This commit is contained in:
2025-09-07 13:52:34 +08:00
parent c13b0d66ab
commit 51aeea014e
3 changed files with 18 additions and 122 deletions

View File

@@ -212,70 +212,6 @@ class VikingDBMemoryService(Service):
res = self.json("AddSession", {}, json.dumps(params)) res = self.json("AddSession", {}, json.dumps(params))
return json.loads(res) return json.loads(res)
def handle_conversation_turn(self, llm_client, user_id, user_message, conversation_history):
"""处理一轮对话包括记忆搜索和LLM响应。"""
logger.info("\n" + "=" * 60)
logger.info(f"用户: {user_message}")
# 修复调用正确的search_relevant_memories方法
relevant_memories = self.search_relevant_memories(MEMORY_COLLECTION_NAME, user_id, user_message)
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
if relevant_memories:
memory_context = "\n".join(
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
logger.info("AI正在思考...")
try:
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
{"role": "user", "content": user_message}]
completion = llm_client.chat.completions.create(
model="doubao-seed-1-6-flash-250715",
messages=messages
)
assistant_reply = completion.choices[0].message.content
except Exception as e:
logger.info(f"LLM调用失败: {e}")
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
logger.info(f"伙伴: {assistant_reply}")
conversation_history.extend([
{"role": "user", "content": user_message},
{"role": "assistant", "content": assistant_reply}
])
return assistant_reply
def archive_conversation(self, user_id, assistant_id, conversation_history, topic_name):
"""将对话历史归档到记忆数据库。"""
if not conversation_history:
logger.info("没有对话可以归档。")
return False
logger.info(f"\n正在归档关于 '{topic_name}' 的对话...")
session_id = f"{topic_name}_{int(time.time())}"
metadata = {
"default_user_id": user_id,
"default_assistant_id": assistant_id,
"time": int(time.time() * 1000)
}
try:
self.add_session(
collection_name=MEMORY_COLLECTION_NAME,
session_id=session_id,
messages=conversation_history,
metadata=metadata
)
logger.info(f"对话已成功归档会话ID: {session_id}")
logger.info("正在等待记忆索引更新...")
return True
except Exception as e:
logger.info(f"归档对话失败: {e}")
return False
def wait_for_collection_ready(self, timeout=300, interval=10): def wait_for_collection_ready(self, timeout=300, interval=10):
""" """
等待集合准备就绪 等待集合准备就绪
@@ -352,52 +288,6 @@ class VikingDBMemoryService(Service):
logger.info(f"检查集合时出错: {e}") logger.info(f"检查集合时出错: {e}")
raise raise
def search_relevant_memories(self, collection_name, user_id, query, limit=3):
"""搜索与用户查询相关的记忆,并在索引构建中时重试。"""
logger.info(f"正在搜索与 '{query}' 相关的记忆...")
retry_attempt = 0
while True:
try:
filter_params = {
"user_id": user_id, # 修正为字符串类型
"memory_type": ["sys_event_v1", "sys_profile_v1"]
}
response = self.search_memory(
collection_name=collection_name,
query=query,
filter=filter_params,
limit=limit
)
memories = []
if response.get('data', {}).get('count', 0) > 0:
for result in response['data']['result_list']:
if 'memory_info' in result and result['memory_info']:
memories.append({
'memory_info': result['memory_info'],
'score': result['score']
})
if memories:
if retry_attempt > 0:
logger.info("重试后搜索成功。")
logger.info(f"找到 {len(memories)} 条相关记忆:")
for i, memory in enumerate(memories, 1):
logger.info(
f" {i}. (相关度: {memory['score']:.3f}): {json.dumps(memory['memory_info'], ensure_ascii=False, indent=2)}")
else:
logger.info("未找到相关记忆。")
return memories
except Exception as e:
error_message = str(e)
if "1000023" in error_message:
retry_attempt += 1
logger.info(f"记忆索引正在构建中。将在60秒后重试... (尝试次数 {retry_attempt})")
time.sleep(60)
else:
logger.info(f"搜索记忆时出错 (不可重试): {e}")
return []
def setup_memory_collection(self): def setup_memory_collection(self):
"""独立封装记忆体创建逻辑返回memory_service供测试使用""" """独立封装记忆体创建逻辑返回memory_service供测试使用"""
@@ -441,7 +331,7 @@ def initialize_services():
return memory_service, llm_client return memory_service, llm_client
def search_relevant_memories(memory_service, collection_name, user_id, query): def search_relevant_memories(memory_service, collection_name, user_id, assistant_id, query):
"""搜索与用户查询相关的记忆,并在索引构建中时重试。""" """搜索与用户查询相关的记忆,并在索引构建中时重试。"""
logger.info(f"正在搜索与 '{query}' 相关的记忆...") logger.info(f"正在搜索与 '{query}' 相关的记忆...")
retry_attempt = 0 retry_attempt = 0
@@ -449,6 +339,7 @@ def search_relevant_memories(memory_service, collection_name, user_id, query):
try: try:
filter_params = { filter_params = {
"user_id": [user_id], "user_id": [user_id],
"assistant_id": assistant_id, # 添加assistant_id过滤条件
"memory_type": ["sys_event_v1", "sys_profile_v1"] "memory_type": ["sys_event_v1", "sys_profile_v1"]
} }
response = memory_service.search_memory( response = memory_service.search_memory(
@@ -489,12 +380,12 @@ def search_relevant_memories(memory_service, collection_name, user_id, query):
return [] return []
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history): def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, assistant_id, user_message, conversation_history):
"""处理一轮对话包括记忆搜索和LLM响应。""" """处理一轮对话包括记忆搜索和LLM响应。"""
logger.info("\n" + "=" * 60) logger.info("\n" + "=" * 60)
logger.info(f"用户: {user_message}") logger.info(f"用户: {user_message}")
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message) relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, assistant_id, user_message)
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。" system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
if relevant_memories: if relevant_memories:

