From 402c9596e8417ab8a6aefc9985d04acf0169c786 Mon Sep 17 00:00:00 2001 From: HuangHai <10402852@qq.com> Date: Fri, 11 Jul 2025 13:26:25 +0800 Subject: [PATCH] 'commit' --- .../JiHe/graph_chunk_entity_relation.graphml | 393 ++++++++++++++++++ .../Topic/JiHe/kv_store_doc_status.json | 14 +- dsLightRag/Topic/JiHe/kv_store_full_docs.json | 5 + .../JiHe/kv_store_llm_response_cache.json | 70 ++++ .../Topic/JiHe/kv_store_text_chunks.json | 16 + dsLightRag/Topic/JiHe/vdb_chunks.json | 1 + dsLightRag/Topic/JiHe/vdb_entities.json | 1 + dsLightRag/Topic/JiHe/vdb_relationships.json | 1 + .../media/image1.png | Bin 0 -> 80676 bytes .../media/image2.png | Bin 0 -> 12168 bytes dsLightRag/static/Txt/JiHe.docx | Bin 227520 -> 240209 bytes dsLightRag/static/ai.html | 3 + dsLightRag/static/markdown/JiHe.md | 10 +- 13 files changed, 506 insertions(+), 8 deletions(-) create mode 100644 dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml create mode 100644 dsLightRag/Topic/JiHe/kv_store_full_docs.json create mode 100644 dsLightRag/Topic/JiHe/kv_store_text_chunks.json create mode 100644 dsLightRag/Topic/JiHe/vdb_chunks.json create mode 100644 dsLightRag/Topic/JiHe/vdb_entities.json create mode 100644 dsLightRag/Topic/JiHe/vdb_relationships.json create mode 100644 dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png create mode 100644 dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png diff --git a/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml b/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml new file mode 100644 index 00000000..13475418 --- /dev/null +++ b/dsLightRag/Topic/JiHe/graph_chunk_entity_relation.graphml @@ -0,0 +1,393 @@ + + + + + + + + + + + + + + + + + Triangle ABC + category + Triangle ABC is the primary geometric figure used in the proof of the triangle inequality and angle relationships. + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + Point D + category + Point D is constructed by extending line AB and adding segment BD equal to BC, forming an isosceles triangle. + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + Point P + category + Point P is an arbitrary interior point of triangle ABC, used to demonstrate angle relationships. + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + Euclid's Fifth Postulate + category + Euclid's Fifth Postulate is referenced to justify angle comparisons in the geometric proof. + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + Proposition 19 of the Elements + category + Proposition 19 from Euclid's Elements is cited to establish the relationship between angles and opposite sides in the proof. + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 三角形ABC + category + 三角形ABC是证明三角形三边关系的核心几何图形,用于展示边与角的几何性质。 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 三角不等式 + category + 三角不等式是几何学中描述三角形边长关系的基本定理,形式为|AB|+|BC|>|AC|。 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 欧几里得第五公理 + category + 欧几里得第五公理是几何学基础公理之一,用于证明角的大小关系。 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 几何原本 + category + 《几何原本》是欧几里得的经典数学著作,包含命题19等核心几何定理。 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 命题19 + category + 命题19指出‘大角对大边’,是三角形边角关系的关键依据。 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 点D + category + 点D是通过延长AB并添加BD=BC构造的辅助点,形成等腰三角形BCD。 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 点P + category + 点P是三角形ABC内部的任意点,用于证明角∠BPC与角∠A的关系。 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + BP + geo + BP is a geometric line segment intersecting AC at point D. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + AC + geo + AC is a geometric line segment intersected by BP at point D. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + D + geo + D is the intersection point of BP and AC. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + ∠BPC + category + ∠BPC is an angle formed at point P, exterior to triangle PCD. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + ∠PCD + category + ∠PCD is an angle within triangle PCD. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + ∠PDC + category + ∠PDC is an angle within triangle PCD and exterior to triangle BAD. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + ∠DBA + category + ∠DBA is an angle within triangle BAD. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + ∠A + category + ∠A is an angle within triangle BAD. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + △PCD + category + △PCD is a triangle formed by points P, C, and D, with ∠PCD and ∠PDC as its interior angles. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + △BAD + category + △BAD is a triangle formed by points B, A, and D, with ∠DBA and ∠A as its interior angles. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + P + geo + P is a geometric point where BP originates and ∠BPC is formed. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + B + geo + B is a geometric point where BP originates and ∠DBA is formed. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + C + geo + C is a geometric point where AC terminates and ∠PCD is formed. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + A + geo + A is a geometric point where AC originates and ∠A is formed. + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 8.0 + Point D is constructed from triangle ABC by extending AB and adding segment BD equal to BC. + geometric construction,triangle extension + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 9.0 + Proposition 19 is applied to triangle ABC to justify the relationship between angles and sides. + angle-side relationship,geometric theorem + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 8.0 + Point P is an interior point of triangle ABC, used to demonstrate angle relationships within the triangle. + angle proof,interior point + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 7.0 + Euclid's Fifth Postulate is used to compare angles in triangle ACD, which includes point D. + angle comparison,geometric proof + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 9.0 + 三角不等式直接应用于三角形ABC的三边关系证明。 + 几何定理,边角关系 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 8.0 + 第五公理用于比较三角形ACD中的角度,与三角形ABC的构造相关。 + 公理应用,角度推导 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 9.0 + 命题19被用于证明三角形ABC中边AD与边AC的关系。 + 几何推理,边角逻辑 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 7.0 + 点D是三角形ABC的延伸构造,用于辅助证明边角不等式。 + 几何扩展,辅助构造 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 8.0 + 点P的存在证明了三角形内部点的角与顶角的关系。 + 内部角度,几何性质 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 10.0 + 命题19源自《几何原本》,是证明边角关系的理论来源。 + 定理引用,数学经典 + chunk-75b23a7e22383153b011bd3d121184f0 + unknown_source + 1752211508 + + + 8.0 + BP intersects AC at point D, forming geometric relationships. + geometric construction,intersection + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 7.0 + P is the endpoint of BP where ∠BPC is formed. + angle formation,point-line connection + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 8.0 + B is the endpoint of BP where it originates. + line origin,point-line connection + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 8.0 + C is the endpoint of AC where it terminates. + line termination,point-line connection + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 8.0 + A is the endpoint of AC where it originates. + line origin,point-line connection + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 9.0 + ∠BPC is the sum of ∠PCD and ∠PDC, showing an exterior angle relationship. + angle sum,exterior angle theorem + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 7.0 + ∠BPC is greater than ∠A due to the sum of angles in the geometric proof. + angle comparison,inequality + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 9.0 + ∠BPC is an exterior angle of △PCD, equal to the sum of its non-adjacent interior angles. + angle sum,exterior angle theorem + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 9.0 + ∠PDC is the sum of ∠DBA and ∠A, demonstrating an exterior angle relationship. + angle sum,exterior angle theorem + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 9.0 + ∠PDC is an exterior angle of △BAD, equal to the sum of its non-adjacent interior angles. + angle sum,exterior angle theorem + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + 7.0 + Both triangles share point D and are part of the geometric proof involving angle relationships. + geometric proof,shared vertex + chunk-e2c7bd24a26246e194d4d56ab2ed22f1 + unknown_source + 1752211508 + + + diff --git a/dsLightRag/Topic/JiHe/kv_store_doc_status.json b/dsLightRag/Topic/JiHe/kv_store_doc_status.json index c0dfc989..43beb607 100644 --- a/dsLightRag/Topic/JiHe/kv_store_doc_status.json +++ b/dsLightRag/Topic/JiHe/kv_store_doc_status.json @@ -1,12 +1,12 @@ { - "doc-8fa97201fba58acd19b922cb8b994666": { - "status": "processing", - "chunks_count": 1, - "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/778094016d3642f2bc43eeaf1074cc38/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。", + "doc-744d2f4e81528499ae55a82849ed415b": { + "status": "processed", + "chunks_count": 2, + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\n证明过程:\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC>∠A", "content_summary": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9z...", - "content_length": 1770, - "created_at": "2025-07-11T05:18:03.554273+00:00", - "updated_at": "2025-07-11T05:18:03.557544+00:00", + "content_length": 1975, + "created_at": "2025-07-11T05:24:21.601678+00:00", + "updated_at": "2025-07-11T05:25:09.796687+00:00", "file_path": "unknown_source" } } \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_full_docs.json b/dsLightRag/Topic/JiHe/kv_store_full_docs.json new file mode 100644 index 00000000..fde7064e --- /dev/null +++ b/dsLightRag/Topic/JiHe/kv_store_full_docs.json @@ -0,0 +1,5 @@ +{ + "doc-744d2f4e81528499ae55a82849ed415b": { + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\n证明过程:\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC>∠A" + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json index ac83202a..7c992bd2 100644 --- a/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json +++ b/dsLightRag/Topic/JiHe/kv_store_llm_response_cache.json @@ -59,6 +59,66 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n三角形三边关系的证明\\n证明方法如下:\\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\\n![](./Images/d72b044f1c5c4eb4b8ae6d5bf3352436/media/image1.png)\\nheight=\\\"1.91044072615923in\\\"}\\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"三角形ABC\\\"<|>\\\"category\\\"<|>\\\"A geometric figure used in the proof of the triangle inequality, demonstrating relationships between its sides and angles.\\\")##\\n(\\\"entity\\\"<|>\\\"三角不等式\\\"<|>\\\"category\\\"<|>\\\"A mathematical inequality stating that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.\\\")##\\n(\\\"entity\\\"<|>\\\"欧几里得第五公理\\\"<|>\\\"category\\\"<|>\\\"A fundamental postulate in Euclidean geometry, also known as the parallel postulate, used in geometric proofs.\\\")##\\n(\\\"entity\\\"<|>\\\"几何原本\\\"<|>\\\"category\\\"<|>\\\"A foundational mathematical text by Euclid, containing definitions, postulates, and propositions that form the basis of classical geometry.\\\")##\\n(\\\"relationship\\\"<|>\\\"三角形ABC\\\"<|>\\\"三角不等式\\\"<|>\\\"The triangle ABC is used to demonstrate the triangle inequality, proving the relationship between its sides.\\\"<|>\\\"geometric proof, inequality\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"欧几里得第五公理\\\"<|>\\\"几何原本\\\"<|>\\\"Euclid's fifth postulate is a key component of the geometric principles outlined in the '几何原本' (Elements).\\\"<|>\\\"mathematical foundation, Euclidean geometry\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"三角不等式\\\"<|>\\\"几何原本\\\"<|>\\\"The triangle inequality is a concept that aligns with the propositions in Euclid's '几何原本' (Elements).\\\"<|>\\\"mathematical theory, geometric principles\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"geometry, triangle inequality, Euclidean principles, mathematical proof\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "c7d05d7830c26ad48bf40da91678bc1c": { + "return": "(\"entity\"<|>\"Triangle ABC\"<|>\"category\"<|>\"Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.\")##\n(\"entity\"<|>\"Triangle Inequality\"<|>\"category\"<|>\"The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.\")##\n(\"entity\"<|>\"Euclid's Fifth Postulate\"<|>\"category\"<|>\"Euclid's Fifth Postulate is a foundational principle in geometry used in the proof of the triangle inequality.\")##\n(\"entity\"<|>\"Proposition 19\"<|>\"category\"<|>\"Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.\")##\n(\"relationship\"<|>\"Triangle ABC\"<|>\"Triangle Inequality\"<|>\"Triangle ABC is used to demonstrate the triangle inequality theorem.\"<|>\"geometric proof, mathematical theorem\"<|>8)##\n(\"relationship\"<|>\"Triangle Inequality\"<|>\"Euclid's Fifth Postulate\"<|>\"The proof of the triangle inequality relies on Euclid's Fifth Postulate.\"<|>\"mathematical foundation, geometric principles\"<|>7)##\n(\"relationship\"<|>\"Euclid's Fifth Postulate\"<|>\"Proposition 19\"<|>\"Euclid's Fifth Postulate is used alongside Proposition 19 to prove the triangle inequality.\"<|>\"logical reasoning, geometric theorems\"<|>9)##\n(\"content_keywords\"<|>\"geometry, triangle inequality, Euclid's Elements, mathematical proof\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-8fa97201fba58acd19b922cb8b994666", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\n三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/778094016d3642f2bc43eeaf1074cc38/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n######################\nOutput:" + }, + "697a4f1e584118423625a8d7a453f7f9": { + "return": "(\"entity\"<|>\"三角形ABC\"<|>\"category\"<|>\"三角形ABC是用于证明三角不等式定理的几何图形。\")##\n(\"entity\"<|>\"三角不等式\"<|>\"category\"<|>\"三角不等式定理指出,三角形任意两边长度之和大于第三边的长度。\")##\n(\"entity\"<|>\"欧几里得第五公理\"<|>\"category\"<|>\"欧几里得第五公理是几何学中的基本原理,用于证明三角不等式。\")##\n(\"entity\"<|>\"命题19\"<|>\"category\"<|>\"欧几里得《几何原本》中的命题19指出,在任何三角形中,较大的角对应较长的边。\")##\n(\"entity\"<|>\"点D\"<|>\"category\"<|>\"点D是通过延长直线AB并确保|BD|=|BC|而构造的点,用于辅助证明三角不等式。\")##\n(\"entity\"<|>\"直线DC\"<|>\"category\"<|>\"直线DC是连接点D和点C的线段,用于构造等腰三角形BCD。\")##\n(\"entity\"<|>\"等腰三角形BCD\"<|>\"category\"<|>\"等腰三角形BCD是通过构造点D和连接DC形成的,其中|BD|=|BC|,且∠BDC=∠BCD。\")##\n(\"entity\"<|>\"角∠ADC\"<|>\"category\"<|>\"角∠ADC是三角形ADC中的一个角,其大小与角∠BDC(α)相同。\")##\n(\"entity\"<|>\"角∠ACD\"<|>\"category\"<|>\"角∠ACD是三角形ADC中的一个角,根据欧几里得第五公理,它大于角∠ADC。\")##\n(\"relationship\"<|>\"三角形ABC\"<|>\"三角不等式\"<|>\"三角形ABC用于证明三角不等式定理。\"<|>\"几何证明,数学定理\"<|>8)##\n(\"relationship\"<|>\"三角不等式\"<|>\"欧几里得第五公理\"<|>\"三角不等式的证明依赖于欧几里得第五公理。\"<|>\"数学基础,几何原理\"<|>7)##\n(\"relationship\"<|>\"欧几里得第五公理\"<|>\"命题19\"<|>\"欧几里得第五公理与命题19共同用于证明三角不等式。\"<|>\"逻辑推理,几何定理\"<|>9)##\n(\"relationship\"<|>\"三角形ABC\"<|>\"点D\"<|>\"点D是通过延长三角形ABC的边AB构造的,用于辅助证明。\"<|>\"几何构造,辅助点\"<|>6)##\n(\"relationship\"<|>\"点D\"<|>\"等腰三角形BCD\"<|>\"点D与点B和点C连接形成等腰三角形BCD。\"<|>\"几何构造,等腰三角形\"<|>7)##\n(\"relationship\"<|>\"等腰三角形BCD\"<|>\"角∠BDC\"<|>\"等腰三角形BCD中,角∠BDC等于角∠BCD。\"<|>\"几何性质,角度关系\"<|>8)##\n(\"relationship\"<|>\"角∠ADC\"<|>\"角∠ACD\"<|>\"根据欧几里得第五公理,角∠ACD大于角∠ADC。\"<|>\"角度比较,几何公理\"<|>7)##\n(\"relationship\"<|>\"角∠ACD\"<|>\"三角不等式\"<|>\"角∠ACD与角∠ADC的比较用于推导三角不等式。\"<|>\"几何推理,不等式证明\"<|>8)##\n(\"content_keywords\"<|>\"几何学,三角不等式,欧几里得几何,数学证明,三角形性质\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-8fa97201fba58acd19b922cb8b994666", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n三角形三边关系的证明\\n证明方法如下:\\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\\n![](./Images/778094016d3642f2bc43eeaf1074cc38/media/image1.png)\\nheight=\\\"1.91044072615923in\\\"}\\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"Triangle ABC\\\"<|>\\\"category\\\"<|>\\\"Triangle ABC is the geometric figure used to demonstrate the triangle inequality theorem.\\\")##\\n(\\\"entity\\\"<|>\\\"Triangle Inequality\\\"<|>\\\"category\\\"<|>\\\"The triangle inequality theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side.\\\")##\\n(\\\"entity\\\"<|>\\\"Euclid's Fifth Postulate\\\"<|>\\\"category\\\"<|>\\\"Euclid's Fifth Postulate is a foundational principle in geometry used in the proof of the triangle inequality.\\\")##\\n(\\\"entity\\\"<|>\\\"Proposition 19\\\"<|>\\\"category\\\"<|>\\\"Proposition 19 from Euclid's Elements states that in any triangle, the greater angle is subtended by the greater side.\\\")##\\n(\\\"relationship\\\"<|>\\\"Triangle ABC\\\"<|>\\\"Triangle Inequality\\\"<|>\\\"Triangle ABC is used to demonstrate the triangle inequality theorem.\\\"<|>\\\"geometric proof, mathematical theorem\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Triangle Inequality\\\"<|>\\\"Euclid's Fifth Postulate\\\"<|>\\\"The proof of the triangle inequality relies on Euclid's Fifth Postulate.\\\"<|>\\\"mathematical foundation, geometric principles\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Euclid's Fifth Postulate\\\"<|>\\\"Proposition 19\\\"<|>\\\"Euclid's Fifth Postulate is used alongside Proposition 19 to prove the triangle inequality.\\\"<|>\\\"logical reasoning, geometric theorems\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"geometry, triangle inequality, Euclid's Elements, mathematical proof\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "3ce25fba5b6c40ae4eeac6c7e7952892": { + "return": "(\"entity\"<|>\"Triangle ABC\"<|>\"category\"<|>\"Triangle ABC is the primary geometric figure used in the proof of the triangle inequality and angle relationships.\")##\n(\"entity\"<|>\"Point D\"<|>\"category\"<|>\"Point D is constructed by extending line AB and adding segment BD equal to BC, forming an isosceles triangle.\")##\n(\"entity\"<|>\"Point P\"<|>\"category\"<|>\"Point P is an arbitrary interior point of triangle ABC, used to demonstrate angle relationships.\")##\n(\"entity\"<|>\"Euclid's Fifth Postulate\"<|>\"category\"<|>\"Euclid's Fifth Postulate is referenced to justify angle comparisons in the geometric proof.\")##\n(\"entity\"<|>\"Proposition 19 of the Elements\"<|>\"category\"<|>\"Proposition 19 from Euclid's Elements is cited to establish the relationship between angles and opposite sides in the proof.\")##\n(\"relationship\"<|>\"Triangle ABC\"<|>\"Point D\"<|>\"Point D is constructed from triangle ABC by extending AB and adding segment BD equal to BC.\"<|>\"geometric construction, triangle extension\"<|>8)##\n(\"relationship\"<|>\"Point D\"<|>\"Euclid's Fifth Postulate\"<|>\"Euclid's Fifth Postulate is used to compare angles in triangle ACD, which includes point D.\"<|>\"geometric proof, angle comparison\"<|>7)##\n(\"relationship\"<|>\"Proposition 19 of the Elements\"<|>\"Triangle ABC\"<|>\"Proposition 19 is applied to triangle ABC to justify the relationship between angles and sides.\"<|>\"geometric theorem, angle-side relationship\"<|>9)##\n(\"relationship\"<|>\"Point P\"<|>\"Triangle ABC\"<|>\"Point P is an interior point of triangle ABC, used to demonstrate angle relationships within the triangle.\"<|>\"interior point, angle proof\"<|>8)##\n(\"content_keywords\"<|>\"geometry, triangle inequality, Euclid's Elements, angle relationships, geometric proof\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-75b23a7e22383153b011bd3d121184f0", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\n三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\n证明过程:\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA\n######################\nOutput:" + }, + "ca6503a1abdddfe07b92265e7aea4f87": { + "return": "(\"entity\"<|>\"BP\"<|>\"geo\"<|>\"BP is a geometric line segment intersecting AC at point D.\")##\n(\"entity\"<|>\"AC\"<|>\"geo\"<|>\"AC is a geometric line segment intersected by BP at point D.\")##\n(\"entity\"<|>\"D\"<|>\"geo\"<|>\"D is the intersection point of BP and AC.\")##\n(\"entity\"<|>\"∠BPC\"<|>\"category\"<|>\"∠BPC is an angle formed at point P, exterior to triangle PCD.