diff --git a/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml b/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml deleted file mode 100644 index d231bd14..00000000 --- a/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml +++ /dev/null @@ -1,169 +0,0 @@ - - - - - - - - - - - - - - - - - Triangle ABC - geo - Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - Triangle Inequality - category - The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - Euclid's Fifth Postulate - category - Euclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - Proposition 19 - category - Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 三角形ABC - geo - 三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 三角不等式 - category - 三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 欧几里得第五公理 - category - 欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 几何原本 - category - 几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 命题19 - category - 命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 点D - geo - 点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 等腰三角形BCD - geo - 等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base. - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 9.0 - Triangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides. - geometric proof,inequality - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 7.0 - Proposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides. - geometric logic,proof technique - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 8.0 - Euclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof. - angle-side relationship,geometric principles - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 9.0 - The proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction. - geometric proof,inequality demonstration - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 7.0 - Point D is constructed from triangle ABC by extending side AB to create additional geometric relationships. - auxiliary point,geometric construction - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 7.0 - The triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions. - historical reference,mathematical foundation - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 8.0 - Euclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof. - geometric principles,logical progression - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - 8.0 - The isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships. - angle properties,proof technique - chunk-a5e3dacee89618f913c4948b6ffe64ec - unknown_source - 1752209912 - - - diff --git a/dsLightRag/Topic/JiHe/kv_store_doc_status.json b/dsLightRag/Topic/JiHe/kv_store_doc_status.json index 10b53545..1fd431d7 100644 --- a/dsLightRag/Topic/JiHe/kv_store_doc_status.json +++ b/dsLightRag/Topic/JiHe/kv_store_doc_status.json @@ -1,12 +1,12 @@ { - "doc-a5e3dacee89618f913c4948b6ffe64ec": { - "status": "processed", + "doc-86997193b152a15921e498b02550a63b": { + "status": "processing", "chunks_count": 1, - "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/5d29d93325124e6aaea624b236a57e23/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", "content_summary": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9z...", - "content_length": 1772, - "created_at": "2025-07-11T04:57:49.311633+00:00", - "updated_at": "2025-07-11T04:58:34.370868+00:00", + "content_length": 1770, + "created_at": "2025-07-11T05:09:11.662472+00:00", + "updated_at": "2025-07-11T05:09:11.665185+00:00", "file_path": "unknown_source" } } \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_full_docs.json b/dsLightRag/Topic/JiHe/kv_store_full_docs.json deleted file mode 100644 index ab93253f..00000000 --- a/dsLightRag/Topic/JiHe/kv_store_full_docs.json +++ /dev/null @@ -1,5 +0,0 @@ -{ - "doc-a5e3dacee89618f913c4948b6ffe64ec": { - "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。" - } -} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json index 0cfaa85c..a6e875c7 100644 --- a/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json +++ b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json @@ -31,6 +31,16 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "三角形两边之和大于第三边的证明" + }, + "b77e26c8086abbf8d809e39b1e55a4d4": { + "return": "{\"high_level_keywords\": [\"\\u4e09\\u89d2\\u5f62\", \"\\u51e0\\u4f55\\u8bc1\\u660e\", \"\\u6570\\u5b66\\u5b9a\\u7406\"], \"low_level_keywords\": [\"\\u4e24\\u8fb9\\u4e4b\\u548c\\u5927\\u4e8e\\u7b2c\\u4e09\\u8fb9\", \"\\u8fb9\\u957f\\u5173\\u7cfb\", \"\\u4e09\\u89d2\\u5f62\\u4e0d\\u7b49\\u5f0f\"]}", + "cache_type": "keywords", + "chunk_id": null, + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "三角形中两边之和大于第三边的证明" } } } \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_text_chunks.json b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json deleted file mode 100644 index 0f97e531..00000000 --- a/dsLightRag/Topic/JiHe/kv_store_text_chunks.json +++ /dev/null @@ -1,9 +0,0 @@ -{ - "chunk-a5e3dacee89618f913c4948b6ffe64ec": { - "tokens": 1055, - "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", - "chunk_order_index": 0, - "full_doc_id": "doc-a5e3dacee89618f913c4948b6ffe64ec", - "file_path": "unknown_source" - } -} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_chunks.json b/dsLightRag/Topic/JiHe/vdb_chunks.json deleted file mode 100644 index 42a2d8ad..00000000 --- a/dsLightRag/Topic/JiHe/vdb_chunks.json +++ /dev/null @@ -1 +0,0 @@ -{"embedding_dim": 1024, "data": [{"__id__": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "__created_at__": 1752209869, "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", "full_doc_id": "doc-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "8igHu6jy1zyArTa9TZs7vZ3K1bxdIS89YZBYPQooxTyQ85k8bifDPJYsE70GOby6MGOEPACAojvwHmi7hJw/uocL6TxNwLO8i3pRPQFAErtwTHy9tGTKOZ2lXbwv/n27g5y/u93OY7yDd4a8YCuPPFO5nDxR7wu8PbpgPMjZBb2fLx095Kw0OzR3hTz210A8Ln5dvB+dQb3fmDO9AaVbPNaVqbw3Ace8uh0jPd+Ys7yPToE7y8jPvF38d7xeRie9WjLnO/51gbs3pp67h8sXvTcBhj1iEDi8tu6JvZ/vjDxitQ+8YjVxvELzWb1Nm7u8nUr2vNSLCLxrODq9bqeivNyp67wElGQ9Q3N6uy0ZlLxILBK7yiM3vVP5LD0ElOQ7AQDDvQkDTb0ufl29obkdvZcRvLxtAgq9vjEkvCZ7UzsRhja8y8hPO0pRCj2z5Oq81MsYvSHnMTvItA08SlEKO+/5rjwl+zI8Rb0pvWmT4jy3E4I8eKosvPaySLyWbCO9b6civTKS3rz+dYE81bCAPBKrrjw0Ug09y0hwPehA1jvomz2926mqO6zGBz3TpuE8s2TKPGI1MLwPvGY9MEgtPRkJYTwOPAU9SIc6vJWiUzy853S9boLrO5gRPLvaX3s8JyBsPYCttrsjMSI9QU6AvPxrYrsu/v08aW7qPAoohLz4fFm8shoZPGkTAb04S3g8HfiovKwGmDwJgyy9WbJGPInVuDzQNzg933M7u52l3bxCTkE9YGufu3rZBD0qj1S9LVnlPEgsU70Yvy+8xzQuu4H35zyb24u7O/BPPPaySDyVRys9b6ciPU2b/LuEwTc71pUpPHIWzDvYuiG8gfemvFGvPL3W8FE97C+evP2QGbw8up88K7QLu+d2xTvowHY9ufjru38IHr1cfNc88Z6GPEa9ar1tQpq86wrnu0JzOT2vdUE9tQkiPBvTsDzu1Da8hwvpvA+8ZrvjB108kI7SPNVLejzeTgK8WTJnO26Ca7s1t1a8f4g+PXuZNb1GYsK8cMwaPS/+PDwVGti7Lj6MvDU3NjtBKUk7L/48vCqPVLvr5e68l+zDu1SexTtvp+O8idW4uqwGmLtFPYm9ZH+gu3u+LT3J/j69NBK+O9KBabwxbaW87K++PAlolDzzDXE8aRMBvZwlfruol3A8SayyPLPkqbwkVtu844e8PAFlCj01N/e7eM8kvZpbrL24uBo9mwDFvFR5Tb3Zn4m8JfsyPNOBqLufb6066QAFPXDMGrzXumK6lUcrPQUUAz1gK488ud0SPdqEczyjXjY9ritRPOzvDT0euJi8TcD0OzMS/zyglCW9R4e6vQ+hDbyshvm7qHL4vFPU9TwQ4d48XFeePLodIzwDb+y7h7DAO8MFFb3qwDW6dcWDvHrZBLzyaJc8XsYGPNqEc7yBUg48sr8xPJCO0jxwcbM7+sbJO5gRvLu957O7l2yjPP0QOr1mZIg8dKCLPESYsbxWQ949aEkxvQKl2zuJVRi9wNZ9PCkqC7yfb248bN3SvOB9G72RWCI59I3QOx54STyO6Tk9TNsKPVN5jD2roY86SAfbvDZBljyW7AI9TPYivtaVarwNcvY71pXqPN3O47sJqCQ9ps2evebR7bxruFq8DheNPLh4CrwfQlq9OcsWvHIWTLyGCyg7Bzm8PL4MrLxhkJc8LDQsuxvT8bzpQJW8XiGvvIyfST2AUo66OKZfPTHtxTwykl47Xfz3OyVWW7w1Nza7ukLcvIgwYbyRs8q6Gi7ZO+wvnjymzZ48l2zkvPLDv71jWqi79legvCy0TD2IMKA9H0IZvH+tNjx+CF+7vGfUvFcoBT0ZCSA9cxZMvZ9vrTuf74y8rpAYPeB9m7y4+Cq9nGUMvfnGSTwJgyw9Hh2hPJI9ijuVx0s9JyBsPFIUhL2dSrU7angJvRtT0bynTb86OKaevN8Yk7wXP4+8fH4dvYXBtzzihzw8zi2XPCQxYzz18he9+aHRu5tbLL1ABJC87RSGPDQSvr2JMCA85ay0PDAj9rvwHqe8CAOMu7pCG7yYEbw7O5WnvK0GWT2EAYc+dLtkPTrwDr17GZW902aQPFClm7sBZQo9dLujuwdeNLwgwvq7YRB5vJI9irsYv687MpJePAUUA711YDw8yf6+OxIGFj1CziA9Vh6lu3u+bjzom369hwvpPCQWijxkWqi9rMYHvZwlfrxQCqQ9OnAvO+FiA7sJA4y8LdnEvNZwsbtAqai7K7SLPC+jFLzcqWu7vOf0vE0b3Dz4YYA8bF1zPIoViLoGOX08KmrcuwpNvbzahDI8xk+FPD5fuDvndsU7yVlnvD26HzwCpVu96+VuukQY0rxa8pW9Kuq7vKaoprw1XG88qJcvvDhL+LvbhHM7JnsSPPPoNz2pvKc8OKYevWI1cb36Rqk8pIOuPDy64DxM9uM6gfdnPSagyzwkVhq9itX5POwKZz2zP1K82bohPUaikbw6cHC8WY3Ou0Lz2byoly88K7SLvDKSXrzi4iM8rMaHPOWsNL1/LRY9uFNTO2kTwrzcjhK9kljjPFhoFb05y5Y882jYvMNFJT1XQ1483CnLvNRLubwWmvi8FhpYvVmyhbvbBNO8BC8bvPJDYD0Y5Ke9k/37vObRLD0v/ry7yBkWPJAO87wqatw8bF1zPPGex7zom367t666PEy2kr0BJbs7RuKhvHeqbTzwHqe8ICcBPIkwoDwHudw8nUo1vEeiETyALRY8uNNzPO2vvjujXvc8jB8pPLndEr2bAIS9ebQMPb4xpDxCzqC85tFtPauhjzxMtpI8lsfLvIiwwLyaW6y7E6vvO9C32DthKw88sz/SPD5f+bpYDa48LyO1PBOrrjuIMGE8yNnGPC5+HDwfHeK8jw6yuiAnAT1ILNO7tAljvUWYMbz3fJi8HfgovZbHyzy6HSO9WI0NPYHS77x94+Y8TRvcvKMDDj2x2gg9CQNNveFigzuqvCe99rJIvOC9bD1S1LQ8StFrPZZsI71/CB696QCFPWQ/EDzn9mW8KEUjPUpRy7w3AQY9/3/jPOnAtbxobim9JiCrvHaF9Twfwvq8gO2FvKm86D3v+a68RuKhvGGQFzw9up87I7HCu6bNHj25eMs8Ko9UvWR/IDwyEn87/1rru6GUZj2ZthO9QAQQvQkDjDynjQ64i/owPFUeZr32VyA81hWJPKq8J71RisS8Pp+HvE4AA72ZdgM7m9vMvAQvGzycZYy89lcgvNQmQbw1t1a8dWC8O3UFFLwUUAa9JVYavFho1ruz5Gq9RmJCvE2bO7taMiY7CINtu+zvjbvJ/v87rSuQPE+lGz0Lzd27A++KPKiXr7yEHGA7k/06PTFILTykg648sv+APHHxUz2vUEk8IWdSvJUiMz2K1fk8gncGPZeRXLsKqGU964qFvDgmvzwl1vu6+0apOp/vDLtSFIQ8EYb3PO7577wYZEg9rQbZPAfe1Lzom/685xsdvVbDvTubgKS8yFmmvJ2KhL2YkVy8UhQEPGDrPzxSVJS86mUNPBKGNjseuJg81nDyvPXyl7wwyIy82TrCvI7puTxDGFK8nUr2PCbgmrx0YDw6PHqPPHFxdD0Dbys8yX4evZpbrDvGj1a7hcG3vHw+Tj0jDKq8oBRGvIFST70stEw9xg/3vHiqLDyzP9K82LrivKaoJr1S1DS9Q3N6vJbHy7yR2IE7Rj3Ku3dqHL3nG968XNe+vJcRvL1Y6Pa7fuMlOwxyNTtpkyG8ez7OPBqueb2e70073KnrvH3jJb09Xzi8IzGiO4Qc4Lr7Rik8aVMRuyYgqzyMn8m8gK02vbUJYzwh5/K8j+k5vKm8J7yshri8XsbHvNBcMD3GD/e7H0LavDlL+DwVtY686+VuvCuPk72b20w9e5k1vNFccbxYjU68/loqvVLUNL3QXDA9mwDFvBi/rzumzR49gvdnu0ApCL06cK+8wFYcOioP9TzTZpA64wddPecbHT263ZK7UYrEPCkFEz2Ykdw7E6tvvIsfKT0McjU8feOlu/vrgLxexoa9HfjpvC+jlD2SPQo9gfemvDU3Nr2sYcC7y0gvOGI18brCoM27SayyvAc5PLxwzNu8TcAzvWK1Dzw78I629rJIPCV7kjtXw/47Iecxvcsj+Dw78M+8T+UrPQ48xjyb24u8czsDvsn+fzyocng7LLTMPBbahrxHB5o8DVedvA68Jb1Ix4k8qBePvJ9vbrxpbuq8WA2uPE3As7wzEn88k/26PCEngbzcjhI83ClLPEz2Ij2VR6s7tAmiPFUe5jqQM2u8eU9FPKeNjrxyFsw6+aFRPULOYby6HWS9jETiPJEYErwfQtq8lmyjPYDSLj0GuVw8IOdyPLjT87njh7w8QakoPAqopDwOvOY8zxLAu0iH+zwN8tU8r9DpPF7Ghrynsoa86UAVvDim3zwa7ge8nu9NPCQxYzxS1DQ9JNY6vLbuCT26Qty8O5UnvTyV6Lxd/Hc8MW3mvBOQlrtruBm97K8+uoewwDt/iP88MMgMve3vjTzWlSm8wqDNOtoEErxK0Ws9gfemPDSSHb3Gj1Y80gGIvOFigz2xmjm8Qs6gPOvKFb2VotO80Df5vApNPbyr4R89HFNRPK0G2bye78285naEuw/hHb27Agu9f4g+vVGvPLxY6DW9ot7WPH3j5ryRWKK7D+GdPIoViDvcjpK7apNivRHGhTpRCqS8Eoa2PNMmwTyoF1C9angJPZbHSzyPKYk8GeSnPAdeNLyshvk8LDQsvIcLab1pk+I8DpfuO83txzv7Rim7d2qcPZ2lXTzpAIW7zS0XPT+EMDyVR2w8i59JvA1XHTw8FUi8cbECPULzWT1RCuU87/kuvbD1oDwwCJ29xWreu/ghMTxILNO8OnAvPWs4Or1fa2A8Z0mxvALKU7yYttQ7vgwsvSoPND3HNK488HlPPPbXQLwq6js9TPYiPSVWmjtcVx47BTn9OgQURD0Vdb+6k32aPfNo2LwijAk9q2FAuT1fuLyK1Xm8OKbfvB+dgLwhZ5G9/ZCZvPmhUTwD7wq8JvtzvC8jtby2Lts7YjXxOyEngTyIMGE8nEAUO1coBb1zFky9e5m1PQtN/rqPjlI8kVgiPf9aqj2ocjc8BBTEPA2XLT2DnL87pihHvDhL+LoDSvQ8HriYvVx8ljz4ITE87a//O4r6sLwHngO8YOs/PHeqbTyDHOA8rpAYPbO/8rvv+a68S/ZjvA48xrtrODq9ncrVOxnkp7xABJA8dgXVvN8YE734fJg7yn4evNspCr3BexQ9zMjPuoMcn7yPTgG9j44RPW4ngjzbhDK91Kaguipq3LxI7IE8SdFrvE/lKz3gvWw97AqmOvZXoDwsNG28TLYSPYvfGL3xnkc9hME3u5LYwrwJQ5w89tdAPL4x5TwstMw8sr8xPAjeVDzxnse89A3xvCFnkTy0iUI8NbeVPCOMyjxQigM9TcCzvA=="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_entities.json b/dsLightRag/Topic/JiHe/vdb_entities.json deleted file mode 100644 index 7e6af989..00000000 --- a/dsLightRag/Topic/JiHe/vdb_entities.json +++ /dev/null @@ -1 +0,0 @@ -{"embedding_dim": 1024, "data": [{"__id__": "ent-043d3380caf00eb2310dd3faa6a84004", "__created_at__": 1752209912, "entity_name": "Triangle ABC", "content": "Triangle ABC\nTriangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8f4c99eefe09648d35e0adb3a70e4e46", "__created_at__": 1752209912, "entity_name": "Triangle Inequality", "content": "Triangle Inequality\nThe triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-db5203dcd8d28444cb765e0a69fabc39", "__created_at__": 1752209912, "entity_name": "Euclid's Fifth Postulate", "content": "Euclid's Fifth Postulate\nEuclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-847c21da8ab5c456b960f60c394aa01c", "__created_at__": 1752209912, "entity_name": "Proposition 19", "content": "Proposition 19\nProposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8ba3a27004f706af0260e986bc6a092f", "__created_at__": 1752209912, "entity_name": "三角形ABC", "content": "三角形ABC\n三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-8a5ebf15695060ebf00d53ab04833554", "__created_at__": 1752209912, "entity_name": "三角不等式", "content": "三角不等式\n三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-c28aba2ebce9095cd8d78f1df53c3cbe", "__created_at__": 1752209912, "entity_name": "欧几里得第五公理", "content": "欧几里得第五公理\n欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-33baeb08781cf03b07b33ac6f4b4165b", "__created_at__": 1752209912, "entity_name": "几何原本", "content": "几何原本\n几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-9ac5593950faa90a93f1b5feec7e9295", "__created_at__": 1752209912, "entity_name": "命题19", "content": "命题19\n命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-1c05bc513bda1ef4c9e16fbdd1e1776a", "__created_at__": 1752209912, "entity_name": "点D", "content": "点D\n点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "ent-6864816e2804264ec4a684abb1343e5b", "__created_at__": 