View File

@@ -22,10 +22,13 @@ def main():
try: try:
# 使用initialize_services函数初始化服务和LLM客户端 # 使用initialize_services函数初始化服务和LLM客户端
memory_service, llm_client = initialize_services() memory_service, llm_client = initialize_services()
# 集合名称【数据库名】
collection_name = MEMORY_COLLECTION_NAME collection_name = MEMORY_COLLECTION_NAME
user_id = "liming" # 用户李明
assistant_id = "assistant" # 助手ID:助手 # 用户李明
user_id = "liming"
# 助手ID:助手
assistant_id = "assistant"
# 告知大模型用户信息 # 告知大模型用户信息
logger.info("告知大模型用户信息...") logger.info("告知大模型用户信息...")
@@ -39,12 +42,13 @@ def main():
# 使用正确的handle_conversation_turn方法参数 # 使用正确的handle_conversation_turn方法参数
response = handle_conversation_turn( response = handle_conversation_turn(
memory_service=memory_service, memory_service=memory_service,# 内存记忆服务
llm_client=llm_client, llm_client=llm_client,# 大模型客户端
collection_name=collection_name, collection_name=collection_name,# 集合名称
user_id=user_id, user_id=user_id,# 用户ID
user_message=f"请记住以下用户信息:{user_info}", assistant_id=assistant_id,# 助手ID
conversation_history=conversation_history user_message=f"请记住以下用户信息:{user_info}",# 要记忆的信息
conversation_history=conversation_history # 对话历史
) )
logger.info(f"模型回复: {response}") logger.info(f"模型回复: {response}")
@@ -72,6 +76,7 @@ def main():
llm_client=llm_client, llm_client=llm_client,
collection_name=collection_name, collection_name=collection_name,
user_id=user_id, user_id=user_id,
assistant_id=assistant_id, # 添加这一行
user_message="请告诉我李明的个人信息", user_message="请告诉我李明的个人信息",
conversation_history=test_conversation_history conversation_history=test_conversation_history
) )