j92N z()mDU5c}VZCZJ!Vs3cr&T`t`O6JnqSO&t5Dhm~{Hi;lDy&ZC1X>nq;LB*4zd@$c}` zApGH24b^XV{xp|AGwX3H_}3~P-i&=RAd7}>rwB0-pbszonQL-)$>B=Kg=}ZJM^@mR z8{1Zfx!9r16VrUx|9n{fm1jlXA5IrljN>;&k?7N7SRIQ`J|3%NPmgx%+eBv7#Iy7M zT|WQYk76Z1gOCHH=){HvOJq$bO#N8QJ7yYD2}_v6qUgX&NU9>4=gu!A$jRUmG*(O6 z4%UwJiNoFC^@m0P_2Y~G&N+TeF>V$42NwT805#P}@9;!Kj=LoEp_&+9F7idMI#VYf zWJRBrH%WLwXmI&T=$(H(rSMHBzVJu28mTzwF}GEy`en58a_pv->Nly)HT<-IIvFQh z%hI>?j)!53Hgyaa7X4J>l?y8_Pg}!3>yvkt+RdJOiXK1ohJH6IPSc`A7%mCEP&HOo zvT{1mxJ@?-f8fozBa?u=2aCLoEG_*4nIyTqYi;Ub+s#<=i18V4P=dWzvkxK8|IN~* zL1ARG`P1zmY$g}2`$V6e=1b%Yt^c5ww>gwY;h_2jhLtUMMD_SJ-%=+&_kLvPQ1C!V zR1=fOar$OUceJ9t|2nD5Ab4Y~zC7^Z#{S!z`rDUJ@jD1vF5jEnvd1B;d5qH?nbHYy zv0e{Xp7gQ_+g#RU$A5Teu*u9hkTpdy3WC^{qJ+kYQN%a+8bs;~t4pF>V!6Vs6ZDFk zT%oe08ZH4EM07$QAP24dJwGcfs0*w`aD3mNRP%vu>%HCTiIK$K zW(KVPe|99^`0pjhPX7Lg6B*bq`;rcpaV+p5PzlQo5DJ(OGJ^9-+f`NPpS|jTAK<+L=_j;u@rhY`YOM+)t?>_t#4XDa^W!eolDl#Yz4m zCGMC1#VcX7P>?=*!dUTBg?fye?kx>3a~v<`XH?F!hqcnKEQ~8~<-N9%NP7A{wbEY= zbA$+@(IPR{kfI}dQZHa&X+>MFLb+XMmHUrw>L`ao>lJ+CtgmYCCR&=T53Rfa6nsY` zMxbM}mB%H%zQJY_QQj{q4vsz3Y_yLGR&dz-jdES3lg1s8*^AjM3*PEQ#{rwwMxy)#8HiC?6qa9@xH>BXB+MbN+G8ec6GU8lFj9T zj{TmHWEkD61p>JghA?v!p852|oN6mRRZ`2lDwkN}zI~dhu;B&<&-ADi`Y->$DW0V7 zg~x}!-LG|KVx5oF{7h$9;!A>Kz7_W}63oha!-Po3Y3Yb~cKr4vzotw|1vmt^y&2C- z5u(?A{Y=8>OvDPI(NN#)M=0n@BY^;&R&VFiJ->#M4APwnPg8IuVj>DsUq|m@Q2zpV z&WjoBp2 z%qW#~I5ugvuVi745{h}0*S)qD+5J75bvWvUr5JYu31|uI;H1EL82|RN9dOziZ7ghT zPEXtWtG(5}W|L}at+7{MqyRG9IK?;>CXJ2uH~od&{L3QOZcJg^uS(8SmBydEEicRE zQdY~POjN0`aOX#*Poa6Guj2}Uc&%+@HjG)W(d`I-2U|ZRWsG*pn$A1ksSGmqj^1gW;Ln{%>N0(Yh*2PG) zCrXG2h(~5S_-(H+BS?)|_IM175D}Po;z;BN-z{pJtU6&*SE6j{0pzzV)1&Ff+)0o) zO&AeJ;X4MSY7~o9b?14O;O9xSo5qzV!&&Y2B#$nyu6n_cH%YHhO6i>5R>;6e_?hMd zmQ`O&V65JS=$-}^6#slKyy3uHZEI+_`TVX>#Sjgm)9DSHN8v(iqIP2UI&D2cHH-up z+^>ZE$Tr9JUOwud)dgs(T(&e>hmDLbm^)KG<6jBvi>O?Q3FfLRBZ%Q?&|$l3%(xS9 ziN(=&U)nmASG2)w@E}4pS#YK0{)P*j_40A8q z{bN9Ao6U0kX6z5nhcbxH#XahfB$(Pge|sJFIWHQH{L@hU-|92fG>OSNOcY&+39<}h zh5HD-eHJ)zu^kOu>tZ(N8DYg8l-XJEyE!h@a0uGi6y^13`4Pb=`d7P(g7x)_9+id0^SW9kHgGDz z+8*lCZipz{KqT0cAyvVNptciX!g7z1ld!_D)U|zd#RZfv^xN-A*-k=``$FMC;~e#R{x>IqiS>t7ovQYqO8me%wq zjGn?ejygU}k@~x$Hl>t6vg}D0lgzIeEFVA>Py6A@TU_HRM(>9|Jur^K>Xm1a zLkYsWBEfcc?W|J!JR}AlfqCpkl5z)8i&_Z8r@7Z#tQ%!IfZ8-+`4xx7pby;P(yN`OsL@iX4yRKkcM3X-L%yfL_KZf6G~I%J59c%<)W z&FdCJ*V|@Bs;C*VplxZZSpN*wT{{C5WRA8na`XU4*5k?NO6_)k^^B3VwN|r4_a7M* zr4s6&^)&=)z7HQRwJ48#uSD%HYITzn`&?*u8uHVrb$I+;faBEsOXJ^lP%yH+H4i_> z%G<3Ppz1Avd;$^*RUNI1Y%aqrM=g;<6}sJy2~w6fBwbJIz#McE@Fj$86Bn>*TKV*} za~L=T+@wtHzNPW!Jqj^w48t)sXCeMcBoE4MtRi9#?jRG-{lbV0M;X^`F8EQHPB-vY zx1LyVQ*Tg#whS&79b?Vl*h#8d8ttq$OyqO=r@ZXpo5h}+kfh9gNw~0*URc5y6^$7C zvLcHfbi@Zz;tsfR`II}u!-00507XLyL-y!z#>mqj^$pbqAu(_EmQqZYom3eZo>u<^ksQtaILw8 zzkrkfl*HG2x^`-&*3SmSW2iyTtNA@!*Z!ACUB4LR`y>(+gsx<8)ch zXwoJUSezn;2@g`q`TEb__dLToPjuh0M63(sisG-o#d0RJ{1b0*l}--hste!Q@(9AL3pc8s{jTovq7cj zu1Sk!cPyTkAF(b&%7e0n4+#%TMmm9BN*YzsZ}*v`X@1?V7j=|LNrf%&D2qDO=6?S* z@}KG9`=5fte15F{F?_{fv2<%_*G?auacW9hUSxp5IENo?c3U=TDbP^HmgCEps==K7 z>`x2Q)X!TX`83;i;#7g0{f+0Jt#7s8e<*x0(QS+~>Ba>>ohh4s1}k z`hsL_I&p(F)3|C!v}GJ+5BPfNy+nF{?I-)>8QQQe@Zqa_kQqvK`!>lz{PZ6~r5l8> zqNLsCLzo{q`MB(GMYMuxeK`dddtJ*Q>wf(lbMPB6C>pZJ%ZG7YnuhB?@iKL#;Njrm z-~t+N5LMWS2H%82EJ#pVZ_w~cv!)5MUTBCuylq@EZifMvuI=|hmSrRBAs3^zyIxE4 z?djiTC`bA^7@4P&L|5u5dm5|M{AQT9BmnbVbQDxF;aeP2`ikv~{_3*7&rGFYx_I$A zY7=>R)<}ladVawV)#^=h@h*&P$Kvq7{HK!wyZ8@&WWmtGO=>AbEpJ^^7}~u}n0H-j z!&~UfWrZl6pLC>DV4Qovp1ySXa{`3Hj9K);c?E?Q_B= zwXJPc_ZIPcE@~T>v;q{j66nvS1rB0;zZR)O%~Z$_!ib(B1rgT7rv|+}xY@Ya^h8;t z1roZ6;ks5%_;RfbO5y?l6Im~LIy<-z$x6Bp$2nT5Q|b_;!_)K)5OcUrihQ02}L>^AYi z^Fe>z!8-AzNY33B?VP7dm|haG*T8UR=HMMPh?vU)JU8f(lxjjKF&c$yn3-3+6h;lLC;XD^6q>}IbKf~R9LANt;8Q9p{X&nlK<6v04fJ%x`40ztti>lM z7d%GplfP-6i^yQG^kV2xk6|iAdM~Ochu0GIYJz4<(8m3Uroi=zI)ryrK9-Eo6iTicl#@HgxO%a4vO2cfC+uNqX<%8)$Wu|cKV}_7gASfg zmSQqIkG`&IE!8N!jxjX|R&%k;4?HlHYyG?QHqsZzUZE_U61=m_Hf9@M#Fe*QWok7l0r8U3 z#c4b{J83Gw4e9qy?xqp{U4s;r<3O{;hqfUJ0IZ>wUJbO<%yD@=h;M$(x0JpX01U4hMP{zBEp>o#J3QzhmVocT2|F(DiUjMoIi$VIeJ3ag8& zEB-gi*7IhhsybnX-}qoYFipg{#fXco&A%3n9Ka_PDUKuKm6QI=Vc_YaBsXoE`MVx} zlc>zFx49@cftlZ>8c?A}%XA#>{<$BUz{bk*Y;Wr|OOFN`Mb+Zc!Z~~BC_N!+4dR2; zEV#HP;2;oRQ*?3Quni4c{+eeD8%4i(fOB|n!iJ0>Oj?SP7#OpSNV64#2J`6>+BJb1 z1KCuuy7p_jm`4URK2fT@A-{o|gGfYE%P%7)Xhjuf-9MOZYLjiX2Mh+H$PB1(lsy%s zNCk=EE!v+lX$qNtc;eYui`TQQl){(z-mojr3!)V}iri^7+rU?;JNvZzoc~(bFbm(a z7x#X0n|wRwu)A?(A4O48{|}eq0l-1k$*`z@Ms5(2E-$D(YuA&(>@#3FaP=FvKd|1U z_v04(-6lEMGFbSkesyO@{@qZl@T5;o&6@H{Ia}^iOWTTauMWQ&xxnr9lbG7as{3VDe&4bqb=a^^8;z^#u(@>A&O$BK)Kne$Nt zFI%pjy)1~wk402i$;B|~@Ew9Ip@-nG-D8RF0!ee$Lc8}*Pc2!x zq%HL}pi{%sLyUx5=vbmYw9?P4Hs9bSK$C2fz|Sr(TrN+IHm0aSgEkFcYjB<=bly%% zdCaCDdX7tBuy!DptUH*QiyG*u(_0_%Y??$P&v`7_>Bo)wnzBl$nc^sM7)>ld$Qi zvz&remIOsHcEe1tuOEKhTRWIiu<<2i;?%%>Dobe$(*TK-bW2?_Nr4y0Wk`D5ZHzN( z(V;Ehc6D^FIL@Ls5LnY3o2D$4(4WSvnV5aCXxn%htPv(szy3_izXg zk%-&AgQBiMJCEW8gH`gWG{R?C!fgJ%wo*;kJ2k2)L4)y-N0GGU`DusJHZ92{4bm2_ zDd-b5jidGCS$_5_#p-m~sE>bgu0&}e2nOnadMQD{LEr52gVe_AIpHi_88P-tcy!du zAOC#&R<#{!o@a(2+id9a_p>SI;_`O>UC;-kc3r8C?orsSo;*F@^xfj_Ne3l{Uct`S zLX-|c_)+jJ+gaK2xYqle^Ci6O`5R~nzkM;jYL2oxcY2XTSQW__^(5uncfY_mPrUt; zcF!*rPn*^EG)0*I6}6z0+F+@H`q%>iII1_+9TTNt#I3}sAG2vRmdZ86llP0^oOa+? zi~=7t5T=6y^AxCgibA17Mx4URq^F#Bk?n@^Y}V)s_FO3h=$HZB|FK&iQA)&S&L1qb zU5AI~@|6zUNBfT3N-)SG3=xOVe-b0-b`5`)yKOt5lrdYYj)$*(htcTY|Da(Rc1Tnc zfi23bSUH&qBPuZE&DT(Ny(#vya^vfwa_UJV}%l}y<1CXBT{ihqj8wEsyV7yny_|i-IL!`SY2auNQh&5eiv|-2yj94n^rA- ziD6zXLy2&*pX@LlU6FZy)i}C-3RaKQ8PW`dK-If!O>vRrs!SNX^ixfeQDUN7nibLc z4IjyYpgNRtYR(niY7k}KQxxsd#rzwtFKuNzvZ8%g=+uy6HHFpzb(*>%LFaa0_1w=k z#mETNq#{BgxOZzkDrkV4)tORiIGnfXCJX=FNE4Om(dzI|w^j!O$=A+m1=4RYv*om( zYBD5uP~FNWmVVz@)6wOnsfMEZ$&9zjWm&I%lNTprRbfN#7Y(JJFP$0}y@Flv*oSS* zs_-ZxoQ4RO++ymee*RsC^Cv9LxWBIYq)gJeR|&p62a85-?^e~IgI8EKkyB**r4%Rf z;TQ+h1tB-6$W2O1$I7$3a~d;BoG-ikGR+7V#ZEG>``Ww@+6p0@i|B?p3~;9o_t{&c z-PY13Edm-)f1Iy5TkV1o8BNuFns-53qoReIR8>Qcp7uWpT5#LMb1 z&LW4AiD$7pN>MYahpV<}CF+FJylDdd3n;y>qIt-~B719j*ET~K`AxOjoV}7%bFPXq z7Y_?6I$P^-db|b>W@=Cl6H3%-LWIeKRM$>V(%E;@lae|=wyQtkry`GU%>#VJBzbQH zT3U6=*^+Zbusx-{FA|8uX$^yQ6ecfeyEQCovuHtQbBv~^67m*frw8;BjpdwSlM2s% zI5#4OTgF25xlBvHfb15{g>{T`bERX{);u)*L@^=3ADjy85CS_b%)y4*W49Bb)nSa7 zFiE%N7#MIrnsrf|YPhAo3+)EX;WS=qULAe(oC{eCIv&-nV}x6dpnc82Kj*&J@TJ4Z z=*DMc+Im5Z4|#J}nVK3$W`?M<2o#J>Y7}=W!-5x32LPBxLO6cCx^6QG1+qyEX6@49 zlE(P=-$CIbg2Ap$kS`-f@tsC*UIzoA|2x&#l?ucwCpw{Gxb3T5_Jh~va#P@JxjtjG ze-rf`&La#EO1`@4a&!v_DGP-`2~dQ-nCPpP53})amMxe}j_O`{)EH^q2+*3feM&RV zjBmnP(P$j1oTYUwJME#^fn?!a5-dt2a>yIWk7G!Kh6DvvM7FjO&h;X#+=egf0(0*T<;q5xFMy$x_s$H@Ap<7>A8}4A z{M&P{q22t9A748>&E)Rh>`jQ-B7;0ieUGZoU>Be6Gf?wn#_1@d*t58aXW1?!yS7dI zh1RsZYR~BWbWj7$I&@ER&M+E0aHi+XK$6mi|OybeNSjM?Ur^%T&1!DVIl&!30 z;Wx5$bOm{3!pGd9Fh6+&lqaepxT`aK(9j@sWWr|^GL0UH_y$*A>zcg8E3fCCHAC9OVfUvHgv zj!(#>QMAKm7)r(kDiaN(km2J`?u2G7$TfEQMA+HPs_?6BBppwg4hu)q8`8LI>JEOs zL;XYjQ^aW46vW%WyLMGh5nG$>v^=eMR~6ATEkNbMF}<6`39`;?F)30vjH;xcxhzLj zy9&CCxcWnl!D5ERa-(Sqc`p^V2||ZFC#vkNAYb~NlZB}Y1Nx2Q60>xD0qdywhPogn za>mk5;0$i-gy_M?VPH_Prr{1X@$LrgO~cO{`))QV=58=Md-VXJnz`irQNhcn|M&F+ zm`{MS7l>>UXZ9q_{mGXYL^1t&%-Ii0%DiR1Cl+y%nV@Q+Er}ti6xi6=tsXn`nNVO5 zYc~(O-)`2e-m>40J09Kc1BdPA^S}Hi2WaIL;h?rXXFjaBTkK&>PB)GUV+(JBEI^*67%9*AA*8rjMr%>6 z2!|6y0Hs5Fx53X4t=v(720d3LXOoD3q(3hAkn!5>^OC~y!c^>TzvfT3S&X;6L@-wb z{xPoYEUaze1m%O+?+o9|sgXUPQA4sQV?Ox>JPwdBjF`Jyj9d&51xg!NsH6-T%3|JM zmU(Z`Y!9*}H9vT^=cG?)b35()d9mWKEylR2KKkiYf4A{khj{1Ap#*Gb+;a{KRsh*- z+$m?7v)sSmARj1IcLD*9$3=g#KPJO|QIR!R_FY|Jm40~MI5^DnYUjYfKyR>S6ya9d zafQ9S|8du?f~QI&M&i)+u_S2nQ!1a;%pD5b@S{HO?V7HkGWnmniEA}4b|gfkkCkz# zHae^$NtFWFf;gLl2Woyv!6B*2v)YB(q*kd{ZlZ~lE~`XA$Gau0YzEulnJVgjNfAw7 z;;W}Z%d3wDKn1lZXtyyj zGDjH@99TSHe!JZFr2O;fZEM253=E?GOQWM7jNB!53&@1Mizg$rU#WTcY)SNnbiTpS z`igBU$g2K%!o^AZNMOzHu5E5X3ps~!0tp?*sKmx1)Tpxx@*^RTPC2Kb}^13(i zYrqnvX}k?{&VKYN&w$rXD@&!nuFO*fLfcdqGVyMX^ge)Eqey90sGU9${dYJGmct0S zf3(@zCHG=4Q9#v+z1mFkl6htJYi!(jcy$NaX9bp%%fs2P{OivT6JTrgxN*4~ot_uj zUVpeV&KU3tJX%mC)ks0BQa-2zxb>rcN&W|6`=*fqJmM0Ga{ce+*I^T%aH^8XRpPzVc4v(FSI~b> z{OK}k%Y|I5bn}eCFY*xE?g*n8fwt_11Lz`(i|Vap2w6-d;w|I^hj8x}h-eyQ3^`WA zi1MG$S8HXh{Q(iUjxgZQHRh~nu-gZMxvYF_{2bXLshey&IUIoeMB;s*%W!SA_?Ldc z0WpRu6cc-7&;`;pB^ z2fH17A(k6`UW&VnmGQ7&j3Zp0933(&a_M7I?{%v(XE4OXSaCN;$LGOesH}$Lwk7~w z(V)jzC6%_jz;GqoV5)-lfp$V#!AGt^Qawsmc@oJMZ6YOuTT(V8ove9u>n35h#0x;_ z8aC!dx)7L77=2W>G;m}G!+oPb&YwZ?wRt~`k3C%;F!latxOWo(Wt3r%mgQ}C^VvKe zO}%6qom$NxDv}_Bsr;axQ}~4>c6DaOemAD7EgugyLEaC}72K5Bpuwh|DtM`6K*#2K7wpPpszU)aExjVgf&iB+G>)EN~q`0BZX&EW8Y8jTr$A%*>b*~x-37d(S&rZQw z1*5mlZf)r_{iH@8^^##)DQAADUZXBZoV$cOw6!oCgPaE$tx6bMXi3r0eSX-2iQ7{& z9{#yKf@1fBlMD-*m38(>8M}B0z2P!dnp;bdeR-cTzYcf~@BZz^G}%_{f1d*gXrqZq zanU2a_IHZmsK^~9TQA0_j~mvJ)(+<5Is>p=I9A-w1;0+C zD*i&9cr$$%nEH?bL5T7$ga=}NScfG84(|Rf-xV-9Cw8umS6ls3h?9Eah|wt~y;7$J zGOwHUqE7s>2}Z+>3sKIUKGe-+gRp@J*aRqcFC(f&NMt8MSH+4~d}4abrK*R8f?X>( zXE=71)UpJ__Sa;DhUDwvW_h~34ejbf+po@WF~t(pPx+L0Jrr5A-BLsH94}+4WK77> zgGLG}i7umAvU>w&7?NoMhgw!Cc-+p#0MT5l1n9}r|7pQQltjSke2_n1Ti<&6A94*? z;l4t^NDcN-FS1^WD54JUzdU`-nH0gcrKyqox_&BrvawR+7pa?l1Zl8wgqi8$~pR2;IINuaA&BxDa!5KfyaV? z%J7fL!^vV4GjI=+pGwvRmxDA!ZqZ!K*(%J_bT_ejsN}DzfzUI;~gY_Z_fF|ecMk84}6SD;go>nU?mc?^T4a z-%Hf_B>@ol>=^CNJNC@KX%$wOHX=TFHND-N6q-i|QNWi0%Io4HsC#mmdMtu$<;D-F z4zSn=)p{)cj@r9I(a8VbezT`spw?`mtl8yC^+o2JeN`ulA5``a;1OrW_q4R4WW-T8 zsJM21e!DiJjrx@^@o*NN2j-jSdL1{xZ6%knx|%m*Qib)+d*C4Zn-LR9#S9#AsOWK= zqlLA<;>xSY_a9_xe_}8s%S`0Bjy4G;{)X~&`&OgBFJBijHP~Kkb~=by+cTN{;njMP zrBBOsDPRAaex78yvBu@|o+8)uS_`P{JI&v22GCaiOxTT4tpd`NI#JuMM^?9N&N-;A zE`MQYm6?B^m-B+*5y;brXwAtHlX7sVSGd!P%A80hjv6TdbWMd-z%`}+>f_lHPLj0b(%SIa>^kS%kUd?q3J}2^ zolglCy=}X&C2l7KGBfWN((*gHPgHXtYau}sXwpOC%W>vPajjHKhl&CS;C6ogL3FTW z;1tN@09ft7PNjx)aZuF6fAqE@7026#{_m~G`U-{?XUxOzc6Zzh@;N)-;FLCv>KBKK z#h{S*Oc;A$x=xG;f@%}+V=c9BL{K47b`1+;B}2)Zcy=sZjlo=;kLFX(k#$y#Z(NJr z;yX7T-3;6 zQ!BIpDTCeFO;qXO5Gx0$7VAV;WX1i*x8YaaH3p0W5|VY=CiQW+rtM_5FE$-c??F{9dDM0php=P8JyH@}xEZltyX=;ja+ z_<|e#2q_>HCvEC(!V*uHR4Owp|Ad0Hc7X6#tRk{_DED75oPz}kC;KKrwLS>MJ3+{= zBSa^BxayvP?{#PcA2o#Af9pw0vK^*QF{WaH8c2_8}wyE*}WgWD0`A&AwlOT$NUD(tIJK8 zAiAu7|NjYDKu5M6i4~ruQP18lEi7(ErVx7~SCvNM`k+&CAFJp3KaklelLl2z5!}U{1 z`9+MePx$$#JID@lAlB>B?2Z(Iyk&+>ly6FxepzBw%j|h*F=}INUb$eyOg5R4by3KW zWnju~x6oGi_{Hk2E(PlHAY1NlTPUGI#hTv}E_C{<HCgLucj7aH_A8E8a({wEmv!ZcG~fPmPt5nI?d+^Tf-2fUpn_{VXR7Xk`$C=;@Fm8+g^h{naZ@C78eP_DS zen}0D8q3G}-GMf`;9Tp2kFG}XlV=g2ekhcjRAjpdms#l=XXdO}stvDkZl%Hkol266 zE_+g-+56ylj@Wj+jhml2$v~6F%5+T>8e4>>F z3YN;7U7dd~j~4ViIE&7!6)*6gYoro(32kUko&26$z4mT5RM=HzZi)Gm(nT_jB@{R8GJ?D!C1IIWt2{zLa6^cMx4SSER0si zcVK^gr@D!d2T|C#)JsQ|fCvp8#4L*+6nK z4%HoUndQcKUT#h-u^MVeA2()PFFJAIn znMFa$>di<8o{G4+xfy#{o4A?%sjal2D55Rf0Zm^AOE>W%T9cplz*^!iw*#9xUtb?Q zoo&Y^TXg`Uqze*(#Ns zvt%as;khlET-c^&)UzW3!CK73Wgtl*8bto~iN>HJ|8qFw2mnhOFl*s+e^`GLd^I{< zxkw?YmE|-F!M5>`WK7F2kz|1y&cd+!MIb;nH-{TWEbsifo=BEe-JZvkbu8)iXXl(D zhSTJcaff1b5CxERE&`1OAfrkB6#u-tdlYBi3rNP=6#g!>dl?&l(fJ`oHr+)=-!OsqE9G?CREc#2LuDt`8d^k7 zDWNLqc|M3sOIm+GMSkHg?X1-9|Dm0A)x&|hvB*&YjGY88>zEWnC(c&Zxy)n&2Endt zF_>Sp7This2e*3PpP_Z`m$FDoU8*%`v|eVz>y>4y6joN6hVCs;M1vC-MIbPH@QOQM zXEr|GHuOKPj>pCjE6z%?)##o2SvGX*Ba5xds*_jdvF$c6sbHfI_w1?Ioez?AykCKx zVymWRZty=pXQ1-apxMfy))r~y`t}fnsbZCmllsZYslY{yupej6011gK*KSwrv zIUhK5xpeQxnvc_^+KW#5i3#JE zDE+ZbyVcuY_O8h6&XA0Z(+YK~F5cf*vp=qa?Kp}*FVkP;iX<|e~N)=PmaMIIo z7_kvJ#&8z(@7BpCLz<=f%?`10ZTetJOe@7b@rJSCmv z`v(j&|4CT|t6H3?{tyg`fRu%CH1WFIRt-#4XX-KVt6!3a?r0<*X>7SJAkS^#$-&%q zqg4&?`Lot-X&70UfR?xy;WjnGje}X~DW2*g0ZBi?lYCqS1;%huky+DtD0W_{wSHIM zi`mnO#=8*EF@f2uySU`e@h+C+Cgw1RojE>L=Ab0^g)W-}PYCHR9L7Ih;0g1+n+ zT?faYVOe+c4uaNeM_bE3e~|17k3UJt%F|r)$`Am6k;Xg;qSzkdLln zGPXHdlTWrMN_z{cb0Ab|Zc^gnoqvFW!NraFJC}ff#UW)Atxu%F%huBm>_w)6a9QiF zE#GteGDZRgjwa_*ewWRLok3(`!N!Zrt)ePqZ!W|yey{ADz3?KRaDS>9p7XS;0@m9d zUdpQ(w!m(0(456|ykwkqfKK4`7l>QQ2eJEegRk+I+5Zxqixfx$k%3S2 zycaGAlIJUCWC+1gJMU><+2^MvP=z=FmR+~|&YL#k($h&K4IRuq83|OE>;{K?bbKO0!d%9CfjR1CKG0ZQQtK65= zvz`L@h0A~H$=L`Jqq5dDm_mQE%t$o|U!+tBT%@h^^e zMefTQ>feGF)Bvve<>}>e_`c+T!l*YQ7vT`3bVT2y9?&)(4uZO0iJnY<1IlMAr>C=P zact6}iLTSXghNQ#4sQ&W*f`5=xAGAn$Vq0*o{lYOFk}h7^l$dQw5pqI#fqKnCC>Tz z1{^@<4t4iRd`xG5>>0f7Y-GCKRIa_;H#Ru4ad0khav0lLSXfxu1)o3)%2J)68VDyl z_cD=iC&hKpiUt4V0N;;kyq`BAiz-@MZF<8t7+3%a_Lwj~%TN*796QX|OEDT8j!59tp z#^1&_|BLc}`vU~ne2nlkGWm6QS~wkUfJse7h_Ux=$q$cM<(p|Gw+OgQ=fE>)f1G+A zvqe3Hb92sUMGDXi1%2P|BT3xrk&$*qFB)BQ@?+r!&i3f`EDQ%S@= zcb{%cKO2?Z!uJB6aOXNZ+nyQNIY@oq+h*)sZT|6o+xzaW-O?37HixG(=YC)!_WkV8 z<3oe^E&k)>!|S6L1?c9M7aDMkkkcQ2d{b`ORSfNExmYYtzE$-0BLBL-(D^dx{iF~@ zD2R&~m{Mm5?_Y{{k@r}vNsElk=kd5HFakx6iFSl5b}S#*8jKW z)VER^tnp~|arZK?dVtYOkBA6kq;*JO+dSMbKtfh^Db7?N)mp%}f;!#(JkGYiEqU^itXU z*B~|wQ%byOVnNqy&d#^9&;C?&1w}{!h$f%G_cS0u?7jMD9od{Ou21(H+=^zh z=!|GU!N*qn)z!2v11~o>HwTYj$3@k7i6jbOgM4eK>U@1*fGPzC>&qv~~pi+!%&1s7$Q>%l_AZ&1U#d$;c=PYTuQnb~|7PPh^ZD zBd43{)eyqHNmy4zXa#`I^y*x?P0n@;!wZm=Hcljlp;hB1T8WkH!6N!UYS?cZrI+J* z$(SWQ7DQ409~xb>Cp5yyUrWXPd8>j(@ozS+Tu~9Sp1e?twO{N2Dj>Nc0az9>9<)5o`LKyz*8T^rMRD^SscEni1-cTFnZE)Bs&pdN11! zCYD$~pvlQ9d}IQw_5UFg#FqgXaV&)nch?^T3kb&hlT43{d6HaWmA%3H4cxc}2pz{0 zQY)N#9h@1O2jjvX=b7Zg4Xe!8V^$B5i-(VlG;fn?t)un=(UQDW9iwL(gLl7duKkEH z)N9&jv$VJ%Vh(K;G>#~3LVxWR_j}CdT1b5@PU|t z^`SmZIAk`1piGc&F|^CPhox z7(2_+%j`+K;)W>*Zr+8aDjW8mJUH%^mMiM%u`MG$O-hjEx{ytr_n;lH?!D(ODdY0Q z{2djf{f8$3buIrkaCJgKGA|XCuLhp{Kki?9He>YWT|G)Beg<_VQwlI%ebU;-2z`Eg zS&k+~a%@cX1%3F`|Gsd%oJx&7U(hNOC^p||mCDbkgM^M;3EQCDQhm|Ay9-tJjX85W z6gp@CNtt9Z_c=XHMN9jLtqd)j);T`GF&C0CgjaSa(0w6v zhZ@rBgXN^{M5&3MOG;cKXp2_(95lb#y@&pT?LK6Hj4(4Zw3R26-Q-qQz^Y{~jT_5n zGZL=EQjd%XIfz?-BDrFE_!n(va94S%(I26ZE;^9E*Dj_4nBIT>Ug`=U#epC%@9kQX zC-%f7B8r9h@D@OI+%HfR<0*s8L~U5Q4-fg&PS6XmI9>GuN%L~Tz0fXy7H$-2>3(Id zw`x^!wcF7kxNHWe1#pBf1j}fdJr(jcAWg1CBs5g=iog|J9LXkxQbUUpMJD12pn(C9 zQ6XPG*J&7u?6*)3r2w=5T8$O^ILHzw7?cEIx3~8k4UM^WQiGTNl6d>=AIMUYRi({5F=vLZ*3b|)L-Pmr;l*AEqevwx}6-RS5M+6)6DM3m{ z-N=;=S9(=s#ukqNMhhM3Q*SPb?LCUtR!eY^E4t9S8?*@nqFUXy0s`MABBUa2Yg!d>$LSpRE051 z`o?+Lt)1-hsd@Dg&Ou&dVTmqJlSpt$n;FA-Hv+aGI8$#(Rw2LMB}(cu6wTuK^W@qp z{pq_4xiJ z2Tyc2ue5Fp15Z3a0K|06X&PX|J_6Q3oKN!jo14_Vhxcn384U^uc2Ji{3P}zcDe%9> zyfhf`dGep5TDy*;4?*wb7Ef&c`^{-_I`qcoeb>x`aO7ecWj*(U>4$Zz^``7_QN#xf zZ-8B_VV_Cx!|>~$rR-O0Z>u!S`Nuw{6@ijPWRJ5$ct4&tfYm5_AVB@zQTXazsHDEW zyeb#`Nn^@RcBG~wIIBZvt1NsT9h?~%j&SAc9go8lC6X zE+8)uLDbkWbIm>PiU*c-#mchfkJy6bHYL$HSBxS0WGRRU8rVxp3{RarI`H_*%-+lw zWIeSlJ5^|z2Fhe*yb-fsnZvo#E-qi_0H!vfpx||S?FFy{{+eE(_HH6 zCmlOo2wa}?%DLa?K+}7L>f_HP&~xH!-&sj`q3diijBb`y{A!=@J%CNs5Iu&?_MJD+ZR6H9I>+Yl^Mc3PuVaZE*_} z!%r_^d_aTBsNiIZGf*ic!zKe>ZSx;{$)zjKW6EfwhKmTg!M-7<6?HV0zCyp7+#hs` zkMGYpj4Xp6mN6(2qu=Q`5363(Uz^{C6?U>4^jG7uSH9hyGy>RANu@x2Pd#sRI9nWC z^%&Gj8$yev3HyzdSxxJ{j-mKi*T(F={PEQOW02DYzxIkhAdv+4#7z%vR$wjsF30!c-+oJbptaSSwSt)b-A)}O!8d^6=i zjZJxPh{N}Pa!hs^FuG}b4qmUFXa5-k`49VY)uHq;(VkTj4o2-b-6TwYg0QorGl4rd z4~1$%#3R`lLnOUgCHMZuvKAeMb|ps18a~*|ggfVPGB;me=CZV;ECq8cEM0O5Q{gro z(jFA00qptvqN1c96jbnaE9HGw4j1e!TF0&zW`^|d)=yR%4qZ*>TyYfC7@2aI z==W(Us?Raa8_i#Z>~Sm|uJS%d%{w}s!w2<@r7PjCU0=>3tlpM;B3NMz|Fl>h?(gZY zYAmWTa6+U{ri+p{RX&1n>u+1Wnw|?4qW>G55$c7${oA&vzQw3a(uKn-ovVUx{kx2U z*bZ83WYeGYv0Wj76iF1NyBhv$dcbv${G&}_QmmOzqVk$gC1qnj7CO$))yqAxcIk1i zT&Agml$hi&yyBGM=Bh4j_U^I2Y)XXX4Pb-{kpQk~Hi0xNNkXpGv@B-aof61Kw$3yJ zqI!Paifs%aJ1f~pP+u5G3C(xIj}VeV6(Gg8G&KWUIk>5>b$i2KPz=}<>$X0A(Um~V zk`Y5kk2NGL2sIFXG`F`kVo97qq9_I(E1dooSG;d2){FdB`4#OtW>$ZUe|5@BQ2hK_laR9qYiU7Wz0~h@ zkhNl!VXOsx?CI#_*woN8TH*AAGGkjE!hOH-c)D!_5>%d%UpsM?aB%cNdf_@}Oe6$R z@7I5-+^%&^ge|B(5gG$J2qq`{Ur1j-b_22Be0s)mJ9hbyQKk82A$A zmDS$|?at{aL~-$sMTi@`0@Kd*jhYz+t+SNP3Zy;(G(cT|_L!{lT|l$A*Q9%tp4zM? zfI%kC$cOQ{)fEq9dP%mPCpB{DRXF-&05Z$C?HCyhVH zf?{b_WP$c4mn-T-4oX|vWT5+Ae%l&7_etV@Sw$aqB~>)msAn6_LL6QGKDECXKI+@l zNZJZtt@6|e2F!YzL4t`l)9%d+rIs+Yllqr%QoR-RFO~g8es_j_LAn60wV(D6EGcS5 za%F)qZFDOoh!GjJpqmts3(xF_v6lW^sJ)!1!o_4WpHE$*Qb$ETHWDXJ89?SrR5jtU z1h-WyEhRlYEkCS_(TeJjhaJQ-kwQ{HM*8P4UegQf@94}S`y%S|335{k+h>=xb8D0 zG%lZMs*_f9)Ve=FN7Sj}5uHUQ;1N;%JQdS-CRJx9+;hH0*L*q-Cew}X*&#%MuA&Mh zbeTWMpjTT1L%ubk2gFNHS5;uQbu;Fj!rXPon{Fk|F>fut-I9_t9FK(A=trlc%ZrY4wK#XpZrJ>Ot>^XR- zx&8ff(2Ojx8@-}I@J7mM{hgSKyD1#7{)@oHdF^F`Y`H2RY4noGg%V76xaL$Yj|Lh7 zymRA13c>7NlQzDA>bHJEXeI>0Pc}ZO`MGY*p1uJUHfWuA>NrOjWWq4Y?V5gIErV0b z0hd&pLFISZ>U+b2{NXr)NYUjL9SASX#Af@a?af8&jz>hh$#Oyly-e8u6W7X@4ra+v zNQ`{@_I`79QH^z=9QBxwpcWDbOCLpjvbbuI@rA)5h6qLIcg9CKI5b+ zJ2P{&z2L;a95TkVB{w%WKVRkU6BDd@SUBa3O?jlNi72>IPHStcA`R>yvKy8B*qFkE znQVOFpTF@7@Hc)r9Ul$+F9V5!d7V4~QJ~+?qw6rC)e91MK4?$*SZFsL|3I1XmJ}>I4G$%{;Aq6eK^;~YqadV zR2w&=JnfEhEL`0d)F0{#PbDeyY$S$aI~?u5F_no_UUELXk@JG8GruQgqO< z;=&Vl_3LLE&g&CGxddV|MKrKQ;HZvXZ}n?b#88 zx2&@b_yzI5W}hYuh&!zE27>Wsops*pQSnsOcNx9@S9e`R+$M$mSQ`k3vm4trnf4OR@%zyq$(@R zkVX?}X_loQn;?BJslhnKeZ?< z?1eUpeC_sI10yEun}DY4r*<*8Dw{?9FMw)!#uw$Ej;i6;>I(a&IJFbUV>R{G?pu8v z8Nr5$RdxXv{s!9k>988wli{~S!U zKRxAXb0Z~z;R_nm1C4v8$+lwtefnKVWFYrDTWgQq+ofTdWSO0vMtysN@Kn*Z^$pFG zu)2hjYF;-ox5tphS<7dL5;#DZK&(cLb{`_e+_T)M0l=&A<1w86lQ{;o&QU2c^Fbi5 z=3y^u3NZcbUfS6`AZLd6WdMWXoUz@Ep+Z8^(I9X{$BYf+ZLo=uQpC;48Ektt>TuXr z#gt+#cGWFqjAIe;G?q~-*L58ye>5jv%xg^L1e4mHXoft165Ma6!vq{D&y;qiJ5+3nsdlxOUFSD%Fl8hksN+eXaoM8rOh z_LMt1iLlFzkh|Ro@YeY(Q*91u)D~69SwnExBwtS5?7YF*^sFKKKr4LZa4F943%V13 zDh^jz-u;fWb2TPBZydCk;jq6?nQnY&CFjohHMF<9`$ET&%{n|M7z>Ov48L{&InLbX zZoWA0D-OI2Ba7S&3zDyrXfWF6#-Gu>5^I;s(uFL7oK0=bu$=?T>{^s?=RTR(z6rD| zh{=15SAuM7`!J!;)Mfr723xAaDbMOhU)puXcGPZBB?jsd*$!LP=Ou zhyXCs%M?@)AcdFP^JMKoT=1ETms6uQwjKh-Ny#a;no^yjwt`OC+-h*^&7V4I00`VQ z#Q8*#6~F_PdU5xB8icI+hQF~HE%$bQ^;$)*BG`rS%G_Wbo*ne%J1Cz_HAvD7u?@}R ztu6S=M-Zvf&RGVs2Px#9Y$Y`C8QF|apxnUda%N9PueLU{wFLyUL+_O!fV&$Cr^*(^ zOtRklvs?mah8wwR@LSvQU}haF*%KqgdrO|0tnux;R2*>QXPYt8 z{rg8Xgdowxu$;oi^JedKw7~HAqy}G8nPg+cHfjvgaKc_)6;G+j%e4R7qyWaLb+Xa= z;A)?z%~Aug&I64_rPR~Y*7s|tuH)Jba+>rAuF$Gakl@54?lT1hgH@^{;teCCj(G4| z_+NkD*STRYH8#{V|9H7S6Ul`Qj%rBW`=gU*sXge;ml$%0gQ69rO>D*ba|+Kr12ydnyE#(~*##N%*!q za}_N(p&*yv+epYg>$MA;kYc!cPMbr9Bw@E92<3RG7%3tJ zH@f48l&PTMGRKR(W30Y~RE;heR0rAJp%72l*wQV;gadEomeYN89^&ItrBq2$VWdT6 zPT!WYn`I+swyIZ1)sTj<>zP|ec=sjh0OZ0}!z9SbYLzf@>fG?I%m0N-N+6jLQ>K|; zUfE;M&upc60tY`5r?kcgobLfXSy~RdgZtp13RPtWxBU4BqXOLA&weaU zv$>f57}xGxZ)L!5I2N)`j&|p-EYAx4trfWzw_qxzSwbTG#gz$X_7`FO4s;IEvhPT& zePP_BsgiO}9FWLyZvAI$p(!aEf?|r9BY1&{*91#>*5F*>@jiusp6EwX`JOd{6`q-1 zTMn)i9B~qQvU-vjRr_3;EHu07!w}|Zmi`2}vIq#4f8G9-^R5q#ME<&uvHPuL@TWivGgFm25BjyS1id>H&Ix zt1RP=6SuMB6%08kC*!NC{K5MSFVe+n${-w4G|EURYi4=-g}$c=vXHsOVGO$=r%s>j zz96AMQGI=&0RQH-#gQx>Pz9 zUD!q3_zIO|P(%@6Khg0B|Gh7$5DHk}&CCf&NrQqfuLG&9sl#7#ElaBcG6N+R$5iaq z`lCe2UyvOIZbYmNvk9c7>?N;NhZ9Bj^R}vIZtmRPRp4j5xit@8Aoap!j-)9*E}X0Sp@=t5NT8hF)|Et^b7!V z1kki_zk9sxg%pWU#;#P3^Z^AFEI4RMOGtf=Oij7@U!F8}F1%ve`Ki+B^}-rvG0S0n zCYad`O>Bfuzo17+*Ja~5YuG1+#NEoeai>dtjn85B@1P#G!aRIY^YX!MV*-iI!_(5tYN8=hud* z#PPY1U`lsv=>81f>wXDzEZZ|2x?0p`NvCo58d1+*-8={Gm!Cc?Woe%@o&<`bC53{n zklORf(L>2>Ay8YeW{;oStw%~4K_k5&T^Io>@*m|-%yA-G0D zda3z0P-t!y#H0O9vqG@5XojY6Ew5us4&-+2z+XE-S`0E#6EJCwYWOiIt|ns{TzBR$#0+p&~ESEwCFV1j*n0Dq{q|UxcBS$b;F5Tv$A2)Np9X+FQ9_9nNo`_Z+bDy zvzM{`PwPhvF04*Usl5)G0IRL!cmBhX4EIZ8*o?&Dqnjyd{(dW%g-E`N>czUY1MR5% zqwe*N_X+ug1e#6QALvGfr0kr6;<|`41nvAh_B-OGs=sYQM1<#(7kpQXg9_9&w?9hd z_4v4QQZWs> z9it!4Nckzgzz@6puFvQHjOd$mAiX~;vRv0}%wiMJ6(#J$H5_$hX-NZGK~R`M0MCvY z^YT2OuU?lm02(EZ7?OD{LSiVZ`1}MOQjwK<_Cii(MIa*LY8P09Lp%KWR{q$L!!HYLqu7j)9pvoWgf9OmZ=uRV6)rV@#|{^qyjpXc-I}Q$60l2rYj`JFMcu# znfmyCk#(mosdM?Um1{7&OX!oQ?_`+CKSwkv!1&@em7N< z9VfwL2bCNk{QOCz9Ph9VC!o7<1pc6(zBnJz`;^cWIzOE)8GMyx2*e2=bVfp<*3r)C z3#{CN>~+Zvs36Oanbhs@xOxq|DOB$MX;bo;H;{6TIcXE(P6sYKRl9W(kh5H*NU1(vuqS_TxfR}G~tQVk#RA!Mz zp4l^11(%|2gc2ch9~QNDdFZOm&vXyE6IE7qOmd~9&4NAKSY}J6uXhlsLk_Bq`kEy@ z(=;xIQ!ysRM-Y0x2x7kwTkuAXP%V(#me-HPUroRIXcw-Yu;GSc!zH7 zV}c!AJ}YG7MrT>tq$DiRxabW&XO)K1T9om5+Emh{ta@qD#`GOYWK&(6$NP$1G1Va9 z3W)HsLD##7UupeOnPe5hq)JmVn2#nF2bj^<9ab1Gre9flM=HQVg*XutdhciS0>6s9 zBa$EdFY=&*az4m1sa!X!^ViYxik+NZtLE^5*yjeIU&LeJi7M2}A4>Ai>a8$5D1;}g z&Lpezq!z+TN@5hVtRDy)tgG1&GVU_*lQ)O|cUMaJ5);F||88s$&;L2A-z$lB&^1cBxrZSU zT1did=aez;cq$^`zIWa4yzY8(T!^rz9E&}Pju*K%GAy=6WjWl8ta zuuJywDe}wrO0Ji6#OzF;*MXJ8uXH&fsiK^45#&JJ9cpoC0cZwUABM*AIIL=g3cV-<3j5`cL*oSg7W?* z{BKjaz11JPjtSF~V`Df$24i|n`NEE2J4xYzdwZCJjXTp8G^nu9TQo!RV6?_sSjnI7 zgQF)6o37N!w<0#A)Os~Fbw~E#Ep%u;;~YvkHV$C^&H#l(n7<(r<`)Zl?7xsm9pR%^ z3eas~xt_mt=xv$(O7fK*YAP4v=CAx8(p{&uM_b=l6CUZ~LRxW}mp-@APk7 zDPKw}E6?s03y!3m<>dEnJ`G5UW`wdTPDqjR>(cHk>eRK>#K<#_%PK_m>_G*6 z;k2zPU@c9;Qk%mxiDm!VS%VXc^4mx|T!s#yYP{TS*xZzFT0$MzB+vRgZdnNS6%`ac zy9f z*DXi!{3rmFGChJZ@0H1vvkmEwVQw~8?lvv~-W!^%_od;JMiwhz5O=R!`t#imzkd-b zTWtT?-X6IoD>pT-Gj~+g8u)B2Cd7~-UE0=G!zIAO!