'commit'
This commit is contained in:
@@ -1,13 +1,11 @@
|
||||
import json
|
||||
import warnings
|
||||
|
||||
import requests
|
||||
from elasticsearch import Elasticsearch
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from pydantic import SecretStr
|
||||
|
||||
from Config import Config
|
||||
from Config.Config import ES_CONFIG
|
||||
from ElasticSearch.Utils.EsSearchUtil import EsSearchUtil
|
||||
|
||||
# 抑制HTTPS相关警告
|
||||
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
||||
@@ -19,20 +17,6 @@ RERANK_BASE_URL = Config.RERANK_BASE_URL
|
||||
RERANK_BINDING_API_KEY = Config.RERANK_BINDING_API_KEY
|
||||
|
||||
|
||||
def init_es_connection() -> Elasticsearch:
|
||||
"""
|
||||
初始化Elasticsearch连接
|
||||
|
||||
返回:
|
||||
Elasticsearch: ES连接对象
|
||||
"""
|
||||
return Elasticsearch(
|
||||
hosts=Config.ES_CONFIG['hosts'],
|
||||
basic_auth=Config.ES_CONFIG['basic_auth'],
|
||||
verify_certs=False
|
||||
)
|
||||
|
||||
|
||||
def get_query_embedding(query: str) -> list:
|
||||
"""
|
||||
将查询文本转换为向量
|
||||
@@ -55,19 +39,22 @@ def get_query_embedding(query: str) -> list:
|
||||
return query_embedding
|
||||
|
||||
|
||||
def search_by_vector(es: Elasticsearch, index_name: str, query_embedding: list, k: int = 10) -> list:
|
||||
def search_by_vector(search_util: EsSearchUtil, query_embedding: list, k: int = 10) -> list:
|
||||
"""
|
||||
在Elasticsearch中按向量搜索
|
||||
|
||||
参数:
|
||||
es: ES连接对象
|
||||
index_name: 索引名称
|
||||
search_util: EsSearchUtil实例
|
||||
query_embedding: 查询向量
|
||||
k: 返回结果数量
|
||||
|
||||
返回:
|
||||
list: 搜索结果
|
||||
"""
|
||||
# 从连接池获取连接
|
||||
conn = search_util.es_pool.get_connection()
|
||||
|
||||
try:
|
||||
# 构建向量查询DSL
|
||||
query = {
|
||||
"query": {
|
||||
@@ -85,12 +72,14 @@ def search_by_vector(es: Elasticsearch, index_name: str, query_embedding: list,
|
||||
}
|
||||
|
||||
# 执行查询
|
||||
try:
|
||||
response = es.search(index=index_name, body=query)
|
||||
response = conn.search(index=search_util.es_config['index_name'], body=query)
|
||||
return response['hits']['hits']
|
||||
except Exception as e:
|
||||
print(f"向量查询失败: {e}")
|
||||
return []
|
||||
finally:
|
||||
# 释放连接回连接池
|
||||
search_util.es_pool.release_connection(conn)
|
||||
|
||||
|
||||
def rerank_results(query: str, results: list) -> list:
|
||||
@@ -162,14 +151,14 @@ def display_results(results: list) -> None:
|
||||
print(f"{i}. ID: {result['_id']}")
|
||||
print(f" 相似度分数: {score:.4f}")
|
||||
print(f" 内容: {source.get('user_input', '')}")
|
||||
print(f" 标签: {source['tags']['tags']}")
|
||||
print(f" 时间: {source['timestamp']}")
|
||||
print(f" 标签: {source['tags']['tags'] if 'tags' in source and 'tags' in source['tags'] else '无'}")
|
||||
print(f" 时间: {source['timestamp'] if 'timestamp' in source else '无'}")
|
||||
print("-" * 50)
|
||||
|
||||
|
||||
def main():
|
||||
# 初始化ES连接
|
||||
es = init_es_connection()
|
||||
# 创建EsSearchUtil实例(已封装连接池)
|
||||
search_util = EsSearchUtil(Config.ES_CONFIG)
|
||||
|
||||
# 获取用户输入
|
||||
query_text = input("请输入查询关键词(例如: 高性能的混凝土): ")
|
||||
@@ -183,7 +172,7 @@ def main():
|
||||
|
||||
# 执行向量搜索
|
||||
print("正在执行向量搜索...")
|
||||
search_results = search_by_vector(es, ES_CONFIG['index_name'], query_embedding, k=10)
|
||||
search_results = search_by_vector(search_util, query_embedding, k=10)
|
||||
print(f"向量搜索结果数量: {len(search_results)}")
|
||||
|
||||
# 重排结果
|
||||
|
Reference in New Issue
Block a user