1752209912, "entity_name": "等腰三角形BCD", "content": "等腰三角形BCD\n等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "yVbxuifFmjyJJ4K9gOy2vCFgtzu7ioW88f1WPKM95DxT/B68QumlPJVk8rxOND+8vVJEPGgtbrxpkIs7moLpPLKzWT1dVB29XziNu1kalrzKKza9EmqSPNTKILxCavi7VpmiuncUCT3QOoK84UB1PVnTqbueLRa8XZuJPD/ogrx+CEe8hpiGPfXFtrxCavi8pXdrvC+AlbstHfi8z+UNPbkYPbwIZwg9Hl8UPaERhrzSn8Q8xqrCvAaSwzsYM5W8nFeuPMVj1rxjOtM7CBIUvPw5RT3rUAU8/2ShvDgfALxb/gW9VcTdvJuCab3U9du8un1/vHC9rbvuGWc8d+rPvJyQEr1lyCs8iDUKvPTwcbpSX5u8rgervLc0zTzgMco8ZYE/vScbsrtbtxm9VmFhPAMRUL0aegE5oMqZvMtyIj2lIVS8XkaVO+7fgDuV8kq861CFvM2Q+LvVkl+9UlETPcu5DrxGsYU86l4NvQxpTjzq0DQ9qcyAu5yQEr28C1i9ZpDqvKl3jLyQ/ow80y0dPfG2aj0vuns8ahHeO1JuRrxyE8U7VDWDvdmFej3pQlw8RIYpPUQUgrxN3ic9RqR/u+TBaLzA/nI9tCUiO2bXVj3X6Pa7HSYwvD3aWbym6JA8YLnfPGZlr7ztw089bUvlvCrHYDyzzwq9UyfaPB+L8rxinc87AJ6Fuw8V/bxzInC8xqpCvEOxZDuauiq9KnFJvbrg+zzmMg49O8uuvHKF7LzZzGY9rmqnvKwGiLw12HK9Rb+NPQ/bFr2xFta7ZKx6OumJSD0NsDo91UtzvdmF+rvXL+M7QyKKvHFLBj3lli0981PuvKWgAT0SFZ69uNFQPTuv/btPQ2o79htOPfj/vbxEhqk8cFkOvXfqzzyZVos9he78u26h/Lz4/z086yZMPSnjcL32Yrq8kziUuknP2zwl4Sq79G8fvBWyoTzPrKm8f88DvQhnCL2SjYi8DPemPBde0DyTDtu8X6q0PCbw1TsWCLk8dNoBPbcXGr3lCNW7NkmYOxZPJbs3LYi7kPAEvSq4tbxEFIK9rmonvSBDBL0rOIa84/mpvB4KILxvICq9MixEO3trQz1inU+9xVSrPDZmyzxYjL28MXMwvCPF+bzhFbq8bUvlPIDsNruuo4u8by9VvOB4tjwH2S89ZtfWPHsVLL3ExtK8winPPMYc6jz44oq8Cj5yvSThqrtLs8s8cC9VPQZ1kL1DB/y8eQYBPWyDJjt2d4W8QZOOPINR+TwQo9U7WYw9ugvb9TwmxRo9WlT8PAOfqDyhEYY9ZGQMvT72Crxcf9i63urdvMK3JzxObAC9GiUNvanpMzxjcpS8tqZ0vUnPWz196xM9UlETPbRQXbzksr280uYwPHfqT73GHOq8WgwOvEnP27xWYeE8LwHoukcy2Ls4A088td41Pf8dNT3stCQ8ghcTvbSXybwWTyU8tJdJvLmmlby/jEs8BC0BPDWQBLyLU2A9AjsJvdiSAL0RMa68XZuJO+3tiLuok5w8m56avNyFG7331GG9dU1MPLTBgryTDlu7PIRCPGIrKD0E2Iy8+pzBOjeRJz0PTb481BENviPF+buauqo80EmtvDjYEz3lQJY8BnWQvAKD97zu7Qg9iSeCPQv2A7zOHlG9GvtTvRIVHjyFpg49p9oIO5cBdrwgp6M8pT0FvVD8/Tk7r/28EvlsveV6fD2A7Da8sIj9POvfXzzUg7Q85QhVvCEo9ryfA928SesMvdHKf7sJvR+8AyB7vBExLj3IuW0882+fu2FHOLxV4I68cUuGutAR7DwXlpE9na3FPG2DpruQ8IQ7xVSrvD++ST3zbx89GtAYvQ+UqjuxXUK9auaiOxcX5LyRKmu96ftvvVB7qzvrJsw7E86xu5Y5N7sib+I8q/jeuvdFh71oArO8Clqju9a8mLxYb4q8eHioPIKJujvCUwi9wrcnvIfS7DxEhik8ZpDqPBB4mjwwSFQ8H1EMPLntgbxk8+Y83LDWu5rzjr1HXBE942vRPA2wOryMfRm903QJvPNTbr2ckJI8PvaKvN4iHz1JFkg+puiQPXcxPL2+YW+98f3WOvLSm7tkrHo76204vWoR3rxR0cK87cPPvFpwrbwEZ+c7ZmWvPK3cTr3ztos7mrqqux4KoDwvco09u5iNPGrK8TxOF4w8JCgXPQfZLzyNYYm9MXMwuz72Cr2xMoc9B0vXPDkSejwdJjC9HMKQPCq4Nbwb30M5gWwHPaQSKbwY7Ci9THoIvVe3eD1zIvA88yizPAECpTz2DKO8T0PqPF+qtLw1V6C8tnu5u+FA9TuTDls74RW6PMFhEL3WIDi96dC0u6uGt7zb6Be93ZTGvLcXGr2pd4w8/KvsuXT3tDx/F/K758+RO7YXGjxoLe681UvzvNWSX702vOI7ahFePWfzBz0njVk8K/GZPQ9NPj3piUi9RzLYO87zFT0NPpO8ZPPmPBYIubx6zj+9vn0gvYaYBr2sI7s76ULcvJ+RtbwDEVA8Cr2fvKCRNb0fCqA9JTdCPey0pLxW0ga9ny0WPWbX1jtqyvG74AYPvcXiAz0FrtM8QAU2vaQh1LwQo9U87e2IvIT7Ar38cYa9eb+UvFbvuTxJFki95IeCu4Z81TrO12Q8ZqybvA8VfTxWYeE7PIRCPIIXkzvXrhA9dneFO/YMI73+SPA8vAvYO+Ik5TqZc748k1XHvLXetTxW0oY9Td4nvR8KID2rIpg87lEoPEeIb7yhoGA8aRFeujctCL3XZyS9MB2ZvKVowDxeVJ07ZtfWPFzGRDy67QE8u7VAvZuemjzsNfe7hCa+O/ZFhzwbmFe8k5yzPAmF3jwjxXm8O2cPvC/WrDxsruG8LscBPFlFUTxChQa6KziGPDattzwzO2+8NvQjvefPEb2zQTK88bZqvWoR3jyMqfe81DzIPKb2mLxfOI09dLDIvHMicLsjixO8sRbWvIuaTLvKnd280AJBvUWVVD0snKU89cW2u4uLIbxb4lS9cqGduwuhj7zTH5W6MEhUvZM4FL0YXlC7QAW2O//WSD16zj+8xqrCvGTIqzzTLR29vZkwvJUqjD092lm8PJNtvKDYIb3s+5A8WG8KPa3czrzb6Jc8MNYsvWieEz3CKc88+sd8u1viVD2FCq47VtKGO6QSKbuaSAM8T6bmPHT3NL1BhQY9twkSPB4127xLs0s85zMxvEKiObrP5Q29jG+RvAa9/rs0rJS9FXrgvKjMAD0q/6E8dNqBvD+hFryIYEW89xtOvC/HgTxKs0u76hchPEHpJTpRitY8MeXXO0hOCToR6sG899ThPChiHjxQeys8vOAcvbtDGbwPMIs8+UYqPZAbwDybnho9ZgGQvD/ogjyzQTI8BpJDPM90aD1uS+W7HSawvPqNljwygls98praulVStrs+rx67THqIPb8ZAbwsZGS8FXpgPWUPGL1oSR89RiMtPB4KIDzj+am8gwmLPKDKGT3neh29zzoCvUolc73PLfw6I8V5PCpxSbyhoOC8w3/mOSs4hry5Xym8eEDnPGh0Wj3rJky8JeGqPCKLEzlaKUG8RlwRPOfPkb1SGK+82qErvRwmsDuM4bg8ueD7u/4AgjsGvX47YscIvcFhED2l9hg8oz3kPM7XZL0htk49DT4TvShinry40dC8iO6dOgF0zLzdlEa9RiMtvbL6xbwcbRw9gtCmvKfaCDw79mm9uRi9O5ksUr1ou8a82cxmPS3jkbwkU9I5tIiePCSavr3QAkE9zZB4POBA9bzw7qs7TJe7u1/xILyfggo9JRoPvdERbD0hpyO9J36uvDK6HL05Lqu899RhOzgDzzlHiG+8DbC6uz72ijzu0nq8DWlOvX35mzx5vxQ83IUbPfPEk7z9gLE9+3GGupyQkrxX0oY6OEo7OlJuRr374y09Tl/6vMTV/bsz84A8gWyHvLWm9LwcwpC8GiWNvCv/oT1QtA+70Ektu3oVLDxYjL27xjgbPZDwhDysTvY8Iv06vHcUCT11TUw9o4TQu3/dizwhp6O91iC4vHNpXD1Borm7eUBnu2EPdzxuoXw8gDMjvXaUOLuvlQM9iW/wOmhJn7p8QAi9dzG8vJpIgzxCork8+g5pvT3aWbpPbAA8iLbcvAsTNzxEFAK9BnWQPOEVOjot45E8CYXevd7bsjzAxIy8Ba7TO/H91rwCWLw73LDWvOV6fLztmBQ9iDWKvQ8iAz3wp7883U3aulGmh7zu34A91tnLPKU9Bbw4Sjs9rWqnu4UKLj31qAO8Tl/6uxl6ATx197Q6wbaEuxQHFjxj5Ds8lNUXuvFEw7wNk4e9ghcTPde9u7w+vsm8SAedPe5RKDzREWw9TJe7OOw1d7x8+Ru7WDYmu4ClSjxAW009aLvGu/ZFBzw42JM8oaDgO8JTCL3hXKa7YQ/3vJks0jy5GD08Fwg5PAz3przpwQk9/BySPC0d+DxEFAK9q/hevWPkOzwp4/C8ZtdWvBdPpbz7q2w7CYVeveZPQTxjrHo8sF3CvEKx5Dx8a0O7gbT1u8TG0jxm11Y9sF1CvPAnkL3ZoSu8Tl96uQgvxzz2jXU7gtAmvLp9/7xFv42831sDvGk7F7pMiBA9LJylPIlEtToQo1W9ahHeu1Lgbb2cVy69XA0xvUnrjLx5QGe9aQIzu/O2i73lweg8vScJPWasmzxW0gY9xA0/vZwf7Tsx5Vc7jTdQPLLdEjzp+++8q4a3PYfSbLwKPvI7pWjAOiqbAj19eu67gkJOvJpIg7ywQI89q80jvTp1l7wLoQ88+OKKPaiTnLyC0Ka7UYpWPArMyrvXoAg9MVf/u5Vk8jzRkJm8Cj7yux5RjD1r9c08Pq8evTBI1LvDOPq8DyKDPI2pdzwVpJm8iW9wPQ0+E718si89NjsQvabokLwkmr47suuavI030DyqaYS8wEVfvPkO6Trtw888ljk3O6RLjTtou8a88osvPNQflbwBdEy9hQquPZ6Cir2NYQm97t+AOhxtHLzZPYy4vMRrvOczsbwE2Ay9eb+UPMhHRj1q5qI8tMGCvBL57LwzELQ8IkQnPSJEJ7zB4uI8rWqnO0jAsLx1TUy8KVSWPYH7YT2ckBI9V7d4PbwLWD0ugBW9Q/hQPSs4Bj09BBM9Q/hQPXrOvzyIYMW8NKyUvepeDbxSJ1o6+XHlvCYMB72+78e7CFkAOyAZyzslYn08y4HNPMM4+rufA927lCoMvGz1zTuooke953qdPGhJHz0NePk7GDOVPF7Vb7x2dwU8j0b7ukSGKb1BzfQ81MqgPGzKEjxw6Gi87Qo8PfrHfDxhD/e7RIapvDkuqztg45g8QEyiO1Q1Az0Ybfs7ZtfWO5KNiLsBg3e8LfI8PR58R710sEg98dKbPOrQNLm7tUC8KGKeOGwtjzz1xTY8ZcirO4ClSjwfi3K57Qo8vUjAMD2SRhy7u7XAPNMtnbyTfwA9FJZwvIucdrxS4xI8b4ZxvTty8Lpl3S+7RCTyPD3ILL1xRhQ9SHAZveATebu9mG69BBqzvI2RjLwuEky8DxmxOjhaZzzl4Y89tTypvBJmrTyQ3oi8e1m8POWtcTz0Y1K9GAAmulfxBj1GGYg8N/nAutuaST0rzg88N8RNvEkxkTx+EJ+7HzC4vNLoRzo7Pf28uhb/O3I9VDvjyQa8uR+/O14XBDyH95O8FR0QPBvjuzyvojC9UMJJPN5RLLyQqRW79k8ovUMtMjg4WZK8p+duPEELFLxT2tI9WtQcPKnTRLxR7nw8f9GWPPdG6LrffIq9ycsKvYEoqLyKeYM75CAYvd59X73BpY08Y4dzOjsRSrxd9jq79PgWvNkY2rx0kxA96+bDPG/vgr1feCq97DyAvRyuSDyECz69Mf6hPLU8Kb3+3ws8OGOnu5vxMLyEdSQ8N8RNvOvmQ72/ubc8GGqMuoEoKLyHWLo6Sfwdu+cv4bwaYcy8YNlQPStkKTt4FYA7ndRGvXZUCL2GN/G8qacRO+6UZjsMLVs9QRUpvEJ2zzynUAC9sxtgvP1/OrxBC5Q9Zj2BPIvQFD06EUo722VWPVZcwjy9zIw8L3IdPfZPKLzpuhA9+dEXvJfZJzuFAn49SvPduwb9yDxYveg8OSX0PHvDorv3EXW85Ouku+eZRzyX0Oc6QRUpvDZCXr3dhh+9H/vEPFneMTwB+JQ8FX42vQqqFr2SAfw8lSLFu+wHjTm2M2m8sJnwPGdzSbyn5hm9hTacvQZnLz04Wue8E13tOx1E4rznA648DSyGPORMyzw0Sx49XVdhPC0bjLysv5o8dlSIPFBYY730xHg911aNvak9Kz2QdKK8vKEuPbTm7DxVO/m8e1m8POHKW73duxI8mSakPZuzfTq2Bza98824vGWoPLuNJya94J6ovIY38bzxtS89xR49PaaGSLwAmMM7PvTfvGL6Gbu8zeG8NUEJPd6Gn7sFnCK7rwyXO927kjyworA8Byn8PNXKiLzP+xy9V71ou2+7ZD0btwg6jojMPMUePb2RCry8H1zru1YwDzx1Kaq8Q2IlvcCw97zMGAc95m2UPKDsz7xEjti8TH6NvSdMoDzJYnk8bo8xvIXWSrqR1ci8hKoXvX8GCj2kmnI80+jHPDp7sLwA+Wk9BpPiPODTmzvY4pG8RO/+O+0zQD2eaQs9f9srvK9tvbzgnqg8kgF8vCoDg7zhaTW9EA+cvfYaNTwW6Bw964UdvQwtW7w724E7hNbKu7tAiLp+pjg95OskPY60fzy6VLK84f9OPdWVFb1cwcc8XJWUu99HF71zB4y8zOTovKlynr3c++88tzIUPOc4Ib2b5xs7L3yyPBJmLT072wE8pxzivFkTpbwAzba80kiZu2E69zpPYSO9kgF8PMUePT2qad68alZfPH+d+DwYyzI9ei0JvV/iEL30Y9K8PcisvAPlv7uOiEy8ubSDPew8AD2Gode7G02iPHUpqryH95O8sJgbvQxizjzYtzO8bA1CPU/LCTu/Gl68NaxEvUVYEDyj2CW8u0CIPJvocLvYTU09sAKCugJPprt7+JU7y4NCPDL+Ib5Kkje92m4WPVo+A7ynWhU8FklDPfM3H7129Da82jkjPYJThj3zzbi83rJSvRsYL7o+KdM7Ntj3PG6Psbusiie9HUTiOngVgLtZqT685bYxvbvWIb3/oIM8+pNkvGkgFz3e50U7rCDBOcnLirrp7wO9It0FvN2Gn73D/fM8qqeRunC6j7wEEfM8f534uicXrbz2uY48VTCPPMDkFT06sCM95OLkPAwtW7s/v2y88824vLED1zvvVAk8J0wgPYnu07ySCjw8GDWZvDiPWjxN3zO97HzdvFBYY72RoFU8fLpiPa9tPbtBQIc8L7Glu03fszsq2Xm9A+W/vBLHU7rYGNo7Ny60vDLA7jwtGww8d+t2PLoWf72/Gt48OSV0PKEhQz3aOSM8AfiUPEim4Tz50Zc7vcwMvHzvVTxKKFG9T8uJPcFwmjwOuIq65CAYPXerGbs2zQ29eKLZO6z0Db3Jlhc9S/NdPh+QCT0i3QW8kXSiveS2sbxWxqi88qzvPBx4gDxi+pm8DsN0vHM9VLxBQAe8OhHKO0VYEDwkyjC9+pPkO1SkCr1IpQw9Uq6fPJmQCj3D/fM8xelJvTFfyD0sW+m7tmhcvfmcpLwawR08Rnquu0uJ9zx5bWa8DAEovTmP2jplEiM97Z2mvDYCgT16oQS8tOZsvEryCL3w6iI90VKuO4Iekz1EJPI76DghPGmLUjsQr0q8ArkMu+V4/jzdUay7OuWWu/Uu3zwYlj878RbWvAzMtDtBQAc8ZRIjvY3yMr0qzg+9eW1mPZfQ5zveUaw8H1sWPe0zQLwKSkU9JMowvRZJw7pAq0K93xP5vP6qmDwj3lo9u9YhPfa5jj2BiU49r209vQH4lDwyKQA9zOOTvGS85jxm1O+85wOuvOCeqLwawvK875Tmu80Z3LwrkFy97f5MPO6TkTw6ezC94TRCPfmcpDypCDi9kmtiveUX2DsZ9+W8/LStvL5Ykby8bDs8w/3zvEEVqbwtG4y9jZGMPCv6wrxjJs28PKfjvKC33Dw4Wuc8Uw9GvQxiTjw4j1q8WROlvL2Y7rwuEky90bwUvL8jnjxxewc8y+0oPJodZDz8HhS9QEocPaxVtDysiqe8y1ePvAp2eDpYvBO8hjdxPD2TOTtJ/B09Byl8PClCC7sqmRw7hECxumdzyTxVMA+9KQ5tvfM3H7zvyVk8K2SpO/OYRT3CnE084crbO3h2prwJ6R68ltmnvJzdhrzxFtY7sDhKPL5YET3nZFQ8ie7TvAwBKL1Dl5g7/B4UvbMb4Dyj2CW8N/nAPNhNTTtv7wK9qdNEusyvdb0cedW8Td+zPL+NhLw+9N88IVGBvbU8KT325UE8/avtPIzQFDxwu+Q87f7MvCgObbwlyjC8m1LXvFSkCrwGZy89rb8aPTvbAb2zsfm8IqiSPJektDv27oG8bKKGPB4EBb2XpDS86xL3PEgQSD33sE690byUvGCjCL3SfuE7MvQMvZVOeLzlF9g9JvUOveRMy7zozjo6RnquPI5ShDzkTMu8VTCPPEnHKr2yJCA9Lke/PO2dJrxvWj496e8Du7CZcDywDBc8Ft4HvBhqjLxn1G+985jFPCKoEr1Py4m9oIupvM0ZXLwGnKK8TwoSPH1FEr1mCWO8O3EbvRphzLyRNu+6QLSCPHnXTLyb5xu8jr0/PBuClbxBdk+8Zd2vu8Xpybze58W7Zj7WPH8HXzwREPE8IkhBveguDD1d7fo6tBtgu7m+mDzleP68junyPJWCljxaCmU9o6MyPWt3qLze50W8hyyHvBXonLwN+Gc9sxvgPHLTbTxQLDA9Xu16PYf3kzxwu+S8J4ETPIHHgbwF0ZU7Zd2vO93wBTwOw3S8hHUkPSGypzxO1vO8y7i1vAQRc7y5tAM9Ka3GvIdYurzDMRK96cX6u9oEsDzXIRo8tLH5uw0sBr2LpbY6OhHKvMI7p7x7w6I8RxBIvK22WrfSFPs7viMePPa5Dj0Q2/28Zd0vPAEu3bwW39w8fLmNPBza+7yK2qk84jRCO7yhLr3rEvc8/UpHOxiWPz2IueC8EQUHPJcFW7xBQAe8EvxGvTEq1bz0mEW8xDJnvXmhBL3+4OC8Ntj3PD1exrz6kg88DSyGuwrg3rwEEfO8NBarO3/Saz1dIu683n3fOzRLHj3FvZa9H/vEPMNn2jsiqee7b7tkPLVxnLwr+kK8vM3hPN9IbLyQ3oi8iLlgvaaGSL1hOve8H/tEvUZ6Lrsk/6O81TVEvWJbwDsGx4C73ufFu2tCNb2LO1A9lngBvW05dbv/Np29Ak+mPYCdeLy/ubc8ub4YPdujiTvIoKy81cqIvEcQSLxd7Xq6AM02PbTmbDwfkd47SKbhvBwYr7z5Z7E9TkDavBWzKT39FdS8Joz9vLDOYz1IpuE8OFkSPWXdL7wZjf88Uq4fPKaGSDtpVt+8qmlevGvhDryc3YY9AC7dOzvbgbxOChI71D6EPAAu3boLdvi6qjMWOSb247wxKlW8glTbusXpSb2Ut4m7m/EwPGkhbL32uY68HE0iPIR1pDxXkTU6lFe4vD8p0zwCTya9DAGoPLOx+b2LBl091J+quLYHNrsoDu27+ZykvLm+mLzefd+85OukPKTPZb2+Y3s9OxFKPOH/zjziaTW8e8MiPV4XBD2nHGK9d6sZO5S43ryFoII9y05PPGY9AT2Xb8G8tTypPLkfPzv6ZzE8hyNHvP5KR71Dl5i8pM6QvGY9gTwW31y8D6/Ku2DZ0DzLuLU8KgODPZjQZ7wylLu8EtATPZWClrwuR788Lz7/PC/cA70AxPY6F3X2u9gXBT2BvsG7rkx0Oz3IrLyyujm9N/nAO7nqS7zGUzC9wXAaPetGlbtJZgS8lO3RvFLjEr1a1Bw8D+Q9ulbGqLx6bWa7zeRoPPEWVr14QTM8YG/qPNgXBb3eHLm7DSwGvXIIYT22aNy8IqiSPZDeCLzDZoW9m/EwvMWIozz9Ssc7cCXLu08KEr3/ASq8EsfTvCtkqbxjJs08DSwGPAddGj1Ms4A8gccBveSBvrydPi29U6XfvGDZ0Dt87gC8AfgUvaQEWTxzBwy9LMXPPK22WrlW8ls9NazEubTmbL0ERRG7Mr8Zu/9rED3Qx/68zORovRbeBz1byoc75RfYu/OYxTzGf+O7tjPpO7Xbgjxh2VC8WqB+PLw3SL1olBK9Z598PG5tkz3cxnw8A3qEvEbkFD1DYqW8uR8/PWlVCjr9fzo7obYHvU5AWjzUPgQ9K/pCPb2hrrsv3IO80YchvXhBMzy6fxA90R27PD70Xz0oeNM741ULPVyM1LwoeFO8BjI8PFD3PDvukxE9PKaOvDR30bzSfYy9tgc2OvNskjxwhRw7SvIIOtdWjbt7JMk8+QYLvSvFTz2QP6+7N2MnvYNTBrwSmyC9NEuePBEQcTu8zeE8EBkxvas0a7v0+Ws8a3eouSe2hjxj8AS9VDv5O8MxEj2HwiC9P/RfvGkhbLxb1XG9e44vOxRSAz2LO1A993oGPbPvLD1TRDk99uXBu/SYRTxxESE9wtHAPL5jez1URDk8+dGXvH/RFr2mhkg9fjxSOhd19rx2HxW9aovSvK3rTbzZGNo8BpyiPDBoCD0ywG48YNnQvIR1pLyjo7I6iE/6uyrZeTx5OHM897DOO4If6LsTkYu8fnHFOy7dWDxjuxG99PnrPKEhwzyb8TC8fISavLCZcD1GryE95CCYvFbGKD2LBYi7yZfsPJVO+Dugi6k9/FMHPbSFxryo5+482888uytkqTzleP68hECxPBB5Ajy/T9E7zOOTPBB5gjxikLO7o24/OzXY9zv3sE67F3X2PEfkFDy6Sp08K1vpPAjpHj3NGdy8Ak8mPaAqA71BrCa8v087ulSID7zXqcc70ta1O7fSzLw6C4k8hx60O2nUVj0X7hk7ErcfvT1mMr2AWpw7j82WPDBO4bz11mU82++7PA4ieLgV/RM8gL4EvaYEqb2MVa68sPH1vEtvCT2IVmO9RhvQvHuHCryIVuM6MLJJO4qrUT2ZUEA91bIGvV9mYjvRbJI8nWr7vEwLobycljS9OYQmPBcgjrw2PrI6VhWtujWF27ypSh09TjRWvbb+BbybLBG982YHvPCf67xD1du8OeiOvJN9rjqsD2q83wl3Pb+zo7zsPge9VhUtPRc7/rw22kk8QKymvSU+Grt9FCi9rh0vu1NrUL1ggyG95KRZPOjVmDti8387HoA9vNJyTTrzZoc8RX+4ukqZczv8GyW9hi0uPfSeNr0J0A28qJHGuk/Q7bvTDmW8DgeIPJbDorwDdhk9vG2vPJS13btttuK7qJFGPRmtK7zp29M8K3vPPJdfurx8qoS83XzZPIi6Sz3RuXa8T1GVO5GMqLuFw4o5I02UvLiLozzQyPA8YIOhPNo2ZT2moEA8BgnyvC7BwzxYBrO86dtTPSAHoDyzuBE9UHSPvKKhdTy5w1I9HHL4PKKh9TseFpq8q9c6vESOMjwn/as8m/ocPHRfirwotoI8rcjAPD67ID3nBw28WVshvZoJlzwyP2e7/+DxumqNLb1UiA88CQICPQR8VLtdPa08bVL6PP4Mq7x4eUU6SWHEvF6Smztub7m8JHCOvVSIjz3raPG8CU9mvF09Lb2BLmM9seL7vIBaHD1ttuI8aynFub3CHTyKq9E89J62PE78JjztdjY92jZlPAIn5jzGWvy87wNUPaXnaTwRE349Gd+fO8sSHrwqdZS8BBhsuWdHuTykrzo7Ff0TPEBIPj0BUx+99SWZvYpHaTzAh2q8U8+4OnD8VrvoP7y7zZ+7PO4SzrqVbjS85MEYPDCdlL0y8oK7wvkXva4dLz2ioXW8iXOiu5VuNLt0+6E8W34bvWx+MzsUdrE8BryNvCxs1TriT+s8hmVdPUGsJrzfip68NE2sOrsDDL3C+Ze782YHvUq2sryPzRa9UjOhuy7egr0VSvi8QQEVvYfmhL37sYG8SpnzPIr6BL2krzo8ebF0u+owwjvdfNk8oc0uvZ1PizxBARU9LsFDvJ94wDtJxSy8ogVePF7ED7gGJjE9PrsgPJt59TtSl4m8FHaxvLvRF713iD88P49nPNWyhrva6YA8B15gPeDCzbwFNSs9ynaGvJN9Ljtvp2g86SqHO8r1XjvyEZm8QYBtvaWaBT3fih48ZGWtPOF7pLwyXCa90jqeuijR8jupfBG9gkuiuwgXNzyYl2m9RMZhunR6ejpxGZY8k32uvHJRxbyhzS48uuARvNDI8Dz6qfc7bGH0vE/Q7Tz+qEI9vkkAvBO9WrwV/RM7xIY1PSvKAr3WVFk86pSqPGh/aD3NO9M8l/vRPD46eT3nOQE8pEUXvNPBAD39U1S93ESqOVHBcztSFuI8T+0sO2KmG7wEGGw8TIp5vT9XOLxJYcQ7R9QmvREwvTxpnKc8MLJJPZA3Orxy7Vy91vDwvGcq+jwFNSu+b1oEvYDZdLwcVwg9MOp4PGAC+rcC2gE6QKwmvWrxFby4iyM9gD1dvSL+4LwJAgK85uSSO56/aT3RngY8TAuhvPnVsLwY9NQ70ta1vKVokbw0sZS9Lt4CPeAmtrsmRNW8h+aEvHEZljtMCyG9I5r4vFna+btDVoO92f41PENxc7sRzFQ8DBaCu1uwj7zRnoY7hNg/OeQlAbwagXI8iFZjPXpqSz1gtRW9Ph8JPWdHOb0wTuG87mEBPKKGBT0O1RO9VcC+PDJcpjtUB2i7dPshvdsna7zqzFm9qp8LPQitkzxDVgM9J/2rutsn67s3kyC8r7lGvYtkKD19sD+7iXOiuwj6d73DzV661f9qvPF1gTz18yS91qMMvLquHT17hwo99+SqPIDZ9Lz6XBM9hcOKvHbsJz3EhrW8f6FFvU/QbTwrygI7RhvQO0EzCTwyXCa86SoHvfvGNrzNAyS9AP4wPaagQD6ZiO88Mj9nu2UehL1pnCc864WwPNX/aru4bmQ7YLWVvLFGZLx5ZJC5RrfnvEnFLDx5loS8uRIGvcGkKTxvWgS9A0SlPOWVXz16aku7VhUtvYMf6TtXnI89vxeMPPQ6zrzpd2u7iNeKPNTHOzvEHBI9J/2rvLHieztmD4o88pBxPTDqeDuMOG880yskvB+47LzraPG864WwPGIQvzyX+1E9rrMLPITYvzwU2pm8iqvROrL/Or03xRS9qC3evMIrjDtP0O28Nj4yOpUKzLppOL+8CBe3u1XAvruDg9G6bygQvWC1FT3BQEE9UKYDPYi6Sz1KmXO8n9woPRhDCL2ORrS7+g1gvUfUJjz9t7w81GNTPaIF3jwFNas9g6CQu6u6e70dx2Y8EJSlPPH0Wb26GEE8bGH0PEgMVr1o41C9zlgSvG03Cr3uLw06tCjwPFaxRD3Q5S88AdJ3vNzgQT0+7ZQ8K3tPvGnU1rwXn+a74rNTPF3ZRDx/BS69WpPQvDJcJrt+mwq990gTvQN2mbyb3d28ogVevA1OsbyvVd47yvVePO4STr0tCO27yVOMPHRfCr3O1+o8JQwmvVtMJz1COUQ8zTvTPJGMKD2O3JC7ifJ6vIH2s7nPkEG9CQKCu8PNXjz/xQE96+mYPIeCHD3/xQG9GFi9PFlbITqYGBE9Q1YDvYhWYz0ShSs9+g3gvDCySb3B1p06jDhvPfZ6h7yXXzo9jQ4FO1PPOL1sfrM8BgnyPApsJbzt2p67g6AQvVWrCbxIWwk9vG0vPcjMKbxa4gO9roGXPB4WGr0o0XI74k/rvDeTIL3DMce8EmjsvP2ih7zEToa8EoUrvLvRF7xwYD+9RmoDPfcWH71+6O48xxNTuxefZj3WVNm8Ud6yu8FAQbwcJZQ7vUF2vDq81bsJnpm8LNC9PSeZQz3gJjY9nU8LvPx/Dbz6DeC7qcl1vFHBc7uniws77q5lu5RRdT0wzwg9ECoCvcFAQby1Ra+7Pu2UPcuutbyy/zq9HxzVPSeZw7sStx+9xIY1PT+P5ztKtjI9qJFGvenb07yQmyK9gNn0O5bDojpXahu9xIY1O64dL7xfyso8clHFO6gt3jwUEkm9T9DtvCw0pjwL84c8CK2TvavXOjy9Joa74d+MPC0lrDsywA49Cut9O0/tLL3XcZi5L6yOPGLz/zt7ovq88LwqvMQckjsUdjE9P/PPPMgEWb0m4Gy9YIMhvHGYbr0JT+a7xE4GvdrSfD3VsgY6LxYyPZf70TraNuU6ztdqO7FG5DxSlwk9S+7hPA7qyDtsFBC8oc2uPF8uM7wjGyC8IQ1bO4qrUT0e5CU90R3fO7TwQDz1cn08BiaxvIny+juWwyK9bgtRtxe8Jb0Lj588o/bjOzCdlLwXn+a7PPwOvbs1AL0L8we9lW60uOLQEr1wYD+8pBOjvYqrUbxUuoO74rNTvSjRcr2WwyI8d3OKvBwllDorygK9Y0juvL5etbzrTQE8eEGWOsYNGL1UugM9AP6wvMbbo7zEhjU90OUvPZ9Akbwy8gK9hslFPeg/vDy6fKm9Jag9PK/WBbw/V7g8BoqZvQ1OMTz+Ph+9KO6xPG/EJzy/5Ze8vkkAO6dZl7wUdjG7UKaDvHsGYzwqQyC9XpIbPRhDCDzgJrY6QN4avSUMprtCnSw916nHPJbDorzmTjY9PPwOvXdzijw2opo8MM+IPbQNgDyev+k8eN2tvKKGBTwbOkk8ynaGvPiAwrzDla+8Ianyu7GVFz0WA8+6TS6bOyFcDjxmD4q8tIzYPIXDCr38mn293wl3Pc+tAL3fbV+5hwH1u807Uz0Vyx+8mEoFPeJP67y5w1K8Fme3u43xRTz/k427b8SnOsVxgDx/oUU3QYBtvYQ8KL0e5KW7nr9pPZmI7ztVwD49T1GVvNDI8Lw6vFU9+DkZPevpGD0sbFW9OiA+OxB3Zj3M5mS9FHaxvCTvZr1kndy8ooaFPbu0WD1KmXO88fTZvPF1Abzi0JK8Ga0rvBX9Ez3nhmW9qcn1uzm2mrvfCfe81YCSvONsKrzUx7s85flHvCuYjj27NYC8aZynPNGeBrwxa6A8vxeMuwPD/bzAh+q9seL7OsLc2DyAWhw9SX6DvcuutTtWeRW98kONvBj0VDz8G6W9r7nGPHMKnD3YlBI9gq+KvICMkLt3iD89xXGAvUEBlTuf3Ci9J5nDPCRTz7tYBrO8/XCTvK+kkbtub7m8HmN+vIC+hLwyjpq8HCWUvKNazLzLEp48xlr8vIy5Fr1WscQ8UjOhPNiUEjwX7hm8T9DtO0XjIDwk72Y8h+aEu918WTxSesq8rgBwPEQqyjyiIp08nDLMvBUvCD3BpKm8NdSOPMbbI7tWeRW8F59muz46eT0xBzg7aDKEPKc8WDwtuwg9+o4HvNn+tbyNDgU9Q9VbvCrC+LzFPwy8zIJ8vFdqmzyw8XW81bIGO+y93zu5Ega9HxxVO+uFsD2j9mO8yvXeu0CsJj3LRJK8Mj/nPN41MLoShSs9yllHvE6Yvrwc1uC7ShqbvMf+nbv+qMI9JT4avCmnCL1O/Ca8eEEWvG+naL14QRa9pefpvG03ijveNbA8uRIGvb1BdjtQJdw8+2LOOTogvrsCqA29hcMKvObkkrsTWfK84Re8vJ3OY70LQOw8ZR4EPXT7oT2skBE89VcNPWJ0JzukE6M8vkmAvMCHaj3186S8HHJ4PM7X6rzmTjY94a0YPWk4PzlbsA88GzpJPe12Nj1EKsq8T+2sPFFCmzy/syM8F1KCvMxnDD2Q01G9zJkAvQkCAr0/80+9jka0vK6zizxlOXQ8AdL3vNjh9jzEhrW83HaevRYDTz1FFZW9Sz0VOyO3N7n4HNo8E1lyvOg/vDxbTKc9WAYzvYTYv7zmFoc88pBxu4Zl3bzfbV89YVdovLL/urzd/QC8NxJ5PPAgEz2befU7/XCTPBM+Ar0Stx878XWBvc5YErwdx+Y88CATvUiobbuIuss7E73aOgffBz21RS89g9KEvPyafb25Jzu8b1qEusAIkjz4HNo7d4g/PcYNmDpnqyE9WAYzPXsjIj2jWkw7MQe4PO/LJL0m4Gy8Ud6yPFFCmzyJ8nq6HXqCO0q2sjz4a405+IBCPOnGnjzBpCm8gkuiPBoCmrpHcL68q7r7vFFCm7zDMcc8tA2AvNvahjzvy6S7nJa0vIkPOrtnqyG8/VPUvDt1rDwlDKa8tChwu6O+NL1EKko9neuiO9LWtbsegL28GUnDPLjvCz0MFgK934oePcOVLz3YRd+8hDwovI8a+zwhXA49EJQlPFvovjshDVu8QCv/PH5pFr2N8UU8M/g9Pd2ZGD1by3+8PWYyvJgYET2gMRe92JSSu0V/uDtSZRU8rWRYvZam4zw9Ako8ZlmPunB1ZzyMWU69clkkvQZRBL3xBZi8xsgtPV1OtjyCJ2C7HoZhPAjUYbwaOLe7hLKuvPBTuzsCBrS8wz1fOyecBT3wUzs9HuqaPAUtybv/N429QZwvvN7si7zCC3+7R5y2O869cDws3+S8DNToPOusIryA9f87+4Wpu+usoryeb4C8Qw6OPMLIpjzu3gK9vIt0OubI3rug5Li8PU4FPbm9zbsSLd68q704PUwcwbzzngs9T04hvRE4qbwkAxK9ENGVu11D6zz7LDu8ejIdPfYsND0cuLq8peQ/vXenTrxCQ0G9nmQ1vLLvH70a38g7994QvQe4lzmRZKC9LbhWvWIZirsLVGW7abIEOvGsKTzISDG8eM5jvNzTmzyhPSc8SHUovUecNrzlhQa9QkNBO6sWJ71yp8c7/yzCvNaWaT2LJ+47rBYnOcdvP7wqBnO9t+8muzLDqDxhnOA73SE/PHTO3DzIoZ+802/Uu8Q6hTuLpBc98V4GuzlDMz3rU7S8xEgqvcTk8LvS71A9dIA5PYiytTvf+jA88aHeO9GW4jxgWYg8B3iZPBxfTD0akSU9XtkEPWGnqzmRAOc8AlRXPKE9J7wH0Qe8KrjPO+4spjwPERS8Jl/aPC5qM7vaSM289yHpPIoyOTzd7As9rpaqu5Vkp7xeJ6g7J0MXPDzOgbwCBrS8MDjauw/7fTtAas+8nmS1O5q9nD3bSE297SFbvbyWPzypi1i8OxHaPCM4xbzyxZk8vhZDPIm9ADyLi6e9Gi3sPNNvVL07dRM9sYiMvPPI8zyRCzK9badAPNA6mrvuLCY8wQv/vBLU77zuhZS66dMwvYeAVT1U9Tm89fpTPEuR8jx5J9I8PI4DvffTRb2EWcA80pZiO0nnhrxew2490JOIvAQtyb1bHNY8odltPC/DITyXizy99AWfvJPkIz10de48IV9TPHgLCD1t8ok8hFlAPCycjDtIdSg98cUZvS/ckbxCnC89nrJYPCRcAD0xXBU9zr3wvLhk37vHbz+8Cd8sPTbDLz2xb5y8N2pBvIinaryxvb+820hNvUeRa7yvliq9l32XvGIc5DyGzni9wboBvcoW2Lt12ae9XxxdvKNZcTz9Xhs74G9pO+hTrTuU2Vi8/qFzO6tZf7z/LMI8WQAMu+Z6u7wvwyE9J0MXvf96ZbxlnGe8ChENPJjkqjzV+qK6994QvQDU07xyp8e8M19vPONI2zu6yBi9TGcKPICypzzQb828IzhFPMZ6Cr2mlpw87oUUPGh12Tw/zgi8rpYqPI+A4zqzCBC9J0OXvMiWVDzNllu8T06hO1ecUjwlEbc8H0OJvUqcPT03HB48goBOvSAGZbwD0QC8pdaaPAzfMzzSluK7gs5xPNwsCr0M37M7N1/2PEucPTx2AD0870WWPTBDJTwTEZs7DXv6O8cWUT2GMjK9ahmYvDVDrLqyljG83CwKvCtDnrpJ5wY9Og6AvPBehrmdi8M9CIa+vJKn+Duclg69tMgRvGfOxzw/HCw9oTLcvOVvcL2m7wo9JOohu8hIsbzqRY+8yyGjPOpvdz1c9Uc8R5w2vehIYrwhuEE8oJYVvraWOL2u7xg9wb1bPbQWNTyy7588JRG3uz7qS70PEZQ8JrjIPLgL8bx+5IC9LzUAvWlOy7xgpys87FO0O4bkDr3xXga8yKEfvFBnEb0PVGy8i4snvdJIPz1/C5a78FO7PNhv2zuxFq68Ia12vIekELy2Mv+8H0OJvaUviT2IWce7ymR7vIeAVTyB2Tw9dwA9vfRTQj3R+pu7tG8jO26nQD31SHc8+ay3u+P6t7uPJBu9V5xSvAjfLLv33hA9nT2gvO9FljwlHII8aU7LPM3kfr2UVgK78KwpvZEAZzxP6mc9BS3JPG9yDT3AYZM8iADZvJELsr1RHMi7eAuIvVF1Nrp7WTK9DlTsOkjOlrks32Q85wWKvcYhnDwBX6K7kbJDPYBZuTxpsoQ7UPWyPM1IuLxSHMi8WychuxqRpb0TuCw9ijI5PUfqWTvc0xs9NPUIuufvc7wHVN48+ay3vIuLJz0duDo+oYB/Pc8W3zxHZwO9r5YqPWSZjbwcwwU9vEicvOj6Pr2hgP+8GYOAPNghuLwzEcw7htnDO/wsu7wUreE8uAvxvEqnCDxsHHI9ewsPPBi4szxIDpW8gPV/PahkQ7xNJwy9oDJcPBXfwbxWavI77shsPYD1f7wJ1GG91u9XvN6WdzzFYRq8HBGpvJjZ37wa1H08Ft9Bvbhk3zyrvTg9Z9kSPbkhhzugPae8CrievLOLZrwPuCW9WichPFUcz7s9nCi8Tc6dPI99iT2WFgS91NONvCARML1H9aS8dUuGOzbDL70CuBA9tovtPNTIQjx0J0s6Aa3FumCnKz0RkZe8Aa3FPE6R+bxdTjY80e9QPOXTqTyv75g8NhwePQTRgLyVZCe984WbPIekED3Jug+7nmQ1POF6tDv9Xpu8+Uj+vPWsMLzYbAG9p70xvVWAiLyVp/+5fYDHvK49PLvfbA89dCfLPD6RXb1HQ0i9XFkBPYLZvDwTagm9+Uh+vSKDDr0e6pq7QurSOZq9HLsH+28850hivWansrwoXIe8O8M2vMTkcDzTep+8NZyau/D6TLypPTU82G9bvDscpbwdrW885kUIPbWye7tuTtI7AIawPM3vSb00Qyw9MIb9vEx1L7xpp7m8E18+PLbvpjsKXzA9gs5xve9FFj19gMc7IGoePTK43bxzywI9XtmEPPkFJrxLkXK9Bga7PE0cQT0oA5k7aac5vcnk97vDIRW81yG4O5fZX7y+yB89hSQNPV0ZA72ist88yeT3ueKhSTxizkC9qFl4vEXDRDwgA4u8A9TaPHcAvTnjrJS70VOKO1RD3Tx1Swa9LzWAvWGcYDzphQ09FeoMva+WKj30BR+9z29NO1wAE71RJ5M90aGtvNpTGDwa1H08iQskvbbkWzzmyN67PrUYPPSsMDq7oYo99VPCPBzDBbyY5Kq8puS/O0ecNjx0J8u8pxagPHtZsrzcIb88WychPVUcz7pC9Z28GYOAvMZ6CjzaU5i8QkPBvIWyrj17siC9VEPdvD6cqDxB6lI8cqfHPKsWpzzGFlE8o28HvRStYbuWsso8ETipvOOhST2fb4C7MEOlvP/TU7sCuBA8MJHIu0h1qL1bHNY8mJaHvB24Or2YMs46NrUKPOF6NDyJsjU9zZZbPWr1XL0E36W9+beCO6HZbTxZp528uuGIvVtAkbxRgIE8k+QjO3B15zw1nJo818hJvUucvbvu07c8o2+HOgH7aLxUQ108NsMvPZSA6jxAHKy8usgYvB6RrLwPVGw9Ll/oOogAWT1o8oI98FM7vM2hprqPMkC9kmQgvRgGVzx7sqC8sMgKvPbI+jq9vdQ8yO/CvJiWh7v5BSa6RMNEvQx7+rxGkeu8p28OPMW6iLzm06k9BNRaOxbfQb2wsnS9kQBnPM6hJj3WUxG9fksUvQSGt71TQAM8F63oPE3Onb2vPTy8oT0nPWjygryECx29suRUvLVvI7zGIZy82G9bvbrIGD1Sams8jABgPM2hJry8SJy8nrJYPL9IIzxNzh0850hiuxgRIj3Nlts8QI6KvRMRGz2CgM65iQskPcCWRjxEHDM9/bcJvagL1bygPae8XAATvb/vNLxNamS8sMgKOhNqCb3uIVs8DlESvc698Lt/Tu68SHUoPCfqKL2Q/Qw9nmQ1PPOFmzyfLwI8dc5cPb+hEb0yHJc7T04hPbWy+zq0IYA83MjQPNLvUDsyajq7mVaJPNmWcLxpACi9JRG3vCVfWjxdnFm8v++0vHAyjzs0Q6w718jJvHDOVT0pEb68/PeHvWSZDT1bJ6G8EjgpPHPLgr3p0zA9PU4FPfwsOz1iHGQ9Y9kLvb291LyoC9W8eCfSOxWRnjwAInc9togTOj5DOr3n+j46yO/CvGcygT1ZwA299KFlPMbIrbxCkeS8PfUWPTd1jDyiZLw7Q7j5vKk9tTwyX+88zeR+vP8sQrzBZO284NMivW3yCT3p0zA9XxzdPIkA2TtdQ+u7B1TevLLkVD22i+08GtT9O9FTCrxVwAY8eouLvUGcL7zaSM08WnVEvCaDFT1gTr08iQBZvMW6CD3cyFC9OfUPPRwGXryvPby8yeT3vQQi/jv83pc8M3UFvb29VLww6ra8ec5jvfCsKb1XnNI88t4JvVrOMj3/hbC5JrhIPRBftzwNOCI9VhxPPV+ZBr3jSNu7wboBvccW0T32LLQ8b3INvFf1wLy9FsO8BS3JvNSTj7uCMqu84Xo0OzCck7zLFti6X5kGPQ77/bw2HJ67Ll/oPPwhcD3CugG8IV9TvP8sQrufLwI9gtm8ODJqOjyxC+M7ynoRvTU44Txfzjk82ewEPXnZrrz8et44bk7SvI8kGz02EVO7KWqsO7xhDD0F+JU9F7gzPPX6U7zuLKY8fYBHvdqsBr0PuCW5KtwKO73In7pQZxG8nm8AvVNAgzoKEY07V5zSvM8hqrxznPy8WxzWvPhTyTvn7Jk9dXXuugSGN72RWdU8QTh2O27147yNZBk7FTgwvdZTEbxTTii9aQCovB2t77zl0yk9mOQqPcHIJjyssm29C63TO88WX72jvSq9rMgDvMchHLzqb/e8PpHdvPx63rtagA87xPqGPGuAKzx28he8iE58vV2c2bwjhmg7X4AWPKwWpzuebwC9PDWVPN+W97sSOCk9S5FyPaCWlbzhyNe8sb0/vNahtLxHZwM9L2ozvU7njbtRdba7o1nxPD91Gj2UVoI8Vc4rPOysIj1CnC89xPoGvV7ZBD1q9dy7mOSqPP23CT3wSHA9PLhrPLRk2Lza+im95no7PL9Io7y9C3g8oe+DPIKATrxngKQ8sb2/vM4TBb2hgP+7+aw3vZJkID1U6u68ZUP5vDXqPTwMhkU9AIYwuxxfzDy8SJy8lf0TOZ8A/DyYgPG7cvVqPZ/WE72Nsry6tpa4OtJIvzv5BaY8ck7ZPLs90Twr3Aq8B9EHuXXO3LmEWcC7854LvKxkSrzFYZo8/NNMPKOy37vVSMa8L8MhvDvOAbxRdTa9J5wFPXVLBjwjQxA92NOUPWvZmT2m74q9HGqXPIbZwzxzADY9I4ZoPYin6jxCTgw8RM4PvbuhCj38hSk9OUOzvBKGTDyd2WY8qBYgPGCcYLsQKoS5ybqPu9hsATyzMvg7NUOsvL1vMbz5twK9YE69u11D6zyC5Ic86XpCvPSssDqLiye7VYCIvHVLhr3LvWm6IGqeOAfRh7yoZMO8TWpkPQCGsDwoA5m9oe8DPQdUXrs/dRo9PZwovEHqUj1wdec8D1ESPHQyljwXrWg840hbPGAAmrsa6pM7ndnmu1Zq8jyovbE86dMwvaDkuDtmWQ88QMO9PBKGzLs5Q7O87t4Cve4hW7zWlum64wUDPaMLzjsUKgs92xMaO0fNBz002/I8dadYvaefsry9HIK7lEwJvIb1VTzd9BI7w7UePPGIfjyz6AO9IoFYvH0Uhjz805S8jKUKPD4fGD3o6jU9K67lvPc4M7wb4cq8b4gtvd88Rju29KC8tea+u+twxLzgQzc8fk7Xu24JkD0lpI08UertvAbx+jzer8a8gmqbO903mj1OXW68xrrKvFNEDTsgAru7Mt23vKyEDD3YlUe71E0UPYR2OD0sRJu8KnSUPA+2Ar3VAde8NKiSvOEOErvUCg28aObaPOjqNbxl00w9A+Xduuvv4byiBNG7SVMWvUe277zjQXK9G1n3vLNZv7vY4YS8g/CpPG2BvDvmXTa9+T8kvN+BkryxS9073r2ovAHe7LwA5yI95iiRPLpFir1SgKM78IpDvfcqUbuFQRO974PSvOpwRLxDIv88wqe8vJZRNTv4uRU7IHP2u2FPA72BLgW9E0OCvRlbvDvG/xa8LTtlPJ3q0bynlvw8erpmPaH9X7s26VS9PApFvZRMCb2ssHu8L0nHO3OiLD0rPSo9VIXPPIuXqDxJUxa8kz4nO+XOcb0qe4U9o4pfPNL8Kj2JzhK8jZxUPWK+eTw5BRm8A20xPYR2OLyDuwQ9A/M/vQBY3rswlYQ8I5arPP5ZIz0xIoS7+MAGPaSK37yEdrg7s1m/vE9tFTxyE2i7KSjXO/g/JLu7DiC8g7sEvE7lwbwb4cq7FLlpvKQJ/bxFv6U8LbxHPbmBILzFNDy8ZmkCPf3ahbuCahs85tVivdIDnD3Rbea8uw4gvJ1ypbysP0A9qzoUPUlD77zdr0a6RLHDuZretDy/ohA94IiDPXanWLwnm1c8vAXqvFDzIz0Y44+8EruuOv1LQT3aqhq7VhQUPSRhBr3sSQE9rYSMPYmQN7yDu4S8DRlcPGu/Fz2BLoW9r8y/vKs6FDx4Lec88AnhPGn2AbzNppU80/P0vDHWxryzWb+85E9UvFBr0DuZI4E8V5oivdfakzwUuem8VI4FPA8uLz1SAQa959zTvHSpnTvpYuI8AOciPPaypLyOJCg7UXJBve+DUr0VSK6879aAu+DEGbz5P6Q77nxhve39QzuzYDA9hX0pvcIf6Tv2KlE9DiDNvF6r67w5yQK9JY11u4b11TzGQp66oMMOOT+etbwYzHe6/2cFPYPwqTwZ0+i8WyeivEEd0zsMmr485FiKu6aYQb3Es1m9FcBaPfAZCD0geme9BPO/O/iw3zw26dS6O4unvGJGTbtgOOs8Ph8YvHSZdjyUyyY9pBkkPdpnEz1ylEo8GNyePVcL3rzYFGU8hoSavBnaWby+m58803vIvBRBPb1PZN+6oAaWvDHYi70wyOQ8eLU6PIBcOT0hig684IgDvNoixzz+WSO9+0TQvPm3ULyxnou8ZMxbPElTljuTRRi9JZ0cPc8zlTxTgCM9BvH6PFyk+ryzYLC8BgGiPI+xp7qotAW9HXU7u2jfaTytRrG7gmFlPYb11bxK0jO8Cwv6vOblCbya7Ja8YUbNPHvB17vgxBm7n35CvK7OhDz6PV88hwO4PEgQDz25gSA9FUbpO31H5rxUhc88bn/3PJRMCb7iwlS8PILxOxlirbxN3tA8vgzbPKefsrz805S8dCFKvGKSij2gd9E748lFvc8zFb1WkzE8W59OPTf3NrwMmr68oMOOPEWDj7ylmEG80sCUvPOWYL3+0c88F01avF0sTj1WBO283j4LPQbFC7zHQh691YkqveHLCr038MU8hO7ku2jvkLspsCo8JZTmO9QBV7y/E8y8G1n3vCxEmzxgMfo8SlqHPVKAI7xVhc+5EPkJOjnJAr2/E0w9DN8KPQbx+rxSgCO88pbgvMJyF7w1rwO9xC1LvdokjL1eq2s8YtWRPCWUZjxcNYS7gvApPex+JrskF469pN2NO6clwbz9UjI5cI1ZvPASlzuCcQy6e0mrvLn5zLyLFsY8YsXqu+4LpjvyHrQ7YD/cOp1yJbwheue80ntIvPYzB7yeaW+9jqo2PT2J4jt2Jva7tG4Svez2Urz5RhW9Bw+EPNobVrwoMQ09bgBaPqywez1kzFu9XbShvUlMJbuJkDe8JRVJO31O17yNJKi8kLGnvB58rLxAnHC8G+FKu46jxTysP0C9mCMBPGFIkryUy6Y8DJo+Pb4aPTxjxeo8pAn9u7BbhD2No0U8/kl8vW+Wj7zcMKm8u8uYPXWgZzwxTnM8EjNbvRfVrbsCZsC7xsE7PDHYizxTcPw76/ZSvSMO2Ly9jT09i5eoPHQhSjy15j48Qys1vPaifTxHRbS89zizu5dYJrxuf3e82htWu6qrzzwsCIW7oowkvZgjATwd9h08fA0VvZ//pLx/21a9RCnwPPIXwzz8w+27bgBavMvUyTu1Zdw8aGDMu8JyF70xz1W9hXRzugL1hD3BoEs9Qiu1PDZxqD0kFw49/Lz8vAPlXbocdwA9uogRvVx4Cz1kzNu87IUXvauyQLxU/8C7ft2bOmC5zbyI1QO8A2T7PBfMd7zMY468RClwPZPENT0fgx28MSIEvaGFMz2x2qG6NngZPBx3AL0ookg9GNwePd0u5Ly4AoO8Rb+lPGC5zbyZ1f68UeptvTg8g7wLk8081VSFvSMXDjzeLmQ8AvWEu1YLXru9lK48XjowPFXRjLx2Jna8YLnNPF46MLyZ10O9ekI6PcEYeDwDa+w8dq5JPC/RmjqlkdA8m6mPPZtkQ71V0Qw98ZG0PMvUST1gP1w7G+FKPGNUrzwH+Ou8jiQoveppU7wQJfk7+5CNu3CNWT1ix688ft2bPPKP77wQLi+8e8HXvAJtMTzk0DY82A10Ovo93zwvyqk8qiP8vPlGlTtTcPw8qyptu/ai/TuzWT+779aAvG5Mlzt3PY47At5svH9cubxV/Xu9ZFugvLoAPr1SebI8IxAdvQbFizxJFwC9xLNZPSaU5rySApE8+j1fuzdvY7w9mQk7qvcMvUhMJb3bsQs9FD/4PJ/4Mzzvg9I6ukWKvamkXjwnm9e8Of4nvIZIBL3gPEa8gNTlvGn2ATsV0IE8PApFvFX9+7ya3rQ8PILxvOTXp7v9yl49qJ1tvdqjKbzAqYG86mnTPBvhyjw397a87gumPCYcOr1AnPA8RPYPPEY+Q7rl1eI8stFrvC/RGjzdqNW8H4OdPBIz2zyrKm299rIkPVufzjyWSkS9VQ2ju5K2U7wWVpC8ae8QvVaMwLx6Qro7ZlJqvYHix7zaG9Y8KbAqvJgjAbw38EW6a78XPPy8fDtqdR+8Td7QvESxw7vWCEi66GsYPJtkw7vynxa8NWNGvOFDNz1BcAE92m4EumhnPbxgP9y8OXZUPY+xJz0/H5g6m+wWPcziK7zU+uU8oMOOu2zy9zuGSIQ9KCFmvKmrTzwGxQs8CyKSPWrtS7wbaZ48U4cUvHxXjT2MHTc8FUiuPMjILD3iURm9ebP1PJS9RLvWCMi5MBsTvbHaobt1L6w8Y1SvvDuENr2swCK9zmFJuywIhTyxyno7U4AjvbRX+jsHh7C8RooAvUavfrv1pEI9EzpMPKUXXzq6y5g8fMjIvH1HZjxT+E+9n37CvMpMdrwrtxs9Ztq9PHiAFb3zYwA8mCMBPDj+J71r9Ly6DKGvOUIrtTyssHu9ytaOPXb6Br0XVEu8uHO+vH6hhTxZqAS9RTDhvB32Hb0Lk028EDUgPTyC8byEdrg7FUZpvdaQmzwD5V29zukcvNwpuDxbn8681oD0Osm/9jzzHrS9G+FKPUBpkDq/E0y9rhEMvFykejyNG3I7m9zvPEOzCL0VRuk8K65lvXauSbyJAfO8vxPMvG4A2jqJkDc8zFpYvAqcAzrQ51c9h3tkvQ0ZXL3Qb6s8Qyu1u1N37TpQa9C8oxKzPdQKDbxWC1682OGEvNwwKbtxlEq9TddfPQcPBL0A13u8u9IJPbKeC7wKGyG9E8KfuhEzW7wm5xQ9uo8CPQiHsLqb4+A8JpTmOWJGTT0RPBE9AvUEPGXTzLzqd7U8PpDTPF6yXDvAqYG82B2bvWLOIL0SM1s9LcM4PBppnrtYmiI81QHXPDj+J71J0rM6ErsuPQyavryG/EY8hwopvfEQ0rwjj7o8NKgSPGJGTb3FNDy6s9hcPNUBV72eaW88fUfmvPGRND3QOoY8xgaIO59w4L0/D3E8kq/iu7ZsTTuTCQK9jiuZPJdRNb2jC8K8XDUEPcEYeL0OmHm84UooPWx6S7ksCAU6U/jPPFwlXTxWGwW9yc8dPWTcAjw0qBI9gmqbu17CAzzwisM8ZNNMuzl2VLyLl6g8zGOOPPYzB7zXD7m8owtCvXQhSj32siS8h3vku3/dmz29jT08m7AAPdwwKby6eGq8sUtdPMGgy7tO7DK7IgksPU7sMjzvg9I7g/caPcDll7t6uma8esMcu1YLXrxBpSY8Z6WYvJK/ibxM0O68QGkQPUW/pTvGOy09u4ZMvZ9wYL1rbOk7ANf7uzl9xbwX3J67OvXxvL6ULr0Z0+g7YEiSO515Fr27/ng8zemcu2ZpAjzHOWg8mV+XPZVD07tCJES94kHyur0VEbxYEk89GeqAuxbHS7w4/qe8pZFQvCECu7wC5d086nc1PVqoBDxo32k8kTBFvUEkxLuPImO9UXJBvc7Z9bwe7ee8Y8VqvTj+Jz3+HY29ebP1O5nV/jxGigA9BQGiO6IEUb0QLi88yMisOtA6hjmvVJM8O4Q2vcDllz1pMhi8MVepO969KLvQbys9VQ2juw6oIL3c9BK97/t+PeRI47y/kum7VQ0jPFmohD21Xmu7ChQwvH1H5jwzZQu8ftaqPIaEmrtvj546Dy6vvLsOoDuxS109XKT6PGAxer3JR0o5HkCWvWfhrjyRqHE7+j3fvDBQOD2OJCi9bn/3PA4gzbwY3B69ChQwPLrLmLyffsI8NzyDuncmdjvoYmI8lZaBPM/g5jwV0AG9G2fZvEIypjutP0C87gsmvXo7yT0csxa99rKkvFKAIzxCMia92hvWvId75Ly/kum75NA2vD4fmDwffCw97UKQO/5Ssrz8w+28/dFPPMOurTs+kFM7JZ0cPQZ5Tjyb5SW9+DizvPEQ0j0PtoI9Rq/+O2xzWj3Jk4c9KSjXvPWkQj2XUTU9zekcPQkNPz3d9BI7AOAxvbqBoL0b4Uq7iNWDPPACcLsCZsC8BHQiOw5sCjwllOY7OwNUPLRuEj16O8m8A+VdOpXLJrw16xm85aKCvRdNWjyxS908A/M/PDXi4ztTRI28QR1TvOZdtrxGioC8EzrMPDXi4zvRfQ0834ESvaCFszzz6Q48aGBMvdWJqrz8w+26y9TJPH5VSDwTwh89xDQ8O1UGsjsXXYG7NK+DvMU0PD2StlO9iQFzPTh2VLqgBhY8oxKzu+bVYjrDJto8RYOPPOp3tTzyXI+8RjdSPC1LDL1tAh898AlhvLf0ID1IPP67FD94PecvAry6Jjc81VOePIKkML3BGLG8QcuwuttFGD2l68m7gqQwPUa957xsM/85b5hBvW4Ehzs9bTQ8MLj7vKe1SDzOF4c8fRBwPbKgAr1y9r08AyGvu4f7ZrokCsw709oCvbBq+7zz3oE8du86PDh09DvJA2U9JjnKPBkmGzwChms8fHw1vOnzirsjpUy8OA+4vBpVmbx9RrS6z5DfvBCFhLqZopm7y5divFaa2DxJogs9n2UVvfNDvrf1ofe8S69hvBfBG72AdTI87htDvLxVtbtpQQu9vYSzPapJRjopMse8p1BJOz2cbztgVpS7vp+VvUbzK70uxge9iGCpN9qq1LzHJQ29M4I9PKgaSDw7o7W8LZBDPOOcETtRw4O9FpIdPRO0Aj3NK2C9A+utvKnkRr0mnsm5zysjvfTXO7wl1Eq9eeg3PGh3jLxhT867kRyiOy4k/rz1oXe94gFOPWcSjbuPHF+8IXbOO+8U/bzH1Oa8znyGOXGYBD38k7S7xUCsvHroN73p8wq9FotXvA6MB7xmd0k8LSuHPUC3FLqwoL88cva9vEjs5Twy53m7f6RtPYUxaLybNtQ8D2rfu12MUj2xO8A88UoEPXD2ejywBfy8AfIwPRXjgLxm3Mg7bmJ9PcfADTxscAk9O9k2PVLXXD1s1Qi97IcIvQunpruKWWM8TK/hu4mP5LyglBO9vToWvRHqgzziAU68PDdwPL2EM7yjvEu8csD5O02biDzp84q7ZOPLvKXyjzzRq4Q7rHjEvJXfnb29ujQ9DgXgvFb/Vzw5qri8k0ugPPia9DxvmEE95JXLPFbQHDzYsZo8l6mcPHeDdTxXmpu8AY2xPcEYMb1W/1c82UVVvMCzMT28hHA8khVcvfbQdTxwMwW9aEFIPUSOaT10LAK8DnElvZgOHLwTmaA8ydQpvSaeSb2EU5C8h0wNPWCFTz0AKDK8//HtPJDSBL3gN0+7r3HBvOgpDDy+Tu88radCPIrFqLyTS6A87FHEPEq2p7vfbVC70SRdvXkDmruFMWg9yzLjPA6g4DxxkT691R1aOs/1Xrxm4448SrYnvKgaSDy2LTq87xR9uzv0mLwtYYi8zGHhvPVyPL0MQqe8/PjwPL2Es7yBWpM8Y37MvN9tULupUIw8gaQwvJbY1zxqcMa8uVy4O/JDvjxsn8Q8bs5Cu54vUbzC/RE94G2TOi5aQrx5npq7W8LTuznFGr1cJ9O7dMC8vGBWlL0XXBw9isUoPYVnLL15svM8d4P1PK1Cw7zDdmo7insLPY/tozzzcnk8vR+0vJjYGj0Lpya8MCRBPS/1BTs4Rbm8HE7TuxJj3LzP4YW9sGr7POGczjy3LTq9uVw4PDHuPz1K7Cg9v58VvHeD9bzVglm8wRgxvVvC07y2Yzs75fpKvX8rFTwOcSU9xEDpvC5aQjxfu9A8v+kyPQp4KLyxO0C9LpCGvEwUYbxc8dG7ifspvXAsfDyCCTA9gD+xO80rYD2WDtm8lkSdvA7xBr0nzcc8zvykOiBHEz3LuQo9ucG3vGqmCr3Ib6q6koEhvQ8FIz2MWSY9maIZPVhkVzy8hPC7mtHUPBfw1jwhRxO+9aH3vB590Tv0DT260UaFPBMtWz1sM3+958SMO/z48DqRnIM9t1z1vNH1Ib2S5qC8hR0PPBnwGT1v/UA5xtssvBAghTzdPtI7sjR6vE5KJb1u/X28sTvAO9BaXrwAV209h8yrO3CYBDrNxuA8zhcHvcQRrrxMgKa97+XBPAK8rzuNdAi9p4aNPEL6rrsMQqe8ulXyvG0ERDyVFZ88eIM4PcDOEz20Y/i7je3gvFzxUbzOxqO8P1KVPP7CMj0w9YW9X7vQPIxZprySels8ALxsvRO0gr0rK0S9ciy/OankRj1RQ6I8/F3wuzSCvTzf2RW7AVcwvQd/qzqSsNy8hFMQO7PPPbxeVtE8gm4vOsBOsjyPbYW9wE6yPAgT5jyQgd48VPKBO8B97Tw7ozU8PCMXvRfBm7y6QRm8gNoxvYB1sj146PQ8ebLzPOkixjwnOY08RvOrvEhR5bstkMO7x28qPVf/Vz4EBhA9pfKPvJk9mr184TS9SYcpPEtsCj2sp386je1gOpBSo7zEdi29rwV8vL3VljxDFZE7AoZrvU5KJbvuG8O8TBsnPczNJjxopsc85sTJPMFHbL2V3509UjzcPDC4e73+J++8eZ4avC4k/jwW9xw85fpKvCjNR72nUMm8Y7QQPayuCDxSPNw889f4uz6cMr2COOu8SL2qPFUGHju3XHU9IHbOPAmuKT0ISao7O48ZuzhFOTzV7h48FeMAvabryTzXHZ08usE3PP7CMr2gXk+8i6oJPXIsP73nKUm9jT4Hvflk8zzg0s+7oPlPPMzNpjzf2ZW8nABTPWo6Rb1ewpa86odFvTcP9bxJtuQ87q99PQxCJz0R6oM97OxEPXi5Ob0AV+08jPQmPdH1Ib3jZpA7tGN4vE2biLw4Rbm8kdIEO0+vJLtd8VG9tP47vUKVrzwuif08uCZ0vTh0dD0cH5g8TkolvdH1obzdPtI7c/Y9vMZvZ7tWNdm88UqEPOnzCry3wXS84dKSvbE7QD1XyVY6jYjhOweajbu59zg9UXLdPHIsP73VCYE8qRoLvD8cFL2yOwO9U6FbvfY8O7mJj2Q87q/9PK9xQTz2Bro6VPKBvXVU9zxwkfs8eE10vCB2zrwOjIe86r1GO92qFz3I1Km7gAntPBb3HDzvSkE8UQ2hO6sTRTzLHgo9uos2vRHqg73RWqG7oijOuodgZjxLUSg9LMbEPAxCp7t2iru874AFvdkWGr0ZulU8eB65O726tDxQDV48uVw4PB5OFrsbhNS8f6RtPO8U/bzVCYE8lZWAvKtJiTvVglk7VZpYuT8cFLwuJH69VAZbvae1SDu6wTe98ah6vOoiRr30PPg86r1GuykyxzyHYGY7SNiMPN4IUb3v5cG8yNSpu8J9MLxvM8K7rHhEPVMogz29HzQ8LMZEvZLmoLssWv87e7I2vQ47JDwyuL68oZSTO6lQDDzOl6U8ehdzvQzCiLw7bfG82g9UPDNTAr05qrg6Za3KPXmy87yqtYu87ID/u7TPAD0IeGU7BX9ovY2+JTz9wm+9BbUsPRxO0zz8k7Q7zvykPHHHvzxkfo88X1YUPXsymDxumMG8RPPovK0TiLvVgtm6gjhrvaIozruhXhI8ZtxIvNPu27wQhYS8tTQAPTLugr1/EDO98UoEPAC87DvFpWi8EmNcvL26tLvdqpe8iGCpvLuLNrvJVIu8O9JwupBtBTzdo9E8UQ2hPPPX+LyXqZw87htDvNEQBDxhhRI9+TW4vGMZzTyIFow8S2wKPViaGz3Rv128zDKmu/oaGb1C5hI8i1ljPdS4Wj28H/E8d7m5PFqTVT1YZNe60EYFvR2El7zPkN87RSktvD1ttDu2Yzs7Y37MvK6nQj3nKck8uiY3vOGczrwgEU+8f6TtPBCFBLwcTlO8F1wcvc/GI7v+XTM8t1x1O1YGnryH++a8TkqlvKpJxry7Cxi9R3MNOwf/jLlwM4W8l6kcvLkmN7shrBI9Es8hvZgOHLwmOUo8rXF+Pa+g/DwT/h+9zGHhPG4Eh7z+rha9dh52OiHbTbx8q3A9hZ0tvYcxKz2bbBi8T0Pfuxm6Vb2I+6m8puvJvJapHL3qh8W8LZBDvLyE8DzVHdq8rULDvLE7wLwYwZu6zvwkvQOGLjw2RfY8NoIAPDh09LvkMEw9Mh0+vbGgPz0MXYm8JaUPuhMZAjyHMau8jA8JvdS4Wj0KeKi8FMiePPY8u7ypSUa91+ebvNsPVL1cXZc8r6eFupNLoLxmrQ08gJAUPQoTqbzG2yy9ufc4PRhVVrzUiR+8BOutvbctuj1AATK6Ql9ruk9D3zxqcMa8hTFovDWCAD0NjAe9i48nvOX6Sj296W88uXeau/MNvbxOyoa8K2FFPQ47JLyWc1g9CGSMO9SJn7vEQGk97oBCPXz8Fj2wBfy8N3u6PKPyzDroXw28bWlDvcBOMr36tZm8eZ6aPXbvujw14PY7WDUcOwZrjzzJioy8z/VevM58hjuURFq9h5aqvD3tFb3w3vu8/l2zOwgT5rnPKyO9O/SYO4UCLbwOoOA5U/IBO4y+pbzttsM8F/DWvNp7mbu6VfK94pyRO8/hBT1od4w8SD0MvRX3WbxFRI+6i77ivAS16Tz7/za9ThSkPPOoPT2xoD88+f9zvE5KJT1AMO080lohvXTv97tU15+6n8oUPXIsvzv8yTU9zsYjPPXXu7qKvmI8eZ6aPMrNY7w3qnW8Ds/evHNbPb2MWSY9vk5vvMiKjLrJ1Ck977YGPDBT/DxXmpu8YbTNvPEUwDv6UJq8gJAUPV5W0TwVXNm8Z3dJOVjJ1jvmX0o8cJF7vOdfjTq5dxo8mKLWvJ2bFrsOjIe80EYFvey9CT0OVoY8JwNJPRSSWr05PvO8DgVgvLpVcrtVBh699Wt2PEyAJrxWNdm8jdkHPT3tlTsMpya9KyvEvAeaDb2K4Ao9BFCtvLummD2LDwk7LGGIvQ1xJbyyOwM9bs5CO0R6kLss/Ii88Xk/O5NEWjzZRVW8inuLOM8rozyY2Jo8kFIjvGpwRr2YPdc7PQg1vb/pMr0StAK6Ql/rvO6v/byYPVe6DdYkvbT+uzy2kvY8cMc/PM8ro7y4kjm9tDQ9O85hJDzRkKI8o40QvNl7Vr2W3x091+cbvFB5ozo05zw8xKwuO8jvCz0w7r88dMC8vG79/Tw7CHK9Uo0CvUqA4zxLtic99tB1PLLPPb3wr8A8x55lvAjkKj2PbQW9RiJnPMQRrjqa0VQ801NbPbI0ej1RDaG8Z62NvCrNCr0aH9U8adwLvFENoTw6o3I8g53quhbB2DxUoR69swUCvT1tNDxK7Ki8C90nPfMNvbuYota5nWVSvS+JQDwnOY08Y7QQvVS8gDz6UBo7lN/aPK8MwrzOfIY8OOA5PLTPALwLkwq98t4+vSmXxrsy53m7cVv6PIwjYr3qvcY8OEU5PH6rszwMDKa8VTXZu/5dMzzjnBE9rKf/vDLugjx4TfS2DQwmvQPrLbxaZJo8OdnzPCQKTDyhw866TkqlPQuTirwl1Eo8krBcPYDT6zwZulU9UqihPPPegbwbhFS9BBppPRCgozuDOK68IHbOvPhrubqof8e8h/vmu5DSBD0/NzM9hZ0tvPIN+jyemxa9SgcLu2hBSL1lSMs8bmL9PFQG27o52fM7Muf5vFb/17z7/zY82BZXvPqaNz0V44C8tZk8Ox590bwX8FY9NIK9PPfQ9bwBjTE9RI7puw3WJD253Bm9ofmSPfcGOj2K4Aq9FUgAPdEk3TzcdNM8QZVsvf2MbjyVMAG9exe2PK5Chjw8I5e8x9TmOz3SMzstkMM7IH0Uu4ixDD1YyVY8JQoPPYHT6zsX8FY9tmO7uhTInjzzeQK8hNaaO0rCmTwv8qq8S9BdO53YxrtqBSq8lSG7u4fjXDxdlpA9Fc4JO8w2Pr2viki9liA5ujsd2jsjPaO7FPEAPRWrEj0dttA7xcSeO6KQ1LwcLXq9a4+CvCmwxLwlgQ08rhShvRNFs7zLN8C6KvQuvPBV1TuBPwA9fOjmPGuPAr3H9Nc8oRsvPNl1Hr1L5I62OlSCvcCzczyufIS8wcYiPAkFUbz5UU29ibEfPfOZP73Hw5y84XEWvbu197vGsO28MyFivWVNnLzTZPO7La5AvIO0pT0PjCO97eExvYVutzwdtlC7TAYEvJVmp73Vd6K8awUqvSmwRL3fXme9ug6VvQ94cjsoJ2489sl4vFBXMLzbdBy6TMGXPJ1in7yrjEw8Yn/ZvCIq9DxbyE29ihiBvOdaX7y3QVQ8a8A9vYiecDtnOGm73C4uPRLyAj30RY08TZ4gvS2uQD1Rzde8DUg5O7uEvDwlgQ29yGr/vCyuwDytFSM98EcRvSf2MrwrOZu8fh4NPIKh9rzWmRc9vcimPLFE2juqFiU9AsNqO9TfhbwbywM7bTVjvcvyUz2oBPg7cmmFPTgQmDvYYu889VNRPXu4rTwa/L47DvSGvBlCLTyVZqe7n2GdPCmwRDziXOO7w8UgvC19hTwAQIE97kgTvNDhibzBgbY8o0vou1PgBjyrjMy8T7+TO2jz/Dx07XC8hrIhvEMZ0jsVRLG8T+KKPCyuwLwf+rq7LX0FvSeAi73/HYw9PNjtvDgQmDy/DBG9p12VPZkfN71ePfM8a8C9PJeW4DxaP/c8EvKCPLvJKD2xzjI8P9ZpPXbsbrx1AKA8Y8RFvfRFDT2P8wW8oZFWPdul1zq8MAo8kmcpvG++ubyJsZ88I4KPvHW7MzqZhhg96koXvX/nZL3Tqd88lyA5vfxBBb0n9rK8MSLku5DQjjy+tHU7nU5uuwGTsTwHGoS9URLEOp3YRr1REkQ9yvJTvKGR1rv3yPa8E8+LPEwGhLwmXhY7AvqSPKeOULxq8nq81qfbPDM1Ez1R4Yg8EYuhvEMtg7z9T0m93Bv/vEehJr1fxkk7Jfe0vD+lrjrlFnW9M2bOvMfDnLxwJZu9QJH9u63QNj23EJm8F/7CvKNfGbyGn/I7YraBPXV2R7042nE86W0OPZ+S2LuI4to7a8A9vB/6ujwlPCG87kgTPcX12Tx27O48ucqqu+8R67tadZ28gqF2vLSHQrtXD768sohEPBGLoT0Tdm68PWFEPRf+Qr3x3627QaSsPAKSLzzrbIw8mZXevJMivbwralY9IKYIPBNFszxjxEW97ZxFvVS9j7xFoqg6/k5Hvd/oP7y1/ek7B0u/vLoOFT0zq7q6OzGLPAwDTby0h0K9H4STugp7+LyUU/g7I/g2vJbNCL0Dkq88uQ8XPc2s5bzpbQ69K/QuPZJUej1/tim92mHtupuU3DtrNmU9aZAEPfFV1TmA+hM9U5sau3BHEDxXmRY9K2rWvAbB5jwqXJK81XeiPMkHh7yI4lo8E8+LvIknx7z+QIO8J4ALu4WzI73Lrec8ls0IPRhzaD3FxJ67+x8QvZlkI71wR5A8ibEfvnsuVb1362y7l5bgPLCJxjqFsyM7N+6iuUYJiryHbbW75VvhPAywHL0dQCm9i2sxO8+rY7xF5xQ9FqsSPHl0w7u/gri8fh6NOwd8+ryaYyG9geZivcrkjzwQrpi7XVEkvGQ567z/Cdu8QpD7vPfcJ70NjaU7Cnt4vdaZF7yOmui6K2rWObGJRrwnOx88U0J9PCs5mzyhghC9yTjCO4ErTz19cj89ycIavakXJz3OZ/m8AgjXvPchFL1XDz49L60+vWhuDzzN8dG8wrJxO6SPUrwBk7G8QRpUvQOSLz1xAqS85ymkO8P227s03PU8tjOQO4G1p7y0NJI871bXu/sfkLwiYBq9P+oavFqD4by/Pcw8S1q2vDHxqLwPAks9KTqdO+meST19cj+9KyVqPa1G3rz4/hw9uVSDuyCmiL0Dkq88pknkPHrpaLxyd0k9hBsHvdlh7bz8/Bg84JQNvZeqET1HXDo+LTiZPDYRGjwYuFS9A5KvPAfBZrur0Tg75Bf3O9+3BL3NNj67BX18PH1BBL3tawo7x8OcvO4Ra7xSQ/87zGh7vA8CyzxnwkE9E0Wzu6mNzrxOwJU8ZvT+PKoWJTw5Y8i8wcaivC+tPrzyD+c8v/jfPLURmzsPjKM6uvpjPNulVz3sJp48mWSjPD4bVrwcLfq82boKvWvAvTvXdiA8VEL9PAKSL7vFKwC7Naq4vF2C3zyE1hq9P2BCvOdaX7wGfXw2XVEkOwDF7rsvfIO7TgUCvOudx7xYuws89pc7vIfj3Lx6c0E9oktoPJuUXDyxicY8s0PYvC7fez2wWAu8ZvR+vE9YMr3UqF08I27ePP8JWz0OefQ89sl4PeOhz7tTVi698sv8O2cHLj3WmZe8GrdSu1498zxxAqS9Mt13vSeAiztHoaa8qX6IPBGLoTxD6BY9i/WJvPEQabxXuws9U5saPStqVrxfgd28bwMmvErCmTsLSTs7/k5HvXECJLwsW5C8OWPIvG8DJr1pSxi836NTvD1hxLwdtlC7GamOuv5ORzwwWYy9nhwxPIKhdjxy7nI6q4zMPIO0pbyqFiU9526QO0+dnjz1U1E9nxyxPHghE7zV7cm8JYENvQvTkzw1qjg7LK7APLgyDj31DuU8uQ8XvYTWmjzvEeu8W8hNPT2mML2VITs99Zi9PIoYAb1K0F29Hyv2PCcnbj2TIj28L62+PJ/XRDwBTsW8bwOmPFKbmjyqfgi6072QO41qL72pjc68ZcNDPYVuNz3526W8BPkQvUBfQDzpnkm9BUzBO0XT47zuVle9d7qxu0BfwLzrJyA6xOeVuyyuwLzvaoi77ZxFvT4NEj0l9zS9Z5EGPXcw2byZ2so8B8Hmuy3zrLoHS7883Rp9vMl9LrsFTEE8M6u6vAJNwz2RaKs9nxwxPZNTeLyrR+A8GLjUvDkyjTyuFKE6ibGfO0GQ+7ltek898VXVugu/4roOR7e847WAvCkmbD3Zplm8Dkc3veAsqj3F9Vm9/dkhvR+1zjyO0RC7FrnWO+viM71cuYe8Naq4vGc4aTxitgE9TAYEvYUpSzzW3gM8mR+3PKcYKbt2ZwE9nIUWvTM1E72SmOQ802RzPDmotL0oXZQ7zcCWvB+EEzzxEGk9pknkPDxTAD33DeO8dHbHu4JvuTsFG4a7MXsBvc7ii7yzV4k81N8FPXjr7Dw37iK9Gf1Avc2s5bvokAW9zDY+vEQKjLq3/Oc8qdK6POOSCT0OefQ8z78UO3S7szw2VgY9d3VFPXwt0zzwVdU7UkN/O+tY2zrXMTS850sZvKgEeDwnsUY9K2rWPG5IEjzglA08rVqPPIuwHTvDO0g8wPfdvAeQKzsNjSW7V1SqPEbEHbrGwxy8SdHfOz0cWL28MAq9/U9JvRCumDkrr0K9P2DCu1q6ib2nooG5d/8dupeWYL27hDy9j2ktPJNT+LwORzc8EPOEvKOkhbwiKvQ8/5OzPDljSLz9lDW9I/g2PIdtNbwQrhi9+x8QPU6KbzyuWQ08mWQjvcw2vjwXL/48vflhvTfuIj2d2Ma5J2zaO54csb3D9lu74ysovTPwJj12Z4E8urb5vEEaVLvBgTa98Mz+u/cN47zBgTY9rItKvd24Bj062e87noSUvKgEeL0lPCG7pIEOPME8Sj0LGAC9pI9SPfNUU72Ul2I8ntfEut6jUz0HkKs8/x2MPAkFUbxduAU8b3lNPCBhnLtN44y8I/g2vVeZlry/gjg9RRhQO3Az37sVRDG8hW43uzMSHLrfLSy9h+PcvE8TRj1fxsm7X8ZJPCGDET2/PUw9fLervHJ3yTwmXha9W1ImvI5WfjzblpE8O6eyvJcgubzjXOM8TIvxOt9eZ71VVSy9FHVsPJ7JAD1tvzu7ZDptPcf0V7pH5hK9sABwPQOSrzwRAUk9BQdVvUehJj1Ej3k9wYG2vGcHrrrCsvG8CUq9vJ6EFD3ftwQ9PescvdV3IryW20w8o0vovGdMGr29Ps484JQNvY5W/ju6+mM8SsIZvc0FA7xZhOO8WYRjvMA8yjsVdWw9cwGivGVNnDyWiBw7MKw8uT8b1rs3qTa9OR7cvckHhzwPjCM8E7vaPGGUjL2y/us8q0dgvNVjcbwFG4Y7IGGcvZ3JADxSh2k9oIMSPbJ6gLxtv7s8J2xaPX1BhL2bqA08PZL/vF+B3TxBGlS8x8OcvBEBSbwcqIw8HYUVvZCZZjl/tim8rQFyObND2LyXILm87lZXPRu30rz5IJK8Sozzu34eDT21ERs9JKQEvA+MIzwvrb45b765PAoYALv7UEs8wzvIvF1RJD3joc88CY8pPAu/Yjn5lrk8hCnLvF0MuDznKSQ9/ZQ1O7uEvLsiYJo9Z8JBu65FXDxpfFO8WFMoPW4mHbyrW5G84SyqPFVVrLx8pPy8d/+dvCSkBLydk9o8L2hSvE1ZtDwM9Qg9WED5u4+umTx/52Q9dDHbPBtBK7uti8o8s0NYvGhuDz2Zhhg8HYWVPNtg67zyRg+9V1QqPFGcnDs7MQs8wOmZPePmu7tjCTK9La7AuzunsrxpN2e9DvSGvQlKvbyiGq28sYnGPDRXiLweP6c86JCFPO5IE7wC+pK7O6cyvUYJijqfkti8qUjivHnq6ruR3lK9WFMoPZjMBj3dcxo9+v0aPP/E7jxzAaK8ZX7XPP5Ox7wL05M9uVSDvBq30rpYQHm80uAHPQZ9/Dz1DuU8wi0EPeNc4zwNrxo9kyK9vPVngruuN5g7YLeDPNF5JjpYQPk83aTVvKsC9LyD5eC8h+Ncva8AcLyt0La8L/KqPBhzaL0o9bA8+SASvAXCaL34Qwk9cTNfvS3zLLyqFiU8Tc/bO3UxW7x/+xU9ISp0PdRkc71Nz9u7MzWTPD4bVjwQ84S7cTNfPUXnFLwbcua8+dulPLQ0EjtKjPM83aRVPIX4DztTVi69X8ZJuxZDL72TrBW8YYDbPI/fVL0VdWy7+1BLO6bTPDyF+A+8LCToPO3hsbwDw2q9c0aOPNmmWbwrJeo8cGqHPF64hT0g+bg81WPxPO5IEzy5+2U9RY53PI2b6jwp9TC92JgVvW8DJryHsqE8RV28O/FpBr36Qgc9+x+QO4rhWDxDXr48HcqBOeOhzzx27G4622DruzsxC7zEsW+9Nx9ePWhuD70Lv+I8GXPotnpzQb1gtwO8JYENveqPg7z1IpY8nU5uO7a4/bszZk69KlySPd4afTqPrpm8mR+3PLeGQDt3MNk8/dkhPEUY0DwDHIg9F0OvvJ6EFDzBgTY98cv8PIfj3DtOztk8Ouyeu04TRjwdLHg8jyTBO6eOUD2vzzQ93aTVvA+9XjqSZ6k89Q7lvKCDErwzNZO89d0pPGUIsLwBk7E8jWovvOPmWj0hvYU9xtsCvPKtJ71thnW8RayGvGj3Cz3Y9YQ7oUgGPDVNgbzodsm7q1ygOzteJ7zoawu9AkZtOzeJtTxT2hU9uNrwPNQ3FLr1DKC8Pr0fvXmmUr0A0HM9ci1lvGs+frxrVgS78sQou7mVbToUPjC8SiRvvBL2OLxNg+e8az7+PMFW0jv2ghm90sGaOylPY7ycuBc7U7fRvPQ6Ij2c5hm9RAiLvDIFCj3lxJu7+oUNPL4lXL0NOEg78Dcuve+TMjye9Eu8/Z79vFFYWbouJFU9kXX2vIBQNr1XukW9wW1TvV+SK7yZTdy8f364vDFhDr0eoxA9tZL5vFSJz7yMK5A8n7sLvMkuODxJl/Q8bkHyvKbjMjvGCYU8F28mPKeHLjwqOGK8Mu4Ivahwrbpiw6G8gq+uu8b9Qb1SCBg9Vv9IvGAfJj0Xhqe6VInPvCjC6Dz0OqK8dKNevP5xgD34JpW8m9pWvCMEeL0mTO+8g4EsPSdMb7yq5qa8XGG1vOfSTb34a5g8vK9iPcxfLj1X0ca8GFilPWsnfTzIRbm7FuIrPZ1FkrzSk5g85S7SvIKvLrv3mZq6FSevPH7Duzx5M8273j/rOuMJn7uOigg9gfSxvOb1kTx4hBO9prWwO5ZK6DoDGGu7cVtnPf3NhLyzkIo7GBOivLoi6LxS/NS8o5u7vOVFUzvSk5i8birxPN2EbrwSyDY98tspvdjeA70TmjQ8wuPMPPnhkTxXCwy9RB+MPDL5RjyGmyE9MhyLvVIfmT0Lws68OHK0OhENurx1ddy7ouwBu1kwvzwfMIu6+A8UPMOqDD14shW9oIFGvPqcDr2AOTU9tx90vFklgTxYXsG8Rk/9O0XDB7zZx4K72w51PJv9mjzvk7I8zF8uPTEnybxthnW9jCuQvPN/Jbxp4Ao8mXvevJMC8bkmTO887GI8PXltEjsO88Q8ehGOvGR+HjyRdfa8BWDiPKq4JL1dHDI8WRk+OzRYvzts4nk8VVAPO9HYGzx4eNC8DgrGvBedqLyNz4s88E6vPKwXHboK/BO7UWQcPfEgLb2Dgay8X2SpvBhYpbzeKGq8NRM8vRkTIrxHUAI8YqygvXvXyLyGySM9icwXPWHxo7wlevG7YqygPBQ+MLxXo0S8QpIRPXfUVLyZWR+9pIQ6PSvFXLwFd+M8Esg2ve+qM7x2Ate7006VPJjAYb3YDIa9P3icvAYbXzwS37e7RmeDvE/5YLyVYWk98sQovYwUjzyAlTm8VKwTPW209zz2mZo8Al3uOwJd7rwPl0A7Et83PPA3LruHhKA8v+BYuyY1bjwBi/C8qrikO19kKb3ZgXo8w7XKvMC+GTmAZze85KHXPB6MDzyHsiK8ImGBu83sqDxewK28RyH7POGH4jlz/+K8hQ6nO10csj1+/QC9/BKIvEsN7rvCKFA992sYu3r6DL0wppE76Y3KvJiS37sVEC68WSWBvG1vdLxjUJw8YQglPaCkCr0yYY46zQOqvE8QYjxHCvo85lEWPOVF07qf3Uq9oRoEufBOLzyriiK8MvnGvHDObLv1IyE9dKPePHCgar0hjv68aPcLvTt1KL53yZa9TJpovGQLGT2B9LE8ZDmbPJl73rrmDBO9MuLFO3YOGj2sLh68Jx5tvVheQb2XBeW8lL3tPDuMqTyLQpG8O14nvYaboTzwZTC8ove/uwlMVbziQl89+ykJvbisbj3dhO68wijQvDu6KzzBeRY8V90JvT0CI73EWca84XDhuyjZabtfkis9rdKZPDotMTx6HEy8MLFPOjTLRD2mtbA802UWPROaNLwEGGs8Wg6AvGgODbxv5W082lN4PemNyrzDzEs9838lPU4n47sdupG7Ind9vKUoNr0xSo28wvpNPDigNjwuMBi81cQOPTCaTruoWSy9/Mz/u0/54LwfXg08YdoivdWtDb3K0rO8RawGPZiSX700ZII85hfRu5lZnzzZsAE9Lg1UvWzi+Tss8146UjYaPU4n47ySXnW9lY/rPBeGpzsIqFk8AOd0vLTvgr2TGXI8C8JOPVejRL0so508dIxdPj3rITwL2c8676ozvcUrxDzjz9m8gGe3uk/i37zFToi91zqIvDblOTy2NnW96IKMvJvxV7yC3TC8zqelPCcH7Lw8MKU8zRqrPXruSb1Mmui8b+XtOIQlKD3KuzK7nUUSveJwYbw7Xqc8sb4MOfn4Ejx6+oy8BNNnvUjF9rybw9U81dsPPE4n47y+PN26UJKeOivc3bwPxcI8VS3Lu1L8VD2gmMe7CvwTvZS97TyoQiu96vgFvSMb+TzTfBe9JkxvPfgmlbxtnXY9jxb+vL4anrw+vZ87VLfRu5F19jyeF5C8C+WSPSGOfrwYKiM9e8BHOxEkO7x7wMc8q1wgPEciADvC40w75X8YO4XgJL2oKyo9oFNEvHNEZj19NsG8xSAGvSS/dDt+8T09QnuQOoeEIDwu9lI99DoiveRz1bziK9481a2NvS1eGr3HuL483W3tO3IW5DzO1Sc8/nEAPXyeCDx9QgS97Ke/vPQjITyi7AE6tMB7PF7ALb24w288zQOqvNXEjrso2em8ZCKaOVPOUr0gAom9l+7jvEzI6ruMK5C7ogMDveMJHzogAok8vhoevIayorw+pp48uMNvPJ4ukTxGfX+86JkNPV9kqTw5FrA8oTzDPOfSTTsKKhY9MSdJvPaZGryGyaM8YDYnPZjAYb1MyOo76T2JPIOYLT05FrC8yuk0PQMBarzD7w+9CTXUvFrUujx6KI88CgfSuuV/GDxwzuw7gq8uvcb9QTw66K26EFK9uyWR8rz2mRq8F28mvAlM1TwMfcs9FFWxvan9p7ylEbW7OHK0vJvD1Tx4hBM99VEjvZof2jz1DCA9Mu4IvdWtDb0h1Ia8fR9AO/nKEL06uqs8WGoEPJfXYjyujRa9fR9APW/8brymtbC7RyKAPIqHlLxSCBi8bbR3PFSgUDuX7mM9L9STPTRYPz0eoxA7DSFHvI5zhzsCRu27heCku0aVhbwhvYU8MGzMPI3mDD04RLK8BXfjO4LGL7z1OqI9FfksvD1HJr19NsE9sb4MvbsL57zCEc88NRO8vFTxlrzmF1G9U87SOZcF5bzy2yk8OFszPC1S17vEh8i7BY7kvDhyNL3u2DU98QksPEpp8rzR2Bu9nLiXvKE8QzrGCQW8nIqVPHYOGr0v1BM8puMyO0jcdz3lXFQ9x4o8vcxfLj3QS6E8CioWvaObO72b2lY9KNnpvDBsTD1X0UY9WkdAPPEgLb26Iui6BY5kvDt1qL3b9/O8v+ybPF7Xrju8r2I902UWvAoqljxUoFC8RpWFPR9HjDxDNo085IpWPa0AnDqP//w8JZFyvMehvbxVLcs7FsuqvINqKz0TmjS88tspvMRliTnN7Cg8VVAPvPtXC73PpyW8nKxUvdQJErwO3EO7PeshPXVTnTyhSIa8eWFPvV9kqbwMlEw9WUfAvYtwk7y6Oem8EIC/vI8uBLx7wMe9HdGSvYKvrjt/CD+8ygA2vGqEhryYkl88mMDhvMCQFz2Q6Hs8m8NVPD3roTwAuXK8MJrOvHV1XDzcsvA8bbT3PMIRz7yB9DE9/ll6PM95I73jCR+8MhDIOxOxtTl2Alc65S5SPfN/Jb1YXkG6Ai9sPODMZTyHhKC7g5itvOb1ETxECIu8FScvPX79AL39nn28wx0SPClmZDpa67u8PDClPIX3JT0H7Vw8M53CvAlM1Tx9TcK85JaZPEvfazwJWBi85K2avAJd7jx+8b083/pnvDFKjTzDnsk6vJhhvCvF3LxYmIa8eW0Su5MZcjstO1a6gt0wvB9ejbwr89481mgKvQPqaLzvwTQ9L72SPPKtp7o/YRu775MyPekxxrx6HEw9otUAPTuMqbwMiY47NuW5PHVe27yt6Rq9LXWbPHfJljw0WD+9NTYAPOrsQrxX0UY8Jx5tPGQ5mzzEh0g66g+HvM6nJT3N7Kg8n8bJPLKni7zDwY07pFY4PWngiryRjHe9dXVcvWtWhL3MSK07d9RUPbmsbjzEk4s8wW3TPJAXA73Y3f67V6NEPJ/dSr0966E8Po+du3xkw7x0o167Rzh8PEHAE7y07wI8oKSKPAC5crw7Xic95JYZvQiRWD3XUQm9ulBqvW5Y872m47I8Rn6EPKeHLjxYagS9IdQGPS4NVL2gasU7BNPnPEZng737QAo9kkd0PVRyzjyQ6Ps8MgWKPOuzAj2eC8288E6vvIKvLrwxSo08KiHhO0cKerxQhts8eI/ROyW/9DsyBYo86F/IvKCYxzxnahG9ThDiPGptBT2/91m9ayiCvJiS3zyl+rM8g2qrOx51Dr2tABw86THGPCKPAzwPl8A76T0JOwft3LztHbk8Oi0xPTwZJDxPy968E7E1O4///Lyb2tY8GokbPJoUHL1pyYk8BklhPXV13Lu0BgS8EQ06vOfHj7xhCKW9f6y6vClPY7zbJfY87IUAvAh6V72eLpG8Io8DPMhFuTzV2w+6LlLXuuxiPL0mY3A8xULFPb2vYjt8ngi9y40wu9mY+zy5Z2s8WtS6PPwSCD16KI+8EF6AvP2fgrySMHO8ro0WPaRtuT3mDBO6VKBQvQr8EzwUVTG8Ch7TvDuMqbw7dai8birxvMVCRbzrnAG8YsOhO3xkQz16HMw8tmT3OoRTqr1a1Lq8g5itOyGmBD01TQG7fhQCvebpTj1NbGY856TLPHruyTytABw8m/HXvFVQD7t2Ale7jc8LO1Pl07zmDJM8XHi2vDSSBD17tYk9hsmjvIwrkDywA5A7eI/RO43mDLxa6zs9Jb/0u/5w+zzPYiI9XDOzPTigNrxv5W27gFA2vQiR2DwaoBy9L+uUPPpuDD2/A528e9fIPEXDB72hDsG8kYx3vFO30bydUNA7wLLWOijZabxXusU82yX2O+xLuzwy+ca8S/ZsvD9hGzw4crS7Vv/IvG3ieT3Y3gO9NIZBvKX6szg5/y68eI/RvC5p2DyCry497ti1u5vaVjq1wYC7d+CXvJTrbzup/Se9IzJ6uwftXLwbWxk9NRM8O2Haojz7QAo8pfqzvI6KCD3HxAE9jbgKvDt1KD1SCJg9tcEAvcVCxTwg64c7szSGPWtWBD3xIC09j0UFPKFIhr1OPmQ7ImD8PDGDTb1Gff+7SmnyOwZJYb3iQt88Qe4VPfXeHT0tR5k6djDZPIdtH72gjYm85MQbvX0rgzsW4iu9tNf8O4H0MbzgzGW6V7pFvSDrB7z/K3i9DtxDvfKtp7wzqYW8GBOivJ4XED2XBWU81cQOvQk1VD1HOQG8gSK0PNA0IDsowug8osm9PMwxLLzy26m81n8LPSyuWz3JALY6YpWfvGnJCb2Oioi5FuKrPIQ8qbzwTi89oKSKPMRlibqGsqK8gsYvO/nhETyfxsm7Io8DvbvdZD2B9DE7zQMqPVe6RTujdoG7KNq+PO+GAr0m7kS9R/wtvYQx4bt24Dw9Xz0NPYidgbsSLYw5ZDwmvVR6BrtU3NY71oDOPHq4sLydshM8lkwCPUWVNT2Wx4A8epV/O1obQ70KM047p6bCvLOpnLxjRik8f4YhPOwpjbtkPCY9FyylO0jLhbx6hwi8QoIWPI4XGb3lb6I7fXf2PGHVLb0z8R68BG9guwjC0rwT2bI8j5IXPDDs9rwcUuM8MIqmvGQ8pjwKM064fgujvP0vdL1nmRu9VFdVPZH5j7tPMRc9qPCYPWxnjLxOOxq9kaW2OoBZ7bx6My+8mdofvfFPSzzIOa28Guvquv1Spb2npkK995i6u5tBmDorQbc8bGeMu5ADk7srQTc83B2XPKGKhzxryVy95HmlvItmSr1Ku/O7fRUmvYLA5bkIaoU6m6PoPOLhBDz+zSM81DyHvHbgvL2eqJC8y3NxOyfkQbvubdQ8jc3CPMtz8TtEGre7KxAPvLQkGzxTYVg8pbrIPOhRGb0jDE69kiC1OWy/WT1Iy4U83b86PduiGDy5QFY8UKISPRLjNbwIR9Q7ovsCPdKoWj2mNUc9ufILO7jZ3Tz+qvI8NOcbPLVy5TvIOS08G+Hnux802rxSa1s8JXNGvHTDGrxc1hQ9xDARO9snGj1cB728vp1LvYM7ZLwTqIo8srOfvC0tMb266Ii88spJOsO1krzn1po8a8lcPeykC73qlWC9haLcO45Iwbuh4tQ8EPe7vC7yBT3bJxq55PSjOxUder3MjB89+k19vStBNz1Id6y8/bT1O6x0M736TX26OohYu2Mj+DtL1KG8mDzwvAUDjTtnmRu8xVc2PQC6HbySm7M8jpwaPLeBED3E3De81Q9TvWYoIDyv26u7fPz3O61qMD0UrP460Mbjvcg5LT27WYQ8fgujPEQaN72Vfaq7j7k8PXA/AD35Uww8COUDPQIhljzfqzS8QoIWPF39uTyrfja9MOx2vI3Nwjx4IBA9ldEDPWLLKj1gMwq9Y552OUq787zMESE9pbpIPUdQB72qDTu7wfpAO61qML2AfB694ZcuvJV9Kr2YXyG8rmAtPGQyo72w0Si9bL/Zu3nCs72rTQ48UwkLPPvI+7sWu6k8mkubO/Unv7zTI1k9/kiiO63C/bspVT28ooCEvNwdlzxAx0S8qog5vA4Lwrs2ThQ7VznMPMoCdjwIR1S9dPRCvBWie7wP0BY9+VOMugfM1bxBOMA8TcAbPZNqC70IR1Q7wfpAvVobQzywTKc7W2UZPUKzPjzUwQg7VmYAvRQZhrkLpMk6AJdsPPjYDTtGizI8EMaTPMe+LjtlBW+9BtZYPRl6bzunpkK9055XPLyx0bteRxA9bL/ZPCQCyztYL0k8jFxHvYoYALkFZd089axAO+131zyW1Xc9t17fPJkybTtEn7g8sb0iPQZbWr0tLbG71/vMvChfwLz5/zK7FaJ7O189DT0eaxG8kxYyvUQatz1ZJca8LiMuPB5rEb30hZu8GmbpPFklRj0a62q93EQ8vUk8ATzXdsu7EHI6vX2apzuonD89HPqVPUBMRjtDqTu9FUCrOi0tMTxQJxS+iITTvJSHLT1S8Fw9oA8JuwP04TzZ58a8GKcjvQozTjxOk+c8r9srvXyBeb39KwC9JIfMu4Yd2zwue3s826IYveTR8rviCKq8FooBvbEVcLo05xu9xGG5PJVa+buvM/k8VfWEPNliRbyarWu8IhbRvHq4ML2jdoG9RJ+4Peo9k7wn5MG8XIw+vPLKST1lrSG95kJuPX/e7ruOFxk8yS8qPVwHPTzHm/273oQPPHhHNb0SXjS8Mvshu9rdQzww7Pa82GzIPLjZ3Tv2Hbw7Z/FovStBN7rzwEa9mx7nu0KzPj0c+pU8+sQHuwspSzx4RzW9FCd9vRTPLzzCdT+9i2ZKvZdpJL1NwBu8u1kEPPiOtzx7+IO9Fpj4O/iEtLyHE1g99qI9PDbTFb2J9U48egwKvfy++Lzjg6i76UeWvWb7az3RN988PWpPvHVlPj1rcY87deq/vOwG3DwPS5W84XT9PHhHNT74CbY9lGAIPYQxYbwgr1g9MA8ovVVN0jvLG6S8RBo3va+qA72OFxk8VFfVuwukSTx6My86e64tvcuWIj1Rdd68B3SIPG3Yhz3k9KM8gHwePcmqqLwUJ309Y0YpO2S3JL2uuHq8YlAsvWziijxDJDo9yqAlPMNrPL3lb6I6Tw7mPO1317vEYbm8YyP4vGWtIbtH2fy8qog5uylVPT1W64E849t1u7tZBL1oj5i8+tJ+u+c4a7ybQRg9Xf25uhsEmbw7HIU8gFltPYpwzbwd8JK8+XoxvMuWIr2GmFk7FhN3vQ6GwDz7uoQ813ZLuPFPS7zfJrM7h47WO2JQLLykSc087fxYvGCuiLuXRnM8qPAYPWpY4TiFolw9a3GPO0nF9ryzhms8yQx5PeTRcjw4F108QyQ6vK60Br11uRe9MIqmvAm4z7wAEmu9EHK6uxa7qTlhpAU78spJPLbtYz2bQRg9tu1jvRMjib095U09gztkPDDs9rwc+hW9TzGXvHyBebxyCMm4yQx5vLDHpTuIpwS9XkcQu2liZDr5U4w73ES8OUaBL7yYwXE8UATjvPQxwjyhBQa9ge2ZvK9WKj1/hiE85cdvvIFPajyXRvM8St4kvf3XJj2TFrK8N8mSvJwUZLwvcXg8w2s8PK05iDwG1li9llB2O2ziijxqWGE9Hj7dugukyTzDazw9LS0xvORW9Ly5Stk8BOpePePbdTz8Ofe8AY3pOr4YyjvUwQg8WuqavJm37jwp0Ds9haLcvCKbUjy7NlM7gFntuviENL0H74a8fPx3PN+rtLmA1Os81JTUvDTnm7yCRWc8bTrYPK2+Cb38OXe98U/LO92/ujzJh/e8RZU1PR+5W71BEZs8CdsAvCZzRj0S47W8yAgFPHnCMzzx1Ey95r1sPMeNBjzKoCW8t4GQPNUPUz0l+Ec8SW2puy38CL23Xt84iAlVPC0tsbzlb6I8xpcJvZhfITxMLG88HmuRPN2OEr2+GMq8mVUevEBMxrwkAsu8ZiigPUbfi7wQQZK8JXPGO00i7Dydj+I84RItPHN5xDzHQ7C89Se/OxItDD2UDK+8jc1CPenClLyuYK28x0OwO3ggELwl+Ec8/kiivbDHJTyJnQG94VyDvTx0UryFJ947HmuRPDic3jyKGAA9SUp4vW5Thr0JuE+7r6qDPPaivbxJwYK9E9myvH6QJLyRKri7c/5FPFc5TDxblkG9qlcRvGE3/jyg7Nc8HFLjvKoNuzyPPj49WapHPM5VaLw3RJG6TcCbvLlKWT1yg0c8SUr4PCbuRD0Yp6O8TUWdvH9jcL3wWc68x0OwPCfkQb3zO8W8MthwvMoCdjyxvaK8PY2APM9uljzDOhS94uEEvYJomLwXCXQ8HPqVu8uWoj1+C6M60i1cvM1fa72cvBa8a8lcPL+TSLwZnaC8QULDvUTzkTyys588vhhKvReOdTySmzM9CylLvDuhBr2QiJS74ZcuOT7byrui2FG9Q/2UPDDsdjzNBx68SW2pPPM7xTpkMqM81/tMvBeOdTywTCc8BQMNPS2BCryHjla9MYAjPfYdPLzh7/s8umMHPRVAKz3j1wG995i6vAyaxryoIcG8rMgMveFmBr0vGSs8fO4AvI+SlzxlraG8iJ0BvMp99LyTaos8egKHveNSAD0thf66Za2huon/0TtwHM88RRA0vU1FnTsUSq48ZqOePA4LwjxmgG081MEIvJMWsjsUz6+69h08O/M7Rbz/Pp85OQ1aPEux8DrGyDG9CjPOOFVN0jtPrBW8rTmIPSnQO70YhHK9b8SBPbMLbbwe5o+8N8mSvTchYD3iCKo8HfASPWKagj2Tbv+8X+kzvf1SpbzKAva6W5bBO4RUkj3DtRI5zYIcvVvgFzz8sAG8pElNPfcTubyIp4S8deq/vLBMJ73aWEI9lAwvOpXfejz7XCi9j5KXPCw3tDyNUkS6hphZO/LKybyV0YO8WC9JPX5t8zwAl+y7UXVevEVkjbz0McK89xM5PZb4qDy4dw090lCNu0aLsjwew169sb0ivKEFBjwthf68Ksa4PJZzpzxLWaM6HNfkPOChMb1e87Y8QgcYvBUd+rvUPAe+4ggqPH139jqcNxW9B1FXvJ/22rwdSOC8x5v9vN6EjzzqlWC9sNGoPHuL/Ltq0189sR9zPPWsQD1CLj09g16VvFOECbzNX2u9kDS7PVwHPT2S7ww8e4t8vEde/jsFiA68xk2zvJdG87suAH08iuvLvGjn5bstLbE8WqBEvdE3X7vLliI9+k19PUnF9rr/Pp87GP9wvKBx2Txjwae8+f+yPMWhjDy2aGK90rJdPGMVATvICAU8zBEhvDPO7bshQwW8P9HHPEG9wbzJ/