\")##\n(\"entity\"<|>\"∠PCD\"<|>\"category\"<|>\"∠PCD is an angle within triangle PCD.\")##\n(\"entity\"<|>\"∠PDC\"<|>\"category\"<|>\"∠PDC is an angle within triangle PCD and exterior to triangle BAD.\")##\n(\"entity\"<|>\"∠DBA\"<|>\"category\"<|>\"∠DBA is an angle within triangle BAD.\")##\n(\"entity\"<|>\"∠A\"<|>\"category\"<|>\"∠A is an angle within triangle BAD.\")##\n(\"relationship\"<|>\"BP\"<|>\"AC\"<|>\"BP intersects AC at point D, forming geometric relationships.\"<|>\"intersection, geometric construction\"<|>8)##\n(\"relationship\"<|>\"∠BPC\"<|>\"∠PCD\"<|>\"∠BPC is the sum of ∠PCD and ∠PDC, showing an exterior angle relationship.\"<|>\"angle sum, exterior angle theorem\"<|>9)##\n(\"relationship\"<|>\"∠PDC\"<|>\"∠DBA\"<|>\"∠PDC is the sum of ∠DBA and ∠A, demonstrating an exterior angle relationship.\"<|>\"angle sum, exterior angle theorem\"<|>9)##\n(\"relationship\"<|>\"∠BPC\"<|>\"∠A\"<|>\"∠BPC is greater than ∠A due to the sum of angles in the geometric proof.\"<|>\"angle comparison, inequality\"<|>7)##\n(\"content_keywords\"<|>\"geometry, angles, triangles, intersection, proof\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\n2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC>∠A\n######################\nOutput:" + }, + "fe369a9ca676a13cfb22197c5f34a2ed": { + "return": "(\"entity\"<|>\"三角形ABC\"<|>\"category\"<|>\"三角形ABC是证明三角形三边关系的核心几何图形,用于展示边与角的几何性质。\")## \n(\"entity\"<|>\"三角不等式\"<|>\"category\"<|>\"三角不等式是几何学中描述三角形边长关系的基本定理,形式为|AB|+|BC|>|AC|。\")## \n(\"entity\"<|>\"欧几里得第五公理\"<|>\"category\"<|>\"欧几里得第五公理是几何学基础公理之一,用于证明角的大小关系。\")## \n(\"entity\"<|>\"几何原本\"<|>\"category\"<|>\"《几何原本》是欧几里得的经典数学著作,包含命题19等核心几何定理。\")## \n(\"entity\"<|>\"命题19\"<|>\"category\"<|>\"命题19指出‘大角对大边’,是三角形边角关系的关键依据。\")## \n(\"entity\"<|>\"点D\"<|>\"category\"<|>\"点D是通过延长AB并添加BD=BC构造的辅助点,形成等腰三角形BCD。\")## \n(\"entity\"<|>\"点P\"<|>\"category\"<|>\"点P是三角形ABC内部的任意点,用于证明角∠BPC与角∠A的关系。\")## \n(\"relationship\"<|>\"三角形ABC\"<|>\"三角不等式\"<|>\"三角不等式直接应用于三角形ABC的三边关系证明。\"<|>\"几何定理, 边角关系\"<|>9)## \n(\"relationship\"<|>\"欧几里得第五公理\"<|>\"三角形ABC\"<|>\"第五公理用于比较三角形ACD中的角度,与三角形ABC的构造相关。\"<|>\"公理应用, 角度推导\"<|>8)## \n(\"relationship\"<|>\"几何原本\"<|>\"命题19\"<|>\"命题19源自《几何原本》,是证明边角关系的理论来源。\"<|>\"数学经典, 定理引用\"<|>10)## \n(\"relationship\"<|>\"命题19\"<|>\"三角形ABC\"<|>\"命题19被用于证明三角形ABC中边AD与边AC的关系。\"<|>\"边角逻辑, 几何推理\"<|>9)## \n(\"relationship\"<|>\"点D\"<|>\"三角形ABC\"<|>\"点D是三角形ABC的延伸构造,用于辅助证明边角不等式。\"<|>\"辅助构造, 几何扩展\"<|>7)## \n(\"relationship\"<|>\"点P\"<|>\"三角形ABC\"<|>\"点P的存在证明了三角形内部点的角与顶角的关系。\"<|>\"内部角度, 几何性质\"<|>8)## \n(\"content_keywords\"<|>\"几何证明, 三角形不等式, 欧几里得几何, 边角关系, 数学定理\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-75b23a7e22383153b011bd3d121184f0", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n三角形三边关系的证明\\n证明方法如下:\\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\\nheight=\\\"1.91044072615923in\\\"}\\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\\n证明过程:\\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\\n延长BP交AC于D\\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\\n∴∠BPC=∠PCD+∠DBA\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"Triangle ABC\\\"<|>\\\"category\\\"<|>\\\"Triangle ABC is the primary geometric figure used in the proof of the triangle inequality and angle relationships.\\\")##\\n(\\\"entity\\\"<|>\\\"Point D\\\"<|>\\\"category\\\"<|>\\\"Point D is constructed by extending line AB and adding segment BD equal to BC, forming an isosceles triangle.\\\")##\\n(\\\"entity\\\"<|>\\\"Point P\\\"<|>\\\"category\\\"<|>\\\"Point P is an arbitrary interior point of triangle ABC, used to demonstrate angle relationships.\\\")##\\n(\\\"entity\\\"<|>\\\"Euclid's Fifth Postulate\\\"<|>\\\"category\\\"<|>\\\"Euclid's Fifth Postulate is referenced to justify angle comparisons in the geometric proof.\\\")##\\n(\\\"entity\\\"<|>\\\"Proposition 19 of the Elements\\\"<|>\\\"category\\\"<|>\\\"Proposition 19 from Euclid's Elements is cited to establish the relationship between angles and opposite sides in the proof.\\\")##\\n(\\\"relationship\\\"<|>\\\"Triangle ABC\\\"<|>\\\"Point D\\\"<|>\\\"Point D is constructed from triangle ABC by extending AB and adding segment BD equal to BC.\\\"<|>\\\"geometric construction, triangle extension\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Point D\\\"<|>\\\"Euclid's Fifth Postulate\\\"<|>\\\"Euclid's Fifth Postulate is used to compare angles in triangle ACD, which includes point D.\\\"<|>\\\"geometric proof, angle comparison\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Proposition 19 of the Elements\\\"<|>\\\"Triangle ABC\\\"<|>\\\"Proposition 19 is applied to triangle ABC to justify the relationship between angles and sides.\\\"<|>\\\"geometric theorem, angle-side relationship\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Point P\\\"<|>\\\"Triangle ABC\\\"<|>\\\"Point P is an interior point of triangle ABC, used to demonstrate angle relationships within the triangle.\\\"<|>\\\"interior point, angle proof\\\"<|>8)##\\n(\\\"content_keywords\\\"<|>\\\"geometry, triangle inequality, Euclid's Elements, angle relationships, geometric proof\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "efa3b737eb20e1102693205bcb890cf8": { + "return": "(\"entity\"<|>\"△PCD\"<|>\"category\"<|>\"△PCD is a triangle formed by points P, C, and D, with ∠PCD and ∠PDC as its interior angles.\")##\n(\"entity\"<|>\"△BAD\"<|>\"category\"<|>\"△BAD is a triangle formed by points B, A, and D, with ∠DBA and ∠A as its interior angles.\")##\n(\"entity\"<|>\"P\"<|>\"geo\"<|>\"P is a geometric point where BP originates and ∠BPC is formed.\")##\n(\"entity\"<|>\"B\"<|>\"geo\"<|>\"B is a geometric point where BP originates and ∠DBA is formed.\")##\n(\"entity\"<|>\"C\"<|>\"geo\"<|>\"C is a geometric point where AC terminates and ∠PCD is formed.\")##\n(\"entity\"<|>\"A\"<|>\"geo\"<|>\"A is a geometric point where AC originates and ∠A is formed.\")##\n(\"relationship\"<|>\"△PCD\"<|>\"∠BPC\"<|>\"∠BPC is an exterior angle of △PCD, equal to the sum of its non-adjacent interior angles.\"<|>\"exterior angle theorem, angle sum\"<|>9)##\n(\"relationship\"<|>\"△BAD\"<|>\"∠PDC\"<|>\"∠PDC is an exterior angle of △BAD, equal to the sum of its non-adjacent interior angles.\"<|>\"exterior angle theorem, angle sum\"<|>9)##\n(\"relationship\"<|>\"P\"<|>\"BP\"<|>\"P is the endpoint of BP where ∠BPC is formed.\"<|>\"point-line connection, angle formation\"<|>7)##\n(\"relationship\"<|>\"B\"<|>\"BP\"<|>\"B is the endpoint of BP where it originates.\"<|>\"point-line connection, line origin\"<|>8)##\n(\"relationship\"<|>\"C\"<|>\"AC\"<|>\"C is the endpoint of AC where it terminates.\"<|>\"point-line connection, line termination\"<|>8)##\n(\"relationship\"<|>\"A\"<|>\"AC\"<|>\"A is the endpoint of AC where it originates.\"<|>\"point-line connection, line origin\"<|>8)##\n(\"relationship\"<|>\"△PCD\"<|>\"△BAD\"<|>\"Both triangles share point D and are part of the geometric proof involving angle relationships.\"<|>\"shared vertex, geometric proof\"<|>7)##\n(\"content_keywords\"<|>\"geometry, triangles, angles, exterior angle theorem, proof, intersection\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n2d6b6c62c9b4c41/media/image2.png)\\n延长BP交AC于D\\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\\n∴∠BPC=∠PCD+∠DBA+∠A\\n∴∠BPC>∠A\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"BP\\\"<|>\\\"geo\\\"<|>\\\"BP is a geometric line segment intersecting AC at point D.\\\")##\\n(\\\"entity\\\"<|>\\\"AC\\\"<|>\\\"geo\\\"<|>\\\"AC is a geometric line segment intersected by BP at point D.\\\")##\\n(\\\"entity\\\"<|>\\\"D\\\"<|>\\\"geo\\\"<|>\\\"D is the intersection point of BP and AC.\\\")##\\n(\\\"entity\\\"<|>\\\"∠BPC\\\"<|>\\\"category\\\"<|>\\\"∠BPC is an angle formed at point P, exterior to triangle PCD.\\\")##\\n(\\\"entity\\\"<|>\\\"∠PCD\\\"<|>\\\"category\\\"<|>\\\"∠PCD is an angle within triangle PCD.\\\")##\\n(\\\"entity\\\"<|>\\\"∠PDC\\\"<|>\\\"category\\\"<|>\\\"∠PDC is an angle within triangle PCD and exterior to triangle BAD.\\\")##\\n(\\\"entity\\\"<|>\\\"∠DBA\\\"<|>\\\"category\\\"<|>\\\"∠DBA is an angle within triangle BAD.\\\")##\\n(\\\"entity\\\"<|>\\\"∠A\\\"<|>\\\"category\\\"<|>\\\"∠A is an angle within triangle BAD.\\\")##\\n(\\\"relationship\\\"<|>\\\"BP\\\"<|>\\\"AC\\\"<|>\\\"BP intersects AC at point D, forming geometric relationships.\\\"<|>\\\"intersection, geometric construction\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"∠BPC\\\"<|>\\\"∠PCD\\\"<|>\\\"∠BPC is the sum of ∠PCD and ∠PDC, showing an exterior angle relationship.\\\"<|>\\\"angle sum, exterior angle theorem\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"∠PDC\\\"<|>\\\"∠DBA\\\"<|>\\\"∠PDC is the sum of ∠DBA and ∠A, demonstrating an exterior angle relationship.\\\"<|>\\\"angle sum, exterior angle theorem\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"∠BPC\\\"<|>\\\"∠A\\\"<|>\\\"∠BPC is greater than ∠A due to the sum of angles in the geometric proof.\\\"<|>\\\"angle comparison, inequality\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"geometry, angles, triangles, intersection, proof\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" } }, "hybrid": { @@ -81,6 +141,16 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "三角形中两边之和大于第三边的证明" + }, + "ff86d9624db1f04a8ef2177981aa6747": { + "return": "{\"high_level_keywords\": [\"\\u4e09\\u89d2\\u5f62\\u51e0\\u4f55\", \"\\u89d2\\u5ea6\\u5173\\u7cfb\", \"\\u51e0\\u4f55\\u8bc1\\u660e\"], \"low_level_keywords\": [\"\\u4e09\\u89d2\\u5f62ABC\", \"\\u70b9P\", \"\\u2220BPC\", \"\\u2220A\", \"\\u5185\\u90e8\\u70b9\"]}", + "cache_type": "keywords", + "chunk_id": null, + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。" } } } \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/kv_store_text_chunks.json b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json new file mode 100644 index 00000000..cfed1be8 --- /dev/null +++ b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json @@ -0,0 +1,16 @@ +{ + "chunk-75b23a7e22383153b011bd3d121184f0": { + "tokens": 1200, + "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\n证明过程:\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA", + "chunk_order_index": 0, + "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b", + "file_path": "unknown_source" + }, + "chunk-e2c7bd24a26246e194d4d56ab2ed22f1": { + "tokens": 115, + "content": "2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC>∠A", + "chunk_order_index": 1, + "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b", + "file_path": "unknown_source" + } +} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_chunks.json b/dsLightRag/Topic/JiHe/vdb_chunks.json new file mode 100644 index 00000000..0e7e8c87 --- /dev/null +++ b/dsLightRag/Topic/JiHe/vdb_chunks.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "chunk-75b23a7e22383153b011bd3d121184f0", "__created_at__": 1752211461, "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\n证明过程:\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA", "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b", "file_path": "unknown_source"}, {"__id__": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "__created_at__": 1752211461, "content": "2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC>∠A", "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b", "file_path": "unknown_source"}], "matrix": "JPsVvLAy3DyazVC9TGU3vbmlzryO2zc9qrlPPc0QdDwRRoU8Zd2/PF7+I70f6Jg7yP12PFOwfDvH3sU6RIMOPJI7rTycq5K8u75lPe/AmbuQbIG9w6kKOrJaCbz4nKg7EBtLu8dK77tk41m84fC+POoWuTx9qFq8qSV5PMGyMb2brh89P5LPu8D/qTxMGD87lQfMu3uPQ70Joj69OcxKPPaDkbwRztK8utAIPZa607wFj8E7AVqGvM3xQrwvhx+9sGCjOwy71bty/R+7lHP1vJRzdT2vrZu8vdd8vQWu8jtX8cC82ZZjvOOBiL2xXZa88L0Mvac3nLtbUTa9YX1KvJQm/bzHSm89dMm+OmQOlLz6tb+6sGAjve7DJj2IyDo8aj21vUi4Sb1Ja1G96bApvY366LykhyG9RQvcuxhyGTy3bYa8i017uxOa8TxacOe84FzovOyngrvvSOe5zD47utd9zDx0NWg8AF0TvWvwvDwzJXc8+OYTu3angLxVbAC9tyMbvaGT1bwPh3Q8hYd2PMqLszyHryM9/BtPPTdmuzvvKTa93bsDPMjexTzcr/o8tSaoPHrcO7wxDGA9jMIgPdoOljyPjj89Zd2/u1RvDTwFrnK9XYl+udVkNbuT7rQ8TDdwPTyY6buhRt08NkqXvKpNJryZGsk8BL0IPTM0jbz45pO83vZYPJRz9by22a87+JyovD0NjzwWwh69jXWoPKY6qTyFSRQ9hOOEu5Q1E70jZz89+2jHuwqAAD3iwne9MwbGPNC9Yb2hk1W64oSVu4366Dx8Qss7zF1sPCarEDyEAjY9w6wXPXm9Cjzu4lc7EmIpPPGu9rlGvuO7ah6EvCNnP71TkUs9HyZ7vDwQnLv6lo48WzIFu6i/aTyzS3M9Pv74u8lyHL0nqAM91NDePEvRYL3zqNy8Zd0/O+7DJj2BVUg9RFjUO8wfijzMHwq89aLCvIzhUTuT7jQ8VxDyPOqqDzyBCNC79gjSu9ioBjuBgIK8PHk4PbnyRr2EIee8PBAcPaxKmTyzDZG8tqtovGJeGTz8G887g5mZu/QdAjvVNu68whjBO4tNezwPaMO8XLfFutv8crvoR429ftOUvA9oQz0nxzS9eUhlO8RfH7x+0Ie8V/HAPBw7qzxVqmI8E5rxvKLas7t+hpw8H3NzPAZCybyt0ua8QavmPMLq+TzFMVi8IgEwvW6dqr2tRww97im2vObVdL0AXRO8OmChPE6pCLxImZi7Vh8IPQuAALy22S+7xRInPXDkCD2xXZY8jAwMPXTobzxani49R1K6O8BJFT0mgNa8N2Y7PEpJEz3IvxS9W1G2vdnjW7xani68cpQDvb24yzzV+5g8xRKnPHdaiDyCM4q7RoABOiz54rxJHtm768lAvPbB87n1Dmw8uYYdO/YIUrw8EJw7ZONZO9squjywYCM8N7MzPCFOqLv9gd65IG1ZPN+KL71JTKA89e+6PKoxAr04GcM9PyYmvSuTUzzJvAe9FgyKPAWPQbxKlos8bAnUvFREU73zW2S79qJCO2yjxDuxxjI9jAwMPeuqjz10Fjc84jedvFDk3TxvULI8AsMivv40ZrwCwyI87uLXPExlt7mfDhU9cUqYvXXo77xpIZG8t4y3PCuTU7x34lW9h68juwBO/buXTio7AsOiPMUx2LzFXBI8iIFcu+bV9Lw1bNW8lVREvCfmZT0fNRE8viR1Pdyv+jxHUro5SkmTO9YXvbxmkEe6Z5DHvJ6Zb7yv9wa7pwziO/5irTylHoU85tX0vB6hur0AXRO8vQVEvJ0ULz2arp89kdUdvN6pYDwtrOo7aYqtvDTY/jwPSRI9RKVMvXiVXTvQNZS8k8DtPMRfH7wXdSa98WH+vN2QSTxEOSM9y2yCPOQ0kLuQQUc9Pd9HPEqWi72p5xY7xyu+vFikyLyhvg+7LiGQvMH8nLy9ce28vTMLva76kzy60Ai84jcdPDLnlDytRwy9WDifu/2vJb336aC8vrhLPGXdv73wrnY7Sf+nPIsPmbkfulG8aj01undaiLwYjj08Q9OTvG9vYz1elYc+FU15Pdfp9bzT4oG9FiiuPIYbTTtpIRE9oruCO+nPWryINGS7ucR/vJ1eGrs6xjA8+iFpPNpJ67wiIOE7sRMrO4zCID3lUDQ9nV4avJtFgzwzJXe9M1O+PGhuiTy7g5C9UA8YvW40jrxOX509EzTiuxuIIzsPtTu89gjSvJvN0DpU2Km70iNxPPeABLy1+OC6CdAFvSh6PDypJXk8aNclPN1xmLtLGL88WIUXvKeguLyQHwk8iXvCO8L5DzsT5+k7slqJvLVwkzzeQ1G9m81QO4NPrrx2p4C9V/HAvG2dqrzmIm08LW6IvBlBRbzh0Q28Ec5SPGgkHj3K99w8xF8fvdzdQb0fJns8ytirPDKgtjwNT6y7m0WDPSLT6Dy0CgS9qAbIPH5bYj3eJKC70FE4PchyHLzvSGe8UFmDuqeguLzFEic8eMOkvHZ8xrwLgAA8I7S3PF/QXL0rdCI9AHxEO0yE6LwBWga9qXLxPKqaHr1A+N480rfHvEhMID2BgII8tAqEvFLew7zV+xi9sH9UvYzCILuBVci8rACuuyYzXj2RiKW9QiAMvedpSz37h3i80tZ4PA9ow7xh6fM8RAtcPAnvtrwZbwy8d5XdPMmwfr2Fh3Y8JYBWvEjmkDxfZLO8NgCsO0qWizzpguI8gMFxvITjhDsUXI86L9SXPEQ5ozvr6PE8oScsO5flDb2ZlYi9veYSPZmG8jwDSOO8hJaMPWmKLTx5SOU83iSgvO12rrxVIpW8zYUZPHzWoTubrh88GqfUPN9caLwDKTI8XLfFPNDomzuxxrI868nAPJnT6jvziau8F7+RO9oOFj0zNA27KuBLvUr8Grxvmp289+kgvaDBnDxyRwu9invCPB7A67wpwRo9wB7bvD7AFj2/TCI9iy5KvZ9Md7tRKzy9zYWZvAmiPj3sfMg8mYZyPRjbNb1F7Cq9zB+KPdqW47qcgNi7pdQZPVErvLxb1vY8CnT3PNd9zLy/lg29YX3KvGVJ6TzNw/u8WMP5vL4k9T0Y+ua8K3SivNTQXjzaSWs8AnaqO53HNj1J4wM9alxmvbCqjjqNdSg8JUWBvLb4YD2/TCK96foUvXZdlTyL4dE7eMOkO+eIfL2IgVw8wjfyO5SCC72Ag4+8UQyLvEMR9ryLWQS7Vl1qvNhbDjxjEaG8ulhWvLMKBLz177q7pKbSuoDB8buwqg69+rW/u3Tob7xk41m9C1VGvP4VNbv5T7C7aNelu+n6FLy3jLc7Yl6ZPIsPGT2i+WS8dnxGPLxSvLxt6qI7BtYfPZ5M9zt0guA8/6mLPIXUbj03+hE8WIWXvIRoRT3C+Q89WMP5PP805rtM6nc9KQ6TvEXsqjzEflC8JmElPGo9tbq505U81EgRPbNL87wXR189wmW5PGmKrbxy/R+9h68jvcbkXzl34tW8jMKgvAsnf71esau8GUFFPBPIODzlMYO8CzYVPInn6zvHDI08nw6VvPaDEbyBVci75LzdvGo9tTzZESO88K72PDA6p7z7kwG8WYKKPPuHeD2VNZM8YGQzvb3mEjtpIZG7wmW5vPaiQj1L0eC8veYSvN+KL73K91w9S9HgvFREUzw6f9K8P5LPvDMGRr0jZz+9JmGlvF6xq7yQbAE8WMN5u58OFb3K2Ku8aCQevEdSur1tvFu8Mr/nOqNuCrn2wfO7o24KPYXUbr2HYis7C7vVvI11KL2rAC68QPheOxZ1JrtvULI7ah6Eu0U2ljywYKO8wP8pvUxGhjwrk9O89oORvJU1k7ynN5y8c8/YvBeUVz0gmBO8OqoMvWs3Gz1Qxay85W9lvGs3m7002H49nGEnvGVJabwPaEO8DZkXvQZCSb17Qks9xyu+vINuXzvWF708DDMIuyarEL1esau8YEUCO/XQCT3Wg+Y7Sxg/PemwKT39ryW78Y/FPJmVCD2SWl47YMpCvD9zHj2Z0+o7m64fvPTvOry1vYu9TEYGvdZFhD3y1iM96P2hvFDFLL2kIZK7oXQkO6uXkTpQD5g5cv2fvHTob7wEj8G8fYkpvats1zt5++y5VPdaPEczCbvtwyY8F3UmvcHR4jzZMNS83iQgPUfXejxWXWq8xlkFvrJ5OjyhRl07UQyLPBzSjryd5mc8SrKvvMjeRb31Vco8kNWdvMbFrryu+hO9YMrCPCsnqrw/vQk8grvXPDnre7yPQUc8/jRmPPz8HT03OPQ6M1M+PIFVyDt3L068FA8XO4xH4bz+yLy68Y9FPYb8m7wBTn29Z5DHPC/zyLujjbu8/mKtPbcjGz2i2jM8Gx+HPI2/E7yPjr88dOjvO3jDpDzOzwQ9O3k4vKRAwzxkDpQ8AS/MPDsyWrzDy0i8sROru4NPrjxBbYS8oP/+O0iZmDyRiCU91WQ1vJ///jyBVci8JxQtvR2FFr0KdHc8v+MFveqtHLxwlxC9y2wCvOnPWjtXEPI8vpkavaRAwzwaYHY6AJv1OOo1arxXEHI98a52PPJtB70X2zU8JqsQvP35kD08Wge8jq1wPEWDDr1A+N684B4GvZaborxso0Q91viLPPoCuLxsCdS8cAM6OzSaHL0s+eK8KuBLvXWbd7zDrBe94fC+PGj21ryUwG27NNh+PIk05DsQOvy7R3Frva9/VLtJa1G7DeaPPPwbzzwD+2q9gekePTdmOzxuNI48xyu+PNLlDrydM+A8fEJLvG9vY70xv+c8+9RwOTnMSjyuOPY72wuJPZiGcjwP1Gw7DDMIPSfHNDweB0o8tXOgvJ0ULzyFtb27xwwNPYW1PT3HDI08syxCvabtsDxImZi9K76Nu/z8nToLu9W8hGhFPej9Ib1tvFs8dBa3vNJqT7wiATC6WDgfvawALj2YhnI8ah4EPGa+jrzAHls9TGU3PaLaszvw++675J0su348MT1mr/i5K3SiPQnvtrydqAU9j61wO1qerrxDpUy8rvqTvNy+kLwg5Yu90iNxvLKYaztzsCc7GW8MvKxKmbxw1fI6Ql7uu2oPbjyNv5M83K/6O6UeBb3EflC9LzqnPc/rqDtwAzo8F78RPXh2rD3Ow/s7MTeaPEpJEz3+FTU7X/uWvPkCuDtgF7s8sBOrvaZZ2jxzz1g8fltiPH31UrwoWwu7DJykPIvhUTxS/fQ8h68jPbde8LvqNWq8LY25vOI3nbsZbwy9VNgpPEsYv7x9qNo7F0ffvLPAGL1Vi7E7SZYLvML5D73LizM99+mguua2w7zMHwq9FVkCPQsITjzp+hS9m66fuPlPsLxOX508QvLEvP/IPD3T4oE9WFfQOz9znjy60Ii82Jz9PLETK721Jig9RnFrOm/V8rylEnw8c89YPJo5+jwrRts8Lx6DPBOphzx+W2K8iprzvJ56vjwjOfg7JBrHPFSq4jymWdo8+paOvH+RuLwOb427HZKPvZpNA720TGC8xWXIvL/KPT0LVcM87jIjPSPuSjxuQnq9gJE4PAtVQzzvz288j9geO0COiTy1wQU9KMikvPmejj3d9da7KYnVvIujaTwcXDm9/XkJPYUjSr007Ec8hTU8vLn53Dz0c/M8gL4VOxICQDyRdMq8kYa8PEupM71ub9c8g5AXPC4J9by6QSW9yy0wvexyEzxRRL67YvH5vO9fAD1F/Da9Ka25O0NOmbw/EOs8lw9VvUXYUrzoaru8naFmPLoUyLy6ZYk9F51Kuvl6KjvFd7o8PyvWvAsN+7xiS7S9ERSyO//W5TrFSl08lkUrveK0xbt6LIS8rrFVPdKtzzz0heU7NKR/u78SBrzXtIY7y0gbPeLzFL2LiH686GFCveK9PrxpHJU8S80XvZY8sjwuhxM8iDQbu4usYr3S46U8VUyWvCm2Mr1SepQ76Y4fvUUOqTwvkIw7TMQeO8sbvrmLtds7HCbjPLLdkbsX3Bm9Cw37u6kNUjwuSMS8tFVZPXm33rrSv0E8Dl0bPWkKIzkXuLW7qDqvOyUah7wpvys70uOlPDS/ajyL2T87iw8WPdKk1jyo4PQ8GskGPWkBqrxo77c51rSGvQuCIL3uOxw7BdWjPEy7JTx5wNc8bqUtPZWXjTv0ssI8o3LHu//fXjwotrI7y9zuvDF0AD3/1uW7HThVPMaJLL3XG308BXtpvaOoHTx3WoK8HAt4PCLBbbvRd3m9EbH+PPXxkbxW+rM815CivP8wID2uuk69ObSvPD2qlbyLtVu7tIuvu0gNiLux1Bg90ewePCjIJD1RKdM8vRwgO8wkN7tMsiw9JiMAPO7h4bs6xqG9xUFkPBFBDzyinyS9FQqYPIziOLxd1I08Bbo4PQXVI7xLjki9BZ/NPPlNTTuc8qe7xlNWvBykAT303x89XF9oPZdXHbzoWMk8AgwbvOmOnzxX+jO811FTvFJxGz3XfrA6RTsGPQbnlTt/f0Y8NKT/O67wpDvj4aK85deIvAx5JzxF6kQ90QcKOxamQ7gAQxI8nQ2TO5zFyryiTmO8ZkoTPBE4lryujfE8EcPwvMs/orrR0bO77HKTvAbMqrx3P5c8nR8Fva+Ncbwod2O89fGRPPlfvzwubCi8EflGvEBqJbwLVcM8gHbNO+Ki07qpDVK9HGWyPEUFMDqFCF89st2RvK+oXLyihLm8V8RdPVcDrbwLKGa9QmkEO0zfCT2WIcc7wuSHvDU9iTzivb484mx9vKKWKz2DkJc8bpO7OolGDbwgW5i8y9xuvEUXorw5h9I8d0gQPQbMqrySqiA9efatvGIeV70cJmM8VV4Ive78TL2uApe7KeOPO3nbwjzFdzo9VgMtPOKi07w8oZy8EvDNvNw0Jj3oars8+Z6OPCLcWDxcetM8tGdLvEYFsDySfcM7rEsAvGVTDD2d8ie9ZVyFO7SLLzxop+87IFsYPVHz/DtWOQO96CtsPUtzXb3psoM9S3NduvfDEzzRm928v4tuPRFBD73MWo29BWn3vFxf6LzSEAO84BgavWwJgjvvO5w9YJ2WvMltIL25LzM9Ei8dvNZ1N76oTCG8hTW8PDTjzjy1lCg80b/BOxxlMr0SHSs8NBmlvPlxMT3pfK271xt9vUbqxDwubKi8P/X/O67MwLv0u7u8HQJ/PL+C9bp5yVC8KFx4vGz3j7liFd48dH8HvLRMYLyWcog9l3uBPGjUzDt073a9eZzzO2JLtLyLBh09rEKHu+AhkzyAdk28EbH+u6OWq7z0l1c8wtuOOxxBTrx1N788NPXAPQYCgbvC0hU9tMGFPAVgfrxUQ508Y1StPNeQoryXcgg8IFKfvAW6uLzcyPk84w6Ave7Y6LxiQru7b64mPb+d4LcS51S8olfcPNqGiLyvFIm76IWmvO7GdjzjBQe9hfbsu1n5Ej2GRy48rvAkvRECQL2Mx008pXofPFxxWryo1/s3XJU+vc8+AT3uxva8S6mzPLWUqLy/efy9AEwLvcaSpbxGtG48FQGfOx1uq7z1+oq9Rav1PO8gMTysQoc9VWeBPqJFaj1ypAy9iwYdvQydCz10ZBy9esnQPJzFSry/CQ291pAivTS28byGGtE8Pz3IvOLYKbsFjdu7/99ePJKhJ73S7B49ReFLPSjIJL0cQc67uhRIvNzs3TzWkKK5AEwLvSjjD7311qa7ER0rPbnecbyuw8c6FsqnvH+Iv7vAEoY8+Rd3vQydCzzS7B697l8AvNTQErzscpO8lwbcu5frcLzS9Re8NNpVPJyzWDo/aiW9f5oxvWkclbu8QAS8ufDjPGguh7wl/xs91mw+vHRJMTx/iL+80YDyvJyY7byoBNm8V/ozPVyet7zZhgg8+Wi4PECXgjtuikI9f6MqPDb0H72RdEq9kWLYu+/q2jkrox+8X6aPPEUOKT1RXyk9uQtPvMDlqDwZrhs9L3WhvDmHUj0SJqQ8j+oQvR2JlryrJxy9aPgwvJ0fBb0cXLm74+EiPBxKx7sFcnC9KewIPcY4azzuFzi8HFy5vJWgBj0/WLM7F+4LPLodwbqCh547dCXNPPkX97ypZwy94BgavTmrNr2LKgG9ADoZvQydi7wUE5E8hf9lvR2biL0i90M9XZU+O3+IvzwoyCS9rpZqPPSg0DwCDBu8HVNAPGNULT3RyLq7zBJFPZf0aTzAEoa82X2PvLwcIL1F8708o1dcPIsGnbwX7gs9OeEMvTUHs7yx7wM8LjbSPEth6zsMnYu8P2qlvRavvDx/o6o9+qcHvblTlz0cSke84CGTPXr2Lbu5+dw8mikfvRHM6brXtIY8UTvFOgbVIz0awA28EkqIOyBSH7yd+6A8+Z6OPKOoHTzoWMk8SQQPvT9Gwby0MfU7dRPbusPSFbxjZp86Isrmuz8i3bsJ1II8yzapvCjjD7ujYNW8he1zPSy+Cr3S4yU9nLPYPMC4y7yie0C7NSsXvaPDCL3/8dA5uedqPFep8jtWDKa92XSWvNHarLoxdAA87uraPMU46zzACY07HZuIO9wHST0MZ7W7pZ6DvMaJrLxLzRc9V7JrvEX8tr1CThk+7ikqvehGV7vWbD48XJW+PGJmHz16/6Y8H2QRPXoIIL2LiP47dC7GPEkNCDz0xDQ90dosvZGGPLyAkTg9koa8OoV0C713WgK8dz8XvYz9o7zpsoO9+iBwPPloOLxANE88USBaPC4AfLwWwS48zD8ivbRMYDu5XJA7BYRivFyDTL3WfrC8DJ0LvVr5krzpjh+9XE12vBemw7yg3xS8IvfDvFHz/DxuikI8IzYTO7Z4nDxG6sQ7dEmxu8vc7ryc6S47uflcO5FH7TyXBtw8f6MqPRrADTzoK2w93ONkvXRbo7y/gnU9URdhPTJiDrxiJ1A8tpOHPW6BSTspv6s71mPFvF3dBj3oGXo716IUvVJxGz2L2T+8vwkNPaKfJDvXSFq8C1VDvFyVvrzdK608bnjQu8wtsLyRhjy9gNCHvAtntTx/SfA7v6bZvJzgNTxLoLq7qPtfOqhDqDyjV1y8o3JHvH9/Rr0oyCQ815kbPdZsvro5dWC8F5RRvMWklzx59i09v+UoPfXxEb1IFoG7P3MeuRw4Vb2ihLk8poMYvdwitLxRDmi8EUEPPWMVXrx520I9rszAu2+BybzMEsW89anJvIDZAL35g6O8OqK9vLnwY7w09cA8NUYCvBxKxzzRkmS91my+u11EfbzvX4A8yXYZuRnADbg/YSy9RaL8PLpuArzc2uu8gG3UuBUBHzySs5k8aNRMPGIM5bzL7mC74pDhvJdglry0i688qARZvChl8brjxje9uUqeu3r/przU4gQ9KfWBvLnnar0OZhQ96KkKPLWUqLzLLTC94s8wPbR5vbzuxvY86TRlvNzsXbyLvlS9TKA6PG5L8zs0GaU7BajGu1+UHTsGwzG9+rAAvdG2SL1upS09S6kzu/TEND0ptjI9HW6rvL/uobwRFDI8AgMiuxwm47yXaQ89zBLFPNG/wbypDdI8tII2va/5Hb0FcvA89swMPYVrEjwp9QG86TTlO2L68js07Ec8fPUMPbk4LL2XPDI8v8HEvOg05bxueFC8lirAvLR5vbxdsKm7op8kPBfBLj3Gtgk99Ls7vZLOhLyrMJW8gocePOt7DL711iY8rCccPJJiWLzu6lq90eyevHGSGr05kMu8Kb8rPLecgL1u0oq9gEB3vBwCfz31+oq8Lgl1PKLMATwW5ZK8F+4LPZzOQzyWKsA8tcGFO67Vubw0pP88CdSCO6PDiDmSqiC9v4vuvC9atrwdOFW8QGqlvJkpHzwFe+m8feOaPIusYj3dRpg8VhUfPQsoZrs5vSi80qTWPBEUMjzl4IE8KL8rPf/6ybyLtdu5oo2yvAyUEj3Giay8dC7GvCiA3LxFtO48nMVKOsVT1jycxco8b2bePJzFSjx/Uuk86Bn6vNwQwjv06Jg8KK25PMsA07zuFzi8P5cCvRw41bxWAy08oOgNPXKkDL0j5dG6oo2yOzT+ubyYGE68ywBTPZYqwDsR8E29LMcDO1cDrTwLH209lwbcOyIAvTyoQ6i82FpMvP/6Sb0od2O9KfWBu+Phojzvz2+8zhqdu8s2qTw0tvG87g4/vMV3OryDkBe8VvG6O//EczsoXPi8uSY6vH92TTp59i09FuUSvBELOb0OeIY8v51gPLQo/LsXwS49F4tYvUnynDzoRle8l9n+PChl8TzoNOW8YjBJvS9IRDzAABS93SstO+XFFjuLo+k8FSUDPW54UD3Jdhk9F4tYPblBpbzWqw09V7vkPOuEBb0AKKc8YlQtu4Xtcz0MlBI9nKpfvHntNLxsCQI8SRaBvaDWmzyiPHE7v8FEO1JEvj3cNKY8qOD0PCYjAL1sAIm8acvTPICROL1dlT47PxDrvJYqQDzSv0E8IG0KPcW/Aj1uVGw84mx9PEnyHDycoeY8dUC4ux2SDz05tC+97IQFvNaHqTxMoLq8r94yPKnyZjzMSJs73AfJvUtzXbz/u/q8BdUjPBHV4jzphSa8xZKlO841CDyvqNw7V9/IPABMCz3CyRy9T7oEvYUaUT0oU/87EfnGPCK49Dqc+6A9P2EsvKIzeDzL5Wc9f1LpPPR87LzshIU8Fq+8O3m3Xr2oH0Q8UjtFPEuyrLtlOKG8dEA4PIUI37uRUOa8l06kPBHV4jv5aDg8P0+6PF3dBr2RdEq8caSMvEXY0jwVChi7aBwVvYOQl7oRw3C7NAczPDlRfLzl1wi8Gq6bPDnGIT3U4gS9mjKYvT8Hcj2Ra1G8NRAsvUnynLzXqw08CbAevYlGDTy/yj09tHk9PZzXvLw/9f85IFuYu1H8dTzYP2E748a3PMD3mjyRmC69F51KvZchxzwod+M8xS/yPJo7kbtFonw8IGSRvMvu4Dw5WvU8KYlVPGZKkz2/EgY8NPVAvAtwrrw="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_entities.json b/dsLightRag/Topic/JiHe/vdb_entities.json new file mode 100644 index 00000000..be5b1405 --- /dev/null +++ b/dsLightRag/Topic/JiHe/vdb_entities.