^@wkP|PYbI%nKnZ#`OKrjcZB zUKCS(cSL=W?fMW&mppM$r-*9HWnEK$1>pOF4$uG5GwOXS;myKTv(m6OJw5&O*s8Bbq^DVM#`RW;sWldm+ zeG&4Dinp`bdfQ#=yH)7vxm9=&B!EB^pLFUJR2+T3Cn~!C7j!Qv&}xvrJv~QGH?3zq z?WcoyQvJC|qpz1WX;E55k+7jvBqA)2WA*$nC{|Y-I)8Mv?otxD7?C#j{yb{a{VW-8 zKi{ONSS?Ueu;+x#ZCTF0we_E5F7q*=RfB{2)yoE&GH+?g&4$uI5V;iP*_REyOg6=9 zku|e*vpk(2qVdDhsMhar*;=vdc)Gq(=zQI-XB7B&1UeYV$*(gcUjsyxZz@fSA>TyT zIOJQb9@Yh)b_99dZbeDJyoK1?+w4#7E2Rs^Zf=^*erJPFIPIFDo(;+jy9i6Nr0Ej} zs1w5yJEifH?J<&6uIG!#V2h28*lkB8JIRi1!zZLy35MZ3|K-a~6IWU(r zYqHg(P>qPkn2 z^_xt%L%;ESV=2}eQP`ic)9H8~_vdW)Bg`M@H5vO`6o-(SeIa?@m+Nn2mPCe~_~q1K zfGTf#^l8$^I_XyexmE&tP$BVrdZ1S1zr4hT0Ds#v87yYp9@NL^@Nfig zBZ%e8L;am%sMhU4lkHEMw2^HDS(Nc~wX-=4lNkMdqB9O>?Jl0+Rv<&G>uksO=EMV=cY zA>I~irK>l%L2t|wx2GIE<=+IfSxf4Zkyco{qOtD!?ezvFa_`eHsCf6(>W@!_s3{D9 zB>d_>*|zGw&0Uxe%(Ey$IXBt`l<^zjXr5~1%SP(Tk15}?{*I?UMBVE z?ytV=>~*FJ*z-1`q#<&NDiDH9Ynd3D7Cqi&oqX#ie!XIy%s><)d*q#nK%^H_Gs=Zy zfbuj-C`oBlIDb2MTfkm7NN$@V_N6m=wdRim4)Mw_=8*YL%_f1x2~CNNV~ zrct9`5r3Xv_l;6z3G?}rf5+AyhPue`_n|QGi#L&!!|cVJholmmBz%gfn&nv0cyA+lShTL|2M3`WAp@d5aOL;l?eN^0Jc&v}!`I z)0JBtQRj_Ng?2XU_<>cg38&uusMz)7$S~`|ZxJC)N zflM9cT!INk750_M#XGtGpu#7fR)AhD4(V1bYS!Bhc7p?(`i-xpVC}}5l0qFk9$L&G zzt3?-04aia&xub8mNpIg@%j1r(Mcp_Tu9cgy%rSnYeie@XJLNbKd@<+@8uUPocP@u zk25sdBy|^Exf?HUf_!hQH}v%M&Cp37T6kCp_Dt16vrblSU@e;b{QT1{vrOaG3<&bu z_$3Pe zXlY{SUQCCF)@)qaA%gfNAYzC>3MxYo9HH0X|K(gA0`LVVdllCF3s0uIt>D7c@7OZS zdhYopvuLj=e7+-*kG=tP^{ zpT%Zs2L(7@bt{(1_`{uQkgCoeBe4)03zYr+ze0Zfx@A$IT9q_nI;E7=vNs5{RASWc zJx9p@xg)BGhGyOOL3`AF8M{OMaj5X#?=ab!B1u6hw&mCLI^s2jNIrN)0E6qT4Inx> zI$3FVR`}R7B>60omINvM9f8$>Kv%H16asaMc)W2X73?tVpVEzOsHV^cHR zb9ITcy%8?bddmZV1{+7odK4$imI--nBxeQsq1=x7^q9`Ls+1C^^*WMGhitFyP2 zO_Q>14_@D$mK)0(ce|AF)2gfTxV5|HAxJ3r-S3J0RIM(m@(3#ImkdrhbT2K%H>T8$ z%Qs|g!{dY_Jladk)%(oZNpBgYC ztPKGz>zBe`K)o3IQi#0`YaXjKEaNYLlAgAMx%;T~Ezg(yX&jlW@;$Ka zjE3zz8ywjZC3{g{UEhAcvZx@L)9XRP3nEX$N=f2)I)Qo}-B?iy}pf&)y=5B9~^UCm!JokwR_vut?s%!mExMypCvB)MWgb7%R$4d>2G z2J-^fB-=07XS(V%5{jP4 zb*&NX7ky<9N2vYW;dY#KzxbM0ag7*yg*0u=_uc=CtFLg2@{779WriNQB?jpZkq{WV zq#LBWkw&DEj*;$ekWOh3>F!3l1XMym?u)0_ynxC&x^aK-kkI_WFgq1bNed?c z4}u}5TgMzFC=fvsbxkE8{QgLzrD6pfHj@4}Q8QIlA_U`|9EH($sLqjPNXQgiPehI~ z%AuvVqod8`bnTBz>9Y1$Ios?ryKVLN<2a2BiRHmfi|2ODd2=I{k6|W>EQB|eJe^2A zY;SJ@`vl$@|E6iHme?Zx)9bv5K;H9NmlXkRp8K~J$Fn!vt>|&FwfRuxfZswGUtH9c zG7+$$+~1-tmMS+x@rgxQ`)Jv}P!;J4fW3qSz!*u3L7D7Y<9_~!8Sgeyn2TT7i3+)& zKmPrcBBZZtZG9K}s_h+Ya|@&*0*=A`ADr$ZO#n#F(d6PQ!}GQK^QzSy2OVz-^C2Q( zg~WI@v$n+~<9xI0yzjoTIhdYqD?Z)RzssR%iX8;r!lQ%39EoUfE zT)~+zk#blsCuIa<`By~*RB)zL;sv2%K^|g<^iIkYL8#$3oaEUNW-+P7?hB}vS|D*f z*?nUVkEpB~zNB@mYX1gBCw2(5j4Uz0%5wi_D=iE@CAK-~>}f~adqd+8BKC<^EVx}x zC^=o~U)uaGhL9$7yIZ7h^xo}z!ONLXFYPN%y!d$&ShX8ah6o50uqz@u*ZoR7D1F$M z8uhWiitz2AGc#kT$mhFuK>hn(+NbN@m0eAIZ;=rkq@$i>l(YJhpqX_i)ai6GNpJit zBA34L8_~DW)0S|ZnmUN?cM6ymF2Ph#IZ=QQ(Zn~ihcQwVeyzjUZZIR3_T#P;3pLGZ z@YKW?(=A*h{gI8Emdy_l0ucb=xaG&tvZ{KQs*yt!Vc)r5yB78B$tsTjtn(H)8W_|O z#XO@)wqLn*GjSEfA|8-Au<-%Y)EELevd+*a^6Y<5yBLJM;LxIhl^j2>hfxk5Gwn6` z2qlJFMU6yWKnq?qiH=R=F7BE_ko1J21{tCN7OdNoYco-d@;a5e1Q=xaItwPEr9V- z&0vILe*Ei$;15mL-Vdd|FY0*C>+aGs_Q>Y8o;xmi2y9n-hOiDHD&e37MaU|C6pB9H zslQ$Mj#0YWirjTN$=fCaGkySS9$ir_H|W3kB?LlLWRDsdF?;Usb{u0wB<&bkRF359 zfkuB?9>f_Q@T!zZt^xZ*h|}vtwxy(=Y&H_ElOQD#Hk|z9ua?o@-wX+SIUeOk8^Z;q zooYre$+zGgtj62z%^RMdS%@khSXwHgxCyFjzrxrW#bnng>xl@BBjhJdf-!@-?mVC^ z@%{sI_^wG!%biJEzL?iq#M)s7V&(LKy%e17bvB9|g~VE}-wJ#&Q*zaDk@WF^SfgL3 ze^C5y`m(5jQj={sURd%Pka5m%+L3ky6G}+G3Sh(FA5PE|pQT7`J>2@+frc&mXke?| zl>*XquZ6Y~%AHfF)-{T8S)O#Y0OtE`A*?RvnDYHO{XR5H1m{76Ia$jztFiXQTf5 z`-g{|Fk|v3+=bi?Z;ke!6)58X|I@(oGJ`_~=m&Q9_(mA}+K|L?$diU`#Xun@!PaPf zly_HHB0uflFR%+ylrbw3q*gRv!Y$Yv2DIOM_D)~T9H*W7)05%g9QV!LOBZ8O+eT7g zeN->g;G}@D>*wiZ>5j8mMKK;O{iO@k69cWH0e8vE`tKsCQI0@fZ~1a^1g^*CJpCJ; zAJiJtn8KIj$t~3O^@wR}ThXQkNSV)Z@6QY@?dD6-)5jq&c9;u2on7b`-WuJ1 zXQx6;u1jKx_WwDy`|`sp|KD(3c51Vc1k@8yaCc-Ot$bLq=ZTQ>L6Wwb?=|{GVcvnW zEwN-MKHgjQUN(qDs_MG|HXv(vZXBR11tBaj|C~$7%fbYk%cv(2B_>MtqTkD5nK5PM zWKU=@6BRk}$)%|CoJj&x;h6uK>>!2(s4^=V-drvFIn)jfkGkC+?H!iy1g#{qx&Cw`59u}o z{?U*b%BMH~g>(<8Zq}sY3IFRgjz`Cn)fBDQgO{I$bs^ny@lEt(gd?t@<2`F=IlfH% zoH}4sg>uvUUKE!EzQ`_5P=}*7^q>;=1CHid| zB~Ml>6DFSa)G`uaj4Lj7czzlHFeFYV72M+f0Rh5XC?~EKThmG8P8}ltTfVhA^J$NQ zEIJ>Zvi524@@=+~t9y`TjPB(Y0)q(+(a4!bU`d*(pe7VK_ML?8#k(_eczVJ$e!GJp z7tLfLXfp<_nW(8x39pfU%DA+-oqYT(`_%khQN+^j``T@If$t}e$2X2dF7T|?yIBw5 z;EPir>c$P$6f2ImomUwz_c}$atm^VlWphbJW%NA==P*J-oP}4Hn)i1U*6!jWYKhcm zSm5TMZ~LweJuavR@ZNq02Qc`x)_oQXD&*s)`rRKBY1Np3@CSSOidn6!okB(Nrhcsk z7lY-@p}|s5MjSsZw-v}~(*_T6RW$#~`!&$w+|lYTi}t#Y+2#F`Ejw1$b4&9Qrl4Xm z>k1SWPdRMQ-)Dli?_IAy@Q{2SZlkk{pS@gkx!Fh(L9=VKlk|`HSV`_D7?0~kf~43m zP8>N&z?Y`jP^^|--WuDU$TZHrs~Cm3W`n>-4%~Qpl}wq)zfWI@hPcAH=V;J%fAzU! z+}~kG3uQu@R!fd3GE!TuqmG$GoNsY$?s1f-?BOmeIT1gi75)Mg2_j{`iKi|bajC7S z9)z(p01#le8K9bl*NGuJ6=YI2ISoHKu$Gahzl7F@UM`-yd}ZT8>@UuHxOxy22!I`O7D^xh&R zqXsF`(+gQJo@9F9{a^S?01X1H&g*zD${N{tQd4| z-S@zGBLZLEw>=L|cpH2uYPDV^mAUd}=`z2MLnc%oHVV6}OEk=-ZLF#d*zq*6XIW*9OW>*dk@BMtdHyFps|pX^(l+MF%lXIvZt!+t@LfPBk?pveM-q7S|UgM9}xuctV+H4~nG% z1mtEs*!ZIVH4E*yn<3^qM=M>VkH3)3KD_0l7$8ar8UTgm=BH|5Nfu;vP=1VSpcE?q zeWe*JE}?}BHpvX8Z&?^09K$!C{PgDyvp(-UK&lBw@U7=k!;1(N5?XfCbg}38#Ic&K zH=4recRXbL#%c`;q-1-%b2r_8VJ4d$Db~U2>!2e5?Dv;E*CHm0k4B9R9Kv?0lYJoKB7b( z3Lu&h#Tc(!rhZ*@_3)ul0G_e3pgxIyx^dD6#VUX;5||YeaJ;xQbdlh>k^bi(_~`yi zaHG~lqly%5coR_5?4k4qHf4AAF?>|+Bsd~#2nMTT>B66hdWt8iO7}|8u*U7IJ6K65 zR574rQzNnJ|YtODGthI z!-H^@Oi- zSs(WQ^KE-X6fs%XpY<Me#G{mcwOn{ zLGB9bnyU=3t>D&ZiRV}2ar!wRHxy}(;l{ky8w=~kQIR)gB(RmE58eu3#3*(ct1{oy zc5RZ_ix9Hq<$Y%s@rn1{4>h0{hZ%pQ>$a6GF5$@X{yvQ6WNF2~w!&@x868F&K{zp_ zzsXRZXlt|7QL%q+(%85b@2-t5>m2K$vJy+VtyifPlGf~EGff%Gz?Xx&NP!}G^>>E1 zs4>X~Ng>}nW4_nb(iQtqzp%6Ml^;yo?`a0%eG)$n{x{`b!~@lUhE_*o;?_I(nUzRV5Ra`nIL$ zsXZxb3w8|q=Tn2h0sCzO1GoCmb6Rh=GD6ejdfehe>3t$WMv~$#!gF|aJdNLGl5)*yp!`1_LQ*#GDF~R>Pg&ovqpnOq_%9?em*62 z3)H{R`jNCE#q8f^!R!CL11K%spnLph`y_CI*9#SzrW#0X9n+p2>(2q z8!yfI4dk5H(810jX3&(=?IoM%hgYJ_a2^Nw4WE0R8Pc5BKrYFCz2_$NpIcKSy{1XK zIrtvoxy}@;Bp+5KHo1_bQo~LoyKNIo9uGXjw6X3t(Mj@yoSDU^2fqStK7{wHg(70t z`XVNXR=FnQU^b+?4bm-?P=#Idi%lwGAb%)1gh4*}dl5!b+OA@mn)|{tz6HOxK%QGv zdy1rLYvL~@{zcL_Sogb*;pxjAndfmGx0Y8|4uibitSTkr3Ul-`3Fu+RHnly$3^>_7 zjSiauB=SqP-&B##-+88L3#Ec4j7nUup3mX@GKFor(9~Rw9rP4IiDL4nMM%)|gjuzl zzV6o@3d_qMv4G=_>)fbdn`KY4R$ys}U9aA(# zu33S!WF!H>)a8Wcp@WTe6Sr&s_Q~LUIaeE*%r>@bX84#e92&w-I^2aVyn;G*rLhny zzVg6t^oXXO<9?R-=eOBi;#*}ZMahQpQ{m?r}#CEobXRERVLzsto+2h%L zXl5OLzrc;n+qHGXH0 zJ8I6w$EUH8HCt(+TR<&dpOP0GLy+Q#fvzQvSXq$#U+a(&5RfpT?DzBc?`Hpcub+C2 zdQAy+sJklS#vah~_gb3j3;7ZNA4_DR&Pp~?+EBbYJ(<3ZpM}Om66F(B_@f^83BiKA zeN{|MW!7aSgC$J8P>BTWHdHJgFtRSUc%jsx>Xo4v*-J^2*@!fYq2UMQK8cr9l{KP3$6MZ)!Pcda84C1V!( zL0<9weeL*8GXb;>FY+nb*wPCH!aBYrW@YL&u&SY~^ZUuY^f7vBdAt8ZirZ;{@ax)o z@ww~E{qduS|82e@>riaSA6$aU0u{+~x08H4#~*9%H?vWv!R?98{Yiv-9besB&aoZ` zKjWF`k8%I`>$OVAv*jwb+HF4eL7TNm)fi`tyz1+$LwmDzCa@=FmQ)fILI6a z_4iRSF6V%8L)GJXJ%=aOnKn#rCMf~Ew*_?fJfx=t{g?qWhR)A#`gfPJ0)q5QaS$&W z5-9YUdzA=j)U(E#V$v|aS2?;vgiL-Ful{%rHU$B^wNoEk0l+Nmolq*}EzWuej-5Ip zKoP3!ZH$40I)9Vshl?u(eHNo$;3NBDcbxkSo~yoEeqjxPbS0`RjPuN1bS*9}pxZ)b z7T1x3&pIO@#^!s%or%V4Ybs`-bu|hAc z{r%x`Mpt&1^E&g6DoGG6Zej_~u8~xExt{8LVe(Zl$D`Xp|2x;pJ~g^nJiOTeY9^J% z?L54(uVyVOL*v>F=PC|u1`8(G-3AF5RGhP!O*62!-rNP(8Ag3**4@`k=Z(N}?hMf2VJ*b1jt=GiSg z&%}9}-~w_ySImtOK!QmpKqP3)*u6X{!bth>`x<}agC?7KY6wUFd(`5TP=N@hAwsG7 zWxeZc!L@hiHH4sjgC4jhaeFu@;snfHZ)XM5?>4 z{%qN~-|u(bx!wz|QBN%>hZi5AiIGA}(`VD6I9-tsz5$A!av*yblosb^jI1BdVhW9t z`fydHB#{Nf@nl?P@jpbjtxgwIg)6>KOc87Q|JE=>aBGyz{?0d!{P=76=OkrZUhAcZ zKy6e{c#eQ8CUK;vwl%A?755f+#T=PaTGwIRlzqi%iGZEw$@_LTL9c&hZ=( zaJ#%b@qd|+U#z>fs%T1oL3Q@;?S8K*SqRD;O*$J3HjyG9&M!$YTDuQgj>wwduhPk7 zHE`)%fc+7?YE~GR6iZh^fu9-q3l?X-J`}|R6R8@bu`05B_|%~)!C8e!D%^35ZFfKU zXVdo+5|Yw9rBJ{Si;v#eVm=unJy6nrj*c_*Jsvyc=&DJXDc>!NWvq8~C#??8CU*|W z#k2eI+U?8rB9ESow%inRx~+9&9!U1MZ6>8740kDtcUL7(`V<$%V4_j6)ZTl`nUMrj zKHoa+s@K)Sl1rV>UVdYlrZ0CWT`se5NH8(|DeI4g1t9+nTxqTbl&1=E{MBSXFH-5F zgt`*-QpM)B$*Z7${bbmVBXa$zqr@m_rA@)Mru?WlU#~8j8&Au{)!&cpe*QD2js0uo zC2QEia$ACQ&yb;&W7C_wD_o?EXaxMSfT(s1*!2878R+1KOPf)d&AdL8n`Gq029;qp z?xFy2_x!P>9YOyJuaeLJhjf-^$C&%Qm!F>dX}mQ+pb=*i+NQd(m8+vK(^MraDElih zh=!drtG-r@#}z+KPZJv?h_9%any@Wx{Z$$qfrBy^BV2{}G}IA5fjrKYPJR=x~K@Ru~d4Y8gPetd$pXjqx;MW1VXL!8%S7|_aXnvOAIVr}wI-8+Q z(jaTOY?`Q1a#i)Y`KG|{41eNsH1q|HVcY0rl^D3N1OuoiIP&|j?3!s*F*!Z?^;gCF zjT^WDxyTCkA(!n7nsW`@^P)?0aIbeAb7KP(J|v*Q$~uEclcqmJ4&Z1aNwK+6!dg!~ zhnB#h`M=^_Wt75*{F*o8q7@#W&g`A6uZ~L3PZZ3TqLTYB=4;8e||)| zy%J$;SLn-!MCUmmO|>He%Z3V>1*oyS#0k{<0;ji#q^8NImCDbHy_z=`lStF`Y31a~ z8YisqYIa%|nN9)+$~-|G1-a4y4d|(t7@|SgQ%TL~a^LHix)x;|9rqy`o^2hYsV7LF zkYgK?XCgTfcCkMgAWl4c!$MF;m~q=*rntzg@p*9=r?Lf<(Be(=I&VU&wtcL>>K(KsfqhNPHV#OeJY^==@R9V10>fHydrQ1Z z3g$(Y@P3>fbtjJVpC-8-UhTM|>Kgn?UaK>ded!_kRI;@ESF%)4Bf#JpSsk}iG7F+U zqC7lIsl`X2(U1L7OKoS~=QLo(1dYeQ?`YY+ujY9UP+-ORI(61`0zoyP1JLxVGwZQ1 z$>y`(KucbI3*$*YTqIB0%@W=D^<%FM2GiQVot@5{C`FwHdEA0o#c(__o|UJSi#|sanxvZK11f==lk*E=+AN7C zA};#5Bn{>MOcZ8eJCmL`#(>|~AECNcjrgr2sv);IHJ3MycMpO7vJP_J?-M8IGJ})# z8ks;fo_zjBcTVpKlEgp)qdNh7h6`9T+4`d#tO zhxiEdn4<_aU1+Cf&pPgmyvp2-b->X0Vfwbn9Y#>Db!=gK{$7N$ik*EN8nqz6?*Q2w zq8zoRSF;E>3gi7aI+=E3)%03|?Ox5gmYF&x$*j%~#Gl#!KSU5<8zvrNq4%cNmOQz> zH7Qro!p>rMZ!pKe@B7QNDg9Vg$mTRVjDMujJTD)e-jMlO(x&l`&YUlqB#<*XrAC+NffWd5Ge)f-hqZrL#0nwtk}NfA1y+yIPu3naFC+7ZbH=$>6)Y2^_E6 zFV8YYnw{FDL+MR9=_yki6$pDqBHnTlfu1kT{9I=8bMmJt-!~^VAt1jxp{8BMheYZZ zM-yu|3k8zfB~+#89l)CGo|nqCU4Cg<_uMeEgFk7AAX@)jC=UDh zdlz?;SJ!SfU|ZSC+cKw#_4n7OzZxq{%L)avgCtpHAe30UwACdnd6GY}AJCMu&z3r5 zFl3Z^cnq~}#))Lp3W>z7Vq{ug(O!gB2^}1a11M%7LJJy3dQFxn4lGYhpBXYuIKf|$ zbadkS!G->ZfU>c#g-TYlOo=0j1D;1*1I{58E=bm5j~YJxgdb5eWT z`;pl4bt`W({AFedygzh@t6n4h;cxq~(_hQmBl^!8DiqomD7q^2T$^BVZ4lVDvdVK} zh}ggFxZ6b>%cODU>uT>i-Lq#U&sihhzf&-=)_H>1=f%4H@xIj&V4;1_3wYK?JNR~( zpqQB3{GgMsE&Ocz<5L9bBbkB#1`80$bee=3b^e@8_uj6sEWr;K;y3FlEY3bD48*aI z``?H}!dUE&9wlGCkp+fKzP}f`3_5+LSoY|P>q4;xj>_3=3AGy=y%c@`h|QPT)cG|O)C5ZFu-fK-uwGsx;+n5{C*Lny8%GkQ?qRZadjEQcp002nay`EFqoi&$p z(Fkrjj)X@JeoDwa(XlLok0)EIuxpo1Zx3Ko(yvqj=th%%+|wJKaoTh#oHaYJeI^f*g5jjVz^l1;AYZy8@;jBSVJqi}q>$V$6+S zsfZ~_PXzWT1cp>!fHYt}BZ&gQXjI;hjNR{BwQ!gtEW?-ypbwTn5$1Ms&$;eO5mo z=0?np5HX~zl@)WYQfuXHPfRl!*GukbT!DGYfH+ZhjPAFIYjvXkYx{E#Au8rvWYe%V zOno?Psdmc+lisk9;o?$d;5T%kf@Iuvie1+cTG~%Xc3J;i|0|yIQhK}F#UJ2r8VFbs z*QN4$;q`lq=;Kn#HJXp1hnRH)_f2HK!8&b17U#gNAp{=j($`ov~;(?sErue&RS~AC}MK!f{I;&@mmF+kY_}G24PC~@%Vpe2< zk+&z+n&4A103piGplBA+X-JDoHd#-q%lLLBO4$^4&vYW5Uf2t#^6y`4V zLHNRagmaJGsPj*T(YU|o{E#L6!rpL4c9fg5cAdofec$A~KUwwUd*7u4ESzmz6*Pdy4r-6830O0P@)fA=pKZNj ze5GSS&|iL9j3HgS9gqy|P0znC#d)XUCy?Ce_3)?2=x^Ui>*qCly++ELC}ZX=`8qo0 z*g|lRb)l2-b$yBc^~sFdsV(%yv!Hm?rZfw1tho%2C|u9W+}#l%l)A)01fSE?SU|jt zGeZuIoaNBJ1xviC(P1AO9Z#xw=7#ESxFR|`mmSGe_r-!-`lU1o;i+TB1WL|aFvNIZ z11GhLM=xKNlSpBJx6hTQGIuReWHDF5YGL7zRm9S>68aji1x+T>d5uZ9Oq6V{N|Byn zi_h<2jz^cX434amNYhv6G?2VHR31FJ#-srJ*wDK_o}$<9_j`g}?J|fXz0%LVftHPL zKfNPP<~uX$Os<k0#YSJTZo9y z<03g0@5X~G9b&%lj>C;Y7~0f8qSuW}kDo_aeRXW~`NLd07<@M)?Gz!6^<S|D7ZchN zog=Tk`)}yUm<8gRQVw?yr6}l9Is>wj7Y0K5<%w*Q2*nPK^OMMFhOKzk5qZoo1xbnZ zg+Df6S!`Np)JvyzuYEu~zms!X!N3H=y_8$BVN=3XHZT%zQt0lP^6Lec&G=b35=|`u zA=r>rA!-BtGu?%q?0v{Zdo$%s?W_t=-L!}@nAj2CbFen!PhhE{KaWkL43Km~5URGmluZ)Q)208`^SImS=J>BdU^>z2fr*P)=6Ftf!R8TCjiW0BXkx4IPE!P zlS%(hU+eY z5!&_#EiUIo=soT1yp5eW#_uzG!cX{k+NLkYSOwJXa(vRBI&onnoOz_Z$#dWl11;U@ z^6%(}_KqKHB1roq)qE9By3fvXt53Z!!2wlKz$vO$Ub%6w4k4>GDyqPma9aJf^42KSjSS zuQw>&cFLuvq4M#bJbl%aMV0gAG6R@4Udnmf^t@AIwD%shA?@vqM17P0ESORxJpLEu zYclIoXE$ltO|_s&P!!y2u{8vH1h-2WYv_+j9^F%K6oIRQ!yx{FDEoQ#_qLJ4li8C@ z6Y*cG7-+~c*H_|@RC)PyYhhk}_3%%;`f+N$z>qZ}z@Z)gUFdaJme9+(OjH^OZldvW zXBb2A$h>JaI{FkI2IsO%7cSagGHgbN3o+TGD5-kACREG!qYvP`_XA5GkI{?D8{s_8 zY_i~w$VVNqk(Dazb<@oZ)m^{W$CO1!KC`w}hw4Oax1o>x)S}R>`qnl-#pibEwvktm za7D#|%SAYp3=L6PBxCq%W~-lxO_LBU#QQH*g&_DtYd`ji2yrl85cZ{2qY?Bk;elqG zrgT&BHS zUJrk%G!hj$CqOcq6&pznUAicnx_(W0cN29#9rRsilRI*s3l`MoA;&aQzCO3+e=qqX z0e@?pii^aBU;xFhm(As8y-X6tI!MQj6^K*3gh-7y;LkeWaagR=F=&BxXqLm>B+O)0 zsNA6<{WWG2T}oqF`kNRVTENwLRjt(20dxXL=1)Ko!tu!m^4#U9$ntr%y9&u8_~l+}zHI7IDN{m+!WF_19~((12#*{3 z8&6kvW^a6-EBoC@*;uaEr|yI67;pT-i9iv>Ba~Tyrpa$gQOMER17%Tb1J1H!n!wpwMw^++7XR= z;{sgAt;@|+1z?uOcGL(JznxW*G?~=-FKbLZEwX`Xks>oqjJQRkkq5QU#kK)u3-0@a zGG|^~$tL1(D_4zm4 zR9a+W2B&5F(5#(GUcT7MiX{wu5$!BSeq?iKAN48kj{j(x(!B!M$ky;wHvXaT8ywP z>wNdez_pT`xNDrHp4=i^M$ZdjKoE+7pyD-DV`06aFOf_dBut8OZ-L*0t)?G+LB{~M z5MoI)c#-i^Q6V8|J$9%1uZLm5uPTNaEVudRPue!mKR)kB2ZCJ_Cemv*n>e&>#3BRk ztxW5JoiDXs-+th)=Bp8EaTCcZaFSee%%-H#jns6WZg(#4x}{4AHT zYUrT)Z6+xJo1^&X1={8bFn*GlJWDU$>zEW zM?tHk@;9vcUwbF>%1DboOM$x7G?}QT@Jz58pxV4KLKC|Yu?%{#HiSGyp|wkgb}xVa z{F&{LA3cEQ0L=0e3^WOQO*p9RR=Tdc-*J2uymQdK)-c2hbEbncFx`~Ag>}t~en9(0 z_;2r)iUA30&N=%rLMDrYoRLU=xAk_Q&IFcEM}duf)#P4i8pGT&=#A#a4%-|A7G-t@ zw`4xQ0O$d1VPbSYnaQ-GGg&gbgBB;~7eSH@#cNNQT(^;`=u zyB^~m*wNFH^+K2OHTfXkCW0NA@dBfdxVi?(-sw;e4&-bi7mG1uRTGPg)v2`{f%9@=fD~-cICYAPv;q#C zV+eoF4#BN3Q3xtYG%OQA%Mf(A() zCOyLU-}>$)L%cXZ;JX8>JnX~~mPlL`O5J{&gw`TPadE7nDf7Yg2V{oWfsbLVfV@U| zls)K0qk)_R*P1dV+P!Xu7QXbYFZGC1<9vod026%WxvciDfE zU0|*Z5sVoug>d+CUvlaN>7c9io~w4LaSo3nqT+S3=TqR`h4KkaH`w1RX{u7<$PgGv zs|CwLv&k0uyzX^e7vjmIv@Mnr$k7MfElf5NE&|2z0HUkIx5-dY;0y6wasJ$`z%~y_ zCFX(c{$Gkq&X6xL(!IWSD{2wvexYa?C`h(nubyb7S0^vq?0|CVh6d%m9z6O8_e#n` zv)G=jn8xQtp{Jp^v|BHZL=E0mKDY~Fn53592>T!xn|2X_#{SO3`>X(0$Nw{7=T7ddrN(geMN87n+(fhoA7tv$_@ z0Q6rctBrPmR?p5rrk7ByoUJ~xf$i;J53}HXlx}n~2}>(_m zxfxIVoWVGRWN-lu8)5KO^(PL^;o_0V^}Mh8`_LBXs-mkVoniU51R1GOjnbE{srJoR zyJ{Y`wk~eN>}1TJ%|8x;Y&CU;i4^)T`G|nwf--B)3qoAC2iy0$FWNt1J0i$HNV=_}V)uu0>GKfawLb(9o}cX6 zdtA2v0EE4CecpeqNJamKmCr8xtQQo~|N4g0KS~qMXbd*pfl2Z2YX!OLQ#nYBPeX#21M|jXwHT4iY{CGofr=;Icf~K1HMFPe zRYg&mB*nIluvXEUwO?Y_YMm0=@bU_N6)pazLg#|p8}t~-rkXSZ7YscYu2)HYxLP6a z`a5=C#3IekKvEn{+p$}_t!S{G$KFR zPsc;Fo#h9}l0*Eb0&Na}Z7gykh5Lpe+1jy&$L%N%v1+nTY{9-zqw}?ULV9_N%G*;L zH=Dwl6FE!hZ&aFxcSAAuo$mWKfQ6{_(S3>)0@kl`D&Dlmk-0-nqYYoY8YF)g=CUwR z^Rvda+kR^zPj1YOWyBhObM*Uk^u++qyt9-skwojulBjJc`I&_eB27&nq~%zyH*}DG zg^*ag?vpwXr`zC6H5){*?ej|tsMIFqYn>*opAnzztN!M;KiMWjBtijw+jKTa8fM#R zoh0upVBXM=Z&;i+Kui3snP@nyBax%e4AT)M2vQvEgmhzz1z^PXu|a%-M_3MRQJIPW_+PlDLMSObp7tD@1aYM} z0svZ+w5MX8U_di*gaj-`yT-3b5JR@4Q#EiaCN-3`T$Sau)e!dExrXTh+eTYdVIC2W z<3DIWM&I6yGw&I%vPa;({$>Gr9I9ceMNWq+GDb*}zKIN?{f3x{!73qcf^PoNVT50) zQmGD|ND4b7s0I@l^fBpoLY+Ixi}u{4Gk0o#ac4a(TfRr}f-|bmmy+$FW3FLH^$_B+ zoE?T^T{R@oa>jhB3Vv$aW{BMwfVS;C5x4t`(Z?xY4T&lSM!EUY{DZY-jh#7q_hY<~ zF(T%)+kpXcI-srBuJiu(tRlMv)_^f6TTTh`y)dsSDRK8|ad1w_MXLyl!TC^wGb9ld z!Y1gf9b(M+c0ZAsaHh%PhPjR!oVnp$gdX+j+!&;=xsACSi^(4ONw|ncJcR}&oiMOX zw8CmhOEBwgsu6eji)6!PJ=437Z7_hKQc2l`wIT%oZXRT7+c zSn7ykwBA7KIwbwR?c;19Xfm)FsQ_?UaliZ8%b*$~-shg2sx*xL1 zJkjC8r!?XVbWgk%6pyV>Ar{0YHcZWMCNX@Sxw)RstH0w!@*B3(Z#F)R(f;qeor)MK zI+@XxySymB&BlAAHPYmjo$~n48Vh37Q%0J=pLzQ_vAfLWRj6}UA_$8m6?y3>N%5hGU0RrH*II*>d-oEszgY+IQ_mve;A#FcpNda3mQjAJ z#YY}gmiBGyQ2F+CD*97PDFOJ{mNnlONv#9ZE0>yoTOO~M9{WV0g(cz?JxQKEWn}xK zEEFljJ8>;Ix#kO(5y@gRyUBuoy6j{lP#OV))ox^IJWA3txu+L*d43*7?rske#XY`dHR+C8jL8p}H6D)c;zsvMLnYj# zz?U6CbSyo|^Xm^E|6o&Mxx4A4qaU*MYjxAclhV{rdnjo3TPLi-umiH5W71D)^%}u2=c)C1hBVnTotK=XuS-SARK*&} zu0}~9KDjkAUZt=(#oqR9Lk-ClN~PF{rmwGBamK`*DVuwW5o1isad94lyq90fEdai3 zj3ngIE?=fP`7RNZ8?++}XO>Gp9u7mLBVaX%Oi-aF!V3H-fXzOfssc!lzVq5315Ft| zi6mS}1blp}OQ4m&XNZwhadmP(Ezch%tSOc3yKLI-qZbTp**pj~fq$e5$l-f1^F8sl zs1Okc>v(2(%z*cie0Slh-!A2GWzB44OI;y506?qPQ%1{Q|)=r>{2r0Dr_HCL# z%GqI(gjI6eIlBmT#zP4!gpkcz2!;y5N3$`C#H2Td{Q5}Byj-mjI^o+G6y&9(&TFVm z5c=8rPi9EbyIb0xxJe3Nd-F*~u0k2NsWb1Je0RfYl7XX(_dpHneKjA|`r1Nvc&P2s z4hktvjrSAYB7AcAv`bOLhigm}5u1^n+V*F!y;=03p+Vp{O*2G@KwM4on`HzeepwYS zEn5c9Gl7`Ia?SH7V}U}kW8&Lo)>@1|2H$Q>=Z@}C;rT~BDv~q7Hx)J{)NBIyEH+mA z#t?``jeu68o+;`@o{FqyyhP9E?vb@yx$t=V7**I)Kd+2(uZdL{-5U)4a0Um$mE8xI zGJ^qlI61hy@8LA7$|V%&BCQ_zXAJQfY>L+lo1ShY41)07g-u9=%kN>T@gcx)0fAKQyfvI31t>7%|-{x@=n=;ZFwD6fgRLf;}?q2Q5V<=OxAguYoE%K z4Fexizjq^ZQN>Z)2W`6(tr=H_gu>1_!m+r!X%XoQhb&vowTG)6xR`tCIN$dP2exJh zd?LV*8l?!@q%V~+AvfiCS``AK`~hh8xpZb)&5UgEX|;JB%OUS}hmN_8QkduOMj1Ns z7YMTC|DQ!Hfo}MqFGc^J%roTdTjA1hX-r7nzN&|aKYXMP5L@&Six?D1Oz?_+eQ-A8JnwO#3)>aF-D&)f<=Qj528!0|FZBE)o!^<`H-5hyYu1I$)hTW=GTMcZ$OWJc=o!|ax8 zWC#d!;=2|5D*$HkN8ZM+iigc}6>VlJ1ch!G9d{kd62wAZgHo;;mCva5YccWXRg$c9 zeda!RzeEzKuIYSh;YC@GM`P6W^=W*d7`YJbs4?5T(-Ihi?Mlkb0dCLA4qK$XWQV=~AU$ zI$n54ugbjX4C3skpp9I%_+{(LEVf4)rav{U>-WCX=T zY@Ud_(s;`ecJvaLn{Mcgjv@BT{ioUPT#&Yeh8GG_cwi#dNR7yjqYI9tGftrn*PqR$ zI$ek=Gp&NW*a9!**?BHB)4pa2A%pAudG1$IbV<|m5RSY9O4m$dzMyan+E zmJ$(CEXME!v4JSf!pWzRYKRzepdg`10*d+yxA}FIM=IEv85zx#6Ye3hoL<(-%Ctn5<^E4r7y=wn2?=;r`RRZm2=cH<42**C z_%9D09;U1Htl0~jJvF$nj=E|gpKs`c>b_S${4bK6wc`qGWcN%h=>r4EK!Cp4w8xHS zt(pfFrnq4^$}vRQ#a`AUFT7)0z>=2?CK*ztWU95POyW#>#S^Ou<;xB2%g=|!)~m1v zf>C)}o9o>lRgARlXiK~Gr!K%_F9Ib~o?6nXr~sp;@iE*7r&KC5N8&hA8B?K4MH)-h$zxG+r>8a3r&!o?}y#56doG76p1!y&Opo zc+3ys#uH#Z>OuHxnGsekn^kt>?62)F!(A9&zHfZZgn3Ipz4>%JA;|eq_~UF~&2x{O z%fSD`(>b_R`n_*^(q!AV-DKOgjmfrMlU-9y+PNm%nrz#) zcJf&s+Du;;a z4dWuM)A?^JWH>l&|9=PK|Gu4t_r(OWWB!juHa1gy%um)SY1n)8BzGBDxkB;vn%%yA zYBaG>4+?WzxVTjj=}duWn4d*q115i*3q?0s5htodhcYM?>(F09xPGH5-vhAVpbiv- zh2_-jXxHQ)GMv%+P$5z9M%+c*On05+7_woYI`sAlqph{II5fTc*_i8EWr(hne4}O_ zVS*ikzNw)_{^MCM)J!;Gnx8Yqv;$a~X)z3pTf(`*TXGSrx`zqYk@O?)D^^{Igdb;t z!w=cl)V0=yK&q~z7AMUV3T)1@V9C<>+u+>Rtea59KHICWUNdz?3t2;;lzou1Y=C+yV&1BU#TXYJLZ81Pwo_Heyu)%85I zu;olLgQS=AX))d_gbnRpKV|#X{<6q?!$tkI1@*}A$3dzXRma5A+>3PL($W*&a zLnbI)i{Ve1X`wm=iY6uE;v>U7I8wYkT_oLx4FM?P(klQH#9^E!u4xiTBa2raWmb`1 zsBJOCfOk4{7(H82sWrlEWRRP?L_wJ)UlcQ$Sn@K9k=pC6jO5m3TFB4cqh7%qL0&H6 z;2EeVMF;o=dWmdP_-{Z%1*Y`Br=cwBo4V)3>cz>jk)aRBFhb64LffC}l@*TTs`5;T zARw^D>u3Gt%G`p0MA~a|nqAGJ!tex!B-npn_e0^Ei4z0>Llm>)L~~r?z%Do}$X+-u zwk_dhvGg}(I+Ux&OMF;=p|G-*GaA<0%`%;i4xOJ|udp(2kz78NH;rv1Keng0RsRpa zA1PQ21$#7wa;V_zU|`!X%5MCt9u)Jb@c`Sj1KAoDAwl;?;G<&?-s@*a+j`60J-p&- zl+=FpB_U0i88Qa{u&sIAe*bBFjk>7rXYfFvZB3+}&ab-9IEj-lOOOMIFhXS$MGW2iTGbwDJY(|&v~G-|JG3M_8CmaFWbt|R z2;DG!fVpd5^d>2k#QZ(l!j%MNTAful3mYy0PPTyCi_x~}(prBb?MzlzoeJA>82>02 z78IMy3s^~XBqRC?0Usd0YP#%MN#oGaq2H{_cz#A)Bofl!Ay5pKHV(Xf@IPov0MASXrtfA};1^f%RtGluve#ukv@H_iD4u=#0l@BYw!Yg<27(gcA?Ok9CsM zz{;`^YUf{$5ojeCYBKKtWMVQGj48xVC+g?4x&*wPJ!eI)Tl%QbSYS2+d~1--OxtD{ zw3>`5R=a@}(^7J*q(pl{+kA&s$4V>YzIqkE@l9h5s;9 z^_SDV|CTrkRACb-%8Z=PC*Y*#G=qNEUaIU10m$=ZAQ4Q){5kJVnIDCW_*~#a+w9wu zA&&>J4yJKZ2~jN8e^e}9ZRs*VkyH(pJ|jTF(Rhr7>|scT0fXX}E>Rns@8SEZ9X6Ju(e$(; zPZnmIzNUhlC;y_mIz@Op%z$hSJ+3wtY&iL)g9{I&t9bgK@x`{*86J4doOHg9y5uQr z{n=S_&pLL&g}gaV)omXDc_`BnC|(#Q2@cxZIHa_beC}O*B3L>9Lcl)GH%x%q`(} zDgr18v_2?!y(O|TZVr874-yR)@+|7wn|u7?jC^g*m_vnJ`Lu1v_jo8kX+| z{K)p?yisXwrut;6*D7EZCWcl3&`JY$0?UPec4O##gJR?6$3_rRXN^f3jBMU`{r3EJw65=js>s4H41Bd6)B)(9){1zGNu_30?55t|t&oWMT*gA9o$x=$4Wlf;k&=koeo=vICtiCmP<0@_WR zq&8;$g?qT7Z>`HRZ4|xZtl+BQo7Mpd+-j&aDD#$c(wa`9mwY9P5xM%8y+?ek9&;TD zV9QSw%3F56+;Q)EecQQX?1$jwFv$x_X-&y&WdG8Zm6NC+Bn<7-YG|;*K%UO7FSIL+$mjP>2{q zPDypcCc{8eprB1+qyk9jXSEwT_)=wmWFt|dUD>MouHD%3wt>j6sp)h&D1BbkrO0<) zU3AtkS8izX_A{ja<`YO)ezv^-NibMMRq3Vz0zdDVzn(XSuH(t7L~%$feDUds{=Pnf zS~OdpSL$nurNY(iFbkF%rlnt&Zs-P?ZG+=9EcXIO5&+nN#xB9r-l?&|`$igR0257y z5z#A1G*<1+sLGh1@*0u8?N66PL0z!q6x|F?)uZl+V7l?~FKzn&z2ONrlJusCI*hq` z-K8==GqUfCm3s9NuI##4+vHd9MdTUi5Os0-fN58FL~1wN<)+t8x($_~<_A)}}7s>#c;%4h;423a^KH7SN)$fTcg4Hr_uc zTA|xOD5rK%c=fcEfHmqeGhe0?vDs_`4MK(HHQb6pPj(#*G9wPAMrtC(Le$2XomNL^2-Q?WZL zY_+nc(o&>+Y_u1uZKl2AxYW)L6vl&YZ9QF&J2y4zWW(ob7rfNFP!9o}e>9cntSOz7 zAKiEe#bE4-A-zhmG9kIJ3Wc2pP(zB)Ff0h^vAs04F)LKdnWmYy+J6LmuCH(B=k+*O zw{tM3!#RnnJIFaRXr4|LF)$p9fuE7B{>2yYJ^t<(^rqAI`pbHA(| zi6~=ztrGB4_({v0^HLwCvd;*w0zSS~`cnN9wF%BEKWOM&)Cn!!%cOlywZ`vt>ERM& z|1sG&6DS(%Vw~*~$n*7S2ZtFB`Xzh?A8_?=G4Dr@Yj~b7x5ofqw;b#@&`lBfP7Zdx zRsW{zi=+ciAkuCglMhTX2}a1ZN(56@f_ESIaUk0Ya zpqM^(L(hg7X053N%>^rjKa-U5O_(x*97~~ojRYoTkraATO~Q(?mYkK89UUf|)Q~Yq z02foLsj~7NEvy_NgFv5N&X7T4%AoV1Z`sJIGNSafmT3J8TPV=^T9{f@zJ>R}EpYO` z@Y~Uuk}V=>T?(pj*dKkvPQSyab;s#|dw13@)1qIwQk*YVb%O+}oB|8$%K>{?Q^nMv z;E2SMgNy|#T9tuMcSxWEUcF`f%}>RCIRVZ24%f6zptAyZ$=JFcS#0fL?!Chz2B`}|Nr|NnOH~59j?mG6}C~b2#zht!zux%IKMA)$S zr$mT8eQIiut~E?DPJ(R*sR|QwEkoS4>~!4Gk=31?9M;)30BRxTw{hMoUOj!#2+6pL z60=2*6C>*5b^fJ|EzRm$Q%8rVQdN_hbi~4yHVIKgas-8JI!&rXAsPEQ1uXSI{{$WN z?YvUf#m(Y+anI*YXq(%X%TVz^XyBtSbAcc~27>i^N94&>%YVk1|4(`Q|Mz3*8g%+N z98|Yhb-w}HJNI}JXyLF_Yj%gH1QRrLkR{i7*AodYeXhJ~n;PjN?SJeP9c(@-Q^P$P zDxv{@46nW2y*nkph0s*eK6<93^)(IKliZx#AWzbD{6o|~%Yr6GGt zbc>jH9gD-OP#Qup@`6&!LBh*5BU{I>vs(jT&Oz9?|+y!v`Ui&Rek8 zbnH4Q)`!Gu@VPe}X$JX=?5|J)Cb2n;Dtz@-On(JXxUSZ1<_4TD%J!hSA?XRGiTLLW!^rP|Swrag}vyFD+P$8YVr zJ0*YJXUq8Pc>jY)3^G(hLF8e?H);yd8{?MO{$%vDVCA2A8e6Herc1V3_wxH#v?Yor zX)Vv~BrBhUd^Ft-y2A1jYh!Z1{+$%KKN5A?BevxSeYxg&-?;yFIQix2am@Vy!Y?i> ztl}<9nk{)l@&4z_X~qKYE~eX>Li6pu5%u8LV>$O!5N9wpJkY4>2afN(9LybD?)9hU z870Su9Dv5TvYl`#hy5wR$7;^HyRf4La55Syb!oo|e!