oE7jz4+PKtNjj187oC74mp6vE62GDy192a9mksbvMn+gbuPDRa87XdXPGBkMrsZnSC9UKKSvIVAjDx31jm97ZqIvK1H/7w+YMy8qJy/u6lhlD1aoEQ7jpwavcQwEbzYbMg7FoqBvLMLbTtXvs27Gg6cvBpmab2QNLu872NRvH5t8zywpPQ80i1cup6oEL17i/w844MovekkZb0fV4u8uc/aOprQHL0cUuO8aWLkunozLzwl+Mc64HAJPLOGazw6A9e8mOQivDfJEjzKAnY8LxkrPIc2Cb1CLj08lnMnvHuuLT0im1I9GpOdvGQP8rxt2Ae9+XoxvPFPyzyBT2q96KnmO3CXTTwQcjo95kLuPIXFjTwbXOY888BGPd06OT3Pbha9CylLPAOclLzw3s+7JzibPEMkOj3+zSM8FEquvGMZdb0cfxc8mVUePC9thDtobOc8rrh6vFAEYzya0Bw8sy4evdKy3Tvx1My800YKPfs/Br1BjBm9zYKcPGy/2TzHjYa8bbVWPVsRwLtttdY8lQKsPHggEL2DO2Q9s6kcvSfkQTtGgS88DZBDvNWKUbsUzy89mx5nPKawRTs6qwm7OojYuwN547wCIRY8lIetulZDTzzIOa08EWi3O6KABDui2NG86STlu8ZNM7334hA9b6FQPAb5CT1UV1U9HmGOPfy+eL2JnQE9w+a6O3uuLT258os9Y0YpOh3wkjyxH3O8f97uPOTRcjx4R7U7XIw+PGMVAT2342A7PHRSPBTPL7wG+Ym7Yxn1u/M7xTxhWi+8RBo3upjBcbxNwBu8jc3CPGQ8Jry0nxm8kxYyO/lTDDzN5Gy8z9BmvfnOCj2bo2i8XvO2u0aLsrxIRoQ9QyS6PNDplL16uDA88AGBvGMjeD0LKUu8zV9rPf7NozxtXYm7nxmMvM2CnDysdLM8zV/ru92/ujzUwQg7FEquPMbIMTzO2um8YssqvBcspTxUeoY8QTjAvLUamLvoqea8SmOmvIaY2bxRmA89+XoxvI8+Pj2dLZK7Jb6FPTzsHzwqP4S9OsoGvWvxdbz+ilC8b+wMPRSX0Ty0XEk8iUTHOkYoS72Wewm948upOyRCiTww8ik7gMtPvINcXD10+/m7WqM/PQRzuzxwaAm96UwoPFLDWzxZeZ+7q4cKvVLOAL3iL/i7E2UqPSMiVD1NOlY8gP12PFzNX70U/r283w1fPH3bXbxwr8A7xwnlvHqHnbws0BC9Fo9KPXKnubyZz0k8MPIpPe08Gr10Bp88rttKveSO3bxUu9S848upvMo2I7yBZOO7upYQOzrKBj333zG82iiSuhrmqDx921290RPpvHNqbb3EB4G8uwfovG6FoDzyLAy9XpMxvPvPIzwyUY88J6tZPHMGnzocd7W8rHxlvOQncTqAoS89nPFivN6xlzvIPiq9X2EKvW1Q27vpfs+88V6zvF7ljTyLPMC8GRhQPOPLKTwVMwM8brdHva5Ctzt8GCq9JoE5PbkP77uW19A8A7AHvei7m7wWj8o8Fva2vLd+4rzBIXq9fGoGPBAOTLvWnww899+xuxSX0TynjPM8+K0Ku1LDWzyZiJI8MBxKveYfaj1eLMW8IlT7PNafDLxcm7g8gP32PCfLjjzflAA9lnDkuw7kq7zgQqS8pZ+fPGIcN70tk0Q8IAA7PSh5Mr1SzoA9KzTfvNSnEzy+NKY8CCZhPFqjv7v2eMW6cOSFPMfXvTp44QA75DKWu0GnTDzLYEO96hqBvNKvmrt7StE8cK9AvJ70gLxFUAc96g9cvagTlbwPQPO8cOSFPZoEj72icuE8voaCvAad2zx6IDE9ow6TvJhzAj3Bk4s8cmCCvKFIQT0iVHu8EdH/PLJk0DyDXNy6zMevPDxQbr333zG9YU7evFgSszx0Bp88IAA7O5gMFrrFeFg9W3EYvF4sRb2mggg9i9XTvKB6aL3zqAi7ePYQvDsmzjyRVlI9ZXD3u0TJ5Tx3ehS8MMCCvKEWmjyV/wy9d8FLvQpGlrz+I2Q8qrkxPBx3tTyyhAU9DjaIPAM+dr2Qk566TwgvPW96+7vOWDy7S9EFvenluztkrUO9+XA+vKoLDr3wKe67fUJKPAGtaT2TB5S9+8T+vOaG1judJii9Gn88vPgJUj0WXSO7p/4EPRSXUbzwKe68IyLUPOaGVrztJ4o7poKIvMUckTz3Rh48ihIgvOftQr1Z4As9tPXcvD3XDz3Di4S8gWRjvHwYKjxoBKI848spOxb2NjyulJO89LJzPEvRBb30svO84jodPVhEWjxsJju9jGbgPKmE7DwxRuq78CluvI3NTDtHjzc9NkGBPAYEyDzWOKC8rA3yOwbSIDzjyym9/vE8vbyOCbx2/pe8xXjYvKzjUT2/91k7AINJPBK/jbvAF487rxCQPNukjrwVwfG8ZXscPZZ7ibxwr8A8Ks1yPfoBSzyXPj286TcYPbLLPD3Tck67vNVAO+l+z7xek7G8xwllPVORtDzDGXM8JxLGPBnRGLw2cyg9y2DDvF6TMbv1TqW8TXeiulS7VLtc7ZS7nvQAPQhjrbzhbMQ82Vq5PEWXPr1naPC86LsbvWRmjD2deIS8aASivfs2ED0xtV29P88Ivnnr67zETjg8Yhw3PQ9A8zxZeR8977gWvWPfar2KeQy9ZgwpPXFydLxq54q9QlgOvXAWLT0y3/08ltdQvBPUHbxQ1oc7/CvrvLizp7xcmzi8mAwWvD2FsztCWA69IcaMuyRCiTwPSxg9Fl0jPc+NATt+BX6851QvvSBnp7yWcGS7fHTxOm/h57wjItQ8truuvOvdNLzxsI+82RMCvYD99rsNuos9swCCPFDWBz3Lkuq8lIOQObUqIj3zqAg99zt5vVl5nzzVA9u6+/lDPGyNp7zJDIO9EZ9YvY8ssjv6Acs8R/ajvFazTb08UG48Da/mvIp5jLuVRsQ7ihIgvWQUMLwHLui8fGoGPDLf/bqjDhO98iFnvRFDET05LlU8poIIvC2TxLthTl68o0C6PL0KBr1zOEa8eVLYvKGvrb1W04I8NjbcPA26Cz15cg06jl7ZvIflYb2c8eI8/JLXvJpg1jwVKF4+QadMud18Ur0013a9ltfQOwAnAr0mT5I8aJ01vWC9Ub2yyzy9xBFsPK1/Az0y6iK8inmMu/q6E70o4B49cwafu5Z7CT0pw4c9rA3yu9odbTwHYy29v5BtPfkph7xfVuW8+8T+vDDAgjzRmoo8xLWkuQtbpjyDw8i7jyyyO6CFjTvvzSa8mmBWPNUOgLwy6iK8rwXrPIPtaLz+tPA8YedxPcwunDzoF2M9if0PvB89B72OApK8BCyEPa+MDLsm6KU8Z3MVvKnBuD37xH46VYmtO2idNTq2VEI8By7ovHx/Fr03BLU73y2UO7YNCzz6pYM8ZXucPHZa3zvbUjK9FJfRvHx/Fr3PG/A8+roTPfH3Rj1q5wo88zmVPVXwGT0TOwo6wF5GumODIzy63Ue8VYktPUvRhTwKRha9SF2QvKnBuDvn7UK8GRhQvLielztX3W09ut3HvI00Ob29zbk9N51IPei7G7wbqVy9Olh1PKSKj7zdsZe886iIu0xNAj1tW4C7TqHCvPIh57yGfvW8998xvOgXY70+Uwy9gvVvulgSszw4/K294i/4vDTiGzswTvE89CSFO9odbb2g4VQ8qxX5PHm5RL1r8fU7aAQivNCs/DtucBC8lUZEuzHVkjySi5e8rEq+vHJgAjyx/WM9dJ8yu8/pSLs6ygY8Z8/cPDRJiDug4VS6fnePPDTX9rzcFea8feYCvTDyKT0RQxE9SkpkPZ14hDy63ce8wMWyOy8k0TxCONm86qjvvN5KqztHSIA7U18NvRp/vLx56+u8BUGUvMKLBDw+Uww9EdH/PNdiwDwM7DI8yp2Pu/A0k7sZGNC8YrXKvCjgHjuTtTe8r6mjvJTfVz06Yxq9QQ65vNAejrxsv049bHiXvbeJhzoHOY08jpulvOKWZLwtTI296LubO/HFnz1exdg89qrsuyBnJ72UeOu8gvXvPFfoEr0IlVS8/LIMvB7Wmjwsu4C9BTbvPKJy4byM/3O9NOKbvJqVGz3+8Ty8R/ajvTDyqT2i2U075rh9vFsKrDxxcnS8AjSLPVLOgLzvzSa9XJu4PCC5g7waf7w8jGZgPPvEfj2mgoi8QNlzu9f707s1xYQ9jYaVu0GnTDzMxy+8pTgzvCkKv737K+u7L71kvOQylrzMxy885I7dvDtGA7wa5ii9Y+qPvL7Nubxexdi7/vG8vB2h1bwQdbi8DIVGvB89BzsbQvA7ABxdvSHDbruUeOs74AVYvaWfH70ZvIi7GbwIPYSRIbyJ3dq8MUZqPLqWEL1x2WC83LkePWdzFT2XPj097pjhPJnPST2RJCu9j8XFPOQncT36pQM9gYQYPRAuATxkRtc8iBqnPFpcCLw2cyg9aPl8PH6pNjysfOW8AjQLPdbRMzzZrJU90qT1u4NcXL3pTCi821IyPSjgHj2G8Aa9Pq/TvIoSIL13Wt+8HTppO9vrxTzVA9u7z40BPEmHMD1aoz+98+8/uxm8CD3JDAO6O426vMTny7vSpPW7ACeCvDhgfLxxp7m6QXUlvFYaujyp61g8Hm8uvR066bu+Zk28GFUcveSZAj1XgaY8lRQdu9bRM71hTt48CvS5vMkMgzymYtM73ZyHPKJy4bp+EKO7RlryvMAsn7ylBoy8ZK3DPK0YF72kio88Fo/KPIW7wbzBiOa835SAPJ70gLqvnn48my4vPGPqj70ZvIg8jTQ5u9diQL0KjU27870YvMAsnzzOJhU8vI4JvSh5Mjxz0Vm8d2UEuhmxY7xvevu6hJEhvHIOJrzz77+8OGD8u+oP3DwJyhm9Dn0/vW63x7wY7i89HHe1ueoagb0pCr89eoedu8o2ozy09Vy88CluvLxu1Lvj/VA9MuoivGODozvOJhW8fqk2PFORtLxtUNu8780mvbLLPD126Qe7gctPPYmrMzp/OsO8LSxYPDWlT7ye6ds8Bp3bvE1sfbtZbvo8EZ/YvFirRjxXgSY7vDwtu4AyvDyyZNA86BfjuzY23Lwtk8S8Mq1WvOHTsDtzau08DD6PvHFydLwWXSO9pNFGvZX/DLv1tZE7M3svvZoEDz3DgF89eIR/O45eWT0BRn290B4OPU0QNrwBRv07W2bzvasgHryZnSK8oUjBO0nuHL1aPFO8mvnpvOCpkL2fHqE8zC6cvHuxvbzYJXQ9GFUcPdgwGb39Lom8j8XFPNwgC72vBes8+88jvb3/4DyNzUw7G6ncukt/KTr1tZG8a/wavD7h+rw7RgO8Rf6qvEYoS7p5ucS8k7U3PK1/g70jItS7TNvwPK+pIzz2EVk6782mu55QSDwxgzY9DjYIPOftQjymyT88gYSYuwIU1jxseJc8qFrMPFAyT7w+SGc8homavExsfT3OJhU8smTQPEBLhbzYMJk812LAO7w8rbkLwhK8yNe9u/kph7yp61g86rMUPXIOprwrAri8LMVrvMatnTzqqG89u6sgPQhjrTwpCr+8EA5MvQ4W07zRmgo99BngvOYqj71qla48b3r7u7a7rj0Pp987QOQYvbkalLxj32q9fGoGuleBprykalo8kweUPFYaujwpPOa642Q9PVORtL2M/3O9jpslvLuroDvcFWa7NV6YPAW9kL1H9iM9SuP3PAJ7QjshNQA86LB2vZTf1zyHBZc81QPbPGj5fDxN3g672KyVO0ypSTtCWI48LUyNPGZehbyPLLI8ut3HPMSgFL0VwfG7BagAvb2jGT08Hsc8t37iPJO1Nz1c7RS9wlY/PCs0Xz3WOKA8HtaavJxYz7yTTks8nCYoO5yKdj2BZGM9eOEAvZuAizwM7DK9NV4YPVP4oDxFl748e+PkPKJ9Br1DBjI9CSZhvdF6Vb0D4i47poKIOho4hTzDJJi8ihKguxa56jwtLNi6hn71PPXnuLzWOCA8xd/Eu7sH6LtlPlC8HMmRPeElDb2RvT68acfVPIMqtbuCmag7/7RwOqOnpjwCe0K9UlzvuUbMg7xK4/e8gvXvOoGEmLx921275rj9uzpjmjxNdyI8bHgXu9yu+bvTK5c87KBoPRT+PTz5cL48xLUkPflwPj1Hjze9VfAZPEGnTDvpN5g9e+NkvMZGMT3YJfQ7I4nAu7qg+zw97B89IGcnveCeazzmw6I8vf9gvEbB3rrbUrK8eI8kvfO9GLzb60U7JbPgvBZIkzz2Edm8qSilO3BoiTxxcnS8e7G9PLcX9rsviz074qGJu+NkPbxf7/g6yjajPOoaAb2BhBi9ZddjPWRmDD245c46noJvu6aCCD3oIoi7igf7PCC5Az0I/EA9kxwkvNod7Tmjp6a8XFQBPb3/4DqfHiE9cmCCvMTny7sny448sGzXu9bRMz1ypzk8HN6hPDpY9TsSvw099IBMujHffTzfdEu8id3aPNmsFb0DSZs8yKWWu8bKKz07Loo8eiFzvbDjsbxdE3k8yeHTuyLY8DzpC4g8Hxv+O6TsjDx81vm8NQcKvNNyYTuRxV+8QVD4u9xewLoptRM951HvvD6UITw/Sai7IX47vdupuTzfbXw8vea4vNyxJbwCYGm87MNovQ1MSD2xPgM9cOPKu5flDz2ZR7G81CfoOxERJz2/QO48cT6cO/VU9rz6IcG8uiHavLYKsjxJh9A6Gv0FPUTDjT1teT27Dq5pvFiaL72hKyS8lYLSvCsXtbtCWOS8rMyJPFY4jrz0+kA9LScNvByxcLs6Iqg88UW6vKZKuLzhJ5W9gQKMvLi/uLyPrrc815IRvX2MHL1VMCK992TOPHkeGbz6fBI88pgfvQh/fbzcZiw89lziPG6BqTu3ZYO8btgEvX9JD73lTpW91S/UvNAIVL1FFde6v+4kvRPOmTyqYWC6UiBKPKzMib0Zmkg8ZUJlvNUvVD1Gyt07LoFCOqVKuDtHgAA968AOPcMNubwEFgy9D1ygvGLY1zx6JgW9dQJfPG8uRLrUKAQ9lzfZO+ZOlbtVitc8INEgvfNNJr31VPY7D1ygvGpqATyexYy7zEN1PZR65jy9OR68NQL4PD6YF7r9i8487Xhvvf+bprxVMCK8p6WJvMRsgD26zxA9DfliPTJGobydXtk7M0qXvNJq9TuTewK9+3v2O6oTjTvw5w68NQsAPevAjrxEvxc8mk+dOwV4Lb3Z9LK7xW9aPbkZbryB/hW74twbPSWdz7rbVlQ9t2WDvdjsRj1qvMq94oVAPeb3ubyYP8U8WD9eu0bSyTsRvkE8STRrvIqW8zxRa0M8oX6Ju2j/17yUeuY8QPZCPODIzTzl7828YSs9PeKNrLztJia8uBqKPPWvxzyxkEw9c/+EPd4TR7z7Ka28W1eiu23Mojzk52G9veY4PODITTpaphE9y5ZaPf+jEryYP8U7yCxNvSIr1rt1At+8VzwEvQZ4LTwRESc8cT4cPOtpszzDYJ48V+WoPFWK1zyrHtO8LB8hvEVwKD181nk8IzsuPLuEl7zaTwQ7sZBMvV0Mqbz5ywG8XFsYPGpqgbxmpaK8NbCuvbCI4Dx72ws88vLUvMjWDb1u0/I856TUO1xfjrx9Obe8bR5svBWHljzv2yy8YYIYPTzjkLwbVzu9WJqvu7E95zyHJPq87i6SvO/brDwyRiE9ggXmvNPVnrz1WQi921ZUO2haKTy4bFO9oHoTvYmHtzzu00A80hisPLSshjyj4Co9kcKFvJ0QBj2+QQo9IzPCPFR6/7rTH/y7OG2hPQ2nmbteFBU8HF+nu1qqhzzN+Rc7p1IkvfGQs7yklTE9S5eoOwk1oLzXN0A9xRkbPcjR+zz+7gu9M06NvGxxUbwY7S29w7rTu/a3s7xPCSK9lHrmPA4BTz0u23c6iCzmO9IYLD3+6pU8DJ8tu2Q/Cz2Npku80x98PMVv2jzvLXa8JUJ+PA1MSD14bGw7YdBrPa+AdLzjjay7Z62OvadSJLxPXAe7ZviHPLKYOLyVLBO80b1avEvqjTxQY9e8+9bHPJEQWT295jg9OyqUu+LYpbyeE2A8A7POPHgeGb6XN1m9dE3Yu5pWbbu5dL88r9vFPF5mXr2BqzC9HLaCvUMFfz2seSQ9WD9evaphYLwdZnc8OL9qPcCrFz2nUiS95kofvFFrQzyrcTi8q2nMvBy2AjrxkDM9kyAxPeEri7pJ4iE9d2kSPWxxUbuvhQa9jPFEvWb0ETyOU+Y7OG0hvJmiArzCBU2786CLPD05ULzJNDm9Twkiuyf8FrwfybQ8Rh3DPZmigruW3aO84COfvBlHY7zhfVQ8yo5uPQNhBb0lQv68wgXNO4RoozyDDVK9LHIGvcUZm73x64Q7JfA0PHLzIrwNVDQ7v/qGO9QoBDzynJW9i+lYPJ0Qhr2pByu9TlgRvSxyhjyKPL68+Gy6uw8JO71mnbY7jUwWPFqmET34EWk8MJGaunKY0TtduUO99lxivLE+A7xFcKi9zfmXvKis2bv1Ai28btPyu705HryaUxO9wVDGPOPgETxB/q48u9ZgPp8bTD36e3a9o41FvWoPsDwnpTu9XhP5PLhs07xYmq+8ZOgvvI+ut7pTxfi8zaYyvMh/sjzscZ+9Os/CPAJdD7zBUEY8WqF/PRUwOzz6e/Y8+L+fvJr8tz2OVIK6bcwivTNOjbyW4Rm70m+HPUbSSTzDYJ470hgsvP6bpjtcBL07HWZ3PMXCPzvYlgc8uR4AvUzxXTtnUr28fNb5PLa3TD29OZ48eSFzPK6BELzMnka96P8lvAnaTj0GeC28dxK3PLavYDz2XGI8Z60OvS0jlzyeZkU71oolOzKZhrya/De95kqfvB7BSLwWOCe715KRumdSPbx7Kd882OxGu6x5JL0tIxe8LMTPPEqPPD2rxB09+4AIPa3L7T0qvGM8N2W1vE9cBz36e/Y8pqETvA5UtDzorMA8AVEtvcd3RrwdZxO8w2QUvd7A4bzSxUY8iuHsPGoPMDymnZ29ZqUiPb09FD38g2K84HXovJG98zx5Io+8rMwJPam0xbzsw2g9tPrZO3keGb0TIGO98eL8PIrh7Doj6Ei9TPlJvFG+KLyVMIk86P8lvY1QDLyGysQ8OHEXPEBRFL0duVy9Bs+IPHgaIz3Gyiu8rdNZvAeAGbnfbfy8+BFpPIVv8zz5zts7EmvcPAbK9jx93uW8W6nrO7gWFL34wxU8OnzdO7yMgzyYmpY8YoVyOkh/ZDzgI5+84twbvfWvx7saqiC81uTaPFc8hDxEww09lHrmPK7TWbs1AxS7Dq8FPN7AYbwmSuo7CC00vdWCOTzGIQc9v5u/O2pqAb1FFde7qmnMOsUhhzt0qCm8tFUrvbLzibsDDiC75UIzvVtXorxB/i698DVivPLy1LwNpxk9BXgtvZsEpDtcsde8So+8PCwfob2hfgk9TlN/u8JYsry0p3Q8n8mCvPt7drznUW89XmbePFUwojyfwHq9o41FvRyxcDvCWLK8eGzsO2HYVzy95rg8jVCMO64mPz0vLt28ieKIvaF97bzqDmI9VjSYvDKgVr2zrIY9iH/LvNUv1DugyGa8HxyavBQoT7z3ZM68/DGZvB25XL2Cs5y8/pO6vAk1ILtx6zY8OcfWO4RoIzyNpsu7NPsnPUYdQzueZkW93238vKF+CTzduPW8aKxyO9upObvIf7I63ANvPB5riTzKkwC5OXRxvNBjpby4bNM73xuzPN0LW7pXksO8C5dBvUd8CjwDDqA72k+EvC8uXbzY7Ma779ssvOPf9bxTzoC80GOlOz+cDT1+QSM7FM39OwJZmTvvLfa86P8lPL2L5zxOATY9Jp1PPeZOFT0/SSg9QljkvC7UJz14GqM8HyCQPIH9+TymnR08POMQPH5Bo7wraX48/YvOPPLqaLxfG+U7NbgaPMVv2juwOg29i0QqPcH94DyUKJ08w2SUPBtXOzqTILE8nV5ZvFmiG73Lllq9lzfZvJIYxbzJ4dM7NriaOwgtND0EEpY8hyT6vActNLwTIGO8UGPXvC0mcbw2t/66MT41vX9Ic7tV1dC8mk+dPOx1FTw0TXE9bXk9PEk1B739OGk84o2sPOdSC71jOnm8wqp7vGetDjwlR5C9NPsnPHCI+bxeFJW7v+4kPMjWDT0ebuO8URByvActNDwv3BO9HblcO7opxrzaTwS9Wk+2vH05NzwtK4O9EWPwvKakbTzRvdq7jJ5fPHgaI71QFYS9Bcp2O37mUbsiK9a84o0svIGrsDzOshS8/TkFPc+yFL33EWk67oDbvEclL7yRENm83b2Hu99yDjsteVa7wVBGPGQ7lboptRM9sZDMvAmH6byszIk8Y+DDPHcSt7shfrs6oti+PV0MKbym7+Y7bibYuzcS0LsdZve8lSwTPUCjXb0Zmsg8h3ffPFqqhzzYlge9j643vYqW87z4v589cJEBO05chz3tfQE9y0N1vMBIWj34v588bMQ2vLA6Db1QY9c7sDqNPBflQb3xRbo8KAQDvVG+qLx83wE9ojOQOxr0fTxdXvK7uzEyvMVv2rx+QaM8utbgPJLF37wb/Gk82UcYvAzx9rwx6088arzKO66BEL0BUS29zfj7PMRsAL2GdIU9+Gw6vZJzFj1pYhW7tgqyvJmiAr4wNsk8n26xurLzibyX7N+7UGNXPES/l7yLlw+9hspEvJ/FDL1GHUM8N7f+PIYdKj1sGxK8Dqb9PFMoNjyQYz69Aw6gO2wfCDzh0Dk9XmbeusRn7jw71668s6f0vOweOr0UezQ8Y+BDPYnekjxgyH+8e9uLvQfSYjyJhze9PN+au05Umz06Iig9+L8fvEeAgLz/7e88QVkAPeoOYjyfyGY6r4B0PIqW87yN+TA93hNHPGIzqbsvLt28G/xpu+KFQDzVgjk90b3auq59mrwMny29zUthPdpPhDyBAow8WD/evG4mWLz1VHa8L4kuvVMgyrxa/NA8ax8IvSoPSb0Wiww97SYmPXi/0bxLl6g8gw3SvI4BnTzh0Lm87HGfPdeSET1PW2u9EhmTO/HrhLzcCIE9mwSkO7VcezzbXkA8P0kovYbKxLxllUo8pfACPTsp+DwdZ5O7xW9avOZOlbx2tIu9gQIMvYcpDL31Aq27jZ5fvcCrFz2Rvo+9xR0RPR1nEzw1sK67fkGjvJn0S7395h89XLHXPKZKuLwTIOM886SBvBr5Dz1ewS+8Vt28O0VwqDzugNs8R3wKvC8u3byhKyS9MDZJOyLg3Lwteda8+iFBvLcSHj3sw2g8WD/evC+JLj3cA288MqBWPQ4Bz7w/Sag7VdVQvId33zr4EWk94+CRPLPy7bwewcg8So+8vRlH4zt0+nI8RHAoPDrPQj1g0Qe9yNqDPL3muLx2r3m86g7iO+weurzw4ny8PDHku7JFUzspB907KQfdPNjsRjx+k2y8w7LnO0QN6zzvMog7By20uqWhEz1ducO8MpmGvDzfGjoymGo8PeeGvJmigjxwjYu8nyM4vJJzlrtOATY8xsqrOym1kzwxPrW8QwoRPAvqprzy8tS8MpjqPCToSDzTzTK8pp0dvV/NkT0+m/E8f5tYvIIGAj1qD7A9x9IXPJC2ozu8jAM99VT2PP6Turp1VUQ7Ehh3u7NNP73WN0A8etcVvUFVCr3BUMa8s6Cku5lHMTy3ZQM7ZvgHPaONRTzkOsc7AaN2vKPgKry7hBc7xBWlvVftFDxTc6+7sDqNvO8tdrtm7/+7nQt0vERoPLqXN9m8+XSmPFY4jjyjN4Y74oVAvVWDhz3/8oE8bBsSvevEhL0aorQ8qx7TPFbdPLyX7N88vT2UPN8bM7vRvVo8dKgpvb09FDzpB5K85kofPWsXHD0DDiA8eXRYPBjtrTxFxwM92Ub8PPwwfbuTILE8nLG+vOHQOb22ZGe8+cuBPHrPqT0v23e8Jp1PPUd3eLw="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_relationships.json b/dsLightRag/Topic/JiHe/vdb_relationships.json deleted file mode 100644 index 1faa8874..00000000 --- a/dsLightRag/Topic/JiHe/vdb_relationships.json +++ /dev/null @@ -1 +0,0 @@ -{"embedding_dim": 1024, "data": [{"__id__": "rel-8c1c7a535667da54717cfc684a29b3c3", "__created_at__": 1752209913, "src_id": "Triangle ABC", "tgt_id": "Triangle Inequality", "content": "Triangle ABC\tTriangle Inequality\ngeometric proof,inequality\nTriangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-b46d74f0796c8b6fef0de58539f07c35", "__created_at__": 1752209913, "src_id": "Euclid's Fifth Postulate", "tgt_id": "Proposition 19", "content": "Euclid's Fifth Postulate\tProposition 19\nangle-side relationship,geometric principles\nEuclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2ef66df36fc7aa71e1374473e20fdd1f", "__created_at__": 1752209913, "src_id": "Proposition 19", "tgt_id": "Triangle Inequality", "content": "Proposition 19\tTriangle Inequality\ngeometric logic,proof technique\nProposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-e3c9f606eb2d48c5e37f2c2d8bff69ed", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "三角形ABC", "content": "三角不等式\t三角形ABC\ngeometric proof,inequality demonstration\nThe proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-de9c692983018a15521f9ccd2f7c6a7a", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "欧几里得第五公理", "content": "命题19\t欧几里得第五公理\ngeometric principles,logical progression\nEuclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-37e6f8ce2b52adfdbedbf5458829145f", "__created_at__": 1752209913, "src_id": "三角形ABC", "tgt_id": "点D", "content": "三角形ABC\t点D\nauxiliary point,geometric construction\nPoint D is constructed from triangle ABC by extending side AB to create additional geometric relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2a9cc6a702126e537b2447867dae52f6", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "等腰三角形BCD", "content": "命题19\t等腰三角形BCD\nangle properties,proof technique\nThe isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-039ba025f89bcd6d36103f7ef75d76ca", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "几何原本", "content": "三角不等式\t几何原本\nhistorical reference,mathematical foundation\nThe triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "ZDFVPKco+zxTcES9806qvECiFjqWZ+o74mngOyCLpTwD32S8Dc0HPAw7K739aYq8nmUdPIKZPLxdKh68GWC1PE4lND2m7qC8nDTHO2JYgbznBee86kPaPD8gSry6Ppu7TGmNPOpDWjylbNS794ydPXF6mDzOjpW8oX9XPNH5RboXgFW83BEzPeUsE73vVJC89rnauvWsvTtA84y8SAfhPIfXr7vaVQw80Eq8PMkfzLwVBRU811HzvGDzYbtTU5e8XmuEOvYKUbydkto8DkhIu5p4oD0nWII5qrfkvIXKkjsmaBK9YgeLvL8UfL3QLY+8u3+BvLRxPrx/j5K5cmP8vIG53LzttRY8c+XIvJUJ17u9WFW80fnFvH5OLD3nKaA8lQlXvaedqrzQSjy9k00wPK6kYb2BaOY7XWT4u+bLDD1Uzte8zF2/OwEGkTw9E606nQeKvEkU/rucFxq9hroCPVgwhLybJ6o8kUATvfl8jTtLlko9dfLlO7evMbvapgK9yqGYvPtifrz9NcE8LxvgPEGShj34xnc6zz2fPMnO1bx2xSi7t68xvWbtez3bBBY99S6KPTPOArzW8189KGUfPPtVYTzyHVQ9ZKYEO+ZW3TwfuGK8K/QIO0+DxzmcNEc8K9DPPJ1B5DpLlko9ofQGvacvB7w8QOq74rpWO3vzC71wHAW8emGvvAyMIbyNL925daFvuXpEgrmjQgq9E5NYvQYdWDyLIsA8Ll+5uyjw77z0/TM9YnWuvOFcw7sotpW9NRV6PejYKb3kmra87z30u2YRNT0S5M47qtsdvbK1l7vg4QI9wZZIu/jNAz0AFiE92HUsvU12Kj3quIm97z10PUB+XbzzQQ08NpfGPIfXr7rt0sM8Gm1SvRVWCz2aeKA97z10vA9V5by7f4E8YGgRPS5fOb3H9YG8nViAu9PZJT2gBBc8n6aDvEBRIDzpyBm9lmdqvElsAL3UiK87sITBPOFcwzzyHVS8RpwwPE9mmrvNu9I8G+IBPTL7P73oY/q8XB0BPd0e0Dz0/TM8zEASvbMTq7tYGWi9eY5svABXB73GVgi9G5GLvDTbnzs7Vwa94K05vNnTvzzuMFe91kTWPJGRCT18bsy8FQWVugjZ/rwsjPa8ZKaEPIjkTLsc7567RT4dvS/hBT2OPPo8qI0aPC8bYL19QQ+8gArTPNZEVj0lsvy8Wps0vS5fubzTtew8y4r8PKOTgL09E628B3vrPEuWyjwQeR69eVQSvBQVpTnRqM+7uEGOPEKvszxdZHg9Cf03PeuhbTsQKKg9aJOBvFauNzxOCAe8WuwqvVpKPjxNxyC9SWyAvX5OLDsq0M87LKOSvTqEQz1O1L086cgZPfCyI7tKOLe8PRMtO8e0G70aD7+8AMUqPLqPEb0BIz48erKlvGTgXrtPMtE7UJDkPMjBOD2dWIA8LC7jvDy1mbzXF5m8t5IEvLxLuLxW/y09OQJ3PIzRybsQs3g9olIavYm3j7yoqse8/GL+O1aK/rtMGBc9RpywvLCEwbwaDz+9rwkBPFgwhLxEa9o8AzDbO4I7KT369028PLWZuxVzuDxy2Ks8HO8evtfGIr0U8Ws8AzBbvABQezyvsf486TY9vQ+m27wBI748TzJRPfmZurwavki9B5IHvduznzzL23I8CNn+un8+HL2o+707emEvvaNfN7wOK5u8Vq43vZhHSj0eWk+7xxIvPcaQ4rw1iqk7AXQ0vAu53rz7eZq8wOc+vQL2AD118uW75lZdvLaiFD3p5cY8OoRDu/g7p7yRQBO8q8sNOzl3Jj37eZo9S7qDO7snf7udWAC8WDAEvRcv3zynKPs87oFNvZ4UJzyjsC29PlSTOrZRHr3F4Vi9/7eNve+O6jt4gc88nvBtuzS3Zrzf2vY8exA5u3phr71V23S8losjvTbovLybuQa9EWmOPJZnajsZ8hG8coc1vbLvcTxHqU086TY9PcosaTxNUvE77SO6PBwpebw+ccA809mlOw8bi70tsC89ZhE1POxXg7wVc7i8EdexuSdBZr1rrbs8XAblvEtFVD03RlA+OBmTPcqhGL02y4+9+UhEvDWXxrvxUZ08L+GFuit/WbzzTqq8cbTyvHW4izgeWs+7f6y/PGDzYb0kA3O7IcyLvFk9IT1amzQ9OBkTPF217jys6Do8zF0/PbGRXjwTt5G9KGWfvERr2rzaVYw98yrxPN/adjwsUhy9AzDbPBg8/DtYat67BRA7PZp4oDxhouu8JAPzvHIpoj1dte48KGUfPZ1B5DzBRdK7LxvgOz5UE719zN+8T4NHu4Fo5rmCxvk7ubzOPNRrAjz+CIS8Hfy7OiXWtbzsBg29Wpu0vAF0NL0ITi495HZ9PBje6Du+K5g5Wps0PKbK5zx6Ya86858gvTL7P71yaoi8TVJxPdRrgj1Yu9Q8I/bVPWkrbz3F4Vi95lbdO8Kj5TwL3Ze8TiU0PY0v3bwXL1+9nUHkvMUyz7yOsSm8wHmbvODhgrw9nn27WT0hu8cSL720A5s94QtNPWZiq7olsny9lsX9PEFRoLweWk+8RGtavb+Jqzxam7S8IcwLvXXy5bzfTyY8OXcmvRAoKL3L/yu9PsI2vKNfNzxNUvG857Twuy0BprnZZZy7TgiHuk12qjxG3ZY89gpRu8UyT7upzoA82jFTu7m8Tr1FePc8hiimulE/brwLuV66vEu4usZWiDuI5Ew9JdY1vdgktjxRtJ251De5PCcHDLtIB2E8zt+LPBuRC71m7fu8lKvDuxcvXzyJxCw8fk6sPE3HIDzbsx88KGUfvZp4IDzLUKK8KaYFu6O9Sjwby2U6C38EPXWhbzvznyC8xYPFuq5T6ztw+Mu89n8APDqEwzu2LWW77wOaO3kDHLlOCIe7lKtDvX4q87yFypI5KiFGvVp+Bz2AfwK9O1cGPNz0Bb1qkI49FcSuvGJ1rjvBuoG8Qq+zvLxLODxhomu8UWMnvVgZaD16PfY8EATvvGPTQbzmVt28+DunO0DzjLnzTqq76rgJvaj7Pb1W4gA8XXuUPIT3Tzvt0kO8qrfkvOR2fTyHhjm9TQF7vHUWnz1JZfS8MMrpu/zXrbxFfwM9c+VIPas5sbyCF3A8gjupvIHdlTyQbVA9o7AtvMuKfD1PMtG7/0JePOCtuTtyaog8U3DEPMlDhb3quAk9JHiiO3QJgr1eNzs7ogEku/01QTqYKp28yn3fvP4IhLx3Izy9VSzrvDkC9zu4QY47gFtJvOMY6jtcBuU74i8GvN1vRrwBtRq81IgvvFL1A7wcKfk8a627uwAWIbt9e+m8WY6XPO8Dmjvb7Xk86rgJvWIHi7yriqc8wZZIPccSLz0/RAM9lFpNvFv5x7w74la807XsPP2GNz0D3+S7g+qyOzPOgjz8Yn49NNufu7zdFDyzE6s8hEhGPbOlB7vqQ9o7KcMyPQF0NL02epk8dRafPHVnFTv1Phq9IIulvGEXGz1afge9W0q+vK6kYb3Blsg7sZFePHvzCzvze+e8Ze37Ojik47rIwTi7G8vlPCP2VT2lbFS8Ue73O5P8uTwu8RW8l8wJPRptUr0FELs7DxsLvRbRyzxHqc08jo1wu71Y1TvcETM8u5wuvas5MT2/FHw7g3yPPHbFKL3QSjw9DmwBve6lBrxZd3u8YLmHu6NCirxPg0e96cgZvex0sLwYAiI9UT/uu2Wzobo/IEq9bjylO/jNg70U8Wu85UlAPXF6mLyP8o884JCMPASyp72COyk9KcOyOkXtJr33jJ08/TVBvOx0sLzaj+Y8x53/vFv5xzzu32C9Re0mvL58Dr1Ituq8rsiauzQsFrzsxSa9KZ95PFbiAD0W0Uu8XWT4vGr+MT0pFCm8KGWfO4UbCb18bsw9LKMSvKAEl7zYJDY8iOTMu3LYK71Yu9Q8UbQdvRWngbw1Ffo8kKGZusfu9bykvcq7VwzLvLevsT2PYLM7QdzwO+zFJjwdTTK81ZVMPQXzjTvcwDw8qI0avJYW9Dxq4QQ9pu6gO2geUrzR3Ji9bWniu3uilT38KCS7dnSyvFb/rTsC9oA8j2CzvFv5RzznBWc8kp4mOxAoKLu+tmi8+OqwvOM8ozzWxiK87HQwvRAoKLxqT6g85ymgvAifJD1wVt+8IIslPbHi1LuetpM8QH7dvdaiaT00fYy8PsK2OmWP6LviL4a7308mvf2Gt7zJztU8rhmRvUGL+jyhf1c8euz/O79l8ruS7xw9buuuPJu5Br2CzQU9RT4dOh8JWT0tQoy6IR2CvMnO1TvBlkg8qPu9O0U+Hbw0fYy77bUWvC5fObwuDkO9cFZfPASyJ7zcwDy8mRqNPUJBkDyTMIM9busuPHilCLzgkIw8LUIMvBFpjjzIUxU9t6+xvEKvszyxkd48DmwBPABQ+7wc7x677jDXvCmmhTmHaQw5OMicOzkJA713Izw9X5VOutcA/TyNL129yFMVvZ9yurpxy468nUHkvASyp7xf5sQ7wvRbvbkaYjzi3g89TBgXvfl8DTyo+z28E5PYO8DnPjxQVoo9nONQvPKSg70NzYe8l+k2u9ZoDz01iim8pu6gvNwRs7xdtW68JoW/vElsgDymeXE8wwH5PNcXGTsd/Lu8jw89vM/sKL2rFXi9su/xvH+sv7zJzlW9Ql69OzboPL2aA/E8eQOcPJ9yujzSKhw8EYY7vdB+hTqfpgM6UT/uPGb0h7s5dya9Pe9zPevyY7v4xne7DxuLOmUEGD2jO/67mCqdvFaut7x3tRg9fG7MvG3ekbuLc7Y8Qq+zPWIA/7zLUKK7losjPXphr7uGugI9ZFUOvL+Jqzuen/e802R2PJIpdz1Wiv47fJIFvV1k+LyrOTG9AFD7OpLvnDwh6bi7rfVXPT5xQL2asvo8t5IEvZ7w7bwHzGE80dyYvG2NGz3xUZ28mgNxvBzvnrv1Lgo9ogGkPPU+mjykDsG8rnekvM4ZZrx532K9W/nHPWHGJL0tQgy9oX9XPNxiqbyDmby8uo+RvGTgXrzF4Vi9jS9dPA1IyDzp5UY70dwYPEu6A71HqU08VwzLPCRUabvjjZk8jIDTO/zXLb1dZPi88pKDPWJYgT3xohM9bLpYPXLYKz1wp9W8kRxaPQNUFD3oh7M83yttPSCLpTySeu28qrdkvTWKKTyrHAQ8lKvDvKO9yryHNcO7DvfROtPZJbujkwA8RGtaPSt/2bsZsau8n8MwO9RrAruKFSO9U1OXPEb6wzwejhg8NLfmO9sElrwEA5684QvNvDTbH70l1rU8BaIXPFvcmjywZ5S80flFPcY/7LttaeK89VvHujboPLz02Xo8BLInPPLMXT3Livy7Bh3YPAd76zpoHtK8w8cePaZ5cb1q2ng9v2XyPAPfZDyJt4+8av6xO28slTy/FPw7s8I0POx0sLva4Fy71ZVMvUV49zyo+z08hcoSPMp9XzuAW0k9NpfGvO1AZbzSsAG86XSFvNK69bvoIqy8yP2UvPIllTytKYY8rhRwPQBoHrzJ3gq94V5jvK4IH7yWZYI7EAwMvQSpmzw74NU8R8S0O4OOxTyw57e82w1bvbKl6bz+Bxe9/gcXPS8hmLyjdhm9aZdyvL0pQTwzvuI7BTT+PN5AKj0Jxfe8NZEqunmuoDq6mEe8qDiFvLbaFb1JU1E7cC4DvVr14Tysg/a7zitZvSMQAT16O+C8yS6HvCMa9bwSSc+81e3EvAWpG73s4F08076vu1vKBjvFekk9dOy0vObCJL0Xq7M8zfpmvT4TJTwOicC9bvuzu1Y3ML2SAcG7b62UvXrfkr2HQgM7d6xDPL1WebtcKLE5TLNYO3K7QjxO5Eo8j5/cPIFdU72i0uY8cYwtvTFe27xPOIG8yzy1O8trSry9Vvk8EkfyvEXA+jzub3o8qiXMvMVLtDs4T9w8ei+PtzmjEj1vW7s8yP2UvPmXBL26mMc8TrU1PWc3a7xuiPM8CGkqujqv47zTvNK85u9cPX2dxDy2B848otJmPWc36zumt5a8rVa+O0tVrrwkvic9JyAMPffCXz0bbZ+8Oq9jPP/kUj3JC0M9uAsIvDZDi7x9Pxq9Io01PDOykTx+nyE7JXp8uzO+4ju5luo8UaL8PFKmNrvxokm9r+XaPE9C9TqrJUy6Ml5bvSmvKD0qDdM80C22Og38gDzwRB896POWvAUHRrvzAtE7fW4vPPUzQ7zf8oq9oENKPQg4OLyseYI858SBvV1XRj1zvR+9XtqRPF2pnzxEhRS6TKeHvP8T6DulBba6ExwXPRqY+jzUHNq8XVmjO/HRXr2wuCI9QPQaPWo9Aj05JAE7YbsHPQEYIr0J6hi7fp8hPdsN2zv89wu8x3ymPcneirxNV4u9H38HPO0R0Dv5Iuc6u5qkua6HsDol7xk9gIAXuyM/FryRMFY7CcV3vSFeoDxFYlC8WyZUPbmW6rz01Zg6w7yXO0ZmijtCJQ29a+2FPEXAejwcy0m8eM+HvJHSq7qbslA9sBbNu2NrizzzJZW7p7cWvT4TJTsLJf+8d30uvdBa7rwxL8Y7UqRZvR8rUb2j1EO8Z/yEvVBEUjz55wA9BAVpvFQpAj1EBKY8XrXwO+bARzynZT29G8nsO2z51jykNEu80V6oPOVinbysg/a5oBaSPNDPCz13fa48I74nvBfaSL1VBj69UETSvPjEPLuJrlu7SnaVO+kkCTyFERE9AXbMvGaqqzx5DMu86CKsPD9zrDxnCFY5w7yXvKAWEr0tzWG94gC5PBbaSDvf/ts8upjHvBerM7zDPQa8sUXiu3ENHL2CjsW7qcehuwUFab0uzz48XFVpOxJH8juAW3Y767HIvJ+2Cj1e2pG7MzGjPPjEPD3WHre8m+FlPBEMjDzkM4g7jUEyve5v+jth6D89kHQBvWLqHLuHUDE9tNZbPFKYiDzkYMA8D9uZPbtrj7xuKsm7ttg4PaOlLr1kGw88GppXvHVvAD3I3C01cIrQO3Aug7w4T1y9NWKVOlypn7v69S69ABbFPP/mrzwhi1g9pAPZvLR6jr3kkTK9HD4KPHd9Lr7hog69/eL1u5F0gT3yAHQ8Pm/yO9ownzp2e1G9ZHm5uiiAEz2BAYa9zctRvcJHerz2tg68wLq6PDXAv7sTHJe8M75ivMZNEbyXFQa9E3jkOseru71WNzA9f842PJpUprqIULG8Ls1hvGALBL29+qu80V4ovJ7jQr2qSBA9FnyeuSoPsLsffwc8E0lPu2NIxzs4o5I8zfpmPIBbdjyPznE9O+BVPfsmIb2p9Nk8Lp5MvV4qDr1JR4C8WOmQPFZk6Lyftoo8i+EqPFBEUjw/cc+872WGvDmATr0KmL88YxmyPAxW8TwvIZg81T8ePIqDADxIxLS9NsIcPXaeFb004wO6h31pvTijkjzGfCY6dBvKPG6Ic71xDZy7ELqyPNNgBT24Z1U9H04VvFjpED1ZaKK8vVjWPI0/VbsdH4C9ZqqrPFaTfTvZAYo8BKmbPOCgsbypFx69ummyOrWpI73YTyk9oXQ8Pth+Pj3+Bxc9ZUyBvZ4SWD16YAE8j3IkPFQzdrtchP68gICXvHgK7rk74NW8JR4vur2H67vwxY28FXyePAJ2TL107LQ8W8gpPTMCDjyCXzC9bvuzu7V6Dj1JJLw8c70fvTmAzrsOrIS8TKcHPNJeKD0Q5+q8GTpQu6J2mTwIOpU9yK2Yu1tV6TwKmpw8jT9Vu2pqOr26miQ9sqXpPJDQTj12TDy4pDRLPLhn1bw4fvG8bGwXvf/k0rzLPLU7iYGjvJ8UtbwUeOQ8IV4gvElTUbxgOhm9H4n7O8g4ezwT66S8o6UuPekiLD1Q6AQ9TrU1PZIkBbzkvuo8EryPvP/mLztPc2e9z82uPIvfzTzMnDw9gFt2PB0pdD3SjT08qJYvvbhn1Tx++2484KAxvVvIqTy6mMc8oUWnvGpqOr1Td6G86lMevQF077owALG6k4QMPQxW8bptKGw7YbsHPaBy3zyj1MM7/CahvPz3izyY9B48QtMzPBfaSL0T6yS9F9rIPEQGA71IxLS8JBzSvFXXKL3DGkK87bMlvdvgoryhRac7xElXvXk7YLy4Oh08UGcWvdreRT1gF1W8BHoGPcppbTnGqd67uphHPfHRXrwnq+68MS9GvAFFWr0Q52q8GmtCPNQafTx4Cm48AOkMPElRdL3r1Iy7o9RDO3HeBj0TGrq8sekUPfjzUTw8NIy8+SLnvADpDDxdhls9RsJXu9K6dTz2NaC8DyuWvcO8lzzAuN08+SJnO8apXrxFBoO8Lp5Mu2XLkjxEBgM9I+vfu0AVgrzar7A8S1UuvWLqHLzttYI76PMWvQxWcbx6YIG8OVG5OhIY3byoOAU8gV1Tu71YVr1gFXg92E8pvR9OFTysg/a8b1lePTWTB72kBTY8ZwjWOxk8rbxOtxI68wSuvO8TLbxXOY09WvVhPVmZlD1O5Mo7njUcPAz6I7x7PT08M+13vCZPoTyZdQ28VCmCPbdbhDyUMrO8aj2Cu2k5yLt4riA9ZEqkvNqAG72Wwc89HPreOs8r2by2qwA9VdcovEjzST2i9wc8WyZUPAbaDb1NB4+7ZUwBPZ1B7bwygZ88pjaovDkipDySUxo99FaHO8apXr12TDy9B2fNPDcgxzwmTcS93BEVvLNJnDwMy447oUWnPJH/Yz0XrZC8v/wIvS/yArwNe5I8rVibvArH1LznxIE4OSIkPP61vTyCvVo81Utvvav4k70zvmK8aZdyvUlT0TvY0Be9Jk1EPWmXcjxJJDw9dR2nutkBCrwe/Ds8ThPgO81tJz0dy0k9wunPO5OEDDyQ8xK8xqlevZvhZbzXTUw702AFPTxA3Tyk1iC8YDqZPJ8UNbuHQoM867HIPLgLCL1Ms1i8gr3avPHR3jsPWiu7CAsAvEqCZjzOTh293/5bvSK8yrxetfA7sXT3vM3L0bxgW4C9bZ0JvPSFHDzEeGy9i+EqvUaTwrlC0zO8L/ICPOIvzry/WrO7TIYgvRvJbLwpMBc9QMUFvaUFtjwl75m5ZwozvKQD2TyyGgc9A6VhvLTKirxQ6IQ9QQDsPPBEn7394vU8UHPnOyQc0jr1M8O80YvgPE61Nb3GfCY8d88HuyrePbzoIE87mPLBvMRJ17wenpG8lDSQu4K7/bxgOhk9bcyevIFd07vQWm69g45FuhwpdDw8NAw91L6vvPBEHz0F2DC9UBW9PHG55TyBXVM9+1NZPCjc4Dx0HSe89WQ1vNYetzw4ciC7R/HsvB0fAL0UeGQ8uxsTPJjFCbyrVOG8Csmxu7YHTruzdtQ8fu+dvEZkLb1NB489z/4gvb8rnrr9s+C8dOw0PRs+irxy6lc8IC0uvVXXqLz589G8RIWUvBq9G7vE7Yk886YDPdPrZ7o+oGS9s9T+vDWTB7mdhZg9/+RSvCO+pzwgXEM8KH42vUr1Jj1POAE9iKIKPPIAdL0HZfA79VYHPVmXN729exq9Nh5qvR9aZrzCR/o8x9pQPeSP1bylNMs57hOtvGpqOjsUp3k85sBHPAxW8bxEhZS7chltOrE5Eb071IS8XVkjvQTWUz37dh28ioOAPRDn6rzXfGE9AekMvaTWID3sD3O8leQTuw2H470twRA8w+usPJhEGz1rmc+8yd6KPCo8aL3zMWa86CIsPL6Ha721BfE8ZqorPbppMj3WHrc6CDg4O2WoTj2Y8kG9fMr8u0a2hr3VPx49f/3Lu736K73IOli7+nYduwTKAr2NP9W8Ls8+vY1wx7yqmAy8DofjvBDn6jshum28PRMlvU/mJz0CRzc90S8TOvxVtrs8NAw9DSm5OQqanDymkvW83kKHO5Qys7ychZg8upokPQR4qTxAz/m8+MS8O3M+jrxOtTU9BMoCvEfENDyl1qA83sGYPbmWajwVqdY8Z9udPFiV2jw9QN04MdGbvPki5zz481G8dntRvEzibbwwLWk7Xog4PPmXhLyF8Kk8yAnmPJSQXb1QRi88N/OOPXfbWLyXwyy81cAMPW3MHr2NcMc8dErfuwPKAjtAz/m7mrDzvJnFibxeiLi8bywmO3KMrT3AiUi7usfcvHQdJ7xr7YW8ioOAvUNg87z0YHu8k1OavI/Qzrs14wO9101Muo2TCz2TX+s78XM0vEr3A73iXuO7JUtnvOWRMrwba8I79AQuvf+IBT2LMwQ9OYBOPT6g5DzXfr484V5jvID/qLtZl7c6nRD7PK+2xbyyGCo9ZqqrvLPKij0EeCk9LECiO/IAdDxFBoM8/bNgPbq7i7ygct8822ERPVBnFj0nIAw5BjbbPNONPb1nrAi9dR0nvR9/B71kSqS8V4kJvLA5ETzu5Je89VYHPTWRKr3gISC9uDjAPJcfer3/E2g8GppXPEZmCj2bVCa8QwJJPcg4ez2aUsm7YpogvcKNAjzqr+s8nbQtvLargD3454C86XSFOp4SWLvYT6k7UnchPZ20LbzP/qA84NEjvZfDLLyv5Vq9YmuLu6+2RT0MVvG8BwmjO4vhKryW8OQ7JMAEPTqv4zyCX7C7BtqNvZkjNDw5gM68QwLJPNdNTD3KDSA9j0OPu6eU0jwvIZg8IC0uPeMxKzxu+7M8+ZeEvFcIG7y4OMA7Y3dcOn6fITx8ynw5Lp7MPJF0gTx4Cm67LEAiPTAAsTrAiUg8iz14vODRo7yZdY287bOlvKdlvTwEp768rYcwPO5vejythzC96CDPu9QafbyWwc+8EUdyPMMawjwRR3K8f/1Lvf6GKD2Cvdo7LW83ugSpG7t32Xu7JD+WPHfZe7rgIaA9irC4PHpggbynw2e8qkgQPQ5aKzzJXRw86H75PBk60DvGTRE9EOfqu3o9vbwQuNU8bllePCafnTtcqZ+7JZ+dPL1Mhb1Y6ZC8Hs2mPLsbE7zofnm8UccdPbdleLyLHHM7BijuPI/sgrwZLLW87NOLvC5JC7v6jBA9i0QgPdR//7so9MI7IHxlvfEZNrxtll28/z5kupjfkrz9Ktg7j+yCPO7smjzThBc9QDSuu/9S8LzLguk7nJFmOQ+gy7xBueY8q2OPu2++iryAmqQ80mtzPezJcLzGt3E8AuxJO58+TL1y5qK80mvzvNSJGr2lCUS8MoAsO1bbv7zojcw8GJPbu/lzbLt747g8F4nVO1XRuTxihTu8wY9ZvD2RzrybfVq73xXvug+gSz0FLYY87/ujPRPmCjxTLtq8Z8FfvLGpOb1+98S8NCOMvXpA2bzB9v+8FNzvu2wRpb0qCM+9CMvNO5faD7viuE47NTKVPNHcNLxIonC8Hc//PABnET3SYW29oD7MvG2MV71CzfK5wx4tvdlUEjwYk1u8Ll0XPSlvdbwhn488E1c3PQvf2bz22qe7ZjynuyB8Zbxn1YA8KxJVPI1OpryKEu28lUE2PBZ/T7zJ8yo74T0cPRLchLx3rBe9pIR2vEA0rjy00VE8F4lVPRX6ljzFPL88SKJwvDMPgLvKh4G8lcEAPVGpIT0XGKk9XLC9uzhfMD0CAFY8oVJYPPn4OTwc3h27z8govEDIBLyH6lS8KYiZO8r9MDzFt/E8avOSPLcICD3eKRC93x8KvarUuzzJ8yo8FWtDu+3dEb1vqmm8l8ZuvJlpTrwx51I8grg2PW8vN73hKXu9Rx24ueTWYDuGb6I71ZMgvSRH3TxtG6s7Ek0xPIEf3b2RCpU9gj2EvUpF0DzvbNC8IAs5PeiNzDtbpje8NiN3PD0RGT3ZVBK90mvzvOXgZjySFJu9BzyPPZfaD72Igy495W86PM851TtxTUm87d2RvH6BlTzA7Pm8Lr86PLgNdj39ryW8ZTKhve/dfDveKZA8l9UMvXPwKL1/kB69lTcwPdFrCDw5abY7h+rUPHvZsrzryYU82s/EvPTBGD2DTA290E3hOz2HSDwOIBY9uqbPOxTwED0jwqS6Hc9/vDOKsju3AwU9gaQqPZOU0LvfFe+8ywe3O82W9bxBuea8gq6wvCbgtrsFLQa9cLTvO56b7LyX1Yy85NbgPNUOU72Siso810UJPPQ3SLxkFHq8NCOMPKBIUrysbZU8P6XavKDNHz1rAhy92mMbPbiIvTzu5xe8rosnvRYEHbvt4hQ9rG0VPWhQs7xmPCe9HWhZO4ZvoryidYI8MxSDvQY3DL3r2A49NJQ4PA4H8rwNDAo71zYAvd0QATybDK482mMbPQYe6DwPL588iqFAvO7Tdj3I6SS92kp3um+qabwPL588uIi9O1ZvFr3xnoO9c2FVPC0w57v0LUK9ZKNNPG2MVzxC3JA83HwqPLLHy7wiuB48/823vLIu8jtoWrk82UDxvKnArzzDKLM854PGPKWYl7vt4hQ9dX9nPShl77xx0ha9iiuRvMuC6bx9dw+8h3mou4/sgj3MjO+6+5aWvFVlkD3ng8a8PptUOm8vt7yBpCq7VEyBPJ6bbD1urwG9tEJ+vMEKobwIMvQ8q2MPvZhfSDpko028+4d4PQ39azw9Anu8BZmvuwvfWTzcciS+5O8EvcyMbzwwbKA8SaLwO1THMz0ZsYK73O1WvcnzKj2VNzA9UakhveiNTL2LHHO8zZZ1OhLXAT3+NN47pY4RvVwh6jv8kf68BTIJvRRhvbxmt1m9uisdPVMu2rto1Ws9Rx24vD8qqLzrxAK8iQjnvGvz/bxHooW9paKdPfwgUrx8aAa9+HgEPRxe0zskzCo7YXEvPEA+tLuAFVc8SKwLPReJVT1ttIS7uBKOu7ApBL2VNzC9wQWeu3lAWTzTf5S8kPaIPGHs4byCKeM6sSRsvYCaJLtp6Yy9cb71PHLI+zy3+ek7pZOUvASPqTyLtcy3wo/ZvUDIhDvIWlG92mMbvQ39a71nUDM8XDoOOxLIYzu7sFW94KRCO5D2CDt4sRo91qesPAc8DzyqWQk9vl07PJ4qQDvmA5E8VWWQvRXmdT1BzYc8fO0+vFXRuTxImGo7/JH+vPIjvDx747i8/1cIPWpuRT6Xxm49n76WPKzoR724iD07hVH7vC/TRr3T8MA891XavD6bVLxr/Zi8iI20vOGuyLilmJe7fFRlvQDYPTyyPRC9zSVJPQ6WRT3yqIm6mOSVPB7tpryTBf08Amf8PKUJRL2Ig6680NIuvVGfGz3K/TA9TE/WPOxEOL1oy+W7VVsKPUYJLLyvnzM9o38IPGa32TnEMrm8J3SNPeeDxjywKYQ9izUXPBtAQbxmt9k7GbFtvEV62Lsmaoc8/1JwPBLSabrPOdU82MU+PTIF5bzSdQ48Ih9FvZjuG72S+/a7XUkXva2BoTzYxb674rjOO6xZdLtAzYc7oMicO4kciLw1KI+81ARNvSh+kzt9fJI8Rf+lPeCkwjzNJck9HN4dPeb+jb34fYc7ovU3PXpA2byFYBk9jlgsvBmdYbxSJNS8Ll2XvDMZhrydr428QtcNvExj4rteU528/JF+vBiTWz0m4LY8hFEQvYNMjb1r6fc8wPuXvJ80RrrqMCy9dQQ1PEeO5DssOgK8GafnvAlaoTx+fP28A/ZPvCd+k7o3Vaq7c/CoPH+LG73J/bC6sC6HvC9YlLsiuB6803V5vLgD8Dyysz87FfUTvHadDj1anDG7t+/jvG++Cj2DM+m8WZIrvAHiQ7zjzNo8+5sZPNUY2TzqxIK9xKPlu24lMTzZ2Uo8/KWfvLkclDyjegU7lcEAvEisi7zLmw289+QtPSqXojw6c7y79LeSOr3Y7bpE9Z+7NqjEOnvZsjtZiKW7xst9uhcYqTyRdj49Ipr3OvoCwLxOgQm9HErHO7M4eL0bSsc64a7Iu/GZgDqBOAE8sj2QvOvEgrxwOT29vdiCvNexMjyvnzO9X9hVPSZggb16xaY79dAhvfh9hz1X5cW7E9LpPF/Y1by8P6m8kg8YPcqMhLsTVze8iRyIPe/7Iz17Y4O7oD7MvI5YrLy0YCW65FuuvHT6rjs7/Qy8ltCJvQBJaj3ng0Y8KHmQvFGpIb2u/NO8uBKOPPugnLy8SS+9E1e3PdJr8zt3nXm8IBW/u+TW4DwV5nU9y4Jpux5o2Tz3VVq8Mw+AOmv9GD2MOhq9T4sPPapeDLwJWqE7+HgEPCuhKDsuSQs7Kxxbvfh9Bz1TLlq8ekBZvWMUj7yJFwU9nzRGvEvUIz3RV2c80nALPF26Q7yMJnm9BjIJPFj50bsC7Em8sBpmvHtjAz0axY67IRW/vMU8v7hMY2K9IrgevDY3GDwQqlG7lUE2PPwgUrsndA09lKhcPNUY2Tuq3kG8DRENvZhfSDzYRYk8po58PSO4Hj3qodi7mwIovX+LG71tG6u6VMezO5MZHjw1LRI7KGXvuxtUTT0xWH+6lsbuun8L0TxaJoK7/jTevBLXgTufvpY8AuxJvF5OGjzScIs8zKAQvXDNE70bypG83HIkPfOtDL1oWrm85/54vapUhjx2k3M8OwcTvSQzUTkFozU8jDqaPK8kAbzgH3W56qFYPZMjpLspjRy8iiYOPP0qWLzBhdM8UZ+bvAzz5TqdILq8EtyEPIomjjxAPrS8rXwePHUENbyEPe+8jLVMPflz7DzRa4i7uRf8OpEAjzy4A/C8rounvIVR+7sAZxG93gHjO3pAWb09Fhy91A7TvG6vAT0Fma88avP9uvTBGL0gFT+60nWOvXC0bzuLq0Y9pXpwuyGfD7xKO8o87mJKva8G2jywGmY7o+sxPBmdYTyvBlo78AWqvGIPjDzyqIk7xa1rPPXQIb1gZ6m8zi/PvEYJrLxjCvS7Ywp0vE937ry3CIg7kpTQPCTMKjw4xta8Rx04PTL73rxF/yW8HmhZveLCVD16xaa80E3huxcYKTozD2u85gORvB5oWboQOSW8mfghvJEADz2DTA07mnPUvJsMrrwYk9u5+O6zPZjklTx9Xus71X//vOGuSL2s6Ec93wtpu8IUpzypO+K8tw0LPT+l2jy/Z8G8HMX5vNUOU71ihTu8HgGzPS9nHbylmBe8HgEzvIGkqjwFMgm90dy0PJF2vjzv+6M8gzPpvOvJhTybfVq9H4aAPBxeU7vpq1680NIuOwWjNT3QYQK8DyUZPWhaubyH6tQ8/jTevMOZX7yWvOi9Q+sZPUFIOrxXdJm7dXXhu4K4Nrx3GEG93XwqvaNw6jzVDlO9dGtbPVRRBDxC1w09PRacPN+aPD0jKcs8dZMIvT2RTrzVnaa8V+VFPUtPVjxOgYm8VEJmvAJ7nTzJjAQ84a7IOtztVrz+uau8RXBSvKN/CL1vuYc7gj2EvLK9xbziuM48xbdxPYPCvDzLoBA8O3O8PL3YAj1C4ZO8R7EOPOTqAT2xqTm9s1EcPRq7czzximI9oM0fvDMUg7wGKO68y6AQPFd0mTsjpP27vEmvvGrzkj3NqpY8w7KDPHg207wA2L28Z0atvGMZkjwhmgy9GJNbulZlkLsMAoS9mfghvFw/kTwFKAO9vMRhO2QUery93QW9iReFPMuWij0RtFe8yoyEvTa8ULzekDa8cM2Tu8yM77r9Kti8IaQSvGsHn7zxD7C8P8MBPKP1t7sbVE098Q+wvJ80xrzXsbI7uZxJvaWdmr0hhuu8hVF7vJdLPL1/i5u7ROH+Ow4bEz30vJU8Fn/PPJ80RjwcxXm9g8K8vL3OZ7z8kf48WzCIvGWjTb3QQ1s9NRlxO0YJLDwcSkc9a3hLPBLI4ztvquk7o3oFvNvjUD0lUWO9/1eIu/XQITt2Drs96jCsPMOyA717St88l+QVvExZ3Dwy8di7dpiLujBnHb3GRsU8ZCMYPRvPFD0RQys8JD3XvDSUuLz5c+w7zSXJPLcDhTv6jBA9csh7vTYj9zwASWo7KYgZvSfqPDyLJvm8XDX2PFCamLy/4vO81X9/O+y/6jxGCSw8HNQXPdhABr09Avu7LbU0PJ6l8rxKO8o9hFYTvYPCPLzcfCq8xtCVOtYi3zupO+I8bqDjPGBnqbxx15k7xKNlPGQjGDySFJs8w60AvV4/fLuJCOc83pA2PBmxbTytgaE8RQksvatoErxC1/g8tWorPFkD2DxyV089nzRGPYCaJL0684Y8/jTePKWYFz1eP3w9Z8FfvDUZcTzVnaa8ynjjPN33XLy4DXY72Ls4vBvFeTxoWrk8KgjPO8ha0TxSJFQ9DpZFO1ZgeL3l4GY8hMzCu7NMGTuJFwU9kg+YOwYo7rsAYg48i6tGvbZ0MbzXIt+8uA12vW2WXbvHUMs7ZS0ePJhVwrxPBkI9LjrtPO3dEb3vbFA94KTCPOTW4DzfJA28h3moPULhk7uxQhM8csj7NnDNk7y5nMk73gHjvH8BSz2S+3Y7XCHqPNY7g7lfXSO9VELmu+VvurygSFI7DAeHvKtP7jwbyhG9t343vL/2lDwU3G88eUBZvJbLhj2P7IK858sHPdv1BT2qyc+8xeYsvPRbA7yzKMQ7/Cm1O0oZwTysgK+7VvLcO98DCr2sg8k6vj6YPJTa37yXTtO5q8zpPLMlKj3khn+7VDt9OxTWuLwD0sm8ReUfO/ENLTvL0a28rkN3uk5ElLt96NW7zkKHPTMnNz2zJaq7RCumPOi0bLuYCM060r9IPXt3fLyKbwO9B0zxu5gFs7qBEI+8yhc0PWf2S7zkgEs8hx4TPcDVjryvzgU8Yr8Qvdlq97ygqq28HTvhuv+gwruG/ik9FZAyOzgvhz3otOw7qeMEvdN5wruGR0q9nTY6vRckj71s25i8oyfvvJZIn7zMiI28fd+HvHLJM72lkhQ9rvEIvA03cjsWR5K85vQ+vYtPGj0H/Zw87ZxTvQVGPbyLdTe9OumAvO2cU72ibXW88hb7vM1FIT16dOK88semOzJtvTz0gSC8+bXBvDkMhDsT0x69ghZDOz/6Hrw+SfM7d9GDvBdKLDydDQM95/dYvOLAHb0+Q7+8MWcJvdN2qLsycNc8fAILPSdUTz32GJc8/3eLPOSGf7vqa0w8f6JPvUG3Mj1khXI84b2DPUhZk7s+Gog9d/egPFQ7/TwjJmI9uFYxOwpxED0sgjy9ppWuO+losjz0h9Q7P/oePaMhOzwKw349FyQPvdUKhbxwVUC7d9EDPL4blbxA1AG9E9CEvGSF8jp/nzW8tehxvGU5uLvzzVq8ayEfvXwrQjuhZ0E9uFYxO3PMzbyWSB89PWAOvWv7AbxEBYm93phkPcXmLL2iHiG4TNbUu5PaXz0//bg8siIQveJ9MbsYBKY8MmqjPL5BMj3Sxfw8oWENvYETKT2NCRS9vWEbPd5sk7z2GBe6yfGWPPiyJ7zsK3o8BIkpvfPNWj005Eo9hZDqvM2Lp7yU1Ks8Dus3PeEPcr0OxRq930wqPJdLOT3RuRQ9lZG/u4+gCj003ha9kWNSvAm6ML2qxjW8fqJPPJ0Ngzygqi29LDy2PBrE07x39IY85u4KPZrFYL1UO/28bN6yPHWM+zx2F4o8cQ86vZTdebzn+nK94Q/yvBjeCL1396A7X1HRuyaa1bwZDXS9b6F6vCCv1DwD0km9tpkdu6rDGz1YrNa8/eOuuxWNGL1fS5280AXPPAPV47plObg7lpdzvQ+lsTwXTcY8kh1MOxgHwLzyx6a8jDJLPKyJ/Tzc29C8FNlSvVkdML2HB3g8khqyPKFqW72IAcS7CNoZPUvQIDyAXEm9FmoVuzXhMLrucAK8ceaCPCWRBz005Eo9EhklPZWLi7sVkLI9anBzvALvmDzQ/xq88semvOU0ET0fqSC92V6PvXf0hjzrIiw7zNdhvRrEUz2beSY8jeYQPUJ0Rrx4sZq8XyUAOwWMQ70M5QO8nTzuu36ZAb3/oEI8IWMaPLXl17zNkVs88FlnPC02Aj0Dz688oyRVvHEMoLxqcPO7HFUWvHf0Br1rIR899TgAPEyqg7vABHo9432xvJrI+rt0gBO93NtQvM5CB7vQCOk8kiBmu1G7IbvJEQC9GApaPFN7z7zgCb48c8zNPAPPLz0nS4E7anBzvLkTRT2tOqk8lyUcvnmOl7yv9zw8ReIFva/3PDyBEA89Mm09vZIgZjoSFgu8DegdPfPKQLwLel69zZT1vEeiMzwl4/U8yhe0uxB/FL3xCpM8GN4IvNLCYrw8hiu8bnIPvdlhKT01u5O7h01+PV5rhrwKlJM6csaZu1Qvlby3ouu8khoyvbCuHD2MMku76yXGuz2PeTyIBN48kWNSuz5AJb3Cb5+8TIcAPEvQID17d3w92hsjvGU/bLz7Jhu8sK4cvcJsBT0GQAk986GJvRSwG7zYsP28KA5JPKvMab3qbma9tnaavY+mvjsDzJU8L/99PH3o1byVaAg9mAUzPO3iWb3Ccjk7d/QGvW6bRrx0iWG8TZNoPNenL7xumKy71vPpvDkMhDwsWQW7ghbDPMDVDjycMyA7VumOPKI+Cr2AXMk7MYoMPP7sfL2p44Q9WWZQPFbsqLycgnS8HvJAO9lkw7xORJQ8CnGQvGptWT0D1WM+AQ+CPcGPCL0CG2q9ZT/svBLzh7p0g608nvAzPGiqkbxn9su8CMDkvHEMILwPX6s63LKZPAcDUb3yxAy8ShlBvCW0Cj2+Phg9kTcBPK/0ojzb1Ry8wbUlPYIZXTyEhIK99/vHvG3hzLypCaI9oKqtPIm+1zsIwGS9feIhPH28BDzABPo85vS+PBWTzDyWRQW97eJZvDJqIz3m9L485REOPeU6xTxs2xi8b0+MusyrEL0H+gK81vBPPLXlV7xULxU8xCyzPDTeljxZPZm8sLG2Og+lMbxxFe68GpiCvKBkJ72e8808dkNbPBdNxjw7z0s5enTiO26bxjwzIYM7fpwbvYm4I734sie8xelGPQOGjz13+jo9UpUEPp7zTT2f9me9/Cm1vLGLGT2Jvte88hb7PEMoDL2+GxW9mAhNuslg1LtpZyU5u9PyvAm3lrzCb588FK2BO4Fi/bzr/I49qQw8Pe6f7bssPDa90AjpPITW8LxpZAs7Y3++vEyqAz3c1Zw8UbgHvQ+r5bzL1Mc8Ehy/vHBVwLyyIhC9NZiQu+3l8zzVCoW9uRCruxm7BTwPpbG7OuwaPNiqyTw7zDE8msLGuykOyTrBj4g8tpaDvMejQL0tNgI9td8jPSkOyTwYAYw7nTxuPN6b/jse8kA9FZNMvZ0Ngzy9jey5P/oePXSDLTv7LM87DeidPPpGBL1s3jK9EK5/vPi7dTx2RnW6z/wAPWskuTz0foY6ayS5vBxVlrzZZ928A8+vO+J9MTxBukw8XZEjPQLvmLwl43W8md8VvN5PRDxr+wE8ibijPGzesrvIXTo46mvMO4EQj7vSxfy7R6XNvNskcb3aIde8OumAvSgrGD1qQQi9lN35OqFhDbzBuD897eXzvJnflTymmMi8w3XTvChX6Tw71f+8P/04vef3WD2zJSo9w0wcPLXl17xyyTO9yhpOO6Fkp7wN5QM7TkrIvI7sxLxxDzo8Vu9Cu8JsBbwqyMK8MnPxvEa/Aj1wLAm9PY95vAPMlT0T0x694AakvDJqo7xqbdk8HTvhPMbv+rzKF7Q8/eZIvayDyTxJYuE8qCmLOhLzhz2/+yu8tCveO2AFFzr39RM9m39aPKdMjr1XqTw8Wyb+PKCze70H/Ry8Z/bLvE5HLroGHQa9GAEMvSCvVDzfUl69SF/HvFlpajuO7946B0zxujXkSruDzSI89IruOmN8pLwSFgu8UsTvu+f32LsZDfQ6ShnBvNAFzzkjI0i8vj4YPeURDjywtFA8+kaEvCCv1LxHn5k89/gtPbei6zzIWqA8FLAbvE2Kmry3U5e8+bXBPPf+YT1Wxos7xCwzO/m1QTvotGw9/b2RvKdSQjpos1+77pk5PWfNFLi+G5U8YsIqPYBWFb3MiI08beRmPEd8lrscMhO9Rei5vIIZXTy03Am9pbWXvBdKLL0yRAY8aLZ5PEN34Dvun229GASmPFesVryLdTe86LFSPJWOJT1XqTw7zY5BvNG8rjwzJB29uDCUPNleD70amAK901ALvIwvMT0yaiM9WWO2vHf6OjzV5wE8VDIvvVU44zsBEpw87NwlO75HZr0gsm49Y3wkve6Wn7tWxou8rkDdurkQq7x6bi69VDIvvSyFVrvRuRQ9d/cgvGskuTu14j29iZIGPPsjgb1JZXu830yqPJP0lDoLd0Q7oK3HPFD+jb1EBYk9/eOuu75BMr0WahW8HvJAvP3pYrwGSdc8TZPovAZGvTxORBS9QbeyvByB57yAX+O8OhjsOjumFLxDS4+86kIVPNDcFz1HqOe8DDG+vOSD5Tw0LWu82KrJvM2OQb36b7s9G3szvGU8UrwYB0C8b6H6vDJz8bzlNJE9SFwtvayAr7xHpU09B0xxO+AJvrx2RnU8wNWOvF9Uaz14rgA9E9MePMbvejwPpbE6XN3dPLyEHj0f+HQ730yqvAPV4zyYBbM8lyWcOwIY0Lx396C9QZGVvNDclz0jKXy7KsKOvGAIsbscMhM9JZEHvbCunDs+Ggg9H6mgvC02grxnzZS7/ux8vBWNGD12Q1u7ZTYevVyOCbz3/mE89H6GvDQt6zw9YA68RutTPRdQ4DpDd2C7ebrovWK/ED30gaA5bbiVPHm66LzF5iw77pYfvfPQ9LxKGcE831JevbyBhDvt5fM8GAdAPPSEursu+Uk888pAPD5DP73gBiQ8Reg5PC/2Lz3c2Da8eygoOwOpEjyavyw8XOB3vL5ETLsmlKE7v/7FvCMmYrzohYG9Cb3KPLd2GryH+4+8+K+NPVis1jymlS49QNSBO4+giryFkGo8feU7u+siLDxb9xI903lCu6yG4zzOQgc9Wh2wuyufC73/pnY6AF7WvAjaGTtzz+e8IWMavHixGr36bCE9EFyRO75ETD04W1i9SFwtveSD5bygqq28j6MkvbyEHjmwtFC8Dus3vVlmUDyrfRU8ghbDvFXvQryydH68LIhwO8zX4TynT6g99TsavI+mPr0tPLa7msXgO95sEz2gsGE7CAbrOnwrQryO7MS73wMKvcNJgjxc2sM8u6QHPQf6grsv+cm8rkN3PNvear1A1IG95IPlvJgFs7wGRj296yjgPL/7K714sRo9sLG2PPm1wTrfT8Q70AhpvZWOpTypD1Y8nvNNPK+xNjz/o9y8cCyJPWU80rxyxpk76yVGPIwvMT3zykC6C3revMbs4LyEhxw9iAHEvGseBTytOqk8FkeSPUhZE7wXTUa8Y3wkPZrFYLxXpiI81QqFvP3pYrxKFqe8ghldPNAFTz20Lvg8lWiIvIb+qbwEiSm91TbWPC0/UDvny4e8bbgVPWEOZb1Tfuk8QnTGu9G8Lr22lgM8R6KzvMJsBT0IALc7enHIu+6WH7xrKu08syjEPDCzw7sXUOC8MLCpuwgG67viwB29cRLUPY+mvryG/qm8/uz8O4b+Kb2I2Iy89/vHuzJwVzy13yO9GsRTPAp0qjz0h9Q8nvCzO4wsl7wGQyM8uRNFPGUTm7sT0x490AVPPHpuLr1+6++8V6OIPf3jLj0uQuo8FZAyPW+hej3c29C8YshePQzlAz0Y3gg98RNhPcepdDw2m6q8RDR0vbkQKzy4VjE7MyrRvArD/rwFjMO7Qb1mPOURDrxoras8zkg7PXPPZ7yv+tY7rICvO7JrsLoYClq9hIecPGv7gTyKch08j6lYPPbSkLxAANO816evvOv8Dr270/I8MWeJvO6WnzyC7Qu9i3U3PUN6ejtW7Ci9QANtPOiuOLymnnw8i3trvJgITT1UO/07WR0wPD2Pebyybsq8ib5XPSJAl71wW3Q9SRMNuwPMlTzHqfS7VsaLvDG23Tx94qE8O6aUPCt/Ir3zysA7isHxvMyrkDz8KbU7iATePGlnJTzpaDI9r/e8vN5jPLyV7/460J4OvAszybx6e8K8kf0hvDOzxjzUZC27alOFPTra1buLeWC9UkYWvaW7Ab3Nxo48NqHlvErqVDzApK48D+PIPJPVoTuk5aC8xWpNvWri0rzQno67molfPKERX7162hO9rEMBPOmtHLy89K48jw+DPNG46zwudpg77OYMvJ5LQDuor/28yRaPvLkcL71A04c8iV8Dvaa9ID3t/Cs8uSDtvETDxTyplaC89lwrPPUR2ryFrwO8pmDuvHSzhL1nHDS6DvlnuxbymTw0QHU9h7PBvDPJ5bxsLSQ84rJLval/AbySdLG9lpeCvCBqV72aElC8iYtBvSFUuL2eH4K8QV4XO/E5WjxcvDS8MPFlPBR7ijxI/DW8m+aRPPqpm7z7DKs88jlavfaI6bwPcHe8Exw5vCQsOLx7aeE8i9aSvEiJZD1h40M9R4WmvEWbRTup9hA99Cd5vEQktjsgVLg8NhS3vJy+kbxktwU8NBIYPaoMMLwMlLm6c1QzvMfLPbwFa4u8HpJXPRR7Cj0P48g843KNPcvujrscMee6BoPJu2D1JL0ektc8McWnPG4XhT1+tDK6lcPAPPrBWT0rK8c82LO8u7NqELvXOg69OUsIPOV0LDyAotE7+4EbvDs7RjsfUhm7L2KYPU+ENbt+QWG9hK8DPQR/Czvpsdo8He8JvYrWEj02oeU8U6eGvDHxZTuluwE9gKJRvafBXrzBAwC86MO7u3ajQruVq4K9iV+DPcTdnrw62lU8QNOHvYHtoj2yCz+9Cej3PGVIcjwBMps8fkFhPGiTw7y253w7xvd7PGPLhT3fOZ2879hpO1WrRL07xDY9Ys2kPPA1HD0Cp4u7mShvPK3Szryews+8lauCPMExXTx/uPA7KrQ3PYDrA70v7ae9vFWfPFSnBr35Hgw7IsvHvOKyy7vXOo48GeLXOwkvi7tsQ8M86MM7vXVCUjyDThO9vT+APSpTR70pTwk8OdrVvOyFHDwW9Di9bjFiPNqdnTyLTSI843KNvJx3/rlFOlU9VjhzvAM4+Lu2LhC8NEB1vattIL3kiku9IFIZuvhg6bz30zq88GFavTOzRr3tiVo5NEB1vaa9oDssFSg9Q0y2vMVSj7jKoz08T24WPJETQT1elDS9vswuPN7warlko4W89eUbvDs7xrxp9LO6A6tJO93WDT2fT/48monfO68bAb2EOpO8UVy1u02w87vbFC07H9uJPLxrvjzBpC49Ilj2vGNa0zxelDS9nTUhPZ9P/jyIoWA8RMNFO+ubu7wbule9rPrOPNwY67tI/DU8E6UpvWri0rx6YwQ8C6pYPMsCj7wFDDq8uiBtuoU8Mr2V7/47VZOGvErUtTzBpK463trLvGLNpDxtF4W8N3WnPDo3CD162hO7bCsFPOSgajytzpA7pkpPvHB8Mzy+4k09sTf9vE/jhryh94E84SWdPLiPAD0b0HY85V6NPSd7R7yXx/677gBqPRG3Cr29+Ow7CsB3vAwLSTuT0wK887DpPFRK1LzAFwC98iO7vKoQbjyJdSK9xlQuPJATwTy3GpA9+wyrvBQyWL1OsPO89loMOQlFKr5XIlS9hSaTvM/gaz1UNDU7iLd/POgijbuuphC95OmcOz79pjzOPR69qa99vaTPATqB7aK7XgcGPZqJ37oyrwi85V6NvOMpWzt3dwS98U95vBIumr1kRLQ8ZKMFvJMB4DvbGOu8+qkbvE4Nprx1y0K9bMwzvNBXe72vGwE9t9HdumqB4ruQhpI7LYw3PO1dnDxWq8Q8px4RvXplozzBMV09NCaYPWNa07xsQ0M9TQsHvQsbi73vS7u83OysPB58uLxrWWI8JCy4O1QyFruIcwO9mp/+O2w/hb06Nwg9PbJVvOOGDTwMfpq7Vwy1PDObCDnj/Zy9bMwzPYp1orxryhS9iLd/vdDKTLt94HC8RCKXPKKEML3ewg28nNSwPJVQ7zomY4k9rqYQvTeLRj0DChu8zWWePDKviLtkt4W97fyrPEFelzzLeR67YPUkPe7Uq7xZ5DS9XR0lPGCY8rygOV88Z5NDPlYiVDxBePQ8DfWpvDSdJz1nHDS8ge2ivCGzCTwg3Si9SPy1vHVC0jz51/i8aJNDPIoC0bxOsPO88rDpO4eHA73ZJo48hd9/PXgEM7zxwsq8QtWmPJko7zuS60A9u5f8vHaLBL3YPK28wQUfO1D7RD1LM4e80y/7vJiFITxok0M93vDqOZ6ssDuS04I8KlPHu2LLhbxT08Q7M8nlPCgI9jx+tLI7GSsKvUw1JrzOaVw7jw8DvSncN7wxw4i8RbFkvOZeDTyAdhM9FX2pO18hY7zeYzy9mp9+PLGqzjzmeOq8aWcFPZ9PfjzJGk08tuf8PJlvArx3MPE89BFavCpTR7z6wVm97J/5PHgEMzyhJ349aCDyPJHngj2eqpE8GFUpvSDdqLtaceM8sDM/vSKfiTwPywo9G9B2vVZ/hr1rVSS8OWPGvI4lIrzSjK088iEcPZXvfrwZ4le8f4oTPaYyET0DHhu8Hnw4vZko77tFOtU8ldlfPGv4cb3/cdm8ct0jPJatIbwNmPe8+df4vJxdIb3RFR68VZUlvAhDi7w/dLY8sZQvvXKAcbzKAg8899M6vAM4+DzgUVu72ipMPb1rPjxmpaQ7MHpWPU/jBjwBMps76MO7O95NHb3KBC67Z3sFuz79Jj2ZbwI86CINPVXBY723uR+879Srumd9JD2cvpG890YMPdKMrTybAO+72xjrvK3SzjznwZw9emWjvDo3CDxA0wc5bC0kvT2aFz0EItk8GFWpvITbQbwTu8i8S2FkvO7SDD1OmtQ8njMCvQE0Or0cjhk8iLf/vJpvgjxcvDS7yblcvYCMMjuZn/68lyQxvKoQbrzhJR287PyrurW3gL00KlY9bENDvT/nBzxzUpS8dbUjPWVI8rzo2Vo8WeQ0OmwtJLxmpaQ8NJ0nPM+yjrwOapo9sfOAPSBqVz0u64i8KGnmuk6CFr0Fmeg7yhpNOdoqTDxB68W8TrDzPMRSDzuYm0A8uiDtupix37swelY9JQIZvEzCVL1sQ8M9+sHZvGpTBb3lF/o8jGPBuv1tGz1AAWW7cAUku9GizLtDraa5LusIPbAzP73cizw8KxOJPI6akjxGm8U8dcvCO6viEL06TSe9m+aRPNKMLTsCq8m9+yLKu7qTPjymYO48uZEfPaXTPz2rgz88jWf/vOqbu7mVw8A8sQs/vLxrPr1SRha8FKlnPD79Jj2T1aE8vFMAvcgWj72qDDC8KuB1vd1527r3/3i8iHMDPW4DBT3xlgw9T+OGPEvCVLxg9aQ8khf/O/mrOj2xN/08rFeBPKJuEbuZhaG8wBcAvUStpjuzbK+7bC0kPYVS0TxZ5LQ7RZcHPO/qSjtP44Y8ToS1PNApHr2z34C89fu6vC961jsMC0m74j96vKuDPzyR/SG99VqMvQWZaL2MY0G8VL0lvc3cLbyaiV+92hStuzlLiDxr4lK9z7IOvV7A8jy2RC+8vfhsPJr6kbxXEPM6lTYSuTYUt7yHnaI7ntjuuzPJ5btR6WM87XO7vBOPCj1GKPQ7w5LNO0thZLwxwwg9trkfPc3yTL15BLM8CLoaPDRA9buUYtC8dZ+EO5ApYL2FUtE8XgcGPKS7gbzTAz08CboavdmzPLxYbSW80aLMPKn2EL1Jc0U9+NM6uzhfCDuHEpO9lpcCO5GKULwfUhk9xyoPva7STj0dG0i9OsKXPJ6qETv0+Rs9nNIRPWLjwzxs0PG7sJKQvE055DzjE7y7bxvDua8bAb3GPo882irMPA9w97wZzDi8CFvJOxV9KTvAjo865OkcvViDxLzqJKw9z7KOusDQ7Dvwvgw5OztGPdMve7slo8c8kf0hvZ9P/rxpCtO8/vpJPKl/gbwTHDk8yqO9OwBGG7z36Vm9PZoXvGLjQzyxqk49bCsFPRDNqTwmAhm7upM+vYeHgz1qa0M86a2cPAkvi71OhDU870mcPSjyVrzUZC28coBxvZ6qEbwARps7FX0pPa6mELwMB4u7/+Squ9uJnbzwYdq77tIMPfCqDL2CkHA7I7WoO3rcsrwM84q6kaDvvM3yzDt0y0I8mvqRPZaXArxiQhU9RMNFvPyveDzSAZ68ek8Evf6H+L11QtI7UPvEPJGg7zxDTDa9SktFPOMpW70Uk0i8NCpWPCSLib07xDY9Tg0mPZXvfj1jzaS7FXuKu7OCTj3sn/m8n8JPvLmRH722LhA8BhD4u/9xWb0bFwq7AkpZPPHCSr2yapA7M8nlvAI0urvpmRy8ZS4VvEUOFz17aeG8KWlmvHrcMj1VwWM9emMEPIj+Ejp3o8I89lwrO65FILtHElW8hDqTPIl1Ir2K1hI9mhLQPGprwzyGPDK8pVywOMqNHr3N3C09mZvAOuubOzyFxSI8alOFPdizvLvAF4A8rryvO3vcsjuCelG80bhrvOKcrDzjco06FX0pvbqTvrx+QeG7+gqMO0fmFr2OmpI8qK/9PDyy1bxi40M8bheFPaZKT7zn7/m5VTS1PIxjwbyNI4M8yqM9PBni1zx/FaO8t6MAvWhnBbqR/SG9inUivA755z0depm8iP4SvZcOEju7aR+9QzaXvZD7gr11WHG83sKNvBg/CrzAuk28upO+PItLAzxZ4hU8Nf4XO81p3LzM8kw8EUS5OS961rutW7+72qFbvaANIT1sLaQ8zO4OPXFmlDx04eE8KrS3u0AB5Tsp3Lc7bwUkPSyi1rwcAwo9asoUvLxTgD330zo9BhB4O+UB2zzpOss8pP/9PK1FoLzrDo05Dpj3O/9bujwR0ee7z+DrPAuq2Ly4pZ+8YssFvYezQb1MNaa8z7StvL1rPjzzDRy9Ec0pPS7/iLsmGle9nUvAPEkAdL09+4c6+GDpPHllozoo8lY8bhtDPQwLST0W8hm8+jQrvYabgzzDks07Uc8GvC/tpz0nkea8LIqYu9PtHTyqawE8U9PEPMqR3DxLvpY8wnoPvSk7Cbs9E8a8Ceh3vFJcNT10VDO9YJjyO6AjQDppZ4U8wLrNPHWfBD2fT368OF+IvdN2jjy5qV28c8cEPf9bOj1vqHE9ybncvDOzxjy+yo+8o+OBPeCuDT1kRDQ8HKS4vNApnrya5pG7eWUjPCo9qDxYbaW8E0j3PDzI9Dz5wdk6KeB1PPZcqzzewo084j96vA/LCrxqU4W8aoHivGJCFT1NI0W87BJLuyncNzykWhG9l8d+vIezQb1vqHG8+zhpPL7iTbt8PSO8L+0nvV6qUz3jKVu7vT+AvDMmmDwwYpi7k+vAPJqJ37lVwWM9nTWhPN9nejz1+7q8pUaRPEkAdDw5Tac7GMoZPQySmjxH5hY9cO+EvFnilbxWlaU8+sHZPJGKULymSs+8yCoPu7iPAL2flpG8z1d7vCOfCbzUA728/eILPY0jg7zq/nY9fCuBPErONb0Slsu8RL2nvHf3HrygoQ49oDUwPEYGsjyV95U7SphGvf1PBr2tjTs6hSARu4X25rvatiS7CnIiPaVpErzB9lQ9/51/PB6lTL07LaA8i8yWuzfW6bz//Ri9uFoIvVTKm7vMlAg96vkHPUrOtTt15AO8hBk7vVgmwTsyDua6wwnwPI/yTLwYyi26i8yWvBPMOr2XTGU940YsvQy7LDxdWiM9qmx0vVzuRDwooTK96LXsvBbtgbzHKjc8V/DRvPOJD7y8vYM8aWmkPIZiRb01+b070cEUPb+tSr1gFHu9p+16vYxnjrwUc3e9wwnwO4aYtLzefqg7W9upvECc4DwgGIE8gZrBOroIm7w0UgG9q9jSPMWykzzdBgW9s1yVPIFk0rxfbb68yt8fvdzQlbyXpai8tUCXPPajAL3/0268J2vDPKgjarwGRZa82BTXu9XuoL0DYRQ9a+idu1qlOjwZ0QO9gC5jPA1iaT10eKW6rpQRvcVSer1Gd/+75jbzvKhZWTx0QrY7ZUhdPR6lTD3ZgDW8k05yPEWaUzzjt3m9jGcOPY3fsbxsj1o9kWUBvG4CDz1p/UU8th1DPPzjpzxn8QC5aTqLvEIb2rx8KwE71Sn/vPevxTyc2Qo96jRmu+N8mz2OsJi8slU/PMlzwTwr/dc7XO7EOy0LBL3FUvo8ynqXOtNvJzz/mJC7xVJ6ujkahbuitKm8paRwu10ktDy6Poq8zxjxvI3fMTzAGSm931tUvJqV77x+5Vg9KHKZve2z3zyuNPi8sengPPXSmTtCqgy8UkuiO3do7DyOS5C1bLmEPZ7sJbxX8FG8hSxWPOjrW7y50is90c1ZvaeynDyDd+28xr7YOuEzET3l+5S8pQSKPDSNXz1xjc285fuUvGP/Uj2VLYW7FNMQvY9Qf7zwaEg8BJzyPAtDiT1wgYi85O3oPC1GYrxKmMY7VAV6PNvJv7zaXeG8j/JMuzxAuzyf/8C7j/JMPKJ+ujwibdA8DzomvWM1wrxJ8Qk9unnou05gyjwWtxK95fuUu0/MKL03Qki8s8EdveRGLLy1sWQ7l6UoPeFpgL3FF5y8Ar9GPAnQVL13Mn28V+QMPQo8szw697A7LUbivN9b1Lz1nCo8EYMwvTGdmLzziQ+8VGUTPXUfYjyEhZm6wixEvWe7kTzo3xa9dVXRPD6Jxby9LtG8AawrvGfH1jvy58G5szLrugKJVzsJ0NQ8s/cMvdRMU7wrVhs8Y/9SPK3rbbxVO+k8OVVjPIHzhLuHnwo9jT3kPDRSgTwNmFi8on46PRsm0zu50qu8jrzdPMBPGL3vJpS9ukN5vPsL6zpjNcK8DZjYPDvIl7eFuwg9SE+8PMHAZTz/CV681YkYvUli17zY3mc9hcB3O0mMATtAxoo8fQgtPGYgmrz35bQ8vFElPeLazbt3aOw8o1vmu5NO8rxSHAk9znG0u9B4Cj0d/g87w84RvNZfbj05H/S8XLhVPLUKKL2BZNI7W9spvFuC5jsqICw9k0kDvdxw/Dw2ZRw8denyvIOt3LzfTw+8ZXKHPc8TAryxs3G9SIUrPZx0gryHBBO+WZKfO5BeKzxiIqc8G7r0PEmMAT2oWdm8QQg/vFNePb0dyCA9KX5evdc3q70vWf286o0pPfiMcT3roMS7NcPOvKBrHz12i0C9CCmYvNDwLTxCdB29MI/sPPXSmTp79ZE8SphGPLlmTT3s1jM9eeflOijXIbyifjq9rpSRO36vabpzDMe6ZiAavUW9p7twsCG9l9sXvT8rE71LBCW9WCbBuyrqvD1rI3w8nBTpPK1XzLyX25e8zt0SO74L/TwBHXm93HD8PKvYUjzOpyO8W9spvTRSgb0YO3u96OvbOkTzFrzLvEu8BNLhOxaBIz1gSuq8h86jO5rL3rt5QCm8wmKzu8lzwbtwgQg9wBmpPHAhb7xWSRW9IBgBPeN8Gzw5VeO8q9hSvKwVGL361fs7r6DWvH4+nLz7awQ8F17PvXL5qzt7Who8CPOoPMVSejmS3aS8b6J1vWj9RT1y+au85jZzPR1vXT471Fw8ayP8vHod1bydtrY8qI9Iux6lzDw+U1a8IgFyvEiFK72XpSi8zxOCPFBzZbxNgx68QMaKvBSp5jzXN6u8FijgPA7ORz3zU6C8t8T/OzZlHL0SKm09EwKqvPr4T70vHh+9c9bXPJm/mTzRYXs8e1oaPYIGoLzDmKK8hSARvI09ZLyzaFo8kAXou/iMcbzjfJu7SphGO4PjSz3zHTE9YErqO2k6izyHP/E7UTgHvQaqHr3nDjA9rVdMPIKhl7wYyi28JimPPdNvJ7wrjIq8CL05O4r02TpNHha8dEK2vFfwUbjs1jM8+S6/PNdtmrsrJ4I7nr2MPEmMAb1ntDu9zTtFvcaIaT2YglQ9DIU9PZKntTxUZZM9WTncPAhkdryzwR29sbNxO2VIXTuz94w9gwYgPGYgGr1Ejg69+2uEuyL8grxz1lc8tJ7JvHGNTT0b8OO8vS5RvSZYqD0E0mE9uZw8OyjXIb1Cqgw8D+HiO/t3yboU05C8dHglPHPWVzycPhO9I9kuvAjED7yrDkK9uZw8vW7YZL02ZZy8o4UQPdjeZ70d/g+9aWmku5Twvzyp+yY9aWmkvKMl9zvvxno78QqWvJttrDzc0BU78J63O/YN+LsCv8Y8NwxZvG96srz/mJA7s/z7PAyFPT18nM68d8gFvHgKOrzeSLk8SLsavKpsdLyr2FI8WS0XvY8oPL2/d9u8hmJFPU70azyhElw9wE8YvCZYqLwfESu96OvbOxBNwbxJVhI8dUmMPFTKmzz1nKq8orSpvFYTJjyMZ466Mth2ul1aIz0Ih0o9TwIYPVe64rvUTNO8WciOPAe9ubyLlie8w2mJPGTcfrzK3x+9hmJFPT+/tLwTAqq8tyQZvbwijD2tV8y9uggbPXyczjzXNyu9OvewO0etbr3K35+71G8nPeZsYjyIq88800AOveNGLL1QqdQ8XgHgvCzH6LvTbye8N0JIPP+YEL02mws8vgt9vPlRk72Qyom8GJuUPDS3CbsUbgi966DEPTkfdLv1nKq8hpg0O4I8j7w3NoM97d2Ju6mPyLtDdB086NjAudzQFT0t1ZQ8mIJUPVBz5bypMZa8zc9mvKORVT2HP3G8Ss41vY6GbjwIKRi8BT7AvTiuprtLBKW8lc1rvLnSq7t5QKm8ElSXu3VVUb28wvK8sAy1uqJ+Or0rVpu8TR6Wu7fE/7xYXDA7YA+MORHvjrzI0fM46LXsu17LcDwtRmK9f1G3vLOSBDt+efo8H4J4OhSp5rtuAg+6AyslvfZ51rzT4HQ9MPtKPaA1MD3ZSkY9e78iPa6UEb2UJq889+U0PWbqKj2GmLQ8tNS4vBBNQT06wUE8uGbNuwiaZbtUAAs9GJsUPHuJs7zB9lQ9QNJPPJNJgz2sIV281l9uvSdrw7s8QLs6eeflPPYICb0LGd+82oeLvB057rsEnPI7qmx0PI8ovLzteAE9fj4cPAgpmLzHlpW8V38EPd8lZbzf6ga9d/cePUKve7sQF9K8IO5WvDjkFb2hElw8JsQGPf/T7jtrgxW9pc4aPAbgDbvkTQK9Pef3O3pTRDxvejK8XSQ0vTabiz1J8Qm9/2KhO9DwLbvFshM9WTncu8gHYzuMc9O8Ar9GOktwg7zxRfQ6JEUNvM0F1rtGPCE9DcKCvSogLL3ralW8wYp2uyuR+Tyay168EBdSvR8RqzzqNOa8RnIQvZ7spbt8nE68pP0zPGIipztfbT689+W0PGEPDLz3r8W8dy0OPFgmQbzEmCI8utkBvNWJmLxJ8Qm9X8aBPDQckryFVgC9hz9xO6/WRT2/QWw8a7IuveXFpT2Vzeu7YsljPJzZCr05i1K9bfu4vNDwrT2zaFq8Yo6FuWP/0jzFFxw8Qg+VvBsmUzwRgzC90ZdqPLp56LzZgDU97h++PN60l7wXXs+5SYwBu6XOmjzViRi9+pqdukn2+Dwj2a68fJzOvApyIrxgFHs7UkuiO7zCcjwR9H07ZXKHvNijibwyOBC9RC71PPZ51jxCdJ28/wnevEIbWr3RJh29XVqjO/rQDL3h/aG8Hf6PPDjkFT1J9ng7b3oyPeynmr11QjY9BJxyPArQVDztffC9uZy8ONqHi7xOVAU9ZGsxvTYvLbyLYDi9rmpnvTZlnDwiN+G8IO7WvHSuFD3teIE8aRDhvCtWm7xS5pm6o4UQvV+jrTx3ntu7UrxvPcgxDbyGmLS8jobuPOlXurtg2Rw7G/DjvGKOhbwRuR+8LQsEvIoqSb1w6388V4RzvdgUV7zDCXA9CnKiOVK87zw9Hec6VMobvJ//QD12wa+7rvkZvNIDyTx+eXo7xuiCPKCm/TzV7iA9c9bXvD1HkTwQF1K8gtCwPVuCZjxgFHs85Easu7+tyjuc2Yo7/wnePM07Rbunshy94ZgZvGB0FLyA+PM7RPOWvMHA5bxHrW68iirJPDue7Ty+mi88k4RhvPZ51