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "ent-043d3380caf00eb2310dd3faa6a84004", "__created_at__": 1752211508, "entity_name": "Triangle ABC", "content": "Triangle ABC\nTriangle ABC is the primary geometric figure used in the proof of the triangle inequality and angle relationships.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-2c9cf7515ca52c1738f9bde898fb527a", "__created_at__": 1752211508, "entity_name": "Point D", "content": "Point D\nPoint D is constructed by extending line AB and adding segment BD equal to BC, forming an isosceles triangle.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-0da27fee16f5a66aaa3b12733a1859a8", "__created_at__": 1752211508, "entity_name": "Point P", "content": "Point P\nPoint P is an arbitrary interior point of triangle ABC, used to demonstrate angle relationships.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-db5203dcd8d28444cb765e0a69fabc39", "__created_at__": 1752211508, "entity_name": "Euclid's Fifth Postulate", "content": "Euclid's Fifth Postulate\nEuclid's Fifth Postulate is referenced to justify angle comparisons in the geometric proof.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-81488909290e49f135623bf765840588", "__created_at__": 1752211508, "entity_name": "Proposition 19 of the Elements", "content": "Proposition 19 of the Elements\nProposition 19 from Euclid's Elements is cited to establish the relationship between angles and opposite sides in the proof.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-8ba3a27004f706af0260e986bc6a092f", "__created_at__": 1752211508, "entity_name": "三角形ABC", "content": "三角形ABC\n三角形ABC是证明三角形三边关系的核心几何图形,用于展示边与角的几何性质。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-8a5ebf15695060ebf00d53ab04833554", "__created_at__": 1752211508, "entity_name": "三角不等式", "content": "三角不等式\n三角不等式是几何学中描述三角形边长关系的基本定理,形式为|AB|+|BC|>|AC|。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-c28aba2ebce9095cd8d78f1df53c3cbe", "__created_at__": 1752211508, "entity_name": "欧几里得第五公理", "content": "欧几里得第五公理\n欧几里得第五公理是几何学基础公理之一,用于证明角的大小关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-33baeb08781cf03b07b33ac6f4b4165b", "__created_at__": 1752211508, "entity_name": "几何原本", "content": "几何原本\n《几何原本》是欧几里得的经典数学著作,包含命题19等核心几何定理。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-9ac5593950faa90a93f1b5feec7e9295", "__created_at__": 1752211508, "entity_name": "命题19", "content": "命题19\n命题19指出‘大角对大边’,是三角形边角关系的关键依据。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-1c05bc513bda1ef4c9e16fbdd1e1776a", "__created_at__": 1752211508, "entity_name": "点D", "content": "点D\n点D是通过延长AB并添加BD=BC构造的辅助点,形成等腰三角形BCD。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-53f81d92778b193b6fdd66710857e1d7", "__created_at__": 1752211508, "entity_name": "点P", "content": "点P\n点P是三角形ABC内部的任意点,用于证明角∠BPC与角∠A的关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-96d4cdff8ed57e93e3b3d843cffe3af7", "__created_at__": 1752211508, "entity_name": "BP", "content": "BP\nBP is a geometric line segment intersecting AC at point D.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-4144e097d2fa7a491cec2a7a4322f2bc", "__created_at__": 1752211508, "entity_name": "AC", "content": "AC\nAC is a geometric line segment intersected by BP at point D.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-f623e75af30e62bbd73d6df5b50bb7b5", "__created_at__": 1752211508, "entity_name": "D", "content": "D\nD is the intersection point of BP and AC.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-878558a0c2eb6eb671bbfd2afe6fffbe", "__created_at__": 1752211508, "entity_name": "∠BPC", "content": "∠BPC\n∠BPC is an angle formed at point P, exterior to triangle PCD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-c69c23c4d6a0f62cf8c806e672604277", "__created_at__": 1752211508, "entity_name": "∠PCD", "content": "∠PCD\n∠PCD is an angle within triangle PCD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-e822ff503b5b3d69f26d83cd5fd609c2", "__created_at__": 1752211508, "entity_name": "∠PDC", "content": "∠PDC\n∠PDC is an angle within triangle PCD and exterior to triangle BAD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-4d97ba9e66f17b798922f66ce8ffffaf", "__created_at__": 1752211508, "entity_name": "∠DBA", "content": "∠DBA\n∠DBA is an angle within triangle BAD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-a66673bc9ada03cd05582a6dedc42019", "__created_at__": 1752211508, "entity_name": "∠A", "content": "∠A\n∠A is an angle within triangle BAD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-581cb468263816a10d5d204a2a4f465a", "__created_at__": 1752211508, "entity_name": "△PCD", "content": "△PCD\n△PCD is a triangle formed by points P, C, and D, with ∠PCD and ∠PDC as its interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-2f59ec3e44ad87ae299f0547f44dbf3a", "__created_at__": 1752211508, "entity_name": "△BAD", "content": "△BAD\n△BAD is a triangle formed by points B, A, and D, with ∠DBA and ∠A as its interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-44c29edb103a2872f519ad0c9a0fdaaa", "__created_at__": 1752211508, "entity_name": "P", "content": "P\nP is a geometric point where BP originates and ∠BPC is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-9d5ed678fe57bcca610140957afab571", "__created_at__": 1752211508, "entity_name": "B", "content": "B\nB is a geometric point where BP originates and ∠DBA is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-0d61f8370cad1d412f80b84d143e1257", "__created_at__": 1752211508, "entity_name": "C", "content": "C\nC is a geometric point where AC terminates and ∠PCD is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-7fc56270e7a70fa81a5935b72eacbe29", "__created_at__": 1752211508, "entity_name": "A", "content": "A\nA is a geometric point where AC originates and ∠A is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}], "matrix": "EDOcuiuc1Tw+bHi9r9LNvLQ/PjsgCJ68Uq7qPF4+jDyEsHO8tTyXPDsnGL1HMMa8yh+mPB7dZrsf8gq8zwENPTvjJj1vbRK9jLvZOzJKELt02oK9aeoOPallXbx08JW8XbMCO+mYJD2d0aW8vO5nPbs0kbymZ5W5+TyhO/HqorwJheE7LQ6lPd1LhbzDceu8k7AsvDUEZ7wfCB69V3cXPTYvHrxcz+M8akc6PfbMibx31SM85Cu0vP5N1bu33bO8Vr4vPALTELymZ5U8whGZvCj+Xz0gCB67bCzIvGrrfTxCNSW9Ht1mvFYFSL2CPbW8EtdfvPzaFjwGoFO8EagSvCyDG70AHdC6GoWavMX5zbtFYcu8Y/IUvDdFsTy7SqQ8Tslcvdpn5jtbz2O9LlIWPPmDObzV+nW8nKZuvL4E+zzbwyK8DH+TPIx0wTsLDcS8eo96vIUfnDrc70i9qcEZPZP3xLtIjfE8+Sf9vHnrNjyYq009K1U9PCZECb1wJ2m9W28RvaKCB7wgTzY5eo/6PB9PNj195tc8P4EcPOTkm7sjNEQ8YA2HvZl6SD3epYk8TsncPGwTjrx+hgU9jHRBvKWx1LxY6lU9vgT7unD4Gz2c0aW7q3vwOrfzRrwGQAE9Rr52PFpyOLyE2yo99p6rvLQ/PjwCSAe9sbfbPMBFxbw7cdc63qiwOi7I+7yg/Uu8L8h7vMBFRTwv87K81EAfvR0jED30zzA9BorAvMBFxbxD2Wg9mB2dvHQM9zrnySm98NSPPbmsLr0z7tO7uE+Du9ySHT0pcK88z9MuvWu6+LtMVh48r+hgPPgRajwX/Tc9UcOOvHxCFD2C4Xi9ZxsUPdzWDjqzJoQ8clIgPYkd5LxsLMg8xshIvbKG1jxo1Wo9nF/WO+ZX2rxObLE8Fi49PcFbWL10N668EuwDu1HDjjzuqdg7YJgQvEYaMz3HD+G8TCvnvK+5E706nI68TyWZPO16Cz2S3gq8CVYUPZOwLDz3mwQ9pSMkPUtyf7zp3zy8CLZmPFJnUjsRHni8cODQvGGZf7zZIoa9qdcsvXYGKb3jueS8Nr1OvG2J8zvD4zq9UiA6O6+LNT3xMTu9/gY9OzORqDwusmi8v9P1O087rLxLtYG8XrRxPGyel7zHD+G88nKFuhHX3zvOGkc9kEAVPais9bzZrQ+9RO4MPdpRUzy2xyC8mdaEvXOWkbwxwq08TslcPZCgZ72FCQm9mAj5PIwtqTzvYkC8xmsdPNx9+TxJuCg8p0/KO9KfAj325cM8j7ULPaGFLjuKM3c9wRTAvMMRmTsRerS8htgDvQi2ZjypwRm9p/IevdfJ8Lq6H+289leTvZsCKz1tEw49QFAXPdGfArzprje8s/ilO9lRU72TVPC8pdwLPPTPsLx9LfA8ljgPvL52yjoGcQY8eqSePOfJKT1mBvA8NWAjvTfohbyZM7A8Nhp6O0D02rzaZ2Y8Rb0HPEN5FryExRc9pbFUvQNeGr2t6pi81Cv7O6RqPLqyKSs7xmudvAhvTr2lIyS92gq7PDKRqLvMkuQ8kMuePD35OT3NkmS87vDwvDe3AD1mqcQ8reoYvspNBLz6UrQ81ECfPPvEAz0lGdI80OlBvJKaGb2GqqU8Lsh7PXHHlrzfG2+9UZhXvWiO0joXbwc99lcTPLETmLwmABg97gUVvToqPzyPWc+8K/iRvTVgIz2UaZS8OP4YPSRg6juO/CM8WNRCu6fd+ryFCYm8K5xVvTi3ADuKM/e7aHg/vFzkBz3+TdU8ooUuvLJXiTwVFQO9c2gzuxha4zxBH5I9OxEFPVIKJzy6Cdo6rQPTvC7dHz1oeL88a7r4vPCjijzNkmS9+ZnMOlBpCr0VFYO92N6UvfXlw7qB9hw8j6DnuwOlMrzmsxY9kZoZvEhGWb1QUT+862cfugzGq7yGlBK9nabuuq+LtTyWTiK9FF9CvBbnpDspcK87KRRzPJZOojyGOFa8zNn8uq1K67yWlTo9ya1WvJymbr1Ukgk9c8XePHJSoDkQqzm9oczGu4Y4Vr2FCQk9KKG0vFoA6Twm6Ew+Uq5qPWZiLL3juWS96CbVPJdOojtiUuc8xyX0vNVWsryPEre8QPTavIC10rxAO/M7E0kvPI7mEL0lAJg8SvwZvIL2nDxyPXw9YfW7PKOCBz0WRNA7EncNPcOGjzsTApe954KRvIrWS7wVGKo9aXUYPVfUwjwVGCq9gvacPJ+goLyZYY48o4IHPeRyTLrLNTm99p4rvQj9fj0sgxs99uXDPKfdejzZmGu8Nae7PFEKp7yddem8MZd2NtXIATzrIIc8v10Qu9JxJLwUX0K90uaavIC1UrxAO/O8aNXqvANeGr0Lm/Q8iXmgutFbET1L/Bm7ShVUO6BEZDvQjBa9A6Uyvf5NVb32V5M7+MpRPenfPD2XOX47buKIPVtvET0r4229+id9PD0PTT16Acq8j7ULPYV/7rxlkzG9LDwDvTvjJr0f83k83DbhvF2eXrzHD2E8/vCpvJbcUr3WD5o97pNFPclmvryXOf680VsRPdkKO7yPtQu9kKBnvdsgzjyO/CM81siBvSOmE700joE8NQRnvMGi8LweOaO9Z2KsvJOwrDuZHR29fCyBvNclrTz0/Y48F7afOzii3DusA9M7f246PKdPyjxrc2A98wA2u5l6yLxsLMi5EdffO4TFFzulUQI9EneNvHhKGj1oeD893O9Ivf6pET1hIxo8n0RkPJvX87xD2Wg8HJgGO3h557we3Wa9jorUO5G2+jzLNbk84UYmPa11IjtgbVk8u9hUvfDUjzzv1A+6fp+/PLYkTDzV+nW8Ddy+O8H+LD1mkIq8OIxJuwRJdjwIKLa8io+zO9DpQTyYHR27vY4VPTqcDj1gDYe8SocjvWILz7xvbRK8/k1VvS0OJT3u8PC8NXa2PK0D07wXb4c9PiXgu4h5ILw36AW7A6WyvOtnHzsFLRW9MFBevQOlMj03twA9waLwO5C2+rsSkEe9CvewPBKQx7zHgbC5w3HrvHiq7LyftjM8IxuKulCCRD0H/X68+IO5vA1/Ez2u0k29a0STvHu6sT0O2Re8UIJEvOo86Lx8F1079EEAPRrixbzDho88aev9vLxKJD06nI48OLeAvOSdgz3vGyi8pcdnPCYZUrxGYcs7hAywPEgwRr2spic9TfrhO+FGJr1sc2A8agCiOuyrkLjkKzS9NWAjvMkJk7ho1Wq9j1nPvDjp9DxCfD06g7DzvGcxp7s6FKy8PvaSO0WoYzzS5pq8zqh3PLOxDTlyr8s8ikgbPANJ9jv3+1a85SgNPcEUwDtXG1s8aXWYvP8GvbvomCQ8aI5SPVMHAD3Dhg89ros1vDoUrDx8c5k7lwcKOwdZOz2svLq7q9SFu3nrtjwdaig9TfphOqIpcjvKTYS7+69fPfHqorzvG6i8jkM8PQmF4bwzkSg9RJLQO39YpzrJl8O8WYoDvOFGJj0hwvS8MPMyvRwObL233bO7ZxuUPHoyz7zB/qy84UYmvFiNKr1Ns8k3qAiyPNNxJD0cIxC8KbdHPKRqvLnuk0W8U9mhPIASfr1EklC8JoshvWNo+jwYWuM87kwtPJOF9Ts1dra7cj38vAolDz2cX9Y7S8sUPYkyCL3a8YA9SocjvZDLnrxKzju8jVuHPN53q7xh9Tu9k1MBvSBPtru0Drk8U04YvEgXjDwkYGq92ILYO+pSe72sowC8YlJnPVTEfbwPqzk8pJtBPDsqv72Mu1k93qgwurWy/LsiwvS6v9P1OnOWETu5wsE8+oASvUQEID11TUG9kuGxvJgI+bzaZ+a8O+OmO7fzxjvaZ2a8agAiPGiO0jsvyHu8y3xRvQDWtzyddem7HcdTPYwtKb2AVYA9yJfDudvDojpP3gC8RnfeuoUfHL2qHkU95/cHvXP2Y7wK9zA88dV+vLxgN708nf27rUprvDsRhT1ObLG8jHRBPHKvyzwyvwa8gYRNPddTCzz79vc8vl0QvHD4mzxMnTY9uE8DvVcbWzzbfIq9N9NhvLx4gj315UO8S+TOu/mDOTz6UjQ8Fi49vUn/QLwM9Ak9hR8cPMBFRbs6Kj+9gBL+vO5iQDtFBCA8U9khvWzPHLtrRBM8ZcEPvX+cGDyd/wO9mTOwPA/yUTiVI+u7UN/vvRkTyzwEGPG7dpRZOe16C72GlBI7LIMbvPqZzLs3cw898qR5vZFv4jwIywo9wKGBvOazlrxZoz09B1k7Pa6Ltbodaig9BvyPvLETmDxzlhG8oOQRvNpnZrwgCB67TOTOPOyrkDxZXKW8A6WyOsGi8LxXRpK9YSMaPRJ3Db01YKO83xtvPW1C2zsRqJI9YA2Hu3R+xrzd1o684gB9vNPOTzpWvi89iY+zvPdtpjk6nI486JikPDbT4bwwl3a7YfW7vB6AuzzsC2M80xVoPAf9frwBjx89WEaSPCttCD1xmTi9nBg+vRqFmjrJCZO88HjTvE6zybwldY48T/STva8v+Tth3IE8X8kVvYsCcjxHjAK8rRlmvAagUzwVGCo93WEYvP5NVb20sY06ZzEnPCNK1zykajy8E1/CuesgB71Lcn+8gFUAvDFQ3jsu3R89hNuqPGEjGrz7r1+9IteYu2bw3Lxt5S+9wRRAvX6fv7yb13O9a7r4Okn/QL1ZFY08UmfSPA+rOTzfpQk9UyA6vUDFDTxWTOC8t4F3u7bHoDzXJS29v12QPa9EnbvsIXY8NKe7u2Qh4jwPT307YvKUvKBa97uFCYk99uXDvIKaYLx7ujE7HvKKPVIHgLvypPm7CCi2PDNKELwmABg9OVtEvGA8VD30Fsm88KMKvKZnlT1f3yi5dWWMvcNxa7z0c3S9A6WyPOJcuTzpPGi7HWeBPQ4j17x8cxk93wVcvbs0kbxOs0k7Mh9ZvAS7xTwNI1e8iuzeuCAInjubMIk8sXBDPAS7xbveGgC96a63u/pStLzoDRu90aKpPfAbKL0ffRS94XQEO+CNPrw9siG8SOYGvHvoD7w01Rm9iB1kPL4E+zy/RcU78xbJu/kn/bwF0Vg8SBcMPRKQR7yExRc9Q2MDPYaqpbyf/cu83daOPShFeD3pmCQ9YN8oPb4vMj25wsG8TrNJPXD4Gz3UQB89RO97PTsRhTzF+U2847lkvaNUKbyOitQ7cBHWvHJSIL1jxDY7EuyDO3aUWTzOYV87BKKLPHjA/ztvyj279syJvHiqbDtsiIS9+lK0PHKZuDw6FKy8cMq9OyF73Lx6SGI6TFaevMH+LL1FYcs8R3dePGKuozvVnUq7ejJPPfblwzzVyAG8hvE9vCOmkzvGyMg8EGQhPBnMMj06nA48pLHUOwR0rbwbP3G79rQ+Pc0yEr3eTPQ8S4cjPKymp7vLNbm8FnVVuzV2tjzKTYQ8eNWju6ITXzxArcK7i+xevZjyZT2JMgi8ejLPPLQOObxEBCA9f/xquumBBT1xG0A8jvRVvRziBL0n7Qe85ucLPMDFuDz1WOE8xOS7PDi7mjsbcP28sTUGvVWzDT3hTG480S2fu5KEvLxBagQ9CCgYvCaGNz2090u6UA8BvRdICzzEXzK9wbslvFjcI70yaMq7oRUTOyUBLj34JgI9zDeMPLDYSLxglSC9EdcBvWS0oziNg3I8+L8xvF7ngLzD7k68dDpDvRc9VD29ko+8AxMoOjNKET1X5ra8IOw9PGNDQL2iCly8X7PZvPcwFTprn/+8907Ou7u62zxwoMk8caBJPI7WHDxR5Ww8C+pdvfK+57xkOa29m8LCvHCWtry9Fxk9j1umvPI6ArzmTbg8Ww/NPBdHZzwx2S08Z2zWvKeawrzxtFQ7o3EsPYYdoLz+lme8G2eOvW45+bzHnG663gUfvUuJLbwTrhE9aGLDvMR+D71Us408kR6QvOIkIr2mM/I6KaU6vcMDmT2fZk+70NGFPDmxB7zm0sG8XfsmPdw3frx7toO89lhhvb2SDz3NGK+8prh7PCX3GryZ1ww9yXSiPNRgyLvzoC677/whPJlR37y2pes8ItgXvKtI4jwtuiq7byVTPR40Cz1glSA6Sg43PekPfjvJ7xi95fGevJlclryhFO+8xtCVPF5DGj1vMAq9xsaCPV85h7xrlWw8wTYcu2GVIDyAq3I6Y03Tu5NwFj2FJzM72mslu5o9ObvF0JW64rM+vSBxx7xcBbq8RojjPDkr2rycM6a7vSGsPKuvMr09z+a6UBkUvciSWz1oWLC98xGSPDbunTtViXk8DFvBPN92Ar3MnTg9D3rEPAc8PrwGRlE9ykD7vN6KqDubuC88MffmvP6W5zyT9Z+8/htxvHKCEL30G6U8/aD6PE43zbmBJw09bzodPcw2aLzZf0u9rnKcPOZDJb0ougS9RpOaOzJKEbtktCM9D45qPfg6qDpKLHA8hSezvM9ffryO9FW8PUpdvPdOTruDb4C82vAuPRD1uryqzes8d3f/PEqnZjscUkS9CDy+OSbthz1Haqo8Pza3O/beDr0gCvc7QuRWvT4spLo/LKS8nXuZvAc8Pjz76Ec9WdKQvbTjJbyFwOI86XZOvdTwCL3NGC89Me1TvNbRqzvAuyW9aN05vQr1FD1yWHy8B1BkPLlzDLxPqLA8RvlGOzFzgbyihVK9VnXTPNE3srxvOh09DT0IvNgPDDwXR2c9GaQku4ytBrygPoO8VDgXvaIASTyaUgO9w3PYu4YdoDwpILE8tPdLvGRYCj1Ox408rl1SOyzZB7tfvhA8vJwiPVZ10ztyjKM88r7nvIISQ7ujhdI7LOL2vNrwLr14Y9m7hSezvFPHs7xfOGM9WNwju992gjxT0UY8Pja3OvHI+rzE5Lu7dqGTvEYOkTxDVbq6rCAWPQSiRD0AZQg9HEixO8icbj3ugSs9/hvxvLTjJT1TQqq82H9LvDH35jwpr008LrqqPBtc1zz+B0u89d3qPFokF70uKw4845UFvQQTqLruBrW8/hHeOzb4sLzQ0OG8Ju2HOwX/gTyN/wy9JnKRvernsbsPj449IPZQvIrLP703aRQ9sboPvQgyK76rNLy6WOY2PDohRz1ngHw8daumPMidkrwePh6990S7vJwzJj1oWLC8u0CJvUwEJL2Kyz898jlePTdzJztOS3O85fB6PPtjvrwR1wG94bM+vG1toLxbGWA9X5+zvPVidLybpIk9VgUUPGTIyTycM6a7Ax27vH14Sb0s4xq7/aB6ucyxXjxB+Hy8HOIEPYCslrkppTq8PrGtuRmut7wkC8E7XfumPW1toDxC7uk8JQEuvAp5+rsx9+Y8yJ0SPWwQY71UTL27pynfPBi4SjzInO68PiykvXCqXL3W0as7kZhiPAI79Lw8z2a89t1qOz+dB73TdO47GqQkvH7VBr2w2Ei86nZOvLavfjvYf0u8qyopvfK+Z71ubSA9IIXtPAhRCDwVFD68xHPYvK9TvzwFjh68u0n4vHNYfLvMnbi9X76QvAitITwIKBg8m0dMuQ8KBb0Yrje9dasmPT1KXbz101c9F8JdPsicbrwmchG92vrBvLiRxTsYuEq9xHPYPKVdhjkTHlG9lbgJva5oibuKtxk8xF8yOz5K3buuaAm92zf+PDScl7zmTbg8axGHPYGXTL0Kefo8Blp3vZ/XMj3rYqi6uIeyvD1Ayrza5ps83hlFPSg+6ju8nCI9FJnHObKGaLx3bey82A8MvVS9oDwx48C8o4XSPCX3mjyXmSw7pOwiPXRE1jy2pes8v2h7PPdEO7w2h828Hj4evaPsoj2xNYa88b8LPf6hHrvXQo89jurCuxfNFLxT0Ua7TkFgOxQKq7yCeRO95k24vNG8uzx1qyY8yfmrPDuSqjtcdp27db/Mu4EnDb2JZO+84NH3PDmmUDwsztA8v2h7vGlEij2BEkM8k/WfvEZ0Pbz81CE7PzY3PJQ8bz0R1wE8yXQivRmakbunr4y88jnevEWSdrzJao88DGVUPcBU1Tpkvja9uX2fPQp6Hj2N/wy8vmj7vGsRhzyBgya75WyVu2z8PDye1zI7MmhKvDdfAb0izoS8axEHPIXA4ryO9FW9socMvb/Py7z1jAg945WFvWNNU7wWzHA83LL0PFRCKrvIfjW9rBaDuwQdOz3FX7K6PH6EPAWEiztQGZS8DFEuvLA/mbra8C48vDXSu6u5xbnNk6U84i61PG3olrs1kgS8hTtZvKlSdTtutG+79WJ0PI1lOTwWew695lfLvIlkb7wgCnc9IfbQPA//TT3F2qi7V/rcu+6f5LwA9KQ84cfkvHWrJr0bZuo8PrGtOTFzAb2BHNa87/yhvGsadrzFSww7n+HFO7kCqTtjQ8A81PAIPDbuHb20aK+8ZL62vHnAFr0ow3M8YBqquySk8LskH2c9eG4Qva/iWzvpD/68qs3rPCivzb2nFTk8knqpPBOuEb25Aqm7T7xWvc4ECbvlYoI9EPW6PMRfsrthGiq9WxoEvZ32DzwaHxu7LjWhOaOF0rslpZQ7D48OvV++ED3V5dG7AzKFvXnUvLxuOfk8fIzvu3jydb0lkMo9LjUhvLC6j7yBJ408X5+zvBkpLj3l5me8Wp+NvELaQ7yij2U8yfmrPLiRxTuyC/I8DMykvP4Hy7z+jNS65WKCPcw2aLt+bra8gvSJvDaHTbwMUa69pzSWO1S9oLzsqXe8Ql/NPDg1bbyPzAm7GRUIvT1U8LyQo5m8Bf+BvEH4fLwDHbu8RvlGvDqxhzxI2428FCjkugMnzrzDh/67AzFhPMu8lb3mvps7Y9JcPLMB3zwPjmq8ZDktvOFNkjyZ1mi8xksMvMw26Dy3IYY9r0msPemBBT3uBjU9ObDjvCgqxDv6eIg9JCqePAdQZDzYid68MlQkPRi4SjoCtuq8HNfNvDABejuD/hw7uQKpvOpsOz2npFW7d3d/PWdiQ7wHtzS9zJ04vLTjpbyvZ2U9tdkSvZAnf7wougS9QV9Nuj1VlLyIjgM8Bf+BvIL0iTyBjTk9ShjKvIGNuTzOBAk9rJuMvI3qwrySE9m7ko5PPLh9n7yimXi8sNhIvOmKdLtoWDA9BkbRPIWsPL0ZKS48q7nFuzJUJL1fLlA8SNsNvLC6j7wTMne9jXnfPNmKAr2hmfg8FQCYOw3CkTxzTmk8E64RvJ/XMrzcLWu9LVNavOxOgjzSnoK7XAW6OVsPTT2/Xwy93gUfvTB88Dt8EXm8mlIDPch+tbwSXIu9bHczPMn5q7xj3G+9fPM/vJ3//jt1MLA7isGsPIP+HLv109c86uexu4TLGb0ppTq5tir1u1hXmrzjn5i8VnXTPIo8I73yOgI7aPwWvIo8I72O9FU8MdmtPLzFErfui768hMp1PdprpbvTI4w93hlFvSm54LxBc3O8uJFFPaKP5bxfJD070NBhPG+1kzyI6fi8IAr3u2eAfL0P/808R9uNO9TwiD3EXzK87gY1vYnf5TsxcwG9OSvaPNKyKL0x2a08PrtAPaGZ+Lw/Njc98smevO4aW7xZ0pA8NodNPC8BejwXwwG9LdhjPB7Dp7w5nD27KSCxPLNywjrRsii8uQIpveXSQb2CEsO7brRvvC7EPb3101e8VgUUPUYDWjzNLFU93C6Pvcch+DzpBeu8ed7Pu/mrC74qkZQ8XzmHvI2DcjxJsh29nly8vMwiQr0lm4G9+DooPLu627wghW28KhYePYCiAz15TzO9hUaQvNTwCD3csnS8O5KqPKtI4rwlIAs9XyQ9vJ71a7x2d386lijJu7KG6LvdI9i8jWW5PKKFUrzGxgI7DwlhvWzyKbz5d2S9Fz3UO7MCAz2yhww9wNqCPV+9bLzEA5m8DFtBPQxRrjyZXBY9m8JCPNDQ4blcgDA9aFgwO//9tzyzfNW7jvTVOy3Y47ymuZ898qrBPPr9ET3fiqi8ff1SPVPHMz1d5wA86DkSvBBmHr2qPs+8WxoEvO8QSLzbN/68/pZnvAMnTr1CX808Pc9mPe2gCDwWzHC8yWqPvF++EL3uGlu8aNMmPT1KXby7Kz+9ijwjPWuV7DtFA1o9daETPNIjjLws4va84b1RvVTHMzva3Ai7c9PyPJajPz1rn/87LsQ9vHyCXDw37p29uyu/vCg+6ryvZ2W81WBIvIUxRjw0nJe9ftWGPaTsIjzJiMg80/l3OYaYlr1si1k9kKMZPVNCqjzYid48+CaCuxdSnjxndmk7FlF6PJlR3zzdns68djAwvL9eaDzjqSu94dF3vL9fjLzMLNU8BtaRO8RfMj3YGR892Q+MPBMpCDw4uxo9X5+zPBdIC70puWA50qiVvBIydzwgAGQ9wUAvPcG7pbzP2vQ8DMwkvSCFbT3egJU8esopPXAvZjxT29m8yBdlPemBBb0/sS29bfKpPOFC27w9z2Y7Y90TvYjpeLp53k87G+vzO4P+nDxT21m8XyQ9vCD20Lt8CIo80NDhOwLAfT2mmkK9U8ezvC0/tDy2Kxm8s3LCPKDDDLzdns47fBF5vUqTwDvq+1e8z9r0uwOYsTwL9PC7ekUgPIRPf7x00/I6PVUUvFyKQ7zIAz86kZkGO82TpT1wq4A8GTPBPEH4/DsXPVQ9ohRvvMgXZTyofAk9EteBPXAl07uKwSw9IV0hPSBnNLzxQ/E85mHePOZDJb3/B0s70by7PEZ0vbtltCM6SyMBvOmK9LyuaIk8KboEvNDRhbyuaAm8R9sNvQdQZDxktKM89mL0vNbRqzzQVo+8N2mUvIUxRjzhTRK9bHezPEJVOjymM3K8MuNAvVLvfz3myC48dhyKPIISwzu1Xpw8FDMbu9BV6zw2fbo7NJtzPBdHZ7xpv4A8gJfMu245+TuJRja8NAzXPAp5eryecQa9SbH5u57r2Dwqmyc9TzdNO/e/sTyrKik9j1ETPNG8uzwpr008SxjKObrE7jxwqly8UA8BPXREVjzLUFY8G0vvu6ufeb1y0mq89RzAvJpXPzwGdYo9IJkEPKtbAD2lJos7vj5ZvYkHvTut+gI9lHJvvNXD0Dyt7lY9DjlyPZYZurue5Wk9NBf8vKdpPL1WZ9s8VscQvLHctrqWdQu98JelvJRyb73LADE9+/nHuwR2UrnEy7u7xHNOvYcQTTzRNSY7QYHmvNdqm7xlJIc8G1M3valgLL1nb4A8iQc9vSYWV73Vw9A7vj7ZvDkRCDuUfpu8MOmGPCi12bySiw+8hsm3OppP97whgOQ8KgQ3PDduIb3g6gm9bpRlPF+TQL0Gxa+8UDJmvfdrHTwkd9S84JYAPM+Wo7zRhcu8erIOPEExQTxUfJc73j/bPFYbmry4YdG7iVdiOyGILD2a/1G9dsgSPC7qTr3xjhU9MDmsPPdvATzkxHW9lhk6PHLaMrwZBFq89HX1vAr77DtUfJc8LJvxPJbJFL39QN0898OKudpZQ7zEy7u8/kglvGUYWz0uOnQ8Zci1vQLfl728n1a8qWCsPKXSAb19UZG8RcczPKufeT1Iapo7FnqTvK2W6bonbkS9X+NlPPcTsDuDeto8/vSbu2PJfTz7Se08uLk+Pf7wNz2khwg96qnFuzcO7Lxfmwg9UIpTvU+fDzyFwW+8i/4sPLqwrrtlcMi7dhDwvM9CmjyIuN88q/fmuUPYC7zLALE85hPTu/laxbsS6AS87UjIu2z9qrxjedi6Ai89PI2hkzxd9D292BYSvO+biTw987u8bkyIvGn+8ryL/qw8je3Uu7yfVrvNo5c8KL2huqPTSTxDeNa71cPQPPkKID0mIoM8xrrjPMKEJjwVHkI8yWGuPFA6rrod+gE93pfIuygNx7z0dfU8ctqyOy6aKT1S3RS99WxlPPHmgj3rsY28fuTnvPm2Fj0IZLI8PetzvVYXNjyncQQ9+0ltPBXOHD3Ywgi7nkkDPCQnr7uYsHS8+6FaPRlkD7zgjji8O1Q5vC5KBDo0b2m92rGwPOhiMD0mbsQ8o4Okuq32Hr03vkY9eGcVvYtOUj1R4kC9xmo+PMA9Eb3Hwis7lMrcvJ+NfDvoslU8q09UPY1NCr0EdtK8VMhYu8TLu7tptpW75NSFPZpXv7yU0iQ9FR5CPChd7Lx4v4I86ArDuyTXibxhOos85Bzju4fAJz2WEfK8pSaLvf6gkjypAPe8elY9PSi12bxZuhy8cJeBO+tZIDzmE1M9tiKEvAZ1Cr3A3ds7sTSkPPV4kbqvmQW91WtjPEysg7zcVJc6fPU/PQpTWjyJD4U7CBSNu3qm4jvNn7O7UjEeO1TIWL1MnPO7KA1HPBdl17zEG2G9HUonvCMfZzugLH+9rZ4xPQpbIjx6Bpg8Q4QCPXgPKDzGuuM8Ut0UvSxLTL3zfT28ITA/PQr7bDwWxlQ8q1sAO3Db+rz96G88y1wCPSSDgDykhwi9DErKuHKCRTzv58q8XZxQuo2hkz2gjDS5ZxcTvMxYHj33EzC9qWQQPIsCEbxBOQk9WmaTPAYdHT0KU1o8vZ9WvUPI+7xOn4+8wtRLvIEzRT1SiQs8ulB5PT/uD7yJYw685CSrPIErfbxjgSC+Unl7u8IkcTz5sjI96gEzPd0ADj2Lroe9JCsTvVLZML1DyHs9ugicvdMkTr2SMyK9rZ6xvO2kmTxulOU7LPNePAyabzsMmm+99wvou6Mrtzyx3Da9mv9RPXYggLwyKFQ9ZRhbPBcNarrLALG8TJzzu0GB5rtUIMa8JNeJvKkAd7v78f88uLm+O3QhyDzCMB29FRZ6PSgVj7v1xNI8P5qGPHA/lD1S0eg8Q4CePSz/Cr2psFG8liGCvHhnFTz1JIi9vFMVPde6QL24CWQ8Xez1vF+TQL0Cf2K9vE8xvEOAHj12cKU8vubrvLYavDyxhEm9q0/UvJhol7y+RiE7oy+bPMCRGrpuRMA8P+4PPNMslrsGFVW817pAPYcQTTyvPTS8CGQyvN7vNbxWv8g8SGY2vMjGjzw/kr48g4IivakQhzyv5UY7TACNPF+L+DtnbwC9wN1bveLdlTw1exW9GVT/PAzyXD6vlaE8/kyJvJqvLL1QPpK7NB/Eu25EwLo9Tw29MDmsvN5Ho7tOQ767X+utPHtOdbvR3bi7/UDdu4/kRD2NRcK8Ix/nOwYVVT3kKA87np2MPBN/v7xBgWY9z+bIvK81bL0AmAK8+VJ9vKDc2Tw2J4w8vkoFPRPbEL2Bj5Y8RRfZPCjBBb2s9+Y8IuAZvVheS73eP1u90Y0TPS/yFjx2aF0961mgPA5BOj28U5W7vu6zvNN8u7wIBP05qbBRvL7uM73EIyk7UjUCPWMh67zPlqO84IZwvHzt9zv5Yg29KAX/vHA7sDtUcOu74N5dPLTXijz+8Le5lMpcPFCK07zJZRK9nkUfvWGC6Dwe6vE8P+LjPJ7tsbyc/ok9aw4DPYcQTbuJr888p2k8PeyYbTyT3xg9Q8j7POtZIDyl0oG898OKvG6U5bxKCZ08f5wKvRE8jjy014q9LEtMvUIpeT1Fv2s99XQtO6tP1LxUGP4892udPFutqLyrp8G8H+2NvP7wt7yzezm9H5E8vTmt7romHp+6E4cHvADop7xQitO6ag6DPIbJN71dTCu95My9PEjCh7w3vsa8UJKbO1iu8Dzouh085CSrvJLT7Dzc+EU95sOtvFQgRj2PNOq8YTLDPPKGTTsCJ3W8r5WhPNVzKz3LUFa94iVzO/PVqryLVpq6+VpFvCR3VD3+oBK7liECvX7k57xiirC8mWBPPVIp1joIaBY9pcLxvJz2wTxDgB687fgivGdnOL3T2Iw8Y4EgvM8+tjwf4WG8+6kivAr7bL1f75E7nuXpPAQmLTwfOU89I8f5PLSDAb3L+Oi7LJvxPAoDNTyYECq9g9oPvJhgzzul0gG9y/joPIEzRb3glgA9r5kFvb7ylz0XcQO9AeBfvLynnrx2cCW9bAGPvBLoBL0Tfz+9nPZBO2KKMD2jgyQ8lNYIPCLgGb3/8De8DjnyvJi4PLyFJQm7CFzqO7oMgLzHcoa63udtOvUkCL396G875NSFPATOPzz3w4q9XUyrPfV4ETzGar685CQrPUpV3rzgjjg9bvSaOyynHTucTi+88TYoPTe+RrrRhUu8BMb3PNdqm7zLqEM7XVCPvFTQoLuJB7279xMwvWGC6DvgNsu7r+VGvbxPsTyYCOK8YoqwPIOCIrsowYW7umAJveCWgL0GxS87jfWcPPtRtbz0dXW9MOG+vJqvrLzRhUs83KyEOnYYOL26DAC9E9uQOygNxzsZDKK7z0IavZ+NfLsu6k49goPqO/XE0jq+SgW9O1idvBUmCr0f7Q09yVlmPPtVGT2YwAQ9G0tvPHQhyLy6sC68NB9EPXyd0jwGdYq7TKQ7Pa9BmD0sq4E8g8r/PMDlIzz5WkU9q68JvGXAbb0Cf+I87UhIPTDZdj2Ucu+6E89kvCSDgL3CfF49aQa7PPv5x7xj2Y28y1wCvTIo1LtpXqg8LurOOoUlCbwWxtQ7wIXuvM1PjrxB2dM8Vhc2PVhey7t/RB29AOgnPbgVEL1Fb8a6r5mFvAZ1iry2cim9ZSQHvVQgxjyBK/26O/zLPLHUbjpSKVa9NG/pOy5CvDy8R+k8G/vJukE5iT0w6Ya8vKeevN4/27wyiIk6kjOivPMl0LztSEi9CLwfvLyf1jy6YIm8ZSAjvdHdOLxyMqA87aSZvb5GoTzoslU97UjIPFJ5+zw3Ztk8no18vcuwCz2+lsY76BKLvCbKlbwu6s46XZxQPKCE7DzXsvi8M9BmPBOHh72Jtxe83kejvNdiUznoWui83u+1vJYhArtiirA8Vhc2PQoHmbxFH6G95NQFPPupIj3Xsvg7o4MkvcA1yT3JuZs8wnxeO1heyzuB4x+8F20fva+ZBT1SgcO8kjcGvRPbkDyJtxe9HznPvMfCq7vEG2G8Sg2BO/GOFb0IBP28wiw5PFutKL20gwE9aWIMPG6UZTyYECq8iwIRPRuviD12dAm8Q9DDO1I1gr3cSOu8D/EUPFgG3jzVG7480eWAu2tN0Lug3Fm8UDquPMZqvjyQPLK86ArDvJoHGr2P5ES9G0tvO5LT7LulGl+9tnYNPUXHsztDhAK9G1ebPNmp6LxFv+u7dmjdPBkMojytlum9tH8dPHoGGLyaV7+8AjcFvdA2brynwam8BiEBvYbJNz0XZVe9R15uuzIoVD3TLBa8NG9pvF+L+DzPmgc9woiKvGylvTxBjRI8q09UPVTUhLyNna883KDYPD2bTjwzNIA8WAbevFI1Ar33w4q74jUDvWV4kL0s+6Y7PevzvFR8lzxMnPM7dCmQOsA9kTqASIG8y7CLvGcPy7urT9S7XkRjO8CNtjyz0yY8qbBRPEPQwztHtls8928BPYMi7blyKti7UjWCO1QgRrvChKY85mP4vF38BT2ghOw8yWEuPAyit71S3RS9X+PlvBlU/7yzezm8oOShvMDlo7xM/Ci9zFgevNjCCDzXsvi8pXoUPf1AXbvCJPG81xKuu9A2bj0M8ty8ulD5vOCOuDtMVJY892udPJhoF7x8RWW9fqWavDKIib2khwg8P5K+uxdlVz28px68vE8xPCR3VLwIvJ88GwMSvccaGb098zu95Bzju+Il87wd+oE7JnYMvPHeOj3mcwg9IYisPA7pzLtu7FK8mqdkuy6aqbyFISW9MNl2PbbKFr2WyRQ9tCuUPOR0ULzt8No86vlqvIHb17xrTVA75MT1u388VT2BOw29kECWuhcN6jxiijA9ywAxPatP1DxbpWC5uqhmPNxQMz1SgcO8oCx/PIv2ZDzghvC8jfmAPR1C3zzqAbO87aQZPDgWNL16TnU90S1ePMfCqzzmwy09Ut0UvTA9ED2SNwa9UjGevIkPBbv+TAm8r43ZPB/hYb2elcQ8PU+NPKkQhzwT25A8DKabuwI3hbwsS0w8ZXgQva1GRLw6uZo9nvGVvQpTWjyJYw69qRCHPDTH1jxUfJc8ZXBIuyHYUb22cik8TPwovT37AzwuOvS7RW/GvHhfzTvP5si8P+JjPFiu8DyAlMI83FQXvaHohbzVa+M8o4OkPDLcEj1rnfU7MtiuuZLbtLxwlwE9i6a/POR0UD0E1gc92mELPcTDc7zEI6m8MD0QPb6WRj2WEXK75HTQOxm0NLwmbsS8O7CKvPMlULt2wEo8G1M3PCpgiLyr/y69F8UMPR+JdDxGdw49Br3nuv2YSr3aCR69UtkwvPcL6DwoDUe6tWphPLoMgD1uREA9kjMiPNEtXrx2aN08lNaIul1MK7uN9Zw8oegFPdUbPruc7nk8eK/yPCq0kTxYBt68ela9PFLR6LsqXCQ9O6wmvGHmgbtfQ5s8wOUjvSV/HL1KCR08nPZBPCEodzyejfw83KigPO/nyjy2Gjy7XztTPWv1Yr0GbcI6ml+HvW6cLTxh2lW8AaZIvO6x4Ds5ggC8PBzTOuBnDjtIzNK7E4m2PKkqrTurvkQ9LVtZPLfrpry+siy9UCG1uwoMpTxZUR29Y5g6u93OcjziDKA8EOSkurXP7bxASYa9qBmzvDhmx7wWLsg8ys6UvV6VBb2Dcpa8feEEO/zeQjxEgi89y98OPZRVBL2mi9Y83t/sPBuJ5bxbc5G87ZorvbEZ4jvkpnK8mdUbPU0F/Lu34Oe8w3kyPdx7Dr3eVhS8/aITvcN5srwWqyq8gkLdvDERZbw6goA8mFi5vIqRhD2l8YO8iYbFvGGNezw0x/C8nyV6PAXZtr3tF468F8LfvCnmgLyPWIq94gwgveNkiLydDsU8KKVNPOZFybyvbhW6GiUHPNbwtzvC/E88YCkdvLMkIT2oGTO9SMzSvC3YOzywAi27r/Gyu4fyrTwQYYe8s7g4PXvWxTy+RsQ6VFpevKT3Pj0jkZ68/xGxOykiMDw5+t460SkyvO2x4DxkqTQ9IbzTvL2yrDseHX28ASnmu7GQibwl6QY9BVzUPMayWzyl/Xk9dP7FurhuxLpijfs79QAIvWFLET3p6lo8+Cg3PfWDpTlLHgA9koZ0PclRMj26eYM8S2BqvBH72bzrDE+81fZyPfzeQjx2JvW8DlbIPE4KAD3Nils9ekjpu2l2db31g6U8gqiKO9GsT7w6iDu9CHgNPPxbJT0jDoG8X1+RO/pQZjwjkZ67ScYXuwNLWjpwSLo78EV4OeU0T73mdYI9mexQvRhKATwlbCS9wiyJPYslHLyVs6c8ymjnPIiAijw+Pse8K8EGvK6kiTxLYOq7R+sRPS3Yu7uCxfo8Lu/wvJFpBD1AT8G7ys4UPZjEITzkZIi7m/3KvO7hGTxfZUw8vbhnvLGc/7qzKlw9lJEzvQAYbL1DBc07avPXvKW7j7yhvpW7KSKwusYvvjykdCE8I95HvBc/Qj2xSZu9MaV8vGySLr32mlo9uTIVvZHsITwxn8G8o5mbPPWJYL01wbU8HhfCPEj8izr/ETG7b7QiPSmfEj1T18A8xh7EvC3SALyORxC9pGnivNYH7bw2hYa8ZCaXvDhmR7zU3729qnEbvYZ1S7yXTXq900smPMlX7TzuKAi9wvzPuykoazwF2ba8t1cPPenq2rxjqTS62qAIPehQiLyQ2ye4OjsSvGpwursvvgA8ipe/POGPPT0paZ47/XJau26jKLzU5fg4IbzTO8jzDjsMt/E8T9SLPKHEUD1uqWO8GAMTPb2457z0BkM7r3TQOyNbKjtC7hc8Z0iLvLbJMr0Q6l89v0ZEvP8G8jthjfu8jxEcvcUYCT2j1cq6ZT3MvLM71jq2TNA72qx+vftKqzx0gWO8VNGFPAFZn7wm+gC9G+8SPc0N+bxmAZ08VOg6PFTu9bwYAxM8BzEfPcSKrDoh/Qa84UKUPCYRNj3Oitu8vFQJPOSgNzzqKw496ng3PU+elzz1AIg92RIsPAh+SLst0gA9lajovGlwujzeXM+5e9bFPPbbjbxYCi88RqreOxwADb2Xyty7cEg6POUuFL2orco8bj37PGOYOj3YxQK9o1ItvXtZY7tIzNI8PbspvkvdTL0aZ3G8CH5IPYuudDxTipc6JGwkPFTd+7y2RpW8K8dBPHrFS708mTW9Vvm0PET/ETvq9Rk9C5qBPA5WyLz0DP679PVIPOp+8rzhQhQ8TOiLvZle9DxnSIs8IlDrvH3nP70zLR668VA3vYDNBL3zcqu86NMlvS+thjw1RNO7EnKBPEtar7yt4Dg8giuou5ocCrybLYS8ILxTPD4+Rz3mP449qnEbvfBFeD3Jw1W9OX38vJHsobwrRCQ9hl6WvEBPQTq4IZu5p4vWOxhKAb2aHAq8FKBrvep+8jwqsAw8sZbEPFasizujYyc8K8GGOrqQOL1RtUw9fgm0vDyw6rxcwDq9px/uu9Xl+LwyHKQ7RIjqvIkUojpAT8E8134UPR8u9zxXvYW8gWGcPR8ovLxEgi89HZrfvBWxZb3S1H6799sNPAGgDb1K3cw84UIUvF2EC71yWbS7FJqwvHYmdTyt4Dg+FeEePR4igbxPEDu9W6mFPEL00jx7U6i85kVJu/ADDrx7WeO8xdGaPPxbpbw9weS77qulO/HNmbwAjxM8F80evaHEUDzg8GY909T+u+00/rx/hhY85bExPb4vjzy7DZu8rvdtvJ4l+jvtoOY7W69APfADDrxuJsY4T42dPLsTVj3e3+w8b7QiPKvVeTzDiqy8o5kbvMvfjjuRb788TfkFPbAI6Dtf6Ok7My2evCE5NrxROOq8jb/uvIXQObyZ21a86BoUPDEi3zzVYtu7Sg2GvCcRtrwBWR88/5TOuVHlBb0HrgE9muYVPXaMIj0rRCQ9zXOmvD7BZD2AzQS9gjwivPJhMb0WOQc8o9XKPNNLpj1AZnY9OPSjPe6xYDsizU29esVLOphN+jyJgIq9jtDoPJDy3DyrQWK9i650vVCkUrzRL+28X18RPPaa2jx71kU9Wz2dvPMlAjz4KDc9YxvYPBWxZTzPyw69b7SiO9JR4boSj3E71N+9vO2aq7yk4Ak7qacPvY7QaLyH8i29D239vAAY7Lwt2Lu8+v0BvGIbWDzUXKC9IbYYvNmPDj2ckWK8lrliPT0tzbsYVvc8gCBpO2ntHLxU10A9mMShvHLc0bx+dRy6RSfBvE+TWDiRaYQ8t/FhPIkUorvXfhQ9NVVNvTO2djzjpnI73VxPPStK37w8Lc0800smPWwPkbzGoWG9Eo/xu4XQOT2Oyq28wF35O+NkCD3uLkO9NUTTPGA6lzwHMR+8JemGvKX9+bw8qq+7SU9wPK+FyjyOyq285j8Ovbp/Pjxskq46OCoYPdAvbbvzqB+9HiKBvHJZtLy46ya8GNNZOgTCATwpaR68y2hnvUnMUj0ERR+9ZrouPLQ1G728JFA9ABjsvISDEDrDebK7hl6WvFzG9TvA1CC7Bp2HvAXZtj2nCDk9GiUHPazmczwBpsg7e5qWvEvuRjwYVnc8TfkFO/bKE7xnZXs9DtnlPDZPErwcBki809T+u+XIZj1o3KK8F9NZvT67qT1BYDu89bkZvfnsBz0qsAy7ydRPPdqgCL1FpCO8paoVvdo0oLwTDNS7ts9tvbbJsjyR7CE6M7b2POgalDzWbZo89x34vPLek73Rvck8DxqZPEako73R7YK8j17FvBpncTz3HXg8gM2EPNVz1bwXvKS81nPVO/eUHzz09Ug81vC3vEe1HbxHu9g8IbYYPacIuTzLYiy9A719vYDNhLwPUI29KKXNuqIFhLxLWi89ebRRPdPOQz3K5Uk81wGyvK6kiTz977w7XMA6PdFA5zyfH788/FslvMjzjrxZmIu7bJhpu5f6lbtM6As9oDA5PclGc7vLYqw8x6wgPeyP7DvEBw87QNJevd2MCDyLrnS8reA4PI5NSzpjFR29iIZFPMQ9A73RvUm93lYUvUrdTLzwvB+99bmZvLp5g71XEGq8Bdk2u+IMIL0cNoG9UDhqPDyqr7tgdkY8UbVMvGQml7yRgDm8gBquOharqjzoUIi85TTPPEQFTThr/pY79QAIPZKAOT0YzR68D9OqvCt6GD1AZvY8/aKTvXlIabydiye8kW8/u6Wqlb2whco6+81IvWU9TDwLI9o7/NiHvC7ptbv7Squ8FV6BvBarqrykelw8Pm4AvRolhz1TSeQ8+8eNOzXHcL2lqhW6Ldg7PQqPQrvtF468RJlkPUSZZL2IhkU8zoQgPM6EID3rDM88k0QKPcxzJjtsmGk7MpkGPI/h4ry7JNC8qnEbvQyxtjpW/+88XVRSvGv+FrsCvf05IT9xO5rmFTwNRU69Y6/vvATIPD3RrM+8JvoAvBKPcTyfolw9uG5EvARFnzwTF5O8iYbFvHT4irvsTQI9S1ovvDo7kjwpaZ48kNsnvL41Sr3OhCC91vbyOroCXD00x3A8s6EDPWEK3jxf4i69pf15PYIrqDye0pU8BwFmvenq2rvWfpQ9F80evbO4OL2kdCG9ihpdvJUwij0u73A92iMmvVxD2LzZlcm7R/yLvLunbbw6jvY8OGZHvR/bkjt2jCI8UTIvvLhuxLk2VU28TP9APK/xsjtxX289bqMovTcZHj2OTUu68t6TPIsrV7uxSRu9lrnivdXwN7v4P+w8dfiKPHIdhb0VXgE8rOZzvQCVzrxFFkc7nPePvbMqXDxT3Xs9ZT3MPNbwt7uTl+67Z05GPewXjr0buZ47o1ItvQs01Dwdml+7BVzUvOWxsbyGpQS8TgoAvcIsCbzU5Xi78mExvT0tTbz5vE683UvVPMYk/7yjWOi8RJOpPHPtSz2k5sS7avPXu/IUCD0xC6o8cQwLPHSxHL0WRf07qa3Kupf6FT1jFR09iDmcPClpnrssi5I8MSLfvJdHPz0bcrC8+8cNvIwr1zuKkYQ9MZ9BOZ7jDzwaeOs8s6GDPCTvwTjsiTG8M6oAPXfTEL0h/Qa9gZ1LvLweFTxNfCM8k0SKvHq/EDwLmoE8PJ/wvE8QOzyNv249QvRSO4kJYzuMK9c87i7DvO2aKz06O5K7h28QPcbiFLzKUbK8H6WevNViW7tnTsa8E4m2PRv1zbv0BsO8Gt4YvHYV+7yf44+9/e+8vO2aq7yxGWK7Jn0ePWdIC73RKbI8d52cPAAjK7ymzAk8hIMQveBtSTzOB767ljbFvHLc0bwppU29tskyPVupBT1EBU0900smPFTXQD1yX++8H+yMO6T3vrxLYGo9yVftvOOgNz1W/+86QvRSPcQNyjzG4pQ8g3IWPVLGxjx5SOk8DcKwvNeEzzszLR484yPVPNZz1bupKi08XMA6vTyf8LzMqRq9xA1KvfaaWrs5iDu8lB+QPJhBBL2G4TM8sqc+PPk/bL036WQ98t6TvZGG9LvSQGc72Y+OPLNrD7ru4Rk9Cx2fPcDUIL0BKWa8jK70u7wkUDtV6Lq81JKUPeKJAr0AGOy842QIvI5HELzeVpQ8W7X7OGKN+ztUWl68mdtWvCWzEr3wwtq8xZsmPXNqLr2+L4+7UsALvNmVSTyQ26c85nUCPc8YuLx2FXu92RKsO0z/QLxwSLo80e2CPLyhMj1AYDs7RtoXPW49ezx4N+88cl/vPL64ZzuTDpa9nJHiu3PtS7xL7kY8Bm3Ou/tKq7zxUDc8MVKYOwM0pTyk5sQ8zoSgvDxdhjwbBki94fulu33nv7wiW6q80KaUPONkiLxGLfw89h14unEMC73YWZq8J44YvRhW97xiBKM7CHiNvLMqXLxkXAu9bzdAPXLnEDwKDKW8HR39vKT9+br+fZk86eraO0SCLz1rh+88R7vYvH3nv7tMBfw8EnIBPe00/rzUXCA97z89O035BT3TgZq84H5Du7ETJz27p209ea4WvW+0Ir0HMR87Vv9vvWU9zLw6iDu7fnvXu4XQOb1ih8A8hU2cvNJktDyoMCs89g8IvfFOt7xPoBm9VycDvVX1Xz051aG7C0KuPPqeNTxvg3S8hVUUO8BZ3bw1djc7APgnvL7HM7u70Cc9FyTWPJzmpDyDWJC8mCmAvej+OL19M428n+CsO6F1Urp2FIK6mPIUvZLJZTxqX6E7FyiCPJi6eTzrkRK9UNEMO2mWDLxIRvc7JTsdvFT427t5PIE8ASkbvZSTKj1IFjS8eaAzvbtrxTz6Nte818AiPAvaT70GhYm8uAoPvXk8Ab2ny8i54gopu35kAD1omYg9WfCXvOU0dL36nrW8xCCmvdofjbodFWq9MRpJvGgtfrw++XS8MbJqvZ9Lh728AZu8O2dLuGGnxLzCWg09gPapvPnYnLxq90I8dt2WPHOvH71QnO05ONidvNBqLDx/kce8o9S8u6ZqEjs4DA09X93/vO2LmjzvgXa8ff8dvTo9ADzYWEQ8XEtWvB8P8jzDI6I887CdvDGCJ715ONU7pNHAPHwyXbyny0g9pmbmvNCem7wRmyA6zaBnPapadj2cFug6iEwgPHwCGjwG6bu7uwSXO+1XK7ynZxY9CXjpPGCqQD3lNPS6HOiiPH8tFT0G6Ts9z9WGvHemq7pauay7WOxru3CD9DxgRg68pGzeux19yDvkO5w8cLiTPdJktLxKEDy8fjARuzo6hDu7OIa8/DQLvc/VBj1hD6M8CEsivalg7rreRlw9PMytvHs1Wbzb5PU8FZKsPLWneDx8mju9qTCrPFX5CzycGhQ8b1atveQ+GD3iPei8NKl2u0HAvTrwuRE8Fo8wvfFOt7ucGhS9BoUJPf39nzzPoZe8ZWuRPINYEL2GGn09z22oPGyNmDxhP+Y8lfgMPBiJOL20ejG9vTIOPe/p1DxUkP28u9CnPfOwHby32Zu9Kyk1PAElbzt5oDM7wV2JvHDo1rtHgQ49ZZ7QvMkUtjt/+aW7pTmfuxuDwDwb6547tRJTPZvpIL0SAAM8pW0OPKdj6jv52By8FMXrPMh/kDwhCfo6sbQYvZuBwjwHfmE9F7/zPASEWTxwULW8it7JvID2qbxr9Ma7h3zjvDv/7LwIe+U811jEvL739rvMp488xR2qvfLjXDsxsuo8ozybO39hhDy7a8U8Kyk1vbjWn7ta7Ru94KhCPHBQNbx9lz+9ejVZPcuqC70w7YG8v8Q3O8pEeTxqj2Q9rcCIO4d8Y73e4Xm9O88pPIWGBz1q98K87IpqPLdxPTzeFhk91P0FvaDgLDwEiAW9utOjPLcM2zw4DI081lvAvCkvLbxjoUy8DtgDvCosMbwrWXg8cFOxvFGW9TyUkyq8ryE/PH0v4bwOPLY8LI6XuzSs8ryh2rS8Mq/uPCfKSjsjPhk8K8WCvNL8VT3SZLS8/pJFvDYShT19l7+8B4KNPIAm7TxUYLq7SqhdvecufLsxtpY9MYInvAizAL0j1jo8dawjPJj1ELxQ1Ag9CHtlPeBDYLxa7Zs8Us6QPbcM27yVkK48OQmRvK8hvzyH5EE8xk3tO0aEiryZt329crKbPPWqJbxs8cq871EzPEiyAbtKqF09YBKfvGmSYL3FURm8F4y0vCU7Hb42pnq9F7z3PJ3mpD0qxNI8Y3GJu+M+GLwB9au9moS+POYx+Dwb6x69wfF+vcMjIr3WW8C87PLIO6c2I7z1EoS8Fo8wvNZbQL1IFjS86Pu8O0HAPb0ka2A9ybCDOmJDEj3AWV294qXGvItz77sIswC9it7JvOmT3rycfsY8nuMovL1i0bzSZ7A8sOsDPQuqjLiplQ09nxBwu0ZQmzzYvSY9Js3GPP0xD72sJ7c7td8Tvf39H73zsJ06C6qMPLtoSb09AJ08s30tPOIKqTxcT4K9s30tvMqpW7103OY8yK9TPY/WhTwjbtw8xbXLOl2wuLwRy+O9THUePK6Jnb2O0lk8ZQavvbUTAz2BI/G8gfOtPIApab1Awzk8UAFQPDR5szyh2jQ9D2n9PHg+TT1omYi8xLjHPBKYpLzfR4y9EwADPQ9p/TyiB/w64EBkPYtz77y5A+e8BFQWPbgKD70qxNI8O2dLPotzbz0Wv/O7X0JivUSKgj3Ww568EpgkPVXFHDyR0A29DtgDvZLJ5by3CV+95gQxPFq5rDsyfys7sbcUvJIxRL05CGE83uF5PVZaQryEhVe8HBjmvAdOnjxy4l489d4UvRmGvDuQ04m8UZZ1PLhuwTyE7bW6OgYVvQTvMzspLy09nhNsOyVsED2vHsM8D9WHPFwej7wjcog94UEUPWYDMz1Z8Jc8MueJPERWE7wM11O8ff+dvAdRmrtrxAO85J/OPFAB0DvvuZE9lo0yuyZplLvXwCK9IHRUPCPWurt5oDO9fjARPZi6eTtlnwA9sLPoPNnq7TvaHw09ZAmru0K9QbmahD69utOjPOuN5rpX7+c8hVUUvNq3Lj37y/y711hEvR8Sbjyib9o8Hw9yvHwyXT29Mo48jm13vM/VBr0plws87+nUvITtNbxQmXE8JdBCOxYn0rznmVa8srDsPP6SxTwfd1A8vABrvbzNqzy3Cd+5xR2qOTcLXb0icdg6GR7ePKoqs7yRNMC7hIVXu/s3h72xGMu8GCUGvISJA72fSIs7s7GcvCLZtrwTMMY7J8rKvIAqGT0BjU28XUwGPaPUPDoXKIK8xR2qPMwLwrwwuRK9WSSHPNi9Jr3SzJK7qiozvLw4hrrxthW7Lb+KPDcLXb0Qnpy6lJMqu7G0GDwUlSi8C6qMPAH1K7yDIPW7/S1jvAbpO7xVXT49zAvCPJmHOr1Tk/m7YKpAvcwOPjyPZ388GSKKudTGGrxpkuC8BFSWPB4WGjyic4Y85HIHvQCQybz0raE5ff+dvLN9LbwJSCY9wr4/veeWWryoyMw7y0H9vB4Wmrw325k7MO0Bu0ZQG7y8NYo93hkVvaiYibw+yTG9FZKsPWI86rzmBDG8RrfJPCM+Gb0XKAI8oEUPvIYa/bquiR09AJBJPa0kOz3oLny8lo2yupsdkLwM19M8KV9wvBeMtDwHTh69fZc/PXDoVj2ib9q7QMO5vKVtjrsnMqk8LrjivDDtAb1/kcc9bYnsvBXGG72P1gU9MRrJvH0zDT0U/YY8gPapPGtcJbzZ6u28fMp+PIp6l7vQaqw85gSxu7UTAzybIIw8d9oau3YRBr2h2jS9I9Y6PT9iAzyGGn29VJB9vPnR9DwgdNQ84g0lPWuQlD3u7FC8X0LivHGA+LlxTTm8S3iavO2/Cb1T/4O8VPyHPLoHkzz13eQ89K2hvPLniL1oLf67pzMnvTOvbjsDitG8SavZPKXRQD1W+Qs92e6Zu+xaJ70e4qq77u9MPU8EzDtauSw9LrvePMkUNjwHhQm8XkkKvQeFCbypLa88fS9hvC4gQTiUx5m77fLIPFT8B7x/LRU9Pvl0PEVP67zV+gm8BlEaveljG7wrXHS8MxTRPE9sqjt41m69ZDZyvaktr7zfq748NHkzvYQg9bxU+Fu9yK/TO/0t4zyLQ6y9/DPbvKjIzDska2A7rFd6PChmmLxjPZo7oXLWvDGCpzuBJm09VsIgvOvFAT0L3Us8YKrAOheMNLziDSU9IkGVPKI/lzwE7Dc9V/LjPBLPj70maZQ9Nwvdu8JW4Ttvg3Q8tKp0PUO6Rb3dTYS7yH+Qu1ZdPjxomYg73kbcvGliHb2Ieee87oTyOQjmP7wtu965oXVSvFkkh7znZhe96mCfPNxQADxEIqQ6aGiVu3JKvTzRz469G4NAPHoFFj2CW4w8C3kZueyN5jxJEzg7HhYaPKZmZjwUyRc8SLKBvQNXEr2WJdQ7VfjbupPG6bpHgQ69NQ7ZvGuMaDwiQZU8XE8CvVxL1ryL20098H76u7wBG7uhQhO90vxVPbsEF7zDu8M8OdUhPFT4W7zDu8O8CnmZvFkkh7vqYJ88Uf5TPRcogjx2EYa918MevImxArwxsmo95p2CvMQjojvV+gk8vGXNvKktrzySNEA818Oeu9TGGr0efUi6ACjrPO7vzLw6OoS9MLVmvbbcF72rv9g8O2dLPUx1nrwHTp45OdWhPIHzrbteFZs8YQ+jPGiV3DwZtv88CeDHvK+6EL2aIIy7XOP3vCF4gDxUyJg8dawjPT7JsbyMqI493k2EvbsEFz2cToO8RR8ovW6G8L1kNvI8BIdVPKrC1Lu2EAe83hkVPLPli7304RC9FidSO7rTI70z5I08V/LjPNtM1Dy23Jc84ENgPMivUz3mBDG8Yz2avO7s0LzT+Vk9SqhdOqIK+Lxvg/S7V/JjvMYdqjotI707vsczvdACTjvMpw+8C6qMvMh/ED1jOe68ZZ8AvXqdNz0xgic9OQVlPB5Kibo7N4g8ONidPH7/HTw1qfa8sYCpO8RQabzuhPI82fGVPWE/5jwwuRK96/VEvHk41by5BmM9EswTvCiahzxiPOo8CH+RPWGnRDhMpWG7fAIaPDvPqbxiQxK9MxTRvLIYSzu9yi+8KGYYPH4wkb11RMU8lo2yPGVrEb0KeZk7CXyVPJ3mpL2FVZQ7PskxPRwYZjwfR428P2HTPBm2/7ukaWI75AetPNi9Jr3RAk680J4bvfo507uk0UC8/DQLPadj6jzSzJI8fmQAvfUSBDxpkuC8VyeDveyK6rx1REU6AfUrvYh5ZzzvUbO8ps7EucxzID2SNEA8QF5XvBuDQL2iPxe9BITZvDCFIz09NIw8T6AZvQhLojzU9l08C3XtPKhkGj04DI07T59pu5GcnrzdSdi8P8Y1PQdOHr2K3sk8X0mKO2xZKT0M2s88KiwxvG5WLTzwfvo7DqQUPfUShLwtixs91foJPOZpEz19L+E8yq0HPd8THTznZpe8THUevb9gBTt9l7+8Ge6avDC5Ej0CIvO8HBhmPArdS72Tlqa8Hn1IPEoQPL3B8f48XLM0O68hPzyfFJw8nOmgPfbbGDxW9d+7rMMEvFTIGL2WjbI89qcpvKebhT3Gggy9Tm8mOwJaDj1BwD28ztiCumr6vjrKEbo8kpkivVxL1rveFpm8ep03vHkIkjzz5Iy8MYInPOM6bDk7Auk8jECwPJSTKj2SyeW7gClpvfWqJT0fR408wiaePHHphj2E7TU91lvAvOWc0jzLeZi6QMM5PTbeFbmws2g8ENFbvP9iArw7A5k67fLIPLQS07xU+Nu7j9aFPGGnxDzbtLK7CUimuuQHrTuSMcQ7MYKnvPyYvbwefUi8FfoKvfyYPTz5pK27SK5VPAD4JzyAjku95J9OvHLmCr0Vxhu9XE+Cu7gKjzxv7s68pW2OvD8ulDzth247JTghvb4vkjxoZRm8oN0wvEFcizznZpc9WlHOO1BprrzTYTg79qepO0Dz/Drvgfa8RlCbPHGAeLvFHao8odq0PLcMW72MqI48v/T6O7IYSzy5Co86THWePNBqLL13piu71MaaPK28XLvaHw09OT2APHXgEr1NUfY8UX+UO9EPYL1rs9u8sUEEuNgLnjseagc9azRxvDw0jTyM+io8IzrSvBEKazxtr488aoHxOqgqprsx0k8981haPVcC37ysEbs8K7elvFQddb0TOAm9tSiZvMMoN7wDVSy8FaLUO4tJVrzQ3fU8Bdjsu+sLRrwecH48k5ZqvbgNAz0jiX09RJoWPEXMAL0T79Q7vCz5vEGct7yMyus8amIFvfQ7mbo0T5k9DCNWvJ34p7x+lBe9pMSmvFxLnbwDpFe7ksYpu3jhDTroVpu8ZkkGPeqKMLyExou9YmScPHOxRL2RE6q8u6k4vRXSE70JPuy8ynOgPDy1IjqdyGi7xlzMvNSlnjykXAa9GbmoPAYK17xOMgq9ly7UPP7sAbxU5ZO9zHVLPIoX7LzzJnA8npAHvYHILL10Mtq8N2xkPIL6Fr1YNEk8QwCMu25JmrzBdbe80pB1vFNLCb1A62I8o5K8u1VNNDxJGza9LZwPPWpihT1YS5M6DKRrvd1zSL1Og2C9a+OavIMsgbmo+uY80A01PairOz11ZEQ97YxbPBvtPbw/aCK8qMKFPeK8hrxB6+I8p6mQvBA6Kj2K3wo9/CANvftWwzxFNCG8kGLVPNYoX734by68ykPhvHZHAz3SQUo84guyPO1vmjzMp7W8/opYPGkA3LtIaLY8ZOdcO9kNyTuIlCs8QRsivcGMAT3fdXO8Ggp/PNxxnblslpq8xz8LPTAfUD3rOwW9xPIAvP4L7jxZ/pI70ViUPOoJG73x7g4919kzvZ9DB7z58MM6xPIAPReeCD3P28q8YIHdu65FUDsU8X89A9SWPOKMRz1kF5y8di6Ou+sLRrxzscQ8BNbBvJGrCT3XcRM9pBNSvCWeJj3qirC8xw9MPZCSlD0Ah4y7Oh/kvGvjGj2+3/g8ha9BvaUVfbyBeYE861rxPIXfAD3p17C7dGIZPPBxRbzoJty8rBE7PJX6PryE/mw7qw8QPU4yiryrrWa8vPQXvIVgFrvUpR49TAAgvceONr0Huyu8j6/VOzc0A7wB8Ve8g0vtO4XfgLxBTQy9rBG7vOM9nLuSFVW8dpauurBH+7zaP7O7Kzg7Pc7yFL1IaDa8ZJgxPWLlsbxqYgW7/CCNvOhWmzw8tSI8yMCgvN8myLzX2bO7W2hevIAVLT3tP9s8Nmq5vF5NSL3mQfI8f+VtuzuDOLyU+BO9KNK7vUtNID1lmlw88HFFvRxu07xUHfU8di6OOrNcJLy+Dzg8NE8ZPDIEurs70uM8gJbCPEue9jwsudA8/QnDO+ckMT2nqRA6cn/aPAq5irnB9CE8dDLaPCxqJb00t7m9YQJzvMMoN7w9Nji9QBsiPI2tKj05tRg9ZcqbOxbUvjtTS4k8+iTZvPm6jbzJkGG8CO2VO5hgPjuNrSo8V4HJOhXriDy7Kk67HnD+PNmMMz1eTci8w6ehukmaoDzTc7S6Umr1vGHjBrwWI2q8oxEnPBDSiT2m9hC916n0u4rIwLwgHQe8wHOMu3MwLzztb5q659UFvS61hLx7f+48CT5sPJ34Jz1FzIA97e4EPc0oyzo3nCO85nPcPLYRzzw95wy+S841ujIbhDxL63Y8DlfrPM1Yijy7qTi9stsOvcPAFr1plpA9tHUZPLsqTr3gCYe9i5IKvLEqOjxr4xq7HVESPEWzCz3PjJ+85D9HOwNVrLy4jhi9gywBPes7Bb05TyM992+uvLWQOT2mR+c7a7PbvMQq4juyeeW8hd8APK2S0Dt2Zm+8TgLLO2Tn3LxYg3S86CbcvPMJr7xxFQ87M4VPPYL6lj2eeb07aTCbOyOJ/Tvx1Rm9LrUEPd6lMj016SO9RcyAvOTwm7ydxj28ofaGvL1e47z5uo29TACgPE6DYDz4oRg8lfq+PCwCBT2ZMP87j/iJvTofZDwBIZe7aUmQOl5NyDmulHu8LQIFPODXHL0I7RW9WLOzPH/jQjzHD0w8WALfOxrrEr3ZjLO8UGafvdkkk7w5aBg8Ps6XvXr8rTug3RE8VR11PEjpS72wKI+8RYPMvG3n8DyWLCm9AaCBPeDZRz53yBg9mH3/vAPti73ijEc9sEd7O/yIrTw6H2S8MgQ6PCHW/bsqNhC9CW6rvBeeiLr7hoI8LOkPvcrE9jyaYum70wuUPIYw1zwaBIi8IjgnPF8wB72jESc91KWeO17+nL3XqXS8ykG2uWyWmj0IPEE7CW6rOyu3Jb2ir/25QwAMvSZuZzxBbPi7QBuivFQd9bwvnjq9uypOPZYsqTw2ajk7IYUnvLMsZTy5xnk74w1dvFTlk7xWsYg7x442uzW5ZDzUpR66LpwPvEIfeL38VsO6N2o5vNJxCb0U8X+7AfHXvOM9HDwQOiq8TU9LPLPdubtolpC8UAR2PJCSlDz/vEK9GYlpvQVXV7ppr4U99u4YPMBDzTvkP0c93IqSPNZYnrxggV08QmYBPXH8mbx9Mu48vxHjvDm1GL3tvkW90/KevNqMM7w8hWO8BKTXukZmizyg3ZE68FSEvOrZWz3g1xw9ji7AvMpzoLxYZAg9t0O5uxWiVDz8iC29amKFPXF9LzwHUwu9K4dmvFXOSTyiYNK8uEXkvBzvaL1ezt28dOMuPI1Fir3+O628ly5UPTsCo7wlbuc89DsZvOqKsDxSMhQ8sPhPu2j+sDzgWLI7PzhjvQHxVz0iCGg8SDh3PKKQETyAlkI8ZhvyPGHKkT0Hi+y8GFd/usRaIT1lmtw8KlX8vKgqpjxcS528l14TvUEbIr1UnN884oqcu8bdYbzlCZE97e6EPAdsgDyvxuW8Wjb0vCii/Lrn9PE8xlzMu+nXsLxhs0c8zvKUPJXKf7zM9uA66YgFPZGUPzyaE748UX8UPe7wr7xZ5Z08oV6nPOSO8rzsjNu8kZQ/veXAXLx/5W29B1MLPWqBcbzf1xw8k0e/vD/pNz104668hC6sOvnTAj0f1FK8/NdYPEZmC73uwPC8YbPHPBk6vjx3mFk9lPiTvPptjb3RpZQ98dWZO8Mot7yPMGs8sPjPOzc6ejvfJki7T+WJPBA6Kr1lmty8WmYzPU7QYLxmG3K8kOG/Pa1DJb1s5UW8epSNOvY9RDvZXPQ6a/yPPIrfijp+40K9AaABPUPnljs1gQM8ATqMPMBaF72pXJC8Yn2Ru8ynNT26p405iBVBvZ+rJz1qsbA8KlV8vU3Q4LqsYOa8hnkLvHaWLr2udY+6c8iOOusLRr2N/FW8AHDCPLRez7zhipy8IjinPHkZb70KBgu8AyPCOqWUZ71yr5k7vFw4uy4dJTxXMp67PTa4vN2jhzzGXMw8HB8oPS2cDzvqIpC8Urf1vHJ/2jxof0Y9FoWTPE6znzwQCus7vFw4Pcg/i7q1D6S8g/xBPezVjzyiYNI6+PDDu2mvhT2kxKa8AO+sPPY9xDpaZjM9uHUjOx/U0jxXAt883j0SvZOWaj10Ypk7KQSmvE7Q4Lzdowe8NLe5PB2gPb17Lhi9R3+AvWJknLwku2c86tnbOxRwar0CI8I8yRH3vJITqruVyv+86CbcPLL6eryjEae8pUW8PB/U0rvfp9072AsevYzK67wMUxU8EQrrPBQhPzzHXve8Z03cPEWzC7wjahG94lrdPBoECLzy10Q8e39uvegm3D25xvm8UDQ1vLaS5LysETs7XWQSvcMot7y2Ec86zgsKvDU4TzylRby8fbHYuwJybb3dJB08wyi3vdzASLy/2QE9CnDWvHEVj7vKcyA903O0vbbCIz3uiA+9ql47vcF1t7zHjjY8n0MHu3ZmbzxOs5+8amKFPCU2Br1MAKC7kZQ/ukAbIjyoyHw8+KEYPJ+rp7tiZJy8keNqPXWUA73wJEW9OJ7OPKJg0rtsFQU9OM4Nvb7AjD2ZMP+7a2QwvL2OorzKC4C8azTxvDJTZT21D6S8f60MvVoXCD2F3wC9K7clvYexbDwQOqq8MQIPPWv8j7ww0KQ8v0EiPdpcdDwxUTo93XNIPQBuF7x0AHC8TwT2PJrj/jz6bY26v9kBvfwgjb0eIVO9WmYzPetacTtb58g8m5RTPE1RdryhXie9+G+uOzDQpDxOMgq9Shu2Oz9qTb26QRi9x153PIdiwbukE9K8v0EiPE/MFDwlnia9fWItPBoK/7yr3aU8I+smPbOrTzw+t829ZLXyPFFoyrv+ilg8UWjKvCUdET3NKMu8JZ4mvAQGAT3OWjW9z9vKvNxxnTxz4QO8xKnMvGs0cT2+33g81Sa0udanyTzuwPA8lcjUPCzpD7sLosA7svr6PI1967sS7Sk83fRdvCZuZ7y8q2M8+PDDvFG3db1zsUQ9aoHxvBg4E7xfF5I9GAhUO2QXHDxnzEa8qi58vEfnoDxZ5Z08XzCHPAvx6zxve4Q7nZb+uzWBAzw0t7k8KgZRveM9nLy3E3q7MQIPPQdsAD0OV+u7YuUxvELOoTwSvWq8zShLPZrhU71R5zS9A6TXvO1vmrz/vMK856XGuxKFibw95wy8+G+uurWQOTuCmG28kZS/PB1Rkrx1lAM72j+zO8WpTD1kMJG8i8hAvfOImTublNO7IghoPf4L7rwj0IY7/VhuvMqMFbxdzLK8budwtz0GeT3KC4A7IzpSujAfUL2SEyq89r7ZvEa1Nr0/OOO8q9/QvNDddb1uGds8KZyFvUPnlrxMACA9TYE1Oy2cjzshh1K9uMROPAPUFr0zNqS7v0EiPRLtKb3aXHQ9F54IPNzASDzFcxY8AIeMPH/lbTzsvJq89r7ZvBQhPz2dxj28u9sivQjtlTww0CQ9scKZOWuzWzyHsWw8LLnQOzc0gzzwc3C8tQ+kPCjSu7mMe8A8ZkmGPb4POD3yJnC9YbPHPF9/sr0bvX47aUmQO0ZNlrx4+gI9VMwevLAoDz1Vzkm9gcgsO2M0Xbz+Oy296dewPLrAAjr+C+679LqDvEwAoDz6JNk8q9/QvLz0l7w8NI087r7FOjIEOrzrirA9NLc5vaMRpzwCU4G78FSEO3H8mbyeSf68MlPlvDm1GL0ku+e4kasJPasPEDzdJB29UDQ1vcMotzwMI9a7P5oMPMCS+DzIwKA8wyi3vFQd9byNe8A9o+HnPK1DpTz5uo09OxuYPf7sATmbRSg9S552PWUZRz1QZh89Qs6hOkxPyzwV0pO9/gvuOgi91jxnfZs7aK8FvRAK67uHYsG85L6xuznt+TwqVXw8QmaBuqpeuzx5lA29/boXPUSalr1Js5U7MgS6Op5JfrvWKN86jUWKvG97BDxxTfC8E+/UvF7+nDy9DQ09tSgZuzlPo7xrs1s92YyzPExPS71IOHe8ztkfvACHjDw954w8P+m3PIR9Vzzl8Js6dZQDPDOFz7pTG0o93IqSvD5oojwt6zo58KMvu9DddTw1gYO8cEvFPBoK/zsHbIA80kHKuxy3h7ywd7q8xD+BPdeKiLnijEc98KOvO4rfij1Vzsm6DNIxPYldhTxIF4S9p1WSvNw4Lrwq1g09rdyMPGxBUz3UyYm7QnizPFtL7Ly+xqQ7X4gWPf/DPLxNz8k8Ct64POlGIz2UazK9DzTYPJxsKbyTOp+8tD9iPEYji7vPW8y8qqsxut51EDzMThY7Xd0GPYBolTtYuDI8B9ECPMNB0LySRqY8bEHTOb7GJD3Tseu8fWjNvJRrMr0/IpS8mUcdPT5frrxnlnu838tnPZxsqbyz6Yq7eLAHvTG/5jto6zO9svWRPITKg7yAH6w743Y/vbvqgT3X7hU84+TsvCU3PTxOJIK8fiszOniMYr32/9+8aa4ZvdkfKbyLCBW986lAvBg1F7sPiRA9Ea6cvCBbUjtarCs8GH6AvWHqPD2ybw498bVHvQuhHr1sQVO93iynuwt9eToaETq9eMn8vPSduTunMe28uq0fvD2cyDzXynC8faVnvRaKhzuc2lY6AVf2O5p4sLvuIg69HciYuxodQTyB4pE8v6J/vNt1yLyXkD69N/33vKu3gLwPZWu7JE8TPXcqPD0gHjg9n1QbPVfQCDw+zds8Yt41vRMQwzwrUAq9EFlkPOibE7yz6Qo9JTe9PJUumDxu+LE8B2T0vBcpSD3qIn690LAEO93X7jwtRIM8eMn8PMB9AzzxI3U9TEn+vH1oTbwXu5q8GDWXO51gIjwhKge96gkJPHftIb2tYpA8yn/hvLTRtDyfMPY76fFqvDt3vDsgsIo9afcCPDQ5K7wxv+Y8QnizPGsQwLqXkD693KbbPHdbz7tlcW88DEBfPLsPxjwBxAQ9jadVPDUtJDwy1wQ82u98PYi/4zuNCfw821CEuzMIGD3Brha9dmdWPIsIFb1jD0k9W2+RO8McjL1KwpM8+22dvG6KhD2t0D09SufXvP3Pw7zDHIw8xooBPUdUHr2Np1W9XKCkO2zTJT1SVnw90B6yuyCwijwGxbO8+IWrOl2UnbxSqzS6Y6EbPaNtoDysn6q8NKfYu4Q4MTxXY/q7ZsanPGFYar2y9ZE8/4aiOjRRAT1XMuc7VOiWvDG/5rygha6875A7vLbdg7yCEyU9u33zvFxjCr223YM8TEn+uAdkdLz1C2e9fTe6OtNPDT2oz4689zDzO7Yz27xDqcY7vyjLPKvcxDudqQs8NKfYvP1hFrywJl08EYr3PCdcybuZtcq8Tc9JPGPqhDxx4KO8SUgXveMIEr3QHrK6ptsVvcivDb1gJ1e9OMDdPKl6njxLtgy9s0tpPEttIz2PagM8goHSO2f3Oj1Gnb+6sw5PPDbMZLxHnQc9+udRPFtLbD0gHjg8+ufRvDghHbyEpl680U/FvWWVFDtYSoU8G3/nvBLfrzxwWtg8EJb+PNSlZLzijpW8ZGQBvdm+ab2NLSG9y9QZvTHw+by3iBM8rdyMPDePSrzbBxs8tHx8PNNDvjyXU6Q62webvJrmXTtdlJ08Ps1bO57/Yr3C36m8mZCGO5T9hDparKs9CnALvRe7GjxMDOS8CCfaPJM6H7vMc9o82VC8uyNDxLw7CQ+8iPz9vABKiLwSTd08faVnPdX6HD3fjs071r0CvZJ3uTxYSoU8qEkLvoYsKrzSgNi7gB+sPJK0UzxMSf48jyGavX83grvV1ve8AvUXPfAWhzsgHji952oAvIXXcTuVLhg9lQpzvCw4tLsHiBk91nSZu33W+jstaUe9geIRPDjA3TxzsPe838vnPDjA3TyekTU8EH0JPTG/Zry46jm86xZ3vaNtID3UyQk8QbVNvPtJ+DyDUAe9MfD5vBJNXb39PXE8Ya2iPEEjez15KoQ9+XmkPLmtH71b3T43g+P4u9/8+jx9aE09qCXmvPwMXjxz1By9iFG2PDmDQ7wFcHu9Jis2vSCMZTz5wo08e7FuPGf3urpdcPg8Ib34O8ha1buIv+O8NfwQvHXIlbs4IR280LAEPRZm4rvlCXm83u+MvWmumTzcpts8j/30O/LBFjt9Bie9iPx9vCBbUr22Dhe8F7uavDFdiL0vXUA9TpIvPMNB0DzDQdC8RNpZuzt3PLw3aoY7ZwMKvMsdAz3JTk4+23VIPTPkcrydC2q9xTVJvOsWdzwxv2Y9r4ecPFXQQDs0gpS8bAQ5vRaKB70n7hu72u/8OxMQQ71tEIg7YCdXvLQ/4jx9+p88mUcdvH69hTwg7SS9IO0kPemPDDxSq7S9gtYKvU3PSbyxV3A9Z7ogO/kkbDyt0D29BXD7vDAgJrw12Gs76xZ3OwbFs7zEBDa8ukxgvUWdPz3OvIs7jKdVu+jAVzwS3y89WLgyPDpGqbw7dzy8Z/c6PL+6Hb3nagA9l5wNu2FY6jsspmG9x5dvvFeHHzxHMHm98wqAvfVgn7wDS2888bXHvOZesTyJgsm4kFKtvEAWDT1YSoW7/WGWvZiEN73G+K68JaXqPE4AXTwkdNc898JFPVdj+jyBHyy9xvguPc02QD0b1B+9SZGAuyX6Ir0LoR67fdb6vAYzYbxGzlI8Yon9vBkdQb2OXrQ8rA3YPG+7F70fmOw8ukzgO2+7F70WBDy8HmdZPDbMZLytkyM9ifD2vJbN2DxnZeg8+M6UvFSfLb13mOk8Bd2JvKfbFTwjHgC9S20jvAC4NT0//m69n8LIO5M6Hz0xv+a8BtG6Oj2cSL2H7w+7ybz7O7mtnzzUN7c8wYrxPBjsLb2wSgI9yFrVPO0KcLzTsWs8+udROiG9+Dw5g0M9Ps1bO0BTJz2Kjpg7UIYovMoRtLwrB6E8HaTzugbFM70XKci93l26O3oSLjvsa6+7ftZ6Pfb/3zva1gc9HvmruzJFsrwCPgG9D7ojPHJ/5Dxxr5C7TDCJPPwMXjtmDxE86CEXu4w5qDyaCgO8JzeFPPcjBbxHMPm8S22jPNzKADsqEyi8RzB5vUOpRr1NYZy8d7yOvfuqNzzYHym98BaHPM6k7bt2+ag8S7aMvFaTprxSGeK8Ceo/vVf1TDr6GOW8B2T0vORqOD1W3A89KlyRPWjrM71dAsu8uLmmPBWWDr2hSBS8jdhounkqhDz0bKY8MFG5PL6JCjy/KEu9fMkMvQYz4TwkdNe8xK99uwFX9j2LdkK9CLksvJ6Rtbyjqro79J05vP9Vjzyt0L08SSRyvSfK9jyLCBU9Gh1BPFnpxTz5SBG7q0pyuzGCzDy3iBM9JTe9OSKA3ryDB5681KVku4CNWb2snyq7gweevF0CS7xB8ue8bEFTuxhaWz3ijpW9Cq0lvZMW+jyGdZO8jszhO1i4MrvXyvC8zAWtvLl8DLoEoKe8vwOHvErn17r/hqI7vvc3vLf2QDyjwhC8BKCnPK3cjDz0bKY7fiuzPNVDhjvzF+486YM9PVXQwDyIUTY8JzeFvLdkbj3Ki2i8fWhNvP7bkj1qHEc9JfoiPehSqjpQSY49l1OkvHqkgLy5WGe82tYHPWpN2rsS3y89ZQNCPfqqN72fwkg9dZeCPGhZ4bwkBiq9yhE0vfpV/zwK3ji8bjXMO8lOTrxGYCU8Z/e6Ort98zmotzi9wOuwvO+QO7wB6Ui8wFlevY3Y6Dsxv+Y7gVC/vHDsqrqzoCG8qj0EPe4iDr35SJG8YLmpO336Hz19+h89IIxlvZvm3TrX7pW89Tz6vBRBVjwqE6i8QZCJPAUCTr3oUqo9NKdYvD/+bjwW+LS843Y/O0iFMb2Ajdm8dkISPAuhnrwYWts8L11AvaI8Db2TOh+9BKCnu6wNWL3TsWu7mMHRPERsLDwosYG8vyhLPdiNVr0nXEk91Dc3vVCGKLxslou8/pKpvHQFMLyRg8A8senCvDCO0zuqPQS90oBYvWTSLrwm1v28nLWSPA2Vlzz5JOy7AqyuvLYOFz0CGty8IB64vMNB0DyJgsm8lNnfvPFHmr3jCJI907HrvEkk8ruQm5Y7VpMmvT5frrwIuSw9KVBCvfu2Bry5ifo82RMivDBRubylz0a8kzqfvANvlDy8QFk8K1AKPUwwCT2Jgkm7io4YPQqtJT3C36k8Y312u7OgIT2XkL67qhnfuxmLbr0KcIu9cR0+vKDOlz276gG8A28UPWQbmLsVlo48NXYNvI3Y6Lw0ghS8RQvtvPtJ+Lys6BO90hIrvPlIkTwASgi74FGzvHgetbyDBx681r0CvC1EAz3jdr+7wk3XO1KrtLvxI/U6faXnvfpV/zu46jk9s+kKPeq00Lyjtgk9XHx/vC51Fr0iErE85Qn5vLMOz7yzoKG63nUQO8/tnryfwkg9FmZiPLh8jLtcP+U75NjlPNNDPjwkBqo7BA5VPenx6jxOJAI8rT5rPLPdO7wHiBm90U/FOzQ5q7xUn629A0vvPIKBUjyo9FI83iynPQbFMz3rg4U9B2T0u/cwc7wfvJE7cx2GOtw4Lj3v/ug8XlcDOyCwCjwgjOU7AhpcO1f1TLwy1wS9ZQPCPMqjhrwAY/276Y+MumAn17wn7ps8GhG6PL1xbD37toa9K3XOvEu2DL0qE6i8952BvQUCTjw75em84kUsvb0DPz2/uh08YRvQvHWXgjulz8a8c0LKPJlHHbo45II99QvnO/VgH73cyoC8gkS4PMU1yTya5l28lNlfPICNWbxyEbc7bTXMOh8qv7rG+C49G0JNu03PybxDqUa9Z5b7O4hRtrzLHQO9R8JLvUm2xLwwICa9iwgVPZecDb2pep48bceePAHEBLtIhbE8zE4WvR+8ETxrfu28NszkO3KjCTx6Ei69PqgXPXb5KLwgsAo82GiSOxTTqDqZI/g8N2oGPFBJDr1HMPk8HvkrvfMKAL0STd087GsvPU4AXTxbGlm8LpraPJUK87yrtwA9WenFvNm+6TuN2Gi8FqP8PNpEtT0zCBg95PyKvAHpSDzs/YG9OrRWPJWcRbkumtq5mIQ3PGMPSbxWk6Y8VA3bvLgn1LwEoKc7+STsu0apDj0gW1I6O3c8O6J5p7z5wg28Ea6cPIFcDr1nlns7S6o9uT13BD0xFJ87nakLPYaa17xYJmA8ppKsvPfCRbykDOG6iRQcvREcyjkwUbm9JmhQuumPjDz2/189AXubvNm+abyaeLA8E37wPCU3PTz5eaQ78zuTPD0uG710c128V/VMPQdk9Lt9pec8SbbEO2Ktoj2HXT08QJwQPC3XdD0Bexs9WEqFPOUtHj154Zo84+RsvYsIlTzuX6g8goHSvP/DPL3HKUK8n1QbvXvVEztqHEc9JfoiPVI9B7us6BM8MCCmvO0ulbtoWWG92R+pO4cgozzd1+67elsXPA802Lz3VBi8MFG5OwvqBzvqtFA9xynCuo9qgzzSWxS9F5d1PWN99jw4UjC9xccbPZm1yrwsOLQ7KwchvQQOVT0RHEo9fHTUvDDjCz1Qz5G8h+8PPR5CFb08a7U8XA5SvFfQiDpYuLI8f1zGvHU2wzy+9zc8OMBdOvqqtzx37aG7xAQ2Oz0K9jzVaEo7bccePcN+6jwe+Ss9V5MmvO7/Aj1J/+M8E7M1vV8nJbzlTJq8LVFMPDEIVrzp4Xc8JBmHPUVjwbs1ykW9vdCyvDCU97s0KgI8WX14vO8yLT3X4ic9yoxXvO/ZtTtm2o28mFAqvbmNh7vdmTG8o749PMkYeb15Rne87zKtvG1yD71JzLk7ARo6O0RIWrxfdba8UUUzPaJK3zwndPW8qM4+u2oJl731XRU87YukvMAliTz/V0o8IjFKvYWcRz3XdQ69Q9T7vAQP1Lzh3Nw71qHzvP8koL2qIxU7L4cavOtwvbzl34A9Ej9XvV2AHL3u/wI9+Pk3vEbXnzukMpy9Js1svP9XSr1q40m8p/QLvUm4l725jQc97EpwvOPEmbx1HjO7Ssw5uh/PljzG8DS9YmrQPJXnMb0Bpls84XYIvQnsqryFz3G8kn65PFYiir3PnFg81FNivPgsYj3SBdE8b/NKO5wf97wwlHc8bJEXPEYKyjwS2QK8okrfvGW4Yb1zXEM82IkwPYv62bxGMBe90mUNvSP+n7hwZ6m8eUb3PK8zFj2jSl88AvRsPZ46Xjy4TNO8G7hQvHhzib0Qvhs9swmoO5rRZT1l+ZU8byb1O5c1Qz1gT2k7OGboO1ISibuMlAW89QQeOjGigbvELkW9DEEBvGKderwqA7s79ek2PZi2/rszfDQ8PBCVPN9boTrmhom8RG6nuqRlxjzXdQ68laZ9u5zszLz602q8z/VPvLyPfj0B54+7KEiQu9LSJr3NGx29q5CuPZPMSrtpb2s8zKc+uyweIj0Kxl29quklPYajDLxQ0dQ8JAt9PG8m9TzICxw9mp67PA2Pkj3DjoE7oCKbPOwXRr20CSg8zRsdOnHNfTyxIeu8tVe5OwptZjwzIz29IrAOPXfMgLwvusQ6uH/9PEYKSr0B5w+9Wz/oPBXOHL2ftYG9S6bsvJc8CLymE5Q86lwbO5Kx4zs0KoK6gqctvfCAPjwOcAq99LYMPQ2PEryznI476QdFvGIjBLx0qlS8I2T0OlDR1DtygpC8tgWHvP6wQTwJJpo8/16POxccrrwZRPK8qdUDvdIF0TuujI28VGCaO0DSBL3TDBY8ujQQvdgcF701/W88YcNHvWOrhDwAzCg9gnSDvEW8uLykxQK9G/kEPZ+1gT0WqM+8VDpNOzIPmzyftYG8mvcyPQBzsbxqsJ87CpMzuverpjxfAdg8I9jSPL9Rbrx3n+68whNevBXbebwwLqO8P8T6vJOZoDz/MX09MJR3u7nz2zzvpgu9t6XKvNNGhTzpB0U8FI3oPMiegrwN/Cu9MC6jPUYKyjxFY8E8wCUJvXCaU71ikB29mirduzvCg73jV4C9PEO/Oy2SgLkauFA9Est4PF2zxjtytbq7YxHZvMV81juanju8LxqBPMeXvbxTk0S91FNiuYX8Az0zVmc6t3IgvaocUD3whwM9/op0vArsKjyJKw26EfgKPXm6VT2049q8bMuGPH4jzrxPUBk7ZSxAPYEzz7y3yxc9inmePLelSjwUjWi8DjabPL/rmbxGCsq8coIQvXChmDu1V7m8cuhkPD4d8jyftYE92tfBu2k8wbwyr968pGXGPFfJEr4ZRHK9OACUu2GQnTxtco+83PKoO92ZsbwWqM+6svUFvWagnjyvMxa9lzVDvRu/lbxxQdy8DqM0vS341DyU0w88UTGRvKO+vbwH2Ii8RZbru9iJsLx+ZAK8r6AvvYDlvbzO/BS9x5e9u9duSbyQClu90N2MPCHjuL3KJgM7ufNbPDmnnLxzYwi9DqM0vIp5HrvA+PY7aLsFvUexUjw1PiQ9V4hePZXnsbxj3i49sEc4vPmgQL3wh4O8VQcjPMQuRb2Plvw7vCmqvLgZqbsgPLA8mp67vPUEHr21V7k8rl97vGagHr1Gluu84XYIPXx8xTtq40m9YE9pPIEzTzyDTra87BfGuhoYjbgwwYk7D0o9PGI3JrwSZSS8xhaCPJZobTwGXWU9JfM5vWVf6jxPg8O820sgPTVxzjxaF6S9ruUEvfS2DD2+d7u8SqZsPaEv+Ly9Y5m89ZcEPDmBT70ONhs9LhM8Pi34VDy90DI9rDc3vRnenT1SEgm7cujkPOF2iDzWzoW86K7NO1Rt97smmkI8xvC0PH3wI7pxzf28r9NZPKcTlLuio9Y8Ok4lPQ0v1rw5DfG8LmwzvCR/WzyuX3s8QscevR+VJ70c0ze8dKrUPAL07DyjcCy88fScPLzodTy7giE9BwRuvIYQJjwONpu8MQhWvLQ8Ur3BOSs8LcWqu5y5IruNSGu8LFgRuyoKAL13n+48zVUMvX6XrLwNyYE8ufNbPOxK8LvYiTC7wWzVvPCAvrxA3+G8gBhoPCQL/bwBQIc8AzUhPTMjvTwLBxI8vWMZPRHxxby1JI89whPeuSvd7by6DkO9Yp16vIYQJjwrd5k9LxoBPbh/fT2mgK288xzhvDr1LTsf+/s8NhjXvDT977qn9As95P6IvYp5nr0gPDC8cKEYvXkTTTy8tcs82WNjPI7v8zuu5YS7lHPTPBoYDT2OiR+8XY35vFFFM70kf1u8wJKiu/N1WL3XofM77YskvQAlILxX/Dy9PbcdvLM8UjsONhs8xGHvPFwMPr2n9Au85UVVvbnzWzt9KpM72Eh8vBZ1JT01pHg6/rcGPYJ0AzwED1Q8LxoBPYEApTy8tcu8hMIUvELHHr2lDE87bdhjvOACKj1khTc9+7snPZvRZTx8g4o8j2NSPCweIj054Qu9idIVPVuYXzye8xG9MyM9vRlxBDwf+3s9Ke8YvW2lOT3RhJU8Tty6POACqjycH/c8YcNHvdiJMD0vukS9QvrIvHBnqbse7h49h7cuvYtT0bta8dY8/1dKvaaz1zw/mJW7KEgQvby8kDxLTfU731shPFQ6zbyjvr28i1qWOoI6lL0Xw7Y8rd6/vAs6vDvPNgS9XAy+PFGeKjx71bw8agkXPVDR1Lx1HjM8Xs6tu81Ox7zInoI9D31nPbhM0zx3bES74AKqPGzLBrvSBVE9w44BvdwlUzyn9Is8SFjbPDraxrxSEgm61vpqvEOh0bxkhbc9u7VLO753O70txao9hWkdvXr7Cb0WdaU8h+pYvCi1qbznLZK8x5e9Onm6Vb1qsB89gxuMPRM/17vIngI9OaccO9ux9LvzQi4891KvO3VR3bzdmTG9svUFPd2ZMbx4E829Q6FRPLRDF70lwI+8NcpFPQFABz3KjNc8/n2XvFjW7zpGlms8oFXFORSN6LxLege9WC9nOt2ZMT1BIJY8J6GHua6FSL2AjMa7onAsvVyzxjwQvhu96K7Nu9GElTsSP1c9Ok4lPbsViDykixM9l9zLPNAQNz3+4+u7/zH9PN4abbv77lE9gjqUvB6BBby0Q5e7z5zYPA6jNDwotSk76sm0uti82jwjVxc8XmGUPMXcErw2GFe85NH2vMsz4DzsSnC8QVPAvMZJrDsFUAi9OaccvFRt97y3rI+8MC6jvWNxFTysBA29bP6wumHDxzy90DK9iQwFvcWiozxLpuy8GJAMPYiR4bzSBVG8T4qIOp/h5jwLB5K883XYvI3ilro6KNi7z5zYvIVpHT1tco+81jsfO7fLF71zXEM7cujkPK+gL73jV4A9NJcbPBygjTxezq29SnPCPOdnAb1J/2M9QseeuvUEHr0UJxS9royNva1qYbzcfsq8oCIbPXhzib3XFVK8UrmRPKwEjbzcJVO9OihYO4e3Ljzwh4M9w46BvKpPej2p1YO9WvHWPPIB+rzHyuc8AU3kuzPwkjx1HjO9+7unPFl9+LvwTRQ86DpvPDAuI72X3Ms8lEApPWi7hTzAJQk8VJqJusza6LtgHD88mYoZvcHMEb3s5Bs9inmePPXptrpbmN+8wMVMPZzszLzUU+I8D0q9O753O70UYYM8twUHO14npbxS7Lu8Pl6mPPyVWrxg6RS9lzVDvL6q5Tze50I9hpzHvNux9DxIWNs7vWMZvWYG8zzIC5w8x70KPcDFTL1XiF49yJ6CPT/EerzXFVI8NCoCvYT1vrweVPO7fpesOpvRZTsnoYe6AzUhO9uFD70b+QS9mYoZvFFFs7ySfjm8T1AZPTU+pLyHt646pIsTvDZ4E7yk8ec8Zq17PRJlJLxIuJc7PUoEPZy5IrwWdSU8lHPTvIROtr3FoqO7/uNrvHKCEDwaRHK89Om2PITClLy3cqA7UNFUuXD6j72fe5K8KtAQPWKQHT2Vpv28sG2FPOIdkTyT/3S9/Qm5O8QuRb2PMKg8xfuavOnhdztxQdw7uH/9PNN5L738YrC8GhgNOb2diDyceG68EfHFO44chj0t+NQ8z5zYOpcCGTx67X88BwTuPPxiMLzNp767rauVvAhFIj1rVyg8pmyLO1hwm7wndPU8SPKGPHQKkTju/4I8lzXDPKXZJLyGoww9hPU+Pfp68zw25Sw83CVTPQW23LsZRPI8Ha1qva+gLzwYnWm7hhCmuy2f3Tto7q+7ZTOFvH0qE7xLGss7ZqAePQ27d7uPlvw88pslPcX7mjuXaO084h0RPdzMW7vgNVS8pMUCu9n9jrzkpRE9SPKGuj7qR7pEbqe8eRoSvXx8RTzpB0W86K7NPJc8iD0LQQG9vZ0IvcITXjwahaY81xVSvXNjiL3vpgu9MC4jvSM4jzxwoRi81jufPNux9Dvu/4K8a1eoOyTfF7242PS6FI3ovMsANr09t5076SIsvTSXmzt7ohI9ZqAePWh6UbxZUZM84h2RPPMPhDw8dum8QseePQeeGb377tE7cGepvPCAvjtv88o82BwXPdI4+zxeYZQ8WX14O7aK47zTRoU8E7M1PBwGYjyXNcM8G/kEPFC2bTx8g4q85KWRvOe5M73Dhzy8CEWivFq+LDye1Im8fHzFPMITXryTmSC9nZNVPDpOJb1vwCA8WRckOztpjDw+Xqa8wCUJPa6FSD1NaFy9quklOylcMj0Kk7M8lsFkPKf0iz1ngRa8HiiOO3MpmTyMxy88eGxEPB/PFjoe7h48HoGFvZmKmbwgb1q8Y6uEPPUEHj0W23m9iQyFPJiDVDxfQgw89ZcEvcCSIjxI8ga83hptvYp5Hj0rd5m8gVkcPd7nQj0Z3p09JN+XPP9Xyjy0sDA8hc/xPCyqQzwHBG48roXIvElYW73NdJQ7G78VPegOCjq6Qe28GWq/PC1RzLyXPAg8eEb3O/rTajzq7wE9HAbiPLF64rxLeoc9e6KSvRXOHD0pXDK92f0OPJ97kjv6R0m9QvpIPCOlKL1VByO8Ak1kPClcMj1SuZG8r/mmvGUswD3IngK8yozXvKO+vTxDodG7EfHFPD7xjDzsF0Y8LmwzPaXZJDwC9Oy7Ph3yPOjUmjxbZTU88xxhPMHMETsh4zg8czb2PCXAj7wzD5s9lo66PDg6A70WqE88YE/pvC2SAL0gb9o6hWmdO3TQITwfyFE8Wr6sPOKD5bxv4WA9g3qJPYQTJ71GUxq9LuUxO2yzfLuWAJc8JZ23vFjCtTwU/wS9eHgYvUNdATzk5hG9bcruvJKkTrul7jk906D9PFYpmDy7amA81c7hvCBUirzyMTC90IU0Pa+qobxCAAa9VzdWPPkmljs+pL28cQ9FvIstPb1D7eq8IORzvOJyJDz64Aw8nb0xvbiVILyC5cI7x9IAvGhckbxOBk49pe65vMUBGL2LwgM9EugSu096O7xoJEa9LkItPJWMKb1AGKs86em1vMfgPr1cwQK8yFSsPe547Lxsxpe8VE97vCWdN71pOzi7+qjBvJ7UI701lI68DJYxPSjiDb1N71u9yFQsPAEgU7zPAwk88jGwPINZsLzDm+i6zUBeO4stPT3OtEs8JCnKvBxVvbzk03a8PGibPBjGBrokG4y9IIf4PAeA8rwyunE9QNKhvKZiJ7yD/DS8NnO1vOBEQLwSLpw9BvCIvC0Gi7tKZHy9Kc/yvLuw6TyQduq8X9xLvU5jSb10sRa9hHCiPPZ2Bj3D4fG7T3o7O06blD05/pQ8ICr9u9S37zx1yAi9ntQjPfPrJr2BztA6+3mqPPqowTxWN9Y8ASDTO6RsDjza5CA7A6syPCNv07zOEUc7Mrrxu3VrjTzoZ4q85HZ7PCBUij1cOvq8ihbLO1qTHryWoxu8JIbFvBcMELxss/y6pqiwvNaI2DwjzM68CDrpPO0uDL3Ssxi9nWA2udfXFT2S6lc7/dr8vE74D7zydzm8kgFKPWSVD73v7Fk9C7eKvPNIIjwjzE68m+xIvHkbHTyvqqE8U3mIPNQUa7rXn8o9GoRUvYOIR72Q0+W8254XPcvM8LyAt947YCsJvXEBhzwq5uQ7omNavOnpNTzu1Wc8ObiLOxJTTD0o4o28ZTxrvQXCJDyyC/Q74nKkPLTzzrzl6ug7ILGFPI+88zxtym48y291PLd+rrydYLY8EMjsvNhLgzzpL7+8nneoPDmOfjz2Y+u7JePAPMHdmrzH0gA9Xq5nPAvcuryPzw48tsS3PNgTOD248ps7iVxUO5I5FT3iFSm9j88OvUPt6rxaNiO80rMYvfg01Lxf3Eu8E0WOvHQ9Kb2EcCK9dcgIPZuBDz0KaE289e/9vPZ2hjwP2wc8CVHbu553qDwpnIQ7QNIhvSrm5DzzSKK8sa54PefznLxVfd+8oDX2vHdYcjy3OCW9h4trvT4BubyBK8y6AAlhPOqjrLyT84u8uvZyPQoixLzjzx88QS+dvALxOz2oMxA9PjmEPOH+NjwKxUi9QBirvADDVzyx2IU8zUBePMOXETx9P5o5lkagvRJTTLz6Yji9R+w3vDhEHr2uk688ekkBPSQpSj3W5dM7Jb4QvBLokjxIA6q8TvgPvbr2cjztvvU6pYMAvZp4WzydYDY9F5z5vAwUBrzzSKI8FMc5PVMcDb0lQDy9yoIQO6vx3bsV3is8yQ4jvSQpyrw96ka9YPM9PEvBdz2Q0+W8LkItOiX6srygpQy7xaScPAbGezzX/EW8X39QvaNVHL2T84s7if9Yuw0KH7t5ncg8xLJaPcixpzx5nUi8irlPveG4rbw45yK+8DuXvQ9+DLyyNQE93ggevJQYPDx/oOy8S8H3u86Pm7xLwfc8J8sbvCSGRb3CJ3u9LLdNvW8wHj3rXaM8j8+OPE/AxLws75g8SmT8vM5X0LvwA8y7frOHOpR1N73Gu449fon6vEm9oLz81qU88KZQvLUKQb06SPW87njsvAtxATxmgnQ8ASDTPH7mdbyswsY8IlhhPNtYDj0uQi09z2AEPf9O6jx3b2Q6JCnKPJAC/bySORU9yt+LPO54bD08GV68SmR8PHLJOzyDeom8i3NGPP3tlznl/QO9WjajvDtf57tMkmC88Ro+PJAZbzyD/DQ8Nxa6vAt/P70yunG8aFyRPBaYIr2zf+G8WMI1vDVcwzwfPRi9Fd6rPP+r5Ttsxhc8OKEZPSFBb72qN+e6DQofvDarADwz0eO7GRBnvQeA8jxlT4Y8BpMNPMeatbtT8n+9RbAVPTEAez1XTki97tXnOirmZD764Ay9Q+3qPKaoMLxtyu48Kubku7Pc3Dxv4eA6hc0dvdf8RbuVjCk8h4trvWAriTwRPFo7LEwUvVO/ET1v4WA7ZawBPS/8oz2SR1O9DiGRu+H+trxU1oM8NEXRu6CScb31pZ29A6syPGiBQTuSORU8GRDnO7msEr0cVT08488fPARlqbzh/ja9rdk4vCX6Mjs0RVG9JZ23PAXZlrx51RM9fol6u/bTAb1cOvo8NOhVPO1herxfOUc93G+Au5uBDz0kGww6I8zOPO0ujL0yunG8IQ4BO30sf7tfFJc8GzCNu+0ujD3XWcG8mKdyPSISWLwKoBi8YCsJvPjJmjzn8xy8+e7KPEw15btp3jy9UA+CPJ/rFbzfLc48YiGivJp427sJC9I8k7tAPZvHGD0OIZG7D2txPToVh70+pD29FTunPCPMTr3LzPC8w+Fxu5oyUjyC5cI8U78RPeE2Aj1Xq8M8ILEFvZXppLzuMuO8bCMTOe54bDzPyz29xz26PN4WXL2gNXa8PY3LvLPc3DzX/EW7OVsQvXCNGbzxr4S8hBOnvPscL72WABc8RKfhu2iBwToTar680fkhPDEqiDz4yZo7j4kFu/OOKz0uiDY9DzgDOy5CrTzEPm28fSz/PNP9eDoPsfo7y2/1PBkQZz22xLe7h9H0OxHfXrrtG3E9jOczvTCj/zzCJ3u7a68lvSrmZLzxvUI9z6YNPdP9+Lus+hE9HPjBPPiRz7uOchM9zrTLvIhF4rxqUqq851AYvalKgrzChPY8kgHKPdJWnb3MKWy8M4cDvAlR27xhCjA93x8QPKJjWr3cRfM82EsDPVhlOryvqiG9nneovEIABjyL0EG9jEQvu4znMzxQ1zY9JrSpu0lgpTyBK0y8AGZcu+547DztG/G8mySUuwBmXDzz66a8QtZ4PGM4lD2KCA09WPqAvM9ghLwTDcM8h4trvEYywToYVnA7x+C+O9JWHT0roFs8NH2cvMVs0bzT/Xi8hLYrPTctLDySOZW8p7+iPRKLF73H0oC8zo8bPfnuyrxwjRm9vbkdvR/gHDzFycy8VimYPAiX5Dwi+2U8OOeivAbwCL1bTRW9ETxaPMJRCDsNraO7rdk4uyug27z6mgO9QHUmvVQJ8jwNUCi93eh3PNjuB7xfIlU92HCzPUySYL2z3Fw9lBi8PPrgDL0v/CO9flaMPUKjir1t3Yk9HQ80PSMEGjt5Mg+94NkGujpygrsVO6e9rvAqvb7ngTvPA4k8KIUSPVCRrTyCiMc8yFSsu0NKZj3mpN88MHCRvIC3Xj3T/fg7W93+PIRwIrwTixe8zp1ZPHfM37u2ITM9XJd1OyWdt7zxGr47pMmJPHpJATyyNYG8JOPAu7ZnPL2T84s6N9AwvLyBUj2yC/Q7SWAluyPMzrzvSdW8AMNXO0/AxL1UZm273y1OvF8UF71/oGy8W6qQvYiiXb2uNrS7ntSju4eLa7wydGi82/sSPNkqqrx9nBU9pDTDvHJeAj2Lc0Y8j8+Ou/QCGbwMlrE8gc5QPI+JhTyh7+y8e8ssPRKLlzzbi/y5PHbZPGGttDoL3Dq7hoeUvE74Dz3w3hu97AT/PNUr3TuKCA07AikHvMOb6LyrTlk8iggNvJQYPD2mYie9zClsvKwI0LtH7De9cVVOvb9prTyyIuY8zlfQu7SIlbz92nw8SWAlvIvQQTzZzS68W6qQOlo2o7yVLy48hSoZPNKzmLzctYk8g1mwu+9J1buX7fu7nWC2vC3AATwpz3I8yWseO+R2+7p8hSO8aCRGvFCRLb3Isac4erQ6PT+7L7zp6TW8p7+iu+u6Hj35S8a8CloPPdhwMz2J8Rq9kY1cPLYhM7sg5PO76ek1vXYS6Ty1n4e8LkKtvDctLDsXP/68/DMhvQ84Az1pcwM9w+HxO57Uo7tlrIE9ihbLuk4GTj1Z2ae8cQ/FPEvB9zwst026mHSEvUPt6rwFHyC9HOoDvNKzmDzPYAQ9dQ4SPQLMC7vw3hs7rGXLvD9eNLo6pfC8PNNUPG3Kbrp1DhK98jGwvNCFtDwsTBS9cQ9FPNJWnTwTsMe7/jf4PHyFo7yWRqA8jf4lvaJjWr0YVvC9gcASPRb1nbx1yAg8sAedvGCIBD3AgB+8n0gRPI3+JTyM5zO9mWHpPOChOz3ctYk8HFW9ucAjJD34NNQ8aXODvCVAPDkaJ9m80fmhvKACCDzOEUe8k/OLOwLMCz1CAIY8omNaPJJHU7zGg0M9vlK7vF7F2TzgREA9+DTUuRonWbuVjKk8h/uBvPZ2Bj2X7fu89RmLO0PtarwyF+26Am+QPC7lsTsbMI28nDuGPEt7brxVfV+8a2kcvILlQrzWcWa86em1OcAjJDzTJwa9UxyNvK+qIT1cOnq8xhgKvAlDHb2e1KO8VjdWvT+7r7yh72y8Rb5TPVo2o7ydYDa9U/L/vL6KBj3jzx89MKP/uyrmZDtYwjW8AAlhPA2toz36PQg9wCMkPE74j7zvSdU8e26xPO2+9TogVIo93f/pvKuU4rxYnQU8dhJpvAG1GT1K1JI9sdiFvKIGX72QAn08VMPou1V937xTeQi9x5o1vRnKXb0c6oO8+MkavCNvU7xqUio8WdknPOBEwLo+ATm9BMKkvNqHpbyS3Bk8QemTuqkg9bxxRxA9YQowPdAouTwbdpY8TdhpPFGon7xR7ig8mEp3vF1R7DtsgA69u2pgu0w1ZbtFvlM8Ca5WPantBrz3HeI708qKPIHO0DnfH5C8xQGYPDihmbqCHQ49HckqPbb8gj0Lf7+8d8xfPJB2ar2cScQ7Sb2gvJymvzyI6OY81kJPveTT9jwIOum7g5+5vGdqTzy+9T+8ifEaPJvHmDzAgB+9R0mzPCIS2LyyNQE7i4o4vZ1gNrvJDiM9qX3wO6lKAry+mMQ8GidZvM+mjbpjOBQ9Qnl9uyL75bwClMA8JHgHPRLoEr3ueGy6B91tPIM0gDzydzm8cVVOvfA7F7y93s26JfoyPWVPBrycmIE8ldIyO0ckg7ucmAE94TaCO0gDKjyyaO88MKN/PdxF87tWlFE8bIAOPeR2ez0roNs80/34PP2nDrycpj+9Po1LvJft+zwg9w69AX1Ovdi2vDzbnpe9xoNDPDU3Ez3tG/E7C7eKuGtpHD0c+EG9nncoPCv9Vr2GdHk8Te9bvaNVnLsebC+8NxY6vMvM8Do3iqe8AGZcvWEKsLwebC88q/HdO6ntBryHnoY9BR8gPTZzNb17y6w9nRqtvDzTVD2PLIq8WjajPEYNkTtN4Z06NNoXvUrUEj0Aw9c8i4o4PTargLwPDva8Nxa6vEckgz018Qm7QBgrPQHaSTt+5nU7gStMPJDmgLwwtho9uU+XPGTyCr3xGr48OKEZPD2NSz2dGq06R/SLPNJJ4TyoQc68v9GBvdDfmLz7VaY8jKJaPZn64Lv5aJg8UB42vBXkAL3t6q08cYJ6O9HKzTwJCTW8NWzQuxerKj3BPaO8ZNsVPVanGrx9lEO98uEMPLaZVL3Q8DG9I86MvLSbrbu2T+U8QnzAPNX6gjum+Te7p4u9uwq/Rbzsa5o7qjqGvCXfJT1Ojgm9VAnrO1S/+7zOKQi971ZPPe6x17yODny80YI3PPl7ijwzE6E64MfLvPG9gbxwlWy9sdQDvVILRD02IuG6Xa8SPcTe6Dw0SEU8KSVjvSe5wTwmgsS8+Z+VPAtRy7x8OTu9U0BovGpRCDw0f0K9wyoxvSWoKLzeySQ6X605ug5uDj0N9Ok6JM4MvIp+zzxC/Sy8+daSveHY5LxGZ3W9mXtNOgpkPbwZctS8ewK+vH+29TrUpGm8+Q0QPZloWzxsYqG9GIVGvbcFdjux1AO5l2o0PXBebz3EO0q78NXiu+7ESTxhvlI8DGLkufkNkLoLLUC9fhH+vIhcHbuZMV47VqcaPWNO/zxUv3s9mCDFPGyZnjwIiqG7mUTQu2pRCD0L49A8mKExPG7hNLsXdK08cEt9PbaZ1LwkYBK8el8fvHooIr1/W+27si+Mu3iFA7z/g4I8T8WGPYhcHT0pJWM9w4W5vH0TV7yK/7s7tJstPHpMrTq2mVS9TzMBPRc9sLyO1/48mFdCu1CwOz0/bYA744mGvBw0Dz1SC0Q9+XuKPH0T17y2B888sQuBPG2GLLzDFz+90d2/PEGipL0ATQW7RI1ZuhfPNTup91684jPtPFEvT7w32HE8XZygPfBU9jyLkcG8zzqhPFRAaD2jaYs8nAt6O7QawbwPW5w8fQDlPPjpBL154As9SBgXPQ6lCz3UbWw9B3mIvFCMsL3D4ME8p6/IO1FCQbwNK2e9Jd+lPGLP6zwbKGU9/i1pvJiySjj46YQ8R8L9vLRRvjtFDG08KAFYvET7Uz0NT/I7a9AbPXxK1Dor+o88nAv6usLzs7twqN68i37PO9yUgDzAUJW7+h4pu4Bnl7tS+FG9p/m3PO39n7yrXhG9bqq3vLdgfjwm3yW87jLEvG0FwDynHUO9NcdYO8Zwbj3g61a8xl38PGwYsrunClG8PzYDPcWD4DrEg+A8mlVpvG0FwLzj9wA9Nv7VOcO8NrviV/i8TsUGPEQORj0OE4Y8Bh6AO7+ahL2ZaFu8xINgvPl7Cr3c7wi9lzM3PdMS5DuqqIC8xN7ovODrVrzPzCa8t/RcPE+fIjxyoRY84lf4PDPcI70PWxw9slOXPIpH0jxCEB+7QWunO0Qf3zhVloG5J7nBvUP707v9rlU8YD8/vYdvD7vgNcY88qqPPLP4Djxd0508bWIhPFzCBL16TK280AMkPM7yCrqLfs87LFWYPBd0LT2KSas8GqlRPOEiVD1z2BO8GrrqvFQJa7v5n5W8pPsQPaqoAL3R3b87lRGFObZ1yTz5RI0930g4vdUxADxwzGm98VT2O2EszbyAnpQ8KmiKvLaGYr1/SHu8CojIuxnN3LtBoqQ8RyuJPXhOhj0aO9c7Kg2CvTO4mDxSZky7wT0jvrRAJbvrR488GgRaPcY0AjwmzLM8fF1Gvdy4C71QjDC9ftxZPXBeb73HJn+9F3QtvdMS5Lt7KKI7K+cdPTU10zpeUrE8Ui/PvONSCbs0Wze8lUiCu/zlUjuan9i8+zEbPRXkgDsLUcu7fAK+ukToYb2cdIW8Xi6mvcSpRD37jCO7uAX2vNUjfbtrrBC8zxYWvPtmP7pT0m28mtbVPCOqgT1AtZY9AV4evMezFT3GlPm8VEBovVz5ATwcogk7LPoPvd7JJD3sWKg7bao3PDgz+