main
HuangHai 2 weeks ago
parent e3bffd86d1
commit 5e04763f81

@ -1,169 +0,0 @@
<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="d11" for="edge" attr.name="created_at" attr.type="long" />
<key id="d10" for="edge" attr.name="file_path" attr.type="string" />
<key id="d9" for="edge" attr.name="source_id" attr.type="string" />
<key id="d8" for="edge" attr.name="keywords" attr.type="string" />
<key id="d7" for="edge" attr.name="description" attr.type="string" />
<key id="d6" for="edge" attr.name="weight" attr.type="double" />
<key id="d5" for="node" attr.name="created_at" attr.type="long" />
<key id="d4" for="node" attr.name="file_path" attr.type="string" />
<key id="d3" for="node" attr.name="source_id" attr.type="string" />
<key id="d2" for="node" attr.name="description" attr.type="string" />
<key id="d1" for="node" attr.name="entity_type" attr.type="string" />
<key id="d0" for="node" attr.name="entity_id" attr.type="string" />
<graph edgedefault="undirected">
<node id="Triangle ABC">
<data key="d0">Triangle ABC</data>
<data key="d1">geo</data>
<data key="d2">Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="Triangle Inequality">
<data key="d0">Triangle Inequality</data>
<data key="d1">category</data>
<data key="d2">The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="Euclid's Fifth Postulate">
<data key="d0">Euclid's Fifth Postulate</data>
<data key="d1">category</data>
<data key="d2">Euclid's Fifth Postulate is a fundamental principle in geometry, used here to compare angles and sides in the proof.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="Proposition 19">
<data key="d0">Proposition 19</data>
<data key="d1">category</data>
<data key="d2">Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="三角形ABC">
<data key="d0">三角形ABC</data>
<data key="d1">geo</data>
<data key="d2">三角形ABC is the specific triangle used to demonstrate the geometric proof of the triangle inequality theorem.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="三角不等式">
<data key="d0">三角不等式</data>
<data key="d1">category</data>
<data key="d2">三角不等式(Triangle Inequality) is a fundamental theorem in geometry stating that the sum of any two sides of a triangle must be greater than the third side.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="欧几里得第五公理">
<data key="d0">欧几里得第五公理</data>
<data key="d1">category</data>
<data key="d2">欧几里得第五公理(Euclid's Fifth Postulate) is a classical geometric principle used in this proof to compare angles.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="几何原本">
<data key="d0">几何原本</data>
<data key="d1">category</data>
<data key="d2">几何原本(Elements of Geometry) is Euclid's foundational mathematical work containing Proposition 19, referenced in this proof.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="命题19">
<data key="d0">命题19</data>
<data key="d1">category</data>
<data key="d2">命题19 (Proposition 19) states that in any triangle, the greater angle is subtended by the greater side, used in this proof.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="点D">
<data key="d0">点D</data>
<data key="d1">geo</data>
<data key="d2">点D (Point D) is an auxiliary point constructed in the proof by extending side AB to create an isosceles triangle.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<node id="等腰三角形BCD">
<data key="d0">等腰三角形BCD</data>
<data key="d1">geo</data>
<data key="d2">等腰三角形BCD (Isosceles Triangle BCD) is formed in the proof construction, showing equal angles at its base.</data>
<data key="d3">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d4">unknown_source</data>
<data key="d5">1752209912</data>
</node>
<edge source="Triangle ABC" target="Triangle Inequality">
<data key="d6">9.0</data>
<data key="d7">Triangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.</data>
<data key="d8">geometric proof,inequality</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="Triangle Inequality" target="Proposition 19">
<data key="d6">7.0</data>
<data key="d7">Proposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.</data>
<data key="d8">geometric logic,proof technique</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="Euclid's Fifth Postulate" target="Proposition 19">
<data key="d6">8.0</data>
<data key="d7">Euclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.</data>
<data key="d8">angle-side relationship,geometric principles</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="三角形ABC" target="三角不等式">
<data key="d6">9.0</data>
<data key="d7">The proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction.</data>
<data key="d8">geometric proof,inequality demonstration</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="三角形ABC" target="点D">
<data key="d6">7.0</data>
<data key="d7">Point D is constructed from triangle ABC by extending side AB to create additional geometric relationships.</data>
<data key="d8">auxiliary point,geometric construction</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="三角不等式" target="几何原本">
<data key="d6">7.0</data>
<data key="d7">The triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions.</data>
<data key="d8">historical reference,mathematical foundation</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="欧几里得第五公理" target="命题19">
<data key="d6">8.0</data>
<data key="d7">Euclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof.</data>
<data key="d8">geometric principles,logical progression</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
<edge source="命题19" target="等腰三角形BCD">
<data key="d6">8.0</data>
<data key="d7">The isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships.</data>
<data key="d8">angle properties,proof technique</data>
<data key="d9">chunk-a5e3dacee89618f913c4948b6ffe64ec</data>
<data key="d10">unknown_source</data>
<data key="d11">1752209912</data>
</edge>
</graph>
</graphml>

@ -1,12 +1,12 @@
{
"doc-a5e3dacee89618f913c4948b6ffe64ec": {
"status": "processed",
"doc-86997193b152a15921e498b02550a63b": {
"status": "processing",
"chunks_count": 1,
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。",
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/5d29d93325124e6aaea624b236a57e23/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。",
"content_summary": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9z...",
"content_length": 1772,
"created_at": "2025-07-11T04:57:49.311633+00:00",
"updated_at": "2025-07-11T04:58:34.370868+00:00",
"content_length": 1770,
"created_at": "2025-07-11T05:09:11.662472+00:00",
"updated_at": "2025-07-11T05:09:11.665185+00:00",
"file_path": "unknown_source"
}
}

