This commit is contained in:
2025-08-19 09:36:51 +08:00
parent e0e52e2e00
commit 5dc67c7b61

View File

@@ -1,13 +1,11 @@
import json
import warnings
import requests
from elasticsearch import Elasticsearch
from langchain_openai import OpenAIEmbeddings
from pydantic import SecretStr
from Config import Config
from Config.Config import ES_CONFIG
from ElasticSearch.Utils.EsSearchUtil import EsSearchUtil
# 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
@@ -19,20 +17,6 @@ RERANK_BASE_URL = Config.RERANK_BASE_URL
RERANK_BINDING_API_KEY = Config.RERANK_BINDING_API_KEY
def init_es_connection() -> Elasticsearch:
"""
初始化Elasticsearch连接
返回:
Elasticsearch: ES连接对象
"""
return Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=False
)
def get_query_embedding(query: str) -> list:
"""
将查询文本转换为向量
@@ -55,42 +39,47 @@ def get_query_embedding(query: str) -> list:
return query_embedding
def search_by_vector(es: Elasticsearch, index_name: str, query_embedding: list, k: int = 10) -> list:
def search_by_vector(search_util: EsSearchUtil, query_embedding: list, k: int = 10) -> list:
"""
在Elasticsearch中按向量搜索
参数:
es: ES连接对象
index_name: 索引名称
search_util: EsSearchUtil实例
query_embedding: 查询向量
k: 返回结果数量
返回:
list: 搜索结果
"""
# 构建向量查询DSL
query = {
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
"params": {
"query_vector": query_embedding
# 从连接池获取连接
conn = search_util.es_pool.get_connection()
try:
# 构建向量查询DSL
query = {
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
"params": {
"query_vector": query_embedding
}
}
}
}
},
"size": k
}
},
"size": k
}
# 执行查询
try:
response = es.search(index=index_name, body=query)
# 执行查询
response = conn.search(index=search_util.es_config['index_name'], body=query)
return response['hits']['hits']
except Exception as e:
print(f"向量查询失败: {e}")
return []
finally:
# 释放连接回连接池
search_util.es_pool.release_connection(conn)
def rerank_results(query: str, results: list) -> list:
@@ -162,14 +151,14 @@ def display_results(results: list) -> None:
print(f"{i}. ID: {result['_id']}")
print(f" 相似度分数: {score:.4f}")
print(f" 内容: {source.get('user_input', '')}")
print(f" 标签: {source['tags']['tags']}")
print(f" 时间: {source['timestamp']}")
print(f" 标签: {source['tags']['tags'] if 'tags' in source and 'tags' in source['tags'] else ''}")
print(f" 时间: {source['timestamp'] if 'timestamp' in source else ''}")
print("-" * 50)
def main():
# 初始化ES连接
es = init_es_connection()
# 创建EsSearchUtil实例已封装连接池
search_util = EsSearchUtil(Config.ES_CONFIG)
# 获取用户输入
query_text = input("请输入查询关键词(例如: 高性能的混凝土): ")
@@ -183,7 +172,7 @@ def main():
# 执行向量搜索
print("正在执行向量搜索...")
search_results = search_by_vector(es, ES_CONFIG['index_name'], query_embedding, k=10)
search_results = search_by_vector(search_util, query_embedding, k=10)
print(f"向量搜索结果数量: {len(search_results)}")
# 重排结果