^1l?&m>N`*##=Zo0_HBSERZ z;NSJL8wE~G6A#b=)m4eIB#a{hul0Iepi|$_BMIr?8ZM);Yd8JgLlcj+8g{rwo-f~e zzA)S=yRu~|DfR4vIG;B`KK856k|k8|$%Jo8tGaFO=TCgs3I0IPXk;woV+guEv|afI z)c`dVu(dYl3G}+IPcf8}l8EKe%`6eFvLL*e&t)cBa;d+o4pf<}7 zF?Ajn-D^5%u@QC&JPj*LE|Jj`*V>!)^7U-6`yGB6+6U?O7reROjS~-^$j>62udAkw zvIpMF!`e(_5ZT}9kx^0W*J8MA$8A=dr_js6(TVt~_?zZP4{$Rh;C&Gy2_-F+zPXM^$!pC^~z{MZzQ80%)uH*OfhZWllpU# zSZJA2boC`AqcN?B2og+4zgzQ}BzY$iQ7)tr5c$EkWdw7?I(Gy)nWN^hb*hIH=5*(s zq&L0%mBrNPnh(pCSvO7Y-pcPn;xpuL50QdiBYE#08bkZI#}`=94t=sPA$9wHPtp)42qTEv;i;&QT1*kITs%x@R|F%L?7>Y!k>J^Exi62)1x z#LKh9=Ld>4zJW2Wix51?wro&@N&Kk2`*HWhSg}9BxE@xfRpy*<=?9Er#zal6 zu_+6dnddzP?!>3lutbA?Oa6GgH&P@wBn>LXq)|<*x*>C>>4DRMrVv9tBziiQT_bZQ zKu#M;i&rE6bv(h3j{74&4>5{EDYw-nKibA02WGvAKOoI1DJp+1x>af{Hfr>7?Yy&c z{@~_K&dX=0X2^c6GRJqqRv~EzGe8`{5|I|iCRb3!&`Xs~w}WXQ2y@b;OSgACy^4Nv zKNq-^KsDXWr?GYY)^w<1NX zVRNxdKGxCr7{<1q-5XTB9yW@T^!JY$~Ycb@|Y9(3UQK ze6YxchV2-00rF>p*8F%prwBRH>HLBP4ck=qOTaIL)U{?Dlo|-eI3yZV^>VxYU*A`6 z*Chon)8UJB(hJjuU|^5YqvC&04Vr{IRsqE{!i8sk{j$T8b3;ZVWF616V_v zOQncs;dZ}kILVV`F3!}tpalliBP_g+Jb7_tT|=CI4MtyunN-H@>>_R z@B041wikiaG&8a{^hi`H5yE4U3Y8%Y`-4i_b9nTPI_nz+>T3n zfIbgv{V$9CceyG|zk3a^5MV>JmFM>?E`a$y6jG#&N6F9TzD{d9V+I{twVxrLbIeN z+WIq&rvd{{bqh_0(CWASUr&sHQx!|%nHa$>eK!sU`sltsI=|( z)m3S=CCmITs=3;EGk}4>v}-m@D5`XbmzNjm>RQm9jlXprjxr`h)nu3?6H(Y)P4o(j znd6vv8U!5=?%WQjanh2(G?GzPN)ok#gmt!-J}fKvSO%*Rn~Q!I&HH9X|L5 zmMAgYYZMtFToj~Wz>AkCnl)xAudrponN$8oGGN$2M7_(3rD87WjzPD&2XVP|lC^EY z5I>#qY@yp8hhC@Bi}vVef`Do-Uf(NeU#QJAH9eh}z^tfp zAN&nF0#~RS0pF8{NVJO^O=(zHZ8srdX;W;h8;o;pPg+DIQ3GmHd?+e}I{mP3AH?e0VDAQrko2e2J=nhng$gI8pJ8JJAbV{%lu9x;lqN_4X690@Jk~a=rwSV@T zzkw%M9F~?z2?4DSy4X)EoF}+mi-=RXvm{srr3e)?lA}M#rF;^E&@YG^L|NtL=b9xxHtFFRC;9u@xz?hiH0(aXOupt!$-%a<0W0$ITHLw+jm|P zkTW~GF(PHbR4^c)?s$)8;+bOL@uz}(AaGTyg}T&1WTU0>nK|%zXju^fM8%uo8oMPE z|A(g{i;6?@J3x*f-i?lq#^ZA%40v@eKY7C(!D;WunR>Hh4JGiwZ%a(+VOeWZvWp!z7bF(q< zs~Z9u8S#26&)Nozy3b8LoxCXMkDrGOfNr&6;0T&0dV+{mf4J8fYW<1fBwh|CC=IY$ zfBJ7!+rzD@o##BAEkw;j09{3gDBQTJUo0v57>bjS9AMg^NJ0@#b~|+is(sXZhZd{g z;w0jR(3Q|YQQEyl=Be5nh@$qcr_T6lO1Ia=AMh0FwI#>@;t(9j^gTZd(mSN^qPT;s zTk{ra$_m0+qo#*H-FPPs47dUg0roxI|9l=iss+C3QR|t4=n;!Z2enO{|LiVPN7n!L z_V&KsjK0nTfr($i2r(n;WJ3J?P>L8VC^sl5$)J+s;y9`*#BR{@i(vHsG(s*)H}BZv14B9W2ud2#UxFid5{5J)OR zu(K8>Qria83)-EQKk9Jl7gKAuzhfM<*iS)0Z>?@1FjkNI z=RXCdj0sBovB%LGtHmBa)YWb8U!hjUi$7rTMaz{e+jK6*`ekBDp>7aPPp|p>4sIID zlrHgz6sguUDCxZDrom0oH3Y43RXH}A7reZ+LCYrT?T4f?I(R+9QLuH+>%Y5)>ZDuv zjOrnaHf0!XjhFZ+@FiIsc#~5VX&MWO>->0j8aPuDRT{kWwMAB*4bD3H)kSn$2X4xe zi#Cfs5%uuJn)g*5hP+?%3A*4}j)kq+c4uW|O9f^DgT>7PQ7H>CCcqGkCsU!T0lJH} zRWk9oL-~3Hi5=$YfSlUY$Dk)YYUB@Mp+N8QmOK!8vY_p-ltZdGS0&I9zs||desAM>9PqCnl5k!fp1Ep{#_oBhlMPpvn0y0`75-m(eJOD$Y9v+r=1ISxncN5IVrB;9vG{`1?%cUJ; z2%*CvEp5OgwEw12k4s)zkn<#kq?@-X7FBZ9nSr=0^0<722cp1pf9$l-*Z9s(w=hXe zc}xMt{OAsdxLb@^)79PcOc8P&84$5dh(IEcP#-~yx25dj;PbHa@WV(a_a3#+v>bFF zAYyAmm}Upz~Q`K1Nwtyjp+QVRTT45iE@HJ6FapQFRi(V)wj2Q5h<%u-VQvOZ--*$>sCBI8da$jeO{*)N^n2Ib)A~j0WgQC`8iZw%^z$K z9rO^vddfEw|J+$aSyw^lbq6t6N13a~X#TXY04}YB->YdcF>QC-)Gz=vDNi!NM&_Wj z!sSCE|1qs6LD5KRLE+S&%gOtnH*0@m^9vAi2>%6x!uWMC)*`r30 z{a{s|L0RgE^jX%h;bINoa_Bv_-kg_5w44P@jYyET_m68Fd9G+!0uptLYAOZ!I+~n;N%i(CmqkF3B4GyDffxM zj+Q0sJ2IvYu{Gz?Vj#%2lHw4bn@7k<)AK<97wBH^KaIz1iK`GAcn;|K;)Zt#*?}da zR#Q`J`MIfUX!xDc#=&7oOP9vy50n1`HmhjEUyi3mY^`lyUmNqmYT^B!&)xCmveh?J zp6r!ItL6LYri)E8sbb8m#dKo}HOnH|&$WFY?zd3`X4Um;o*JJa*+mse)z8oOM#rw( z3Ha?i`gFJrPZ^cC_!Wp;H7jR)G9*u` zv|4kgxi+g~>U2bj#o35|!=$um6dT$G%99GU%<`LZ+us)QsJZLc+!!2tGX#YAINeWy zmyXj4h8?OphN*Eyrub|OQa}*kk(6Mlg_18(nhr7jXihdWKko~CnYmTF9EemFBa`AI z;ItiYfS7e5LcWbe`oa#4qjz%h-{o@;AZAevU{P#9Rosiz@M6k{Y|l__;uU1oV-mZT zONfN#x zW?3JAqtF~!U8t30U(%u$1*uNmujbp8C$&OSzN@Dg4_he2Z3moJb5G~Je_!i~%45li z(4Cbgw}Yk)l-~pQW(b({;m?nvPH_MwK>a`R3=CAB;HkdgBhiTPO^%<$82q?SJEV8A z%ZVeR>LPhy*;dq(6It^m1o?S$a-Bb&TdhJWG0BA^|c9*u{Eb^ zgsIzAn;Yoomrd4hU;ho=r@j6tR8Nfq*k=|wh|Eq;KZt^LGM1-T)sr}|WUn<@Esq`h zBnr*fKP&&W6OL|%?+c@ZQqVGi4Z(@L(Ak$-S);z1yex4w>-GG`B zL{(+WsC$4e2l3n)H3pm$AW)svPl6wdNaQmVC!sVV(pM>8o?xY{xoNGzww;Uz)+pqm zr$(dLJFMe(2FO!jTZ-@*mgGHPQWL($VdrgeTip_HKM@Fwd_ARwKH`e{b%TaXguIKj z{!1p=O#}JNha@TPa;xioFna$30wT#tePmo*IP!*B&8=EJMj~$J;ZmXni~7~ zIF1fdosfpDZ#O|o)X6eV>Y(SOq5SHH(~S}Ewa4dkNGsXlvZ1Ol7m<6AI$<62z`=K0 zkn|SbS9_bB6S)H{n=}e9Mv5*W#0RD041@jjboLfs3yXT>!d{YAOmo6=s;W6WnN*x> z1uZRP2o;x0rlzWbr1CQFGBi}c_j%aYr&@Vt(M?3vUqI7MD?NeCVzPn)${&C3~ zHdf^&Gz~e5vp8f#W#y$4{(3D5`4r0IiL+LBz!iAT9UooS0EBy|cy@N@6o zv70#9(OSyxC>yc>b1|e{Qal%?fIOP6`QgfkRBB*`TAtw=Y9MSCg$N=guwl#G(h*Kc6^Pf zNhPt^JzwuVUtdZI@49pP(3MxAqj?;-Ig4WTTU&j{MqazfpErqtU(a8!vt}dE-@mu} z`ta`j-CRnSZQ8Z-^_8;H@-%Y%$`|lOCgR^%U#}gd6Ax2B&-bFj-rWmpO&=M8tU#P! z01xgn=tyC#t^)k&W>bWCJVoXfQi!FrG_eAxjiNQxk?)kO))>~*#l z=XM^LU^-b;ovG(swkRRb|LsyUX3L_k5I6W+lt`jMREdPANmt{L&*k73 zd^R~<_m*yTb|+IzuMTV_Gazk&J80*S@Uc4mPZQpPjrqsN%uGeNFdnt8KTXZ6oPc8g z)l``fKXSEpxxC_}UKRf^?CD*w!DfXxBpI?&Pvc1pA2e7@%0+JX78m13AE+KmT1jad z^mR#Mnx-`CfAcR%GlC9?x=E(>FglE>1$(|Xh`>3cI=_{W6dF;67iyu`v7XQ6ueZYt zBS~K9#q=t4U_4R86yU%m#cJB{b z1d@J_i`c{gH(P^)G_BF+!h}=IY9d)+Ii04A7RxtVLSI5(wabA|(+k2Vw^*9=N+8Y? z$0s+kE(+2Nt}1)9<#(`Yy3HA-+H`9A&jfk>o=$#FTWqb6WJYaFAZ?Sl9GE4pIpa7WC1DxoQr%E~RO!`g@#s~(AJwdx!fCz}zrOWk}B+pR7jc62c@rvZD39y1O&QrvAba&lAaJa!>eFM&fC>GNbU=|^zbg$?)Cds``uI` zNlKbxXePA2uFPoAkwTZWw;-ORhMw_|v5Ta9!x@n7Ic?hb5@|u-lHr(6st5EnZZT)N2kI zeS7aKmJT3>v9e=4ZY!^-==U-U{q>R!gz*p_RtJP6H~ilTDd_dbzk8t^U^^XPnB> zr&^EGFHQBgK^>LTKEytxvsIKPIjW`UG>;t79r&fIy^-}8d~1wQ!gKH|~7%kTX9nwWrKqseZ$+y5PjSkMpna%(n{ z&_{t9jk|*nlTTs^KA#NTl&FxQ@@9p@gW2#8wFJb>?-Rmj9%$UZu3k?kc79Cthr??Y zjtUjF@t4r}Iu(oYQ=r5lJY4ho^M=F7(An5#Pj3FZQr`>ge3r0U4}htnYQM<_8)UnC z-N-QVds@seI%>pCjQ(0G(ejU1=L$@{348evdf8t#^zW*y#Gl5sJiL16;^=mYX4I@6 z%w5kifPEsIdF(c+vZxUN8E zUdsCo&j2;y%()EP+N{omVOd7S94K`E;W@P4vhlCM7N1u<0LpSBK^fQZ8>`R_8U$|- zfJhi_d*^0nc7IbUf$AB-uDV*3WsioJ0L?*V=nPiv#bV#Q*!3k_R&=uLPpQVI@o6=2 ze~n2?KQ!&W)MFmvdOL$VBgTHgzrbr_;|w{AstrnuV#K#XzCS(a z;E14^`i$|43k;BiI`{?iWKb#aO%2BGjgssfBveAjC^8O5Lq|F=YHDf<{&lh4^VJ&+ z!Gq6)Xc^)?5DHE;x_Uz>xAO=}mujT(56?n~hJ0HBhQpIP_B45Y`m$#nBdszFY$s7% zU^O(m32?Er9*1M|A`xP!F|v?1dKYn3k``8Mnq9_5Sgdoa0->x90-|v?%t*Y-=8BRJj^6=?I76|Rf%;1$Pk#tET5wE0nzUi zOBa_bKh#sJGMj(=;7pQXc1D-HGFN5R>4R0F5&CO&JyT<1^!=$O?&}g6_+$-coZ+CI z(As_psa%(@prrryIgU*{ZO~!L%xIg|@N*rmg>tusw2E#Nj8uhF4!ONhyRN$9dB#~g z;qS#7_QjRRTY8Cg%^$C-+`Pqx{fFGvH;+jCjk9z5%FZ_t>Xn^}WhrXy2r}wB!wO|x zT|+vJ3Cs!D@8Ivye0-{`aW{y~kx0~#OR?YLs~^cEMmUMVjWK@HkWi0~`he`pDl~VF zUza^Y+}am@qmB5ThiKa<>^6e(T$K|4&`Xswd%T^*;6jlgn%L_arLGLql22}3CAUMIkN=ZLXif*$Cg2T~d&=J)wJd1?W!$=5L zO<7z41E=b0HCFf{AYP-Ry87FWRdR`Fo0so{M}4joEzsW@ri=*KT~G(Bw9bN_xg$Q%#)5?@#Mv`7uN-2PA-%tRz@)7y0m9MEK_IHqE_bi?$i$fSV~< zecN{UoEeE+kNcbGlZu$sI4QLHUv{{qDxmnCR4G6O+fdZmG3wWj+ z$wTnJ8qoQATT*tVP%QFhKNM+194aN}{&>1rJYU$K0j5qLsOr2so~Gy6Gx?tgU-#0{ zffp=EVQ6-saH_k|s^I*G&qnkh9ofb=?J0zmm5`++vo>U2nR^oDGRin#mT-+hp|Y~F zhAf7^X?Sr%1=S66hDt&9bKMZ{Nh!Dq;yY%Dl^z&x4W}mYE(=~TWn|qQ`U>NiW-|p) z#mabm)-r61?RL{nG*Jv0O-$$)icY2&jSBLL2X{X#8$A;{?d~6X=YPtCMscYoDl_(n zGiSCs7#wFkr(LW8Z0N%MynReBa%yY+fw%u&;rHfb(QsuGP)s{hY@T>S!g$@);57f# z6;ckSZ>4vQL>K|bwlWOQdAvAgR*#2t>1=-+i+vNR8Ily1CMoT;KK~$Zkq3l23JR?z zH;Fg#g(({F6Ge{{Ma2rEkYzB(PcmT3Vj@vHg!Q8TCo4t|PE%|rL=`@Q>Xb4J{CF(* zxUd>M^^rEj;^^49PM~{@#3-!3h<;m%0OJJasRt6Ca9e|0B?mLkvF+bg2pu`y4SN^qK8(en_olsHeDvxwwn0kM|+hW?%if!_fs+4OkcT% z)JuqNoSf(fF4ckjdx%UFAB~CBcVhcx0XcU1slAJfA=hOgZ^ylhvMl_J+}9r^%E_Px zMKotBd{?LCh$9&tRaxC~JX=Hr0s_CQvJNAl&U>NNV+|M|M#bof8&w}=@t>$RQc|7R z3VYU5x@}K$_uS3!1S1n8}}#10RlZC`7iaMo(-eY^dMvHF=p3R{t`5>DLcFiaVa zxU+uQ01sN|zH@~WhxUW1|8V*L)N+S!DBl=^sbB1ByCUw;QuFvvBxrbUIXiyuHFcxU zs~`&pp(eBOuZc)oPUX=byL`i-a%G^8xK3x#1C*AnfuhIPyk6pp%~@=B&73M>@(DdS zGN5c7Rxlry^9LFVB)|Lw1IC?3F}MV2dTW!%28oE2hFZmwx?Kkr44gJr#Fl1W@WNa` z-OdyQl_2J>jQ+*DZaxZDvQBx}gcs{O1ukx(G#C{5o}nja&rd-q3(@|W&&u@i?hR}Q zA@E=yqh$y!PNH6G*hKx{grKLfUSg)m2y@(Q3%VgucUzaYjb-$0ziu{{S%ZAIoS`VQ za!rl?djjZwneX=EHwYT;X1B&hU%l|t*YBr}kNJK~yeteudJ2@rB#IM$tf;bm?b5|5 z{ze{}i7L}Q?Ml+YUjQr$?{Bp$aJT4TF$6kks@04R)fGWh>&aD|ubOi*hEMlkZtx{B$SphVSR#^q&GDOoP2dAF=s{J35+Q0fjH`{4D zA}+E+!p*B&X{ZFae@$3`?yhe8B2$b4)d+eRvC`ekFw(1jU6k`T_hIp>PcDji-Fe-L zn|eKOX&G(Yzrj}&`{t#Wmy|d6(rwx+PpnnH|4T-l=Je5QYMuPh)9P6E`5X2luj=qKJ_^yNvB!ka)ma}U6U!^1sCwUP_{uGl4v#f0Y!xt;2jUt`p~{p46qmWESV#?tJ`$Dxol+IX0q1L)f)m-bRuR_-;gl*imkh-tepr&|KG$bT@#)9Weo&>Ut8hA$} z;ztqt3qB18%jcF-q1{^Z#HowX>`vDn9B168c0U%+mY{DCgI<_8*kFP?P=(2)K+OAK zD+#OL7cGoyleYb z@aA;S-}8mo!mR*qv?m$Q31jXm%9^E=hS%UmC)1aoSPHDGw3;uE1wWfEx_8YJB( z*#Yu%#1W5>7(Q+oTbbGFgkU76)lon@NQEbZD7b?bD-iPWd9YdwhfXf)EP+jz9kz(f zbt@SL9)hc(RpUiM;oQ{3*K~YSs1?}$Ric&L;SoF5T0#4LgB{cSa1jId1C6xw;ryCE zVi;{`>6iRchdX8+Cq>vMX}<$MUE^Yg7K^xrgiO=l!6FquhCPA$R3>?5ON3Z7NTQL} z64woor~?fT0~Fu7$5RpC!z!Xg-lOo7-R(6_vK&ri@%fhRfRi;lyMEop_jGvt`Va#p z*`Lx=ua~Th*_BLT4Vpnw7hLkY$^X1`3L(Xgi2n80JM4T`&VvQK`wkOExTGJb$Xc;y zTxBpRN%b2IAwsN>g&zff7u8aE8Wl@gNz=*D@AV_)WhnZ7Orn||( zw)Op4TU+Mxb34h(@XQOKt@ka!SIC6>q-(?@rEq7Z&R)}Wozu4=A*ccfCg;`$JJSn7RVt$&I<{aBz zlk*hmhbKE3TIch6Pq~!5x_a=-_u9}DoERUQUE zU0AZPyEIc&JR`1dD_q?s{EBskH#4u;NfGX?wXzR5qx#>4bwkY49d-Fy$JAYFR{KXszL+$a>d zGt*_O*pAx??o)a{(PW~6R{x{W3ME1MDdsh%*k3#MIqy6ytO`0yViiyMX4LJ8c_@0S z8W?H)gt%lm^0xO03sF>1(be^<&= zM7o~k`o;Z`6koKPEhFKtt8JuYC3j{F^Y05uKgc`0$|Wd53i2J_GLv5geN5M{ zByXAr-fEA2shsUE$JLHEMQw|vR9@JBS0DA~W6E$27CR`+@2BqR%=*rd@ zY1Z%b9@l%aQk$b^0K*t5BMv4ws+wx!;lKDKIpUtc%Zm|u_GKt?Y7K?e1Kj}W=|=tz zYZwbXr=3B(;3}i%F?3(Uz>32Y!$Nu$I9Q9ZC%dgIJ1WR#?FXzU@(t$b<*CM>hH7Ga z+v6WaWG9d9{&47D)tuq*f9ug*h}4+FZ{gKjVHws75OfaRU(Yu)e{vH429&zF{q=PB zfC_B~&>aGPv}7`BAb^rlGbbgX%m2BF9)F9ETrfc1{F5w_;)0(zhK8#rm+l8bYa8-7 zoQnoYNK;WsZofO-eI!nR3{r8zOjyZe!qUdRaV$~4zl)AFe|ANB5dT0uy}A!U6`4n= z0l+)#4$NkJD~(67Cb{|jcp#Y@7Hv{rK}7$(To2=|all6ex>nT6F9c+u@DatVBPlOoH1Xv!&P<_;6C{uk+t7RKo3Y?~ z`KU%3ZGo)R5}W;1wTstIj8GaH9UNIKNN~r-4^$jNzO$a#i+L-e+Vh)?gaT9%#-6>S zhYVihaBOKgBKYEU7MeId-v}d0Y60KKi3^{X52>lDfk~Qm!sA!|{!*{(*@A)4kAN@t z+x~3S_4dOLHc)RG^E8t%A*iR$0AJA4#967Xx;f%wUlNPiO3HYUF-@+KeO~$Pj@sd| z@^uzp86z5(PO@ke!~ovG6#qSnjQWMaUJ>SA$SBk7a3Dv|o)vA^GUe}bpOZMZuT{d< zDK*}%tg+DmzKAdz^xRfKV?n75+j8;&vPJj!oHP}<6Y&?hd#uh{Yp4KXtl3Hsk*$tI zl5`(uZMk1zwLQ=5s_*tW?~IV6a;t2Zs3|-z6N83R{KjnCakbspvV!`X9P~D>{niB zP=SovK6pIm#p2L~l>XAE$u|*pKm;ovpX>Wllu88$n~x^*iBC45AD$8gfh6%Ha#~ty zBl?@vT)}(eIH7i|^iPcjIV`NCVWw@~uhYSjS{L>f3i3)`%+(qn%b});X03Xt6mQ}} z`>rPTrZ2BASD{nh&(5`3yYIysjMnEOaw=ZwSmWz{u_=-Wc8tzm8+cq#v;^njHM)Kna)sDiMVOAa8y_;kP;MiZW&R&OmUZ zz_@vM2l z@_7p%AJs#^&_!RQR{;~JH@UFs9`|7`RUiwp+cL7~@BF54{m*P~LjiMD^40*u@%>{; z7Heo~TFh8-?w<*XiN$~Nl?t?K$IIqT8L+M|PeH2@3C5p;X~YCGen=D@3yEWtI}HY@ zdinZHW_cxf1E9x2&h(KK(`p;kA}u|OlN5o3undgts(~IBT^%0+bh4NjXhY=z0w)~a z6KOB~6dr8Y%!N7GYfFZB+oX0OSYohF z;e4TOBJP1zl58O_9;r}?XAG4P2^l?r2BygZ*+IvZ*vQs22dFybFm% z`so5GENcAZ_j-5e*!}u_o4>q?k&*HJ`C94?>kw7IPZ(783fwq3F4%gx=_(mx9pG|+ z&B8(fViH<^(#7DzM9pg3PUjbb3hM`Ewh{1ON~(TaE@r&^iAT}q2CuA78kQsK6zWRLR?3dZeF*CQ~S!L1nYt%((W!a)?NUEs^6j*Ew z4hAcZ9^tA{(!2T z@e$g-DKGKSK+HN44z{IQLV*A(rphI2ayFOES7{7yN~bjOMTwI%apzLgHiiHQ32fD_ zT)Fb*n{VE_bql&%_kBHTNQQ=nPM$mo-K~vXV22&e2+7>+txrF^`u>}^6+R@U zB4EuDt__TnAU!$N(zb7J-?8J#pQJ6JQTCRtiqJp0YpBR8%Y)e4(_^4V-X zD8o*rXj*4aZ{OgMC@WOqzK#xE%Pv_ViR`(WAcQ12jLyiH7O&mB_UUH}SFSosOG>pY zT9#`wX%dKRnW9=1^{O1KC}B6=)_df{p_g9m+Pgp4+9rhpj_ldULUOU{uOe=X!ZyW` zG*?nxW^cmtO4(K$7>#7W8mYL8qxwDUOKd&p(Z$2Pbq%(M9Jdinp2o3tBIN}%wY{x1 znT$d9%(lISrSil~7J0Z&<0j}DI|c#bBs-?7si6-=z>knzyLRnYzxvh3AAkIy#4Rjz zqO|?gsZ+am@1_Fxhak$5SQZz?zxZtA!*`d)Z&!^fKD)S&7)pGZCZ_{0foMFocW>Ww z&nNfnwE`hq)=*m_Fe?)N;eGFiJ24e{7q1I}TEN6l|6?4Yk#56?!hKG`W|Y3qU7eh) zPCos^+0f;S;(kIWyhUn3Ql>TxI^tN)^5Wt*Uw!%IXP>Uj&+*0Z)hcP000cQMNs1*B zyZ7!%wxs-;h$o}?x-N{i%RyXd3o#F{1Ri8{EvZ^|(&_xz*yOk8C(nIXnV8aY#gJjC zh9#oH0h(Dz?2=$28oOyp`bj&eK#S=AGz#60~DGGeqB~^*WTZZ?xo_JOs++AT2k^l~o zJhkTZz{Oi@AB_C7v9>z>v_}VBZ`&bopA4?r8nr)fY|I|la20=*do@~8E23W0_S(T* zbO|*L%pQ@APsg^5Y8B<|i*vJIfARUpAHF|{97WTBJke^AG>%tgP1hByGz|ERnA{yRd3c27>AnN~n*;`IXLWqO zW;S!zaY6yTqcsJO611UMHYVrOnS6x|-Jfm;HTl(ulQek;Q}Z5z0Al=**jidzLIKI& z|NYNZ8&N0W7DL)9Kl-&Q84ZUhd|o zS22;L4P!)&eb`I3D;90n(6nf8U;i^FV?)DsG;XT8s~{r-mWZs@q_Kc}|20ZJ0a)+y zC3VuyMxYTPxpy7A#$EUy>XS_YL%S^>%}tNHRMOv66=jPlgT; zk}#D%&sH2$H7im+n;Rdw_4Q}-m(Lrs6H;zPuT}zf3mC&m32L3){d-)M@!aqx-Ia2 zz56~ng<^q0O_5t$lGqhVwp|AvB~$Zh=(=x#d!}1x5(J2oG)YJ9sAeFtVVY*4fI8BR zZLmR1r_&%Iv$M0KqobEDU3%}m_x|gD{jdM&KmDh_`J2BvbLPy%!~{x8?v>lZ#}_iS z`uqF;=|BCazx7+c)zQ%*L#&pzdk{c`q`Z=z`ReTLcg`%`95Jc}#5Gk%#xA)~*^&)a zbrP}op4~ksPs9fY+A08%1!9gb+v}8Pd zSp1{rkGYB;zbH!#tI-LcfUZW&)*#(T@T)DG+eM z#roC1KNc$CmZOZ5B;wK5REwg>$X86~i(@lOl)kmadTo2(jyN?n)!W;t5tp%2qmq2+6It-d((UwOTIO zFg3%cG0Ou$utYI6)rrOudv^C9KOP?#^dfOF6cbe)x%PY(aK|d+9qfcHnXV@Dv+rvu z5bN)MIVwQ zLdRZs{$Ku|e|7BmNlgh0EP;@%IPm-(unCkNfMXzcg_Vw=F4{1vrDDM{jfMHSix)3` z`S}-9lar-l9w}TNY8gD2k7Sl~k9nJ4MTHP+YkTKwzx7Xl?~nd;VAnoH4|xJ+b@yiY zG+!UBzeRp;Hs1FLLh!Wcf+BC{M;>eZ&4( zbKdk@vHDE%Q@eZu?8kHbztux3PACgLPJxbwGa(|?eYppYXH ziNxda4FxOkX~gCfeDlc(f-U&o|NVWz0P(#B z5E9p|tfc3^IXC*|nfc3?%axMF2nqX4XDQl(>;^(YOCqvsp!4YA*wCPyNV%#m%K;W4 zVe^B=N@Xnua_71tagwe2cHPYT`e9Du);Y<0cXEvntn?i};&~NMB#)mw`Op98PfwhBArOv3T+U@#V7?p1PTXqq^Lo?ooUb!_06r;+ zjwU#=VTcGnjgOCge|~vv)GlNct16pS&2co~4WfvO5Ltn6yQu|I1G|R~AMf6?Uu|s@ zBC(1rR}r9<6qNtmfiipEul>y`5%LKJ51#OE*1<{qgZ=aW5GPrC)Yj)D4a^uzv0w4t z6Ji>HI#f82z^wh)v16~l{`xDgywcs>t!Ww&lKT)6$S7yCvmhjIyuEPoN~Kf;A+b;! z!c38wfTtv>QX-kyx2N~nDF+aOwa(3668zYVULw_||LUEF( z@HW`$msmF^spQ^!_pSf&|NZZiqqR6mJxIdF9pWV5B>#$Y5EHx4T2agN;;ZSr?%9v42;oTh@Udh6?6-gC z`4?YJb#w_z0FHmWGUYCj;;jz%W4ymw%}!$;U#9{5P0sK{%9iHZnpyQSne6!3)RoI~ zBR4A9WeAA}5XN$B)p1o8k&D*u^&UOiIlMQJNWqiDl2ucbZ5hJib-Pt| z6~A8OUMA?@QJs(wC%Ln;{a_G&XFKln?BeHNoxgZx1m*3$oykA_r_cW0>n9S(!ri&U z`7ypTcKWF(+_uw40JVQD0)Aj5kw^>=55M~AtAGCIfBx_P{lEWr|L)%*LV{uvuoQai z-iMI5u945rT)c4gy?4j2U(Oi?Lvm3!%9c8jdm+jY-*gez8t5N5empVAd`N6nhx{gd zNPNwH9;ou;RcpS*3TS=5J41&?Eg`T$1n$h|zx%~&m+g57g=O`CihTL`$G`sN-~Hy- zC>Qzrx8L~3&pvtY;)QR=$8N1GFICF$=5uAZd$QVh&b}KJ@`#ckhAYEdP78)YyLJ!1 z{*#|R`|RmtB3V;$;Pol~ByVSL^?D1=McB?jVNVXADkD8^esS{r_oHXe<;KQ^LP2&R zljWd}2XI3>%aq`UsM&ff(m6DE^wi$xUril4Vz;;Eb=ApvCfGMT z=zKSOybL*7@mQp#C8}zI>)NG?IkS+?<;!HAxM57`1@}XMI0=mlLf{Sr5F3H4)*t=R zAN}QD{^ei%#b5m1@BJQrg!1o(^2Bxyrcl{33dOmLm#)A2?#z`-#d03@04%8=OTkQN zi&>G_fso!m&~@TuY}anokhqF2NvM|86j5Q7zW2?WyWcPUSV{fs&cT>k`r{C|-xQP+ zX5TQUwrKAE>nBtBQ54sk6AL46u#er{f}$x_IovpNg;ica}D^Z zI@nd$mI3tq-1x=sS<2S!TUIusxR%CDVVI?eEsLfiS5?gjMzqe}?n5UAPdu00wbuxR z^PX4|L_=al?Jz&&l2J9rvmtEmpU%6XQ*89$O}ONSZjlF=AhfKj$wV|33F@i>(XF|q z+`@7WPL&%v7adFp+!q1jBs4GxfmH;sN)P8mWQxP91l6nKMjaPWmOGEyZcf{j_bSkxbYTGg9URy5)>w= z!xcF11(v1c`;)~rTP=p-3nBS7cs1kXhJV1l-)!{{`JFs?o^;zAd0qY>s3-idd9&A5 zkNBVcfL)Cx)cFaQ)jyT1cJ$z(D}DBsYjn)_f(qpJD*?8S>W-+p`c+i$H*7LxTaM#L`T z;~t;Ta7NaGslLJ8&pg|H;Go!&G87G|T#|r%eHoedSW0H|JRhceKF`*E!Zmmc$)`5= zpn4LmYvg4;FlDFy2R}&SD^2t7>orVZADoS>-X7;OOk<1x)}M8*-4Iqywj}%ddK1Yc zlz(x6Widq!f70r^?Cp>gq8h=gt5!A2$!qU_H-Io!z|Dt@kHd13_~Bk_3afqla-JlA>TkkZ*vg2WaABeKGT#gR|PyOBqv z))JD3jW55m@AD*j5`%IZpOdMUgu|hZj<#?(2nXD%B}^^ka)mP9B-^-Ibn9CK0r?ld z_{D|XE5ITE>D$~Gk@=9wiWLq=1_pXh9B)5#NNsQPG+mHt z1tfg+692Q@m(`isowQ_aivQZV;6{eTn)%O0UPi}mTLe}o!2bF;s?0Hsh1vS(=&dW4 zE}}$))t%qL21G?wyL)?&9Xrw4*{w(#X0%KtRuIye#q-~P4PSQKw79<^N2NA$`RQxP zTfAC<@3j;2e@xSWn)%|=5{#5gtnrJIt_5TjA{opZltl>d9G*@2RC(|_u+~%TpIUr@ zsVrBP78b5w8UOC<^zEBcxuDs$?y}IU!gA##2QKZBY{Gl8y}kGFkzGfRw+sx4(Rf*u zD=0Kkp#_X8H9t7g$k=*_=h0mqux8ZXpD)&H<+ttIV}mz-e|&%f!rxWHo}8S6n>*-V zIHd3HZ);6PND+902>-wA{a2G5*|r`CMz{g*i9!J=XpIDrT1SRfu42Bmw|hjS z0y2TjL<;v4g%g<>;bQIW+t;_&x4z|me7OZ&OybUo9cO_zViG*OQEm=7V6Y?5Ib{7C zz6IedY`_&z)*_W!A_Akh3Vt2G`D3|9RKY9MkUr*k+ zsio6Q1l3FJku9JS34o*;@ca6E`!1YsJAPbBCTsoxdNeRa&U&9@a^RZ%uw`z*>fX%8 zV#_Wj*>QLG7M~EGA9j~Fj!BTi;F#nAFiB>S^m&({-v%b>?C27kFiC20{?_g5W8))+ z0g4u-{xE^ri_Kx?_c|N>l4EQ;1A=?R(97l0!s5cntCt9Bq|zzi8rA1hRG%axoNpHm zbKjZoY>SQa9(MowJCFlAsyV};R4TdYsp-cLChy-VO^iyVysTHDucdedi4+7x(le_d;Dylo<+w|@H5pZ>*P{Kch9m(U$$ zPsTOhXis=~My0aw z(3!*lYl{k5iA>Mw^W14zf=S*?N8Tv2!o?(S9M4_-fmP=N1|2gExemNRp*iBXM!A?} z{Ym~mV=ss6JrnC!4lnn@h#;zWjCO>~=C65i}K*d5)JGz6TE+e0-%+F3ec{KU(ZfRyzsupAuR5u+a zQYF7&B3~jHqR;dNBKs)I>j4Ftr2;84@lqU}F+zJ!wLUOKi$N zTBn1qgHE@+9s8abqK#h!K#3?%&18P}<&Ap}hI7SgM@Q_x`o)<)`{~(aJc2)Ne2?xo zTnpG1a50HH6?U8j-iS$n2Ox*_&;R*9Pb3oSKYMr!8t?-s{MA4HXG<}O=jro@|L=eQ|G0kr8$>NY z0AnsMgB=zM-wj3yLb3y^3QD6WkwOR?70Wcq38d5ivtDzot-D7QMAheSY3n$9{)1oq z!JnKuc{UV^Ii)4^X@3IbV@AeC94W` z0Vw!ks5~B-gt)wZe@ka_=uq#OGob_hR%=98M5-0x3_4a>&fs0+VD;lVJ=d3;*6BuK z|9&0DcQFas$_p4S$k~GS{hgi+t7WF-NV~^IWBi= zd+qHWZ5R%hBz=VaOlvXQ>RV= zU|@&%4LDuED%e&nX9uJKi~)4P8REm()xN4Np)#9NY5v)>N1uH1;=60bg$1u}NYsy- z`1HDnb^(%sm~&50_qj72r;e-b?VdouLd$Aaa_ZE$+D-(gy);jUrXRRt!9C9A*E(j; zl8?A~l8sty4}9MCP}$hqh3JgC_59%jaJN##-KuwSXCI<^lJ1_fXU?OZ1RX^HA2^Sy zTrGic1sANPr4@9c&aNKz>TYZAiYJnhXeT5BP)35@>d03hQ-KH8hBj(t#x}qSY`iW7?MHwy zj<5|46T$2Prwhnr6`9&v4S$78fvX3k*++d#sD`AnF#P=4XP>^f_HBM)(W{$^S(8W# z6?McOO_HjR!&+5bhYlXN{J{qwef05_ z5An|rKK|&3`1i_(AD%mZ;pFMlM~)mnc<^vfPhTS05st?F!4Ng(AvrmCY(!EdPk1Tt z#-Fruc`>yBzGy5Oi^rl0svrPJ;8%04uQz+fJA1gA&VMN;p%?@MUPvOLq(}D}6-g^) zCSHx*xv}`V3HlhK&pL##Hsv(%paebvI6(?!aBwglj{}p; z&CLOptlU3o;8rR)Nl?fDOYp7zz~C~f)x{StUVQf1$knUG*_5bJ2NDp$YoO=je}dOQ z{=T=T_58V(Q^(ZyHh2=I!~hBPEaPpIZ4ZFy6WQAez|jmvcn1R~)@tuyLoS<(NjByF z*j+nWj!EF-0+S$5^5DVUY?|dsmKM27lEQVj+B+#vf&efn$->o@M1Rna+Z+o*yd@D& zB=9f(*OEvi+d8_t`-TRQXFY!O*qIY2&Kx{+tgn9nd04C@x}l@RHTYemP$UtjXo+T* z<@`P*`WvgrX*Ps zgfw`Tm8WCqU)J!$HZ=dOW5&838vlGfVaq;Ezq2*dmM%2Q)*buDT{$9~IWz3_84JH* zfwpUA^4W=*al_I<$Zd&5P9E$D1%3PBfw-AQb@$a|0T+|F(_zP1VEZu%HvvZ`a6!QA z0@|6GnL)!uhyt%P5Hi=umf&Ahy(7T_A+H^0#7#XRCO+DEw8tvL3kii#YLh&5s`bn%wX;(Q1kfyz`0?Ch;NF81z+B7Ma-R21u;g_vz>o0r6F%>$dh~o5$rLdb0V<1bs`cUcHL)lGg}!?RGnnmMQ?r=-B9Iznl2#YH@n5 zrkjH0l`RXDEQsFdKED-@dpbJWPoM5Pb0*r+AqRqxuP3kWHH`t@U>B$D^U4-xP8aCa zD`$7Rx!v>MS_|0j)Y5}2VF@m)n&)-T+{Lmnf%MiIZbyv3-8i_-4UnlVv-#(4DLzn zC<_3VfW!rE*vB7#yq4xKk|ZE^-Mo1df?e;cx8qhD%?2bRqa&aFcI@*ni&N7e!O)YP z)u+NUtIBfO7xc7sCQqIjxO6$v(<}KyaMQ>IfIq_d-ObL!hAVj2PIT-I4{oc6(A__S z6Ajv6L;7_+rm^Wg3BuQNnmg|^xK4iSQ)dw- zhXoKOBCA@-6=o-05W61=aVHVQz*R{oh_6q zE9)>fd<^#s`_%$2CfTne?_T$7Er9e0YDJ*O^_o-(pvds>@csMup&FH~QNz^5c^xdQlV9z{@ZN=;H_)B}rNnM^AO1yQp+_Yl@HfTtvSh4~$d1>BZl3 z=WuByiS5xXHxPV1$b52lfn%E$uiZ(u-;Fb2x1X~eNVlEOl_CC`IUAK$zyGR5ZQrBJ-LqP8rFAw#U3-|XQ{QW=plRy14f+Zk&**XtY%ue(sg6$-j zQGE97@%J~c=W-ca5NuDt5`MosMdvjEVi=mGlq=fY)a1SI$F5(`zj&n<$^pZY3`E$` z;RuNoo<{Nelb!u%E*`w}gO;IVRw$uKL0#|}UWM`~j0wssLY4!Q*G|*MT2zBtbN%H4 zlDE3KiDgKuvm_EGf%0V}jJ6~~u~ZqKP0uW33=F5cxfXaU3%Ho%t<2_rX|G!VzA{9; zjvhUVB38(Jt$Mk@A!u)c-X=(x>^=IHWf+;siIK0q9Qo>t%+xs49uc8rDniWNP(?GK z*5a|YqbGaMTnu*g8%h9FF6wsO*p~3Q8GC{?h+Eo5U>#Gb?lm^QS;zO>kGK|CmjzbB z60YRLH=FTA__}Fs*DKe#o)ms0PYf-3yi&~)!EFQwsWsX4;YUCI$&Y^y`Cw6$StodV zC-fy&6p>D)9^Aj1T9`AJH<(}7sqerKHCq!NhGKaGrr@ub1}YEk-=Dj8w=z1a=8Hky zR2eG{HS0B>Wa8yl)nseuvE#jG&INh~s=kQk4H`AS<@MD(veyDbNMI={4tCydt8=~H zdJk`R+`acL;vveC3_ucP@^Ki-g~j~XlGBSdal2uFLci%NTXN=a8*_o*qUw`rJ>(A$=#!9Fu5j?uU6CTtzpsEVq zM5z7Pv7rkWBi(&of7l}`AQ;<&VJ1$=O@Yu1F{$Ln)2Nk;8_1W|_*6N`)H#_%o~iXbkvv22g;giSm0|xgsUQY%Zgxz1L59o)TH&D zJs0Ths|3Rp$!B_1PfZmpSu`OlF3M<1VzJ0aQ`O442d^28G*_Xldk5|Zn=C*yL?A^; zZh*_oGDzk2q?rwe0nm8!&DLAh!ToGd~2N+sD>j>H284i8=apzY8h zITH0spr#OOtM-~oUEAGqya9$$7*U1&VJ&BDw>oKi{|4DDSLm>{*5GKpd4jPoE^}y` zDnHm?_#EcB6Mi5xQdIClC>g53=Pz7pZEXVspOaoFSwjEE5Q-=kip9yvNvt9GHc`7+ zhGrM>inwh!t&?hO7^4lTBA;Od4Lzupw3*S7@4p_seXTe#DwPYWRu!sMaNS@q-7A&^ zDJKWz?t!kem%sw`_4HQ!{-Pvm(EPO(gdwUS$fg&71TU`g%dEGgw4|wr`_j3&<`5Hn z+&~S_o2SZdxhFR1Jkf7d5+mVIEEZK272af}T%DdxrxtUjOW)cg8}GN>xR_+WjktTg z8?b=S=R>phNQB6;t9}hQ1j@zmCs13mH!uk(TgBPgv2VT}{_Q8}(Ge5gL(LJkTUi`DP)8WMWk*EhQn0JkBJBr`x_!xHYH z*?+Vf2=EU&)bUlU&pkh`nX}ew7x{G?n3nEGH)H``OF-hj@Ryeh!md?JQa^&-@tc*o zH&1AqpR6z&$wTJYviqOUXn4}lC1U*(Q3vdcMq3UXJk;Aep!fjY>m9_ohYOitqf#y| zEX)^*dHjs@ELIy1S{i+PR_o`pAtP+y z!jJc{NF*8#`xI5z&AIvP^lV1M(7KyzfsI?h#UvZInfr}>V*xZCL6QXZBx_+3SfW%a z&CbqNtJOVV71J;Z)6UzU~U*ZECwLfa`Kwp79LlA_o$-_IrhM$+uBQ5;#m>|a1Li90{-J0k;$qjNm&m5 z2aZRYUc9`U3LhXt=ko=-x_Wy1`vSp`D5IB=ow;EhG^oH^)2rER2A$nm_jkUxUAA#1 z4|~-h)vK7MYUolipB;Vq^47KSN4K=>wCt%O+X{It6GTwz(JpxWK3^=+efY$wkAL2E z{G6QVw0vO$EG>aGn)I4A0TB-iJH&2zgBUsvOC+sfqt~wqG)8r~j9q5popHKN_N8eI zbpnh_5*>D05;F2yrj<$;CZ-oluKL!_7_VJ-7A_{)bwlQ!@b*~%T8986Yqcoh=K(a5 z&1S&`-;JI`vndIX%+8K~d+pU{pQVRi){0fdfZmM&8h6c$u%%S-sX{W@di3bfxpSQZ z185-t^2J&OBufU#t|Vy+Gw(j9Yx`!Md!$Xaz;ZX$$-mkCbNHV(hHsndqnrc@|CNJ* zoC(fT0zxntZcDcF=BmwboajeLl;GCO=YdI(Z8TZNkpZ1eHp8axuI}LTiw4n3GHZ&7 zW+SF*=|VZbI5G14?ycd6_w%WF!L&rychV4qiYQf8)d&S^(MV!