main
HuangHai 2 weeks ago
parent 82cf427559
commit 4170c17ce0

@ -28,5 +28,6 @@ completion = client.chat.completions.create(
ocr_text = completion.choices[0].message.content
# 二、调用格式化函数处理内容
formatted_content = format_exam_content(client=client, raw_text=ocr_text, output_path="../output/整理后的结果.md")
formatted_content = format_exam_content(client=client, raw_text=ocr_text,
output_path="../output/数学OCR整理后的结果.md")
print("保存成功!")

@ -0,0 +1,77 @@
### 第1题
**题目内容**
已知集合 $A=\left\{x \mid -5 < x^{3} < 5\right\}, B=\left\{-3,-1,0,2,3\right\}$,则 $A \cap B=$
**选项**
A. $\{-1,0\}$
B. $\{2,3\}$
C. $\{-3,-1,0\}$
D. $\{-1,0,2\}$
**答案**
A
**解析**
$A \cap B=\{-1,0\}$,选 A。
---
### 第2题
**题目内容**
若 $\frac{2}{z-1}=1+i$,则 $z=$
**选项**
A. $-1-i$
B. $-1+i$
C. $1-i$
D. $1+i$
**答案**
C
---
### 第3题
**题目内容**
已知向量 $\vec{a}=(0,1)$$\vec{b}=(2,x)$,若 $\vec{b} \perp (\vec{b}-4\vec{a})$,则 $x=$
**选项**
A. $-2$
B. $-1$
C. $1$
D. $2$
**答案**
D
**解析**
$\vec{b}-4\vec{a}=(2,x-4)$$\vec{b} \perp (\vec{b}-4\vec{a})$$\therefore \vec{b}(\vec{b}-4\vec{a})=0$
$\therefore 4+x(x-4)=0$$\therefore x=2$,选 D。
---
### 第4题
**题目内容**
已知 $\cos(\alpha+\beta)=m$$\tan \alpha \tan \beta=2$,则 $\cos(\alpha-\beta)=$
**选项**
A. $-3m$
B. $-\frac{m}{3}$
C. $\frac{m}{3}$
D. $3m$
**答案**
A
**解析**
$\left\{\begin{array}{l}\cos \alpha \cos \beta-\sin \alpha \sin \beta=m \\\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=2\end{array}\right.$$\therefore \begin{cases}\sin \alpha \sin \beta=-2m \\\cos \alpha \cos \beta=-m\end{cases}$
$\cos(\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=-m-2m=-3m$,选 A。
---
### 第5题
**题目内容**
已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为 $\sqrt{3}$,则圆锥的体积为
**选项**
A. $2\sqrt{3}\pi$
B. $3\sqrt{3}\pi$
C. $6\sqrt{3}\pi$
D. $9\sqrt{3}\pi$
**答案**
B
**解析**
设它们底面半径为 $r$,圆锥母线 $l$$\therefore 2\pi r\sqrt{3}=\pi rl$$\therefore l=\sqrt{3}$,则圆锥的体积为 $\frac{1}{3}\pi r^{2}h$。
Loading…
Cancel
Save