@ -1,5 +0,0 @@
{
"doc-a5e3dacee89618f913c4948b6ffe64ec": {
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。"
}
}

@ -31,6 +31,16 @@
"embedding_min": null,
"embedding_max": null,
"original_prompt": "三角形两边之和大于第三边的证明"
},
"b77e26c8086abbf8d809e39b1e55a4d4": {
"return": "{\"high_level_keywords\": [\"\\u4e09\\u89d2\\u5f62\", \"\\u51e0\\u4f55\\u8bc1\\u660e\", \"\\u6570\\u5b66\\u5b9a\\u7406\"], \"low_level_keywords\": [\"\\u4e24\\u8fb9\\u4e4b\\u548c\\u5927\\u4e8e\\u7b2c\\u4e09\\u8fb9\", \"\\u8fb9\\u957f\\u5173\\u7cfb\", \"\\u4e09\\u89d2\\u5f62\\u4e0d\\u7b49\\u5f0f\"]}",
"cache_type": "keywords",
"chunk_id": null,
"embedding": null,
"embedding_shape": null,
"embedding_min": null,
"embedding_max": null,
"original_prompt": "三角形中两边之和大于第三边的证明"
}
}
}

@ -1,9 +0,0 @@
{
"chunk-a5e3dacee89618f913c4948b6ffe64ec": {
"tokens": 1055,
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)\nheight=\"2.8183694225721783in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。",
"chunk_order_index": 0,
"full_doc_id": "doc-a5e3dacee89618f913c4948b6ffe64ec",
"file_path": "unknown_source"
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -2,7 +2,41 @@ import os
import subprocess
import uuid
from PIL import Image
import os
def resize_images_in_directory(directory_path, max_width=640, max_height=480):
"""
遍历目录下所有图片并缩放到指定尺寸
:param directory_path: 图片目录路径
:param max_width: 最大宽度
:param max_height: 最大高度
"""
# 支持的图片格式
valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif')
for root, _, files in os.walk(directory_path):
for filename in files:
if filename.lower().endswith(valid_extensions):
file_path = os.path.join(root, filename)
try:
with Image.open(file_path) as img:
# 计算缩放比例
width, height = img.size
ratio = min(max_width / width, max_height / height)
# 如果图片已经小于目标尺寸,则跳过
if ratio >= 1:
continue
# 计算新尺寸并缩放
new_size = (int(width * ratio), int(height * ratio))
resized_img = img.resize(new_size, Image.Resampling.LANCZOS)
# 保存图片(覆盖原文件)
resized_img.save(file_path)
print(f"已缩放: {file_path} -> {new_size}")
except Exception as e:
print(f"处理 {file_path} 时出错: {str(e)}")
def get_docx_content_by_pandoc(docx_file):
# 最后拼接的内容
content = ""
@ -15,6 +49,8 @@ def get_docx_content_by_pandoc(docx_file):
os.mkdir("./static/Images/" + file_name)
subprocess.run(['pandoc', docx_file, '-f', 'docx', '-t', 'markdown', '-o', temp_markdown,
'--extract-media=./static/Images/' + file_name])
# 遍历目录 './static/Images/'+file_name 下所有的图片缩小于640*480的尺寸上
# 读取然后修改内容,输出到新的文件
img_idx = 0 # 图片索引
with open(temp_markdown, 'r', encoding='utf-8') as f:

Binary file not shown.

After

Width:  |  Height:  |  Size: 207 KiB

Binary file not shown.

@ -196,6 +196,9 @@
<div class="example-item" onclick="fillExample('帮我写一下 如何理解点、线、面、体、角 的教学设计')">
帮我写一下 如何理解点、线、面、体、角 的教学设计
</div>
<div class="example-item" onclick="fillExample('三角形中两边之和大于第三边的证明')">
三角形中两边之和大于第三边的证明?
</div>
<div class="example-item" onclick="fillExample('苏轼的好朋友都有谁?')">苏轼的好朋友都有谁?</div>
<div class="example-item" onclick="fillExample('苏轼的家人都有谁?')">苏轼的家人都有谁?</div>
<div class="example-item" onclick="fillExample('苏轼有哪些有名的诗句?')">苏轼有哪些有名的诗句?</div>
@ -227,7 +230,11 @@
</label>
<label>
<input type="radio" name="topic" value="Chemistry">
化学学科
化学
</label>
<label>
<input type="radio" name="topic" value="JiHe">
几何
</label>
</div>
</div>

@ -1,8 +1,8 @@
三角形三边关系的证明
证明方法如下:
作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为\|AB\|+\|BC\|\|AC\|。
![](./Images/7a1f3e68c9234e8d87deca2b32a13f20/media/image1.png)
height="2.8183694225721783in"}\
![](./Images/5d29d93325124e6aaea624b236a57e23/media/image1.png)
height="1.91044072615923in"}\
①延长直线AB至点D并使\|BD\|=\|BC\|,连接\|DC\|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。
②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。
③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到\|AB\|+\|BC\|=\|AB\|+\|BD\|=\|AD\|\|AC\|。

Loading…
Cancel
Save