&@W}b|eMgTVon#53 zSCWxpqP!N>vN!a#Sbux2#m7l+Hm=*qMLD3+?QygbtG)iSXefi{qtEY;$KzDyUh@>n z+Qe*TF;jHuTbpO*eY7VRlkB6xb}x0K79a)&+bB`J#s+@^sgm8UyM>l*<@trlYXnFZ zhKKb^1rj$@RB9oZDS?4fMSQmD|pxS!wA7T^j^jZQiBxw_n`t>;Rbg7Eg+rRZRlqzaqqoVwKnIhalz4s94f9hTpZ zE)G7*xZ0m$cY_1ht6H^EE>Y41t{g9%=aLXjIg=d~_2B6SzTy8t@05(1tXryX`3+O4 z6td$lU){ew@$6A?Vcw(ZBGsA*hUu+(#F8WzRn?PhZ9j2*==}M3U#}qxRaE=)!D9Vi zBnEPtSe?se*~T#Bj-H~s@Z?y!id9WPJq}eJk`r(#yjys6Ng9>f?}wC zD-@1FgY4Y7mcao-mci$u2Gs(TPZ`U?aZV5trZ2J=d1OmotS!Kj+K;sy3u1!2>E${l zyZzSLj`Ocmw0LRxD)l7Hvv%-va|GTAr&CD+k&>JVxdgn_ufc8;>ZCX9x>PaI zhom?;`s&X0=_e0rxvbAZ<^*{UEC`}e6Dl6DtSDA%OWWy_2S55SdGx3m3RXbqLWgzW zH7;95-4p56ytu6Y#8$$WdO=9@szIwvBeV6^yWe+TWOovU>1Z_vAVKFuzc10+5(z~V z$!FBW*<5*IE?27RI|@bbyK&l`7wlq^-8pXVS#OI4fHy$OLMG%jYwH?a|F-4)Hsc@& z&6d*XiJLcvfAgD#Cr|WJi3gTJg$MOpM;VDA8NNW`z=7kJue1#eivFNSl&Mh(DFoq} z-U#G6{$I1x)*P1JjMH`Z;aXsW7HH;5t@_n^+mV$px6!0zy$5a1l(6>Rr7fSKib(>_59@2^BdR3?%yiSP0LzU zwJeEX2Ao(?5PcqBP)a1aPoEmNctP#yDym9Z6m+y60b`4qf$xwOAcv>5@`9G+quzAA zuOY$hcz)cQuI+vPonaFu{vddTP%xZqYnNnj_dKbh_HrhhEmVN7-{%Rs$KHh&a52d) z95nZox61-ZfIwF3^*X;uU4th6nj-k^I@z~54wxdv#nkA{>koeY*Aq`3R;nc%SJWUV zBp9Nk%PKM?@&3W1moB#r9Pp|^NC~0)8=(=F3!&(z^IE2u`Zg!ze#f=ImRo>l;Z~tw z)sJk8M{PJ2*Bo`PyUk17vehd^IK7N*^(4xcn_+ziXq1F6wFY-aZ4qEfr&6CtXl-RD zryt+AKJny{ky%s?O+ux6%@C{S%xB65sdBlSYk>_|z{MmRFqZq#{bm6qNfs9u(HQYH)GS^HkD8NRXB^a! zl+ugiw{AZ9z`iDFe&jc}}G=*X#$f7E&4h%U%wXm<*7jq)Vq zLoACTuLwx5<@UYK9o%(hbWeD9T7XZ&RW=(#Yygm~$c^wiDmsGgwZnBo(zS*TKJ|JN zoQbKMi+} zd)NXlCfUP->t5QsS^&lC=+U0b#rE7t8TY$N!D{~re{C;yjgtzdsJvY0Wib^6-D^f*~MYURi z1Lrj60r^o<6csue$g(1?5e|j$#%aH}CS-c!32piZ?0f>xD%g9cw~*)sFH13XuU@L= z=4M_!9KQYa{L|ak;;gq)5j9KJO##%`3hM1lO+oX>jm0J=i0MJazfTg; zSrP#qPS$F`k9yj~af9i|^~?r8i{>nc&Gc%z_~wc>_Uk$qtRcL$>9*SIJ6vWu-r5CO zGF|cL(U6jCjX@N}qgM;L-00M7sZwoV?7eOp_xd))0xl-m6f?Rz*@G4U4#{LPV`F3Z z_cfRV&O{=S05aJ{CIBF*=JV6{?mhqXv)TI(^jsc*1kZcJ_L0P5Mr@Tl}_@+1_(g<993` zC`+r9%SBDAvMLGg9}@?O2=`Q(B?JP2P$*2D7V!bQ7JsJ<5hqn~q9(dgKyHt{YBj?U zG%Y05q-tq#YV^f}o3pPTc}gjtr9qWXG*CB#x^=HEiblXEwYMgZAL~4MCeYP~CM2fd zt9fMf0VnAu%DUPr$~Y1lm^iOy6tvtLe1Mh@-JZ69i%ItM@VXcG4i-Qe2>{9P@G$i_Z~d|)h9D|?p1R+R3)N%#Po`$AR3Zvpia@}4|R1PI(NS3=piK@H5J*E z&_)@#5xcRv9iiN?Pw)=o;eOS%z@}NC$(2PPcH8x}c~;Gn+Ag(T=W#h%tNwBvX53!o zN~w@Xy47sP8vrX@KSL1FSJ58``1u;Lqew;kYWN0B0yJWX^ul|{E-4;Us+Nm$)35H| zoqYbZnoZ-6icnLSaG&Az8a|&Dk9s@XI?kN#J9{?P*(s?$hC!gQMXl}`0%Jehc@hE| zc4u|2pRt-bcvhsIHhE)B$SNv;JgVYun_&T7mE)7e)CFThzHC1N0kp{J8DaU&~ zrgdve)?+32Gh1MRF0chyLVXMAFUWvMC??Uh{PfhTyLYCZJTVp*1-**0 z5vKV~Rqa(tEC*C?N3!kI>HbTX!(Bas>a#Hh2NeJx3|laKP#-7f$aUb+sKRNC1P3Hb zx8|(LvJ8p~Ki*;zuj?!I#Gfn)t+7yhYZRCSQ+qL2d^tW}(OgWjE;G6x;udf*i8~Wq z3oN$)7F6U$?%lih)mLAkp5!(C5RoJq7#Qg2=y-jv_Z?zlJSVF8-0b~3FMj!7W^aC{ zXBSa>3V*-^#R5IbM4u`8EMFkr*MH#rg{~9FrDRLhCs!2-N}UGdY;bR`F806f>vC&L z)@>^HgPU!EI-9B~0n&5~WHC&$TEt5ONDuzcYS2N?I!?$isJ$UF% zrvs*;)C^BeM{7h&Lb^oM0*VMga`I&Fxr=IBZ&mcezCeB;b@8?=b$zqddm1&`#w@QS zS$jBEg(Y;_JHe{!o<+OngTz7PfRdD+J&}N~qcs*#!OF9;h4PEZ`An{`tDAT2nvvKm zC+cF7y)u&Sb!?smkQjOP?Afn>{p;JeZ==k8tsTRGXlZFVcI;Stdpi;)n|J&z*%Q@} z6!J5V?>+zQuP5(Zt7I3z2PfGS@(j?O3|*KdK@GO{^begr(|h8$+SX=;Lsc+?MXv@i zE`iDZIvoSvztglOMsjz$*DYZ4kQ$yVCN+2_^Ye4V!_TwXG?E%NAZgTFFGJL?{gJ$E zVj-dZp{8rBA3FjZ`N{F|`MG(*BsN~D7jsiRNiY=Z=;-tzhd`3KHa&93jD&r?b~wCN zlgygm@`eqeIedbi(xpV%`UQG;W zHFSGl;&PBH``V?%twq=|)8KU{!p0Eu-U0}1PsCfIVPpVvMRZQgjLoFnhVHv!5O>H) zx|n2#41{|cJHi5RAOJ$1JbCh;|MP$T^wUr0=jUIqxYgI!cl`MAcs#ztiCefXy;Pii z_Tb4EfAjL*x7q9*{06F0C4U1AuViY2D5~-H?gJ;z^d3HjuDph-Xp#Ux0yF~pIFclA z)(~xMss`Q>L*|}@Yk>_~V0p<0h+C=D!mV51KY9EJRUZH;JcU7-0Ty3(qWJb32s~Jx zrWbx>FGfLPHCG@yQkI20Zs>`RkB>imct4$9(5c4Vkpp(JFgQRY67KHqh6Wcq+K$5e zcG8GTTnR|0nl(kY)RI;jn;N@)fBfO&(%ifXKvJuztkAjUF*U)es-oPH>^^m(|IF!N zN4G}})&w7_X1rd~J8s%Ioo$mY*+noLyc0I@<9wokzLkha6Y+?M=Y?s_XYwy6<||cw z6A$F>YHwS>#Uy)seBG(~FofA|mo+yC~zjf{+-XX5LVBxlc_J#ys8 z&M$B`s?~)T&!7M9*CV&S&86q`nxTVZ;Q{qqFubDXl`J(J?dtD8e!BbMQ8m_5_KH=1tA!N2Pko=l2)Faj#7%BIot_9X_f%ixq8j zCY34RhH{%HzR7~_-#4Y$%l}c*(#j{U89lvq2w2&somPdeRgjOWFBvmA_ zB+5!__t3d3gJ&-IlkHIcttl!O{3TZlG2td59B#L!t*(;8Gbn4lR-IPD!P}w zr54~F$C=Ms?;p~9K+qSVf2D)Cb@$G#ufF`^<%{QqVooB#}r2`ASxRvaK6S z1FiOQ&H^96B}uiKY?`WJ`1GJz{ovA3v*+txwZr3YixL0*(rwk3f|g28Nh^X}g$YyDjb> zZ&NIQ3fAeopMgj?7 zl$5+i{}&(xT3bK++0Q=s;Dc}&T?Mw=lUSz>iLzCx%sm}``m0}$eDiH#cG0VOL{kzh zFeqdJ;Y?AqR5c8ht+VHQkDu~{A{tsE;+KNRyeIOVnpy{}^RVv6Tnp?J3)J-(9D#;q z2!np4*aT}KGCe){%{O2D>eqks^7(T^tB7!-fgen?sdgM+mINV9DgLJZ;w(rTnsBwP znyzaT<6~F9{_63ght+Zk@ekhSqbVJLe2UQ9+k5Wpxlky$!&qB<1j#SB>FT*d*V3Ibp?B_i;4vtAkROz#mX=tuB`%9zljvK;k?B;Ws<{o_cka;b zq%-q^>I&~_C!LaeF8kdAlarJG!~gI<{M&!~Zvh)twM8ft`tgr{{CEHE-$euU4H=6! z1OT1^$s0O5Kqj-Zvl9~&qobq9li)}E@{L($G&pN(Yy0Cr{^NiC&;R+EGiP>gw?qUl z%asLWNPhF#%dfsDq-G7X3@R4lw_**Xf{0ILy(a~**D(W?;3lKjW=LlOG^5EHq*KZOq3B>s-B`uvwJ%2iSC~|L{PWD@s3p+zLLr_RV27aBL|s<>9UTMb zE)1N#s3y7%#g7t29Uh#3IunnHMg+WX!0Ikb^V6mAeyLCJ#wU>L6YTukaVMYQIxvY< zMcGujl>LNZlChPTWXbixdln%-mq>P>ICSA~Ac4ygA@pMGE2q@N z=|ln`L_JQhlAut2Wc0+)F!z6^Dyhw8xf>Ek2&d(1IPu{s4U4uiNUmuUlwr%59%eI%jmT$|py^Lks zHyf)}Yhl^8?QZY=z5l{<&U4Q9e2CJpZ>)EfRvn+^1kyKo zx!LFY`fz_ZMKLv@suQb!qIe=OJ{K&F8D!{`-#la(cnQgx#{dtAkrN7P;o#OrFmpIF z>?sHo{!qt3zSoFwOs_hwd_Gh&UGMG@c#~vHeb-junr=bF-Ug^(-;0aeC^SPDE6*3V z)BZ%v7@dJzYDUTBQp=x1&~%q`vOP@dGr|ZubxLpb6Mdeyw1#c*i7%v_(GET)aVi1e z`xadsp3Z%uv+o~~kVUa3NC<;HSs+_ozujmEda4J{_er|1Z?qFWGCxGXtKVF|KW=We zJHskhwbVsrl=lrkc-X+H>Ch5RN5XX^^*ug<$-y#32j}Ad_~Mc(Pmiyow>Ja0Zk`E- zqq&q=7W>a+Ji?;3E2t!zJT&53?s5dUyskA1>f36VAvP++M9i`+&LJvyd&HC)?V>KK z0uUO$3r1rkThQ2VTP^88^OdgAcpcMTKk$EIHNoMz=7l9fbU6YS++U|zc~h2$ht~8A zvh=@AO7RasnZrgNjYjO^64eIGsY>46G2uphJq_)geVjs}J5P?i;I}5VfcuHXKHrBu z2SGqF(6SCB^Zdy~7Frrc{+oWleBj$twAf3rm}tNaE_V7SW_Ct81(}Vvy_4SCbk{Z= zu1~glTW%H#nsj4^Y^=v1|N7t>A!5OWjq~K zUtt2*(s!qR;s16Zq$>>um;{R1iFCV zAf$i?JtY-^@?sOt7bsc|(dQZg(U>gk+2Ye9!XU{n+7iW3>ol*DZ2lvvWW9d+$7ih1 z^Hr4daQX!X3#GOczxnki=71uvi#uiY_ul+!pj;g9OERFbH?~uom&lml4XxHSGzi;7 z9$OqiNrSFiJ^JGDRsAl z|E&Kg?NJ07d_g#JmihU!=mWGlme3QM3kwS=3~FGAof7dl8e6jwiKlfowP3LD9vlm5euM|QU(;r;z*55k%|T~t*x5gFj;DFi%*N|I~n^l zUGQ;6Rw1SF?xxJsqyZPl7sNK-WFRQct?xS-N1)Wty^N3BWFPEE?_t&8lf@2{A0J*k z?(9b_NHNTY__)8^XYi=GQ&3;hX(c=2>C9`gpohPZtq_f_NCqJTLkT|P+bs@+oqC-l zF4i_lAtu*6+}*wJJO*4N1U|LBydd<<{f0}Uh1r1tl&BLAZz?YWPXX^wBIEVHnbzCj zEMnFDby?X}mE$&h^ZfnfjFi1&@xnDfGk(6+f?lH?u7)#T7m*WvtJs}mV#8$_iwUmo z|6{8^IzB_^2u-iwIm)|G{sP4}QB^jCN&+pq;%;;oe>?T=vkr4l5_M!~GJv~BQ2gcN z*)f2J4}ek{ii7Y9J{5bvD&|255zXk`pUhg+H;V*quS>YHU6HdviHU3A&VeX|y)ZkH z0`C&Q|N7oCKCrn>Z4#pNj^p8JE2zd)RmDCIPMYe)Omm3&e)vtq%CmJ-POsz5783(Z zX*UA4o{ocOtzmQ5vrc&6W$s2}=*H9g@dDdDm^ZHIQSP8T1vv!Vk^w2S^<>-^qMej` zB9o`@em0`Exdh&?=p9j>^U$BaNWZ{XE+<07B2coNYy+IEJw|N0?h{a~TtBLG*iw=8 z8`|*+re8$DZ<4f-#qeXo6o~B&p`&BAJNRCdc|xdW z9Nj6qRzSzU(aywst;MG4_t1u#F>ZDnM)<$Nd3-d4lxTbzY)ChD=GxL<^UAorZSK_e zG3%WRhqnKo-d+B15NRYY$`%&#S5xt%-rimm0`|A#eDHDL?dBW*$9o`Twww)oQ44(f zMIrg&SoQVLu-bM^~_FRrTknh zzzr6xJXddwUtI@Ox@9VB0J|?E zk^4l>^;@D>)xGhpC2DE#^=WMQCMpw$F=_NS8)f8+>&qsM|H0dT42w8aM#Dhe=j@?UYOp6c$I{!uOqMp zoctdr*^Z`f7oN)*zcyU-VM-Un5}=U22pCY+SNs7xO%)dVGpI%SyvC_FP#1@GwJ}qz zAT66>W0_BE5tHSf#%qKgLA-z~-?hbe4rCwJCOWz}qBJAVEc>7hY=A&9r!94XIIEMb zuEiud909Y>ald0LEmDY1+T{GRIDTCR@tH_yzt?`xwVpD5*%f<_6?^+7Mk45>d>;-} z2j9!H;)=`AucAw3$t6v0+!!?Dda2YPTd@nh@BQ0*e@&|-a%_Zj2aA67>FH!VNw%*7 zi$j7e2Bf|tV2oZ@&=phuAQ{~d2w45v)0I2_eeBHLl|I{x$CdQYB@&8F2~B2Hcqr(I zNjqk@$<_6k^_paTqNRTY-|19gZMkuml@sDw?fba=cny3@_`pJ2Y}?t3y8gj;fSM@o zhW-RP69tyPm=guY^_iNE{(w&{nvoyAgB`j$ady39O? ze2nE42rejlDGm*l69qF03lxNhTFO)@ny@cKClog8NFI8`px#2&OR;(WWI&Bxnj(&* z2&OoNDh21MPk^qtgywygGKAPz-rH*ltv&O7H(;scPgF|` zI`vrDh5aA)s_R`jOcuEHi8N5$0OrlyxH}{<%tOUwatY|Uuap~s?PU=K$Z^x3I%~M2 zxlB@aImM3sVM}}5f4l;VsFc8a{nXY@XI!oN#SfA#r~sF5j)8V|s|eoX=%XEmlj|_= zvW4_T0*d5B`7h@grkjB`&GttXh!XrM5J@Swv(xKEI6t*G{TwZ>_EpFQ1arV zP?9ezs{KO}=ATC7kI0r>j!|d~eCS|T4uM!y zY4hK10-rHdr=+t=(O~e4Fb+A4-(CZsGrp6ZtC5Rz1e|w`B#>KzmK8hV=nzBnayn)3 zsB0h@0twJwB*9mFQE?0korH!)N(tVu0z4Wu>a&^Hz|^6`=I{d z_kCexh2rez9P@>v)rxiSvCFctjnOgj1MfVyEo!Red(Yb5QAuozFh$S0kJAqY8zw{Y zA<#_(IB1h4c}-H(twOMKWKC&4jht}B(aR4yo7J!@Bi1aI9nBIPRZdvnvcS!P~%hAu(IWX!}r?U#q5Z zuM>}U|5=W7Z@Umof5AAeFI@e=H~tOhyL;$)gP`u7ou5t8;juf+kPjhu=Bm8cfj^HH z9R^|(hq89?{9Q^)&#$nclDEYBh>%HQ>Y0(Wk=$#X3Q#Mp{?OmhhN!1d7JmztH5bzJ zm>RO87(@?(0O$-;(eLgKm+=at**DMr1RVZXx*t#Vs`(-)i@x@5I|DthQ+Z<9ke}LA z4@!V3BW6^Vn0^~4@n^+0^Su!rgK~*SG`15W4Ac_>FXxZ|%r+)>o$>nmIoWxrlvF4J zdVxq~)u#$-Sbk#U;hv|A#pYl0<%`&O4d;Z?7hQ|9h$ZQ?gm{fvi&oZoCOv`yhjsk9 z*F>Fhu2T1if^)zArM@ZhE<4{1C9#NI-QVrejUhj&7f-?LHk%iOOjvNCnc{k zGLK$eL;q37bg=t*2jB*%Sb)aO_7Cg=MmvtbL>C`4Z9oi zr5@{+c2Qu9V)(zE<0JVB>IoQpMgzj|kO3#e(i^ObNE(q4HvEL=Pzep4Af3c+>B_Fk z-8@NZcx{%ajJry&JPW|@T^%%JCHe-7gcK?9hIK1swFd){nNp*U)^^&xBV}eG}_OC^i3)sO__ZE&aYt zP{ILl@__Xkn@`~ItqKQki_jekl zKOcVLHS3_e&eo-Y?*bUM;;wCQT zV3||9pOBZvDw(()GNxdP#Apw6Wl|)Aw@S7E-H1PuP(1Vu`uF2=k5C+%+7&r;MdPmSQ3UYBn? zVuaG&B!L;}Yd#?c%UDGp+lgcJQ<21SeUuFoT0&X!gz`o=-`iqej`tHOIQ@c+L}$K+ zD4j8z_D|&rh~u-@(cOrcBDt`6_)ZxiC;W6TRwkVsiUsP8jJ(Y_dM39ZC(Sqq($Wg) z>3nuay;Z%+cDUoJcss(%KE56SeX!ibOFIrdk^lV~FRyR>Y@2O_ROZDD0tGlF@McOi zN0093QZ@?7BCYR`<<%U$2}h9P=rNv>|v9;HJAbPot;bZUiFB-bw*Z1e{l! zaBO01o?UPIe(iGvqxqZJvLC2?+G`rFC0Xvw?sfPYp@3=5Q!A<8^m)P(NhN84twC^+Bp0D*DRvA!C z#d5lyh2L$cKkUkQ^QtCGs&AK1jLHPF>r~5Fif_{nQ^KuhpDTx5I$~t)w{+*3pVyAo zFZ16{`dCH1ZSWPzQOL@+$@R9HXasG2EdCLEvOFC{prFMd!{0?Rz9E64W#n*1p4I1K zJpC)XB3>gw&GOwesmUpCv-*lthyS@#tld!dugH|KH8k=pHct$}4?}wM_XrLD`j1B`;WfN>ApbqL7 zGAc~rX|hw>gg-}WCk}P+I(q%JyewqJ3Ra7ntMm+L|k65s8df*!EJ9h>#wj7}KbJtZS|RDV9fKtk61! zdGXZ<#l9SV!A@+nL|U$=9}DIDJtfzEd()r_#d8zX4P_>Jzy%Z9(S ze}>NqK9X2$9H(Rvis{d7me@7XqV2N4b}ho9p94-k9NhkcjQZ@ujVk_O~#ZbaY zUdLY)m;0*arlfqA<;rB707$7BMef#1d^?1MHOc5{%xig)n*OdY=@S*gp)wv?dxlM(CKJ7n#+Z4^C z$Yu%Y3WwuYc&ZVm88IC+z0UMg$TnhJ^X7Ye{*eT1`z>3hq_0-N7%^_b*EFllzf z2}BLY>(r~TL2v<2%81|9Oee3~XW=4~-ly|n;X3jN2>os7p!*0_2ftwkErevw!pZvT zwC;XD&XGTgc!fOlwliI9+a!UAz)G6P+M~Z9nzrb5zA6@?r>lHtA3R#W$z5}|^LLk_ zNiE-CStcr^@Q5rH?$nW1A7qN!LW@w4;!HL3*@ihOW>L2?nx3Y-QK`xk))`yMgWysd zdMQhHWpo~tz^ZR}BIXdEYorJI?BO@7WsRAS$D$a*fA;7}ZxEyaBl?%)yAPE}PvZO! zdgOhb{M4?G^>6>_yYd=crrbOYpprW(fgYZ33$b%t?#Mq`Kcnueg1p zZWpZtJ4cGW(~1ad;Z}agw~?PPzGBlcr8mK7JGQr6E=?aNtf1%Bg|GfGZwSFf))G{} zDu32finDpe1=6W{ln<;od9Y2}2bWn41C5zHe$5XTe&kUKeVu+FS<`Z za;my5s6XD@X-iZSX8zqP9^tsy7@Jh~Zg!cNp?pP1W0QZ;fz#0S1IO1rNR5Pk_YdK4 z@Oew8Gfa=dMIQdFo;ujvnx)%#Kj&K0ePo5ao*eADSo+8*#dnyPDqc(i|HE6Pigma! zrM4&p&cI{Ek6wr?n_ahA`x!dh)ytEkYvI3XxJBwP@5!M73OX4S5a_n;`8YzM!fK&} zr?n*MyU5OOn(h#EXG3$m)$Lf+O(R%|qN#tEu~%{62%yfLmzPtG&hW1duA}iU7gZ(~ zG>rAc9}<^QSC5Rbx~Sn00*|a!Jf_HUyL^6?^4Pquwy+2 z5a=+Xs)l$^Nr!8F=7*~GaW2Wyuiju6t9G8%subnsGqqE&%2chb@&BF%gqo z3ldhpeQ0646hK+4cg%z5Os+7sxaKX;Q=2}Fm6J?1%aR3{vc^xbmEF>1^tO0EYzXf*T_-$t+CbNzs=oI4ncwsnu#q~@%O$y0%FgWZpTaZskY1Fj*L&AT>OcY}z8 z2Jn61=xa}*1rxFGLJ*yFDSbtHW_~7dM<5H}A=je#J#0%rASR$UgHrdZcl?@;1||Ey7T|JMOhK`xs#c=c>iF4H%#x1Cp&UX{47 zu7nUDb27YsZnGDb!VaM6eo>RXrTFq2!Td~lJB1lhQ5)^6Yp)*HTAk+|i<}yqDp`H= zZ)DMSTy^&FTewzsJwn>BKRXFW?bED}yKpqQN~Rc;`YjG61MqEQPllGto_!EO(f8oA z{icblerVcOKKz}IxuD_*f=UT>AXXmLHn#!l%wpFIZ!&`;bC(H{m`*LT{v)909pPM% z2-(=s#Em{F&H#{`>G$9juos<_o%A=cHv&TJ2ly+4 zl47MBh^VU-frixN2`}0*i_Oc!fA1vA4CZyecrJ%DIeT{a{zs&*^XOb;UNECjG9)vd zB>V;?j3{LGeA-r7cnmUzJ5=uhhbI82BjV=zQKq*c#T=ex(dIIm0Mn(IR^rBV7s{Lr ziBp)i5Wi3L1d_Q&RdED_Jz)w?>T>699b}8J@*ZjD>nZMR4auKdbVM=w5a^SZ`r=#$ z;RBN}wpaT2^kXgM^;Rry<5uG|`5fz&9)?b51V%x$GPYL@imqU1e+x`sKrcOW}k z2vc>f01tap8*Juc({TB8EpCks>Jy|>Ylwmr)lS~g*0RaAm@n9#h=W|{ya_6%yG0$6 z+}G9}Lg8%=5cBj{SLT=N6tNB5EN_P!kF|QWoRt(?2f$sYn2>YGcy~YVysi;yrI|+I z#)h{ivGV71hdwmiMwmkSHvUWRZ0wI7xkPMfV;L?P_$_NbpER6%+YKf{>Z_>#8C zynYd}jC);m{VuzR?)=Yxyl`V>YRY>q55-RwvMyPZIcm%JXOaffy>b13@u+2-o(Udr4S|T1~$La=l z84P@1dK7~MTYTyMP(n{S*;>Rad1*{o9mFmKYTS*r=uG`MAAY}U)eoBRmq|A?Z**dW z(=#Vr_$%pQCt7?wcfSaE`OiU2S=gT3?f6T6D1=tu>5YB(l4NwH74>U+8wvN4b$4AI zg&B%E7lq~fe}>ff`o(_s_bJqy=@uYY)NW0UZz+keIF7CxCJWr%Z>NAvGyr_FIJx)< zByV24lsVuU5w&xWT(SKhCRXpqTZ34>hYMd5Aclu%DslAmu%XG9YVDhjtO;&L+w^i;euC`-QMe4nvR$tCs)B59AA zFrY|B!ml$pX$_ur5$lAp!#4&2E~;gyTYB^$b+tJc&yMncjEWI z9yLj8IIe6B-|=k}B^Ov!vXoTyWZ1peE(1&*Rspphl#y^UoYevTH4M=@6C9KAqS+MQ zIxJ;$P1FmNM<_#7N0=*`79yBYXsB)!LMK350Ns2t?w*4B-KEyRvUl>MkMqTVXDK|U z2ab$p^KGS_p<%XK@Jl*_E@NNL&yhaH?zJ@C{k*${|J*x<-*i3eUsqwCL42a7jOh}q zE7KueCXrEcPPyhrZaO;55s7RzY0RDZQ6xeKU~;C%lgA49h4xFmG@asO#KuHYSl094 z_QKbPp4Em9@=%oXWdd1leRUij;Qr3wQ+4IG-2R+$Z4Rt-FfT=m9Bz0FD^a1kTS4D{ zr9!?4+_c06Q3cqPRL&N?jPvJ>U8uJka=%5O=}Ci2kT~l~)Wsg1;ADf3@Y@YjZi#+< zKf0JqqK81+L%Ha6@O;ZKL2%E>qG`-_zYTG(Y6;Rg8G=9LWZE%rY6z{ME1kOe_4%t> zauCWj!2lUHmJa%fm(LS;L%^QRFyU!>jM%QO9_wK3a?ZZLbj14iXOU7uv{=k`+!Gd{ z+}F|Guj&1`b)79%NWYSC%;LthZ4K&sNH$~O=7rPWPJUwQ?84(YH3-3v2R&5v83C*h z3Gzk8f5hoME7uy`6uDQAeDi@mrf;$~!G5-Grg-d%k) zvs238lyBEJ1&TfYtr(nkU1T*WU7BP|kIJWr(;pq?*{F;rkM3>$C*ZBhGSmbqjd&=j zu0mGLT*tHgbr~jITZ%}5IpKkJ>(2uJ3Fx5vDxh|gKhWM**fTmVy>@JjV%sPKN0@z` zH+p#72=Rt$>G#N>)#J(q9zalkar`(5WG|k<| zM@SDBZx(K^^}Y`h$XDD9)be@IRJ7h#gr6f~{yvfqznrLLD$M0{CVg2bwIN<{qOCG! zih~>L)5`l~U=$d~1id(w$=b@gJGUmh_k*CxPGuC>yI=R&k@r~j6$%5o!58C?A*Kb^ z;I_IUcOf&V68J3XYyq(|vVKogX_&2>5y_uuhR}h0vso9tMkxI-S+-V6K1A;Ytyu^C zP!YA~ECtC!RXQvYg}3Chm)Ny#BmY|ZFIt0U&BN9ahfF1#^M&o?mNJs5eh@siF0Qq{ zhz7`gSuBKvz?BamH@Au}Oa78-)Ee#f<9gqMq%Uyj0)}r!O>mQ=HnQxIMVW9fMSO0q z!co8rI#S8*5-^n4;?A*Q+=wmC#CkZm`k$INuGiM@ubEd@*bz^*TuXl8*V)hAtp~n?(SAp4ni-T80wdz#Ca`DpLg^0B ze*%O3t)ORC@TbFaPUIL#BzvH@6KN2{+2o!{l6T8!k$2kBZ=G$WW>rATf3l)H*PTNr zwGe1+n9RNZm5w@kmnzcn^N2p2fd}`L5=^iwv#|g`xk7mrEfFy0P#{Eo8~2E&B~z*? zWl95;mUeG1tknF=Rp!!8;qleb4q9=uv4c)YQvf@DWLGqw!ZP7Mr>vmNi6Kk2*Y{(j z4x!D;|IDDOWJHhM9`*17-s@JOHG5tBunCsV%PmlU1??pY8E1kcL$&2--+&X^bP(G9 z6>Aa3cLb)L24at-{RfFVYNj__?Mfyi8+$;1X)7+qtDl^-u=XqhRKECyL`9sN^{$4~ zw-!7oa=f2UG{HAmL?3X_whCij-|I_GW5+35yRMpS(g z6zo*Xf$(#-Reh3V@)ppTKk&=xpT3%Q{Wpk?t~-JTWnM6%2;1~HF{5OQMb{im3N-;` zhc~yC-Cujd$>V@4A~w+1rtj5(c+rWx*^s~($o~+!S`X$tvlZ^xge5d^`sFv zMe#6UGWCi4qgy_=;-+~eJI0K@sP`egK#ksh@QJxwv88b;ZGBtUjQ-)RAsf*BeZlI> z+0n&NOTUm|Pz$hlnk1)CoO614-F<6oJ2Wx@&=XG~;_)(9d5eHfiX8FlUTaKqPDP-rq%YHi13l}0o8np4@_HBIgH#TZS#HN?<4_=%y_e3 zOnqBZOMSIWQlZGX14N#@aeaNAmzVeM@agfz7zN_ZLB@Npe&zY-bCjL&o~}s$iVcoC zoVq!9e7hnk2J$Gwh*L|VEE&$ifSfBhJZ{Vkg&CPbq%}0+Jt{h=9jzu{bW}(f3OLr& z-3)6o3Z^r^TlIV0{yo1K`;T82Z{pL(bT?*68(+5XG+Q~Ubw3RU- z7YShq3Fv-KrTb4w2DIieAbZ6aXlWWPx`BcVkF|uFdU;^25<9)~WzV91zjv<_00}y3 zu|}bPya^?SJ3wc2wM;Pt`95bmLd#&& zNa!b3sHEPyIhxp=V!T?Bg1C4!J&6gmpf(EBnaowwKqjn&!{)V`*ID#lq%LT~H5GcL zPF$&k(E^ulgnIC>jdJola{jOi*%NKWU2=;s5O*Fk^hhoxOSCkosk*+}y216hx~GYs zGZ!&7Bxp zFT>qhhIkotRAR6=o&$A`3`QX_D>ZAt0LsC6D_cC1&fb@Gbm?ra&yNqHq*c_q1&8Jj zW#wfE@0!+ztXmN83~M@bN>gRH+dxUz)cQl$e^Rzh>mc9vYzJtCJ6RaTrG$^ec*#&y zZEG1em1y3kzl-jI?qpxm56sYzrjzv-=^3mjME&l!21c8#zwk6YOOA<4G5?}2AEr?Z zq4kwGJ^`~+!6in$Ujp?fwC$PBEf5m4PjI$Dv3(&J_`@Q z(GQkqI&ox5Y>0(ITK|>P6|KdzZwf7X2cZ%F_T&UOw{>&U*a7lK$`^3^lQid9=evCb z2no+(Nl8IPSW@XgJ+$c+`8zEQXKIPmxO$m2p_+Q7iP$A>ClF8Mx=3}dIrOXkASJtq zop9&YKXaIw`Ric(hFLDQwF<;(Z-=iK|=ym|!1YthQ zU-qIF!9_}AAOw_J5mF1QU#YF>%5&Sabf9^QvaDRDSvyF@vTG`z6QqbP z0r4mYPh%pTT@eV0fg|$mc3X_XtYNL&_~jOQs@83wU&(hxB$ruD!JyY@P432k;PL*k z_#UTT^ac+W`8eVt6LuA~xXrFKAFwhjzLs4eqomb%4U(l$7RMHz zWj%ow+aHkAvnhjMu;+bgFr2e59Gli%$L;YV%R(y&>y zk+2XuXJv5X^n!!>nt)e3!waF2;Z7y=h5Xc2G1=|dt>V}m+`!&#T{?#jmcdSj^j8T6 zd~pnl-&6}|u3WkKS$WmOpYo*H8m|g_<81`C(o@fF$95oUeo^SP@l9-${z4|(gClz` zL&?jbgQuNSj73DP-s@(0-En%8;6h+U(MUaFy2dBN#VTz;k5*keX!y;XkEbs&OR2Pf zKP%UCbT3Ht&wfl9jq^_U9Yaw`s=Bp9)WmAR9SS)yb%pg@e`e{owX!QmQp`u#u2q;W z?8F9=Hu^c%0bDlYI@~6X$PtH)8dVjh{g^1(WpP$57V6^|weP@75!cq&JtnRNbEeS( zdF9-e&-^Q?Gw$uV=mNI%1q%qBpD&xc*D<+oL zcuz09s|Q;9Qo{u7*O8$-4)G8ChknA*bap}RyT343jt!G#E-&`PphzRop8=8_TFY27 z0JtA)f2*WJmBCu9y-We`zZP>IyIZhwHkdCwjQUn^T1;*4c4UHq*YcnUOKXi`chjpCD%b$HQ-hieES?V zlpL9WYSNB-an6rRLCj1|JK&wIQeWoUs!PvK4<djH`56K~vz^aCmd z3PTs*>f%FAaffKp>NYfRF1_7epg&r=_9CP6rCn&wDI{_(mdy1Vj zj5CbW4J;Dr!e@)r^1L6t5;yc6Y|uY4fysI(@bi=L3xxxDlamW|7Yp$h7C=Mc1#Ar2 z!DQ+$NL@iQ9*p5WES(zj_sYGTVvwzunVkcviB%fe?mIX*+bDm@as%P7kuW4k6(_7tYaVtH={amP)hu2b4}+?^nHPS-N*IHX5vO zrI!(u24L~#`o7Dv=cla!1A!PYtsYJVuqT(H@vA}#*)v(UGK@8>{+bGTvTy({E%<7^cS8v33>nI=!q7$jq($Y zmj6g(r-7lQms{^`P`l7l?SC_|1KH=tZqHu$I6F&cyMO=}6AoQraxbL&wZUw171ig? zU81X>rRQ;&v;_hFQru1-Ni2M|EeSxh(aMk8`roE4YLx6|FS4ew}GnXM_Dzl|cQ3J1#h!|XR{;y&< zo8hn!-CryQivqkNK>p*#uDV~H6fSHHUs2{DgZruSpblCXpFNeMVk)(rnNNv%2QL?w z|A&JWp@E_PSPe2J6oKBj2P;Cb+0As}z%9W$MCQD+D2$DdUe*K|>hFaW)-#Ngj_obn zGL~=MpJ&jr12X&vT4!dgK;zfq{`jB$Bn(teFTGR8K1C^op_?|T^4Wt|5EP`^!gfo@ ztc?GfHfk+cAK)`$meE)$#-psP!h3H3Dgk@IGk+*ay1x%`k^p|UIAwe7w5wZ$~ zq-lHcAc{dlyax61MU=bk+v=nSF>;KSW@$r1!xboX1DtC;UR>0dH&LxP!iYK|VuKTW z6gu%FqgIHeLqLc}j6d5z*|Le~t*(SfkcvpLNqlXDvSN^;_3Z12^wD|$dCV4YS25>$ z(^hT7pNC@|WqktQjGxH$D^UXWI5c!}%(g;llUknYMsMkaO00oG(N&~OEzZAwljKmc z+(>p)2O$^b$4Fic*&d+_eZ&vJYK$*`8vGYZ@h;H}Yr`1d9P7t3F07R557$nEEcWdd z?ntbt80w^EsQe(s01fuIY&q!6+hTl<)paRokSamYew;mQO7~@HMktp@QtDnP3@S6p zA^uF3m3|q2W)!K|l1xnhDG~G|kMF<#&idHm6O&or76{WN>HM-?%#iQL=l$BMp{$g+ zld4dQ6C^GEOVSRpAL>tMtJU2gG}0d(svMdyNjnhR%)1^dT)J@{|;~sH*dLIp@{1%Uj%$NE*L(y`_8Sl@sk*&EM zzQj^TxE8zVC;>8_3XlFW(*0M9IJX1FWpA7^c-g+Tw3rNnQ9-q0cjNX~szsPOczcv- zwBHSgZ#r&7gEv$L03=c4x`;Tp{vYx37$pra#+Q@E2?GwHw)Q z+WG*vOx}C@A7}>zE|(3x^WRR#b9dd@bzU92e|}v;ZdYy?(hp`DL5+q)?sz~&E;!L< zUl)}fpvF)he+T9`!7kLk3pQ~~jk31+^H@29TfaplWtneNMQJH0Was2qa^Fh|?1_0- z@Zdjm#q_^k%7W^bAm^pW(K-rbgn&x48J;=YWq??Ns;^HswVHSU)ml<}*cFg^ZCo45 z-ebJVOF{UF_Pk4=X-<<2BJ5|(?*2(`+K< zkh!B5J*+K`dV>=^KpeAgiXb|yvs2JV!+Yl60z}X$!A*xd=qYhJ^V5j4JKMYi*)PNf zUyv(a1rj|uQPvcWoW&I~2XC)MLnz(s@$lDD&HAD2xGIaAL5Zw@jR@Maybk`M48Hww z9E|Y1nPrhlEjTqXsVdsu_Ow%}F0Uku^DU(tW zN*bjD8w+_40-86Dt-Y_&JvPvnPfuQIYEvfNypLHB7OoARkdkRq1QIC0pWpp*P`$I0 zdR%K4V{lE!9IPrb^DRse04RGcwrocEj27i8%Ut%H^)5k}aAN8gUVFRkkM})N?Pt@kBgmvoZjd60Lco9xr}^ zoa8noH-I~>k#mAeD}U>Atd)ZRB_ccU`B&)#)OKmGlItMgNm0n z5PMwtiXqqAQ}*M>Q%i{19(;YFH?Xrthc>XG`r}DX>_W_QBTnWfL<WLPpaQ@r!w4}cWi9#fcPHz9fB*b$Sjdppe4^WoRv5i??V-=Q1 zgxiTv-WPqG&68cqkL7anpi%=E2mAzV*)~Q~S7)ZEml^ERIYl!&J>J2&T?tL4%roG? z#{~Ab{6J?aawPUy@3omP&Yr!l|8au3Jop!xXAUTsluT&{d7{4HW$WEdzb`r2+_gn? zTBr)lv5iG*2Iy`-8y%?r8OF9)iX=z4V7C7I7Jkiigf#etbm%(7kwZL=V3_;~H2{VZ zlU7Ni``W9$r?|AZ8c!cBX=sftHIXwg986Uq@e{6VUq!B+;+FsnY0{F|G{UtKX?R-u zv~Ralvx~lzF2qogI+X#+oEe0vQsfTz!?L8i3c2Ey7K5uF=~vPzk*CE@7&b7!w!syk zBTX0y0Yl}r2J|VanZ6-lam-ROnPcg}%gI>{v&(!vZ0$l=7x7($Sv80D0IoiAC)Wr% zH!}|pZxc-Qz4N`_W#)`M{QyC%fk0V!HZ6ZDmNh}Ahns7RKoHg(oaL!?43QtK=y64Rvb zkX!4^`+2#kpFd3+3*4{Xe1ET}eDHFl)VhMjP22vY3kIm^|7#2&zgRxgMCl)2U`gwM zg3V#1>yfc50Lid@a5C!Y! z9XQeNiGv-Ve&`Vc_a`L-go9xp((4Svg(dxml?C~Qx)8P5AN*v%C3-x790uggYq3lP z@9<;ipEjjzSZI+j!Q!;IsfBv>HpwHQ{Han{QLR><=5C`Vz;>Z{K#rJDYO}GR+}f-M z+Z8+h78b%M*Ix#)7~0rG`(wMA3&5`&`K9=9j4(x#)K| zNz1V>X%)z5Y@0HivG&U5ubmTzbBI_@5?j9y4ixOI?7jhtUPKJMq2U$xVOD;1ladGA zJZ+DT>&||`K|w*07y3p9Pt4WsM+J*#R1xGtt;df?(GDUbGwyj0m5V1A@;Q@MQ*-3a z6R!(>S<=)D)g9tTgJp@y|M~On&C^ua|E?l&0uuo>nL++*EO+nxzvX*Kr_n}76M^4o z&zX(#;ElgYWmRlKzN+8LbKCA0*N`0%?~?a=@Y7ACHTsKIeC68rK>hw&hGo;;bCYu& zJ*X*?VoiN7(YL#{{2xZIf@1u(MA~x!oKBS4}(Wd5D#w7B6TsFjh`O0d}9$ z_H!2gk{1p!ZpBrWDx+RFHb^6LsC#1b-oXt;2TN0;OylbKQyXLt8B#Z<+kix(by=~b zRJuEP`>NU0{7S6s;$30 zUgDPh4!6@NBZNCqvdf~>!lRpB_uYC+TPQ4+tdL2;l`3(#h$?kOGW(-5Q`@3!84E9G z-w|W^+vQTos-YA_i?~OF8ET%Cc|7*&>EM6ewF!QhRlC^i5fQv``5I8CH)@*(DwEpB zFQqYl*(lhzw9U} zgHuZx$%h$=jtfsR-om8({&_W&(xu94DoH~nFIcb=YT*)1!nO3uXolk1E>Y{UP7ILw z{E6hunK(c|(3Cb5=SEbcXqxq+9=nLv(-}lXPYagrqSBki(SzF+N{LI%O^y!%Oa?)% zl0g(8ojPST<+ZL{AMj8%2jiBk<~z~dy+tzxSLnZs6zfQKBdkHT^fMlr0gGXHQt+)H zEc#mp4#VPUL*1h*B>wAsBfm*tW!a*YJSpmb02V>%z7|VeP{Cd?pL_J+{_j5fh7wc4o@Kjjxc2dE-XKNSEE7Gk(6_gWSf1!fL;{C;+n@*Os&DO_(b~2%aWToZ znc6+j9<%@lB#R?2hky5*S6}|NGBYLWRf$TvDe+F21o?EIUutXbJbk+V(nUF$)MQy_ zzCKbA!H@#T(bgVoX+b4M0PkCq(Ij4N(YCf2e&5#Kl1!o%dzf0WhgDUDQ-TL1=M1oi zBLfai0Z*G7z&(4Gfv_K}TlYZP&g6}qQ>3tM}!YGFo^M?ts+uK)hwR0xmSA(NO1T-6&u+y~trp8G*tmysX4{hGvLX*_6G&nY*r~qzK;Se>kK}L=| zRX!QkxozHAxqI5E1;`%;j#o`x%r4A4xI1(AwmH9`Y6g0xO60yFmf*9bV7&Lx;MvRJ z-ho;$h(szDBf7sFRVccjd1VT(Bw3n>T*o=>mz)W=5vN);mLa}SQkug+>B#rr-}vN{ zUw-?|SFc{YDCBccE5zbQ_@7=RN!Z9c)$PmyAuFk4Ne}u1R!qY%(7qPYocXyqD0HFv z9WsdM9|eXkKEY&8XsjUPH9b9k^TyTtcW;!6nVMC#1%>fv%wX0ctDhI%@3z#o=Cl_#Az$SKu8_8u%DWE=F~r)bd0GRqfZG111<3=+Ay|* z))ixg?jf{~4yeDDpI($|HOsPW2b82n8&A*&u0@jIV`a^ zMw_w!TY6&4b0*iMUznXl z%?P8yHnU`TR>VgAOWv^Cj{yc^(y>AlHW-9Dz1300I0 ztLNWd{c`NpbCW1xyu%6o5&7r7!NK4A`R^Y%co2DQ9$#8+-yODsa=IX9FrEW*3-jRp zBA2d;Qh!IXud_u3C7`*OX6H^8_sllU0xl-mG*h}e+HV#BAXyw8eevbzufF~~H!yCaO$Xe#5T%U^#sJ0D(wSmSmw& z5|~60B+uLrljjD|KkY_v}1P z?VWIxu;d|4SOI5?;uBR>!VtBLM_ZGv$+lKJN~5s|q_=!Nz$qUTVDN3z087E6Rn1HW zf-$AVbarkbGds7qu!vj=nlx%oV-wM?aX}WJUl!|p!k*#{a8(cS?y!gK4!Q~I(OuNP zf+<(2n3|6Hr6Q_ccUQR08}V`{8@2Xj&}?C-#s!GmI@Vw~iZx5pE7jEW*!^1*kM7nA zIoTpd8GuAb%XVN+f4HUpK;Ox;!H#Z7hEoj*4`J9Lf7|tCoKC)YIFWQ4Y4XhK%FS6K znr^^tz4-TWFrFdd^PEymPLVqD87LR|>Z>n4{p8nA9zDosQcV1+en0R9$${?8Ic%qc zlfy{meVll25|$}u%rLwumI{lDi&*sgdix=4h|IICjp(VBN`(ja?