rzk94C8cJVsvYojRzwcOf48wQamuzQArztG+Xo8VbqMvdyBjr38ikq7Y7z5vAlTpLxs9Ka8icoXvLkkkrttvam7+CCCvTWSNDw4/Pw7UPqqPGyZHj0NT/K8NjXTO0Ogy7z7Cze9iCWgPOrshr0q2/M81YwIPZhXQroOc/26QeyTvCxVmLyzZLA8UYwwvI8tGD39U00+m8NjPReHnzyJNjm9YphuPVJ5PrziM+08SOGZu30TVzynnFY771bPOk7FhryyZok8YGNKPP6bY71gGVs941IJvas6BjxGZ/U8ekwtvc9ghTxd+YG9jg78O9ADpLvSt9u9B0ILvdBLuryPvx09B+cCPYnKlzyJEi69s64fO6qoADuItyW9si8MPGKrYLxQsDu8RgxtvV3THT1S5V888GfoutzvCLveJC294FnRvKjAYTtUd+W8slMXux3ZhjvusVc7mg1TucO8NjwmOi69/C9CvPIFGDj8wUe9wPUMPOB93LztWCi80aZCvBfiJzwLrFM8Gl9iu24pSzzDBM27/S1pvQysU70Y88A8rJUOPLkkEj0X4ie84o71PEb5ejziD2K9+Q0QPaZUQD1PDZ28cCdyPbRApTy3hmK8mHtNvVAxKL0djxe9Y4ANvaRWGT1SZsw5Q2nOPPGGBLyV2oc9NdpKu31dxrxdChu9jNlXPe0hqzu2Psy60rdbvVxUijxjTn85ikfSO17ktryk6J47DCvnu7eqbTyBMBo9OKF0vU7FBjyl1Sy973rau/51f7qA1ZG8OmWIvDQ3LL2HOJI8COWpPI0h7jt+pdw8UdTGPGG+Ur1wufc84OtWvMh8GL0JHKe8CvbCPF2vkjzuxMk8Jie8vKguXL2IXB09mlVpPN+2MjqVSII8ttDRPOD+yLycqwK97h9SPMBQFT1Ojom8NWxQPTOBmzzE4MG6uHPwuwl3L7t5chG9OuSbPAyZYTre7S+8+SACvJfYrrxPDR29qNPTvIjuIj1IYga9eE4GPIojR7xEMtG8N5DbPEiqnDsZF8y8o9cFvfmyB72cC3q8xExjvfkNkD2Yjj+9nEL3PCjdTLx68SQ9+sMgvTb+1bw1SMU4MXACve6xV7xwuXe7jerwu2xPLzwYvMM8RVZcPSaCxDwLiMi8/K5VPap28rsOpQu9in5PPfLhjDsnk1081TEAvSnu5TtUCWu9Kv9+vLg88zypwOG8GrrqvPBD3T2Motq8iUkruEeZAztQaKW8xjQCPVCMMD3g69Y8GSo+vAuZ4TvxHXk7qtF6vO5pwTwcEIS8wL4PvdMl1jzCzyg8swmoPEEQH71tYiE8Gpbfu23htL00tr+8M26pvFUoB7xDRcO8lpCYPP5A27sAqI26MXACuMXeaDt+bl+9NhHIO1CwOzwb8We9bIYsPSimz7sr1oS8/S1pvXEn8rlHvQ69jpuSPM/MJr1xWYA8UuVfPUMOxjzB4po80u5YO1LBVLyeYZO8pmcyvBZjlDzj9wC7wk68PEDIiLtHTxS9X8ArvSlJ7jvGNII87tc7PSVNoDyKkUE9zxaWvCgUyjyZjj+844mGvHDf27x9E9e6XdOdPDS2v7tTrmI9h6aMvKteEb1ImQO9xfFavf+sfDzWsBO9x8aHu3C5d73krZE8DgCUPM7yCr05Lou873raPHBLfTsK0rc8GnJUvab5t7ubw2O8p1RAvNO32zvetrI8fgDlu9/+SDzFlPm6cn2Lu3iFAz04xf88shyavEf0Cz1EMlG80qbCvCVxKz00tj+8ODP6O5AtmLyHb489GSo+vBhOybyZIEW8s2QwPPt5Mb0AOpO8T/wDPX/oA7xANgM8pLEhvDlSFr16KCK9/OXSPJf+kr0Y88A7mKExu7gFdjzDKjG8DPTpPDPLir1F6GE8Cgm1vDICCLxVKIe7ec2ZPAyqerwq1gQ8GYVGPEFrpzs0E6E73IEOvENFwzwz3KM81gscvBkXTLtgvlI6/4OCvGHiXT3VwwW9U4pXvM+omz22Pkw70bm0vEH/hb0404I9VYj+u0iqnDxUCes7ssGRvVBoJb3PzKY87LOwvDTJsbxVKIc9i2tdu+77Rr0mgsQ7CNSQPERFwzoa8ec8tK6fPNUj/TzSEuS8AHEQPRgGMzy5JBK8PzaDvaaLPT1EH188HKd4vAuZYbwKCTW9p2VZurTjQz3BBiY7jY/oPAus07vTEmS8UDGovJh9JjzwDGA4fLjOPGDRRDz6VSY3JPKXvLS/ODwI+Ju8JswzvAkJNbzxi3M8G7rqu+77RjyXajS9cLn3PFxUijxTruK8HDn+veBGX7rjIHs7AaiNPBxHATyYe008iUkrvVOKV7xh4t08GYXGvBxHAbxhLM08M9yjPNXsf7wYq6o6/Ga/PPLOGrvHxge9M4Ebu3Co3jynwro8rLkZvPG9gbxeUrE8+OmEu1/AK73uMkS9FQgMPfuMI7xCaye94No9PUEQn7yxC4E8J145PZdGKT21GsE73u0vPGJh8TtWcB28M5QNvTMToTy2K9o8cEv9vEZn9TxwcWE8ZNuVPYdLhLmMRXm8yHwYPZnFvDwa3vU7xRXmO1BVszz5DZA95K2RvHxdRj2cQve8Y+6Hvf5A27vTEuQ7Unm+vHzesjwOEwa8fpJqvbMcmjsOE4Y73381vSvWhLwy7xW9ABYIvUUMbbzSpkI9itswPPtCtLwmlba8/IpKPI8tGD0NGPW7iTY5PPxmv7wrnwe8UJ8iu4nuIrziM209jBBVPXpMLbwXPbC8Y7eKueBGXznyPJW9QLUWvVBopbxtBUC9QjSqPF3TnTv9U028tdDRuXsCvry1GsE7jDRgvZwGi7t8OTu9Qw5GPGEZWzsXPTC9x1iNvAyZ4TyZIEU9bk1WPbeG4rymnq893F0DvCc4VbyN6vA8X9FEvbPSKryzrp+77SGrO7N3Ij2YIMU8wQamPPDV4juO0g89ULC7vKTonjxfP7+8jBDVPJ3zGD1Vgw880YI3vEDskzpQVbO9GxVzu4aCAT2X2C688uEMPabVrLvrNB084FnRvDTtPL1Pe5c8weIavWAsTT1jXII6kGSVPEDsE7xGQ+o738dLO8fqkrsbTHC7OA/vO8SWUj3SXNM8RkNqPeT3ADxBEJ883QCivDQAL7tx8HS7tnVJvBso5TozNyw8epYcvaMOg7zgkM671R4OvKoI+LvSSeE8NRHIPAjBnjsz3KM8Ne08O/xmv7w5wBC941d4PaNFgDvvVk89wmEuPQFenj2z0iq8wyoxPKn33jy4BXa85T+XOlS/e7zvVk88G7pqvTYi4Tmmr8g8l/6SPHBLfbscp/g7OPx8vNEnrzwYYTs8v5oEPY9klTuX/Lm8uM74u3BxYTvyPBW9cHFhvEPGLzz/43m8qqiAu5Wjir1SZsy77Q65ulHDLb0bumo9KMravCc4VTy1iDu85PeAPdZ5Fj0k8pe9Km15PNJJ4bz9rtU7DCtnvLaZVD0oJWM8C6xTvA4ThryYMze8/OXSPERFw7vqtQk9/IpKPPrDIDzGAnS6JnEruxsVczyWWZu7pWcyPcTNTzyK/zs8SRiXu4iAqDt9kuo7/4OCPOBZ0bptBUA9KttzOga/kT1NM9S8ax2jvQvSz7wiGKC8Tgl+PAVT5jwkRQo9mY+XPFoxp7rbPwe9X/q6vCBiSjv7dpQ7WO9RvEB5A71Zxfs8TTPUvDluGj1+QXI8JSvevKuG/Dt4x8k8z1HeO4mOML3HOwy9ry88vc928zymY5Q9A22SPII03Dt47F69zsqfPJZSg7tYgJI8r3nmOje9Bb0nl4m8LQEIvcs+ID0kRQq9rwonPJp1az0Ia+W8RR0COoXl8Lxf0GS8JSvevCkjCTzqnwO9woIivGPo4zqGJ8Y80oOJvJ8+/ztptrg8KvkyvTpUbr17BF69nkgBvKZOqbyqiz09A3j7vJTWrbx+QfK7raM8PYPahzw+JwS7fKqJvP7YPb3fQhs8Yw35PLtNY7u2X7q70pOzvGm2uLyMGrC87BYYvRrDjLy/inc7ZOjjvKD0VLydbZY7/o4TPI2Bmr0ONPk7RggXvfEEQT29Azm7v2XiOlMWlLwGv5E7qdVnPJZSg7xlmfi8JgZJvdLd3TzYXEe8AsfmPBCb4ztCX9c89eeAPWjbTbxO6ak8T8SUO1+wEL18BN48tc75vAX5kTyiYIC8hMUcPRerDT3Z6Ma7T8SUPJzc1byOMi87no1qvZfuLL10+fS8SuaVu6ZufT35NL+7z1afPW9V9rxMwYA8KkNdPPxMPjwURKO82r7wvCLJtDxODr+8KW2zO2imDryRmZm7v2ojvcQzt7z0i/+7JTAfPRK4I72aUNa8k29DPB+HX73mvEM8+S/+vBuJjD3vaJe9OQ8FPXJNoTtHuas814HcPJWxGLy65vg8ozYqvIdM2zmdggE9jPBZOnALTDxJNQE8syImvNNEyDugzz+9p0noO8uIyrzdtpu7ei40PDF4nDwaDbc8pb1oPRB2TrwbdKG8g1nxPHPuC73KjQu9/siTPJl6rDxWGSg9ErijPUr2vzu7cvg7GuNgvMa6dTukJgC7owxUvfqwFL3dtpu82O2HPHjHSTxvVfY8OtWEPOXmGT0fh1+9Y8gPPOHjBTwgLQs7gjkdPDluGr1duGU7ll3svKsXvbupi7282O0HPMHMzLuoSWi5rp57vQPse7zJ0vQ7oaoqvTEZh7yQ0xk9wEBNuwn8pTxeaXq5AqeSvPX3Kjs7CsS8VS6TPEhaFrz154A8iNhavPyWaLxqHSO9ciPLPE7+FL1SJr48e+SJuwtjEL0xGQe8X0TlPK5+p7xLG9W70t3dvOxlAz3ufQK9wRb3uloHUTzyBME8lNHsuw0P5Dy/aqM8FR+Ou+qfAzz7wL48H4ygPGo99zrFmiG8Y8gPPA40eTtwl8s8LKpHvaJgAL22znk8q4b8vHZAi7qXYq08c0jgu9Ld3TwDbZI7amfNu7ZfOrw9R1i9zmsKvUE6wjy6UqS7H7G1PHzfSD3xTms8JMTzO39GMz1EVwI98rqWu6HK/jzQ9wm80SxJvORVWT3xCYI8nkPAPKjvEzyLP8W8IC2LPUCuwrxL0ao8tqnkvJTGA7w4qBq8jKavPP+zqDzWhp28y150PE0zVDtj7SS9mZ/BvNwqHLj0IYE9g1nxuz1sbb2GTFs9lNFsvF1eEb6HAjG90Qc0PBkyzDwrhTI831cGPanVZ738Jym9K/RxveKphT3o/pi7T8SUvcKCIjuI2No8kAjZPBBRuTviyVm8laxXPMgh4LtSFpS7umcPvaMRlTwkRQo5Va18vM5riryOV0Q9ols/Pd3bMD1xcra8knQEvfaYlbxck9C8gc1xu36QXTvlC6+8x5XgOwa/kbwXy2G9dwYLvaqLPb2ueeY7wGXiPTvAGT3xTmu8nrfAvGZPzrwZ/Qw9LREyPY4yr7zCfWG8eViKuterMjzpHm28bzBhvZTWLb356pQ8yz4gu+0WGDxkDXm8ydL0PDEZh7yveWa8Mt8GPNp5B73Whh29ATtnvCvP3Dzd27C8Q8sCvXS0i70weBw9DurOOaGaALxXGag8BFinvHp4XrsBO+e8WixmvOdIwzt9kN29pZ0UPJCuBDo5L9k8TII/urnGpLuGTFu9DsD4PJpQ1rwsOwi7HvtfPp8Z6jyvCie9mxsXvRimTDyNfNm8PSLDPHy18rz10hW92nkHveQwxDx2hfQ8XiQRvfgklbu2hE+9rZOSPB+HX7vRvYk6+eqUPUxyFb3gPVo7ARZSvcaVYD2YAxi8k/tCvUiUFr2RdAQ81PodPaTCKbxb4rs8VS4TvFCKFDpebrs6kwAEvVu9prn9Iui8jBqwvFWI5zwblHW8P9PXPHjxHz1OCX48U9fSPMWaoblotji9S/a/vFRokz3keu47JlDzPIGoXDvbdEY96RMEvI5XRDwW9Te88pDAvMWvDL2g1AC95gbuu5P7QrzfQpu8G3ShvKsXvTsxUwe8SFoWu6aY07x8tXK8RKEsPVYZKD0sW1w8uNsPvGyEjT1HtOo802ndO1yT0DxH3sA8oxEVvL3ZYjwRJ+M7G5R1vK2e+7sbmba8A328u3md87rR4p46YKtPPZJKrryp+ny9qnuTPSR6ST3qnwO87dwXvXmiNDwfoYu8RuMBPTxhBLyQLW49eX2fPHV6C710tAu9KW2zvLrGpLzPVh+9c9mgvLWuJbxqPXc9IKGLvS+dMb1Ye9E81quyPGvzzLtC8Je90ALzPCzPXD26cvi8CGvlOliAErhokSM8nmhVPJSxmDxc4js8Tv4Uu0/k6LtPxBQ7/tg9Pc5rijvOe7Q8+uVTPDyGGbw1QbC7S9Equ3JIYLu9uQ69p0lovcgBjLxFnOs8lj2YPOM1BT3jWpo8CEuRvHCXS7wQLKQ87fGCvElFq7xUjSg9cJyMvNLdXbzJxws8yo0LPe9DgrwFBPs8WixmPR4AIT3PVh89jjIvvHcGC71lmfi812EIvTlZL7xldOO7eOzevBimzLzh8688Gr7LvGjbTbyrPNK8ECykPIMPx72TRW09ErgjuyUwn7yAqNw5LREyvYfyBjsND2Q9047yPHcRdDt1irW9PHEuvYGICD2zIia9eJKKu87qc7sG3+U8+eXTvNem8TzCfWE8WgySvTGY8LznSMM8Y+2kPPAuF73y//89L52xvCr5sruptZM7dP41vMDxYT2A90e8V+/RvOdIQ7mVjAO8EHbOPF/VpTx/QfI8owxUvCeSyLydkqu8B4WRPUlFqzzA9iK9qxc9vVB1qby1rqW9pCaAOwE7Z7uOMi+7cJfLPKNbP7sBO+c7syKmvHNI4LsQLKS8z1afvClts7xXFGe7iY4wvcNYTLx0tAu8qxe9vOJ/L71g9fm700mJPL+Kd70kekm8jKavOxRpOD3+Iug63babumGB+Ty0HWW9X0RlvLmcTj19a8g8iLNFPUvM6TyE2oc9usakvL25Dj1CX1c94e5uPfaoPz05D4W8xA6iPKgpFDuqYWe8raO8PK6jPDz9Img8OwpEvGpCuLummNO8DrWPPfO6FjyL9Rq97n0CvUV8lzrPVp88UHWpvNkycbwy2sW8mnVrvB4g9bxlmfg8k/tCu1h70TxIakA90m4eveUgmrxdSaY8ZJ65vJpQVr3ekQY8Gr7LO/Rrq7yRdIS8pk6pvGoYYjxiXGQ9A3h7PPw8lL0OwHi8QNPXu4pkWrzZMvE8bjUivUEqmLweACG9ECwkPXALTLwe24s8idhaOtdhiDwqQ1288d+rO0vRKrtyYgy9nrfAvKJgALtSASm9O8AZPPNGFj3M7zS9i2RavQhLETvPdvO80m4ePDxhhLwK92S9bjUiO6D0VLy9/ve8FD9iPFYZKLuRuW28ZJ45O93LBr0V9bc8ax2jvAhr5bybG5c8gK2dO6TCKTyXONe8LTbHu7p3ubwZMky8DKh5vA4UpbzJ17U7WUYSPVcUZ7y0wxC9SvuAPe99grwTuKM82cOxu7apZLxDywK91yeIPYI5nTtQdSk994OqO5y8gTyIuIa8xr82vMQOIr2VrNc7iWmbuwUzkj0vwkY900RIvTrVhDwsYJ0730KbPIGo3LwQQQ89U9wTPQlGUDq4EM87jkcauxeBN7wFLlE8OtWEPFUuEzydt0C9UnBovMmyoDsn4TM82sOxPC0RMr35Cum8O8CZvIZRHL1eafq7uBDPOm/mtrxFLSw8qP89Pf7YPTzPMYo9aLF3vW2k4TxqQri7z1FePEPLAr5mJXi6a/NMO4I5HTznOBm9/sgTPABlPb11ijW90rjIuu9TLL0Us+K8uub4PLqczjxX79G8U9fSO6jaqDvvUyy9UkvTPIVmB7pokSM9EQePuY3wWbzbdEY8smzQvII0XLvgYu+6DDm6O0cD1rsuDHG7SNn/uwBAKLzQLEm9VWPSvGTDTj09TJk7s3ERPK3yJ7xL0ao81fVcPWypojwxeJw8ccGhPD0SmTvBp7c8FWm4OkCJLT3ttwK9F4G3vM3FXrzib4U937HauVWt/Dx8tXK8eXjePJTGgzzOawo8mnXru3yqibzqn4M71PqdvE2n1Dy2TxC6sbs7vZp167oS3Tg8/65nPaH01Dx1ijU8lNatvAyoeby467m8qrDSPHaFdDwF5Ca9nmjVOxarjTvCXY09idjaO5TWrbzLGQu8iLNFvWr4jbyiYIC8c0jgu9+Rhj0q1B27dWUgvC+dsTzARY69I6QfveT7BLybBiy7GQh2vD+eGLtz/rW91zcyPS1b3Dz4L/67fWvIvNaGnb2fDgE9y170PAeVOzsYpkw816syPK5ZkjzrUBi8CJB6PJDjwzyYA5i8DQ/ku15uuzyjDFS9vN4ju8myoLwJ/KU8VxRnPOw7LTvLUws83E8xvBkIdjxNXao812EIPFcU57wokki8eZ3zOqTCKTxZxXs9WaUnPVosZrwDolE8TumpvSBnCz2hmoA8jMvEPDioGj3R3d27mZ9BPTfI7ry1+M+8YPV5PL0DubyZxNY6P/2tOuBCm7o//a08aJEjPaNbvzw61YS8h0xbPMQu9juN0AU9Q8ZBvNXQRz3a6Ea9C4glvNXQxzsBO2c8eViKvJTWLbxaUXu8OKNZvZWsVzvDWMy7bcl2OjOw7zpeH1C8Xvo6Oy11CD2COZ08zcXePN6MRTzG5Eu8MHNbPJsrwT15ojQ8jZYFPPX3Kj17CZ89xC72vDEpsbs9IkM9z1afPSeXCb2TIFg9hKAHPDe9BbujNio8ZA35O5v2Ab3zRpa8ulKkPKph5zz7u328pOe+POqfA734L368RZzrOgYJvLxwvGC834xFvehIQ7yIuIY74vMvPNHinrvE6Qw8K4UyvKMMVLymc747W916PMhGdTx9cIm8wcxMvX82iT0kVbQ86dRCvO59Ar0zsG88NkEwOj4nhDylwik9BFinPE1dqrz4XhU9FRpNvO027DxtqSI8W9IRPc7q8zn5Cum8WgdRPBroIbtNp1Q91quyPOc4GbpDEGw7xzuMO3FyNjzvU6w8rc2SvD/4bD1HA9a8SI9VPLbO+boSKsE8hdr3vJ4abr0Vfb+8V74lvC9vtTsnojg9dSqau4JgeT3cutW8lOnxvHxFlzwz6TM9rK+EvJ9XbTxRB6g8K842PbdrgLyIonY9qNZpvEiIq7ym52q8FVa/vIRglDuoJOq86CjRvAXYE727reI8rrRnPMZp3jxcnCM8+MJKvch/3TyutGe8DjvCvFVaprzydRs8vcNhvZT6Db2X6Qw89xBLvcqVXL3u3848ErXAvNMUWbvWA1i7hZ2TPHFR/7z1Icy8zPlbuzX/srse/Ls8pJSHOzPegb3cCFa9w6HfO5cmcb0W/Qy9MiyCvfInG7u/TuG7RZmsPGgKn7v0SEy5nVIKO0f9Kz1Lnio8a9KdPPJOm7zUFFm8ZRuguvOWTD2pmQW92ctWPI/OD72bK+88lhANPNTt2LyaUm+9vIZivLDbgryngwa9CprDvHPtmjsdSry8NrGyPG7oHL1BRi49w1NfvBgePjv46Uq8o9FrPEoTKzyFjHc8EQPBvXv3e70LwUO8ueVjPI2ndLtqbh68jYB0PFEuqD1FmSw9CQ/EPDcVsjs6BDG9DbDCPJCAj7udtu48IeAIvCUXuTxC+K08A6ZGPQjHEj2MzvQ7CgQSvAfSRL08tjA9LrIDve9DTjz5Tco8xkLeO66N5zxf2aK8KxGFvA/twTyibWw8871Mu5YQjbuXwgw9JPaHvOmMUDyF65O87XtPPMLI37zGad48U5InvOx7zzzxnJu8oQntvGTeoLxRfCi8g/wUvJ1B7rwKmsM8DP5Cvf55SLwB05U8tqjkO2JTIT3Sidk7y0fcPMkx3TwF48U8LTI2PQOmxjzjcdM7+huYPCychDy2BwE8BkdFvOAN1Lz1IUw9OVKxOz8wLz2Le5G7BdiTPIvJkT3ndtG8T/EovRkTjDw12LI8rOxovZBZjzxKxSo9UXyoPLFV5jxoWB88eLp8vLGNgrwoIga9T8ooPSMBurwXk768n4+JO4FKlbwks7m8sAIDPJex8Dz100s9bTadvJsr77x1A5o89IuauktQqjy3M+S8Bm7FPGdYH70RRo88IbmIO5zuCjtzxho90rDZPIE5eb0rzra8NzEAu6LzCDqW2PC53vdUPUrsKr0fygk9c8YaPHZW/Tsu5DU9NMIzPKUO67wffAk7Eo5AvDjusTzDod+80SVavb8A4bqpmQW9BFhGPXDG/7sjATq83vdUvVn7JD3ps9A8qA6GvKo66bwWCL886/BPO/RIzLtwxv+8HiO8PDgKgLwXur485p1RPcE9YDzpKNE6qcAFu5MQ8jygGgm8nVKKOwWVRTtmzZ88dy/9PIllEr2gCW29PGiwvJ1o7rvA2WC9ThipPAvBwzwTNY48fb/6PIkXkjwLTEM9jbgQvQY8E73M+ds7/wRIPTVNszrPNtu79e+ZvDX/srsyN7S8rSnoPKRcazxp4x69pOIHPHuTlzyP9Q+8VPYmuoh7dj2YdAw8kdPyOxg6DD36/0m9DlcQPa6NZzylRoc8EQPBvCyANj0oSYY75WBSvZnYC72rxWi8wRbgvGJ6IT2GPvc8JTOHPajW6Tuffu28Kmo3PYsc9bt+qRa+HiM8vCnftzyYPPA70SXaPFMdJz0FsZO9etD7vC9vNb22koA9LQs2vXZ9fb0UDg695K7SvKSD6zrOq1s8l7Fwuk4/qTwC9Ea9pW0HvB3mvLux8WY82n1WPQfSRL2SrHI902JZvCdUuDwhxLq62BlXvaNXiDyEEpS8A3QUvQ47Qrv79Bc81XjYu7REZTuIARO9lYUNPTc8srxmQqA8+huYPEoTqz2gGgk9+thJPYrwkbu8OGK8lOlxOk/KKDyvGGe9si7mPDF6gr39Chc8lJvxvHw0e72gQQm9/DEXPBqeCz0qX4U7tQcBvS6WNT0FvMW8/DEXva7Fgzv1Fho8dxkZu5T6jbuqOmk6Kmq3u7Qd5bxh7yG93h5VPR7VOzzhmFO8Z1gfO5K9DrwaWz08ro3nvHmkGDzgDdQ7mytvvVqGpDxtq508/e7IPFYMpjytYQS9gtUUveVgUjrndtG8JLO5PAdHRT5nWB89JVoHvXwNe70vSLW7LtkDPKUO6zz7zRe9eLr8u5sEb7wArBU8MYW0PBhFPjzKvNy7SP2ruxy/PD0KtpG8a9IdPJ1Bbj2z4OU7d2eZOx1KPL1nWB89EzUOvM2EW733EEu8ltjwvPwxFz00dDO8KjgFvDcVMr1Eqi08vBFiPIXa97wRA0E8h8l2vW0PnbwFvMW8ImsIPaY16zvnT1E9Yu8hvCSzOT0uvbW8EG2PvJ9+7bx9mPq7X4siOhHcQL1m9B+8iT6SPNBz2rzzlsy7Ot0wvOvwz7mdxwq9IGC7vAC3R7uPvXO8dqR9vJHTcrs+zC+8BeNFPZHT8rsdcTy9Khy3vKpLhTzG3l49FA4OPQaKk7wyyII9Z1ifOzwasLt4yxg9Ct0RPW9MnDwSqg49X7KiO9TtWDx5pJg7AV6VvF+yorwulrU7kG9zOxfhPjyLHHW9jbgQvVs4pD33oZk9hcQTvIrJkbwoezg8VaimPLr7YjsEWMa8tc9kPCSoB7zGG968s5JlvfXTy7sqX4W7rp4DOiYXOTpENa28PfOvPCynNr3XtVe9dJ8aPXdAmbwvbzW8D+3BvK0TBD0jHQg9BeNFvfcQy7o9zC89pFxrPDLIgj1shJ28mf8LPaY1azwQbY+7YcihPBhFPj3oKNG8jPV0uyzONjyPzo+8ayCevJQhDj0YRT48qyQFvf7HSL2Tbw67Ux0nPUFGrrwc2wo9STqrvB98CT3xgE288wAbvQ47Qr0yrLQ8LuS1vCVlubovi4M8g3b4OSdwhr3eHtW8/yAWPdnL1juXsXA9PGgwPSv1Nr2tAmi8paprPOWH0jtRfCi9cCUcvVK5Jzw1QgG9iMn2PLPg5byQ5HM8GLq+urDKZj17kxe9cCWcPObr0TtIr6u8509RvAigEr1KxSq9/yAWPIZPkzxtNp08mcdvvIFg+by2koA8VYEmvXuTl7yZFXA8tHyBPIJxlbyQlvO6rWGEOy9ItbzJCl05abwePRp3Cz3zlky9iHv2PZSb8btaraS8MPq0PI0GETzu3848lMLxPGHIobzgNNS88PXNPJEyDzz8WJe7N3+APNzhVbyLVJG8/H8XvYllkjuBh3k7IFWJvAZHRToWLz+8cgN/vSNECDwQUcG8IRK7OjM3NLwxegK7AhAVO/3jFr0e8Ym8MO+CO/uKybyRMg+9g4eUvPUhTL2EYBQ7A5uUvA5iwry24AC9n35turut4rwgOTu9U0QnvcYbXrvHQl49eJP8OxzbiryTrPK8+XTKvFF8qLzjcVM9IC4JOinfNz0vZAM9cP4bPS7ZA7zONtu8YqEhPeG/Uz2hu+w7YnqhPBg6jD2GF/e65uvRPIWz97scv7w8UKMoO8a33rzDod88FPI/PdeOVz1BRi48HXE8vVn7JL2K8BE9cYkbvGgKH724l2O80ddZvQ/GQTt0eBo7/yAWPbw44rwQeME8rrTnvPx/l7rsok88CujDPJYQjbyH2hK6W18kPWvSnbzuBk+8gsT4vDAWg7yE2ne9l9hwvNbc1zw3Y7K8K/W2vAqaw7v+Uki9fzQWPPPZmruo1uk7TAKqvH2/ej1oCh+8/yAWO0XArLz1b8y7nWhuvXcI/by1LoG9GGy+ujAWAzyc7oo7/DzJvHse/DtUzyY95jnSvYCYFTw3FTI9yH9dPGHvoTzvQ049JVqHvav9BD2Arvm8JIw5vZHT8rwsdQS753bRvCyntjt9mHq9AN7HOnovGL2Qb/O8VjMmO/RITDy3DGS86YxQvHIUG7xY5SW8YyyhPf3uSL0H7pK9+82XPG02HT0M/sK8koVyvRBRwT2wyuY7cmKbPEL4rbuFnZO8Fi8/vVhwJT30i5q8A+mUuj3MLz1Gcqy8509RvQCQRzvfgtQ7AWlHPHxsF7yPzg88twzkPDGFNL0u2YM8H647PbiXYzwH+US8eqQYPTrdMD23awA9tGvlu3Sfmr098y+94ZjTPPXvGT04Y7I6i3uRvJPkDrwGbkU8nMcKPO9DTjz2yJm86bNQvLcz5LzH9F29JRe5PJn/i7zlElK9sj+CPJeK8DwIhES8ALfHPFWoJr1Bba67U0QnPc6rWzsVfb+9MXoCuwXYEzvCyN+8GGy+vCdwhruxKQO92BnXvG6anDtDXC29BeNFvZ7z7TwOicI8OaCxvH33ljyWXg28h2V3vLIYAj2VrI08GGGMu5b/8DuJZZI8BmMTPQ8JkDyasYs8DPMQvVjlJb19Hhe8aZUevYZ2k70YbD49xSxfPIYXdzxwTJy7pFzrOyfJuLwtC7a8eGeZOigGuDyfV+07LU4EPNiO1zw9GrA8ARtHPC6WNTxtNp08bQ+dvPfImbo0dLO849XSPP3HyLyCxHg8rSloPJ7dCT3iStO79nqZPHjymL2RMo+8/byWuwaKE73JWF08CHmSvGJ6Ib2p/Wm8ivCRPMWQ3jzqZdA86j5QPZMQ8jxnph+8SWGrvAcgRT1jBaG88YDNvC9ItbzR/lk70rBZPfasSzupmQW9dED+u3oefL1F56w8QtEtvVhJJT13L308RcCsuzd/ALwHIEU9ER8PvRNnwLwagr28DNfCOqbA6rxZ1CQ9yQrdvKLMCDwTXA490HPau/pCmLsviwO9dqT9vE/xqLxyFJu8iIySPRg6DL2EAfi7q/2EPKHMiLyX6Qw9Q1ytOYu49Twp3zc7hnYTvZp5bz2XsfC8mf+LOwjHEj1lG6A89EjMPHovmDynS2q8oeLsPH5K+jwStUC8evd7vKmZhTxQoyi8q9aEPeA01Dzxw5u7STorPEk6q730ZBo9IbkIu4E5ebxENS09BbETvWSQoDxS4Ce9WtSkvIE5+TqEORS831vUPL7D4bzh5lM9X4siPFeXJT13fX08J3AGvSHrujso+4U8Kd+3vIQ5lDmCI5U9sAKDvZ+PCT0Sqg69OGOyui7Zg7yIVHa8fB4XvRyYPL0zN7S63AjWvFqGJD0mvoa7C4+RvKFBCTyTN/K8AYUVPWpHnjw7j7A85utRvXQZfrvaVlY9GdC9PDDvgjw1TbM8YywhPTX0gLzr8M88jhwQPegoUT0JNsS8y27cPJV08bxC+K28GIgMPSSMOT0ZHj48ctx+O4wGkTwp37e81MbYu+GYUzsxeoI8jPV0vCA5uzyJFxK9iQZ2PaKliLuj+Os7Maw0vQZuxbxUz6a8mMIMvFe+JT0X4b68M5szPRpbPT2qwAU9opRsPKbRBr33Uxk93tBUPDjHsbsCzca7hYx3PIqR9budoAo9+ybKPK0C6DwtCza8WHClPCJ2OrzmnVE9fFv7vDObM7y/AOE8me5vvdeOV7wRH488STqrPO9DTjxK7Co8b3McvIN2+Du2gWQ8JYEHPdVRWL2doIo8eUV8vZlNDDxh76G8hrusPDawyLy2Kyu9kXTnvEvzjLyX4pK86+tsPPmV27yjh009YWq2O8SzKrwt1R682bKQPaOpPLw4Aha8jTITvDsZQD1TL9C83fRkO+HMZDtwHeA7GqBJO0pUpr3ZQ4g8vaKRvXGzizwjJZ88eDMtPRVZwby2mrM8zx/MPM7b7bwSivw8fRRovRU30rsjv9G86pUYvbbFXTzQcRm90AIRPHjEpLy76va8Aj2gPDuISL1lQja7QRzqvMDCdjsgEvy8+dk5vBpc67wa7eK6AkZbvMbjCD3iEMM7aHKUPGy5HDzEAES96iYQvU1Olb2VsjS94czkvLxyszw71eE6V/4UPeak5Dtb+IM9YSZYPKOpPDytWby8RvTpOx94ybyjyys90CSAvSqcBT0sZha90hk7Pb8fiT26thG9ZtxovEkyNz2jDwo83YVcvXrN37xccEe6l1EbvS7jDT0jR469b4OtOzruFb1P6Me8Tnk/PLM697vFb0w8xJG7PDvMpr39IEK9tisrPSBW2rykGEU7+ibTu5Cviry23hE9eOYTvJUhPb0pbCc8V7o2vRS/jj2a+bw642KQPFcH0Dv4+6g8fXo1PdLuED1TJpU8guOsu30LrbsYiR+9kVL4vAJG27zngnW8o+0aPAbIhjuIfAI7UgQmvYJ93zunxZq9Hpq4PI2+1jxOV9A8OxlAPd4biLwzTAW7RvTpvJ6Eo7vcY+28DBjKvPLqD7zEiIA7GIkfvEH6+rt/8vi8fek9veVOkLyHVV+8YD+MPbGgRL1Kf9C7xd5UPLsM5rpOE/I8CPzrvPUBOj3JrZk8GImfPOFdXLuHCMY8B69SugugBruHxGe9sZcJPa3zbrzTf4i93UF+PL/bqrxXmMc8+B2YvKc0Iz1QOhU95xNtveboQruQ2jQ8dco1vMm21LxwYb6787SgPOvJ/TwS0449nhWbOvQBurvx6g+9+GoxvbbnTDvOsEO81xOqPIdVX7wN1Gs8IBL8vNzJOj1BHOo8ZUI2Pe92UzxzDhS7dmkcPJtoxTwQNCg9lbI0vZZDrDwGN4+8qBtvvH16Nb0/pCY8Z9zoPNcTKj3YYMO8XQr6vIYqtTxmS/G8lSG9uqP2VTy23hG9KFNzO5IsAr2PQIK7KQbaPHiARr0pU/O814KyPA37Dj31Uwe8B9r8PFfcJb1cTli85zXcvHMOFD1sbAM93YXcvNxasjvlCjI9xABEvNACEbw/gre8PLPyPMGXzLtfMZ27PxOvvJ5itDyLcT28STI3vDanDT12+pM7RqwEu/orhzvO2+083KfLvMHpmbupgTy7Zo/Pu42cZzwDJOy8B9HBvPiuDzuuPIG8E0KXvbJ+VTway/M7faXfPOXfhzyQ/KM5YkhHvE29nTyFEwu9bEoUPbtQRD0QgUE8IwOwPD+kJju76na9EIFBPfUs5DwLOjm75b2YO7EPzbyxwrM842IQPEp/UDzO2+08OHEePXjEJL28xAA8z9IyvHhVHD3xewe8Aqwouak93rwsiAU9AtfSu3Ofi71c38+8IyUfPMZ0gDzvKTq9ZrG+vItPTj0ItIa8sxSBvTs7Lz1rkvm8rHsrvqg93jtKXWE7/fUXPZmsIz2/26o84qr1uzs7rzsXGhe9rHsrPW+Drbvi7lO9FXuwvLaasztFhWE8QDWeuxASubxL0Z04zTiAvMYrbrvsowc6AwL9OstMgD2buhK982cHPDU4hT15ET49zo7UPMa8Zb10qEY8a5L5vDhxHr0loha6YUjHPFjl4DzcfCE9cw6UO9ynSz0ssy88bxSluzwi+zs/xhU+ya2ZPAwYSjxXdtg8lkznvElUpjqoNKO82M9LvJ5itDyLkyy871RkvKP21bseCcG9zyQAvVkyejvEkTs9xZr2u2xsA70Sinw9T6RpvT+kpruNvtY81EkZPcsqETvAubu8ukcJPTHPDb0ZUzC9LLOvvGYgxzxL84w8ntE8PHAd4DuxoES9iySkPNJdmbx2aZw8OHGePOLuU73gVCE7bNsLum8UpbsCPaA8guznufJ7h72I5ta6DPZavISkgj1JO3I+MkdRu5n5vLzrwEK9Tnm/O/lRfTkg7IW8iMTnvOabKbzcDRm9LU1ivPTfyrsVv468YK4UvYJ0JL0RozA9I79RvBDOWjskneI8cKWcvDwi+zuI6wo9EkIXPc1jqrwRinw7fb4TvQS6Fz2pivc8vyjEvPi3SjwGyIa8gn1fvB6aODzdhVy9jL5WvCcfDr3wMnW89jEYvTs7Lz1l0608ZheMPDE+lrpz7CS9vOp2PHUcg7uIxOe83afLO8kcIr3r6+y6kSdOPLJcZj2ioAE9MT4Wvd75mDutN028gbiCvAJGW72kZd68b/K1u32+k7ysLhI9t8VdO7HCMzz90yi67Fp1vVwsaby7v8w8P1cNPcTVmbs7Ztm8x3SAPUvRnTxEfKa8LGYWPZ/85jzXpKG7GsvzPM1jqrvSGTu9P+iEvAJGW7zvVOS8g+znO8UJ/zxxRIM7a7RovZ6EI70fb449ToL6PEp/UDzcnhC8Nx9RPBLTDj11HIM8o+0aPDfb8rypgby7i+DFvC4r87y7UEQ83FqyvKRDb72Qrwq9GQaXO2r4Rrx9erW775hCO+Jd3DyfQEU80n8IvUkQSLxhc/E8pBhFPShsJ73JR0w91LPtPK5i97ypgTw8SVQmuy0r8zogEnw8zfQhvckcIj1lZCU9eRG+vIGWk7yt8+67RDhIvSDFYrsMfhc9mtfNvAIbMb1ewpS9pGXePJEekz3PbOU8o+2aPLjKETt96b08Ou4VvZXdXj3PuX68mFGbvCxmljv9Fwe9ZJqUPJZMZ7w2QUC9BjcPvVNaejwIQEo8FzwGPR6auDy6lCK9xStuvR6auLzTqrK8urYRvf5LbDvl34e79QG6vA1D9DxzW628lir4up4eVry62IA9sSgBvR68Jz19pV88+YwgvDtm2bz1TtO8VA3hvFPARzySChM8oI3ePJ9r7zsDJOy8fb4TvZCNmzz6Kwc9Sap6PNTakDv1Uwc8AqyoO9lDCD1Job88/dzjuzgCFj1TL1A82MaQvSyzrz2sDCO94hl+PHkRPjz030q8h+ZWPeoEIb0VN9I7/rr0vHGRHDuWQyw8+PsoPIJ0JL3qL8u6dmkcvaC0gbs6EIW7UnOuvOIZ/jwC+cG8RMAEPcy7iL3YEyo805F+u9wNmbrgBwg8XN/PPBCBwbtvP8+8LZFAvNT3S7z1ATo8OyJ7vba8ory9EZq8a4ADvP4Xh7qZrKM8BvMwO2jhnLpb1hS8+D8HvSm5wLxE6648ucoRPax7K71sShQ71JF+vLLkorzJtlS7o4fNOwI9ID3SO6o9NhaWPIeieDzTqjK9DfZau/1CMT15zV87WlkdPKzqMz1TL9A8eO/OvIfm1rzrt4e8JcQFuv3TKLwRrGu867eHPJC4xTtqqy09QD5ZvMolXbuRUvi8P+gEPTYWlrsCaEq7KEq4vOUKsr3eipA6kEk9vYgzcDzGvGW8Gu3iutJ/iLx9Cy2875hCPeboQjtharY758uHvBDO2rt0F888AmhKvFybcTxP6Me8OzuvvKOpPDxBHGo8Aj2gu0ld4TxFp1A89E5TvTGLLz07Inu7b2p5O0GtYb0je3M9PKo3vCO/0TxwYb48o9RmPLudXb0Ha3S8DLL8uxcal7zJHKK8hv8KvYnrCjzYz0s9ldQjPXFEA70tvGq8fek9PYdVXzy+M4k8LW9RPGD7Lb29ERo9QiGevGrvi73z1o+7mayjO/DlW7tsknm7eqvwvNzJOjvlebq86nMpvFky+rnhzOS79N9KvCzVHr2DUrU8hRMLvFDLDD0fo3M62MaQvYwCtTx9FOg8eOYTu8UJ/zvXV4g9UlG/vKxZPD1Kf1C8+eL0O+HM5Lx4VRw98Cm6vClT87vLTIC5xdWZutRriLwyJeI7+YygvE414TuRUni87BIQPXle17zUZtS8o0Nvux7n0bw6fw086nOpPPDcID0tTWI9HiuwvMQisz1Qy4y9g1K1vKM6NDznOhA9FFAGO1cHUDwk6vs8KJfRu7GXCTyLJCQ96uKxvIiZvbwgVtq8YIwlvRmXDrt7Y4u7I7YWvYiZvbwkcjg71/E6PcQAxDxvrle97v4PvSO2FrzX8To8IDTrvapkgTyRUng8Hpo4vYvgxbzP0jI8OhCFvWs8pbwumnu868BCvbbFXb0tRCc9M5kevGZL8bxX3KU83EF+PWqrLbwCk3Q8Feo4vB9vDry2Evc7/WQgPO7+Dz1SSAS8s8vuOywiuLxOV9A8YbdPvag0o7z1U4c8qBI0u4DMgr33wo88xlKRPGpeFD2iD4o9mc6SPEnuWLt6zd88VKOMPCSdYjypgbw8Nv1hO302VzsIIw+65qTku79sIrvGUhG7QGDIu5tGVj07iEg8iyQkPXGzC71h2T47ZhcMPQHwBr35jCC9NacNPLsDqzz0m2y8oNr3vILjLLyHM3C7r4kavZ4VGzxX3KU86+tsOzMl4rw/xpU8G8tzvaRco7yAOws8XAE/vCxmFr0L7Z87EBK5PB5NHz0f59G6kpsKvBrkp7yjXCO9twm8POfx/TtANR49v/0ZPfS0IDyyMTw8J46WOwIC/by258y7lW5Wu4h3TryneAG7VwdQPKmK97ysWTw9Z7r5uCrpnryFgpO6fRRovVwsaTrXgjI9/rr0vPS9Wz1lqIO8hIITPTvVYTtht0+8/W3bPCh14rxSBKa8LIiFPLvhu7y250y6gsG9vALOlzx+ejW8FfPzPCURHzwj2IU9lfYSvNxj7TwjUEk5fZykvC1EJzy3Cby88OXbPDEcJz0Hr9I8hkwkvd30ZD3OQTu9wZfMPAJG2zu8e+48tW+JPSXEBTy76vY8O4hIveF/y7wfb449nmK0vGCulDvERKK8rFCBPHR9nDwi2AU7EtOOvM4Wkbz52bm6xd7UvNzS9bxG+R29Ou6VOm/QRr3zRZg7ZUK2vJXUo7xv0EY8/W1bPLYrq7yf/Ga9wQuJu1vWFL3SqrI7YwkdPSSUJ7wHYrm7BsgGvc9sZTw8qjc8eDMtPRCBQbwuK/M8miRnPabZGj12+pM7MdhIPO+6MT2a1027o1wjPYvgxTwQgUE9aqutuxkoBj0lEZ88zfShvC7e2TyEghM9jVQCvc8fzDxsuZy7PdqVvKPLq7lq74s5u1BEPB6auDqLtZs8zkp2vM6FGTmyqX+7ld1ePHXT8Dpq+Ea9SJiEvNfxOj2fa+87eMSku2cDDDz5lds8fxkcPad4Abu/bCK99E5TPaSHTTotAMk6iHfOvAgjjzziMrK83Mk6Pd04QzvFCX88YPutvCiwhTtq+Ma8RMCEPChKuDvqUbo80ojDPLLtXb3ETV293ThDvItGkzzso4c85NEYPazqMz3vdtM7GqDJPCkG2jzXEyq92Pr1PFR8aTxhjCW8fQutPLWHiTxPmZ68VPIwvVurybxt7Ji86l7gvMA/eTuysfe8D5v2PJoD4zzknlM6EKleveUvhj3KdOg5GdBlvEnghbwsQTg9XiCsvLiGYDwwqDK8CdvpuiCeWjwx7ZG9gPw7PBnJcb1RhMI8FwgGPK9Y5Tx6IN+8km2OPDq63TyTZhq8HFMwPUCrlr1w5Hs7mTuDvIJxHr1/CiQ8BZA/vTrIxTz7YUS83PoWvYoV2zzXao29v2kxPA7MIr2pkWQ8DsUuvRZ+x7sCG108lFG+vKRGOrzvXQE9KszVOroeBz0mbE88+m8svcsTA71/SI+9ON2hvD+yCr2omFi8/0sJvEk6dz2TX6Y8L7aaPR7PhjxeJyC89YVnvFXkyDubZBK6v7UEPfSoK73vsP48R7CCvcK02zxQp4Y9NW8zvR2RG7zs9gY9ZTMAPRIXTb3rUHi7wsm3vHAATL2lkg098Tq9vfhNkTxsmdG8yJ4gvYFBGzy4qaS77PYGPFieijzlkGu9FwiGvW4qhDxAgd68aE6nPMU+GjzgN9k79KE3PRbKGjzt2ja91iUuPDe0Er0bWqQ99YVnvHJgUjwqHx08TEcAPSWIHz1oRzO86l7gPDMPLbxl4Dg6vE4KvZDxt7y1GHK80cybPM7U7jzGBnq7p7SoO+6+5ryP/588Ves8vVdnkzzXAmo95JBrPJaxRD0g+JW7z0LdO7UtzryDaio87tNCvcsTA70FiUu8JIgfvLU0Qjy1LU68tSbaO1dnE73t2ra8mSYnvNmMqD2omNi81wLqu1XkyDv47OE6W7K9PBrC/bxuKgQ9ScS1PG4VqLq2H+Y6NOV0PMHQK7w0VIy8V1krvaLDbz1rtaG8ihVbvbiGYDwLbBy9Ylb6PAtlKLxAnS49HTfgPNYQUr25jVS7hrXUPLz7wry/tQS9PT0ovfA6PTybZBI9i5+ZPWXS0Lpclu28srH3vLsJK70SLKk6GAGSvFXI+Dxhhya87eGqup1/Ob3X+/U806LjPFCZHj0fuiq7WwWFuWySXTy1gBU9tEIqPV01CL2jvHs8SeAFvZRKyrwnXme9mwpXuu+wfjyETlo9d7nkvFTyML0CFOk8eEMjvdUzljvyf5w8o02uvAxQzLtbq8m8OshFOlrHmTz3Fhq9hKgVvT02tDxOdwM9C1dAO9MKBz1MqOW8lJ0Rvf7IPr0f/wk9OeQVPZNmGr02Wte6r1hlPWunubyexBi85/BxvLHplzz85A68XKRVvGYsjLtrwwk93cnqukCkIrutdLU6bioEPJ9qXbyQ8bc74TBlPTZov7yeY2k74FMpvGNk4ry6Cas8EhfNvPWTz7wp4bE7QxkFvXKzmb1U5Mi6aUC/vF4gLD00VIw8HZEbPGT8CDsgl+Y8oNhLvcYpPj2Ip2w9Zr10PM5sFTzHDW46nJsJvZ2GLT3kpcc8MYxiPA8Rgrzoj4y8ScQ1PLHbr7uysXc8scbTPDxSBD0I8EW98Y0EPWGVDr0jBdU8xhvWO0CPxjyKFdu8l7i4PO3F2ru9hQG9Gcnxu4eu4Dvk/wK7DdMWvXRS6rw+goc9COnRvErSnb0ISgE9NE0YO9LFJ74CFGm7y/6mvEsJFT2+fg09BwWiO7tHFjwyfnq6lDVuvO4fFj0N2gq83clqvQWXs7wgpc48+W8sPGzzjLxt7Bi9JmxPPACmery/aTG8HFMwu3YaFLy95mY96nowvRnJ8Tw3u4Y9htEkPY7WkDwnZdu8VTeQPKmD/Lwawn05PYIHvP7Wpjwlj5M8G0XIPHp6mjvWEFI9GlokvHkuR7w3Wlc4gn8GPjHtkTuopkA8YYemPABMCb1eGbg8sduvvEToWLzEMDI8r8AIvbKx9zoSCeU8Dsyivc7Nery1NEI87sxOPbz7wrxv6++8W51hPeCYiL3a0Yc7bxWoPMU3Jj0KV8C6RNrwvO3hKjzkl984miYnvZ9c9bwARRU9J2XbPOOzLzxfZQs8pCpqveEifTyB4Gs7bJLdO79NYbxJOne9UZKqOza0EjxV5Ei7g0fmPPOaQ7yqYIK9Ag11PI//nzwqvm09S6hlPrLUO7vZd8y8Eh5BvXJg0jxuDjQ86nowvCxWFL3dwva7YIcmvbnug7zWF8a7fwqkvB+zNr0WYve8K7f5PIbKMLzwVo08osPvPAE3rbyQ1ec7O0ScPFvApTxskl28QZa6vMieIL2f7Sc9B/4tPcillLyQPYs8LTPQvDHmnby3t4y8xDAyvUnghbxApCK9FZMjvDNbAL2RzvM8tDu2PAhKgTuMpo07lwuAvecFzjw9PSg8SdkRvaa7nDq3t4y8WZeWu+YhnrrCyTc9457TPDIWIb3tzE489X7zuRWTo7zjnlO9HTBsvGmThjxSdtq8sdsvPX2OTTy5lMg8ddyouxXYgr1E/bS8S6/ZPIXfDD3L97I4D7fGu1IOgT2x2688/qzuvNYsojwsT6A8eTW7PAlDDT2TXyY8GN7NvNcC6rs9L8C8Vd3UvNtp5Du1Lc48jwaUPB/BHr3fWp28mTSPPfO9Bz0BG907E6GLvJ7SgDyiw+88vNj+O0Zrozp8nDW9Vs/sOyGQ8rxAgV68EiypuzrPOb0yFqG9JmxPvWT1lDvETAK7SKmOuzGMYrzL8L48D6JqPPhUBb0w9IW8n+0nPNwBizx8nLW8zc36PNYlLj22Jtq8IJByOu9dgTwPvro75JBrPCNmBL09NjQ9RtP8PINVzrz2DyY86mzIvMz+Jr1XYJ+7yJcsPZ2NobyokeS83sJ2vS6vJj2Oz5w9HZgPPYFBmztGZK87h7zIOwcMFr2myQQ9v2K9uwp6hLy3orA83SoavGhVmzwVkyO9oeYzveSlx7w6rHU8ThbUPLe+AD2e0oA8OshFvd3eRr0sSKy8cXyivEq9wbyuWOU6lwSMu+Oe07w6z7k8kPgrvDdF+ztfZQu8J15nPaoGR73qejA9WwUFPeu/j7zKBRu8o2KKvNSbb7w3aL86VAAZOgcMFj3+G4Y7ExDZvDIWIb1V5Eg8ZeesPC2NCzxF0/y7g68JPCothTrFfIU96mXUO93lOry6Hgc9qSmLu9YQUr0Wfsc9BeMGvWGVDjxLtk07AhtdvASlGz1ia9a81JT7O4sA/7ydhi04YoCyO4cPkLuKdgq9Nm+zOuPxGr3uHxY7Ynk+O8cU4rzxhpA6w7vPuze0Ej1ixZG9uO4DPOfpfbw3aD88zl4tO3JZ3ruCcZ67wtArvccUYr0Vd1O85wxCPFieir07RJy8QXrqvFCgkrwnvxa5lgsAPC+2mjxApCI6457TuwxJWL1xdS685wxCPSNmBD0RQYW8ThbUOyMMSTvPZaG7HsEePOpsyDyTX6Y8iTGrPaHD7ztYRE89jd2EvGkd+zqUUT4906LjPDZvszsSCeU8NnYnPcLXn7zL8L67Nmi/vGbE6LpRhMI7YY6avIyYJT1Od4O7bIR1Pe4mCr3/rG68hE5avY//nzwKc5A847Mvu753mbxvB8C9weUHOvIl4bxZKP+5+1rQvKifTDxBc3a8hE7au1gvcz0jBVW5QOmBvEddu7zpiJg7y/C+PDdF+7tiZGI7UYs2vYSoFbwes7Y6k6QFPJe/LLtOaZs8tTs2vAcFIr2DTto84TdZvIDuU7vxQTG9YIemPZDqQ7xU1uA8TJr9POfpfTyKAH+9y/cyvFXW4LoQMx26aSRvOwOzA70tM9C7SeCFPHBTEz2+fg29tRhyvH2VwTxuKoQ8YmtWPNQ6ijsdN+C8DdMWPaNbFr1ly1y9vOZmvM3bYjyKb5a6DcyivNmFNLx5Nbs8tFCSvCnhsTtAqxa8L5pKugcFIruHvEi9jW7tO/OaQ7yJKrc8nPX6vGT8iL2JPxM8BwUiPXJ1Lrrk+A49pSN2PSxPIL3xjQQ9GsL9vNYeOjqVlh29od8/PYDuUzqEVc47AKZ6PFIOAbw+E/C8d7LwPNZxAb0VcF+8jIq9vI3PHDxrpzm8r7mUvHzhlDyJMau8srF3PJoD4zzlLwY9RO9MPVIOgbxt7Jg9QXN2vSZzQ7zaypM7OsHRPMmXrDre0N48r1jlPJND1ryQPQu82YyoPKzq9ruueym90tMPvW8VKL2Mpg28Th1IvDMWobzrv4+7JFicO76uED2yIA890TR1vVu5sbxApCK8ZPwIO4U5/r1l5yw8UX1OO04B+Lys/9K8xw1uPM3Ubr13svC8p5hYuDTzXL0meje9KP0BPQOzA70qzFW86YiYu7InAz13snC8eIgCPcLXnztl0lC7Z2MDu5Dxtzy2GPI8gE8DvRjeTby3t4y7678PvZNYsrw6yMW8+2HEO5ej3DzJ3Iu9jK2BPL5byTxG0/w8I/B4Pd0xDjwwob47beyYPMp73Dupg3w8ihXbPHhRizoLZSi8xm4duR+swryHDxA69ggyOS0e9LzU/B49gnGePJoDYz3QSVG9ytWXPJaxRD3LDI889nf/vCj9gTxSfU48cYMWPLxOCr3nXwm99KirvGXZRL0eyBI8rnspPf+lersDFGm8zl4tPEnZkb2e0oC7lr+sPLYmWrzPXi29vE6KPIbKsDtNMiQ9r2bNu9SU+zv3D6a8DFDMvLz0zjw9NjS78YYQPSrM1TzIkDi7bw60u904AjwhkPK8hw+QvCClzrus8eq7qgbHukbTfDw4TO+8cllePQnb6TwsSCw67cVaPOtQ+LwmbE885iEePU+ZnryLAP88fegIvZHO8zygAoQ6JFgcvPOhtzwbRci8+2g4vYbKsDvc+pa8h6D4umvDibxti2k7stS7uMz+Jj1k7qA7N7uGPWhHs7yOZ/k8iTgfO6vq9ryA7tM7I2aEu+cMQj16J1M9cXwiPSMMSb0qvm09vd9yvfSoKz2Daqo7OsHRPHhDIz3vsP47QKsWPUT9NL1YS8O8bJJdPXDyYznpiJi7X+//uf9LiTtSb+Y88DNJPKU/Rrwmc0O8DdqKu7ebPL17Eve8pTjSvLLNRzuh3z+9nX+5Oy0l6Dxf9nO8ltSIPD4M/Ly7Arc7W/6QvdcC6jtRhMK7W7I9O2GHpjygAoS7hsO8u3hDo7zkifc8rZCFu8Z8BT22H+a6kdXnPLa3DD0gnto7tR9mPFgvczyKdgo9sFHxvAbVHj2HFgQ9OrNpPRtTMDw53SE930y1PNrKk7uiyuM80woHPd0xDr0g+BW7wcJDu7eisLzM2+I5EhBZu9dqjTs9L0A5yJC4PBcIBrz+z7K8+mFEu6tZjruf9Bu8mhHLvLK4a7whISU9BeMGO2LFkbyETlq7IJ7aPHXOQDw+goe8Od0hvVu5MT3L9zI8nJQVvDhM77ymyYQ8L70OveSlRz1Rkiq8ATetPPtouLzyrx+8BZczu/3kDj3TvrO8/tYmPdO3PzyDaiq91hBSvYytAb0p2r07SKmOPAE+IT1OdwM90sWnPByfAz2ysXc9rYkRvUyoZTwsSCw9DhECvLO/3zya9Dc97j0AvbKljb0ic7y83rjMvO8Tqbw0zpg81rPpvG31Qj31Nns8WoqJu3X6pbxNBIE985ROO/6Czzs0zhi9srlXPT7GvrzR4S08niRHOhuOiztYI+Y8VKLAvZqjITw58Wq9dnUTPL/kpDu/NTs9qVm5uw5ZGTxupCy81BG9vCgUFDyXH2S9kuUvPJ/G87wjzne9lc5NPLdQir1DjtU5pnpAux0mE7xV3ww9PjcHvRnW0TvaNye9+Lq4PPM5E731Nvu8ysgAvHfwgLyYXDC7JMRSPRivkjySQOs8u2BnPNDhLb2yude8RI5VvYQYNr2LMeO8chstPGyHEjyufyM9/oLPO//zlz0LKQo9fBNTvPCrsLyVh1w80Jq8vBrCBz0VsOe8oA1lvHIRiL2GVYI8nsmLPTR6ar2LMWO8zOUaPY5uLz3g/z29VjCjvNVs+DvaLYK9ZpUkPcTWkr0hLEu73rhMuzFqDb1UEwm8PdBjvC1hvTxzlho6vMeKvRtkNL1ONeU89OXkvMbpBzvX+lq8mbfrOvn3BD1YvoW8l1wwvVJ7gbtv6x29519cPYLbaTzErLs81rPpO4HoJj2aT/M8tY6rPJ5OnjxYGUG8QKW3vC1r4ryD22m9PFgOvd3C8TmZt+s8kkBrPI2/xbuzAMm8ItEPPebnBr3F1pI89nNHPQfj7TxnLSw9scP8uv4nlDwta+K8+5kxvCQLxLwOl7q8ff+IPB+e6LvtzLe8trgCvX6EG7yeLuy8t9/Bu74/YLxaYLI97h3OvKMMkDoLWm48BOaFvI3J6jrq7T699QWXPPv0bDtTmJu7dnWTOsWsO7w3CM06iyc+vDGRzLy1cZE8UMNHvZm3a70zKVS7eTRavAOpuTx6IBC8Vd8MPa6JyDyGX6e7538OPHFFhDxc+Dm95myZOh5X9zvR61I871oaPQlnqz3NXXC8sNA5ve2Fxrz0iim9HSaTPKljXrySnr48lYfcvOY4nTzMFv+8InO8PIChtTyK6vE81mz4vPqt+7u7gJk8lwsaPYchBj2XZtW82rIUPGbmOr2clmS8CxN9vUudXbwYr5I8EC/CPcIe2bz+gs+8nYIau95dEb0y2D27Hld3PZLbCrzRPOm87sw3u8p+dzzijSA9uW2kvdALBb2rTxQ9y5QEPdLXiDsiczw9WA+cvJSnjry3JjO9+5mxPE/N7DxgHiS9WmCyu1E0kD32IjG7g9HEvJhcMLyAY5Q8B8+jvAQEdTxNK8C6c5YaPMS24Lyk4rg8+OSPO676EDwoj4G8FUuHPAta7jxApbe8LYuUu3EvdzzjOfK8tXERPcqUhLwYNKW8+BV0O/l8F713DZu9YhHnPJbEqDqR+fk8oLzOO1gZQTwiLMu8zQK1PApnK714Pv88Pg0wPYqZ2zwyfQK7IO/+OzKRTL2wcuY86zQwPd+uJ7uClPi7zLGevIZfpzvAfCy84TyKPKFe+zwQJR09DEYkvVLMFzxpxTO84PUYPT7GvrxC7Kg8S5M4PDwuN7wW99i7HKsluyvJNTykkSK8/Tteu4o+IL0VsOe8eLyEPe9aGrxitiu9kUMDPPcYDL25bSS+Q47Vu7HDfLv/bgU9NsHbPAMEdbtpiGe88vzGOmy4djv1BZc8j7Wgu7cmM72jDBC877/6O0581jwpjGm8u2BnPKfL1jumUwG9mk/zvATwqrwomaa5OpYvPatPFL3hPAo8m4y/PRg0JT0+Nwc9A/rPOml+QjyFXye6mqOhvJuMv7n1gIQ8S70PPC0GgjyZrcY7mbfrPMjm77yctha9jmSKuz1rAz5bAl87m5bkPKGyKT3NLAy9hlWCvDLiYrzcIEU7zwsFPFz4ubzt9o68f1AfPPC1Vb2dLmy8KI+BPAARMj3RMsS803m1vPuZsTx0qY+9/niqO5yWZDzvWho9zQK1u9o3pzuXhoc81/raus5Ty7xydui8GxOePNjmED2KuY07zGAIu/fkD72PYfI8tFHfuw2h37tcSdA5fWRpvYVfpzz+gk+8x5/+O6jBMTyhqIS8hEKNvc4/AbxTzBc9irmNPf/TZT7uPQC8fTMFvex7Ib1+UJ8804Nau1fygTwomSa9wIZRvd3C8byjkaK87j2APOgEoby230G977/6vFSYGz3dZ7a7iyc+vAFsbT0sybW8BZJXO5IPh7zhPAo8CcLmu1XpsbwMUEm9goAuPUbLoT3ijSC96j7VPAQaArxiZRW9A9MQu6kIo7wbZDS83M8uvfL8xrzUG+K8E19RPXqFcD2hsqk7NHrqvGHK9bw2wds8b5dvPJHIlbx38IA8i9anvNEon7tupCy8+AtPPUbLoTznX9y8yIGPui1rYrubZYC8qrR0vQv/Mr3mOB279YqpvCwazDwx7x874+hbvHDeYDutLo29zsSTuiiZJj359wQ9e8zhvLOvsrxsh5I9WqcjPdRvkDyhA8A8y5QEPXcNGz3JgQ89QRaAPBMOu7ypY946uHfJvLuAGb2G2pQ7MUA2PEH2TTzOpOG8hlWCvMIeWT0kC0Q9AWJIPIPRRDzcz648ushfPDj+Jzx9M4U8IOVZvZ9ruDwctUo7FRcLvYsxY7zRjf+8UTSQvbhQCr3eKZU8W1aNOT+IHbybMQQ7SGOpPE0EAT3lgOO88KuwvD4X1TyKj7Y8XPi5vKUpKjwQJR088fIhuhp4/rzQkJc7N3mVPGl+QjzJLeG87dZcPdTU8DsJkQK99izWusH3mbw+Ifq8pnpAO85dcD3YQcy8UmX0vM27Q72bZQA9irmNPQbZyLsFklc9Pg2wul7h1zzI5u+8KTEuPVOiwLrYnx+97j0APR9DrbygDeW8srnXvDqWr7uyXhy9bzy0PCwazDyfxnM8eNkeOQayCb35XGW9fWTpvIhIRbyncBu9C/8yu+GNoLtcSdC8WqejPOM58jsjIiY9KoJEPFJldD3qPlW9C/+yPGrvCj17zGG5cN7gOrHZib1SW8+8Go4LvPuj1jwjaRc9V/KBPAz1jbxt9cK8Gnj+PHX6pTyidAg8JkgQO4LbaTsQ1AY8PryZPU6cCLzwtdW8Mtg9PdfTG7xEjlW9NXDFPfKhC72+5CQ7xf3RPFtWjbw90GM9jYL5Orbp5rqgYZO7T83su5HIFbtL8Qu7NM4YvQh7dboIIDq99dGavG/rnTxW3HS8tgmZvE8hG7wH4+08AlgjvX6Emzwfvhq81VguPPdporsXj2A8cHmAOjGRTLz/bgW9qBxtvGmI5zwCs169oA1lvSqCxLzFB3e7TQSBu4vgTLv4FXQ8gKG1O9nwtbu9p1i8BeYFvNsq6jwg2zQ9OzjcvKjrCLxau+08LqguvLMK7rsaJ+g8bf9nuzrnxT0BbO08MZtxPX0T07zOU8u82ZJiPRftszxzlpq8qOsIPZn+3DsPCAO9IDmIuxacnTljYn07xLbgurWi9bw5oFQ8QAOLPCJ9YT08dSi9q0+UvMsZl72wDYY8Xuv8PM5TS7yl2JO8dQTLvYmZW7uk7N28f1Afuyf04TpjMRk87h1OO7ByZjsVpkI9FdAZvdE8aby8+wa9vLH9PMoZFzzuHU68QVShuyqCRLw/aOu77SdzPHNsQ7lvMo88tj2VPP/zF72Nv0W9eLwEPY/8kbyy2Qm8RtXGvFgjZj16NFo7SvGLPFNHhTz9O965PwOLvWSp7rzKyAC8JgEfvHMRiDsMUEm8niTHPJHIFT0FnHw9m+oSvc74j7x4nFI8sEECPWAepDz35I+8tXGRvEzu87ucjD+80Fwbvfz0bDw3/qc8TdqpPIVfJ7sSvSS8gENivCTkBDyIIYY7bK7ROHSztLsiczy7jB0ZvcrSpTz5KwE8PvCVPGbcFbw+IXq9r38jPGNY2DxLVmy80evSPCknCT3ldr684ZfFPCLRD71v6x09I2kXvXJ26Dye0zC8LSRxPMdEwzxFyyG81BtivBkn6LokC8S8AWxtvM0CNTyw0Lk8TOTOu0bLobyJPqC73CBFvESuhzxNVRc9E19RPeV2vjyr8cC8NXDFPVm+Bb2qg5C7io+2POoXFj0KZyu516lEu0yTOLn/0+U6Qz2/vCdSNTwx7x+7OEUZvUBeRr05oFS97K8dvP4nFL0Zexa9p4TlO3jtaDymesA8Me8fPX3/iL03WeO84aFqvPJN3bsi0Q++ofmaPPVMCLyblmS9kZ4+vaEtlztwg6W9XyjJvE9yMbwxStu8Cl2GvcArFj1XdxS8cf6SvP3gIjz94CI90Jq8vD3Gvjuxw/w7EC9CPL/uSTxD4oO7MocnPQFs7bw+vBm80etSvLaidbyGC/k68dUHvdCavDzIizQ9ZZ9JvaBrODyjSjE9zwuFO3CDJT2gDeU7YwdCu2xnYDwQdjM8V/IBPLAXqzzNu0O8TO5zO/gVdDzFHYS8sl4cu5r0Nzq8xwq9KTEuPZ4aoruwFys99YqpvCDlWTzseyE9+8MIvTatkbz12z880TxpPBrMLDzA1+e8bqQsvfcisbzl0fm8Vd8Mvbh3ST1daQK9qHAbPEuTuDwLrpy9XPi5vBJsDr1MBAG75r0vveezCjrTebU8SGOpPAE7ibyFGLa5NmYgvSmsm71QaAw9fv+Iu7h3STweBmG74ujbvAERMjxx/hI6z/V3vFNRqryedd2892kivOtI+jpDM5q8qbcMve+/ej3osPI8e4VwvGSp7rt8Hfi8vZ2zPFSYGz0H4228n5UPPSoxrrwUsGe75C9NO7oPUby/P+A8rTgyvU/NbLwJkQI9J0gQvB9DrbyWP5a7acWzPJ5OHrweoQA980O4O8p0Uj0dqyW9Vd8MPR6hgDwdJhO9BBqCO5s7KTy1jqs8Nrc2PUPigzymekC9GCqAPSDv/rzvjhY9J/ThPHUESzxAr9w8JgGfuwME9TzmGOu8e+yTO5cVPz00M/k7+QvPO1JRKjsES+Y89QWXuTUVCrxdSVC7+q37O08hm7tG1ca85dH5vI+1oLzHbpo60Jq8vPOUzjzldr48ZvDfvM+k4TuZ/ly8V9LPu0hZBL1pfkI8lDZGvZn+XLwOl7o81MCmOyu/ELxm8N87QK9cPBM4EruJ7Qk9PzeHPOpeBzxgHiQ9J/ThOp+VDzwlui27RN9rOqxM/Lt+UJ88Ot2gPBM4kj26vjq7KTEuPfkLzzwqgsS8d5ItPZWHXD39MTm8dfqlPNwgxTzvjpa8F+OOu6jBMTzItQs8YwfCO+V2vjy9k468u7QVvK4ujbwustM7zMXovGT9nLx+UB+9q6CqPGyuUTyGVQK9yJ/+ulY6SD2IUuo8SCWIvB0mE725vjo9NwjNPE7QhDybjD+9c92LvJCo47nuPQA9CHt1uvOUzjwxkcy8yDqeuxftMzwlXNo8uNUcuidIkDyyrzI9Me8fvXUES73CzcK8LSRxvKDcADz5fBc9q7R0PLAXqzzwqzA9ui8DPcjm77yXC5o8PHUoPWAoSbx9Ca48i7ElvePy/jrkCFi9h+yQvNaNqbybAKY7E+B/PZhunTySYCM9wk2kPLeXSL0QXbQ8+EhdPeCivzxP8ZU8VaATPQGDiT1KX8u8ACSNPVFQkrwkVBa9Zk6QPIeqR7xftSm8/U87vUV9gztkkBe99YOKPBe0UTwgVNQ44tVLPXUoO70FvbG7YF3JvLKJED1Ityu7orZ9vFZIs7ycqEW9rYIyPXUoO7xAARI7ZoHaPIaU7rvcCZs6IoAGvSL1GbyPjNG8BnQOvYhSZ70meOU8jxc+vFs5uDzo8gK9s7WAvON2EbsyS/S8Zz9TvBn9tr2yKpQ7f+Vwu6YrFbvqt1W7Qzs6PGaXs7w6EEs9iX6ZOsqkwTz4QYO8j1kHPD5DGTx+IB49S3WkPHhxoDt/yL28OPrxu9KcJDuJqom8iFLnvEuSV7vvSaC764SLvU6SGTuB+0m6VP/NvNKjfjxxNza9HwQVPc2VxjqHwKC8w9gQPJuSbDzpJQ89qhwau4oQ4LwucEi7SdTevHsZAr32FVE8ISEKvAL/OLz2FVE83bG6u0TyFrsn5p68r5/lvJZ9GDz/gke8OhDLu+++szpOZqk8K44APXAhXT3rX/U8NHcmvEABEjt/yD29+gbWvM4gs7wMiWI8Xfewu8WWiT0tIIk8fSf4O3/l8DxUQRe9a6XrO1tPkTwwjXu8IvUZPdXsYzwXgYe8lmeBvQsjDD2dvh69oPEqvGaXs7zz8QE8Z3oAvaagKL1A1SG9WSPfvFtPkTtpawW9lmcBPXadkL1Okpk8pVcFvSCsNDzQyNK6YhvCPCDCjTsZj/08dsmAuzQCkzy5ylS8ghEjvDCGoT3rX/U7hPuLO/M6pbwtss871LlXvEFn6LzQ3is8piuVutuUhztb8JQ9QyXhvALp37wknTk9ZfbtPNXsY73sWBu871D6PEpfyzzCTSQ92vNBvKKvIzwSMYa8/ZEEPZMIwzsgrDQ8aedyPYYCKDxjw2E8V16MO7FWBD1jOPU8Njz5vJTGOzv2Vxq98iRMPat7ljyre5Y8JnELvGBdyTsfIci6SwfrvAVP+LuQNHE7k33WOwiYXTwY51288kF/PD80XLw9AVC8/QYYvW7u0DunSMi8EsPMvHgZwLwFT3g8yAP8vCdxi7w/ohU7QNz7PAQyxbzKwXS87OrhPOKigb2DnI87JVsyPKDxqj0opBe9vmN5u8Nq17ybtwI8i85YPHtiJbzHVAK7H5bbPFWn7ToOvO67M6OWPFRBFz1DJWG6OJSbPCSzEj2i25O7q3uWPASnWDoCtpU6Br2xvEJgDj3Q3is9MPs0vHf8jDz+91q9GXLKvDQCEz3tFpS8HNEIvR4L7zwQcw09vTDtPP+YoDwkuuy6/g20vF61qbzK5gq9+fB8PJu3gjx6uoU8GbQTPebcqTyuOY+8Z60MPPConDy12U+9KBkrPV0UZDvYSyI9gqNpPCP1mbvVd9A81h9wPeNguLxh/g49vJ6mvL/uZT0He6q8VzIcvLBAK7yk/2I9eVuJO5ks1L2pka28U3ThvDu4arsq3v27vmP5O4YfWz3YNUk7HnmovEFn6Dy+0bK8ua0hvsqHDr2ISw09yrqaPLEqFD31bTE8xj4pvaCD8Tp/5fC7nKhFPWhVLL3ymV+91gK9vK33xbuGNTQ9b6zJun490bxExiY7xrM8vGZ6ALuhr6O8zj1mPGBAljqE+wu7oduTPC0nYz3+xBA8cBqDPIzOWL3nUT05bUaxvPKvODyLm0y7FpceOziUG7sSrfO772bTvDtZsD1PHYY70N4rPDGGobvzOqU9auCYPA7hBD0Wlx47pqAoPJ2+njz2oD09QfJUvTfdPjzZ3ei6MBhovD1viTzaaFW9pysVvX4gHrwCVxk9llEoPCdxC73Kh448OfMXvciOaL2FWoi7UkHVPDGGIbwdY8+8/MTOPANBgryAcN28voiPvJf5RzyjV8M8s8P2usAEP7uYhLS8TB1EPQ687rvwfCw8PqlvvEmhlL0AK+e8IyimPPnw/DubAKa7lCV2vCSdub2GH9s8O7EQO6T/4jwTa2w+mtTzPJlCrbz1+B29tKbDu15sBr0ejwE9paAoO4u4/7wL/nW8CsSPvMdxtTqGuQQ8Fz++O7C1vrzrQsK7Gf22vI76Cj0PFJE96CxpuSYSjzpwrMm8CZGDPeG/8rxarsu8iaoJvUih0jq/5ws9vUZGPFfTHz2USow77TNHvIYfWzyxXV69uLT7O49ZB72Jqgm9WAYsPH9Tqjzi8n48nKjFPCVF2Ts33T48xrO8u8JU/rw3wIu8YOg1O1cyHL2pvR08JbOSPIV3uzxGi/m87TNHPP+CR7zgF9O8FinlvMc+KbrxJEy8tu8ou7qIzbzn+dw8Cjkju/1sbjzFgDC7UkHVvDdS0ry6VUE8lLDiPGetDD3URMQ8/ZGEPSv0Vjzhv/K8xDcNPQgjyjw2UlI8hGFiPaEkNz1NxeO8yAN8vPaKZDuv9we8ecFfvPwyCLoQR507k31Wvbz2hr1jXQs99qA9PbprGrwCdMy8lB6cPMfQ7zwq3v08o+KvvF8qPTxjw2G8wRoYvY5vHr2yBf68hS4Yu4H7Sb1U/828FcMOPA5H27tkTk68/WUUvYXsTj39ZRQ8I525PM2VxrxMOvc8s4kQvD/OBTutgjI8TcXjPIvdlbwuyCg9MBhoOyUSD70u9Bg7RW7GvPDUDD3UREQ9qGX7O0pfSzz+xBC9Snz+uyyc9rvLTOE8MYYhvHCsSbwjumy9oQ7ePD0BUD0DiqU8K9ejPK9smzvG0G89p71bu5EXgDw+Q5m8yObIO81/bbwAK+e8NaqyOwMVkrojumy84/L+vCMopjtkTs67amuFPHazJz2VO0+9VadtvMsZFz26cvS8ERutvHovmTzR+148u/1gvIRhYjzWAj290fvevGBzIr3XNck9K44AvbkMnjwS4H88K9ejvdijgrxEsM28KBkrvQW9sTviuBg9WHu/PKEO3rwEp1i9A0ECvf4NtLxOUFC7Ze8TPYeqRzxQDkm6sGwbPTUuA72bACa7xrM8vJZngT02H8a6GeCDvdZEhj3ejGa8yHG1u/YVUblkZKe8GzBDPTZhjzzxBxm8iWhAvfGoHL0x5R09YQXpu7xVgzsxhiG860JCvGiBHDytOQ+8qGX7vOWwd7sm7Xg6+EGDvJHy6byazRk8E2tsPNub4TzfAXo63m8zPPKShbwjumy9XRTkunP1rjvUuVe74tVLvXHJ/Lw4aKu9dp2Qu8mHDrpdifc7/sSQOe6hgLt40By8WSPfvGg/07weeSg8VaftPOtCwryi2xM89hVRvRBzjbzSyJS7g9Z1PPcrKj3704s9qqcGPX5/Gj2/eVK9DIniu4loQD2IwCA9sGybOTdS0jwMgog9HLsvvIxZRbyOAeW8zXiTPIERo7wKVta8OyYkPS9wyLza1o494krfN5u3Arwtsk88ei+ZPOaTBj2BGP27kWf9vIhS57yUsGK90lOBPIH7STxHhB86LZUcPYa5BL07sRA7f+VwPao5zTyZ+Yk8GXJKvIT7izz1//e7iyY5vRKt87y6cnS8QpMaPOaThjwDQQI9w9gQvZFn/Tp/yD073ceTvQgjyrwJrja642C4PHnQHL0DtpU9MYahvIBTqjuHwCC81exjvNXs47xjw+G8ccl8vJhunby4l8i8Y6YuvXmkLL2RF4C8MXAKPQP/uL3mCJq8SdTePEnU3jyw0vG7KBkrPIV3u7xrpes8QC2CPFrwFDw43b68e/TrPMqkwTvYUvw8/vdavaocmryIwKC9iB8dum4EKr0pA5Q8DIniuxB6Z7w1qjK84UpfvMQ3DT14cSC9/U87vdMROD37kUI9O7hqu1G26LzeWVo9RrAPPIqbzDzzr7i8BDLFvKEkN70Mggg9YRtCvQJ0TLxA3Ps7nR3ZPL1Vg71+PdG8tDEwvTot/jxNMx29z1O/O3x/2DwepRi80y5rPChFGz1ogZw8nYuSvLmtoTyhDl49oAcEvYfd0zwdRpy9xmoZvcsvLjzWAj09gpyPvNRExDu0MbA7qiP0vFT/TTx8TA49gWkDvcwK2jynSMi8zpVGvdnzwTeHwCC8Zyn6vJlCrbsRBdQ8ClbWPCEhCj2Mzli9SdRevFfwUjyRSko8qPDnvXdxoDy+eVI81EREvemaIr06EMs7EuB/vKEkN70RkMA7IKw0vaB8l73/n/o8a6VrPfletryyczc9XQ0KPeDkCLwCdMw8i0PsO15shjzVYXe6gi7WO3VF7jxxGgO9F4GHvPoGVr1jpi69Lj08vEBKtbzTLmu9bbtEPGs/Fb1veT08nCwWPUt1JLy9MG08Id/AuzCykbtPfAI9Poy8vBhc8Tw95Bw9+XQPvcsvrjzh1Uu816rcu/IkzDsaPwC8pYpPuaM6ED3j8v47W1ZrPCKABjzFC508yxmXPBciCz1EsM275TtkvDWqsrsrjgC9E9klvabMmLxA1SG9bgQqvf+YoDxi/o48uDgOvVW9RjyPjNE77LcXvZrqzLylV4U9oSS3uoDeFr30JI48nlDlO5bjbj0ImN070xE4vXdxoLylik+74tXLu/TFEb2Zt0A9e46VvLgitTyYt8C7EjEGPTFwir33Kyo7eaSsvCDJ57raaFW7CjkjPUAtAryQv9085ggaPVvEJD24IjW9Kt59vfConDxl9u27ze0mvZJgoz3BrF69IN/APM14E71nP1M8kwhDPdSGDb0rjgC9V9p5PBEFVL0II8o8k0qMugVPeLxEsE09Zdk6vArL6TzCN0s842A4ur5jeTsc0Qg9vTDtvPvTCz27/WC84+ukupFn/TyWCAU9I505u1xsRDyIwKC9z8hSPAHMLL08EI088GbTPSx/w7xA3Ps8jm8evY08krwM95s8525wvM7Xj7yIUue8GMqqPFfwUjwej4E8y0UHu01fjTuTCMM7HjCFPFmRGDupXiE6sEArPb5Gxrwojr68n9vROy2yzzu6VUE9FYHFOVOKurzuM0e94S2sPEp8/rv34gY9oGa+PKK2/bzblAc9kLgDvZC/3TsA+Jw8J9AHPfIkTL0Vlx69m3U5PKzaEj0jKCY8EaYZOmcpej2fZj68MkQaPSiOPj2wtT46Eq3zvKagKLyXFnu60lOBvZi3QDwTBZY8EF20vNPIlDy+0bI7/sQQvTtD17yYt8A8LH/DOV8qPTseeSi8esFfvcQS9zsk0MW8yRnVPGLD4TovcEi9vBO6Otg1ybwvcEg8D+igPIoQ4LzD2BA9yRlVPbnK1Lvg5Ii9AulfPeKiAb2Qoqq7OGirvB9jET1ASjW8/MROPIxZxTwhlh09RrCPvKM6EDxl75M8r5/lPPAO8zsMbK88+EhdPd8mEL3mxtC8C+HCPMsZlzy8u1k8+emivPocrzsIMge82cA1PChFmzyCEaO7sEArPdzzg7xvj5Y8NaoyvZdHJL2ehz28Or6mvSVyNL18nci8n74oPCtEdz1A5aS7xBG/PLtKtDxwT0y9JFmZO2ooTj3034k7fPKDPI1JLj1cgBg9+xA7vDNHoj0lHfm8VvX2vP6wRzzLiMO7KBLBuSpix7wWk5O7hIKjOjvXwTydzZA8soMpPHjGUD0h0qe8Y7FJPApFl7zTNrM8XFPgOzPyZry7gR+9LSAkvVFpBz00ppC8nADMu6FUAj2ipAg7+1aOuecyH70d+6+87lTovEH+P7zFKlq8oqQIPcIHDL38R6Y921j8vKi8Hr26aIS8OBnlvHjG0Lty1r29oXwFPZzi+7vfkxe86wkXPMexS71YRf27/ZcsPQXx4Lyme4A83f29vE6cQjwO1js9lMAyPfUHDTzXDas7PLnxvCdtfzpzHJE8pK67u0nygr08VIA8F+OZux+RCb2Ot4Q7nDc3vD6VHr1hpxY9kAcLvbIubjx7uxg9ei/yvFhF/Tr2Alg8NvYWPfoGCLx2dsq8sUw+unu7GL1A5SS3IrRXPDcASjwF8eC76tKrPAKIPzxkH6A8htKpvGZRVrzl8QA9ccwKvF3fBjvq0qu8T7XdPENOxjwMlR09Bwr8PECQ6bxxMXw8gRkCveZBh7tAkGk7V5CFPCaLTzyJkIY97nK4uvouC7zUpAk9HKspvFIefzy9fGq8ogn6OStEd7xNkg89TxkBO+WNXb2/ISw93hZZvWPoNDpcHHU8x3rgu+p98Lx35CC9LSCkO0iTFL0wzxg8irgJvaFUgj3Hz5u9soMpPBBdLb0vUto8S95lu9lsGTwMhjU8r6f8ujmlizx5kxW85VZyPJYuCb0vG289HOKUO5gpVDwXnca8UEEEvADK4ruZlyq8Qf6/PNkIdrw6zY68gvuxPXG9ojqh8N6841snPVOMVTxwzIq9Yt4Bvb186jwGfYc8yQFSPVYTR7ym4HE8gI1bvJWi4jzucrg7J6RqvB7dXz09J8g8tpEMu+q0WzyUUtw78TCVO4L7Mb08Dq28dT9fvfYvkD3MavM8WOALPdRtnjzSyFy7S/y1vI6Pgb0RP107iGiDPJbZzbz16Ty8ATg5vTxUgLynF126W48AvJh+D709fIM8J8I6vaN3ULzadky8HKupPC0gJL279fg7UWkHPAHj/TpNkg+9h+vEu9qUnDyCpna95qZ4u8P4ozwssk09XFPgvFTDwLtpuve845ISO/gb8zxEnsw7SzOhvGDz7Dw0ppA8j0T5vIvCPD3Hscs7fmoNPDqg1jxDlJk8jUmuPA7WOzwcqym8fQZqPMZhRTq8Rf88ro7hPLtKtLxhf5M8KVgUvSq3Ar1WE0c9lWt3vM3YSb0QXa087CKyO3lrkjyV9508hPb8vC45v7xiQ3O82EQWvQpFFzxFgHy6kAeLPK5X9jxWE8c8PPBcPErFSjs+lR49O/WRvHvKgDwfaQa8GO3MPKF8BT1niEG8f5IQPS9wKj2AuhM7G5IOPbjhkryPRPk8UM54vGLegTxNLuy8K0R3PSQE3junbJi9XIAYvQt8Ar0FDzE8v4AavETzhzwU/Tk9CxjfPKEnyrx8nUg9pjUtOiWpH77VT069tWmJPEun+jzWaOk82ESWPEdcKb2ELeg7mvYYvUveZT0VaxC7J8I6vZh+j7ykrju8OH2IPCvfBTsXuxa81p9UPIjNdDvNoV68FP05vVOqpbyV9x28USO0u1Fanzx7Goc9XgeKPFeQhbr8Kda8iR37vCBk0bz2VxM9EvOGO9XMDDzd3208fH/4Oz0nyLx4Q489lFLcOsEc9zvCBww9cBhhPXydSD3CwTg9oA6vvFy3AzzRr8E86PZ+PQo2r7zTNjO8WwPavMnKZjuvxcw8ATg5vZNwLL1ewbY6nABMPRMbCj3Mzha9HQoYu7UjtryYYD+9rbsZPEclPrwXZls7z32LvBi2YTtXLOI7FU3AvM3YSb2TOcE7Bn2HPCvfBb2kx1a8pK67PD+uOT10RBS9mXlaPMQRP71XY8291G0evVJzujy5+q27JbgHvXnf67xpHpu9zL+uPGhqcTyXR6Q8FN9pPsMvDz2foNi7Xmz7vHkWV7jo9n69pK47Oqvu1DuUUty8/XncuomQBjura5O80h0YvODyBTwCiD+7rld2OnzUs7xbOkU9YnpePZ1uojtPtd07sGoOvf2mFD3IHyK99Jk2vU6cwrtPtV28o0DlPJwAzDwitFe72aMEuwr/wzuFmz46pK47vbe5Dz1hYcO8XxE9vGLegbtgYUM7JuCKO4bSqTxIdUQ8mXnauzDPmLuxTL68mvYYuwnI2DyYQm+9/gUDPa8aCD135CC8MlaKvezN9jvIH6K8cE9MvMy/Lr1BRJO8QJDpOZ19irxyn1K8nADMPIHExjpfEb08B0HnPLMZA7zgnUq9ET9dPGsKfjzKiEM8NwDKOxdmWz3WvSQ9mvYYva6O4TygDi89l0ckuq+nfD1kLgg9noc9vXWUmryV9528RyU+vG98hLwn+aW5EXbIPKi8nr03AEq9/aYUPQYoTD0gLWa8IQkTvGFhQz3sIrI8S6f6vNVPTjzPKFA8zrr5vC45P70nCA69VfqrvLBqjry0tV+9ZTg7vRt0vrzgncq81p9UvQvh87wvUlo8hZu+unAY4Tz88uo68RJFPNtY/DyiCXq7YGFDvA4NJz0BOLm60sjcPPd/ljwkWZm84kKMvG2vv7yZphI9LOm4PGXj/7wZQog8wagdvdPhd7sggqE8mZcqPW98BDzkdMK8wt+IvRpqizwy2Us92pQcPVnRozz6Lgs71BhjPbPTLzyG4ZE7xfPuvI4rXrynlJu8HjKbO6i8Hj2k5SY8yAHSOzh9iLy4w8I7wbcFvehLujyHtFk9IC1mvdH1lDxNLuy6YEiovNRtHr1XuAg8uhNJO0Ubi7w88Fw9BfHgvBKts7xgVxC9QzB2PVPhkLw8Dq08J6RqO1TDQL10CHS8zkagvETzB734tgE9PXwDPfEwlTmoMPi8nOL7vOb7M7p9Cx+9F/KBPCUdeTwjIq48RyW+vNGvQT0GX7e8mXlaPOhLOrw2LQI95HTCu77qwL39QnE9eEOPvA4Np7zucri7jo8BvGkPszzILoq7E8bOO0szIb3okY287riLPFtYlTsVa5A8xmHFvPYCWDx4Gww9XagbPOWNXbyrPlu80uasPLjhErsUNCW9pjWtPHnfazsaWyO8fiS6vDmlCzyu8gS9U4xVvXzUM7yjlaA7K5myPKFFGr1JrK+8Uh5/vWBIqLxPtd27kNCfvNLmrLx9Bmq8jPmnPHKf0rwJHRS