diff --git a/dsSchoolBuddy/ElasticSearch/T3_InsertData.py b/dsSchoolBuddy/ElasticSearch/T3_InsertData.py index 689c0c33..193de435 100644 --- a/dsSchoolBuddy/ElasticSearch/T3_InsertData.py +++ b/dsSchoolBuddy/ElasticSearch/T3_InsertData.py @@ -1,5 +1,6 @@ import time import warnings +import hashlib # 导入哈希库 from elasticsearch import Elasticsearch from langchain_core.documents import Document diff --git a/dsSchoolBuddy/Util/EsSearchUtil.py b/dsSchoolBuddy/Util/EsSearchUtil.py deleted file mode 100644 index a9a2e7ec..00000000 --- a/dsSchoolBuddy/Util/EsSearchUtil.py +++ /dev/null @@ -1,238 +0,0 @@ -import logging -import os -from logging.handlers import RotatingFileHandler -import jieba -from gensim.models import KeyedVectors - -from Config.Config import MODEL_LIMIT, MODEL_PATH, ES_CONFIG -from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool - -# 初始化日志 -logger = logging.getLogger(__name__) -logger.setLevel(logging.INFO) -# 确保日志目录存在 -os.makedirs('Logs', exist_ok=True) -handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5) -handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) -logger.addHandler(handler) - -class EsSearchUtil: - def __init__(self, es_config): - """ - 初始化Elasticsearch搜索工具 - :param es_config: Elasticsearch配置字典,包含hosts, username, password, index_name等 - """ - self.es_config = es_config - - # 初始化连接池 - self.es_pool = ElasticsearchConnectionPool( - hosts=es_config['hosts'], - basic_auth=es_config['basic_auth'], - verify_certs=es_config.get('verify_certs', False), - max_connections=50 - ) - - # 保留直接连接用于兼容 - from elasticsearch import Elasticsearch - self.es = Elasticsearch( - hosts=es_config['hosts'], - basic_auth=es_config['basic_auth'], - verify_certs=es_config.get('verify_certs', False) - ) - - # 确保es_conn属性存在以兼容旧代码 - self.es_conn = self.es - - # 确保es_conn属性存在以兼容旧代码 - self.es_conn = self.es - - - # 加载预训练模型 - self.model = KeyedVectors.load_word2vec_format(MODEL_PATH, binary=False, limit=MODEL_LIMIT) - logger.info(f"模型加载成功,词向量维度: {self.model.vector_size}") - - # 初始化Elasticsearch连接 - self.es = Elasticsearch( - hosts=es_config['hosts'], - basic_auth=es_config['basic_auth'], - verify_certs=False - ) - self.index_name = es_config['index_name'] - - def text_to_embedding(self, text): - # 使用已加载的模型 - # 对文本分词并计算平均向量 - words = jieba.lcut(text) - vectors = [self.model[word] for word in words if word in self.model] - - if not vectors: - return [0.0] * self.model.vector_size - - # 计算平均向量 - avg_vector = [sum(dim)/len(vectors) for dim in zip(*vectors)] - return avg_vector - - def vector_search(self, query, size=10): - query_embedding = self.text_to_embedding(query) - script_query = { - "script_score": { - "query": {"match_all": {}}, - "script": { - "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", - "params": {"query_vector": query_embedding} - } - } - } - - return self.es_conn.search( - index=self.es_config['index_name'], - query=script_query, - size=size - ) - - def text_search(self, query, size=10): - return self.es_conn.search( - index=self.es_config['index_name'], - query={"match": {"user_input": query}}, - size=size - ) - - def hybrid_search(self, query, size=10): - """ - 执行混合搜索(向量搜索+文本搜索) - :param query: 搜索查询文本 - :param size: 返回结果数量 - :return: 包含两种搜索结果的字典 - """ - vector_results = self.vector_search(query, size) - text_results = self.text_search(query, size) - - return { - 'vector_results': vector_results, - 'text_results': text_results - } - - def search(self, query, search_type='hybrid', size=10): - """ - 统一搜索接口 - :param query: 搜索查询文本 - :param search_type: 搜索类型('vector', 'text' 或 'hybrid') - :param size: 返回结果数量 - :return: 搜索结果 - """ - if search_type == 'vector': - return self.vector_search(query, size) - elif search_type == 'text': - return self.text_search(query, size) - else: - return self.hybrid_search(query, size) - - def queryByEs(query, query_tags, logger): - # 获取EsSearchUtil实例 - es_search_util = EsSearchUtil(ES_CONFIG) - - # 执行混合搜索 - es_conn = es_search_util.es_pool.get_connection() - try: - # 向量搜索 - logger.info(f"\n=== 开始执行查询 ===") - logger.info(f"原始查询文本: {query}") - logger.info(f"查询标签: {query_tags}") - - logger.info("\n=== 向量搜索阶段 ===") - logger.info("1. 文本分词和向量化处理中...") - query_embedding = es_search_util.text_to_embedding(query) - logger.info(f"2. 生成的查询向量维度: {len(query_embedding)}") - logger.info(f"3. 前3维向量值: {query_embedding[:3]}") - - logger.info("4. 正在执行Elasticsearch向量搜索...") - vector_results = es_conn.search( - index=ES_CONFIG['index_name'], - body={ - "query": { - "script_score": { - "query": { - "bool": { - "should": [ - { - "terms": { - "tags.tags": query_tags - } - } - ], - "minimum_should_match": 1 - } - }, - "script": { - "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", - "params": {"query_vector": query_embedding} - } - } - }, - "size": 3 - } - ) - # 处理一下,判断是否到达阀值 - filtered_vector_hits = [] - vector_int = 0 - for hit in vector_results['hits']['hits']: - if hit['_score'] > 0.8: # 阀值0.8 - # 新增语义相关性检查 - if all(word in hit['_source']['user_input'] for word in jieba.lcut(query)): - logger.info(f" {vector_int + 1}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}") - logger.info(f" 内容: {hit['_source']['user_input']}") - filtered_vector_hits.append(hit) - vector_int += 1 - - # 更新vector_results只包含通过过滤的文档 - vector_results['hits']['hits'] = filtered_vector_hits - logger.info(f"5. 向量搜索结果数量(过滤后): {vector_int}") - - # 文本精确搜索 - logger.info("\n=== 文本精确搜索阶段 ===") - logger.info("1. 正在执行Elasticsearch文本精确搜索...") - text_results = es_conn.search( - index=ES_CONFIG['index_name'], - body={ - "query": { - "bool": { - "must": [ - { - "match": { - "user_input": query - } - }, - { - "terms": { - "tags.tags": query_tags - } - } - ] - } - }, - "size": 3 - } - ) - logger.info(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}") - - # 合并vector和text结果 - all_sources = [hit['_source'] for hit in vector_results['hits']['hits']] + \ - [hit['_source'] for hit in text_results['hits']['hits']] - - # 去重处理 - unique_sources = [] - seen_user_inputs = set() - - for source in all_sources: - if source['user_input'] not in seen_user_inputs: - seen_user_inputs.add(source['user_input']) - unique_sources.append(source) - - logger.info(f"合并后去重结果数量: {len(unique_sources)}条") - - search_results = { - "text_results": unique_sources - } - return search_results - finally: - es_search_util.es_pool.release_connection(es_conn) \ No newline at end of file diff --git a/dsSchoolBuddy/Util/__pycache__/EsSearchUtil.cpython-310.pyc b/dsSchoolBuddy/Util/__pycache__/EsSearchUtil.cpython-310.pyc deleted file mode 100644 index e7e38fcb..00000000 Binary files a/dsSchoolBuddy/Util/__pycache__/EsSearchUtil.cpython-310.pyc and /dev/null differ