_B%#>-55$#Y*Sd zN=`fR2LdP0p8MgCe%z8saOw3Oj!AIYY{F6g4`C@3lt6`EH%vv6+vCxpo@6NG!?W*w z48D8J_htbXle{<6y9eIY7Jz@3otSv}#TPHX{5&^4V(AsiUC`4-)V)f@BUY7wx3#VH z#HpT(7lZx%6@Q>CNCx@Y=<&fH80^_)BLNOM*rUwZY`!;T`I#;k?_^@*3EL@TpLene z_8#rp<)xJ*D~!GL(a9dE{1IlK+L8cOBSX=24z?>x2n*C@>Qzjc6FC_2M@R*dn9)a-1oT!EY#Uc|4XkroM` zP@vWJMcE{D{D69XjQ_^rkJzq`>nv>BfV0KH5-p=vN>4w3@bb>}%EFASYsktXMS@iY zLbICU^S5>OpE}nvaM1FH0Z|MR^W$E1lZ)JpD^@ssYmDjs#3c4=%qX%p6&5w?Q&SUP zef9aLpZw~@i|3_c)zhNo24Eh#CgrQ`J_Hhsh#vU;N074d13pcM{yLb0ixm*O_i*suc414)i8l<6&13c-t149daNSlkAXz za8F}5SpX8bnTd(v&%b!_yWeHUMhvY?1PKUc!9Ng{s;Cx4RZMoY9Y2K(iNAk93j|Ao zq*HAM1-z)|Irs7zAhEOi^nc{oQ?7(1OzQqY-JxK?w7P%6ADK;@aOO9%53d#>vmsEU zaDX}WO+VVlTk?Qx_SWm3stttbOqc`9{na{Q3^^Z3K!Ij37z7$gB;x22kFt|w8#*jP zJs)K!imb}`ybf}-sZ})%&5iTL67b2y^vu}A^z_Ue;7X+eW&$sG=Z+Pps*&XynIOj? z?=XAnm$(;vY?gv^JP~$5Fqu&k7W37YqqC!9^Yf|v;$l9FR8_Hn%33_~k&Yv=0m{Fz zX~Quv+qhL7h{EA8o4oc>*5diR!)Ul)UCjb?lYtbfmkZM)qjztlUOkm7MU=MVX0Y&U zK}KU%ZzPsHc(~`pX|=V(R00;1B(UI6TX*KRIstq8ZsM!RiYf16lDheAPaj!D)QSTT zVtF_9>FJ4YzWNe1B(GjPFBfwNMUiwm+18FH(F%{R$SNd#`}zlt96NF5+=X)&E}c1d z@%)7k4j(z*KX{I$ z7_J!@u-`h)qVp`{k24nUw%y3OU%GMgFU2G_;8?}`toy$FBmBi`I_X7?Q$%{4qb%O< zQ^JuzA`xxxNOW|zcK5W$Tf?D9AP`n06$l2bE*%OrC_5=vj6z96ug3ZLxtW=n1+48iE8ntlV{h^|Y?Nw?y>dEx z&8u6U`CM^)DwWMau*oVEtJ!=$mB!OQ?Xe701VP^i=_@8X+L%I|O41Zbr&ugU({^3L zDn9KdU(f#B9WSlsfPq&+GX|$e&o9nBe=z&(p0+S6>lF#aEsBLmx}+MxP^@pD|MZzq zcW*5awnU{SfQygm&ej?`OhKaKJeY5<4=yHIdxo)fkV(}MBq61MTsC$6`qf|m>i>B5 zo<9GxU;F|MY)yK&G*aP-gx;F|8Nlir_;(zac-i%GW4)b4@yf(1Yw&P`3d`ufY^-+r1MePs|JsTpF; z5G-9pr({`IgHmfp+tCyK=PyPF4;X=PRg?*kP%N54molkwIjke{4R|jt8%xx)Ca*PC z9g{S^%e>LXel`n}tUL|-44WRHOCA|b_=NXAp-c{17mGEB9jktl8jCX-v9`{ZWII|J z`$G|bFdPVkf|Bf`STL2HfTW<8O2zqw6k453O;69w&yx$C%aW_q{TYUiFWk5mw< z;w%fmD0oecYgJ&|8no%_oZTi zYU6lOI}>rQd+o%5hL2t_)G?Iwzud>-2I)pAuZMQ8yZ8tRBg zg03R)rp)KvvJ)4R?3R&o&-49T02z|p^wh|=U%veOv-GQBt5QOo%mNh_4}PRTMD!-} z36a*s!K3I85E(pBi^M9ZJ!P%SS(1cYX^K_WE6kg(i9PG<+;84$ov+;73vga_vKIHb z`Npf>S9K;QA62jGpk+`W-#SG{`LLz$e90C7&;*(%FSn8pS6F@S{E+zX9`@ z@QDY(Vv;GwzhG&zct3wkJAjS-%>Hv2EcS2eKR4w}SgvVzx?MEKJT*`qSbUfF-2^C< z5DX@89UM~^aYly-sJ>4Dt0D5rRda(?a2*_D2q_X1^vzbhZ!5C`x z1~d)7!2yH3^&U4@9m?$#m*@R27H@k7ykMEF5~L|kA#gM=wY-(Ng}FzMQqS(!((~v~ zBAIA}NNo_QZX^_m9y~gD?n0!i8~2q#P9AA-v3bnJpz2ODKP~2Ob9Z*htG=Qv|9ulC zdD{!yHQ%%Ee%l0;`lS|!b2C$)efFELzxh0qNjZE{n}ExLBS?dz$~<`T)Y(7(^S}7` z2R}x0cE3NU$O^2FMGV*;0E3s2aLyG3K;lpZiAM1Oq=O+Pj7Us}6}BwYRTN zR^(T&UVZV!=M&?jx~|hr&I`P#C`=w0I`s43|D%Dy1JD$q1=lG)T=ImWq{RE>TP~Yd z`~k)(u9-XTiN3Q1Tuk!LCUkeOKP-R;MqzGt zjd8EG0dtl@r=b&nerUGIU@=_m4H70F@DnQYK3f9q`fVM5)?en{k{;2JMlR@slo25 zR!xw%O6Bq*%kR(3g5EWsNuxU>YT^-M1fffUJ7*HToAM|`J96qz>?kJlwz-kne@#F0 z1OXceJ6XW~f77?EyjL)*@bHF$0?wL@fN5cPy@u>d6-qBgC$hP+0YFki{RjwiAjcc3 z3SpnN{=pteL3s~L-Vu_c5(JoZbZln$<;+5=lu8%V*+LGn+-e0?)1*DXn&YsV_xfws zLb^AXd%%@c88I+okalxl)jkl%;tt7zlZwPhM|-?}ZQI zg9qeL1d$Qu_Oj{h+?WphsGknU>nmT*J+RuJHhwL;@f%!=j4u%!X=AB2wMy~fgL^0= z85k1)Fy1(eoWQhU6 ztH?4iNi-TR6^nCdOHwY^%er{~c8)Ail{YkW0OffgZlPN|%G`1DaJe4(MuA&Y6cS5OF$4(`a8nEEv5Bct37P`~~a>Y_Qmsvi5d`*eKSyTa+_V49l2LPv3hu_vDc$zo?j130+e$#vVaOPBGfjdEyM>AX2;) zecah>=MsMGwfbbPr%jgMy6e7`_lmifUq?ME#Me6lBuLrL%}js(yH9T4x>?9)sapv3 zU$1|Y5syT;h?XHcDPq3o_k%k1zb$x zP6gKjZ?FIXlKF*K-+c4W#^h{dlwhc|h649TntWt@GzX%Fid`KGAaCSa1aF0u|1P{;uM zfxs9#NTTv28V_}LCA)i2dJ>DoLjIr%+7T2n4REiC*y7c6y;Rj8A3QU=FfoPNlle>z z?Cf%-0!14SYT`j|0Wu+iHJ3WG1N6Lq z`omG?#6Z7jvkEkbVxKs4O(PMY7z%9K4F>9-@4okG-+2!3QMA!9n0HWoDwpS<4?n+g zqp~n9870Z115d*G8u}o~{#ei8!3!UTdIl`T2UZ>(zdnKOr0dH0>|&C&#%Vbw@ze|? zNuE5q|H-d^IW;wodUQ&X0PfcVO$>4bLg7o7F8}GD{ds@?kOV-&vm#EUi6s*o3M5VA zLCHyEO8`r-u8oh4r596p!!ZdTMruwX2+6iK+?rp1^VQ_UxQWEEU06>CfZXuF;LwkL z{Idgxk4mbKb&uZ-n1maLpch>$%c8?%0ua~a*Ps0QZ|0xe_f|^i2>>jDc(aMF*rKY*0Z*hQdf;%^`3nFf zW=l&M-O5H4~F(71pGm{`jNev@m=;!8~%Ph~W3Z`#A#nsdovHq8rVJ~0)9 zfK+XO6bJYrE1+nrOtUN2(b?AC(b@u!I2MUUz*Y!?kPX5F$V%v|jCekP3dlvNbOzuA z%}!?LQ*#Sx;1jfpN7eu@Jo4}_@y4hPrHxV=+#}9hBAaltHgZ^RYo~4hp6$;fIcLC@ z2CmwxW{Sor%G=XmTweDs54dnbY~EQM3g1~0e34$6}>L1#V>k>bXwLmPf}VG-ewvT2I4x4S)d zpgW0%?r$-c?pJoB1zb$B8%NDO=WVh8G9&;bV>fROfA-13lLuCXYDicpQZyjJ=_NoS z#M)v9k93|rA31ack>|1~>BPK%v>{t)SulC!*5nJ=$YBM5Sn`Xy{C&f-Sh7>wjb7nk zyend8K3r1-w-F`W#F5~SdhSY*Lq-95>MltI>|l1G8)GognoM+cws&@QpfWxdkA|aR zf6%A+WDvDX(7qAV)U`qx-A>9g^QlQRI$2nx%J{`>I+KTUqG@tINySrS~b%$V#@)-r=Z zv9~*kAS7s5RQApp6flJ#*)p@q#FUBWh^6} z?rYBa)f0nnK4te4OD#Y{NMi?d4uNsqTg<0k43FHqrKjh>+LCJ~i9}GPkZ38v>j<1Il(!f2dbVyyouRRkM97rp|Iqf?H{JdgALZJ|BMe3_5j` zeXO%PsVbYi|3EN&=KO`9{od~d*sAso z$dAVl$~S(izMrl6iB^B=@kN&X$che8ZwPh88E7mbD{C1ovEYfJ?jS@s-rH%vA7ky? zqq>-6-wwTd;cu`2!cnD6X5#x>&p-QQ_R+m+F@x@Na2OafMuNnaE(dF<%|39b=iJ5E z;iI0GgeJ-ePUAs?L<&6|R@K*Xd<5t4E5Jzo>Cxm5I}Wq`lv?A|*Lv8zuZPe^=2)Xx zrtU@6v-`}!;$=9ZSM@2O5V|pjTM|$cM#Gb~WJe+t_M;IBqst+rU*pyArE(QCE{JsT zKJio2vx^xL>?)LiO+f4-9e0#q7M;{wb< z%+h?hHa?S{oy%xCycl2-LSn#Tvh0aPeZ5`DmPlA;l3Vb5DA6W>4ridR;^^c;p=9YM z)XWIRFg}|V@X6g>?VW82RRSIXILFJTywx4wjSRW_+0`vT^+1#)G0;@6I6F0V|4w@J zg=&<29!sp5oVbM;vM8)UF`U3tbIQduQj5e)4;#&YbrJLIOCE^>X&6 z49N-|5*7@pr?uGXQY;pqJ$;r+&4ZnVbTJ!7x~cIV-4gTp9I8#&O2}k9*yyUNI&|Q` zM<4%i=+F^JAy~j9cJ0ctv1hw-=EhbSZXNqv1(Vdzsxfap-lA?!rWVtMf^He%aNtOP zXEGK>&EYx@;eKS-TfiOWT|b2G1#E={2#|mUbnDjeXP?bKyk9M343D7;HM}(VZK7C( zBov(DLr~c|16bmXw`!tlS)ynPGG43+33~=`U%UDB7U#>$Rrwz4yK3IgT296icGp`R zczeH6zX}fK5D}(Elial;fJeezcwVEyq5%Zq^P|;Cq`SBMz@fgAXAWKZ==9}}&YnJh z^yrBL14G@d?X7`O00Dj!oS;NImCj90&psP|b>sHkFTc6=`PWy!y?Oi2gGbL_jm)MN za}X9rP|oT2$n;a2m~l&fYIgNFa$$KE`?b9WTYfYuYX@Ts{w(=Z9s$I)Y&MSu$slKW zkn!-K1{!G*6z#~dXaqu}5*kplf@%^(LvjVZqN_T(1QZaMg=Vt|g=>-J{HO_xEGv;< z2zUgXA_R9?9C%lEba}snwffNscvF}h>KQe&RGb}oIX5y~D`#boE{PTfg#Lomp)U~c z>`C?y3BicQM1fsAv3bMktg$t#Sjdl#jx5a28-`BFTgSJzk5#KFs@m5#aOm(+Um(bG zBdm~}We+*#AW3faX32|ZNm%*(q2Ll&2X2RO21$Mbr0NPks|Sobg~ zn1BI&0EYm7wY#UUyQddLEOo63#}1Cp!IEdt<{9ao_QZLG_H&KNzAy=FuSZs-Xe^8b zxFky;-Oi8Kz?inlhOt;Gd9FUCPy8Y}opUmF7tLM`e8jYj6 znjA1Z{$0`0>ux303>Zta!R@`=){OXW4Th!L9;83?7qczQ9M}MRCYp~ z2(I19|AQ-!4k#E^yqL%h^Ev3*?~H?U#*Ve^aGxEcemhIN{kI5)5U?WtPfe1a}2Za4hi;re(ijG`>Wbt-(-{CD}ytKMBmi-_?_?blOu{z zQIH|AOj0lqg$g3{$z;!&^NB-8b$?V8pa{A>4>-| z^!eH8>)(F!?8%c#seqpwt2T>~U?D>H!^@yfUA!EO!~qP@V3dOmUOHk+Y;zRBN=Z1J zuopB^3Z^zROdJ@cAhqeK>8DShA|Sx-D%O_KrrH!>s~<2V7P zwQSoATXv17XqR=^{AZqb08!3 zV&2M9Mq@^56N3|HxZ9^X3B_G&ZPc+c^L2 zHZY`}1!*3fJK9QWkow0Ju$BdU;y_c`?+XTfLD7;~?Fp4Hu(Kpz3St4-e2IEh+M?CG z(Tg|e545$kgnWubl_czsPZM4KLJ`{kUQ43Zrs1p=kj+7=R z)oMinlZRI}i%6Gvs{u7Q&>KB6q(=i))oY>vmxJm9~VA4d=2wLodaE!JPMSz=wFYb z`a;RJ&S<=q^%&tjP`Hd1?oR`1U+k76v0wJ`fUMQlKF~jK-0zR$>o#YMXKp#Rs=t=z zeczvP*I*6Q6DCy7<_QGUmRQuUs^DvBmFnF5;{0L`3)1^LZTHCAX8{+JY@e;&Bkg<( zFhG)8S|A7u)5$3+1qZ4$UqvsXS4}= z&QmioAsCPoi0cn@pFDo}gNtWAymImK2j?$cJa^>qfu5euWU>V%D8MJ0uI2LC)Z*f+ zkYDd-D9n`1CBg1wsQCITm>NbwI*F2*o$~i_i)s$?Vf3H)1s> zU|U9x10vuq0qt5)KZ95!Yg0+HksKZTK@h`Xbb<-6E+)iRXN5H6h~XE7610^8V{G4+ zCbic>9el{IL_Gg9>e3FX3IL_v+up_<_44p?}`YbY^U%mdnVd&efDKCOYJ{ z1VK$C+7BOATNAnpT#0_6O$uncCIqqhrrX3lvOA^*zSd$ol}@KnNmB1D(qv#Snz|-h zTU(P!UmzgLD(bat#9%KA?2OnK*i)eCtE@QA$-eStN}??LS`tZYXvIW#q#X#Og@ph~ zJ#E6T(+l!ypr?1Br)NME6-wbaPa5ZOQ-AK%4YO=T-9&@E-L96M4_z|glq?EizdsTT zU{%+v+I%WKJ-_JEx8BagyY5>qCfRjE=AQ6YSpY5@0LjdQhtEIzZ07bYGn4EfEPUMLqbx!ineacpAx(UX_AZa=x53b*Mc<;gRtMQps zI$x~lRg|3&e~+hcs1ljI@CIIi{c@5hoVnL{ZMB6t&75^&kqpb5EtFG>8N)!;JATh| zImAW-Zi_@h=m5iz2>y!nPYvP$P&X@;^>ntVlaerxwi5QBVr#J$@(ZDWq=+7>re;8F zt1oB2?jO^~FpIgx$&u{Lghwlh7R5JUZoTF$LC{$Zb_^V7@9BpW9e8+La+W*1OPtdE zYQ9amZc@JRSimId^kOcTWdh~bI*x(>0RQw!L_t(M$H5q;P7xU}NwT#q){>AFKlC?v zWWu@Sd2W)$rIxMh_EOJb3I0VOg?ORp4BL`uZEx?8K(Az&gaQRD^D)4E@rt@vwt|t!;Gv%L zA0$qk@+6a0p9|5n2W$YGya4lyujKSgVv>69v$u+DEGmj5^o80btexU89a05*ash+`{9qS zeEh@9XV0G+JkXzPZwW;Ml20-{W}#AE$mB*R=N>+Jb^Z3EZ@#I`61)|_VL!*=UkMnWSsrumEXUZGGemNaB| z1bD7AFAYd?;WRO4qp?81kC}_a9)3x%1fKyRE|&+4DX@Z4B%(OAUPr$~Nzy|>G2q9i zSQ8oc+L?1_m!4Ifqd) z%g)Ez9$US%d6$~vy`MHO`T$uA%*T8l%Cr^c4KE|b(Wj89Kw)|!(I%4I7KH=qai!*T zioG(^!d1s1&2Kon*CR?&Bo;&BMe%XzTegG{wBacer@06NDS{}swYMKSeAplG1Ddiw zue$ND7YD6t#k}6T$r~qtQ^XTB9`d)vBR-V58)iCJ8kO?O205HlmOAC;xw?$;;7O_a1-!-OVqr-uULm z_ut=r`1Ix26o}5ysHzxM6QmjmFQbOyWC;c3lzLzix{TDvU#mq-H}f{(J_nS_lv+*J zG!L{ib)DKFie8ke11J&vfC?}GNi-5v6;V|%eW^nwOZIqxy@5%xS#+L+^{^kDF}2D7 zT}V;PNEC5-*qkU}jfQcXdH(xxU(5VN11^}MR|?sM@t2vIQ9&=tUL;9?5viKN@JeDR z(bjh)-qG(>f)Lvv@n)L!b$8XSU2|c{yGJumj5|9FWOFEioGHmgn-ML#%8(ReT%#ZdEp9ZPZ^_BhjB z81M&s`uib6ETNwu)2UePlIzhOCbzP)H)oaiD1tW;3G{X(egWa0Fq*9=Fy{PpZsR*=68j~IiprF1YH*mO|*1b)O;#rwUmzb zp3`UBkDU_Z?S@yWLGTH|Wzz%qlX~`YDNZ{Qwo5`%>#)rZ{fOhraagiqqf|+qtz`FJ zq+$?ol0e9ZhewGGv=)$6F%VW;ASm3^aq`U34}Wms2S2%VD4Z#lkUSZinz{ez>384XhM@3QS8rUu^#JH(WMXb+A(zf;#Y(MeO1dS2I%QI9 z(*a4mexJ6wm$2;2S4pcl+6LX3kYsa}La_?omPLIlSVu(SZW*dijK@Mq zm9WS=XlRVP#e%HWijmKi4GlYznF=#GOvwExiYFYABM}Ig0b#8xRJn$Sw5|);KObU~ z!=4$i7yt>#LO>tc)cpAHV^293l;NMjm!#4iaycbmyuGh$=%^BoYc-TEkU(>@uAfV7 z*`?suhqGt$3rCyrOZ(yEyfFu-ps7InPyjgDwqMpj4%!dOcIAEcjB7Pu7K&%Xf z$TQ=ZgzuVt(H8AuIgxlYe)Pz(NHl`Dg008JFP<+X^^L)p_u9UF<6}}YRS_zG(Y8c9 z=m#lISjd(q=d&dOhwdETxIK5(H(X4ztA@)x*-f`Vt)`dD^G}}*fBM+P279% zb@Utn*MQWz&_9zzKjAvquO^M-W@OR~OP1;Pym<~_N34<^OS**KBDrj(RMO#1@rO77 z5v59MmS2%u;t@p>5RZqLGO!sd(5H`;%UV8H0)~M`08<14&7G2dexDMHp-H7rmX|ca z;7--5+nY~!-+#gmo7Z70_4BUDqE{;yr$%0;CdWNm1xgv<)^h~{tTb{kjD{qUjvif7 zK^ml7T$3zcefI2o)4r<#94z1gcdJw^KzGrWvU1Y1eC%+a1ViCaI08v1-qCfft#OYy zNMyNh%@QW~B>)Dx!G=O8@3sL6-MpOIWkU|qsX(vBWP8Vf0|!-~O0|oi7_*|r)ize_ zXn%cKTJBv9wH4pzZKyn!8TR`+(PIkF-Wl5|uDI&^@ zz|ZwU`Iq#6?I%(ru+au@yT+_JC<<@RO=6S7ODhm9FKIog@cZ6jEHzDs^||$iDcx+v7z%9PF%ix_Jb>D zFMoL9%(>G?jveV6=!g2JtjhRwzF1t$WM<|UUc4H;a~}oqH^2Gz`nSlT+BYIQ%lyEq# z$SUPqmPKLLF{Ey2b2TGTeuLE>F&$-;0eNbEp%z4hWO`!$#dE7vLXTG9TC~T(iew00 zQ;~xmZOMa!-e?$I8$2Qrx7c){F}B0#>sA!yMLCfnLjD@L_lOR^&zf3St6>7m09>10fHE{}@@#+hydTGY2ETYV}>aYmt3 zo}A5~wXLfNyr=Iwx;Ph;?D-*fFK~4W5Lu#9Sr{H3{_SUz-(IWC&x1U{J_?S#pcv@L zj;0s>PGzJp|#W~CRjq+ zVbukV*HT#0EF@SK!;?-f)h-?p#l*q z4*^vXsg+{649+(9aR5K~(*d2TWl&V$BmnKOt|ZP>f9+JNhiv!Ggxj<$;ZuF?QaLY#`6HfU)s-6C*%1Dyhie_z$|ws){~|c43GeNuZw^ z>x``pxFjsaFPhh_H=Z1V*XL8w>9wULq4)yL#MF8nA%Yr$tUxmO$g$(7JfXN4SNF2p zkvK(){8vp69lJ=LKc4L0?>y6UIE7aBii+C(cr+Rc_)!dpahP7nAXQS)beFxgLx*jX zPRqq4n`B6LH@nLM43Nyf7#{xox8v8oEl$q}nju+`m!}K~Y7Goas`*2q{{F7BXObt6 zOYQ9yMMY--zz+*_3K4xspwLMoo#>DVwN#hox)aC0Q9^1{vDbj7jNnAwx@_4T+X=xS z3#NpL0HLagzbz5#>1jW7aNzv8lW2AFgO4v?xpMK$nG^j3-SK!h5Rehsq-j+xqNl<5 z)bz9ASGVtg*>&?OQYW`=KYIKW>6EFN`9iS_Wa5=ofix1(^_fUG^x_e7Y9!y(kdcdz zt`l$)N)rsDRw{vWQe`T@#I~|(2BPh_!hlbWM?z>t1~M7MM@gE2qOe{~GXY34>4K&K zI8or0C2$DR!6@KvMIvDpE#X)z>Gf=GZsbi?vcv7X90aj$2@O}vrTpZ0>gBMfRKx%= zG%2F~NyoCJ27>MF@tz*!xlBwm1}0ggeOXp;=T|bn$uK+M?`-O`0xTY8qI-eAu~SlZ zCPEO==1}(e2;0AATgNTKkphMk^(4ViFy4~z`TTS@*Rdvl!*VOKBzJao9T++opcIX> zH9vxuJdW5o@3IFJ)v;mi3Iu!|$yUD#RN_IB$7;yE>>Emd4 z^1~l~aQVaYCr%zdc&Hyj!_in!Qfit}Dpqpy>DjS~k!LT4@7%xt)i+mv`}vn3cinsN z_|@q6%zO&12|*4738w}iOx@NTRlp>&X&AZ8+~~{P+>Dpx(kOXFcvX-MQ4s=> z)}FygvIF|RECTKje|Uz(QF_?%(n{NJ>UTS$J=u8zd>OWYGL{75mP%@LjJ&(H_1C;l zn)b;@6nADI7;I^2QEfS3I{!MwlhB1#0~8rNa0ty6QGCK-iVc{WQj<+b+;xD2P8i8r zyi^6sGD-AOk|pp_wXx|%=mOh>)OQ*iHpp^s2_=qjjNv$LB#m;@RNxSQgmv5Ej z_SJs*q~O6xcjKx%0T_4Rd}K7H)UhZlbEqsy1CoIiX1#F67e zoxLs5L;&rTHLI*!TE0}AO)b708@v19;kBE$zP|R|w>NHnfB*iIm#-#g=I1jxXv)y% zpeYP~msj!#vR6>NMDe2fle%j3o8}aGFKFBjKwsd#za@6uDu_O}Pumj;yIC z#>tRsx~E)7PmV2&jhLl8)c#oYI;kU=Ud58ZV(Dz@J|G3-HO!5sIssOtW^YYzo0BJ- za<=<=Cv~5HMHqufMk2DEw$O|gWbe^3g zsj~zi$Jvrd3?4WT196KAit7CoIfHN6VV3>8Jgc@d$CVZ=ij7!6eJ!zgEEBDXJz*C@rZ;p!Oi9y!vG>TkN+CJ#5*IcgN^$?^!ko_`KW$ zR48)g;m`w+AiaT{8ZsQR;zdn7@5XrS*nvxzPJi_A`O6=jId}2c$+Jfe9UV+|wE9B< z6qw`7Wlfu$n|=Iz_}0DqKqg;Yz53;~Yu9hxx%cqt^H*qilF9-aplc)OJd_(jv!7jBWkB5>Tkn{}(5eQtycy5%NZ>i|G^Bqk<_VmKU%MPoo>5HUFsEZ}On}&8Mbol{LN;H3EEw~3Naq(&8WqvV zkOTr~M+UMM^+}`_e0196S5-B1=s^n>jipUkuLOKdFatp)k%+1?;=z^-aO4UzZQAT7 zbO&;lNmRQEZj181I&Nd zl-YCFs7)KG*X+nH)8NFe4T?G}A1nqhxyUeX)nGIlg(Kb!AozXn^Z7bEyV{cNisD1@ z$(m06YO`U}6ZczaV`fblBjES9CR%)cD%!~x%j1&^S)y;Pt4q=ro}RnwEwg}&Nw&)#%q>=O)HMMj-+|@#;lG5X+K~_eo}ZJbCVT&j;uIeZ5s#H7rr~ zstRk5NZlP8SF~RG)(*3Qdphg4z%u0NG-0fFW3o>l?dhPo4o40P=z5n>>@Z|JNmO90wa2-+#EJwqEk^Qo332bQ~uLnKY7t-lsrCiaf zoD;%|O^D~}GNkU^J=ti?THN@YQV7O!8K)kch z>knDr0@Aos4G>;zTb2)LLeWn7n``&Cu>f1(-%z^FtKKs zbPAN4cPicSvn}j|2l{MPlr&5N;Dx#m%NN zlQSuozV&`aWm}HwVv=n!vwM*DZ2=pQeEs#yufEKTjv5t>_x1K_Xc8glqEtrnsbnI4 z{CLlWOQHUOS}2HLf}JBGMvU&d%k>jo0?Ydz(Jepz3X(&ko5-?1Q39h8C8cxzp`wqn?V0PVq{N&}>#9V3-$&+%`A_#>m-L6k7M@irRcS zk0c271Go9*B+vx^1q^jn@iA<{PnH_30ZT#tH-pY3x~GcL1ql9nA#92^32H#~$NZrv zG&uznR`dRRRLZdBhTks-0I)#&Rj+J%N{fp#W3MWOtYGTkW+1YvM zuoRA+7ywX5bkXbCuB@)9*o*JkJD7Ut){sC2{&8W%)g#%+rNaD)`7#(nv= z+wV`VX>4bV5KIxg;ZU$89!F#ZX`@WKI5Iw8sUZ5}ZhO-LE+*NV|a=YS>$(4It8WPuu2 z;U1wES8!sx-4&EvcM80_1)NwkYe&d9Q2bR_^Rj0J>;Az|2tz0E7)bL9T}WhEQScuc zpm|Yt5(=x)c(ALd?eNh9=P#W8!H=%|@W&s1_|XSv&YT(=8bAj$aKycm0u`)$p_Izz zCuZj!JbnsT^5r+*eSPi5_3!WAee`tr^E?fk-$4syfr^;SLmqBB8UDD`|7ta;c_hBBs5MVG=z3Mb#^}_`?xV z^;upS-ZMchciS`zz{7>?xC+6)Tsbv4xi~vxRV(1)fFcJwQ`a0xKu?nRK!3QWtL9hO zs$=)LWTgsD(uz&eC5?C-?KpO>F41)3L&g#y)H;-IBQ)~ih@+7ro=Tf%;q;M-jqZk91K#KyCP#yiiPs{R63I@u}U6y+k+NxpE7%JP~A&vwt!_C`I(u~ zZ?2B~?u+cpky@z=4~}BXph1AqqN=)#eq^!sBS!|#TnKgaYJyLzN%#ob=AkZ`7ZKV# zUvlK!49UKlUv+K_-cXmiwO$;RFie6jgjB!G=M4KTd;=3Wrkml-Mahu=B)?c z-n?`D=Dpi@pAL_p*-1WA(25mL)s(cFQmoV#Glg=6oE0QScxw}!5^zy05)FmWED>^E zlprJ@i&ar0*jgxQsI1p4@DmkQOpiZ8Jy=&Hu_YW1z%66q#Eum4GP2OVnhcwKvB*9t zrd6DupMLdHE9Ow~&e|vf{joktiX1?1yuN-h7{t_}HH(%XM|gp)L(7Vbm`d;xM|6|V zc%ST!={&&J3Oe`s0@UJX<+9I&)3j>2QYv^+|6?=d>?gz;QLAMc5^ha~BOHLK>)PDx z-00{?p;)M=S(+a^Q0vZTbA(BB9gnt^#I5=e*?i7jIb;pA2Ck{!uYkK14ETUgASyUJ zpPin|Kv!^AUYUE+Z?b@kN#0~3_wT#e0*ET*vBY1y20)U3`AR5O73x4jta-5WtCCRm zD^?sSS)I1G;_ zSB7Q}RiwaoL8$;*-2kZI5$jVGL;>59Er$;FojP&kgG=W>ymI-{#R~u@2M-?V>Fq`L zH1uUNYBk9FqJ_xZLV9$38r>If-FFH}8l~W8<{_~<6W#Ju(IYVu_Dj%rXs}XT z*{yZWnDu-JrbOpetDH|wji#o@QRa?{cZ$AanGqF_5`fB9ytAjJvs;i=RuyD(gKYX1 z>(}0tvvulyn(7GFa~kevR$1z~E`%4QgeuC-(K(&jpVJoE8}<)?d$m$2mC6oGWCP>~ zaIGl3S|dZ!sL>+auW8lE$?-|39T-fZo-@Ll7?Y?h10Vq?p^6jgCbaqht_4V%0qYJQ zdcJyM6+_QfU=lF66j{PLHJ?EOIfL>yw++$`AHlafJr|R_o!#7T?E(vcK!X_M*tKgf zfBU=4i$fSK}jh9z8&{$<^;}e{=oLwVMwfKO4yx%3Qt2@l}Wx zk8p1&7?xQh1qM5SS*V!Avd}u*SX?Ynyp{fh(*s>Zvpi+5SP6s##fM)*G8kxzTDm)7 z`Q1)gfB$pDuIJG!`Gv{U*sz{WNzng=iUGqUCK6U^B$()F>p7?dqFi##mMgGP$g)ML zne)=PI(OxI`;jKbqkwP#FbT+)EdNR1fD7<3e1cqP4f5F#(MAlwHnknMvf;Pp{_|9HPh2vlXhRk5D0(Rts;PxswL+kTrE!2jP(NBxR6QD#B!yL6k#;cSce}*J z&6vKfQS_;5BpgM8k!fG?8;b5LF84s9-q797W(_pCYUC1^ zREgA!OzI6x>fAeCGS5b{zHc*|S)70ZTP|zrRn|I)_Dkw)w%jn_&OC12HFz|a8Qv;%4^!#e0nyWbLm@q@)mS4$(|h6{eDqc#fo#FY+Zf! z>91#=J}#9@nzyE-Up16Zyst(#FeiuPuLuuNp$GJ-b+2fM=+Y@$U{8g@av~Y(>1#cFtoP#O z6BqFM;P~nDhYlX=Y446k;;Ir5OhGSHkRU-#h=EFXs9RID6my*5$%rDAv>2eD>jn-* zHBy4)rB;kWRWlYdd4Lztwu znPif-b@8x=_(uz(7b6cW{KX*jNd^Abuq~f8VvVTHpK#ntQ1qJu^Zn#{oN;1!;cHqqUN=9 z>Wau-l2DOFBOHnx8tOcADm*k`L?b0xu8JaBOAs2dGbCWDY|81lJK1*@u=Uy2>nGHM zp>Rn-onn~^uMU}NyaW*v43_Gz1;bJ-;p^&YIdOXE!ylgg(N8a4{`l1CbB7Nc>Fwxk zjVB{&NbyKO4@797wusbZ8vdB~EGiupf890XO zsx1(QNNg5ffU1Zs@jy5T^-XGE&jYn~e78%~I;<%{9z=_vz3 z&^%zl))40&V?S86a-+%w|vriWuKQ@X* z(W-H&RO*fB5i6o-L?XVv-nP@HVuufTA~EDfOzIPdN=CdKrBs%pZ#)p13lv=|?_mop zVO}hKu&(=0>wZ$M+#|JLWEg-|!y`KZn2dQzU2;f~6wl^h(BGPj_Vy-^oftfS32Bov zm#&;Ycj;_bU$^9w?HX22Lnpemw^%Aqj88p$@Z`qzTi;&2apT6F$B$pUdNn;Wmxpk0 zHeaPa@#GzF7l>XyNlN&GK~T3us9`hNA%`Kq1_Y@e)`ci5?+x2+;zC@x0jgt^|$ycBtrW4MMjss=*AqAmz} zAQ&DT>^yTOdf<>Z+G0p*%_HMaP~QYu74#XWu#nXj+N6Ak75vU;=hsM6tQoO`J@+B$kk1z<#;2b=d3OK7qg%J{e|zoDwd;=_Kbu(0lt^$3*$^a3OjMB8 zBtZ%(ffiplD4-(%RJWk_zyxNY7RCr%PM!X;7LqP%Uv=0Wp(B!G;$%8YGEARlS_|3o z0-cHQKu0wwRV5FpM^moKNmDhUlKM#056lj>3LsfCM8Ce7 zx}QEp7UY$OxFZ0`W6@Yk9NKq&5u9GStr(}5seI#KDArAmkB^Rymdho=BsP+0NLe&) zmwMX02_e#vK(Yj&0sX5|o}QR^H9V|UN-UhP65ccV9%hJPK@K>V&EabtKXK6Gj56J% zwwf1L?c#H9>Ff1{C>tMf`)upyV6Q&*c@g=O#0CvR&@|C7L}H7g9)|^AxXL(nBjNl+ zy9X4nU}M2Tuo^8{lG|F7p-4y&#HwaaFJ$LZS@2OeeyZ*_cC-atOtPbg$340ATL24O z85xpWw_kqp$=v-1TE57ZJCS0|RIjKQf@DU*p`n5HlP6mb9`;2O9sz&^QA@_z0%hB7 zR?RC8-OaVYd$s_Zh2#d&i)63xw8nfE=?yD%Mp};vccIY*J>oeOVQvA#B4~#qc_PtZ zI1G;prSt})nq;P@XJ5XWc=BvybbPj00ZEKt4|NVl(I^_5pqRlI4ErNK$q$#ng!8~u zgPR+((2e4}>L_K05J=whn5}+z+hc=YD43>K*Fn=MOikscXRLCyhE5Cc$^`J_Boq=U zk!brszpo`~s$L72gtu?EE8AT@>6Q;KU;25P9QRWw6zc5iibP^It+$Q|xw@TYEiNuT zefo4^VV>%=An#3uKWnA5R>>k#i&aXH8R^B;i{a<#g*j6Pi;pEsom>WA2ke{(14UqY zEzHg7n%;mUPAYTD4Yc|J__70VjTfm_@)d*i0jqgUQ?QJH;0<{_D%#Yi7t>SYl}y@W zRH>1Zlb&4_hOy!+A}<1*03UWFyJX2{=(W^hetdeNSgx!)DgB-d;~sW{7H~1i1`XzZ zd`DV z2>3kuYx9M9lx)3)06WqY?n&)t3%r>Z&R_?H9ns(fFBGw(-7`cS&|`$2@3uQca$cxe zfRO3XP}i~JgU62#4GwiB+gpMmKjM>B-9Uw?j(+n_#FrRite*)&wD6hBRkN&F8ia?5 z`G}4_@R&&#Y?T+h5Ekfn4(;AOD<>ciU9(W}|DV183XUVo(!=qpN>kn&6g)tH7WB5e zr>AFU*3Is$53QuX+%I-Rk6I~W-=r74N)HN!UKOEGNQ%&|v_{hI&hAWm$0pfL?@15@ z;eqnrq^tjT@69X&6hM%KBbhZdXt0o#=H$(L&v(vuzSEGcase}ZEVF`g^Zl}99+UpiQ zd_yP{D%0~Tg%Z+JW&rWcc;@u0;QsiJ|JdjAy;0X>Ud&r&0RWO(A-{0*CICs|=FNJp zK(fNfaic_6uqhk|Od>m-?y=EeC=scMNtKAFtRknKeUHSt=2S`?AD zM5Dg3v4NqX=)gcE))S1zLVmxW6p8SnAlU6rH>83Y3xzmbJb;Nsu0!=FSIT9JrBbaX z$tvRbjXHWpBV11;>39|jMc@)|LLt}bZsg4LP_BteTEoKdBUzryqVeb{Q7$GXAI;vr zp%l_Wqs~Ep8CK+Yg?HFI!M;N$qvMAyo&ZU5v6+W*@LDqx`$+$!tF710W7|7U-=MwI z><7IbmZ0Q0t0L8(O;4efAvjh>rHA4F(=-48c`y_i9vP*o!3Ki|WeW6%OCbMV@gJzX3yY0|uZ%-t^BMWT4-V_U%nB+~l zlW*;HpwO^fTD*Ph@kbvn-@GYjbEG32mI~D7+6B$d*C1}{aQH_@`_G*U9zEQMMydk1 zE<9>TKusZAvK&b}_GqGxZh@y(X5RF@-r7;OGZ)^DNvL8Q6LmK+G zf={X=66TN6{~PYC5f*O+OpI%9pOy44?n$%k&66^mdELGZ0jyu1Pp6ZR=&e*rq-6;1 z3V9Og4WS~9;5>qJ*WcS0jm884E&iw{-MnE`+kpD)6p*yuG_!$QuS!p+9)JAd&n6!| zl+c!>nJ#Fc>)1ntWV_xs&YoVQc?)k zf#&po0?!k@@@lo7fznwn3qy%qW2h%IHWWwSlI^-IbH6)o0TYw#xXH}}Zk+`XwUWx^ z<@b0y)CZdo^)+YpnXX#yx9&pBJ((8hVu4Of!Zy%7T;jO^R11=9T}k9-XO}Cemgejj z*w}`21h>k5uVZv19`K9kM8a`02gU=q*iNV48xlnqB95hU9keUT{HE$&cw{sMRP{=! zfG*Lcas`kimB|2^q%zqQz)3z=uGFeE3F#AH5{?(h*IJnzf>5Y$(z=xOFbQ*(*S_D- zVW0=C(G`(b>bbdRQ`f((uPg~_9rQb@|7(#sf%AoX_D>*B!uumCdc^3&YDO7a=k=Vh zh>1yFbU+zp>I_97HE2VZ5}{ftPft&!Qz_J384sZWE|@rh)T z6ucNfXVrMeo=BoGn@)c7%~uyMewEE-&>&F9B;+sp$s72F%3XjT21*nP@Eg`ZFuZSk z+(nZ!_?SF>h75&%lE(08^3Ap{jD|g9LA5s;c1?9?k|34UT%x=*v;6qZ!o6Fmr;iKs zbM;ipRxaC7TOy!LN|8Cv)zdF}{RGZXHDx2LL1P{C2DA~g=#$cr3&s56(vqSPL5^_1 zb9DcZ%V{@bA1^x4_w4p2CfT#M#yqj-SwIIQ_a{I3Xzu#eQZ9`$UWAS@lfffXI9uIn zt@Ad2f8WTNGd(9xfXGtjxf+%b(tr%k6mh3?k)rnK6Jw1D!PSW8E(U>uF)LMVmx7a?X>D6wX51A#zaU)(OjMW#6r zJ$u-E99A8hC{xtxl?M;*e)Qqbo=iTL6_76pk&mfVkY4fv=Wsd%v?wCYhR6|-&O|Le z9%LDs6^a}Rg?r*X4!hVC@@}f`(aoFb8spIHoVLP%I)}ihuR+Tl3~#5k;YNe|Vy3V# zotV7$?9O+K4{w)N7Nl$%MQ?VLl&A`!b=j;q`Lb#eg3(~S53>j8Xf$7|+f+wa9cKy* z0^=x^dSxlGQbpQUwL&2H@V-7E6Qp^!;+o8T?7js|OtSm;z&wMOuz-;vdGPq-kLRym zEoYK&sf>&{2jO1{DqD89E8ahR^7O!oQ?^(flr0Hxg|0QEn>BF~7$%{Nm{!ns_33o_ zQ(H2hzr+=rUwQj1&=r$VGr-pXfeHu&xsKV{CA2|Ay$6BhG*6;wvct~x^+saRAe4il zAB--2%*VnP%T;M{DYdkcsmt(LP>>2tLe_gtl>uW8AKu^J7Y$*Z_qgnK@K#X5PMR+O zoxmZhR4S-5$>g%hbP83rsZKVw1D9S&h3qijP)NmX7A~d z1zsUi8||QO0|PLdb+w$CCwcLKW4Of>bHIQE90-B{&AKO(Px848(}$<~HP!-vc!;c2 zQ0`uWU+wjJ0TPHH9_kzjxS*Qy`nTuCXHz%zOIe%?w9*`m~^tPJQ~c-6YAk&*06>{@Z49^Llr~0_$KB z<`Y3~3+nv&e0gSO3A$UFM!JLIO_pv|@_St)gMC4t2W=L?i6>GHG?a>XYpzh9TS#Vd z=;lsBmcS%*=~rDYesG{?|M>9GP<&t@-rF0)8@-bS5$zcqqFvyCPiQv<=y{gQl}sj` zK;=ndC6OehCjcje*Col+{ep9ZOr##uCC?J=jZI5XnA1l$V9%rBYUv3|-S67ee|F=p zyy!6z2Y~`GVkC`5Hk)|#aQV@Ft(X(QFa_L$VSq^l(H)BQ9Xb*jACuiq87?04K8;BH z^A5RQs>H-3&$HZ`zw6N{HZUm-5pJ{%^&)mVH>EB~*;1f^LG92Z4V)5y?~% zjxuzEylxNLzyqt0jrF7#ZG3{12O48q8;UATO+ESW=Rf=6v(HkH0A>nQ43p5E+Z~Pr zhYp=Pe;y%$l@%!e5|u5w$mvp3ij1DXEZ7!D`1hl9l=(9TPQ0l^UBSu0l6WlJEHX#?o$e?V}u-NL7l14#Ez9>lw=B{YS zdvGM~a*8H>>xIYqp8SG|N%rJzF;8kk3&_=K;?d(LpMEy~-PLj`MFU90)4{ZdMcyhp ztWK||cX05;sotZiFu<; z3v8nWx?vLLev)Bq6j8v-C>ImYdQ<-!sn@nXAh+(F4Id}{R;c6C?|1z&gQb17RpvOZ_gLqve z!pc;Q>66FODyxG1uO83c#+$S0UDK3@X0fYkJ+U-<=XP;nmRD-LmGz*okpJ-ZQ2)@- z#8G#=PqK?L1#hh=N$W@((6qXqj)_S&eV5kRkSz#E_JKnM*s#2~m`)}@YNPW`SOd;P)4%2G>@K%tXD64 zxG6}tL672tAN<1EbLWf2;_U2PwNfP_cTJc|GcGt#I*mH79Lds@OIb)#lF|NMIy{u_iKM_hYz`UW>EtMi_V)8RH^Y`vPy>&DFbXrNKglg3; z%N)8o(ku;#S(su}E04M@xk8ykx*Z+5cD?e=vquB1IP*E>hU{OTGkOF z18KB>7~YmjP0HjTyHN$q_xs%YhvFf>+oW&3>?-f{^$m`kJQbgq;Cg$?cA1`nv9kv)}Xs-9qy;tT2uV#TYn1uPH#Csw1L$O$>J$ts8&6PD3=@Gd5(EP!g ztvVeX_*cF0pu>(Re1kXxq#HQg1FlwYEH34im-F>HD%u5_tib=En5_hYuA#vmk4FSO z9+?(oL_nqhYsKq!hl2i|o@h@`ED-d2eIAe3g}PF^h%M1o8V(goe;X)#FP6|HsE|ly zQfZL8a>;ZS5zQ*d7D%lq=oJJ$ivTcX^pvI^7=t1@g_5{UG%RZPd#~s|y_)&A>f4Bv zfNC$w_0;r}`TKX&LPkJznIJVHuuKG;UEaR^hx-p5;d}vw7pYDMZs>Y5%;pJh<{b5^ z_mCylG0rh|0Wv^cTv=Ky6~MD1c}Kk~4{@0BfAVMot{{lNyt0x?rplEPk|(kZ>`v5c z@jG%F#Uf<8SMJ`u^ZDnWUi#+Z!rUxPfHcWq42#+v4(G(Nz|;`aIRC0Z@tR33g6 z?iNeq5UFu!Sld;ZuawGjbBX)+m+sz6PCm}hFEsK+d%Z5o3hB2>Hszoo2Q;GC1lcO6 zqLT}RyuAbQ{f7n*PV|kAxnmL4DWd)pIE1xgg#jS&Kw$}6ep#M`4Q3(`h{RC>Q%o+8 zhzGDD)VBtDf)Ma{)tha8e-Bu|#3Xy*CYYzNX$vUzdgAHR${h2wjKl|y9q&DMl#9nI4xwbTNKB-VOlnLfNM~@dm82CvYMZMKW%uS^+mML< ztGV89`nH)HzMKWR6#qd*Xrq{)oc?