rtoMzW9tduOvJqQgDzfT4+8ZNz+vEDSzzyMZw67LDNHPSuReTp2wS+9K5F5vG4CD70KqBG89DBMvBTf1TwkDx49YHQUOdW4Mbx8MPA862pVvZ22Nr2+Bo47ORqFvAEYiru/rUq8YBR7vbYdwzxL1Qs92YA1PB0D/7lbEZm9gPhzPXVJjDy7GzY80fcDPS6ywLxXfwQ8sa6CPBJg3DzRYXs8fuXYvEqYxrpsxcm7k07yvFTKGzloM7U76vkHPelXOj2FLNY8+2sEPaA1MDxoMzU87/zpPHXp8jzxpQ29vCIMvIJBfjxhtkg8Ds5HPQoNmj3+9kK9wYr2O9SCQr2Vl3w9cwxHOyvxkjwbtQU8Qg8VvWyPWj0yDma9Vt02vUtwAzy2HcO8Hf4PPN5+qLww74W8eNTKO3ee2zzcaw09/51/OuCRw7y4MF68XSQ0vHVV0bmRO9c9mSQivRnRA7zNBVY7vMJyuwy7LDxTXj07LdWUPHSulL1ggFk8Z7Q7vCIB8jr0MMw71bixvPytuDzIB2O89g34O4PjSzwKDZq7MjiQu9oncjzVKX89fGbfOk2DHj1bRwg98UV0PZd2D72BmsE8RnKQPG37OD0dyCC7T8woPVZJFTrFTYu8LQsEPTYvrTypMRa9GxqOPIkXLjypxbc86Otbu9io+LvHKjc5tUCXvApyIjz6mp28cFfeOzmLUr141Mo8eh3VPMJiM7xyZQo8YsnjO7j67rwG4A29CPOou77QnjsCswE8Wc19vJWXfL0nNVQ9MtOHPLMya7xvejI7FUu0O89O4DuOvN08SfEJPaJ+ujwGdC+8KiAsPN8lZTz4wmA9QkUEvDDF2zxG15i8gqGXvCI34TzZSka8K8doPfQwTDvgx7I8Nfm9On9Rtzw7yJc8fQgtPR1v3bs3DNk8MTG6O5xK2DzI0fO6RfomO4dquDzjv0C9iAAWvUB/67zhA0y8xGJgPfDVqjyQ/BA8wIOmO4WuQ71/Oay6yaiKOx7NBrz9ESw8kcHbO8CA1DyzcA681uQLPDLZx7vRC1a9FjuuPCjvGL0lB+m8GYfcur0x1LwAy069tZalPKYxOz1urqo8zrzVPGk2wTs6dPa7hUQhPLLdAjyLubi8+foOO8yWvrwLTi29nEQ6PVpntLz1GIO8xGJgPU0o4TtdI6m8VoUovRHAcrxNKOG86sq1vOEDTDzet508fQ1xvLX99TxthcG8UqOcvGTBqbwQxha9ICivvODdtL3bZUu8Z9uYu/VNFDxfRu68vcexvb3Kg7zkjYE8B9NxvJtHjDwY96K8Ibhou5hf3DzXrCg9gcnlvLPX3rwDh0O9KO8YvUyVVb01/167YW/XvGVUtTwo7xi9vP+UPOpgEz1w1EG8rc+7vO0Ztjy9xzE7/6FlPQBeWjxIFJa89uCfvH19tzwlncY830opvKN4mLtRd2E705WLPImTobtes2I9vl2PPOVPejsSU/47TucnvAVGCj1pM++8eAL8vNcZnTwU4AU9jmmFPUUjELwFQOY8rjAIPeDdNDzy+G87TJVVuz+FD73KbVW8+S+gu3ON5Lvf4IY8hj79POazGD1GjbI8/OsUvdv7qLyEGOY6rvikO7p4MbzA6va8gF9DPPVH8Dtuq1i8ndfFu5uu3DwmmvS82HcXvWByKTw6RYk95VLMO/qNmrwG1sM8hQ+QPC9YiD1UXL+93YtiPX85rL3KcCc9gclluwHIfDtBqya9RM7rO/0RLDs8M707jdz9PJR6frzhBh69ivEbvVyQnT3C0iY9fFF8PB1vDDsyRrw8RiOQvHqPg7xBFUk94pmpPF25Bj1D1I89jgi5O4n6cb3pNNg8SEmnO3gFTr13myu84HMSPG4YTTzckQY9yEc+O28+ZLyIZ+a8GY0APXrBwrvimam8cvrYvAakhDu3uWo8B2whPdM0vzz/N8M8NpW8PBut87uMSfK8LD4ZPcLSJj2tzOk8a1xYvC9YCLzpNFi9kCv+ujPcmbvSoTO8PTBrvJY5xTtJRlW98++ZvEAVSTkAy868UzNWPDEd0zyAz4m8t7y8PPBoNjy9xzG8ug4PO5uxLr16j4M8F2SXvBDGFr16K+W85xETvK710rvy+O+7TR8LPe2vEz0LhpC94yw1vY4IOb1CdhW8ym3VPN9KKb2/uwm88ckCPcexYDyQLlA8zb+nvFyQnTYPmls8E+nbPBmKLj13b3A81F0ovDjnjrsZii491xmduwu4Tzkp7Ma7O9gUPWXqkjzpzQe9+AY3vUCCvTzlT3q7Og2mvFKdeDy+XQ89bIVBPKfERrsDHSG8dLbNvCnsxru9ygO8gWIVPc5SM70S7C09FaXQPPu/2Tzc+FY7PllUPcRlMj11TKu76/Oeu41yW7v+pLe8847NPJnyZzxZPss88ckCO/KRnzwdpJ09Gh26vDPcGTpb+j+9jN/PvNv7qDqaG1E9jXWtvB7NhryBXHG899r7OzoNJr1w0e+76sfjPGmgYz1etrQ37VEZvcmoCjwJkri8iZMhvrUsA73pzQc8bz5kPQVA5jynkgc9NpU8vXSEDr13b/C8p8TGPAu4z7wqGIK9aTPvvHzqq7xNK7M8jzGiu5zal7wHNxA8NZiOueBwwLz7v1m8Um4LvdTHSj0u+g094QYePa5f9TkVONy7MbYCPMIKCr2v9VK92440vP86FT2SuAW6lTyXu8TP1Dytz7u7l2KuvGcQqrii5Qy8io19u99HVz1FYXc99bTkvJtHjDs2K5q84HBAvXzqqzxZ1Cg9ft4DvYLyzryeAK+7esSUPG4V+7x0tk28L42ZvaQLpDzw1So9CSJyPEX6Jj2Vpjm8BLCsu2TBqb1IsPc8ytd3vX6mIL1fF4G9q6mkPCp/0ryNBWe8S9CKvbAevLzpNNg8TJVVPZ3XRT34A+W8/X6gPCUH6bxZO3m8EcByvI1AnL1oDVg8Y5Xuu1LJs7tXGDS8rvikvFpqhr2LSXI9nNqXvPJcDj0rEl4+8vtBPbAePLzTx8q78vhvPdgTeb1vooI75SANvMe3BL2tzzu75rOYPMe0Mr2HbQq9AvHlOahapL0myYE8ubAUvQBe2rsoVmk9ndfFuybJAbxqzB69e75wPTujgzx8UXy828aXvCWdxrx+3oM97VEZPfIkq7l859m730opPCPh0TxkjJi8TSszutI3ETzCCgq96AvvO6/DEzy55SU9ljbzPPgGtzwgKC+9UqBKvOZ+h72d10W8HNyAPEezSTz0uog837H5PCLkIz26Dg+9jXWtPOpgE7xRDT+8NAWDPFJui7wUfOe75n6HvISxlTxHths8Kn/SuymCJLvX5As9FqJ+vKG8I7xrX6o8ZIyYPDvYFD13csK8TCuzPbmwFD1AGBu9+ZlCPZQQ3DxcW4y8L40ZPFpqBj31R3C8XI1Lvat0E7ukdUa9bqtYvXSEDr2XzNA8dt+2u8X4Pb3AThU9pZ4vPSmCJDowh3W9NisaPbp4MbxpNsE8EDC5uyFRGD2RwVu8eS63vG2Fwbxs8jU8+S8gvA+a27y0Axq85VLMvPtVNzuf/dy8nmpRPLnlJTz1SsI876nvvERnG71AGBs9qPCBPNXzhbtkwak8iP1DvDvYFL0p7MY84NpivN0hwLyWz6I8Ken0PNcZnbwFQ7i8hQ+Qve4W5LyiTN28uFIaPcLSpjx14og8GPeivB3WXLzPT+G8mhvRPFENvzyrP4K7fwQbvD+FDzz9Eay7NGxTPCuoOzwQMDk86/OeOyoSXjy4HQm9jgVnOiG7urvkVR48ixqFu2VUNTwbRiO9j5tEPAakBDyY+Au9j5vEPOk02LwWONy8KFbpvMEWsry8NCa7q6kkvahapD2iT6+9ifrxO3MjQr2VOcU8pjE7vVM2KDx1s/s8xiEnvcnayTw7oLG7DXTEu0rZYD2IywQ9OndIPY0F57x9EEM6iSYtvPzowrtoDVi8M9nHOogAlrwpTZM8/REsPWrMnrzZPzS9YmaBvO6swTyGQU87cGqfvSWgmD1XqG28kC7QO4rxG7zuegK8beYNPGrMHj0brfM8EuwtvWmgYzp2dZS7TP93uknfBD3kjQE8ZVS1PGKYQLxNHws8JAdpOvFoNr1TzAW9iV4QuqWer72nkoc7xovJPOzteru0bby7eNOOPAVA5rt1TKu8qepdPDdUgzzHtwS8ueWlvH8EG7vXFku9AoqVONcZnTzimSm9mhvRvE5UnLu1zoi8XSBXvKRydLwiS/Q8OOcOPZLtljzpzYc8UqOcvNXwM73mezU8KFm7PIR8hD1tgu88It7/Oy049TsmmnS9RM5rPVh5AD02kuo4b0E2PO4WZDz9SY889UpCO2gN2DxP5yc99uCfOyDznTus0o28ixqFPF7fHb2LuTg9fX23PNv7KDwgj/+8ixqFO3SEDj0sCYi7pHJ0vKfBdL37v1k8+1U3O7tsibwByPw8O6ODPOVSzDzTlQu87IaqPOKZqTznDkG8cNFvvNisqLuLTES8o0OHvP6ktzuNclu7Hf9FvAq7IT0G1sM7BtbDvFRZ7TzGWQo7XPdtvaoQ9TznEZO7kriFO/tYibxwZHs8O9gUvQu4T7k0bFM7OXqaPBcvBjynkge9tc6IPIdqOL2vizA7bnmZvDJGPL1/OSy9pjG7u6PiOr176qs6MbaCOuvzHrwj4dE86TcqvXVJWb1ZO/k5FgYdvE0rM7vLk+w79qsOPTudX7wZh1w7JHRdvG9ECLxjK0y9quEHOZzalzvy+G+8PuzfvPbdTbyTgCK92midO1RfkT39ePy7yEe+vHXiiD0wisc86TTYvKw53rzRC9Y9k4Cium2CbzqDhVq8FgadvEiw97zjwpI75uXXvN9KKTtimEA7vl0PPcRohL39fiC9TJinvPmZwj0i5KM870KfPN6CjDxzI0K9skRTPcRlsjxuq9i8/qS3vAq7oTzrWm88aKO1vPW05Dz5lnC9pZ4vvHKTCD32qw686sq1PNcZHbzYQoa8ZVQ1O3KTCD1pORM8H2CSvNmggDxrXyq94HBAvcsA4Ty4Upq8zSnKvFJui7wzQ2o9N7tTvNeAbT36KXy9KYIkPdk/tLwXzrm8aQQCvpN90DyiTy88cyaUvLLaMLz3Pho88pEfvYmQT7up6t07CY9mvRmNAD1/Oaw8AV5aPYFccbzaMww9UXfhPEHjibwlnUa8FaiivMaLST2BLQQ7qIC7usZZirtykwi9VxViO4x1LbzKbVW8IVGYPB2knbtx/Sq9M9wZPADOIL1TzAW7xGJgPbHdgj2H1Fo7zJNsOuZ7NT1s7+M8yQaFO/VNlLqdZ3+6P4UPvSuouzwNd5a7kC7QPB3W3LwflSO9fqYgvEhJpzyeatE8It7/uxJW0Lx/o049CY/mPGRRYzzO5b67kcHbvKQLJL1Pspa8kC5QvG9ECD3z75m7fwQbvSUzpDv4ZwM9479Avb3HMTwc2S68Lc7SujDrk7zkjYE9W2RiPLsLPb3et507RZAEva74JD0z3Jk7krgFvURkybtvRAi9sCGOvEJBhLt14gg9ungxPVcYtDtUKoC8r8OTvBCRhb3/N0O9jQXnvBWlULz85XC9fX23PC2cE71uq9g7rvgkPFEQkTyFDxC8LdEkvURnGz0wise8Jpr0PD5Z1LxdI6m8YQiHPRcvhjx6j4M85egpPfDVKjvkT3q8PDO9vIN8BLywHrw6TC6FvP7cmruuMIi75I2BPUlGVTyT5/K7IL4MPeIA+jw54eo8uB0JvdcWS7zkUsy6s9qwPDsKVD1VvQs97j/NusaLSTyOCDm9Nf9evPbgHz0zQ+q6ls8iPTwzvbuVPBc9fg3xvOgL77zGISe6vccxvSOvkjza0r86x7cEO7ni0zwxHVM9G0YjPPzoQjw29gi9ygaFPPDVqjxltQE7VoWoPeuGKrzP5b46+ZnCO6sQ9bs1KEi8CvMEPIOILLyDiCy91u1hO+2D2Lsbfga7T1HKu1RZbbx8Ufy5/FJlPD+Fj7xM//c86KHMuxcvBrxkvle9lN6cPSp/0jufk7o8dLZNPZQTLj3Ux8q8bhX7OwolxDx5mFk92dWRPLmwlLzO5b48ywMzvSWgGLzqyrW8GfRQvABeWryZG9E7paEBPKPfaLvDnRU9AvHlPLWWJbzkVR69wzxJu19Gbrug9Ia9uFIaPHkxiTwC8eW8zrzVPEyYJ73+pDc7iZOhvFDkVb3tGTY9GYouPSVrh7yfkzq9ifpxPdmgAD1JRtW8GYouvRjCkTorpWk8Fgadu3Fkez0jd687UHozPMyT7DrBFjK9/zqVPOtdwTxrXyo9WdQoOtyRhjsiTka848KSvH6moDx3csK8Y8EpPCmCpDxoDVi8UzNWvSVrB70OCqI84N00PXO5n7zPT2E98NJYvKJ8tTxoShc9/+tUvcV9nrwAKjO8mxyru+35dD3KY7I8j0z3u/f0qru6kge9GGz+O8HyEbxgcBa9w+Q4PADumrtOIy89WsRUu+h+hzuWcq+8JxEwvXF/H7oBSSI9cMkQvc/wBDxFZtc7HX9aO+YEET1XO4488kqvuxzLEbxjRRS9F9VePbacVD0IQMy83M1CvRzoOrsJQhI5+3+3vKcJCD3pjVe9CF+7u0zlUD2qlBS84Xc+PHahS72CQnG8PwgTvSPfZLqXkZ68b6ohOQXUrryIV5M9XrqHu+DQ/7waqty8kwYSvfQfrbxno1i9LvmJvI6117wfVFi8z/CEvOmNV7w583C8lbygPNTWmLyu/us8t2ICvDcPI70gkjY8kcizOqDGprz8nia9NJNmvXq0p7yCMyG9DFOovFE2C704xTE9YAXwvEFy6jxC3ZC7JEqLPFpMpLuA9UI8ISnWvD+d7Dss9f08oV1GvACD9LzSWtw6AUkiPVd3Jr3BPXq8eXbJvAFJIr366Jc8LPX9PHxLxzxAvNs84FhPPexiVTzqU4W8nP8BPewoA72lcCI9pwmIvA0JN7wOR5U4RqQ1PU4jrzxyFr+7mUctPWbtybu2nFQ9BZgWvFbQ5zyovVA8N4dTPGEk3zxzNa48PNiNPdtF87xrl0U5Fz6/OuhPeTvlqQm9lLwgvCycvDswc4C6Ksc+PBRpwbsQv0U838GvvEFT+7zmBJE8Fh9QPZLnIjz5jZC8qL1QPXRjbbto4TY8iJOrvdX1hz2kUbO8B20UPNrbmzw3DyM9/7ECPJGpxDxYlpW7xbm2PEuncj2gig480eKruquxvbtB20o99bZMvV1AkTyyuAa9wT16POwJFLzRxQK83xpxO4JSkLlnhGk9jP9IPe0Y5LzySi+9CxXKuxDetDu5CPK8onw1vYY23rpmzto85gQRPQm4fLw4TYE9a5kLvVDbg7wcyxG98FiIPBqq3DvnX5g8XZnSvK0OCzxV+2m8OgMQPBe2bzyvtHq9xxaEvOnZDj3VTkk9mSoEPVd3Jr1Xd6a8u0ZQumJiPbxHwyS9SXmzu+85mbyw0+m8WJaVvJw7GjveosC7PDFPvU1CHr3Emkc9tlJjPCUdQ7zry7W8I2c0vIvB6jtuEwI8AWgRPbac1Ly2nFS85ONbPQPih7uvPMq7ItCUvG5sQzu4+SE7dK1eu0tOsbzEQYa9NP6MvMFNGTw8qf+81QTYvHru+TsoiWA9bdUjveItTTwpMJ88LpApPDeHUzw5PeI8yUTDu2y2tDzxsw+9E2lBPeGWLb0hKdY8r+MIvWoAprzkays7VaIoO/pBWb0k/tM8dsA6POF3Pr16DWk7/a12PdVOyTzVbTg8I6WSvDN0d7z21Tu9V3emu2bO2rwJuHy9tzP0O2uXRT0xKQ+9eDjrOw9HlTpV+2k9KqoVu7IRyLzDXOk71ownvNcjx7v93IS868s1PI0BjzxYDsY8H1RYPVfvVrzRphM7Mb7ovNIBGz2wmZc61LepO6JAnTwbyUu8EjuCvGgrqLsZ9M28+WBIPAlfOz0v6Wo9WfGcPCiJ4Lyrsb08DuyNu5ASJb7FMWe9jtTGu3XOk7vry7U8uPmhPIyWaL0PN3a8feLmOe6/Ij3QpM28jJZovRH9I70Wa4c6rWdMPEPuJj2mj5G8ZVYqvPwW1zx0rV68S6dyvCWVc7zUtyk9UHBdvNhhJT2iQJ28xlBWvf1zpDwAKrM8j9YMvNQv2ryYCxW8664MvPZs27soEbA8hhfvPOPEbDwOCTe9biLSO3kdiDz045Q8/wrEPLg3ADyTFeI6glKQvNv6Cr1ubEM8z4VePQqdmbyECB892GGlO6MT1Twy3Ve9ZRoSvW9uib0y35070xDrOvQfLTy+Way8MZ95PDnkoDzTmDq9md7MO7IRSL2Mlui7n6c3vZMVYjrBptq8qpJOO7lzGL2Mpoc8jrXXusw4MD160xY82Re0OrqvsDs7uR69kalEOyfyQL1QcF29uidhPUTupjyblNu8GZsMvcuRcbxo4bY8q5QUPUoSGbx16zw90xBrPtSaAD0RwQu9NXiDvVkttbyMd/m7ZRqSPIYXbzx0rd68IbGlu/0YHbxYDka9b6ohPMAPuzuQEqW8RLKOPLTJHDp5/hg8E2lBPee4WTwZE7066uokvDsSYDySfsK64DlgvXru+TnHFoQ8GF0uPRBmBD3yo3A83c+IvZv9O7zyDpc8b6ohPe7ekTwCHqA8fYklvFbBF71OQp48i+BZvKcmMT28ZwU8R1pEvNOYOj0+UgS9787yvHHY4LtjgSy9KqoVPU/ZPTzM/Bc9y/pRvQ6BZ7zjpX07MAjavM/wBL3vdTG9rWdMPbTmxbxxfx89Dzd2u0IZqbzqrMY8U0XbvHFgML1IAQO9wlzpOoRh4DlcIaI9UNsDPbeemj00OiU89Zddvc+FXjx17YI9sHoovZKrCj3NsGA8y6EQvV24wTpQ+Cw8h+zsu9Gmk7wf3Ke82YCUPLqvsDxlVqq8FEpSPd3PiDz1Phy9zDgwvBhdrjtqACa8x440PEovwrz69+c8LX8TPAL/sLz/CsS8UTaLPF1fAL1hJF+9qhoevd9Yz7q32rI8dMxNvf2t9johsaU7Cbj8uxKUQ7tQ+Cw6+vfnO4poKTwq5q07FPGQPBTh8TuIdLy8aCuovEun8jw9MxU9AuDBu27kc7vz4xQ8V9BnPRqLbb0ZE7087oMKO8nMEj1Voqi873WxORhdrjx6tCe9J3qQvSyeArxJXIo8/VQ1O5SdsTuM/8g8hr6tvCBzx7ys75u8qt6FvNoXtLyA9UK7OMWxu96iwDyXCU89c47vvC1/k7wgc8c6Qt2QOxEckzyb/bs8MmUnvPLC3zwOKCY9wU2ZvKSq9Lz39Kq9lICIvGejWL2ZKgQ9nFqJvA3qRzzHb8W8feJmPZscK71Xd6a8DuyNvJASJbthyx25YI2/vAfIm7yXVYY9O16XPY0BjzwJ1+u8oMamvOD/jTyCQnG8F9XePFwhIr232jK8agCmPCCSNjz5Imq8BfMdvX0B1rzT8Xs9z/AEvYSAT7pduME9cX+fvIDW07x+IEU76W7ovDbTCjxaTKS7u+2OPNE77bzB8hE98qPwuxtwCjyovdA8KTAfOyycvDsTacE8xtglPeyBxLo0/oy9HH/aOyUAmjyv4wi9KqqVOit9Tb2d0rk7lPbyu/CUIDzlqQk91ownvZW8oDleugc8bHocvADuGryOtdc8xbm2vEb99jwzG7Y8TARAPGz0kruEYWA7HH/avEyMD73FMWe7664MuhwHKj0CHqA83qJAPNMgijxDVwe7Ksc+PF8VDzytZ8w73QshPWG7frwWxg68HAeqPM2w4LsYfB09IsD1PF66Bz1vItI88+HOPF5PYbtem5g7HH/aOw4oprwnavG75iG6vGAFcDwLvAi98kovPScRMD2AfZK8pKp0vfiLSryTX9M8gjOhveRrq7w8M5W7nfEoPD1vrTxzjm+95plqvSYfiTt0rd683c8IvAnXazwELfC7Lsr7vLj5ITwF1C492XB1vNMQazxW4Aa9DerHu+okdzq6koc9EpTDPJW8oLx+Axw9BwLuOl24Qb1nlAi9Cbh8ur46vTzg4B69CV87PVGuO72b/Tu8B20UvA2RBjus75u8sjA3vXM1Lr0Tlgk7nbUQPRVMGL2P87U5yURDuy9Ukbx/XiO9BC3wOmbtSTtdQJE60nlLvHXOEz35Imq9Nkn1PMyRcbswJ8m5erSnu8V9Hrx9AdY5OeQgPcVBBjwdJhk7Qfq5vBYAYb3jpf28s08mvdZQjzwjZ7S7n4jIvA5ieDxvA+M8pDLEvDwxTzspqM87xLk2PJHIMzy8hC69nwB5PdqfA7vMOLA8W4qCPPcTGr0C4ME7WwIzPekVJ70/rQu9agAmPWNFFDyblNu8yAblu4GMYjrWUA89LlJLPZscKz1WWDc984iNvOTjWz1JXIo8fiDFPBC/xbxsehy8lurfPPNpnryaVn29WkwkvZp17LxfFY89WkykPEYshbzj1Au838EvPSycPL0BwdK8u+0OPW+qIb26zp86W4qCPHEkGLymf/K7GNXeun0B1rwELfA54rWcPETPN702SXU9uQjyu4TMhj0Dd+G8G8lLvQu8CL4RddQ8ZL8KPUVmVzzMODC9epU4PGgrKL0lABq8Zww5PQCiY71x2GA85C+TPXRUnTv3bNs6KajPO+kVJz3mQCm9vRvOu8/whDxvbom7T7pOOxF1VDz6YEg96SR3uwqN+rrhWhU8SVwKvccWhDvkxOy8gjMhvI/WDD028LO8IbGlvJ0rez2bHKs8cWAwPcQil7z/sYK8K33NPImymrz0eG668+HOPNxVEryO1MY8iQvcPDxQvjzlAsu83M3CO3XOE73sYlW8IyucukoSGb1wufG8nwB5PWlphjz8NcY8RqS1vC+QKb0HbZS9WfGcvEoQ07wKfqq7nmlZvLSNhL3jTLw8jHd5vH0BVrvk41s6JtPRvGAF8LvRppM7AA2KPWnCxzms0Cy9hYBPvL3CjDsOCbc8KPSGPGbtyTz1Ppy8XbjBvNfKhbxoKyg8c45vuplHrT1sepy7HZ5JvfR47rsQohy9I99kvao5Db3dzwi9t56avHP5FT1KEhm9JP7TPPNpnjx3ocu7dSmbOycRsL2aVv278bOPO50r+7qO1MY7cEHBvGpZZz3ug4q8SOKTPMz8lzvu3pE8xbm2vMPHj7w1aGS8R8MkPYWfvrxRB3082fhEPNQvWj2tHds8yHELvckl1DyECJ+8+ItKPOnZDr1OI688rogBvFUa2Twsf5M9Zu1JPZ+nN7yCUhC89OOUvFEH/Tw7mq88WsTUPEBjGj194ma96NfIPMCXirwzGza9aKNYvA839jjT8Xs80Bz+O0nx47vtoDO8sjA3Pf1UtTzKYzK9W8aau9Ac/rzSWlw7NJNmvHXtgj2l6hi8ozLEuyhPDrw7mi+9xlDWvFBw3TpM5dA80cM8vZCK1botM9w70Dttu47URjypv5a8BdQuvP2tdjvRphO8pehSPFBR7jsFt4W8Y2SDvBoyLD3XqxY9OeSgPOjXyDv39Ko9E7Myvd0qED3J6wE8eg1pPfpBWT1AJwI9RQ2WvG+qob0V4fE8S20gPP2tdr3xsw+8GovtvJeRHrvMOLA8eXZJPXqVOD2RQGQ8jR64Olrjw7xlN7s7nP+BvZ+KDj1u5PO5VrF4POmN17wQZgS92CWNvZ5p2bwYEz29x440vMW5tryWNpc8+SJqvMPkOD0Cwxg9OnvAvLz8Xj14oxG9Dzd2PGOgG70TK2M9tSSkPH8/tLx0c4w82tsbPPR47jyP8zW9A7U/POfXSLztoLM88cJfPMUSeLwWAOE8pq6APJ+nNzyzEw69mIH/PN6iwLsJ1+s7m/27O/bVuzxCcmq86qxGPd+FF70="} \ No newline at end of file diff --git a/dsLightRag/Util/DocxUtil.py b/dsLightRag/Util/DocxUtil.py index 960403b4..ce62e5f0 100644 --- a/dsLightRag/Util/DocxUtil.py +++ b/dsLightRag/Util/DocxUtil.py @@ -2,7 +2,41 @@ import os import subprocess import uuid +from PIL import Image +import os + + +def resize_images_in_directory(directory_path, max_width=640, max_height=480): + """ + 遍历目录下所有图片并缩放到指定尺寸 + :param directory_path: 图片目录路径 + :param max_width: 最大宽度 + :param max_height: 最大高度 + """ + # 支持的图片格式 + valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif') + for root, _, files in os.walk(directory_path): + for filename in files: + if filename.lower().endswith(valid_extensions): + file_path = os.path.join(root, filename) + try: + with Image.open(file_path) as img: + # 计算缩放比例 + width, height = img.size + ratio = min(max_width / width, max_height / height) + # 如果图片已经小于目标尺寸,则跳过 + if ratio >= 1: + continue + # 计算新尺寸并缩放 + new_size = (int(width * ratio), int(height * ratio)) + resized_img = img.resize(new_size, Image.Resampling.LANCZOS) + + # 保存图片(覆盖原文件) + resized_img.save(file_path) + print(f"已缩放: {file_path} -> {new_size}") + except Exception as e: + print(f"处理 {file_path} 时出错: {str(e)}") def get_docx_content_by_pandoc(docx_file): # 最后拼接的内容 content = "" @@ -15,6 +49,8 @@ def get_docx_content_by_pandoc(docx_file): os.mkdir("./static/Images/" + file_name) subprocess.run(['pandoc', docx_file, '-f', 'docx', '-t', 'markdown', '-o', temp_markdown, '--extract-media=./static/Images/' + file_name]) + # 遍历目录 './static/Images/'+file_name 下所有的图片,缩小于640*480的尺寸上 + # 读取然后修改内容,输出到新的文件 img_idx = 0 # 图片索引 with open(temp_markdown, 'r', encoding='utf-8') as f: diff --git a/dsLightRag/Util/__pycache__/DocxUtil.cpython-310.pyc b/dsLightRag/Util/__pycache__/DocxUtil.cpython-310.pyc index 1281b368..e3f46baa 100644 Binary files a/dsLightRag/Util/__pycache__/DocxUtil.cpython-310.pyc and b/dsLightRag/Util/__pycache__/DocxUtil.cpython-310.pyc differ diff --git a/dsLightRag/static/Images/5d29d93325124e6aaea624b236a57e23/media/image1.png b/dsLightRag/static/Images/5d29d93325124e6aaea624b236a57e23/media/image1.png new file mode 100644 index 00000000..dd26f14b Binary files /dev/null and b/dsLightRag/static/Images/5d29d93325124e6aaea624b236a57e23/media/image1.png differ diff --git a/dsLightRag/static/Txt/JiHe.docx b/dsLightRag/static/Txt/JiHe.docx index 179c9b5a..515b511b 100644 Binary files a/dsLightRag/static/Txt/JiHe.docx and b/dsLightRag/static/Txt/JiHe.docx differ diff --git a/dsLightRag/static/ai.html b/dsLightRag/static/ai.html index b946d816..e3c42a19 100644 --- a/dsLightRag/static/ai.html +++ b/dsLightRag/static/ai.html @@ -196,6 +196,9 @@
帮我写一下 如何理解点、线、面、体、角 的教学设计
+
+ 三角形中两边之和大于第三边的证明? +
苏轼的好朋友都有谁?
苏轼的家人都有谁?
苏轼有哪些有名的诗句?
@@ -227,7 +230,11 @@ + diff --git a/dsLightRag/static/markdown/JiHe.md b/dsLightRag/static/markdown/JiHe.md index 6c96ca30..5db378f1 100644 --- a/dsLightRag/static/markdown/JiHe.md +++ b/dsLightRag/static/markdown/JiHe.md @@ -1,8 +1,8 @@ 三角形三边关系的证明 证明方法如下: 作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为\|AB\|+\|BC\|>\|AC\|。 -![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png) -height="2.8183694225721783in"}\ +![](./Images/5d29d93325124e6aaea624b236a57e23/media/image1.png) +height="1.91044072615923in"}\ ①延长直线AB至点D,并使\|BD\|=\|BC\|,连接\|DC\|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。 ②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。 ③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到\|AB\|+\|BC\|=\|AB\|+\|BD\|=\|AD\|>\|AC\|。