&;TZ+jIWSl5ER98kRC#< zt>|*w(Q+{m^u?m#NHiRdpxa5nbi4E|Mu0a6p!7Ffhf3tO z)O=>){vBwc+N3fEBtrVPgVw`IoZ#;19XoN_*EbBtDT>`?@brm@kr5y^?DHYQu3kAUy@c#kOkvUvREYHo)&dff0 zHuG$Dc4lsFW?_DAa`MrG2lsE@ym9H$#oM=UuB?#0he({zvt(I(9y~GZHP+MnOTY9h z@4ff^NHkWjNwahFD+#1S@ucHfA)tlkQYaEaZ&X>z<#H>_D+>!a&rSYMd%VE;DUTL)NkuRH=WRKhk^E94g0aAopuR|sN z@#mjDyL7R%w2VwS6+fga0ZkA$93EHiaPQF*J;x>(AgS<}5Xl5b*LNL|(6k66tFm-< zlegXSf12HCQ11~>wJVUo|$!_&mfj3DzmU=!-X zwy|sI+2a#VBelQ9g_+rVx5_Jvf>PrexFgU6Kz9<(;&jLN9~?VzhWCXv&Ovf2=;exj zlsYD9A8KrZ+C0+O{FXa2pkJq>7Nfq;RB>D?%uz5=i!3~Q%@c*%+D7Jc_dM2@m2Gl(k?+Z-tP~d zJ$vCtKl)X)A92_nc&;nu>fHQXA)g~eB!yXm|@W z!2!4cwFZdq*F^_%BY}aT!NbS)ojBcp;E1n(&>jdQ$Ds;fb6HVdLz@@t>#tt+sYeXk z5+#t!02KnU4@E5$OUsEgaklMpe>z0>JVpO@JuG$Qj{ zOtNPEZ-*@}A8&eFZk&0YuVjIBFbSM^C^>+*g|;NAL{U>wNg|SZ65;~OqG*Z5{PEs^ z+XV*)(OiYb>fr*T{)AguDa|irQ4o*dF8mDmGMZNBc`Xw0j10#;ZV}7~!$Y9O9_&q# z2~#O05lqs|#3tI2IdOVC9v@nt^+fvy`eN~zKj3qF-4vXlf}3<@R8+ZI2N}Lvs#LR? z+~V@`(sBZl!l_KYT$XBecyBljxD%jtL4gWs6AD34@XA8Zdd#5R+hBfw`>UPK)c&Vt zN@4T4g_pl$1_B`eWmI@N%V;8Mnk)IllZT714(;BKI5CA;@dq7&4gaQ>( zH-f=mtCq`!92&Ie^U%}I77Dp?xmcI#wDw(Jg6Of>L98CH|IE1yzy9mLdFbE~x5rC? z00IFn2!E|CEmy0^tI&0eQTsZ0d~J)9jT;&n1t#$afk|jF8QpnXJ0aaNs~QUFXS8PI zG5Hw$Rj$`ciKW!Tdvn*XE#1CdTUg*q1wpO@cmrvp0}oN$L;Z}6M_b3bL$n0^?!o^4 zBNO{ho*6hi;qB??y&;R>lCc5iCXhdAh6DstmKbD{4lDWWJQ>Vb1hZjMK?tK-lb1mc zEtHTdak?BMec}FC0D2xTf4|Ld?hOl=m}GC<2lFg8w16T>sp+T4kW5|rI=eit%3xy= z5kjWkL--$p2*P{M#IeYU)3*Npic6@VTOwMyBd$YdyH@Chh;Fgu2c7etlP57Ti8(ZP z&jRaXl7?mjacgdNxln+QB3c{hWK38O4XXn3RlGMCj|W9N5*?7=0VfK+5dx8pTGcu; zgGPvDLNQ0Eo@fB!Pj!cr>y3v7`lAl?SJdlEnM$@E_hozvJs7MzVU(Of9;F5+*qqP} zwhK-VDp!L@o`l1}P#BpLA3zHdAu0hU#7_hH1f-X$BqLRl$rM&r&@w)kNf*kcdbLK9 zDzYkpl?K2=8wKh>g7{sAUYBt*sQW_Pvi7s0&vVP2+EGA4QzFbXdIuy%HUSY$)Fd^V zTzGINGc(Q0b)iAJkHCvXg^j{HLW85@C(a3hXhU$LVFRh+1Zwg{*1$Hz@*V!zmWZb zVl_B2{O)`2GfYCyh@txqw9)!!8=Pr-h{!{aBrJw2oP99W)OtO&FuQQ?_R8%WxyO&R zWZGVJuQzu1(9ntF{S!z1gF~FhFWW@LDkvx~v5<(N z3hfyrH*`Xoj!EdcZ1g=b?gLru36qr6%;OlCDH7=An$02K3RS?qm>;mjX-7-=SHhkB1q z#7>>$28OC`7nJ|&WHv>tmG)Ai&H;rbtSu9nw%XVss{@h-0i$_UhI6A&>CKtkoc^}+ z#+&azf-Q0+k`M z(N^)4+!c+6dU~VLo=7MZLJI}_wA-Nq1hryhPC&UwZbYkAYI)TB<`G6Nq9}Mdv6Rba z&?#P$LCl2fX5|Gtk0N~%MI~^HL`X^UMQ`$KR0gx0M0@gNmAlsdAnUm0)pHP?!;{t( z=oJMlR>F}R0(j9-(Tb$J@N5QcNz!RvmIbPGii-lz-s%naA2`;(|A;2KRl$i;VDy!M zmxi})=GD>SF4xioZ)<*G7i+#=&H~0V!M@G1>y%*RbU08=1%?$yBQQdxTm(^3XGl>! zIfj%8073Z&J|S^11F@2Qu|Lx{?YTk!X|X$8JzLU@ExK~B;JWY<*emsEPtc0i9OD3K^oV{~B_290$I4=~-4n=i<$^{Cd1=kN~V$lQ}=vZj_ zX^+K%qhkZdPV`Tl2n-JMfsiITWzfDzkqLN-q=*ezhczK-j$572z!vDvk!zH}(B3Q- zE2f8Zu9(bZfk}8lL_4K@{SgSDoAj-h8|!=LTP7yiJNLpolP(s3_mZEVpZ?;DXJ33# zoSSddCB$MdjgcB(I4KZAgc}tK#Ewt&o;&T>H&StXYP;CdcM3c7lGL#PMA9%$bX64BK?u@>dS zaA_z4&~Z6+B8US+`zEkPYVc7YKy0@IoQQ6Z8>R4ly}kW?ec*S6!y&Y804W~_1yGVz z888F6lWM(^MZP2pHzS`)=M%{+1Wrq3bURVe8I8DJL{SV!V)+wXEZ#&hj7|f(tHqL@ z#+v~H-M{MmybBxb)rJ}aBvjmpmEC}RMI+O2x_D$o%DLpD`?GiNSSu9)?j6ZQ5v4R) za5`fnBS%mBdk3ILr1Eyf#zBBcVM!9^yta94`X{Y(T{|P0bJVNd$<^O(t_JiMMk*pN z3~vWgfdnKt9Vp(YS4%P;MGRDO&-F)6-xz)S|rq z{SSQp0Kp@=s%|$rAbUpW&~4AXkiDo4UQ$T&b*ZXkR#qO~p1E;3^W?5Aope>}C}hV& ziNleuBiI%&L*N^3yT#`Vj*Jc-JJEOKcwl%;4E1Psx59}E;5khpk^lqtj?4>VX&QMR zx;&FryLlc>K&^8~DOjRm6zqgARcokFD_3hsExH|!vB79h*az+9tsMd8-gejmCMMZo zgPVtY0Sh2Q0w3zxmtRhQ{zZOf77Y;?n;mWlJQb9O%4n49_r;DL9z1(m80xQkyj9G7 zv|3J|+4S^C^FKOmi%op1Uh6~@TQlSfoVvNGX@OU_z&e;jk+pO>zqpVt=;8YSYOJuDnpMX$uRPR4OOSlwOW<4;rYn3qmO5j`sw7UbIDQ zrUI$#4S^c~_w6*QmY1gczwAk3x~PQa!8{E;4nQh)5ynKVm(%I@dEr!1P2p%52q@@> ziWl|{Zau1VQ43#IR9>6l7ov)Oz)Q&?WkARUy;mrJE8#DqB;!m>`QO@v|?brBgY zh2$Lc+836sFm!ti&%X6!w-fN!dEQ_6woyA!#t!xU$Qv#iWz30C1yJkNmHFA**K@P8 zC@ir9I?`eT@VBgVA-@yrcAOvXwm4jX?rx*L`o*Kg>?XQjkf)_ql^9wI%fi<(g zzJd@~;&23!pYH=qhd-;$nK3}D0Quya@eAwY~$dy3p?^DSg9 zI6QL0qoWtzea}zwBs%0^bup{QlRkXu(@P&8Rz-$zhF#NKifk(uN{jOg_ixSIx>}rj zW-H|EHOYw{>}2*Jge{q{uuvQ#SimsrABY_|IB@txbo_|BZ^-HmDS}J22|z4*O2h~Q zHpvS5`OtodYmy`M%JsJqd!Sh%C^Ji{wz#x{=7}gs6F3pvt)ZTPT?A0tsweve$BMc6 zR#?EqBwJxcb01r60TLdP<=n!;v#-8-`q}5XXV26+>0-;6SJ13M78t4>_HZPA=+Mxa zQ})4uiqlyoD>^hknl2QZ(3psio<47*Y^^?N6O(N9Z8Z1yY8F_HNoY-m)e2c1C~hTJ z^3@8QAiYnbg=7uuZjZ2UJRS(4ECJ=yU}w=USU|HDOC@=3CXvfkA;6{cIEXJ#5*pE{ zx2MPFcA=v2x`hMmh!6@?d@u z9D*DRbM_1*z(N*ATLZ)PO*RcZqlubT)ID7l1md_%0 zC6c3Rs2M?HL@pSKA3hNt*=KXP0Z7osfy!+efnLg>Gcn1lJwmVg?M^Sg?O$}LgNx|% z`}+ENN01p98VQ8LAatQH9bMmTHUc$3KD5GFhjatFh3YDE;70;V2%^L3^7`%=k$1iWdvv*3urG7-Ug$Q!RMzDV|r$+ z=2(Bmo0z22*W7}ePiS%^Mvn6Zy_7_(?N*gX8_C7#C*OQI`|V|+SaPB61~xzjg|pN} z&OLT${||pXG=A9XbR*JC;wieIvmUe7)tp*qN2xsKYiBKBj2XI)=&+kT9fUMRRwO)4 zGKO&_mqjD>R5FoRTv$N2kW#sfag6^%bq=z>dI|*(B+t7%P9Sp>pySm)FgQB0udlBk z3U+`Hs&&lMTTEb-r}S!!sYZV^ShD)tVHPQ-wbXw*5E7>711I-8;vAFM}0 zC^LlMSjxq)ANi#zu7|+}6pivHOahowv`V=)znH%BAo=7;W_dxamN-okpz#M`IGRsE zry-RWHPN8}dU^f5i^&CAqI56P1qg4RH_Y9BF0<5(cVzg7x|I)-H?B9mR({g%r^_&)Igf%&! z5dz9?A^#x#AJOSS13m#yq=2gTY#xNIOeTkN_j0LPE}=-Av~VQ&hJz}X=5TNTB>o`U zq&R(k50Wi@xOjNET)-#TBVokw9P!m8#86pfi5`_@r%86DJ40J@yI4sHsQ{q$B$$Tm z4VkN?(@*c-|MJuHgZs|9;-H`ptzlF&j`6x z1Sb?Os_??lH?0wCiyauB)1rNnn z7E&l=(f}$zUv|ymwg)5r{^8)ja0ET$`+8-MOXiV00cId2A54507eYb{P|G5iggt!h zzYK@4Q|rJax`tWXZK9trrC=gVhw2o?!ati^`uWFS%+4oe#j<}W_RoI%?Dx-(d7Sna zzP;ub_KXEgOtNQgg?S=ua?-RyV&%!jFCTpNQTFi@YpIIrIa10>`q!eLv_o!K>V9wZ z{Hgfq6RyEQ+3k`MszHbm{TYZOMH;rR!6eKJVsoE99kPFRal6bLVOn61SfCZmXDn|E zx)7q`Vqqco@cv>x3$Y&rF2Os;kO!%|><{usPk==dv)NE?izEsDB7i`I#>(kbW%AL& z(qgez!=nUvLof*%K-&cC=t%6u$q~O7NyZun8Bc;qNWTEm6@IN9I^&nm!z9h;juF+_ z1IYHuerZovklzU-pUQ-x8$&jSxN{+wFXl3pbfR1YRjpDZh4E+>k9-jXenhL?&LLF- zJOZA5Fn|{G=oB3ap;X21gE}#S(^3ujBApJ!4#vXX4DQk2*+08nYu8cGxm|1ipy-O` zn5YYA)6nR;%2!h}x4wDs)u;7^1s51Es4h`#MC};7(|CO7z4!XwdtdVfRV!rE5Zpye z7otN%-CklMY}k1YW}ajhpG+f9(uA`50HQ;PG9D@FC7Tf~El{tJ5F0&e%tXBwb|-D>_GtLrIYw z!6fZ7E}8l|SlR6^(V9)S@@mX|nHG383+Mxvj93zeMI64-C{^n#E4gHnC~m2wm;^*D zyrA_fd3^lfNX+Mh3>SoOSdTN(P7!`^E>}+`3gt39dg?yWMIM+$6rs-(>y1MNSVcc& z66t520)1%o^oHTflSgUo1+D(59cDDQXHTF3NQ?pydJuRyfKL#ufD=c$o8u|BJ9wuH zym{W^bH;kY(O4)D0`=bI^*cd&fiNl>o}e!TRUVQd&ISGopi4TPL7(_kG6iwra=8Yf zVI)XUdCcMz2L92(2&e)bNGm3pij0t$katjP;?*7*zek65@tj5wJR2&16}ua z=_qOr6qe7T>`Lln6Tg|rX%Rl5z>AOo>_8L0cyI`)qe7EWRH64ooos;x5J!UG&djCDlOKJUntUXeD;6x^g!4{H za!C!SC^jJ7b6|h}xig-F`(>|J<^+usAi@JN8=~t$BD*>uS>;uvvneT{?F#pBw7 z3p00NTHwVkU^o~oCQ8DhBt&Vo7K)XH`E))9ha8bjqPRsCY7|lNXx|>}>x;Ntfas*U zow^=Sp%EpCOC(V&UMPct4FUyu7zn^YNqI0}AK%{(#Vv4+sOx|eWwBKzgR{|jH+_lq zw(9)62}rO{+K@qi>A_uA2x1VH@C%`ygBtGkxZG~ATwLL3ptr9l-Wv@^poZ#283~d+ zw9f$vs=^$g$N-#VGTEi2Y2IeXLoN@(<_21F(p)BN3iYDJT5+dp#SiM zEf9v{7BMxQzKGo^H-(lDb%lT?CVBB^Y3shx?(FKImLe5;1ic+;xh2XuP1~clL>1dcwx19$sKjioSIK zL&~}^31Fn+Bm|X~tpnd@)60+UKfQfDH8Uj_vj8Lzoj`3q#xrs}NKMv3opgJ}cwcPd z$ncpn(eVR9IMQ&rC0>w8#Dq3uF>1(YLw8DSYdz}5sMb%Xd2RH%3@!t`+>VD!-+?iq zu&@CMy4WnWT6KPL5s@0T!J#wK{-IEB)Xx(+GV}FXTEN64ujOrf^G+IlNGhq++?DU1 zeDrbp!6T(qhGGqixzIi&HW~7W;b8F4f!_0H{D%*!ejiHf&|JY{MYlF6`cQ%fD`j6D zLAp;K5USD2eiRLbCcp!puE zqDf#LBBO4XeR!xp5($uc3erg#1D+^dH7sJetj#ZE5{X=`27zGa*Wj>JLy|&?`{4ReL7jk1qvRB zWFBhRold*k>j(tANSnlB=qX23j=<9baSL&0;?5)QqbRj%jgt7Qg?tg{3(Cw-hAtT&A%JkR%{%y zS`Ph94of~EVLMj#M6@h4(W1E^t&PxMxmrmiXYbyAdh2?AVWxqK_J)F_9(W1@h=rOB z#b>gOS6m+N$iDuQr~6KxLKh^9$BTxADD5CDGpfi6kMA+!&1 zwlT{_ZUji!Y{3v0Sa4cHCfU(!S=9*Qi-+9%hocTVaK8C^EiGVTlGpOKyt1vOi8#b(7-nffbi;9>zryi%ytorzc40 zUyOHRU<2KEYPsC2jk)@1S$E5|K6LXF-T&{zGA$Q|#ewxOEA_ANsDro#@nUeDoGyDL z9PID!jmFUI1mJ|!kcgsS3D>?vw7#wj1BXB)j=suf-(mo(*G18FdltLDruV_7DP) zblyys+IY_8t$Of`&5dD0{!ACdRf72JL-I6HDm1~(=-p}88V;cJay2_UKYRD?{M|d{ zr3J257SLeTf+Va}K$RKtIVfir96S_=$M+AMJQ+K5$kp3tbrCo%(}&1_6MBac27u`E z+5}>ZEyjMfUhP-g_WSeJVv0v7$ReDwT)wollBv~EyweDJ>_^6WeQuM!wVRL0s~p?J zB(GvU^SfJNfkva6&CPxL?bDAxP2PV{FP1P_)42?&1Uv_873;L$7a1QPId{f4Hdgnz zYaDOk#0Du0B@?2460LyDs1cGsX_`yMR$P_257PoKZvh>X(8qwfsRUhE zY+|8Uom*H*XDSLP6>us@dXS_Cz-o-fyz#it?M2X^)PGYd5?D$0YPqqz3_4R*0&k0y z-h$S}Jbeva*GBjCp+?+@sZuwXIZpC6fghg0Yo z4{oVG}kzFHaLJmSHY?QNZknbr4pR}phZwJ8_I=a)R9qMn<&Pez^0?UG2 zL#Mgfd$+)c;Z+F;lIA}I#cH>Cf_(=L#rGewcziM^LZpb^W)@f0jnDR~lUX{9XJV3< zf2>~po9khc4aRY6Sht=m{l>2P7Jb&%!6eO1>A>jf)VFQ2W?iG0moAn%36!^}&W7gF zG$ox)O+B5xcW?RO138_vOLY;#;Y9G4BtMXRP|;k4)OGcS$H#|Hor)bezz6)AD3azR zl&eK&AvR!J$7K&JU3&HBh&~`43or|TG+%AMubFOE-8p?a(33z2F)S@-@DoqE+rb|k zj>RHgt=18&GfS&Qv)dhAyg+&uOPb%1tW*U?smI;es3roio_zMyLL~^AMoQtfD`ym zwL0N+)np`2&@`l+&gOtj63NtZA_49P1cROCNW{ZH_#GMRBU#4tbhNhv!4Dz z#qL0v9Btgr2t3Us4Z~kuEoWkqts77;zNZ(+lXUJ}zrE{04jqfG14!0-JL;Ea;h-N)e4dBtJ#YHq;v&9f+Wz`-|UR^BcQw0TYw#{ylhW&j5T{ z0!VINfArzc6Swb3g(Ar;vr?R6?i2O68i^yp@@U$QOu1@2x9tRBq32?2PRow$>nlo020!LjrL$e zjNj?7_xHtOaX+ND2qw{cw|C@8IwGH|e5^I$+Er+ziThv3s_Z#l=cQ+FSVanXk`0w# z-Gw2A{x-W)MDm2PxdM@BI2w(F!SM>AyS57gylAh8Z$Xz;R@GX)UM!chg?uKPNu-kr zG`mBAJT$vV<^;W`MO3kX6;J4+Agx1h13(2jq?G=~8Zt6E3cFGg4@Q?t+!c%BhALQc zVd37*(!!jrR_7orKzhM&s>R;0yQ3rH`%a&;27@&YIz@mzt@;7|!kH&Ve>Pvtj7Gfs zg^X%$yk!>HJSJ(bNbSEEH<7~6HLuN{We0Lu69iz;cJ-SC9grkJnG?n*Z&d_EmQtyu zhY#lO+{rwfu4mJnR25{&D%UlIu%J}VCV>*__xndi`i~!vA35yq>$kYvD(wSCh||XT z)8|ls8koYKOO(nr^bdqT&BUER>Oz0PzWzuk;${Wz1`2vfOtP+xHW&GQaTDvsHm!6; z2h)o5FhByu;Se1zhcDpk>5V}vC>94sfvB)ounU+-FncHs1yv{2daYC`6-!0rOy(9A z7Z#V66RAw0P%2kR;fX{nM>Ld)3INe~MT&{~PaS0?L^Ob4637mycBxdDd9rZ#mYh!6 zWCb{e=An2ED90N_KZoGRKFQ^(yqvG9<)u9meQwA2ZKC=T@G?*iW}HXY5CB6UkzZ4J(Ad zmzR^-d=b-|&*K~&2**M`lfLyjKD8z$c^&WCYk$t*cUSZI`CB*9hhz>~nfW}l25G-2 zP^%G5v?>j&-RJl18;P7c9yvZ?jfAVv_khY4Z7T+bL{pu8jV)dTlXN&0%nvkQrUiE2 z0(y{~upb~Y<4MMsM>4}QcThyVpBG&?65a_V&0w}uhR+lfJt>B)d)-? z)M~c*`3(A*)M_g7BzhDRITxPy`8<7nVbsKfnq-KJvbaC#^6&A-sM+SJpssf}LV z;GI4q$)C_HD~a2t`PHMVH5AciKgVi1J;yI8fz6 z<^wyq&Yy(t(SSP)@b5pn2pE<5#b z<I;--wGa=g!0=FFz!<^_zPileA+3 zorOt9C(-29WQ$U5NR>)9m3aDO@!^B=!o0Oquqk!aq+#l?p{^bJmM*)5gk!)TIdov; z!iB*8@rExT3+SQ)9M5waIE^F^i>)cey7h!_21~4ecU}yW(ETtTBXJt=a4u0yf+r0E z;)C(Pa9`Lin(ABI`ZR3I&P`0REoL=$x{(DM4XIdMx^-*vvrp!4->l@a;Aqnb3k4*Q z^58hd;q(p<_MAE8KQ>{D^+I znB|SP*?}^Lg=vA!S-=>e#F;?LawIlXjZ3DAGc(JT3Ro3RnkvBq1DGMXowokIa3ta* zD!`=qGf@~t!AL{1=kxN^)KWHE!A_XEE-7+tG+a)5Z%?GRH|%mF<`2S=fzF$c6st|` z%tN+69_wM1)z|mJk5uc~?8f!jMEZwjPKZ%)Je0OT zi$JM0a*4#Fd->TJ5Vwfj04j-*qC#T|mpeE-5lZners zS`*&p#*n$yc3NPQ;G|7=tK&&%e*VJexaxuG{HH;G(yPfSY#?JFm1L9vsx+i>HJ?mO zO)lQMSDu^YiUnS(bEHcOB7t~D(0Q1vBM}%1#U~CAo<8H-H?FuK_-jXogfs%BDwm|o zDd`JJG8CP{F&%3t4KlVp&h5W9(gW}8&z%t8 zx*KI)@UB@vmxZMoQ0T1;fC1I4`GwTdQX1O6Hmef}Lkc7mfl~rO*Wf@;z~`Z@|Cquk zX%!&Lwp6k9FQhLLv6HT3?LXBMz<4GokT+6a4-<` z`uq-;3){iVL23yZ-MWnStyO4rWwKf1OwwukpG+2_T_`-kCOmR6f*l>ZNr}AH5T$B$ zadz&`&3ZDyNeYRffFx#ZC_E&WsP^)r^jHIH1q73qEhz*fw{tg~LK6v`HduT*;24x#0B7jB+WtwD2P~A?| zyP9E)E~n7WT^~2UTp}xLTzlw!^TM}G4CV6Y@Z(itYVF3mMX#F}-mQs|4EOY5x{qDnO({srh zd|Td0n)l$jvDRIV#=c?jy@!JVN5fLHSZf+(3n4ICDqE+f(syppfx*Su>@-^d_<`>? z1_t626Z^wqCnrcm-%jtotfLVFlNh>N>tT}TNkCCl^Sq5ZZpkK*PWwJt>~!rXt8ew1 z^Pok)WG*49rzl`k|D6u56qQ zd@w+nf&TuUSQN#;4$*G6DtuujdHd3nFFv#+mhE+w!~ZN6$)*8>c!oxf{_vNA2PW#? zVBPM7Rx?k^<|raGuwVQ2td`zlQ1L}xn_pXBWUuD7d&2@c0btEg$K#JT$)b{^D8`tp zVRdT_DW7_J@7nC`Tczn4FhL#F8v2j`yvUrj%Gnef=WzRdJ$=aIVRmo~_9+fe-D+1! zA27Q9Hf8r|%%b_+bybL?r>3K$=J~Cal6$e~VI8X@w+UY5{fE)hL<4@q{*^eDwT@#Ri>|64aI~c!h)aZ(@C`oIi!U}QFPIl*Xzaf z1qpRX6e4lEicq@4*4uqd0vo}CXv7J_Z7_kth%j6v5`i5}WU|AfWJ?Z*n=6;g88}uy z|7hXTl|m+k)&Y#7Alqy;o+lhukJr`P8#{7n@YG31e_zevDmO^C1)~F0>qOe-GKMtP zd$nVdrthNXfK5!YC3n``$<|t+iAe}62!+v_wT$ZarOdsD&z93AN#haDB!59obwdt# z?MDs`?;GiJyLh!xZCL9K$VwsVsqx8l{r>%h*_nbQAxQ!ZgGUXHisE$eqoV_d4()S$ zd5%M&HREpSs@Zyt1ob)CbEQ8moxiWjpLDgrwqcSjv3ILi0+?Em?%_~8Xt`?@BS+hB34O+m2(1r0Q3AT#BYfe{eXmn`e zXym|tYa}9jJq^1{RyowOtx1bEF$tX?x-GvuiAit@c+M7<(wDB>x$|H;SE}~+1%Kz4 zPyXZw$D=_nlgN8hUzmeHC9PB{n5>e?B!taZR#ujmmr(|XPe_AU^vbPPu?+wTUSzU? zXep1nA;IZ%y4`L-kw72-*E&kF#gSMn*4x{QU+^bD6l}J`{`T%;62Q3Y*ROx_$tSQT z@X2~Z2Tj^>R7Ca-(R!6}n z0+cnyIy;xUdv89UZAe7miB^&jLWhEmf`<-`jg0g;o!GrZDIRcRSPY)N*Hn@)tFHnl z&y8_zh)LFa?soEd)YGrj>jJS2^9)C$iRc;vS`}BX*U`}grpC&iTuElhE0@pZ%ayuR z!x~S@;$=k^cqj}DD3uR6!~v(!hl04|v-Mar^+b~EY7#O9;s#j{||>X(@(c?%x@7rMkQ%NKo^F*N{?XjX;O6j70Eg?!@S z!)I5&D^AY{g|fXS@pYNXzzL{}Dhr$z^tt=`hL0ZYKXQZ%hpVDp5=1LtGvR5`XhxT@ z$d*upXt-v;(t47P4CX5EvQ>{d6fI=AQK>iXJ)HUc>#Jzui;dws0cHSi0Ef)X%shSibb5Mvetv#&aS@mV84^&VBf)`2aKRt|$#C1Nudgo@3VA#pY`HU**=0-u8^MnM^MC%&|Nh_qJ50F&CIJpP zb?Vd~{m~!&@P|JHfZG}Cm`B+X3lKn3siYo0e)`F$vsb>5TWMv7*E^wUy0TddSem3kTd|LStBT1DJ`urGe{=!Dyra-qqL1T9S z%=QyxGuv90i|$Npn!43aIxrbr&mRJ>=N4UK*i`5Zvfrphmq-J|LN@Amjc47q5dfRc(-P$LfWyDGVMSw#d zJb3Wv(WA-9Nx%|NjgT#23LG0a(i@yMt+nG2{YU-;$rFH+k&%)8`}ZHDFO+y7ow5UI zlU=TH2aJ3C`0-!<E971h_UK2w8L+TSM)%x7RN-9}WWblJXn?x&ULRQ62eB3k^GeMDN%;QFQP-M_r2FiBf>h}QAYQ^tox!Hi8ZXj}=wE_6Hbcs)c- zI1&zo{Gn(F-A)2wzvvPWJVC6MtJmy>vREpJwW33-qof#uT#x}$c^UWyH;0fw|RIT7V1yBT+)f5G^GK(xCl}&?kpiWlJfa zot~V#c`Y~jm@gC@vgCk-9~svubP{C#KrH&Z zzx%t7KKkg=rAu(3S#AVag|V|DjYq*!hzuPk?zKJBUAl&4qMI zr&!=iAFcZrcNvo)%mkbMzyJ6DmX?;Di|t@;ptsYfPlM~Wtwz~m8^7JVQ)M~z?Ahce zpUhplR9sn76d9#==(>an6o910+sYzmiG&BvoQfYiW{btDq9}<1=0p<3p&61+IH4mD zWA5t&BKBtoMgaSY~TCX-f_1P=v_~&>kAHEGReo$%C=o+CL?bQuv9!6Ca`?xDfn6UY3A4%lK*+37?FR>=NhiRK}KNlVPu zofo=2$h$WtiBzGiTEVPbSX!zp5(>G(0ng!my!&~c>HqmZ z|L611KgaJ-r~-HZ6nU=m{GykSsRsTw_Kf`l@Bo}lO-6q5a%Q^z{KrULB;U<-GhU@p^z6MQlu3Jic^q3VR@2u??jistp2F|QET5%$98QS zwZ{nBpU0gZ4eb2%vuvA6+JhZb7MYqCN&%=kAzewV7PMj%oxH;>y1n3GyN7xsV*rSf zWX&Y`O5Wa(;Qs;FAPH4#*a{Y*VB^z@mMGVkGNqN3{7N#P2B}6WmgOqQ7BcjLaU!H8 zEbazk)F^Ht%^xv~(stR54bD=;#EfkIGUl;81oC$J2ELWY)4{TlC(#w{DM$g3fWEf_ zdTzB!X=#4?=6B1F?luZJUXd-bgb<+(oxV7+W)tczw`*jy_sr?g!Gl61s@WY4bS1V5 zHjRVaFYDIMme@{}%Z)6)8@@kzE)+Z~ctma1Ql&gIKU0+|vMQqs)8WxRl)1mwiom!! zxW^!9AuICdfBxq```OR#+_{4)b_DcaF)Ol}M~4vaWl--c$ddp9F`gI>4G$cGU2w>^ zJUy_Rm;?sBef##G{^_5hItRZ$*FdliU`aR}K6&ya5+>V((w=)7<_4Rx0H%prEjtZB z^6AW%UzQga8Zwyc6jhKeur`_JBm{VSdtxV!#!sCV28QbnH&V$UNmyxbMA|~JBLb_h zz+~FfT`1;DwVh9U{B>2RQQxYmYu;MZH+4PcMy3UJ)&g{S*W;l2Sk@g=6pkSN4yTnA zViT~zvK)E`cXpOw2D_Y2uLsI1B5(_W`$#+TBqiw|8R_@9?eIG=p;DjO05fZ@ug&pY zA2)UWWp&P^<)n0f9*vxd@#OA;Q`2_HwsT}aiTPs&XhK>EZ~PB|722`VMubv%(JJzd zpo0rpG-YAFvM|e4%e+!Yc`*Pa+CJ2Hu?ksLr>A7KyI`;4C2iLYyw#=MH<4f9j0>U9j8EJ`U#53=1>|DJ>Gy zlWgR_NQY9^mR+@oih>~E)9aV#?p{|i37b^2qIyZgcmn9KE1aVSQHFuR!3*yOjvTQB zf>r^^1OQ@=G))97ra3!9iLV(mprdcYk+$Q*kU9YLs3dS;v()73Qer7z%A>j))$POa z$Y_5Ao!wv4;e#0fsR@v^{(`=~{q|c>iomVH=R0{t%=boR1ynv}XJ^6YLO~1WDI`pQ zOt!ZCeK#=)Z2j@aAA=Q#oYW>caIgzZaOB95{{DVbeQPHNaA(6Jn3=d$sQ>cqwjtPDJl8XWoUVs!tQ~B4x4^22he`!s7IuV?1 z*70KG+UBOsztRYDo7dD1VP5D8&5cb9?0^N>z-^9FR)kI-A_13E~$y%#* zeq+a-nzlKmg-DFr8fty!@fZnNml^y!U7t`r{E?X+28DkZK zUN|PA)hLB0B1&k2iF6l9f-xB+a@R@rhK_`e9M`G_PSjo7*pu9Wp==&v%Phc#DFY;A zGBDOeus6{g(GKxn$igKObN6n|+`cL$mqfWLsAyP%913sa9SUb}*xjz)fuU2U<42Dw zzJS7s=#+!OMzg5|kmyi{HXL1j-g^s^7#@KkQGpZA6$?u%D^SG4xyJ&&iSYra)4n_N z%B$UTBq$aZ7C_Vb-~ao6BT0gycC^iS2{h7_*kTgEuaev#Y9IAFTzBM5kU2qy0IoPH zOtvsXuxpqEmIXl#)$KQL-UR&GrB zI^yeziC!PnZII#u4GdWkN!IE$wNkEU(@-4FWK)HFwuqmFLZw))SE`DP>C-9-q7wx` zM5K%8DIt5J*Aozo+BQgZgv!iLezxK>ucKSGZO_$fyyLdJP2&>!ID}?`DmD}cx_%Y& zix2M4-nv#&qtMxiQ^|_oAIL~M1a-mG`m;a#vv0on z21OnCWRq8bI|!Tr4c~Y?J~%iyIy#Da2UI;kMC-tT1Na?czwn|VrG;)Jh*v>q3yTF) z4c^QluqEhQI3Mif@ZrPAmTaLbzH3^*Pziv!|HFUy4>xYy*u1S_FCequ{_WrXSO4l? z!4|-Lo3Ws|%}!bXNxuC2{F9GAp84X7-0TeMr1ajyWbp)BnnT5i8uUjd4)eCY| z;nR)NT)%hHSmv=z3%sBOXjzF~T0ox>=0E6e1X~-(n5Mn4Y&Lkyq!keOkm%uy4G|_I z>}otjh=G#M7_=sy5tKSYqSWW6`)=`&4e0O*M9x4R3w`8>8? zUF-LDhA5pyC_{!ssL=(YVUama5|z4^P9?70n*Hp{#^Q=c)6kg&-&4?;gy$S%2loHU zPuyesWskd{T5?r6mo4YgrEDg@lF4NY#e6nbtJcV5q-u6iV7&Hlx@Xw=E?Nbci*KR-)|HXcCBW&f%m6LR-wi@%YxGp?LBz<%)rD^M?5aM zpt+BFc+xi&J0kznA5$asMu*Sp=VE>Le#fSSsyYTtf7pG?CY!+d> zKmPyy_6P5uIrMrd0>dRnRs`kjfAv>?h3XNsKHLmiz=V%TJ#YxX29$j93m^xO33{|c zs}|leNLH-;gS9TfQQ(J@&amk;Fb`N^c%f2-;h*PnmvEFn_=7+A!$15(z@9CnZ|x2y z!PTNr=D+-x|MK7d+kZoHYBT0;P79c>&z(DmMkT-YYrh73w)dusxB84UMJX;XJ^k#{ zsgFO-&&;+160Dx8%_gCQJrs-`JsLlAf*yfM2iAdK6ET9H~5O+v4#iwCXOFCd&V=+ ztGS)%R*Y(P!q*~6Q$`b|lLng+=wiF-*=Gjq2r0DLbXPHnjYe6l$#nMXE8kwbeHSJD z5ug9Je|YZqfAyW9&-1#7ZvhX0Lj*Je{il2P?jirWv4@QN1+N&vdgMbuAVP0(q(lHn zP;?C_f`keF+T?5LK`XW@P~~6Hlu)38yayOrz$Cyz4<9~+1TgAG09Q8XcCt;FWOuk* zV5Hr>d-t#Z`mfRR1;4MFCSWy2dTS2{wme5V-vR}~^uQ!rUiJT`%vrl|9nkbBEH6%7 z{PM|XpX8oRqokz0J`{mG85t6vCvy1E=sV}#BO^7p3wqZYirP_KrvsAJ5g0uH%rFVN zCPOyM_{iXQ84=^==WQ&KHC(QydD;*7nq_x);TD^R+&dQNk}hw@Bu!{SoD8hgP~Ju) zk%bj0WY?Ey-SzLxVzh8XtEOwir-OaH%OWvNgvz=9zyZnasB^Ss2@xBxA|K*(*?oR5 z*mSX;XuLNX4*NqvL^K_Mjij9-*c1)$UIBON#d0ZM%xChMh2@3C<&`9AP*8~i_JoWY zc z8iB;t{rmR;6*d4QjH3l?aN)uQ#OQzbcYhZ@@jHBDd>D;JS%!qc5;)cEFR*%9vk~-Y z2Ym~9SakmbszJ5(@#Duq@j{^p{)D6BlmK1UrcHo((8nAv9Ayjr@Lj+pxHc5;fAPf^ zsM|MT~!dUMGgg>uu;+Oi1iMfJjM6NYYqXz%nBN86D_U=U<@UnUboNZae#4R=K)cWjsZ%M6;#Hf8K#uV6c!c|3rmS)x{v|) zt5}j{ER?vvBp1T^R8aqt)d!HbF<~-|H6yQO+;`*dZw@Q&*6=ou+hzflz@)0wXtyr& z8su6Rr*2(ad~{#RrLA%evTq1OU^u{?tXp||IM#RY#MtR~{KKP)%b_?#g=1pB`UF71 z4O?8>0tp5t>0EQWP8OXH$`0Qwilc}a9*~C>{I$|bGF2*;HPzyP9Spx^s*MTU=J|gzJ2>ptOI*(VR_Aqjv;e~hfzcFj(7il+2ui*I{*p#I}t!aR(1kN^bjuH zX9plLKA~=azRtGh#kROkTc~ywa%t_N`+~e%5gv04nHG3a3pC+38{@{CGOdh#>Dw5e zkVlKTs?_Odtx|0isgAu-Frq(&?b*sM=i27NbUL~EQJPO;+cVaA=Ii;$FKU?W*uKNq zteynZ7Ipfeql_7eh#KX~=|@v5_wVzSqNsw|4`+~roRKWL+yg^>Cr)UQU|ryWMTm|w z#JUKJuC3<7)(|)gLYW|0pc`f|-~}>?#Upq}W9SRD_7wp?;PFCb>rejVPf%rz49R+cgpsvIMn-=0qaXd=@BJQf zBS()O1wH{30kn9PYh(}wJHh_phXdiTg7{!Ch!4T?!mBC#_2ys_3>R1&i^Ii#6jtSw9%ZRL#d*6a(k#8M(LbMfNLr=O*s zJgHSHbZ$fHg8&l6!qosve7?w$LxUIIaUVD&`vRz|(@1+JXzs&Ci*;4#)uuf@u#Hzr~_hu|%z;Qg z9Sr)TQB=4CmiYZae<0{XRSEe2$eF;~1n@!l5(JfU8SR#9$rSi1xnwGr1ff2gFO|x5 zNdoxbIno`I78em=B_`L^92z=psNOav;_+Gz@Z_D}7CtGXqYMra(bI%?>y>S&i zNi4NGr$AzX$S`0u$qh~sz2VV=Bd52D{JORo2zgW zn&_Xbfgn4MNf=h5Pmc~u$bVExtrSZ6OreC{iB>KY^oP6{c00ibly5_o2FN{N+2Qh;}RT!D}uWvnP&McTyY^Mct0T`p`dp^{f=Kzz7bQ;X$Vp;*qQ z2`pJ!POKzSc{FP%Rv^5_aSlOnAPhuAnn+<00jS0>=oYOp6D2$FbiTqN$Rmv~gQjp& zxw7)kYiK0P8LBP^WbQXA3aJhO0hK`?z9X`xO!k{Ohh6Ll6jyFSrqJ=Q@ z<2i+^MtUPYlwG}o$+z*V@bb|* z9AzXR5TT-BgC-<^AIOUQ{lEYBf9tn?3%?*Jk7?#raw8jG6_5!?NvIe>ssITSOhGtR z=yZX~1(w&FP)~yEK}A0#1#aECwYDt@EQ^bO|NZv?0RhX9Q9+~kL?Y3ZzJ-mUL56A` z6!C1|E!oCl`1~OgH`udMeID7j*+)@~8 zPUpku2?@G#QGn83S=^T6W%4*2&m&srayrli(;x7MsXTBz-V+K113|yn8xTb|98HDv zd$%Yux}8*!DoG`?NxTyoBu_G#LN;3hvkQ{Y=;m#MtcVR%77`dD2utt0$ohBdtg_eU ze!NX5+Em*k%4{fPYA8}_Y4*<5#fNvKY{n+bxSax$bQ)*XI0bEOLXqK9r}~Z^wfDwk z(GIALCAuR8)_m4mTunxU(nn=GGn#$YdhI1lVw^9$Xkd8`8t8NLiFCFqDFVmahkAp< z@qk0zM)&=thav7M_?Mr2@(KF&O-@d3&>MpRl7IA%{t-N6u&UttZh3lS?Nu-~7Y+?T zf`%jjC)ft^#K1zRV0rCp+)+S+{x85Ji;IhEu^{Y=YexGKB%}aNFc+hV{dzYE@CHB) zWhWqUZJ|2yOAoBK?ThF`Qck7kE?;@_^AA%G9>{t<7Qq-mC8Se3$6KK1aPYwJxig^y z`&AFCArUkZtZhw;j5WX}x3%%QH9i#kV7<+o)Pv>*Z`*A#uh+D|<}A>{9c!PaRj$Y8 zcKBv()h%~mT%jIhh61mO7In6KA@}fcesaoI1}0J9ETYatMhg+I$2T$@Id~AYs5OXa zFtRO)lB$RhtH+jM_~!ZWC4H#5|t(;Ugnw zPJ0IjKrE50=(yRj__h{ZU5u?Gq-W5gI;hlSYG`h?M==R)z@%v_iR?>rQoUp08EGr2(r8n4}I}tzaO0@SuNe4Dudu z2a!CXj2R;YL-%DAn6R)+%hxm5@p|^831ny!L{MKXa0xixhRPEpPr&R#D*|YC^`I<1 z8VUsbZl@C!^Q`6-_U}%1)tXHlB|;4HC2YCq#jZe z!x(?fl7qM4_Pz#}sAF0XqfxS1D;J(Unz`|9Zf?q2Edrvz`zEYBWKgW4=5Ph}jqZQv zd|+f0;6#QB9BF03ZgC4;>%F`>hF>%6M+U>Hl~@1rIzhi(UUXTNyDlDK%@?bSOPNYt zsVnF~AnqRyM}wZdM&DvuTR;E#&mp(90c#7sE@(l&@f*JZKmw0upq@}#((b~pEJTEMix zE?a=4fl*uz))r*9L``*|%6xWi?)r^JChgEvn}#-rXklor3!I3qBS(+9h6X|6LYr&? zK-y2f4U^E1JAA*+X^eH1VKTl14zVgc+Pb=d>Hr(x;024z&3nC0f4~h`5{U%Dkw7RM zKoe)X6KcXpePE6T@MzTPXlw#(Qpx5}5T8QL$>QR2I+HJ#tK}+zF5q*aDjozhCeo&# zbUT{ratl_;B6O{*R~GMH*K#RAk$93MfyqV9 z3Y}lOySI1W*|V{O2SJF3^p>W9Ye@27tJYtgIk+Y%M(>p|Cf5sDthu4Pe}`$KSejOZ z_Jq2$LNw`W3Tj%pv4OxqPf!&07JUmP3`mmv#b5jd`n9iZ*2l&Rt_QrSU-*SzK)fD# ziQN^OWu7@)bdb1!Oz;c-xrOfcj#m7jk3DME(I>JiVGdV?wj=-;xJZ@>0yG4b3+yc1 zgRajqlF$G-ES+O`+}-=_W7}wKv(Y5!#5Nl>jh!^MZ8o-TTa9howv#i@|99TbySetY z_xHwHpQVVSSHAUdJJt0var6@mgyCMQ&S%@5{Qwjy%l}iB2rx$jB)e)$?U(5lTROIU z&BKFXzflsZtedl(?{S|T#HUx!)@Q3&7b?V*FWX2Eg{b#?K+Fm?A&q%}#K39c8b6E8zmCGFPN2Yu4{)eS$k6MEM8}Z}$`?GNHcWy2weXVV$Ixs|v zfPAWj+m{A03gmi1D9cv4uBRdnM@rMPH-fV{=i+$1Rd8|^*v$;^V zkR@PXv0EeQ`?9VDJkx)Ln^wLTC!+>$?3B2G&~^LIpzUm?*VP;DWVg%Xc@T$$g6uug zeJFF{x18K8>hBGnt#z@If~lG9U#_?9XD(guhpQS}I^E76z5NpPh%&T4;;_|X)#RZO z0x~$!>1L*Tl;SPJsm&GL$))hh3sTB#aIz8rS?AcdGd1zO1+1o)_tU2F!y zg4{k~5_;&}~DZ<5x7h#R?%GrDeSY6=>pZc|ZILp-;*TrMtd z=62R|LrC7f3=(o@y>Dz)uD38BI3)5+NWy0X;i`pbVnSc_OdqG-&4gh_0VOp+6h5k4 zl>}-zt18Q11uM5}It|>Ko$a6I6l$@ZhJZU+S?l%I30rA*v5=A3 z#=nycL0e2v>&+I}yzYhE`FJDL`;pck|Ie}fw!OSn`=S*xT=c#Vlj{Osm4HIt`aIfu zQa;qAoGmjx&6NOcC=xNTFXCI748NcP*aK6XT?fnN(iZMTn0TI2%u;`TR0pl5E8%@0 zm0H!vwR4kYo^08T5d8Es6vPHL|;7ze>#-O9TbW zCF68#<4k=zx2Gu748Aj>Z%uCeX3io?Y-%hu=%8X8ols|=W^UKC+sR;X5$xPPd$HBY zV<(zmlY)6wt8@V;8RrHwN>nL_A2bV%fqs$~aVgON1uB;eW*nQ7Vkp20VR?ez+fc!fgln= z&ldHcuI*Nj>X*qTlD9I=wgMl=`TJ4nT2(y^$dYC^ntrt~+Sb^F^ip7wFhla0#60Z1 zZ;;`nv_J}1?VKN>ipWw7+#KCZik>ou5z&q1^sfa9o;2@);J ztHp=YVk?*`if`t4Az{D6GV@KX2-w(CB5{IE!RdKQ{Ju%UG<71ku2wHw9;W3^7_}sl z=sdEjha`4lje@}Vn^9Eg*`e>ycHtMxy@?C3vwNRU#l+nNJWYC-PG$UXdp`E-jr+7y zSU$J`bM|cr3XV9@@piYlxeOT6uw8%IJ!1f=!aLkQJ}UtUG1N!u7%v2~4C*s|Yu{(_ zl1tKkc?0j!QZJ-3GF3OshVgcg;Y7Y9+t$vg*ba3*A@Y+6B9>$3INQY<)uc;HM?mnz zDB-Ncu<37DHuZrBn0j_k10GK#a7ai9dfjS{n!eKJoUsrX0^m#I_6^GRNYAGm;o623 zUPetcw|d*>E~YA@g*965f(rb^m~QiKrKLJ2C!TfGm6vm!0GiP8q9QWj*G2Od2(?g% z5(f}wkcuVqvqiG2Yh*0lXuFPzX%|U>f~J&o^yPrnS;j^YUcg1rdV9Qpbg24>WXq%g z?{lYsXs+nQqg1f_ReNN`)xPPqkzV8zH7Q+ewbA}|Kc|qeWLuK@tvH_gB9U2^fMbET zDj2Y|#qIuR$7F+V(wP%6vg95G6XRA^1ii_KShLHE z?6jw)CS2O0N~>iw9~t}i{1`27o7++Jx{V0DTMSLAO`l2Tp%rH)vsXUNB4KvnC*LM> zWf#oybSmy_55X+~=}$6oBN3^vjoyHj**QqE_?dhO)J#6F`}ZJ~qsiL14kVmXLvvjv`|Jl!4qFII<(8xqOY8?CM{hs{eQ>#f`ZFOKFmWJwJ3Mw~IC*x$)j zONyH9uVZ=u;{d)g^4z0P&L9@O&?%6 z!zBR6pFsb$#3tkc1PEFtaH0V7N1M^o=7w;DtMFG&sA5Iufr6%QsXmKqe=OSgm0#cY z5l??m2>V|mr0dCRqdT>sl3KxdE!Tp(h}Xw|A?X^3Wb^cW)esJ_NjH>* zzw2}1K*0U-jo#MIM>ED6+pX<^fnJs3=+39jm#6Np$rl&-Tm)mgf+a$`8 zF7Pa?(=H8eI$#@8X{Cz1;T#FQBE&G#)vJEgoh9R?DXU*zA0xI=-=%=PP5O2BR^O(< z*RKZ5rbml0^d3%hDEb?(|2K7w0=Q0y9y!*Qo;|IYgyu?d&j1$`kI}}{+kRM7!Iziy z#_}X1X%PzMa%h1ts!6TA3gh%jM!4bF$P57P5BGT(p#L-}i$6n85wEUXJkt+3oU?zH zOrLFGKyimI&wvYCy|n*M(PILF50eDm*FtU-r-i^sQz$0S*ojg`zmZ2&f`=CBy{rcl z$`>cN^4j64{Di>sXFFZ0#MM%+KI?(3-|+AC~a)zzP$d!#~f-N z9?o?aP=gnifO*y7a+rCQ3HaJ9-7}4jBq4YV;#cn_|9(1X!J9gjFY%a=`m%{DHqCx4AFuuSPSLu} zinU&_w=tpq&Rc3c>s$&$X8~r&SRTFzEE^>XMPAwhecy1bYWY|U@#fd_(NvWlT~Wd@Vg*{MkY!Y}I@z0LeIiu4VUEl3 z`H3Iq(8Wv%{i=|DqcRGEbxWhSx)Czt3WJ7qR>*$`Rs_A+>`QD3qQPk{N*l{7Pe(^j zzbf&9!_(&_o?MIeb2Y0RY)2;uYPn0AWGW*1;iQN5b&Lx9t_d`!>+Pjd?xS3Y%D$IN z3<_f>*JA5)t6y`ASqiI52nhMFllgO*xp%Y$xVd~%$mH`e`r3(m21c4W3%Se8AsmcK z^8o}v*$+4K%}chwIy^6Slg^T>HrwnU7C%B%5XVwI;dga1tQsvd@_$qO%xAu2Ypscr zomN-93&zcJ^yh4HpY`U!S;$?aclMP=)&zUxFMVv zEZT;@M+Y&r5QCi~WkyPhW;Oo5JCs|kPp>sL`0*%aauA{H;$jsY#vD!Zqwi8TOnbaU z-#XWc3PV$}prZ2jcSwuN)uwxhE7R4uO*Uttm7032&iiq`>6RXy@oWwS1KJZX-PsXp zkJpi?l<(a0m*@3)>ZYMYqi;7e9~KIc(ai6^qq7{7i-#EZ?ffF=O^p+K>HoE#ubRHY zD|tDc>WpOz^wk#pN}W_6WRlWQTCL2A;(Y|7f}wi~jeoesc>pv*V$#1$Vx&FN8@$cQ z5~vlyKNffPJH1V5PYLm&GkF}2JxDS>K3OupK2f(?uQyM^_F!RyVIksjj%)Ij3v?tB*oonKepqqLv8y6!iYlB@JOJRe3I*Pck^rdSH=gWL;I?l^;d(;pTac(Oa%*N!j1 zDbHV#0mtwN1xb=l05pBx9{@L>n-jxIB)?R?vNfSRm~Azo;k_WB!q)b)5GaS*4z{8r zfEDJX#v>h9-G7Kv4(p;tp);*1D1EqJ710c$d(_VFHokzb-O~ z5lBt#cuaeAw;+s8wO&z7n&BxM&5wGpQPWS-TOCL-s3W32EuTrKnlZ9(atPv-csy?`5N_#o z+2712*>-n&Uv2KCrWRsjWhI`0Jca|vCto3o$-$85L10>|Ko7G9wRFz4B|^EK)UB@I zhXa0P7np;VQ2N8n``xp`GqZ2bkV^T|WaMFgf+j016(BkxHT}7G8>Fd-+Glj?EJxz20EgAUv)5|oQ z{}Hq(68p>OxiZeEeY1>e+1l2gD2wsexXICgP`SD`#l5Tqz!Jsac zi+!eg8fSnZXXn1_m0vvdkS!Qe)cd_%2K}729+EUJ>=%RVm-J4BYoBiNzb8 zuLPr`72n}So6EVsJUxr}w*15Wc7Mi&Ipbsd?W*hPG6*C^`^MMMUCna&;9k?JTAds| zsKeae(D3{`6F>+`3vRW4NS9ga>U4j4>>MdQ2})8e3T-nKi&MqkM&4CAel|OBn^g!9 z?l3`iE|2iE)ODT10JCQH2C$QE%K|$ksgoh+C_BlgnUfKWO056#@gR1nIRQHR1L7cI z2Q+1IT=Cgqpk7YRG5DC(&Cll=8!4C;0)e^`N0ySG22%vs%ffF&)l;b0RK;V^YBuwH z6O4rsNgJwLeIh}}yswlt)9pmPE`i%hHP>ACl;+v!&A16Y?Lo9S@sth@pmYvmE=AFr+Ube5ihp@$KA-$9WILoPBN3ejEKGrG!D3c zUovkl_3De6WyS_dFTOL>Z1MQDjBtg?PLwjh`8hQ!kjndS~S-*5L zGSXU~^bx$|nSDIo&TMUTTHTK>14@Gm9iv)i3mTcVGD*+H*52d(sUtR*%Z(&J)T#^VnXj&^{wOyY6eyQu&6{gPsnB{uvn$J zzkA~UV9i@U0axeVLaW<77<2W8If4>q9t@hVZPVrYQ|O z4KVK2fp5;h(kij}cBeyt-TK8KWr<*j=v5RU_oAf?1RRf`U{@+Rv5~4>hp+z*R^)`S*`k?iQ770WQY@6>varOjA$lF@oMaRfI5+68%YzcuXHw43?{lZ?* z)t~!0NAo66jH@(1DWX{DH{QNF9@()-%?jcY`TkdsoN0sE5X0|{g)7rrF3^7y?OQKq z!47iHAzguXp@q{3E#1P{vSYz`&6V-1^$yKoxX-`gnpD#3#N$m3WuOT{YHZP!`arVx(eEm_u|Sk^R;Ad7UoP-2Hm^ zTFAhCDVUOx`Agn3qTq<@Svm(+1RaUI#hpalU)D@SJU-e$^FYpmYzPeAvRqz8ls=q0 z*TH1z)IzY6|D~j+MZbK3=jUOrLGXZ@h$3O$!cG+O6^JD>jtz%-NcyMV{7<{m(&yiP z37ecQbmKuJrfZ99u1ap1(*Qe>w?8taZ2{dB|E+rAr(GI zUbYt3rODy~ehqpHMm|43tJKKLZNO|WM&*09wH7pLTk$X1v<4|?>OqXsH9M7GmjqG* zDU{e*lj9%n^+8iz^el|@b)uS@uLM1QX;f=Ok6o@;rId!?eMcdDVt-vA0>UN=EG~jah=e;$G!c)-&OTrZ@V5DO#M0sLx;#SBZy3-k*>edo zwxnD-rq-%dLMt=E-!sg;wfVlg+nnv=b#U95{zNP{G0s9$U+DR>Ovq-Gp390{FJTO+u%mel2hjNoLYK}M8J0Q&GF=Q~K3tJu|EPG*VeYTRAhk>ZfTomT zmyrwh==#N79Ohq)8@X5bg!~v!T)!b+ivI|+7SOSfhtAvjN+~AB(DIj6Y{jdGO`z9CO>ubYpdH4xXjZoo@fg|J zp_QV>z~0Xtnd1Mk_0_8pkXCH7iHXFc-%wJ6_`4Y$^}@XeWE6q8xJ#YtO8MG7yPd_L zM`g<`&A=vFF^*2K&VcYs%EIIH37N{odE5J540*8@c1>jy85Mx$dRBB?7@nB7PUhQH z7Hm}iPg~c$ZsjU?9`Y8xnG4X-9iioI0y$!B~mK z((jQ|ltIg-St8K<#nLIwg&f)K8qIw@OP{o7g~v0LplC2jhgxGbr^{1&3QNdg;A}?0 zHUJYW1nzI+q9el(Q zTcV#ah`>d0a9sKcmq@LIY-DmuLHGT2q_A3L%psn>K2KUTc-n@N%SiH@z|Cg91lil! z@r7DORoevhoEmrzR5N6W5oV9Q8j%Ob^_f(u{Tjk92h=VDEXp-%4@i^>yEVl`UX@-gAAdSiwRZ8R!;LUS#&7 z%#_45IbOZ)!Q*zZsOuYVTfNb7ztL!GyWaKoJTlL5Z$7SZO5gT}7R|uCBs@5Jy)6sB zz4?MKim01V3$pxgA`=06br&I#D|;t++UB$s&LDX*JEFoIqQcoiMxL4)gLt~wp>;f| zs#OMBQ24J1T#Kc5 z_(DjBS%maD8D|`?^EuwOp+-HJyYL>Oz(yR=ntXew(%YgcRdWN+%Y+6hi&tyIeMO0y zF^WL=h_uY@P)1`kv6dOY(JGJR@70;cIZEm1(8)SnW;fomq(h+?XOnlZP#+EtF^tKB4k5P!`ZSHv8h+t9-DUk5JO@_H_0bB_D z`-Z3=qoQCa$mB&^1JxlxXmY&~qast&t92i{m$j>|_g9Qfjq0toFSFZ~bz%B!mb{B^ z=;s#Gb*}2LQ)O*Y9P>i@Dm<=Ek!L|yA5A`fJ+$$3WR7NFEUj5ng{G#`seyUwoaso< z<%&RMTsQ6MEthM3JCKkyc{+uR+Jv+BVgHVs@1<(&TyJ!$Gx5M&05_qU!u^kTHemZn zShZEXy4Yc`P_#))w|U^b5T#{>g-j1s7Q(1b&kyj8-mdw2RaU9rB<3~Es#zCwP;~Q7 zHK&hNFLXJGoHi0JkGK{}VcJ1$Bp|*Yx?`ty%S1^TERO&6o%_?<_tx(K$24R$CPpTK zm(#Hj+#kQRT(y+xF^We;Kfn0~CbE^q7R3ZZ4uRZtB#o$#3^vJq0rV5O9GVGr#+)7G zya^^Zq0DZ!SgBTUPk>vRiGg8vM7N>UIuU1fR723-9#oWQ@fVX%rdA##sF%uHu1k#& z!Q1AKrWi^0LD+`S)>Qt6bXtgAD#RX7%&uPyy(raxT(Zd|e+<1@y0u+;FhjqT7!Kc` zuGQ4MiIA)L83%-@AKR%B%ioMsas=S>I(vS-APxyWZ@;5@Urz$AGWZ-_8CNl}F1WD$ zb27&`2y}Xk8@y@$92`TEtw(i&uO$s#MQ2hv&qHTRnD@?nhU5w;xtih( zE$mgO1S*m#QO04c)Sy)Qz~AK_+6T{!VCD`vTnfl9v`o}>v!*WV52ytl>8?gBn4Ur^ zE(gbek3t3yIL;y>UFJ^2F)8FfT&)quO2?s(;J(#NfQusjjGC9Lgv3_X54>=3(yE8^ zi0UlQS1EgwGWBvaWTtZHk5#Hka`e%^`Z1ygAt=GoL_5LmRLwGnARUpoZ(*XGZkysS z@6>UDGZuq)dAXZ!nswrtCIKsXye>9qzUy~~+zQj6L-ku4hY+2YELDprwGcE{p<3+S zK)c^Q&l@{?M9h#}P2#jX!9z3WyMsB^WI@|VTYoIE=BqaPNT5UntK<&+uILJ(Mw3_IqHaNUS;5@Ty|1&^{jQAPo=jb^C1#@DV@)8m+*BmY+Yu4kJ511emK6Fk>N= z#v1LZv$bU@sk0~Y=J(qPpICmiJDjX$GBjUqx$$#!rbr)-smc4D z#YiT#OLBK|=1m$+!m9aleuO5$W+X0<=Axw*>LE(mXQH&R#-#@T)c*NXsFK&)dC(u| z=jG*fJodTXL}@93m~Ttg>%SUbCCIGlo{*5BZwDThRvM2?%$)=le~?*a$>V;!-4kZm)$1KG6o3SefM-rxjPEtO$G(ALR5IcC6KpZ{ zbCI=li~sN0q`dFp%>R7`4G?LSI}^uB8q3V;$*-p%JW|e~+WSeuTLeM}5!wjKi8D{4 z1>11PF238kQS4P}ux{M6G7E@X`$EC+TPm9i)9MmT3^8lX z@9QfnxRcr5R~rtdQ{N=+5_aL`em`CR#$ZGhtewlQ0d}u%<c*jgqdgxV6AV=htHSF>Qb8f|h?f?k+6eKEVa44`7h-`clXwOb!q3WU z7w2Y-Edbbzr}=u}VJ(vdm0EgoVlD|LqMgHl0|h0j9ba2po2-bff5DUsx4yQv_K@Yr z)zr`cg=|0zw2dY5c)N5O!nO?8($Y)qbbL86{k5MZFOoJxrmb5i7g%N3kC0RuP75*x zJP+sUfyL*7Z(hLsMEp&YhG=W@BW--+VZ4+f-?8ke3O8nEk6^0vJ0R2A>k>Zo|GtaY z;@UYWHC$p=XLm+ zdB1-AK`|efvBgv(M`oH|rFNNc!Tf+2C*^TtlGwu`@Z+G>Ju@gHjPBmzeeMIH%&MI{|uYh;2a zC7q>^bObIx1%+x)s08WbwrJBz_;L2G-q~jPN^NQ3(w10IrRuc2UyL99GRl&bN}|uw z6lx4ZK2}~P{5Es1_%8U>`!Ta8q1!KlT#ftPz)0Q73E{VcmI}7zM6UW1*-2Sa*FpZ& zdhY+W1WnTrOff-fW4W9V?~7Wskz9Ll`g@Xrw*9%atrNRgyxkH`2-oC7#l1%ZV_ck; z>C5|-$A~xVF1}8o5{+R=M{rxxSk`%&|50Q=Y9V1C!81tRK=G+p-q#;b@|k>sT|Qge ziaxa8gj*5tw9WirnHpXS_Y+QD)}DxcJRTl3aI5pM_a3xSiTSg#eo7i4VmlfJMzg9x z84}6+(!fibCvjlp+_D#cj&6}TEsJX6!$I|zD~~cU8{y(s*b{vi)C6X4~^0;fD^_?#0=IU zt(N&~)Z~s3{?=y5yq+JPbp(cyn4CoP*V-Ql56^7v7%Ba;!NEb~S*#v1NJz*Mcz7rX zmJo;);#hikm;hZ%-yFeljPJCTD@^dG0v>xaW-alPjC!xmhxt==s5DaC24N> ziPPpN#Z=p2@d&<$5uZSp#ser=IIY6;d4Yb$_jEno!~)@amrpr%({@2L5{p zHLd-qNpp#k&CH?tChR-)n6N5i3)FHM%VJ+J2Zv~5>{fWQ2?a27)!<$k@++#+9`H!n zqU!;lSHxXY<8|-Lo6XYD9Kcz{3KB>jxo*Pcgg^Hj%C3yYH&z!XQ!89 zv)YV=vO=|^wYMSGR7cNXhq)!Eo7GJbQ6Ovdc?TW>)JIqB#9^$lHo2~r&dBI3b7G>E zj{5W|`v=6+CGv{n85{g4ui`3->}+EOWRuBHl#U$wYx@)^M95=p#VswCIS9OP=O|jU zUWJ6N1wqvtN>%ogR+;2t?@y)IUJ=L3+MM-ih_FiW%w}~rOX!I5B}`tPuB-FZp5xGo zBMs5-NO3!94;?&Jk-BW6~X{{QL;H5~nV!d!2~e}a9L;pE8(g<7qn?lAFRzfl^w zrgtal!~Li7SKU%YvI6%N9A)e8&SRIJ#4)N<28L34SW5LMp(6`SI~K&rO++0>DF$}C za(9-OUEi+Su7c?F_%ZozZZH`lljSS=Nc6>^K+WYfbVVtK(X=d;DZ zu`MsB69n(gHV+?n6T#GxfHp|8u*Yj(T1snweq=WlJq;JarV{7M)kvpRo6hZ7NzPG4 zk!i(!d+G#{wO#3zq8!WiNF=xt6G}VU(B93><>AonJBEzVjF_V4f4TUr(MyQL?+-+* zQvwbIg!=SYu?PJRJvvTuUmG7M#O9Iz=-hMllIgo7pq#LAM{sFmPCZ#{Z86~oU1OkSCO}5 z?Zk_9T+9J9XbWO7d{=w;ZjGz}rzpgMF=&ubnGva(+Hd^;J)pVX{sr6`nS-6o`r&?= znQ+9C!T0BN_}Oo#%P(cHag=37kG1PgWj zi$SY;GUqIG%HPb`626_d#xrr}jOC(HGd-|~_)L{nBl)sL_7T-qMd1|;LVejKWS^$? zjoeMW_AQNi&C@6tdNO^Yy9ZCiV`zXPycy3$EX*~KmH@3j$X7P*%JWmc$t+@G zKAhD%8I&X0vwv|R)JA~SP@bDhMr$K9`*aXbdCu6|09nTC{r>C@#i}^$8xc$Yvs!2r zN9V$_5i#<{g1Y^F6u2je7N`U)JY8!8HWDHSc0BZ9q1M%IQu~)8d6Lmu`}7 z5tY^JT0wB9y2vd5&pC){KWN9H_<@Pu$Li7r;mSno5_W@mAQe#{1BpT~70hjYWkK)O0kK2J%iZ|4#N0j^L06}z+NI0s2Q+i=lnf}h~btMY$ zRIStgdBCmF)#7?`yFmCvERd=zOC7NwtXnBEJ!;XMTa-afK7AAzpDbnSj`00~m~_H9 z^1LDSR?WfBQ1~U?P;urSEuM`2+0TFDcY}EB5ir3;u4{y$>y8YS5}&y(3zsFh>(a&fVjdu z2?{K|A$4mU0`Sm0Pg@7K)OKBty@US2}(!ES_Z9HW>`NjDsU_| z)hp5)t(gB@9M;GD&~Ejp))J1P!@$cy*i;Xym-bh40CeubzD@f4X!$Bxz$C@K8a6wl z@@3Q!^{)F%X-zh(hRQB%EjO6M6qtC|18x6Jnm2l*K;*|3Y;BLCx#*pc}sVp$a;3F{+xL7 z#!1pCBlFEe3i#FL61Ni>8q&z4MzgK&m1|TB!y!aTw-IB6LU+DR=bO5^KC3;80{#eS zdx7$ZD33QjlYL&2x4fQ+%Ep(n=*1yr-~VI$9ZhC>4xc6B1iJ)Gc42~HpEXV234WtNv&dRs)N2-_n@LJ#N4o6$ZRJ1p@c-X_K#v=d zlMOyXJpTx;dj7PuFewDJpfFIe{En6~caRb!>!lSGbRFhpF9T8pS}BCDuV6{xgKwlQ zb_S&w5&i>OzRVaJi;`hTmz7-pY0J>7hBXSe+?H>)05d-|bZE1$7EQglSl!%=i7ko42 z2yC7ihu)Q5%jOXsAOSJ=w<%x|YtBmUo1_zDh;&`%J03?7c?_7lZ;vH^>DXdDPToK4gTlsUlgIwEsYPvtm@JLv~O=J zhw10ekM|H?-|DQEp5?v`0~cJV$|`gG3>fNsm16nICH+6m=Uom%&}R*rAc@o2%9Nn| zW{1kikr9>&dm6M?A3 zI4k(GRC#dt2|+~@+y@`0oZAj8c$ubYuURTg|GDjgm6>ld7ZKu+H+nuDES#)(B*d5k z-m#+JZLTNA=Y8)#D(WVEpf4vJHTu3(Z1%}&089#$fb29P^lGoIHUd&JSUow|$Zh4C z%8w7X-G7x@f~deeG(D=^^ig%0puJP#WJ@F0`}fx69Z(uK{aQ|4P~dkr*R|Qbz>rn0 z>bkH>c=dbi=7a|mc6`)^58?MhAXB<6J!a4!AO?Kt8=( z>)l9a3r!)+7eUXQ5gH!_r2=G1lM@w{Ak0#H+)NJx$D`%1*1nJo_<%k;7E!nYUWs_WNT%+O(2GM6@3g2U!T|LalY+ zxlHBzP9Bd@Ac^D_#~;~0ucu&?C1$2|-7v>FL1E=!Qg7WifJ&~J;!XK<>o3etEs(`; z|3Ce~@*NIonncE;9j9uox|Ez;5wQY7VVUlXVo=Blddk45J#z+LTER0v%re86~NuZ#ubz+BRz^GTgZP3FjOL3YcD#*h zLUdM`dRBuLFjJ=QoJ0>s!w{xQo}?#b5`Q9#GLq0HygCO~hoH&LR6vQ37TWI;b?Okz z{ebI-cDBB+-q#QJfKD3e758|j&kToBzCF!@9>sS8QCVy@jVGZn!~X-jAMN&^mcFfg ze8I!@ci1HP+<{P1FS>e3U*lO|7RYKZDlOeX3>)gO#tNfxg)vFrVXTi4c(qh+AhG>9 z5QcfY_teB&rCkIaX@w>2Oie?xRK6+{gwF~O<=Kq$2rdV)Uy%&c`!Q+6?kjb7cc+U< z2VnhlK0qr7F3{0w^Le^CBAHrm&8ps4jQNR4fDrPi$F*QlDP%l$cAbxTS-Lj^3Com~ zW8^f910oaTU|KR_Pv_kxU-TWxf*DVg>r%#j+(3(>xeN*(3jI$JQd0}f8u8sDvZr25 z?oYmY_0jF$G|@I6%pw%JEa=x7_>SX05zMObzTWk(h2>yuK|PZ{njB-t(`$8cNSkZH zgNaHV#I^OysAb=>w`ol0&QUhc9C8Wwx@va}X;88SJy_5mwI#UZJ}OF)(!$329E66Yf^If$Ub&JQcf8sK1j3(?qMUd z6%C6B%)W?v&a9xY z_(J^_2{9pJ^hNTzAoNCKRGzcpmm|9|Nt4(pz$tco#a{a#1(nE5a+a_DmyvR-swK7) z&9)wyJBsmdKn!Kr(iuv~N1PccPE24QnNLs5uB#9h<QFU97eM5)%~OuzO$K(fp_MNGrgRF_q)2Ze|7~f9`;{wG;uP3g+}N*u9__A z32q=38N4_LrInuziORWhb~@?`j>^?e<|(zo6j^wxo06}4@9r#ni6OQMJv6@ILdShDeWwlWK;sTAf%+0Sr^nZ) zi)M6j!D4skV~FH)V|`()&3_=- zMv4w9A@Q3a5x9~FRRA7k59K*`?swslQ%(qtsZ1-E9@dvz{}mn=^jLJ@i>oZt*99cx+kf zIYk_%b<#{;Z_H&#-7reK-yy%W$s%CJsmTvwUf1pa2U$0xG<{t|%F2C~SU zI@@*+bv_N@#?fy7RiFI@($1ds?$s6aUVTN8WV~no;+Y}5x$=F*Da+}8IV9v62eAmG zmhvD|&=Q#v^}fzP_#$wbrn2SVS6le(6~BlQwr8MM-{yXN%zeFQe{t0Gx?|DtKLROK zNj({|5f-m80@*qi4G+o0?m%doEr&TBG962$EQC0k+P5cw@ZCq#jMX;%yX5o{1D;7|7bgaOU1+bd5Gu zHh@rV1C$;sT!*dy(~xXKGXk}j;|{S>(22rNtJMmNW3Im5iy2(50F=tN(W>xz@ktKI zG12eW$p%MLN$;2RurVR6krPSs)ql2X8r#F9^tKl}j*FNyXCLL14TK4!@dV)?4#V_u z{=Am%DWHRagMWKnB9l?3SHFER08Odvp$^~%h1rrpd`z`E#MRi?BP%=mZ_e#wJGT_w z7)Y;53M8Tlg4t77j&NM0m}ys}2TXFtTD#0R4FgOkA2az)5d*Q!g6;TMdm&FGz<*b)c>qG(JwVoq|K5AYql&SD-&<3m(5(^thJqd7-(!raGt)Jk zOJSg(Q->J7$&m+{aEvCFtk3@0I2wJJ*lG;m>2IrGLL{Vu0z%gljwX;mIOKnVLUw3shp0@DB& z9jl6=Bu!!iVlQIm9Z8H7%D09?0r^lR}kd}q14ta z_{jWzK8s*x*R32|l4|cto>w3`hOcu-U^DINo&aQV^iwuJ)j#*#{H<+Z9<-QROod{Z zCE%@TP|)nQaWST$0oN|=Cgmb)as1;yrG5M@%XBQ?Jb0_*L})~x1hT3t3N0CMX^@CkQ}w*e4;^$e=R z#I>H^787dnz&_`E;OZ`C0lo*GR2u9HWN>2!bOj9J%I*5e(l78ymqZj=z{tth1<5wS zbymq%DKe{}OF>H^%>eC&%%tE{lFd8eNx>P(#)bZ>{3f^NGtC`IybP8?0?z8Ktw6_i zWTpfTb22n!5nWj^Cr@IZvJaE%{9@$cLKAC`CxX+aP>ha`2e@1o%$+=xE&n0-Z~1$2 z^z`Pko%lH1a9x%HwFvd+Y%k`==WYaxVn-LThs9Dg4h5JdW}k)GQp>@6t!_6TjHI$c zF?ILz{YsKdP!hImh^TcSDN;j2qYPIS%%P5L$J4XuRT$>urr^q@s#`P!hL%%^EP|o+ zNi7-QOJh-m2{zG(LpfLV-t3wQ4=676HHTH!O-QJjQ>ki3CbO)< z_giSCTDSp)!1m$a{*6O>Gx?ZhTQrCr;#$9JT5EVInk0^w(m4RMJk^eyhsjHt`U1&S zXHma%1~ic#sN!(cP9fAMBB5E9b>w|9lYfK~V30^llGobtV1VFe{=*dL5KkHlocOkC z47^kGI*zF#!8fDF*}~mf0})|>=wCPSt)EJJLG%!STC=UNy&FS`OfX9MWJ=O3 z*zc%b2b97j{}|V$|1_hl?0!40O1&b$wsg4o;F2+qP{qwv#4}ZQHhO+qRuFR?`@b-I$G@^ZVb= z2iR}++H0>h$DHFDLlkN^kwDC7Bq;*})BVW(`zZ+B$#TcN>et5U+BMWFf4Pwre%1#r zV)Jt4QBCYk5_rV5#bVEB)XYwnGhN6lBB?_&2^ggfeCS>hkFbRhRsw|3;5})aS=`0f zMy6>_8M@W;BiS~!I*jNsc`o=iCJq4+?w|7Yne^!kR{-*O^uMS3@hpOT?8)LXA(2?$ z#|-jD7O3Kc<@EW6F0)b1jFXvwY3dIoh00YjF7R??&X{n*L=^|Sj=j{EQYs7X$g-U! zg$_YIj}K={j{+8+b;^H&4H<&Zbm$S=wl$vV-U2A)Av&Y-nX#Gm#aUsSDSdRMaN+!f z$;UyVuVcmzXr};@$r(kVf0rQBkFQ>yL8Ce)kqb^9Pm)FZI^f}E|6p;giToRNeAmB! zc#0h}F>s9Jq{ZYEVxq|ugid`=IK&^2kPO~*WhSFpnTP5`!uLJ@)&G|g@QtrXts2Dv zrcKenS`f8va=dKa!nX|i3TqcG%Unf#*Y#CO5|pM?O_UJ3z(X5l@W^&g(c>G#ogmYl zM>9m~y&W+ZK0GzqDZ~&Vg3pHL7_1F-2hAf=B}0Q2`6&4Yy}y|6NP^+$^9==V)`H;W5y;&Pups&OSO%2zph)QSzm&Op|J1eD%VOz4f8W8US69_WL8~E z$jUqauW)BqZAai__0~4ipA0=-fv6hQ6PRa&?73-Jj*%I1m*LHqAWKJIAmX-1acSt| z8;G3vxk%ol+6TCi8&+={Hq!0c0KzAz5KU_?Q(?(1C~t~HMPsZ z>(5WUUSV~rz(Y_$DEN6Cvp)=BkoH$rEYO=*wzD>OBM>6iFk#etK9_*UBm5$co=HOt zg(F^Si839}N)(YR3pe?sh9o*l#{HHmC*nT@gkc4vFlf9R9h?oZQ-`F`q9sZSS+<28 z=nY@_tAtMm?pV8nnxp@ZkYIhc9*v`vdLZc8fA-(5JsSdL9yVeXyOi@r+q%(#mJ5UU zcpPrEy%SMn*N(83p8NMDmlP|jfAHhcD4A%WTCzRS4qBX&Yg6gkM5}U{Q-7eH9UWop zRJkIJQL86Ln>G#vMh5!PZWYxwuMBTbrQn=cafn-`g}28p<+FR`bRo$12EM0aBHDJB zrD1CQAXPwl=t>~QaZD*Lw42u^g9$di)akIV3$#s0lskxeQk(;sJbZ z1shZgT(Wadx=CHD8O_2jyzIjs44zUNLL)6@@Rd!*XlYDv_%{aS>tSDFE0YIKukSmS z6u&niXX`yF(4L@t6+3cHpaKz9-HQ{OJ%LeJ(`CN(f!-mebcoIxRB7}WQ>qG93veoG zCM8O+?(mXa;?}1_r-dd1oCguMb`CxrW$HUSoZ8nRve!h5n2nl6;py@gvSuh3roc)< z!ixkzAOAu*3aN9c?5+Svi*o$-59`7W6#-i0kLblSAx}+)w`BXBT*L1IzzrzNIpGUD z%?t>1t+S7)WrK6|-^2C?FRiK*xOjXH)5Y0X*d6@ z1;CO)5cS_<^F(^@G_3q(zfB`%Ue9yIL}l$86BVVqjAd zr)D&&LsWzz=6Idy)RCmqZYbECVcdK&95z=R2C?-)^N&jqI(FduUqxNn=8)f~wd&G| zg*3x`v`KB1TynT{@*yJ;{*S9-)QYQqpVgqYT2Vs>FH+yKhjGGRH+ZO+vzwB9D&Si;U>8=EdVO%Qcq_=*+K~C>EiTP z=Xh*4dc}y^Z00oN531xmw`IPT%$K{I>1QIv6`QG`q8FjJy6cZ$K2my$Z%DZ)hSbLY zzOMd!^nh;hbsBGhJa0W9a1Hb4*nn_KA2)esf0K~`QOa(X_{!OzueX2%V>AH?J>-!7 zvw)X~fES;EXCGlte#a0eU~Axe!`I`$=WD?iFPvUC5h|3}*PX%V^nbMiZQ;pW?k{%& zsJ+zv{a;HB{l0h0)b#fWW!meKY!tcQkD(e7Y(;}wmPPwdN26{%{CA1)s(WBbl02LB zxgPn~m}ei+2U@Xz+1<5*u)s26Svmg|U^g3DV0-u&J5kkRDhy^IyXpJc{P|LXuH}Wo z+cX)yDw@~x%jdzstxkNC7-xpgek~|n`tQ|Ud%mNbu7QDFlX>zdjxg%!NF)|+wmG;I zydT|N*Vf%HwgSB_9M3s3>;-Cl$DY4T)Wkr~U~pz_*5E)iIKVf1 zWU^Duep>uk^}T~^=~&dU;&90f|1>)}_ZIlUc05DmzrKv1$wAUQ<^Z>|P5M>)-!-yp z7oU?bQp&o3duFpi_ zrXwBm{Pr;U!z}lo_y5)*BR##FOd!+Q*m$4#>ma~)e-t+L3@rU}5FQp+SShf~S8za| zI$M~;@p6qd_m@pJP|Qi!-^%OXg+uwkI~hMaNT$f z(ZzC66lXs(r!bUJ5~fm&tKy%cajF+C$xOv+?^_K7FyTucw|?qWVBl>SJ1paHI%hl- zPa?nn32%peHHPKjO^qepJ9OE6MjjXa%qw(2Jz|arN#$SSp^K|7T0@r*-a$O*)v}3P z>)?&8S>rK}ALNo-zcz9*Mk#pGUSGYW!64IXGbnC(nuDjc%VUa{)ozkc58 zoPW2knr!#9_*;)$GYAfo!qRDq5mUCfp_;x+d^Y4%%zUbLeHsaR^mcTOYtZdSg_Vq(tQCh6Xe3TmRL z$IxM;fz5+MiG2vRZ39n(BWtK@Ys6*RBQ>n-;fcc1`!ZQngvRVpLF(SXaB7IN$%)@K zu50qBQHy@JkItd`|LXB76V0S8k!5ife~!pz$#bPm{icL6WW@rRGNb>>i+Oa`I$k8b zik6^tzFerMfz=1Th1{DbtI)*xTaowfW3yU1wkNWDzTeM_$ObdVb>A`)2r);=uw~6y z6!<|S>9S>AT8l@FfKOquOoA?~?#W=|@+pcHizBGiT~Awv%DzAj=bPQ3{{DWw-Zo}F zHZW<~$-|j6IVHh2o^OwubsE5al0_tWHi6I?O8kabh`kUPNv2%H*uNo~{Qw}+2T$?X zEDh9;L_|}Te5-l@tR8ww@2MV3$A8zOUB)J`JPK6(@Z_R06*}qyK^dW(!!k4nNGejO zE4UT>4t^dsG@{Lh&OSP&f6|$tLAMLdz`D*^w+!p4)}6}&TgVkuD7xQV5Q+r7t0zF{ z?W9W3nHe#74)uErN;A3Gg&$aW*c_ML(3J%Q^e zl~5hgqz!Q7cfS9JY7rwx8(Lb$u&^PvJ{ah8&-y7(s6_7geaWyAo)4h(&|!pgrg z{|SQ>fdGrflgM_OJz})Y3PRp2){LIH+LI1%&YbmaaaD%XQ!jxcO!Gix*~7t`b(^g` zgt!QNkia?_hrs7VQAo+j{OeE23+aSN_n7VYsL1n+ltZAuu%JP>GEAt@L+8xK66-w$ zvq#K~!~c$8Nv%NjQ8ITi>5ni`<2xgBZ`H(_1wPfGLefdAoY@Qbglpv3*a^i}|K^v6nr7|(?G7! zP-%#61>J_U>t7pE>AEa^|3*I_D=a#I#2+a_({oKo{cbIzKj{TrBPLL45K4G+VD z{reToB`PE}iR`MfclB>tqPV|WfA!fUNl*X$8(`ldP$Os5gn4iFKf6v4_b&+B^cF3S z9Mz1asI3&K$0J^yK3l7a&|+jZKI6F{;g<#Q)!o8&6ot1x#&p6}1}nd5nN zImdgQSt{<<-H-<(Q%V{x{P9}|m0jnaJo^TEl)J|Vai2HiZ+(l(JiCr-QO7KFd1|Jj zyJEk7+&*e^W#}nVq@!D64fFPAP%g{@{6TdT6LrYq1|FcOm$A*-d zr8k@?9f4iCix??WF43{JsQ~{&tNstL# zPBi&_^pa z`ZPB0qQeaIEWi$}r%WYZl?5hR8hfyGuJF_N zYG9-nq7v6I!#KdzUt*Qh{vgaqYatH`c>roxkzj(G2BQyJ?JoF0q!e}&9vz&@1miu| zhmY_`>ciGDI(95{`n|=r4S`}WBs~KcJG!|h0LnvN5Q)OqxHqmafydJzC%sb3dY40k z{O5bcBuvM$alQsA9B@)bdf+DUt8L?(FAK&7x1c9hplJcYQyQTzp$wW@D|j4A6QkaC zhynqJg(w?U9;2RyLfF4acR#H4^14+;fktKvfqPIV{(lriD|nWv=$~2`NM6Z@vPS1o zxw0D=Q6OVwKQfoN+N&jp|7B)Lg~pMD+AzB6j2!X8`+kl?&?6g#4QX_f@x_EV_S15P zfgdCF1VEA9RKcrMKz#4(&yG((hm)DkaAhn48A@z1O;U6^<+^ppUw7+GyN;d;pX1ru z=Z~AuxMvN&>m1H|^Vw`Gopyqay{=6ecb)dMD&c4}SZEa7w0^&9MldK8!$caYJhpTM zh_Gs%o~u5$r*Ch$=rNK*k~g4%B5;{uu#q=qo>Jk^QEL{mm(l7R#ckIbP8+YT#>Pet z{+Py;tq|T+JBD3)ac-Ju(rG;Xo4iIiD*YoD=7>g(WqCl0Gk@@_E1tOs%*6)!bBZ2u z4QbqO@3ymbn6hRoej1n(V%|g|>G5`{eyGCT+rU4NivULv!;7>Kc%NWoVQwf~%yY-V z{xKzCxpo0u>@DP*xLpQN_m$I^{0mgo#Dk%|!$y+X9*D!S_KDhc8pt%ab>4WfJ;0UthJ*Io?n9~@QD%zNPyPe@m!d)k)KXN` zFzSa@YAWHH-5N`SZEaAJ6=solTG!f-7eRi#@5(Mr){Mut=Lk9+JxfMFaL{6S5&(f> zF;ND3{K_?07Us?x^&790j%XOYErj^m8Q#K+Y#;0B)UB=?$($HT^fW+O`$+g%Eo2csi4@B$ejHY78)7j_&twgdGfg-wWCVGGFzSnKfWn$zAr=Xr=5`3SK~5-&tTgwaIFz-YW|1`bp+IKjonfDobkHzzHyn%xI;bgm@+Lb z+L>9#LQx}OSksins3uzm~_gGJi`G^czt3C=~h)t?r%adzV zWKfZt{tK0jk>RN1_@$!2-#g#IGbGKA1KK|)UOG;1NM>-8WL*@C#j(8J@HI>aIJC|{ zqr-C@hy*UKHZC6BSbxWOLvQPtER2R7Gv?k{Rnw5|B@GwmBc$8=I^^Rbtk{_=$`hndBw@x@Kw$R%a+?j!$*>uS%S z@0Pn$;ZdU16yAr0FdBsf;Eoh@ywA)NrNh{;m8IY5&8f^l7e7V=o5D;}UJL~T-9jBt z??)@OSa`hANB1vJEP1Y%5a>w+*ML-92qU@>d;&C1DW#{GvzCOx0CZUH4Gh|Usir*y6fJ(&A@-lOF zIw|8qqK;I3Sp&8fIgD=Y^Z{nTi+Y6G16@?-J&izKvBbC@Af8Q1str7A4WLL{04 zZjIfN%>YH#Y|XGz#gYaF6lu}qIV`fQNC;)@ACqe3$XsFNUE-2Hh>;piVCev-NKG1gAH4anQgiOlbqH)S%3qjM&1(>H%5w$zdwq>{N!mj`) z{>!q^9OTVrRGXp^2H5!fQn(nBv>`%mfB0dw)6Do$giB2Dj|v)M+eCKWh-t>Ife%yO zz) zaH5Kz*8UB6@jTaaE@-;ETjc+>vZ3b{HRd6;VfR+xnR{=Pz8;js#KaPqYP&ZK_7OfUpiqTu$=emI7{;WKJ)Q1WIdgtvbW3eR<)( z{X_EVPZm)ue+b^D8638T_9g1cIwuNX^(QH7B8PFPrx@QVbLHUS;ZB$@oyi-p<;9MY zXCr~S;`SaxiszcN4Zp3&jJ=Gk&OSq6TAmC4b{9-D7GjWF%FrumOe>upQ0lwa#~Y%H zC~wde)HbUTIWs;MftjAD7MZ7*QpkpTRH`mKwRHd`+z(ASL$H2*z>-jQ(@m32h80)8+j2OG#sHK~RDmwO z*f?z@Js7-?Sie{6hOam=Z zR1e0DjO<)-fw<(JJO`eLkcJu{MLLnbSv$7nbz(_P2(eBB?PoCz1lxTTNK)oUOUuo!7&wLO{L{{ zTw&0u$DT^lJUkp)vSIDy#|{#<0)B8Di$U#zRRqaM} zelw&+u_UD;LPD|iBp*K2;yM)t?`g_~rqMhol&k%249g;-7tV4Cx+*-zaqnbiW(HDN zTkya#LAGt~U7TTV$0GqFMh4!e2S|pP#C7>OY51?`9bu$&$=}jx)Pf`5^X%BkDaxj{ z<_B~KZf+ks3^dZQAtt29)ifD0!b@QkWSUZ?jSnX#T253g@|~gCCB#@M#S4bSidoKw zetoiO4<8e;Lb*N`yEnsJ?bsEyA3Vq52?J3eLI;t^7Y-?`2ivE{!tl9cJnTbKB71c* zb?jzlR4|+hVhIRb$WUR%WQcxH_Kal6R{YTb)^e?mv6Y<+na~~-_74V3{MywS3r!GS z`c1;T6X6LRx)GdSnxw{)Crg4xi6=5DaH;;2&y)72b{W$Apuk%Q91J? zr46JDp=0Ydbk?~yrbE5`aP&>TT>T1J^G{0mG;FmP_U$>kQm?&z^HUhzq?$uu&$4P$ ztJ`{>uTGNurqdAgas(13KEy{&Z3Bo=n;3$Gdw}LaYCawXJ%B`rrYT+0l5fDb!T#uRYvvVM^#hMZ&Eai zSZLsCv_*&O@_Ni%kD(zH9Av)#YJ|hzqqTa}0F3+8WX9zVSN_D2rA*0k#d|OXLrVSh z|1Ag`A%?=UoTU>wmU`3aiO$=To}qCAA)%$It))A|%y<%0CR=AO#sTd?e#!8o9~BF6 z-iVSe1`g>utk*lJp;kgUlQRXrqxD3vMpAbsJ)16;Gim~#gSR8MKu5EB#je$hWy#}x z*KlDiOTt~VLX#sx!f$slC@Bfm)FfC;ER|vFcqcwR&|g?J)cBO;4ph0gF&v4twH+m` z;U7^r-um86QcEL34{0&)VacM9b$^Uu8vr^s&3nD`6el_gQ^fe#Un;tY9YoUB;@mF@Vac^%3~vT z#r`VE#NRbI{6rNL{_quJh^r;)7?p9C`BQ5C-(I+q5Ozch>m#U8)$itnQY>DsmLw@8 zX()pKo6aD0Fc}qfIuw#l)NJJ71uxd~TwH0UgaDzy)$Fv?r(zl!rV`bvcav*L<86fF zO@S9bZc>Y9BIFELk=P2KP38+LI?RBmHT>@z#C{EDi?Vpt%hBuB{<{DhJad$FEEPTG z{Go1dBztXu($Wy5VIPjB{(ERxuc3(pUY1x+hx{R*{YO{YbMmW<@Zv5XTi)O=S*NEV zU07=>ew2i8MI|I^vZ6d~i*YYhyg0znE`_rEo&i7z-U=&rbM~J+R}Ai4ydc7Sj2kyQl{rkv5A|aOm3cc~gP&BIR z(pizk+(UuCHW6-ZXj^u0!`h3foXe*hv|xUY&NK82HT~zV-KO0E` zh?*o*!V~HLwgEEPASgS!0B}q3xIgvYc2U-|)UCyS7zh_K2^*MldTV-o+O%+5X@xUW zqmXNgyklwY3=d9vb2sG_2|*#fHMsO4+6a!?RU~1uXIhP%pHfsb^vU2$eb%oAQOx|~ z8{*Mosc@TqNSQ9X9R)IonK9B?;KvdWVE;Mf%Va=9R)8%TJ*$aa2}Jh_tR*ob6m)V# z0*uq`GBW%s!(CnAkm38SmtbD)$}o4QooEReY)jFlTO*Wdz>r?!m?}O}RAMrrgeA4z zk#|nlN#3X;BC*RNk_sN3JTikd#ufT`PO7G9V*nqIP(_4wu~!hJ3O@(^A~`5IC@&nn z>n7|&gf6p*LJbZnnaNZ9XtY(rc|%-OM~I(G(a`sVC#tWUZDDg{mav8lMzE1!h!dK+ zTV8L^%LIep>_CbD{YTLCKx^I+a^g;}e*LIgy=pV9J0vNJHBxSOQD2W~ta=5jL9f93 zYxn`XAmc<>y1L!ANPtX7K$-J!paF-}&C_!?tL1D-2?qM#tmT9n>Dj(*j1$@ua}Ml= zs=g;$aKsr$0@niZt@+|S?0=Qz8X^#w1LcqQo4V@g-et9Z`D&YeraOFn#mv|jU!C~h zuk{kC*d)^L+`2fL0+@85lRjTcm;%+jH!!QW*qdLDCN|MSjen7Z=9k!>VKH-hP$_-R zr0MsMkSsMS+<1Uds-Z}meO6?YRNt8Fthm;TS1P}jXwpmB>((!V&xpnpxWMzZrI_P^<|rlR1y9hu|PqNzA!G;C3j>ll&W z%dFFESk{#-lQAv8)gfcftyjOrBavjnq5(#vz!f3RFeYFTG!oHoU_{V}l5z*-$8MqS zgA%|Y7y)tbXG#IVMgix)X=$Qv{vMc+LvX-$Q!PZbp@yEr8c|4hL+$-&7z{|NdD-f6 z(aFKSTy$W>i$#E(2!ww9(Qv7=OSfQ8+JHM8#YLZB5|6Y=`=hQ*mC=9=-mFHG)y8en z46@P)=XaW=bd1zPf8z@FA{i+nE7^YcLXS$#@o@z4tpDxURNiL&_ZEzr_+s5lAH5ah zbRu==@D_{t@_9i!WYbz@6d9IGi^)aWYWA&KkSGpg&qI*3tP0p;RnP}(SJVDvUq2oxzekXq?*e#|PJ1Ng1S&AM) zeEtf4_vsz^Y{J^gkS_EzA9;CNv%mC*8PE zj~fX30HRWGF^$ZkDD=`opj$4`P`}|W-!jki{+*env`!Xo3q7Z-OpN5as>}kK5Xm^H z9HB+Eqevn45aP>5JV&<&Qo_1m?-!O=fImQwLWTnH1tY@ss|5p$gIbz!2iR*L$)U*ISIVaGFhz2IPv*Z56 z^^nY5Y6+_&TBJrMRT!73Au{bW=V+ znQC8R1KYi)l^Lah?gXQnN+gOJ5gE#~F&j%}Y&I4g)PXb;M%>fm7;1U&)ZMKnN2Sfo zsD;?1I)rl7y-Q4~UT!SVRRfXp)@u{&p#hcS8QbV_httaqjfdJvL@sgsw`SFErq6@B z=dTy2Y;3K??|w}|2%)OccI=B(_Zl>f7Z@XnCPscFs01=$$fm;~XUYu0m?wWzJfm6% z8Xc0Ta0CGOrSiKJnqlKUn!RhnisJbONltR6Zov(ZIfmo}?}Dc}yF^3b3#h&0)GxZq zNfGHt-?m8BP^gEBjAk2D7LxGCY&VZr9B#6+IFjV9R@MwS{11$&7mmh6A2(*Eme10v zK(sVX=H+wg-+^qgwUKmu^*98+KvK0lRCGP$h|-`^XIE*V4dPhMw6lhRzSlFDvYypa zYn9;*Fnnxf&GU5QOl{3sq(T9=nKOrcQkYg!0xAqD2c2P zoC287trs^j7d}wDaI;wdK*HDilP@*+C!(u~w3lKwq04OPC1$*k2 zP_o!h%&=rT=N{&8CSZuvVJY=gG*Yn+bI89g@50#Jc_~*oDEnvp9PYy|k!*~uh$}uk zffr+2l`T8_tEtx4LD1uVCC}&iL>^u$LKBfd*5n_CJZ!$iI5L=dF%7ENUwEq!zn?`z zr?*Z0AtASo;H=Z_?hqo1;?)K$D9RY`@LDLRaJrP9A@fj-d$I!M;E<#M>LKVJj4x68 zP=$9`qUH~^(x_EQ-pO`|-X0}rl^;#U+ua7e9Br;g_Wt%=+Lgl@$ODlYkx# zT8Yu@`~Tfgy6)HL^X61z#8K3f41=z%J|9}!D@kz(Ny(*?*rgU}SJwZ?25rd#koPT% z!!qi0N3`>3Gc4Zy$Rr@U&mp*e>w!V`;%!5nZ|w zO$c-&FHvL{)u@P+#YLuM*@M-7?E}nt(Ukj1hQQyWs+#@vlDLvhhtpP3t8`6BTZ;J` zIcHkR3ik-5A-6~hRs7(i2{R`%FfLH3H3qa8)#iv!eeu$|LrcCs$5_=4r||BLnsFG8Js;M(JM>8u z8GLg-(<93OUzqMm{4tLq>YMQh6|>t28#$o81PmGv1Jm(UBj866noP6F*zxOdCd@6Z z{M$1)K)DR!_<}%`EFg-Q+*4RQ5tWG*@ zckhheOA4m4iA@#I2brclOb8=Y7r;(SazinYJkLxnj;l?s7B(L3pGVyx;m@oWPZtzP zuplb(4K<=tFj@8|H1zkZPeH0nHZ{Uv&-zItMcg3_&o}XR25vpR&2f)?qswAZxGy1B zT1{Gaj4ETTuA?*^53FlNYESpLb4po>Z$!v@4{W275_Utg}$+$(gZJDEQFW!gjleOl`|^OCzE-pH|C4^(^P$mW#`5PQdogkNqbulk;I zQ=aOqHp7bSa(5A3QzLYGvz+`_IlgJeiD<=3SPs(&Dvh?WJ9zJy>eUYQ`GXT4ta9!yp48n^@!w za&HB*FmzTy6#hwgaxQlJHVq+6lklY&q9}uGcz__>lBG_=iDkz8CQOe(S-T2>mC*lG z@F!@9TEVE}wWBxWtB?1X6oVC8KnhT?SXz=rP#~MvS$wKgK|yL6YM;XApk9@p7y{f} zm!tJt|1%-9ea=e+dT{tA#B@jP3(TnUg3n-~N@`&IZ}mlG0aS&uw|{TnAwy_JG8M~H znmk3JCXox{Mf>c@hQpk#tSAQ>d*2Q1i8z&xL2}VRFj*W8b%L}}s1ys<&|DCC zOH!l~svRU|wM8Dv zy$!~u$72d2X5%2{pz5tv zXxug&ZJQ0~8rDkQJ>3_k*WyjtLQ0Bl4u1f}5`@R8L}IORq%55sOm}1^fn=5UB zJd@|bjm2YopkN8r3^xRx5Q^I|AF1$~f|ni=-R+Rkg{6Jd8jYxg8aFklj)x;JB$(LL zsmrmI9_9?W+eT-_+WcA*Y|oPy6vv=iuy^gBa4N=1R{`8oF7x~ zr4vB{@fFpY2v`V~T$RBgU^P%Xnm^l`=Z?$A#AP1APDDV z%&+zO88T$UO{!7$;3j+RM`5J?{Y37Xq~MVuN0gD1@9~DM*raA8?l?KKCo;ST>1Hgh zs1NS>T~$(6Z~LTF_ek?yU+1fK1J@l2QeSuuz8P(-mfSw{mR|}a3$65g-pX%vw>~)8 zKfb@=|9m$yrBYW$Aj(H4uM8_0GUZF3d@_UiE;jNZHUjCGk0X*w>83?1`J2zk>DIhT zRf2+#XL4)**UU#34E*$c41LV2@wzL4Rt5*;FAPuf%z@B#UHwqL4Va`f#OUJcuxMVt z03&mEE2lDTF$D}Pw4dW(ZxuSt(L4Uh#|%`i#*y4Lq|W8483Z6?DpGQefRoap`{-$J1Halg#7(HLC+2&k2~I#k?9R0iYp|fwr;guKillz zUcI`Df+}jHt^ZhBh-GY{cW{!FH4wo=2&DQhCuK?ex;^K^diRqC6tLUzv3siFl2YPT z8(SvFD?e)jS*aQ5Sw3eAgQ2%*ZVhQFi+Lj9V4`C~^*F^#R%g>>-Hbq)LIpW_5y@s( zSAL}gOo1JdwW<@bV`AdHqh<09#g*#cv%3a(+)hM_5CX!_NisTWB15%nuiXhDKmsO% zJe1A4^ngxX<}Nv;3`V8Na=lfs9ya(s#f5Nae40*`pP$#>n@!BL1lH1=y3R`kKRCW$ z#)%(FKKj-3eX~%cDGK8-BN2FR%>6j>7Zft55$u_*R(!F!GTkH&@_geMn}%Zp5FORi zHk4mln_RE78%1N!;%OGW4Y5hx29FHHztS-28kFk#@oh*uVg9(pa+^ttA9SLEemI+` zD9}w*w7V2?OY9yE`bfX4=0_v;jrIe? zg7+SU&X+{Lt17t{)2pyG_nbl<8#P2sgn+_GuTD4Lg1AWP_+5(kp{2wXAJU;XNw^vX zf+?Rrx8Xvu-D@SW(!dg>))4NpRgvE9UJIl9u3+vhjz^;S-k8=?Rf|iuR|R*Jpm5i1 z2mV3&MJw4z0gauSWf8xRQT8YS@^T~fsQL!skT6-i%BzTT$|f33nScPQoLMBqqKy|r z22`^-bbGO)j%A#0LpA-n6Z1#M7S|=tyYFc4R5ulw?qMKdYehd*eCSJFN@qf&-2M+p zrLG#v8fr#rVnIt1Rd*E_ipdd>>$Upmi%xF4g4W5{?cG2m!T8furnV(L7NT5*N~`6u zL#^11B<`5Jl}YP+yYwy}-v#grBB~#-me24NXq^!L?l;lRbrD#{G}p}=Ko&`WB0n%T zjX-Jyi4+V$9XSOTHhk+TDw0N`hG8dw-C3O_WCeh^an=3wbQg)}o#oc^3>EiniuMNj zStQiS1ZfNX?Y6kcYO;4IA^hLW#u`1a@lpK{yD9H(_?N6b($QwDv~m*Nl#WxFb=HH-X`-uu3YmE{R;>og6+hc9)0pl7Z7y}6EnEnU z+%lW~JR}Ww;dhZ_Xhe|FPQJBYqAbDZp(q|jwFYEFV)gYyL7zcGmte*F>>!2JfW@}3 zy!Bv^GuTuQ69a|q;!(9JcRu6z7~5h{>1N=lOtdW2_|6Tx4R!g=h2F#bI9g(~$S~4m zH#o&`fdjEUeeBSSxyLg|TamOscrOk~v2ILy^s3;yJyt^*S@FWy+-#MaV?3gBa=TQhA(byH*q7KTFxhk2Y)mw)&_rrnYW!EX zehP#+eTd#>>9vZd!P4q3g&y<5{mBb4e9hCn3(;3eCARVB(7SS8lE3)>nq>AOfeMR} zI>^~S+}z#wjybEk8DKzq_=;{#;INuD%{PI3LLo9KRX0k&UzqQ1U74-x#c2iXFN_Y? zecS~dEA49~rCHz7y!O64i~m|FpL6LpqV}Q>$Vq8kHeh#&O|&($>@#9zxgo9x|~uOQSd#CmGyi zsflc}XiAoJx%wzxch1CwndqvS9BeQA43{tagCtPnWQ7;2+x6tw6ZHaOw$L3`CMY3( z^z-Fnk3AxVG=!4B+zt@{8ueQK#v)p;fc-h3WdGsIj~pShs>eMp<4Z3#%sFvlB0#ho zTm=JR&QVNAfY0M~XUGw5EQmFYMcV#!BI3gad~$OTl1caxbLNjI6m?>0C%~><veKR| z@FAU6&jmWQ7JPy1?7z+V`>%r~{z~~_!aKcoPF`4S$35aJ)U%r(E<&)_C@$Y{!qf08 zVcfhN3$G6+7cariVb*t2caAR(BkrlL%m)lUT+cj#ZVX;gAH=~awNC2X|Brp0Zj1DZ{mC|{_;nVu!GFmJb${!cjkhkOOi{!fL^Y_Q!dXIcj@Wv#ckLf(? z-ywL1YE-K*;L41PdVAHxtH!q8jmvaJvd~Yv6N|7#9&SOju&HWm>12dW=}OB>rg9-t|HD+X5yL;o)4 z&ziFYrnx$`?#}zQ_bsL^;{pys{C9fR`)J_?F2!Mii?~9`xo0S9R#)1*XnDm4VgU?p z1XiOrvA57|=9lmSw@5eIFY=i$I~buoL<0xH8Yg}5nR9k;WST!RQ7H>7WFU3nBQP+t ziB+L^j=;hPcbYXKOuj{gxYi8 zWeyMAMp`XNUq>iPt~Lrn*gSTGqsRYUB4IS<6b6(P=0-tmWA#$T$kBtad>|RN(xSOj zRk&@`kOwP@3InPJ5wCc&s{k-QNC(Ey7w3|^oDOP4oUmw^S{c*)D=@(Ef0Cv%-PLV< z6c2o-_*Nv+(eF3#A|#mC?fETXI2RFr3tM|FF69O3i=~lY*2QQ?63CR4O^t~=p!d;5mOyI zFf6S}&y4rUFoe#}sqqw~OYJ zGfmDbwI4Grskn1P*r1^`oOl}#*zf6_s?+Spd!oULkS{y8{itDNO2bNzc7Zpfp>Iam z!|Ip7GR!n`bZZ8mAZ1oU(`s!I%sa9+dm2tW(>?#@5H;i@$rIg z<|q&suCS4tg8%&a_iQDARy8zNXHOLi@?w@bax31 zc>w9ofl<0^=te-KOS+_`4@h@+cMf;-yWjO3?);zkU3;x(KWn{v#cmF?i@Th|AE@-a z2}LbmhYh(t*T0$ZkxOnsSGU_Z(vduz?k5>R_rFb;cnP13?&+8z`!zqwy*TIP=w`$-gJ zJ1QvN{8XJqeKt34dvwo}+h)E(jtw_VN2)q=4*#4;@BaJ@xt8;VrK)64Z2p^4_}AZ6ylwVt|H>d1jsu z*P}r5RmcIAshv(VZrEB!whV7L6N@uLJ*Cb$zM-o-@X~a1&>RGniL;rQL|6X++0Z26 z7CeD~iZPtR%_MGkk_luqiB~+GiiK`$_v9ocX?{bQ86~+I==s?!G1L&R*l+ZT~&$AB$f3DcPeS& zuHDgYV~xD%#hi}qjXC1kRy^a)+SQcBzsL-B?(L$<6S?OabH002^aTm-cr~*C$VsET zfrGu8NNgvki>EK`H4dhBLNpHQZg`{%Nw{w+H=C9fqcKHJBVOKFU=hdP4q{CHFbk>3 zW7sb7Ns^M8(|GeGMgKKn$PdE)lhtz0h4pPV99iuJ#gV^OuLFcD^EemE?y^PBItlKe z-iA&wEgJ7`r5H|$Afma$S15t)idw*2WrwnHFmUen`RbozHsK2 zR+RHji4)RCl#TYweoS%>H&t-p|?;)r!DdUMv#jdAN9ap@uNKvb_{$r;%64 zvnCA~4Dt5s)Ev!7J$cKSN1&IB8xcA19a%J-Q^{aNbQSr!tBH`87BE+zdb6NEn>O%C zrN$n=oM@b3a;CZ7H+`#aSU^w1R$*Db$6JBg@4b{o!Vv586Ze^l=coD_ns^x;(d>+- zKD3YCW$qoVkl+*#P3U~saYl(i*LNe3Jk(Os915-Fy*HM*tv|Bm5Y9Ll^I$oDA3ELR z9x*8YEBFVoWxmm-nzYw^w|#P@n)ME6F(Z+$!oa#CXnz`) zB1zj9_6;?=NQA$hB!NW2V2_MMF{yfu?TDZpJbvqLj5^?%%$}gx0Q(SrH*v;rMLgw@ z&6!@TV(6rXoBqQjP1*Zxl}wgOkI+TH8`&M^q_>{_ZRM@~Q6-d6ZVpE` zE=(6_QdT8gW$O!2x-gI`ce}1<6zcimc2PJC*hAcuj_^sXuP2I1Sy*pNhYsd-7)qA` zU=c>elriG-^r^Z2lfHCt_)~eZ`w%iQUKf`2fC4T}=eoWFnE?VST$mNo_?^$eP7`RY0pgE2OljON! zxnZ`+>NF32mKNNqvRXc-s}!3|D(n@LHCjfM&4i%?G>taG%H&c?c3er#DaQ17TARh| zlJ2VLkRIP=?2z{Otje)xTgn0-QaqSVW3B3jv4MOtC0dJ8W zVn2z6%(H0)_yMFZ;qSDZ!S_QH9>q2Z1JF^@UqNRex*LaeWmLw{ixFnU0~bD-G3HvuK9h*591Mc8byoLn$gzPIaw| zEDG$9Fq@W~{sWuUcv2JOwXQL0zR^u`(joAY`v`+(OFsV7GrSN81ORXNIrT{}_I8z+ zeNgU}c-B7#*!>r7iaoq_=s(KArHZ7+nBaetfv<&9aLlK85Za zM)0J_b2t&I=dXDd~u%`-2oFR96qCIt>vk+3eH zs4`!ix6Y5Dy2(2I6Va@S5SD^&d&z9H?1lH1Ln?EjFsJt}h+G!y=cZe=bDS1Iwn@Tx z1hu%9QYnlOkksy#DsJ50=;yJ_v5aa@0~N@KP7M6~?D46@Pa7ng8X0{cZbyItg40F7 zBtfjGl7-7@SxKW?(fz%S6Qmd^n^0$@!dt})tS`uv1ehGNrNp_3iI0Z%)_^Gu3-lj&J&!Pn-F4j(a zQdt&_i`ZtB8vtXcou4m9^QbJ_*Pd(nY$v{`>?ldmh~a#xNGuFR!&bIJ>5V;rV4RbI z43W9|t)Ks@2^mF6CyUj{gaEIdP4^XhL)m^=b-x-j*v-ytGYGfC%~X$uU9<1oiGM^H z4#}~%4d62!4H#X0_*=6Z!wa0Y5*kp&xgJ2F;-w%JqUs6J@u;Vwrz4@xq+u%QCM7J@ z7<;IPy?EfzE}1#;<0kGO9SNg9LK;LhOARl@zGB752XqB~t`7kB=|Xf%{h=aKlQ$Cl(kGN~??!A2n>VeKk;+!1!vMZX zGcme~9<_I3%1S%udegs(RsO4>PvJDUqw01s(Xob^)eV^x#ZF>v!$%Ctjo?RYL#@4H zh9OLO#?x+42E6gsAg=jAdPl`&faRR4Q$}-;Hv}k1^fOFY*!~D#&F`KO^qIFN0v)#B zyZAo<}XemGyNH+c|NBf?Xk!w(Bjfjlk+h ztqbp;*#9&Ie-iq4?dTw4dhAnqQyRRu;F{Vde;=IB5r7#n3F?DRxDC8K;AOx;M=A|^ z@`io4T@1sB-P_C4R>3mL)a@P=h^nSMQSoC!59POrOQ*ITC%-E1<7Iqo0b*bnxjQcY zX;{H~oj=^8nGw3Nwfuo%IRIh>yd7}u5}k4#y+Yj6VBXuIbUG{cW`@wOeYIR~pqZD=KBmeh&v=FrXZ?%d z{qg()yuFD#cg^gq*T;rXt>#T5?QCnHlkL;D&B3$U%^h}@uFv7B;P=YvW391AyTi@d z#z#_GxeQ;uINLUj{)=0Lp17$#{(S;B*_<-oQeCk(Sq6<$gE!tYaX4x>6YlSiSsu#q zeHp$0Q$GiYKYf4$U9B zf1gs1|2`30u$F9aKtlE^NS%GQo_cDLlK=jjl>OXuM`s>7MGfXgnlO(_@KERp1Ckdd zxi?(vde`L5z>jxx(Ru;~U+w>(t84=Akvb4a!+GD^Q-Wpqe&`w75PG&*5@;zul9mY6j+Z*huRp?;q!4kcazGBmiVrUiK2p zBK{RaJoC?jlTKswVuOlL1_mqF3Fj70x@&FYaZRYE_DHkn9qgj@g6xTqtNh(cSP$GU z3v^SVs#%LRB%7MkC-2Bq2;}BI>ol7Xf*WkDtJkTq?be&>81!$3RIf}^Qq?b6)H4@y z9Y3z5&YZ<-D|D--Q2s$6?!c2{gbS4}0AzjHh;D7xOec1On|mT-Q9{!;;Or;4c4z8*He>Gw0cUi(bAOWEDjf7;IU@?y z=Xx)Ik9kk(&z|!8o=yE|QKf4Jxx7TXJ#isj!ey*%p_8omcx;(2{5P1-Otdfz6+Te2h$SsolTfocDKX|O!O#A4M?o^nyS5dPtnQnA82mC`-t9Ek=6-v-u7PV?e86! zT5jq*cF4Dxrq0!1ED$SVcdTy<0a2Q10&=jp4@GVr`G8Zw5bv*uQRa}U6k=Ew;;_TsO7PTkv z2lZD(-Rz4o7`p)ZNPEEN>>T>xXvwX*Q=Q+r_W$L&YHTDTXDzjoB#nHd4cRk)kaND4 z{_B+70)HIC@m4$EyO+-_qN75p)}8vLBu=%Y{OR;nsRF4ke$dQ4TLwH6q?>xLn+jhq zOxX}hY&n&!Q!C2^tY+=#G6p5O$VU31rSm$j?g>Std$PpJ`Osl5x*PCeLL_ZDnfnC}w*8Ax=0dQ`~Mw#WMwoT%4*&uK_V zeXR%TQWNW9)Uuc82r`=}7j~`Ksb18;r8g8PZT#kRF;iL!wG+IEls$|4+*!erDcf63 z`W>@w5fpv+caLhf_r*C9Zj73Y4Q@;X-}e_fm*tdic4bdh$k96IL!2DG{Vw+S-DUO5 zRqZ;Uh}AE2LHkPxMnw}{OeUANB^asNC|_mzdE< zlDppx44Vy!k8FX-V~U$uo%sK0YJ|lXr9~El*8yiL?&sYUrCxU4=iLW|SF~z$M-EpG z%v9jy0<18_bjZn`??!s4>D!P3!Pj>_C9r=;_xsa;1tncgVY$A_=xAQZyY_fqfB*ha zkGX}YjF}ZhOqf-=0B={w0Wpzyf#-Dgq#W)|4VW3D-{SwX(|;*e@g=e%HN7D_z`u=#j1>!N&w>jxm}l_M9p9zVcoI!s}}i=nqv`g;ujzrn-rr&%!~ zE0WXO&w1pZE+*)gK%ETF8*Jam@&Mc)Q`rOQ4Xb#gHwV~M0_m|4)6^$1StTm9kE5(C z6LMhxHZZ>-I=_8tN0Ekd_FY#X#USLynl=H(MAD3>;~+k*-x%%Gbny35dufZ{`Euw{ zmWcSz^fDHa1lfP^?k}AD66Ym-`OcaD&O~XNkkH+k=GxWONB?gvN|w^qOk;76z!6_0 zx+QR0MURhVkCqG(nwfsJW%58X0Axj6`tpLY*|EZjc~9H*!j^;$^4j*@-a&#Xj?K@1yzFmc`m~2I_#yz^BGANge|oI%pv7~i zk5%TxvE(n2+!w-nVw&+};w~og&O6~h zk=cKiWi4uu;fP-=cKnlLLg@PPoKXMe!9YEy>T}8uRxtp^;oa|9n&2e2wW`xrdrl%i z&v>=7ATQn@r~W$xeS~t(L2qxxC&b~n*XBQy;jNLJj;&@{vC{h)C3rGN7?}17dNvk3 z0ZkEnSK<#6lQLKPztHu6EjAPOy?G7rw>k5Co!6D`2{-)O-hSOC6CCF*E=E2T!LL)2 zgF@{)bu^)$0@-oh5)BNFvT_{C{`qh8;UXh{y6cg)`l(y*xN+T0F@JjsTT5z)SNAmv zrJagF#%3J1ku4y2C6|rfvwGm2zzdPWiZ%(AKzXpBG7j`zQ3Yh2p5CUd{2@5+*;U@v zRztP6t4Zt!Gcf)-!zUxzc+g$`Fd;b6?JoSZ1I1m+<;%{n_CwToZPD9XH`qbXyUd_X zS6B3XHMZJS#H0YGqO?l9DXgzZuVZ8=-1fN%N?Ycjr?un}O3yIDQ6G?v0UF+Z5-5D4FvB~x!I{7rAC+Q>WWpMCR*Bz!v5qkEb{}WTSn*YKBH(}##ifjXIRBwI zfuaWYTB{{1&o?%fsOrv-{5$hgG&&WffWVmNasY|+o3m(Fc%r~jEFLZB*v>1!Tl@iZ zt!R;N{9tT7;o;Y&!ZZ`eSuItOrAne?01V+$+VXQ{(^0hEAQ(c|4p$$9wQV!o;e3OnFt zsg2_N%g=*{&(TA)P;n3Fb+fRn??cYk!Xt&W8eOJX5|oLQeH21-;o`6G<1HA8BC#`g zJXaCELqWj0L#m=G^qPXx|G_?*oJmCy*^66SQ2kvZ%1G8; zw-d{cI(jKjfx_#gcUiv$mk8igkx#vb?yIBSnt!f3rab27WSYSLr;CI}~!c>&q?8Zi?okCWq z`@#L79y}Kt2SXPS(*b_VI37VA>;d4vJxyAHUbD6j-G-oJoVh*(jw^K;JrBmIb{xd} zI>oj$T?l%gCwrzcY>i`q^8+7U`g}CM#}&>7!S>6E`WDy!w~LL0!H^xk zo7DE&@ouiH(B0bopzba9>yOsm)$Z}k@mC3W1e(fY{j1Rg_gh0~`nU4$_%h9j&3kPm zGN%7Oe|sX1-#{vF1ZthOdiCeM4)JkLvPZ`H}sLI zqJyK94*q$1@QZuTk&!(=!ahbNt{vYFC6u;64bM|-2Ra+Acw{~j;0FyQ!o*aZ1su(f ze~{QxK#p?Fp+eHt=b(jbu77)OT;yk;<_4vSsPfg;S@i3UmLxBl;U&pBPqj*Rd*42d zJ}d}|*(s<`CZeFY-`g>cvch@>Y8AhTf3O1(0zE};NP_{t)B!o2e>W3*=?$)t_SsPP z@gp{6NDPsH-Q^iKcJr+R#0>?TAcSg)F)eah`T;}iq6$e<8jM@``|JM2W1B(=pj1ZJ zku+)8p)S#jHlk?{T)3UPWGtnXkWg=@1cBy~AILGOgTCt`gyE+Z934Hp0ZmIyRr95a zbfD~xU+qoC7h>Z*8rKPg-gp?rqW8>iyN$kofS2#01~rcO((yF;qpcemLdQ1?XBof} zet#+QtIK&AMsVBg9WyTtTb^WZ?5Z DNy~h- literal 0 HcmV?d00001 diff --git a/dsLightRag/static/Txt/JiHe.docx b/dsLightRag/static/Txt/JiHe.docx index 179c9b5a8870adfa8a76419739b7382d1035a1d9..515b511bd1deccaed3ff5102e4f67f992753b871 100644 GIT binary patch delta 4725 zcmZ8lbx_m|*WG1-rJF^%L^@T<1qofcMM78s>28+%fs}N!v`UI7E!{{d4U)o=E+O6h zJ@dTZ_x|zSnLBsp-kEd%x%bSOQ*%JtaX?x*hz}Gh9q*b#L7*c>5Qq{40{OVOTMApc zyzz3fa`qHLIXMm*y-Jwxr414uy_4JLl{eR;DP=TwVoORk@8E^GU7EyxO8TB9L1Oc* zIh=)xdw1^L>g4m^_)*!?&bnChRbms|vTxJ3&HMrwN#5%-sormFLTIs< zLqMiWn-o@C`eZob4RN44&QFiB`~Wd-qM667b?e?`E3Atyc|0)+a!K=uI_%2lhA7BE zZW`wH&t%io>EL5%^9vAx#OPFD4c{rx$zv6wK^AXq*YPU#6+C2Q-Xj^MLuuxp-^ZJj z=5%Gbv8Vy=yr@vn)I`#}QpmmTOvc&KIRN)-wE60=O+dTl za|6OeFc09!9Z{dozc}E`4cT%0+2u}4=%W4P!+=S0c(ZL2e_+V=eiz*CB1`SxJ}c7v3s&1S@JL zgFg6!#(ZnI_90;fRdx)|)<-s4X~pj`^!m!n;<@zk*SljvU3M#9FZ3R5+uGU`3%TWT zaTA;M(Al3RLzN!>F(JQL;$_x*GT|lj)>zyScUln?PJE3!!%Yw_gQ9fV_XfPDaE?S* zh%EI5D_RHgWRFX;5(uOr`7b<;Ts{rG?SIAoKxfK0`tE~%C`tJZQh%^>n8;5ME&er` z?h!*n=#-;0rbc?=`&UD*zw#?e6CQRTMgMf-6j35u!OBD)x9$Qhncxx{t)yZC;aV)u z%r=85{f^0E`%S&;9*iH(5&_V$sf&b>p#y7XbmAwtwF=|0=?x5aiyu?Wz_J^9uY`kwpwf5`)6S)eV?!Gg*w-a!9 zJ%(1m7fOv7`@-M&M_wqJ_S;LoGH4?Yqr0hSki1a*hjhs0Of&e3ydCg^w_SIx&6{c? zK4%!4-eI70U5uEKx>)ZZ)a}L(aJgBO1}in=xNwNAfL!83r!=QrZ@UyWX#d@tpNK(P zQ4gH0Bn?zb^q0VO+2Jt_MyAjyr9@+PrU9Al-G=poTrKXWCS(E>+-K-VWtXm%}S+_wvh*e5z> zzoQjm0uh|cq(B;h`VnZ&y|mjj%Vd#?O5o`1W&-y@=I5G0$PRP1j zUxCTQ$uWz2a|7($O!{Hu#P#7xLemyWDwr^>67gpu%|P)YU1gf!d|gj_{CZM=hnaq8 zr^5Kb{KGO3KpROOQA zY>DFDlsdF8SE0(dLzr+}T>87YR{#4jQlY9LLyLF3;^}342B{W&(-vF?D>m@l-IU?rD(@Dh-;oz_^U=V84;+ZlgnFn%J9B7@ba zZYS2gaeUkb*Yj1|y@3zTB%gKQjn#K++Xuh)@bN3)&HH;}`??He+fCpx=*r@4kG~x! zF6+A^fFdss*<>Vf%;&#>s7oyD@3BBuqygUuPleI%Zgc&Ya}yBc_1%CoxZ>#o zw6{+pa#d@uMVih+=Njey(eY1wy-VaPiT6&XgsgXOs#|5|Zs08qG8fygk!qKamf+9! zO_V|Y{?ll!U>1e)A*gWr(7@mU z*5f1h+*FUfMk*!aZp{X^Kd}t&>#j!%>S%5|r1ETd)cVM@Tvi;!?M!p1pxy3j%ea>0d&40LxjG*rsr+K8@%?!Oxyo>MFH8q{28Vvu@EhXUvNN^%^nvW7_Ud z=45s+y9ynbNu0%=)*13~oC`#2Md*+p>Anbau^z+D>)#1%@y4OTKP{nPJ5|w(Ew@Jr z2F;~i#-UkTU_1l8m&5tS+t$+eK2`UUlv0nGku4c3M?4Dn0SpDR`%a7B=vLy}=~Ad3 z2PKk3ru0v|Gn!PDJ)sFisPd*7I=m61-G0nlbw?+#rg!S~KuxEP#KXylNm;!U+NrO> zKsz&|HVgU!88|hFoDpL<_CDAr>{}o-Viw3-$rH6L0&LQM19AMX zIF0#45+c35fWH^#zPJPAxG7YarwOZr9wZ%y8IdnWRx_DU%5*cRLou6pf)_<)mqr3A z@3uQ;IO6OJ$&4)T9USE_ux^}wiAl=W8eo8$rYLZ1+K-oz@Rt}c3f<@9X@HbYgwF37 z?G3&r$iJ{bpD+HG;?)ykAD1ZMjfgAO$bf4kd3rs%8bUwI9@NH#b zl+UMRTj+fkuF~6H-4v>^7J06BZ|&iEDE)kf=u@;pGPLt?{?Fl49KTIjLtOh3R$HJr zS8}Hs0Z^s6>bBqD)Fr;f7o3pdqB-qLM>l=D`8hwEZvT>qXOIq5%&HrKMmd(Z8Cg3{r{wu0M!ZDtSo4 z-j3I^ZjNmjWx3;Js!A`BX@4U5RcUT=)Nq-PD-lktP?zx8k^z~Sv-d5i2-WPePsI6- zV{jT%li6BB%QZwA;+JgD@;3U~DLd(eL2V{jE^bk7mXg<7e7L+Hm~Klne=SEZy-c86 z2ekYQn|f=yo6TTxbLTt`J6dWOUK)E*T6vDUu=#QG`sFR{idCoVmK9cz?j znj;f2IFcec%%TV@IEJ5W-Z6_kWhQm1p=TQIDE@PCs1uRK8^+=RBmPdLqP^D(cg05( zB>K=VgM~%ZDFb5HoG3ejFyLr*RRdQp09?s#Rwp5JFju}wnw%X!?a;4OG&+P~ZWwgz zJQP%q>izg6iUGYO&!ws7q9W}SiB{gT+M|qWuY9DPWbGtPM`O=x? zt?F)oqLJ+r!(-HDgotI1E6&q2eU~RaXZvy;v}5}*1?;qn`_i$IQOr%q?77*4xbn_e z_anhjU$qOQ=y~sq^^H$kMxVTjHJjp*41bf3{|ZydGx_&+W_%9pkW+Ne3Jt>C*J|-; zDeFo}jAPD_9yDR+(R3YcXDiUPO~Py9E07VNyE*+xC0Rc`_mr-{@|RYh&HlE7m)~5w za^I$Fvd{?H=&+(~01pF{}Muc~^#Qssxvt_TGU3 znc}IYLkY1%iLS#E8*I>@3Qy$(yRYTfadFpiRo9!DqG#7Kr&2}bZHtdD{phwGWCTx= zE}K@vG!5D{V}o+dZa!nf#Ie(Mw|Bk8dQF#}BO4Pkz!$BP*ujGRO@E>H3`|Wfo*S}L zAEosJ*$x0nI+lB;s9>*;r>XvQvf~`>LAwzhYDE_gg!T&=6;7EA?7cd2ZrS+uNPP9S zHMHQ`_n5y*Kf(>v=!GmZ54v)zJg1YxE^n~*I}$-|BAJTMTh`nBaSap=u%%gNg|1VA z8mc%i0mW1?O-~6rq@jlNTjrP6KS^+eeS_|<0Hf$BLtC2V1IpCpgjl7} zmSwJ?>()J)S|=u+-3{}2tJfy2JIXs_Dx>Nlqn^;M^f3S!0bZ6+MyCqZ|6PjAlq z+6&Sw1U!gr>iMh+$i$wpx8#)U!d?fGePm}^E=@SLrJ%J@H#JR~MyxsfJg#d3n^KxH z7npe^?`zubk5@gIbKpUor0saR>}wKpk^n0r%;9E(gsbn7=N}@S+btlqy>S`Njq1cz@LF(QUjJ zp~JFK{l527p9Y*ovbJ3%SUKm_;jI)hIJ{d!FOJ*vk6TH@c|INfp6u zx!fyZcC7#VlQmY92wvy+g8*B)!sk6S1c1Miz1kb(_P@H?k}CVG_h);^80Nn{IMD}v zxD=X&&H9@&7PN{xERnLaP_sZCCnHRHlb8&*+aO4OC}ZK)t59{~i1G{an;Uu_fpo>k z!cJ~D-?x06(AsXT0b{=yXt@Uo<(K-%@3k1fIkxN`=`;UwKG18Bb}`)kma$@R3F*1} z&tumAc7V9y;`w1|#@*_5T_F#^07k1zgd!NDam||Emf);7De&ey>#_a`;t<`l7ga00zDEApZqE6o2%9Rib~SbxH5lI zeg2#l+tBfD0ukv@esUxn8z057^Rgu7N)NVV)9a5*VdY926@ zE|txIKRGG`oWl6wK z!25W3fb7d>du>w2$r09xv)Ku?qq2{aC*_ifaBBGTD7-a#nQ&S6>=EIm85WhG>IT(ShC&74RIo&l{ou+17-h z$+RFa0c|xfjv$BzgbyP4$Jt>A{Z~zr{>SV2r}@8et&i69fp9YZmvoCkAoBkk{##kl zu|5#^KPv`&AoAcFG%*Uo#rW?LfI*-Goc|A~hE_vCWWh)1XcUAKzt{`%56J%jwtyk6 delta 4726 zcmZ8lWmFUlvtC$I0YREwKuSPKNvWl~rCE9j=>`#55b1j9?iOKbkOpDt?vU;fSh}z0 ze)qmVzBy-p&79}Y%=4U?r{fgA<`lnj2n!Cf4=K061^}Eu000pH0Pu2hg>k~1EIb@6 z9o;#+9qhaH4V^%}q<)pPn9a4uAB}BM?R{5S`-kYmz|JO^ z^QN1}nXto$%Jq(g&_d9H0hFdN1{YGc^2hAorIS2Gl1Ld-6tHL)4v47x;l4WI;vAJ? zeJ+*AXf+L1H)DNOX-iPr2%aDsNlcO&7-dLImeSmgeKSZm+~1!{-ne5yE+kCjLKyUB zPmzE=dG?+MaL8a=$G(`C?w|UWiL1|*lhcf7NRbHK1Et7id!H5N(4(y00#9p{h4N*= zUuTXg>*n8_GGqoE*$;NPYU4Vo3+MDhpmZAJS?t(*;bY$=v8>y4iQQK9HOh7-inLv&^P`1rhKtTb z%Xn0l!nM0-7=3D)9!oJ#64rG-3hnkWSr^48?MwhFp!I(`EobHgrvgv0Q>?nxoN$k5iE&g@7VYmiIM0!4+qV~uo zu{aWnmTg&n&PZ@5PD{2zS;3omd4u>ea7=RMc@!|c#R~+_z-jm8Z+q<9{EDU)Hh5r z{fjKa+L2Epj&g4`OCz++S?u*}1IBwAv->u9)~j}FO6c;CU4f^y0f!HA>(wVqJ^GDE zl*sI)Pv6nH&uZY_5Lor>^dQ@Pnv#V&j?ye@sQ4Ko7{wk~L4=dClT&b8s;@4@owjIF zhX>#0DFcv(2t-sRxK{;4*8cqDu!u5Da^UgOr=%zMTo8O_EQ1v=<^NJSisr4S>F(!B zTs*s?zzx-0J@(ZQj8YKwdL{EFM;BJ|oD~~)H%WS59kfqn%OFXjdHiL+dp5?o$R#*{ zv_r5mz=>$z1kcsidy!L&d!XT?me>S9z zSnTGsr+g=#^GRU-i?I{9Nz<21JMA009G&8 zb1eb+N5OlS+AH6&G3>hC=*Ft2`-9WrV=N&=OCu_K{KUZLiJzC+k)(0(5+SAxT7ydl zG=nNKvJt;O?ixgi@`^6<<@Xh88kgxV+q*XFz4o$2zqfjN{B`nZBBxgW3sLVsn@xkZ zu_65HG~~)8bEPu<#vPSzza8Ch9AxNaZ2uc4`wRd4GR=|SOXJ^J_h-ilrb0AhacvKk z7wxSA3$3_K7TQLi?~3J)VI&6ncD(SxVS&Wa7X94cnZ76-n+TR~c*4G1->z8Ip_xJc ztclo7ysu^bDi{>dFAiHE6xCfdYm0~^mf{OOMUwOP3(cg<_gB}Kmv*sCEfHJ;V#}Xh zuH1g!s$QRHBz*owgo_YWCO$TRnse7zaHfRptZG((XB^tp$5AqcpE4ZP7`EWXvW;Q1 zXs~Bxtdk+LhsL)&?&X1ju8ChD1bylp+6gR1!D#JL_qS)hHk>5%2jz}2g}I4fM7^k@ zsP%%w#)z`h3kKp}k2>M+$~;A4s%`7itf&7_ZB4W6=-`i9E%zW6gGAIiu8*NRxOWS$ z+k*A;UY-=@RN6{BLsnG!Dof#Sa&yX>Y{^fW4Cwfw1xgcyNE4v_P4ot70w7Wjm+TcL z>pBJi5S>h{17v}d&MQPV$-sJ5!VB2*-0zeXEFwV07;)7bBzMQcj533*^!<69xO~>z z&Vm`wANGfV)~)y~DupRB`T1s3K#jh*@C&wE_lCo4Sy6{j7TkDrt8oJN^X-dlc*}w+ zA4Q;TQwWKq+9&RaHx~PQra2MM1jps7u>w{V->BmGeZPSF6ML*oJxHR`DAGR24m%RQ z2#GH#jIAlrFkjF-f6tyU)RP!)A4tv7?^5 zR+=aLf!@EZ8#3oic3z*qMjYLo_LDKSMTH+naaf{zjqVQQTm`WY91y9 z#hyu`&?IUdr60r@b+c_LUOeTHO%r9Z6LD8@lSx4I^ILjzw;DVzl^+?SR?ehZ_8a|V z{bWvf1Znt&&D`J;YHShXoe+0bKS`w(5cCz_iZ>DqPS!WBawzot#yIVVh9ZAn3&z*# z>@Fo%mFE_&gW6W164*seSV(C58w$d6FJYs%T~(79VKuB~GE`Q7m zO0-}Rj83HNPgs^V5_&rE=rR%>yjiv1wPqs^ISTV)G%32sGLJAXCyXj_ri>wDkIKTA z3oZ6`yDO4Ia-iL3i1LmGg7D3JYj>QR4Qh4r}t7;8jaGGTiy%n zPAC3u+S(v(;Le8O3qB0U%KC@z7q3VI^-2JK^M`Lu-rfO|ZQdm=957O&R70-09oGy?h_Y1Y2b_lZ|fR5b5!JWWoU7gv^5RfAb_fi%llWmMUlha!L zYtFYhwtIJj$={8OM>tr5_;r4aGsl3J_p|Uwu`bT5Rb2xAN?~}1X3OGqCB|2c?wi}s z{BB}q!;XRSd3=q7=!R*yIwZl|+OJ`!+6{fm@bJ1$t|5F%Oh0gdMZrMn zP37dtt67yS%(nqNhk&lrQ?q<%M$?IXF&5_v=>y;1tw`u&@sP1Fp~DCtQ_XJG{^&}> zr(P{9H!Meaqr0iW*?j$O`x=lwPoN2tnA>l;wrE2(PrXC#D~V^H^`;!jGua5>)xg$` zSHgc_3jZ)=+Jj*ms{FXsVTsyv_9Uu9pMQL)f{td)2+|!?t#${ z#D&O|-2Oo{kD$?m5cjRe*Nd_&jD-x7;+rQ>I%IEuQZ!%fsuC_X{edf{tN8e*v90rN z+j#DsUdX=IML_q{8r0j=eGP3UXyL;jqigxH+uMFBbVStlF+aq!qD0 zxw;#n)+Nm1>ON7)8jpcNCpw9)8ynMR2wpsM%aV}2baoz`7Ua#t@slO1fkm#yw_Z8* zV8}Zfd{po(*BN>1)mXhtPGf$^`=l=}7h()`a?BDub#LKiprn|Ft#%H)pA~L6EhEmq;yoAb{0uEx#%w(^J`FAD9o6#CYVJ{6+ix)|pEVCR z*(1mM%hrD>n_T4uq-waf1DauAzDB*8aBeVm2EImvo2Yehk@T#n+!H9R$O#bg4N{z{ zdB=52M*jB~0zRX&@Y93AoVXP{OWTSePHdwMOnH|c(=1RlV0nHg!M83Du3=`L&~ zjmc|Hk}wET$=En~mHW`ZsaDD4tOB^4Y$A(Y{xY~6C#nlfOUivz*6Tq>KxcB3h@&&IB59Kw>Sf#T5a7A<(iglwgFQ5dTaN-h_e(xZ#nO-Q?<)6wYQKp z!Oo*?^2_drwX2Xv^y$c;%pc3LWV6z*QTPLs*KfGpsDuSxv>m_2`m_5T80C)v;o$N>6p-TnVM06?6a>ID=*8%dt= r0!sV^r0@nZf&O>mXaK+|`hNpLlJ&fSVrbjR$=*N)tW=M`D+Bl+;ExN^ diff --git a/dsLightRag/static/ai.html b/dsLightRag/static/ai.html index b946d816..e3c42a19 100644 --- a/dsLightRag/static/ai.html +++ b/dsLightRag/static/ai.html @@ -196,6 +196,9 @@

+
+ 三角形中两边之和大于第三边的证明? +
苏轼的好朋友都有谁?
苏轼的家人都有谁?
苏轼有哪些有名的诗句?
@@ -227,7 +230,11 @@ + diff --git a/dsLightRag/static/markdown/JiHe.md b/dsLightRag/static/markdown/JiHe.md index 6c96ca30..5db378f1 100644 --- a/dsLightRag/static/markdown/JiHe.md +++ b/dsLightRag/static/markdown/JiHe.md @@ -1,8 +1,8 @@ 三角形三边关系的证明 证明方法如下: 作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为\|AB\|+\|BC\|>\|AC\|。 -![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png) -height="2.8183694225721783in"}\ +![](./Images/5d29d93325124e6aaea624b236a57e23/media/image1.png) +height="1.91044072615923in"}\ ①延长直线AB至点D,并使\|BD\|=\|BC\|,连接\|DC\|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。 ②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。 ③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到\|AB\|+\|BC\|=\|AB\|+\|BD\|=\|AD\|>\|AC\|。