9an2JPCbgCj2IaAM8e394PGTK5LwJke07JFkZPRkkuDxv4fU8JR35PKmezjyLpGw9zlUIvewxmrzDo2g9bh0WPYcxmDzXHJM7PkBjPexohTxiQ3O6L3CqvPgbczwyEDe8uMPCO8PaUz06oNa8mEJvPQ/vVjszKVI8vdElvFmzUzzEVxI9IgkTOiEJE70f9vq8V7gIvdaf1DxQ7Mi75gqcPFEFZDxkHyC9UnO6O7N+9DwWhKs89stsO5X3nbxpHhu889AhvNjv2ryFZFO9Lxtvu23mKrx7nUg8Gc/8PBCjAL0mVOQ8oB2XvK+nfL0+lR68BfFgOg9sFTyqDCW9OG6gPfKAG71Y4As6YWHDvKFFGr1C4O+8ulkcvdtYfLyg10O7PpUePA/vVr20td+8zM4WvbuQBz2PYsm9EVh4O5++qD3PfQs8IQkTvAzMCDstICS96rTbuMXz7jxwpIc7NZLzu66OYTyES7i7Ru5SPPx+Eb3h1DW8qLyeveCdyjtdqBu9KqgaPR3ERLyU3gK9z30LvVEFZLxIdUQ9mEJvvTK7+7yAjds7JwgOPRpqC7pkLgi99ER7PXkWVzzZXTE8eP27OyWpn7wfaQa9YEiouv6wR7yb57C6v8xwvC9wKjy7gZ+9awr+u61Xdr3d/T09MfcbvYSCI7thYcM81vSPvLtKtDyxTL48+vefuqHw3rz6Bgg9aihOPQttGr14xlA9M/Jmve6pI70w3gA7Bl+3PDUtAryM+Sc7qDB4vPhS3rzcxtI8hEs4PcnKZr0FuvU87qkjOh9LNr23Vew6Fi/wO5SiYr1Zs1M7Y+i0PFl86Locqyk97rgLvWuWpLkXZts8QhfbPD93zr36Lgs9XvghvO2QCL300CG9w/gjuifCOrlLMyG9uIzXPIZ9br2v/De9j5k0Om2Rbz1q8WK89Jk2PS5/Ej3okQ29WJq4PN9m3zz2Alg98KRuumsKfrunTsg8lxC5vKPMi7tVpfC6E8bOvDvXQbwE2MW8EcuDvbdV7Dw2sEO9K9AdvD4J+DyipAi9e7uYu/FnAL3HBoc8L3AqPdafVDyiQGU8H2kGPccGh7waW6M8CM0NvPJJsDyqt2m8M34NvKgweLxgSCg9lQaGPLoxGTx2dso82WwZPZB75DzlVnI9wHEyvNlsmbwxBoS8smXZutl7gbwELQG9IzEWvWxBab19Cx+8vjCUPOM9V71BRBM8zPaZO1TDQL32L5A8tlqhPSyU/buZzpW9Glsju44rXjpHaxE9uIxXvPY5w7wrRHe8x7HLvPNiy7rX1r+8gt1hPVTDQLvJVo27OBnlvF5s+zqVa3e9Bbp1vJhCb7ukrru8Ooc7Ozpp67ri7dA7JYGcO8y/Lj3jag89n6DYvFIe/7zfZt88lcCyPCdt/7zx21k9daOCvbRBhjzsaAW96BTPPFIe/zz4toG8QJBpvFBBBD0vUlq95astPVZZmjvxZwC9qhsNPRkkuDzdQxE9dCbEO9kI9juehz08VaVwPS9S2rx1lBo9fOMbvUveZTw8HRU9vEV/PFdjzbwQXa282Ah2vUszITztO828yOg2PGBXkD1LM6G8ZW8mPQnI2LyiCfq5qZ7OO8zOFru5+i26gHTAvGe/rDxTqqW8G5IOPSJ97Dp0JsQ89Jk2PLv1+LkHCvy7gjIdPEc+WT3kdEK9Mrt7vGP3nLtB/j88zfFkPHWjgrzRr8E8+7v/uxE/Xbul/kE71cyMu6dOyLuAdMC8A84SPLmlcrxebHu8U6qlPHpNQjx1lBq9sN7nvADK4jyVwLI8UOxIPEtCCT0ODSc91Ia5u4SCIz1pVYY9H5EJPSjb1bs8uXE89N+JvONbp73Cwbg800WbPLLiF70ODae8CxjfO/rZz7xewba8Bbr1PIyk7Dzbrbc7Q8uEvQKmD71WE0c8u0o0vKZOSDy94I08ZQHQvDwnSLzdNCm84bZlPGoozjz2y+y89NAhPR37Lz2LCBC9sN7nvHAY4TyTcCy9QBwQvduPZ7ya9pg8daMCvF6j5jxPtV09JYtPPYcisLxpVQY9iXK2PGJ63jxDlJk83BsOu0msrzwqK9w67M32vBVNQDyu45w8i8I8PERnYbx5Fte6e8oAvSgSwbqXEDk78AiSO2rx4jxRWp87EKMAPbuQB71o5vy8D/UFO6XBqL0UWx69OyuvvOc5yjv9ByI94bEpvMv+DD1+Iag8J6uevYa6zDtT/AI9nE7duzmc0zydPVk9p5EYPd1tmbwy0549LVLLvF2c9LyrUwA9YKknvd61ejwWKw47P72GPGX+O7ybG9E8+MMRPORijTyEmEQ9LW2GvHSM1Dv9Pv+85QY+PRyzrjxeGsy7ZWsPvWwENL35Z0I8c3tQu+FVWrsYAks9y/4MvYhJqDykXgy936ClusNKLb3bXJW8Qc4KvYWpyDy9Vbm84kCFPeCgpbyP0Ui7mjaMOwrhhbyxeAS8yI69vb+ZSTx63Rc8OyuvvPr6brxaMou8VyXYvDtNNz1b1ju8/95ePPoLc7zQlLU8898hPRyiKj3N3wA8+qSFvNI0Fb3F7t26dYiDO1c23DsJ4QU8enBEO1Cuu7u6tVm9mhtRO7ozMbyknyC9u+EYPYjtWL20q5A8DDrrPHoUdbxehx88dIxUO/46Lj0TORa8eV/AvFVwozvtig292969vCZu2zyf7rw7d5mHPLfvoDzumxG8rbYcvDVpRzzFW7G6iWswPV9XDzz46Wo8Kg47uzK4Yz074GM8jJ48PSKGGj1WA9C8gfhkO3fQZL0Gskq8Z42XO4UWnDyjjhw8AyNvPdC2PTxdZRc8AtsNPcvtCLxDMac84ETWOw82mrtaxTc8da7cPB2DHjxSvz+9EWkmPYFlOL3COSk7V1GXO9ABiTx77pu89IPSvBiVd7zzAaq8xe5dOxYrDr1+xVg9NnpLvTkJJz3+KSq9OjwzPCzUc7zB1ow8rdikO3C1lzt7gUg8fiEoO+BE1jznZYm8YkmHPYBDMDywC7E7HDXXvNX6zboH7428Eg3XvED+Gj2gW5C8an+POiS5pj1Hlz882969vDuYAj0+E3A8fRAkvRw117yeSgw9tyb+PE8fYD3eEcq8Bh+evKbjMDqbiCQ9bXGHPFc2XLzdPYk9jcBEOp+BabyFukw8CWOuPG6TjztsYAO9/95evE/5Br18Nn09vgpuPHYbMD0HUio88KwVOfvlGbxnTAO9rWvRvEkVlzzP8AS9ptKsPERkM70v4aY8CeEFvIY4JL0mbtu8ccabPLi/kLziQIW8qGEIvUMxJzzRx8G8PE03PLALsbshGcc8w0qtvF1lFzw76po8Sl14vUm5Rzy9+Wk7CynnPF2c9LyRYKQ8EwkGvSZIAj02hAI9D233vAp0sjlwpBM8RMCCPChZBr2BZTg9JkgCPUTAgrxWkis9qydBPKbjMDy71+E8/imqvBfPPjyufFW8BjAiPTK44zy9Vbm8cNvwOxBYIr1YR2C9cMYbPUAk9Lz8GCa9L6ASPPUSrjyYe3E8NEe/PAaySrznlZm8QUb8O7IcNb0kuSY9ZJFoPHvumzz6+u48XjUHPc6DsTtTTps7qQW5PN/G/ry4rgw8mIx1vBu3fzycFwA8dyy0vJ0oBD3QpTk9sHiEvCPO+zy0T0G9tE9BPbGv4bys3PU8fK0HverIJT3BFyG8KOyyvRCP/7ydzDS9QDX4O7kRKbzgoKU8gQlpPTVYQzx2LDS90cfBPEA1eLtq4iu+Fb66vP/olTzqbFY9eOHoPIhJqDziQAW91wcBPJSkNLyt7Xk9BQ6au3lOPL26xl27Qc6KvCRWCj1Bzoq896EJPDIUMzwsQUe7WmnovP7XEb1vSMS8Wta7vMmwRbx5Tjw80RKNPeJABT0AXbY7hJhEvZ7dOLwHAJK8j3X5PJFxqDqFJ6A8t4JNPGFeXLwZHQa9Z40XPSJFhjvDCZk8Jl3XPL3CjD3QAYk8D357PBfPvjsl3/+3p1AEPAaySj2/Cu68O77bOz4TcDv+vFa80SMRPQShRr0KIhq9XXabu/lnQj3AtIQ8iukHvfbiHTp2GzC91WehvTf4IrwgdRY8sAuxPBw117xms/A83RuBPKKj8bzqV4G9QP4aPPSlWjvfjyG9cDfAvK11iDz0ASo9nnDlvNYcVjyEBZi8wKrNvf9LMr19ISg8AgHnPHlOPL2dehy9zFClvb93wTzr2Sk9n4FpPN6kdj4Xz748Tx/gvIwx6bw2lQY8WbQzvaXSLDvqyKW8roYMvZuqLLxZtDO9CoU2vP0pqrutthw8QvCSvFvWOzx2GzC9n+48PRqAIj332Ga8WKMvPLVgRbwxFDM9lSKMvPwYJr3jUYm80JS1vBM5Fj3UVp07WSGHPHYbMLtoMUg7JWcOO1aSK7274Rg8wcUIvd61+rzQOOa8mXegOsLMVbz8tQk9xhBmPB9CijrHfTk7r+kovBW+urzOci08UmNwvbVPwTzRx8E8rMvxPDq+W70pew48ViVYvPiyjbplomy9I6iivGwENDxoU1C8cnvQuiTf/zybqiw84sItvCzUczxmfBO72KsxvT+AQzy9VTk8GYCiOi+FVzz+q1I9ZQ9APSMqy7wEocY8x+oMPXDGG7zL/gw9Ng34PFijL72AVLS83iyFvCsww7uMHJS8Ifc+vLCe3TxnIES9Kh8/vdpgZjylbxA95QY+O8s/IbxQSx89kYZ9PG4VOLuC9BO69X+BPDKBhrwY4MK8kIb9vORiDb2m47C8sa9hvdccVr0n7LK6YoqbvERTL72SFVm9xhDmPDy6Cr3CzFU85PU5vJmd+TuJGZg8Ir13Owj2WrykMk09jVPxvFYvDz2qlBQ8r5cQvZOktLzVeCW8lLU4PRok0zy5Eam8nFgUPQShRr052Ra8MqffPNT6TT16gUi7m4gkvIHSi71aaeg7IHlnPV1lFzwwwho9EPzSuzq+Wz3Ijj27l+jEPCQ7T7zXiam8rLacvGFoEzzwUEY9idgDO8mwRbyDmMS80LY9PAS8Ab3DOak8rdgkPYfLUL1pZFQ7F/HGPCmh57zjUQm90AEJPNq8NTzUfHa8kgRVPDRHv7zS84C8TnsvvPFhSj1oXYe6QDV4PG0EtDzefh29B+XWvNiarbwcoiq99JTWPIQFGD1lD0C8ebuPvY/iTL2tdYi87rDmvAbeCT2m0qw8godAvEC9BrxerXg98o0JPEAkdDyScai8HVffPGKKG7wSKJK9bGCDPSbbrrxQQei6tOJtPFVwo7mW18A8L+Gmuv0Hojxjmx+94XAVO0z91zwGMCI8PW+/PMb/4bzhVdo8nTkIPHKFh7wQBgq9C/KJOiDmujsENHO8ERcOvZh78TyR89A8LK4aPGWi7LxlD8C7hzikvGuGXL3nOcq8zjGZOpoKTT2wjVm9DDrrvMj7kL3gXxE8L3TTvMX/4Tvzno07XfjDu4WpSLwS+IE8C5a6vN/GfrznVAU9TWorvOuYlTw8uoq8MZbbO0z91zwYbx48DrjCPMTu3TwJdLI8MQMvPbikVb1eGky9iO1YPTo8Mz11G7C7ts2YPNcHgT1Rrjs8towEvR/muryzPr08ylR2u/yJyryICBQ92joNvXnybD3sn+I7hTz1OuUXQrvL/gy7OisvPQXDzjtM/de8sz49vZRSHL2RHxA9h0mouyCK6zy4pFU8f9ZcvGWi7LyMHBQ9koKsPCM7zzrbceq8ptKsPFQNB7sHQaY7DsnGvH/F2DmXam27nJmoPEnlBj2fSoy8t4LNPI2vwLwxFLO9/T7/uxEXDrzlmWo8PE03vEommz3XSJW8J1kGPE57r7zlcxG91GehvDq+27x6cMS7pj+AvFK/PzqAQzC938Z+vO4uPr0coio9cg59vTf4ojxDMSc9SdQCO81hKbxQMGQ6BbLKvMeOPTyCh8A8Z8R0PFThx7vzr5E85YSVPGnAozx5Tjy9HCCCvDuphr01acc8zFAlva/pqDwexLI7GiTTvE6Ms7x1yZc8if5cPSlqCr2kMk294VVaPOxohTwjRYY8uo+AvXjhaD136x88TWorvDZ6S7wE/RW8IHlnvc8nYrx7nIO8F+BCPI4tmDrL/ow8zQVavZQm3bzIIWq9FEBjPY91+bu5tVm6cMpsPCxcArx3LLQ8F4TzPP/olbtHKuy8tnHJO9YLUj0pagq9yVT2PGPcM72duzC9BLwBPKdQhDwHQSY4bAQ0PKvL8Tigku28jELtPNuC7jyarn29IHnnOy/hJr1vpBO9fuATvBhzb7xM7FO99uIdvALskTwHQaY7VyXYPNdIFb35Vj68Xq14OwYwIjyCGu29kzfhPLZgxbwDfz69AQFnvfOejboKIpo6gefgvFUeizy/mUm9v6OAvZM3YTydTl09hstQvH0QJD3aOo08ybBFvZyqrDxwN0A9iEkoPZyZqDudPVk72k/iPEkVl7z8ms67t4JNvAdBJr2SBNW8e+6bvISpSL1DUy881Hx2vdrePbwONho9GaZ7vF2cdDwKIpq8YE1YPP/N2jxSUuy7tmBFPdV4JT2lsCS9VZZ8PO6bEb26jwA9NWlHu/G9mTxBICO7CPZaPOjd+jvQAQk9rnxVvEz91zyz0Wk8sYmIPb3CDLyMHJS8wk5+uxAXjjyCh0C9PLqKvJuqLL2BwYe9RdGGO4U89Twkuaa9e4HIPDIlNzzhVdq8XjWHuzFwgj0G3gk7Q9VXvfvlmbm6M7E8X6mnPO7B6rszo468ZyDEvN6kdryFuky8urXZvHS4Ez0bNVe7++WZPGuGXLyitHU8vxtyvVWFeLyUUhy8IRlHvENTrzv+q9K8BDTzu0fzDrx3mQc9shw1Pa/6rLzPg7G8eKoLPWZ8Ezto1Xi8zQVaPfbRmb3aKQk9XfjDvLcV+jxk/rs8IRlHvAFdtrw2pgo9TowzvSdu2zscsy46D233vNABCT33oQk97sHqPGHLrzxHBJO8eKoLvOJ3Yj3aOg29+xx3POdDgbxjb+A70LY9PbozsbtoXQe9Y0kHu7YVer3s6q07ZqJsvNWefjum0qw9P4DDuua78jyAVDS9GW+evLV7ADyICJQ7RRIbu8CZybwqw+88aF2HOtV4JT1cVJM8Nx78POhKzrv+zVq89BKuu658Vbs7K688mBQEvRZi67xeNQc9OdmWuyB55zymgJQ7y3Z+PIhaLLx2658620sRvKmYZTz9KSo8VPLLvOfMdjxjm5+8KqFnvL756TyhbBQ9GOBCvdVnIb3efp07FRoKPXeZhzzNIJU856YdPY3AxLzVnn48X0aLPfhFujxKN5+8ZXwTPWA8VDx265+9cNvwPNrNOTxj3LO8f/EXvbxENTzzno28PdwSvXL9+DzKLp081AQFPFnFN73GfTm9F3PvOwT9FTuAE6A8Oa1XPMQJGb2yLbm7Am66vOm3oTyyHLU8HcQyve2fYj3wP0I9d5kHvSqy67xehx89JKgivUMxJ70oWQa94ETWPIUWHL17JXk8khVZPeypmTzTVh26IJtvvMs/oTzRWm482c25PAfvDTwOuMI8An++vIprsLxr8688j9HIO2J5lzyWam08SzcfPDLJZ7voZQk8KrLrPDYN+DuHy1A9Tf3XuuVzkTzGbLW8DBhUPAYvyDy3r4+9c8QtvQrohrxUJOI8AMNrPRQOzzwHshi8RfPcPDqIhb0pqzA76JQdPW56grzA8Wc8flE2PF5s2zzoTw69flE2PQwY1LsoBYK92zJGPZl2BL1K3Gi8u03ru1kNbjwwXBy5U5pDPEBP4DzQZ3y7VuzBPNrtNr2zUKI8heaRvBZgzTxKuYo827UWvGPLSL3FleS87O3pPMNDZrwuT6079npyPDxzw7za7TY9yGqzu3NB3bvoEc28ddEcuynwv7uubmQ88G4IvSK1tT0gqEY8T76mvLaGEL3c+qU7t3HOvEJcz70txQ49KAUCvTO16Lvxsxe92DoZvZckBr1B2f48jy4LvFkGoLtIyCu98llGO4WhAj1a6o89Ki4BvdM8yzv8ob+8HbCZOaqSx7w+A4O7bG2TumaglzzTPMs8ENESvU2xt7zI7QO82owXvcxogT33/cK7jT2sO9HqzDzi4zG8nbPAPH7O5bzR6kw9dU5MOw+Mg7zy3Ja71Qv5vF5sW71Fdi07nz3fvOvtaTxGPg08JKYUPEPm7btcnS264WBhvKf7OT1DaT4858y9u6OcTLu+Ijo9Qt+fPIR/UT1cWJ4894ATvXcd+jw76aS9fMF2vMbaczxZBqC8GhkMPEtfOT28FUs8oRKuvIfzADr7Hu+8fs5lPaOczLzESQe97j9ou8s/Aj0jfZU6RXYtvL4iujwcSVm8qk24vCt6Xj2IOJA8e3znvHdbO7zhPYO8Vm8SvWqJI7z7Hu+8d1s7PWIJir0sv208/CQQvcfgFDzV6Jq87A8bO5thQrijnEy8LP0uPMCs2Ls6ZtQ8KOPQPNcY6Dz/u528mdejO/hCUjuBZfM8q9fWvA+MA73sK6s7UKIWuwMV6rvler89mhyzPPGzl7wXpVw9QqHePMSVZLzCIAi9B/cnPRoZDD3eTCQ9VEYTvG1YUTzBNve8EkbvPGfs9DtszjK8ELWCPZxusTuurCU8K3rePPq2gT2EOsI78uNkvYWhAr3/AC29kNQ5PfUulTwXx408pGSsO/HW9buxxoO8FJEfvXDMADzYOhm74uOxvB69iDyn+zm9wbnHPKe9+LrolJ29SA07uzIryjzxsxe9KOPQPAVECr1wzAC9mMo0vRXWrryUsNa8Bqz3PEeDnLycKaK894CTPcVyhrsWYM07/zhNuQtQdD2giI+8mMq0OulW3Lxxtz4766jaPKpNuLzscLq8tNrAO60pVTxIrBu9SGcMPWtL4juS4ai7+rYBPZre8Tx0y/u7FdauPLwVy7xwzIC888AGvSI4hjymVYs8ONw1vH4TdTz9aR+9iustvW/ibzzhniK9qpLHvLHGA7zksl87hozAPKmniTyCsCO8y8N/vKa2KjtbEw+96qEMPBH6EToC0No8JUxDPJKj5zzyWcY86VbcPIutbD3zIaa8v+oZPM7WjzyVOvU6pe7KPO21ybzLAUE8WpA+PYfRz7yBZfM86mNLvJ42ETy49J47Bqz3PDgUVrzdP7U8/7udOxcorb3Ugdq7IlQWvTJpizuFxOA7QE9gPDT69zyaHLM8bM6yvB8eKD16dZm5StUavpKjZ7ySxRg98dZ1PYiZrzwiOAY9mIzzu3yCCDtcPA47ftSGPdSBWrx2tQy9ufvsO2rBQ7ylqTs92UcIPN9Tcjw4FNY6jdwMPMKBp7znhy69/QiAvMATGb35jQI7bnqCuxQwgD1mYlY71/UJPUMkL7wQMjK9ukYdvZ74TzxUAYS6usNMO1WnMjvJ9FE97n0pvbZk3zz3gJO7+amSuSL6RD3MRlA9xbcVPOwy+Tz1c6S8oIgPPdljmDwOJUM9otRsvf0rXrtJz3k8M3BZu0V2LT1wqs+8ZqCXvN7J07xpGxU9iJkvPXtZib3ZJVe7ss1RvXhoqr2kZKy6EDIyvIiZr7x68si89AUWPayftjxeJ0y8YfwavXSMjTzwipi8za0QvT24UrxS0mM8bnoCvD39Yb2Mdcy86mNLvNjgx71zf5680Gf8OpqfAz0itTW9WAD/u9Aibb2yzdE7YiUaPfXw0zxdpHs+0CJtPaLU7LshcKa8eCObPELfH71iSHi8joI7vDlfBr3KOeG5jwxavTnctbwP7SK8ayiEPFe0Ib0Ti/67lr3FvDvpJD1YAP88RwBMPIiZrzy49J68mMo0PaESLrzSL1y9a0vivBH6Eb3TPMs6ZuWmPBI/oTzRbR28+tnfvIVHMbyUsNa8qH6KPcVdRL3/AC2919PYvKmnibzArFg7wv7WPOAbUjxYu+87cC0gPXegSrzdAXQ78RS3PMbac71k2Dc8EiMRPOV6Pz2iGXy9RXYtvDJpCz1wzAC9VUaTvCArF72CsCM8DX8UvLLN0buXhaW7r/G0PHFyr7vsMvk7TbE3vNQEq7yHFt88j4+qPGagl7wZNZy8JUxDPYcW3zzUBCu8jgUMPUhnDD1kk6i8lDMnPUJczzwzcNm8HbCZvJKACb1aS688jdyMvLj0nry1XRE9cC0gvfnM8LzWERo9T74mPQxWFTj9aR87a0tiPfkKsju6w8y8PoCyvCJUljvp2Sy8rkuGvK6sJb1ONIi82mrmvO3zir03Upe9DeCzPPHWdToPjIO9/zhNvXDv3jxdX2w81xhovOqhjDyCLdO7AvILPcXTJTwMOgU7QyQvPWanZb2sPpc7O6vjPPPABr2lqTu8cREQvTJpizwz86k8KAUCveeHLj3VC/m8yCzyPODWQjz4h2E9DiVDPLPvAr2LrWy93PqlumhvRT3bMkY9Cf71PDme9LtszjI8cMwAO7PvgjxlW4i8xl1EvPHW9byePV88/zhNPRmyS7xFFQ49qg93vJ9fkDzVSTq8x8SEPHb6GzzNrZC8+hehvCpt7zv4ZIO8XeK8vBWY7TvYmzi7nfGBPA2bJDxRjdQ7kRlJPEEXwLxfjow9iJkvO80OsDxakD48bVjRvDfPxrx7/7e7wXQ4vKv5hz2Ta0c9WuoPvRxJWb3YHom9bp3gO/jFIrujnMy5XJ2tOssBQbxq/4S6awbTPDqkFTtC3x88PdqDvP8ArTznzL28IQ8HvbNQoj0ztei8HGuKvIJrFDuIma+6Vm8SPdhd97sh7VU8tmTfvDQ4Obz4xaK8CxEGPf0IgDyvs3M8vZibOgd01zx3oEo9ZZp2PM2L3zvQIu08Km3vOx5WSL2p7Jg7BBsLPArGVTzl/Q+9rBxmPJqZ4ryJ3j69GhkMvBH6kbtSECU94BtSvR9jN71HAEy9pGQsvc7Wj7y5++y78twWvH3HF7wjP9Q8wbnHPJdplby93Sq6GfdaPIz4HL0BRjy870WJvPXwU7vYmzg8Vm+SPLjYDj1UYiO8BUSKvOAbUj0z8ym9+GSDvah+ij1NbKg8vFMMvGyQcbx5rTk9rGF1PElSyrvUvxu9NPr3PC4XDbxkkyi9PoAyPQj3pzvryos9jgWMO/92jrxErk28LIdNvMXTJT0n3II8UhAlve8HSL0gJfa8c3+ePCeeQb3QpT08Ykh4vNEojrxKGqq9NimYPHWTWzz6lNC8jf9qveYE3jwTTJA8CYFGPY09LL043DU8W50tPP8ALT3gG9I5c0HdvMzD/zzluAC9xFBVvQEI+zvO1g+9F8cNPRp6q7z7XDA9qg/3vHWTWzyTqQi9TztWvNcYaDpcWJ68pEicuSM/VLyameI77wdIvSdZsjxNsTc8jPgcPXFyr725fr28g/WyPcDOiTsSAeC7rJ+2POE9g7xv6JA8M/MpPR8eqDxmp+W7Uq8FPa90hbsCDpy7p/u5vFgA/7z/do69pOFbPAYvSL3t84q8ZDKJPC5PrbzAzgm7b+gQPLuLLD0bBMq8GjzqvE9dh7ykZKy8I2EFPW6dYL2gzZ49857VuXhoKrtMpEg94/CgPP1Nj7wBi0s8DZukvCy/7TxTF3M8ICV2vNjgR7wnG3G7wjyYvCpt77utKdU7IrU1PVADtjwid/S7Ma6avKDH/btA0jA7Qn6AvDAeW7upCCk8KShgu5BR6bvXVqm8iFvuvGID6TxNCwk9RfNcvCdZMrzXVik8UhClvJocszxNC4k7Bi/IvPsebzxQxfS8vuT4vDQ4ubzzntW458w9vX3HFzyF5hG8GjxqOkjIqzyYD8S8Zyo2vMxogTyjHx09dx36vZKjZzwe2Zi8PgMDvfSrRL20GII7K1cAvXb6m7xCXM8872EZvU+AZb1pfDQ9qcrnPEjIq7uuSwY9Mqh5Pb7k+Lyfgu4858y9uyL6RD0rNU+8+U9Bvfa4Mz3/tXw7Rn37vPhC0rzCPJg75NQQvSYUo7yvNkS9pAMNPCI4hr2DeIO8ONw1PEtfubyyiMI87hwKPF2ke7wNXWM86mPLPNFtHT1E7A49oAU/vIP1Mj0jfZU7zEbQPHE0bruWvcU8BN1JulmDzzyyiMK7dZNbPeW4AL12tQy8zxufPAd01zufgm68YPb5vHkq6TuK6608Lu4NvHjlWbz5CrK8R4pqva3kxTyWAlU8g7dxvbWioLvX09i8NcLXO3+WRbuJ3r48YgNpOo8ui71/lkU7ZqdlPIcWX7xkMgm9Mqj5vNFtHb1gtwu9qpJHPNqv9bzRKI48dIZsPBxrijwuEWy9QE/gO71a2rwxhZu86+abvJeFJbwFpam7x+AUveKl8LxiSPg8XmxbPPf9wjxYAP+8nfEBveAUBD0V1i48Noq3u5zrYD1K1Rq9tyw/Pc3Q7rx+UbY71syKPLScfzt8wfY5Gr+6O5SwVrw8c0M8gSaFPE55F7oaXps83LxkPIHow7volB09sJ2EvD5C8bzvYRk99S6Vu3o3WDpmoBe9JhQjvfKXBz1uegI80zxLvfjFojtNbKi9iDiQPKpNuLt+zuU8BSJZPQNTq7xXtCE8TOlXvStXgLzler88N89GvIXE4LqsPpe8fauHO3mtuTwW4x089leUPF4nTDxwqs+7PbhSvDQ4ubs7LrS807n6Oyy/7bwG6ri8U5rDuhfqa70qLgE9U5pDPJwpIjsKxtW6AKANPI8M2rvB94g7+/sQPKtaJ7uGTn88Mea6utM8S7yc62A9FZjtOwWlqbwC8ou8Gr86PR5WyDveBxU8kya4PCVMQz1dX+y7K7gfPMPGNj0FRAo9CgtlurMSYT1mYtY8Q+ZtvVd2YD1bUv08D+2ivPAUt7vI52I8YHlKvdu1ljZVpzI9nA0SPaDH/Thf05s8Ph8TvU72Rj0Iuea7LIfNPGetBj30KHS8EiMRPGyQ8bxw7148ddGcPArGVb2EOsI8O6tju5Sw1ry0V3C89/1CPUMkL73j8CC9YeAKvX2JVrvoTw69AvKLPN7rhD0VmG09yfTRuyTCJD2sIoc7Hr0IPPtcsDuXhaW7CugGPEEXQL1yOo+8/KG/O7NQIryV9eU8w4h1PGFBKj3SL9w7LEK+OmZi1jwsQr682oyXPcRQVbw6ZlQ8G0KLOzEPRzqmVh09aZtUvdfvdL2F4qi8SxHTPAP8ST07CSU6aZvUvFBdwzxgA3S9fCv4u3Y6XT1ewMa8SetaPDgA4jzJyPY8AcyYvGy3kz0Mddq7tRuevQmLZz1Q8Yy9wdfbvGM+A7wOuqI8tpCXO9uMgTwwrcm7TWkXvPHzGzwD/Mm87SZePJpT/Lz7iWE8Ck9iuxU/Bzzytxa959wIvYy2jjwjK/a8RuSyO/GuU7rb+De9reU6PcHXW7z+MKc8AFefvPV5djnG58Y7qV1FPBfuarwOHKA9I6xDuyNwvrwwLPy8t/IUO7Zey7x9cMC9MMr+PDDK/rzu6ti8dPevvD+3kryWrlG8Iw5BPSth2by9AgC9QXsNvRx/o7x/0r08G9hdPWrBzLxd/Ms6uAURvWaULDyo3hK8OiZavEBTerwPfp08e0pIPZ2f7LwRwcq8yfCJvKmPkbxKkiA90OGkvOwA5jujr9c8UKKLu+oCAT2dPwq9jisIPQeNgruy9SW8TbiYu54gOr3Jq0G9NHjsOsdJRLxghEE8yGb5PAJ7/Lozeoe8XlQQO117frsxjnk9YGVxPMxQ7LkAahs7royAPYF36DxZdNY8jDXBPJhVF71Qoos76u+EvVB6+Dn0LBA8QvAGO9/DWjwFhD89ReSyPIDbgLx6Ghe86gKBvPehiT1aah295baQvDJnC7ub3Qw9mNTJPAShdLznK4o8m3n0vLUbHr1e3fs8WrmePMvROTsfJM67sDErvPWYxrxvyPQ8hwghvRK3ET1NyxS9F9E1PEy4mLyIzBs7EV9NvGCEQbyVzaG7TplIvAFqGzzKDT865A/LPGFIvDvpWzs9Qr66vLiEwzxXk6Y8+QHsPLTWVbwVPwe94mqgPJpTfLsu6c68ZDKvPeaXwDwD/Em9O4hXPa1k7TxQjw+9iZAWvfcDhzzcWjU9KR4sPXd/pbspHqw8C5QqvXNZLTxAaJE7gRXrOxIGkz0R3v87dNjfO7zvgzzN9zE9DrqiPLS5IL1t50S9EP1PvXXYXz01eGw8ZLFhPGF6iLtP+8W8BQWNvES0gb2LD8k7/hFXvCRTibzu6lg8Iw5BvZRrJDxTeQI6eKWdvVQLMbxLEdM8mAYWvb+x4zzdO+W8I3C+vDXvgL1iqjm7MmcLvQ9+HT0fB5m89lxBvBR7DD0N19e85I79u0H6vzy3wEg9JLWGvJHjrrvlBZK830SoOiDLkzzy1Eu92rPvvNXek7nz1Ms8W8wavUxzUD2ibCo8JI3zu0MDAz3J8Ak9aH4fPDNS9DxWz6u81vEPPJ6f7Ls5Rao8wRwkPDvNn7z3Ugg936YlvW5md7yIap48DFglvco/i7zJ8Am8qN6SvGHcBT0uzJk8Njznu54gOry90DO8f9K9vJNi4TvXDsW8vO8DPVMCbrlPeni858kMO++I2zxuGRE99j3xvCU0ubtEgrU82RVtuzOXPDy7ZfO8jz4EPfLzGz0ytgy9UPEMPSDLk7w346w8Qfq/O+l48DyrZgg7aH4fPb+x4zzjS9C9uAWROyvD1ryePe+7CtCvPI6NhTwSBhM9/GwsPCmAKbysBAs9AThPPLS5IL5u50S8uwy5PCr/2zwUyPI8DdfXPPGkGr36xeY6BVSOOumggz3JKvS8WhscvY20czwPHKC7aBwiPT9VlTtzsue7oGNnO2OL6bvZeQW9iH0avVyazrxvqz+87OOwvEgnYLtVbS49bo6KvISAqzwyZwu9L5CUu6YHHL2RgbE8OIEvvEDUxztG5LI79JhGPYhLzrzCOdk8OSbaOi2HUTwaWSs9M1J0PU0HGrw2H7I8IQX+um5mdzxRg7s8yg0/PQfmPL0ktYa8LRsbPEgnYLsijw49B+Y8vSEtkbybmMS7yozxPFzfFj2fY2e94AgjPXADBL0fuJe9jSuIO18Yi7udUoa6fVMLvVgxqTyWzSE81Gd/vLKwXb3wTFY7ryjovFKg8LwTyo289HuRPHMU5btbap07kmLhvCBplrx0duK9lxDPuxrYXTwjDsE8AppMvU7LFLwFA3K9VorjO7ZeyzxwDb08YAN0Pqi2fz32XME8mhkSvPFyzjvPnNy8kIGxu4WmI73J8Im8sM+tulbPK73tpyu9kmJhPOna7TsdQx69XlSQPN2Arbz0mEY96NyIPRsdpjxL9B0936YlvbygAj2nGpi7ZO1mvdy8srxQIT68baL8O92d4jwzeoc8lxDPvHRZrbwPfh29haYjvYI74zwyNT+9+eQ2vCXIgrxNuBi8Fm84uz9yyjx/FwY7DzlVO/lj6TxyM7U7rqm1O+rvhDyPPoS9RII1PO5rprpRBAk9dLuqvXxAj7wsJdQ8B6o3vSXSO71Mc1C9BysFPbffGDwAdFQ7CCuFPAfcAz2R466874jbu9JgV7ubtfm81BoZPMqhCDyrZoi8UPGMvFbsYD19j5C8AhsavUSCNT1QIb48Z1gnvAxYJT1nWKc8/jCnvGb2qbxewEa88XJOPMObVrwiQI28djpdPcjdDb1IJ+C8tl5LPUI/CD19ooy8bED/uoryEz2i61w2dR0ovVvMmryfgre7qftHvBWrvbucoQe9/5KkvA/9z7ynGpi9royAvVt9mTsnFem7p8sWvSqAKb27PgU9QFP6Oy7pzrzq7wQ9QXsNujIYCj1DAwM9JWYFPKLOpzzl00W95skMPbfAyDyQvTa7VAsxvNoVbb0pgKk8bklCPaDF5LzntPU8L61JvX4EijzVSso8zMeAPQrt5DvcWrW8ICROvUG1d7phqjk9cA09PZGBsTwVjog6tNbVu1BTirsT58I7FN2JvCNwPjxPeni8e6zFO90eMD3B19u8+CC8PKzlurx8rMU8zJW0vBbwhTxEZYA8rALwvOynKzro+T085K3NvAB0VLxyM7U6ylKHuwfJhzs1PgI9XsBGPEtWmzugY2e8CzKtPTiBL7yuRzg8OmsiOnfhIr2pGH28ExmPuwL8SbuDO2M9GvctPWtVFr0GSDq9GlkrvSg74bsbHaa67ADmOxTnQjyn1c86gRVru0IsjDzOu6w8//QhvLYuGrwbu6g8ESPIvByc2LzVSso93Z1iu9IkUrw6CSU7hsNYOn+1CD1/tYg82ASMPPIQ0bwrRCQ7Ne8AvQZlbzxP3HU7KFoxvGtAfzzZFwi48rcWPTXvgDyUa6S8GNE1PW+MbzwA1tG8MQWOvPnFZjxSoPA7CzItvZWIWTxd8pK8Ahl/vX1Ti7tSAm48FwMCPYSdYL2L8hO8grwwvU0alrw5pye8hUQmPFiw27v2XEG8bEB/PQZnirxSoHC7ApCTO+g+Bj3RYFe8A915vG4sjbtTF4U6cjO1PNZAkTyAljg9ZbHhOxWrPbxxZYE9svUlvYxnjb0EIkI9HH8jPbO5oLx1nFq8kgBkPfa+Pjy0ONO7f1HwvNDhpDzv6ti6ICROvW/wBz28UYE8ExmPPUbkMjuA+DW8avMYvVxeybsiSkY9pmmZPLZBFr1/0j29bmZ3vI01QTwfBxm9ztjhOx1gUzxOmci8li+fvWGNBD0JPgE9Qd2KvLnJC72mBxw9eFYcPNaPEj3k8hW9Nfm5OzliXzpVqTM9tkGWu2LvAb0sCB89C0/ivB2cWL3oFvO65K1NvQTAxDwZFOM7cVBqPRyc2Lw4AOI7kYGxvI/vgjy1fZs5ARn/vCmAKTsaWSu8JI1zPKNNWr0KMi28EcFKvEwHGj1SoPC9o03au/SYxj2xTuA8KLyuvKi2/zxde/67+wqvPKygcjw1vbQ8uaF4vKDF5DzztxY7PzZFPBFfTbwEofS8UQSJvU+PD7unN0291vEPvREjyDx/s+28NHhsugPdeTxB3Qo9FzMzvVWps7xewEa8+cVmvKyDPTycXD+98reWPWmb1DzCOdm8NCsGPSBpljsxD0e9uCLGPMcE/LsaWas7BFSOPMtSB7yf5DS9kkUsO2DJCTxN1U08gHmDu4ZEpjzlUng8rBcHvMyVNLzcO+W7asFMPFyQFbxSFwU95hiOPGVPZLzlcUi6pBHVvMYZE73Uhs88n0YyPQrQr7wspqG7k8RePNy8srwK0C+8KHfmO3ChhjueILo8DboivWi6JL12Hai8ffGNOpnxfr1hSLw8N+OsvJfzmTw7zR89zBYCvXxKyDswD0e8Qr46PAN7/L2hbCo936alvGYT37xi7wG9kB+0O5MmXLwbHSa8Qhd1uivDVr0AdFS9UHr4PJSnKTp4pR275K3NPLfdfT2izie8TWkXPVlXITyhbCo9faIMvPJyzrztp6s8QGiRvI+9tryF4ii85vD6vCvDVrptew69DBNdvf4wJzywzy29WDGpvIzweDvK0bm8EqQVPfNVGTxibrS8Iyv2PMz3sTz4ZYQ8FHsMPSi8Lrz1jg09GvctO2SxYbvojQe7HwcZPT5VFbu4Ika7v7Fju+RBFz1ix+68sOxiPIVh2zz22/M8iZAWvaAn4rzBHCS98kIdPWJutLzZ0j+9baL8vJ4Wgb0jDsE8fN4RPSqdXr3UGhm8cA29vMmrwTshBf47hkSmPDFBE7wirEO9bKSXPNTLlzy6Zw68w5vWvEGYwrwxccS8ksTevNXekzzxpBq9RZ/qPMK6JjwRwUo8UCE+vRCRmTy2Xku9cpUyvCcVabw86lS899vzu42Xvrz1mEa8OIGvPKQR1Ty6Kwk9rUe4vMlvvLxqwcw85hiOPANeR7yotv88MCx8vVyQlT10Wa28MtPBO7/2qzsspqE82VFyOxRm9buegre8NI2Du6pTDDwdYFO89frDPMo/izx5JNA7oMXkPE6ZyLwk0ru8bedEPbtlc7wWUgO7VuxgvaQwJb11HSg9CzKtPIAV67xZdNY7PZGaveuBszzm8Pq7W8yaPGFlcT1+BIq8WVchPLkYjb2OW7m7tFejPEI/CL3Kbzw7wjlZvDzNH7ztp6s8BnoGPdFDojwG5jw8biwNvXDRt7ouS8w789RLvOAII7xsQP+8+yfkvEKOCTwGega9CKq3PArQrztIziU8li8fPDEFjjyUJtw7QHuNPBRm9bvXog48+CC8PL3Qs7pEILg7QbX3PM8dKrrPOt+8a0B/vAcrBT1D2288tppQPNcORTwPm1I98XJOvFKg8DyDO2M9chRlPegW87shfBI9vpQuPN5hXb0FhD89ugN2PBKklbzas++7u2VzPEDUR70fBxm7Yu8BPRRmdT3sAGa8QRd1vC0bG72A2wA9xKSZPHmGTT3JoQg9u3oKvGZ13LvLA4a8n0ayPArQrzxujoq9HeEgPe7qWLtDoYW8/pIku6tmCD0SI0i9rguzvBx/I71V7GC6TjfLvLzchzxsaBI9YUg8PYCzbTvTJFI9s/UlOwP8STlCvjq8uaF4PP6SpDudPwq98gYYOTsJJbxeIkS8Txj7PLgixjxwjO88fCv4O3xADzpfofY8LMPWu8RfUT2V6la86p5oO6a4GrsLh2q8F1kAPJMx1r3TCCa9d/IzvOje5DvTFGg9TeXgOlJWcDw3DyI8mpxEvcKvB7zoVz49xSyou2E0+Tvag2w8qfWxPH3sdLwlupk9End0veVXjbw+fBs9IkEPvQ11BzwvLWW8BRJFvMWrormaHUo9N5KyPB5JCjyCzgA8NBWSvVNSWjyXmoi7yyr/PMwiUzvMHr28/iE7ve/Obr3i4A0878pYvCg3OrsoOUU97EcXvQx/vrwpsBO93HMUOb4+Kb3aAmc7WjYivSa2g7yTM+E8NwmBPf2q7LzVBBC89jndPMWzTr3ae8A7QnKVvVPTXztCcIo6MKAdPAz4l7xin4W88EdIPIzK/TzFMsm7jbSEPIXOsbx3f/s61IUVPa9mwTybFZ47PYxzvO/Obr0Ck5m82vxFPF6rlrvCLoK9Wcd/PGiZRrwS+Pm8ooKXO3AM4byF0Ly8/hkPPYtH7bxUTkQ9Gls8PQx3Er3iY5680I+bu/a4Vz3Mnbe80IsFvWGpvLzMJN67vr2jvAyF37uXmog8BJnrO0LxDz37pBq6sFyKPCm0qbqo+9K8YSzNPHfuHbze6Ag8GtxBvEvnaz1FcDs9LaSCPKj3PD1MXjo74uQjPQUU0LxMXrq8FOKAvNKX+Dy30zo9Ru+1PL48njuF0Dy80xDSPFJW8DzEOOo796oKPfa417rl1gc4DHuoui8x+zwFix69dntlPcyjWL3oW1Q8noqSPAWNKbvLpeO8/hmPvO9P9DxaOji96Fe+vDSSgb3vR0g9XqeAvWmVsDx+4j29IdLsPHCFOjyhD1+7ftqRPDQVkjy+v6479DEAPIw/QbxhKsK8DIPUPNr+0DtF8cA6d/CovOHszzrbf9a7TVaOuw30AT3bdZ+88EGnPEzZnj3qzIG8PY5+vLfTujwwH5g8sN2PvULvhDubkAI9RW6wPKlsgD1aOri89jdSvDeUvbtF5wk8/qLAPGgYwby/wbk74uSju1DPmDwTbb28r2xiPPS0EDw++5U8aB5ivbDlu7zqzIE9d+wSPJSkDj2QK4S8YSg3PCk1r7zLJum7Cf6HvHD+E7teq5a8F1kAPUxaJL3Mo1i8t1TAukxgRbw++Yq9YTDjPJcbjjy233w7r2bBvFPLs7twAiq9fuZTPFNMuTzMmyw8aJc7uhtTED32uFe79DEAvX5fLbxTzb68KD9mPX5jw7wMAES8BY0pOyg5RTxwg688/p6qOz0N+bwvL3A58D8cvBDukTtaOK08oYrDOxNrsrvhbdU8oY7ZPG8K1rv2OV07t80ZPET34TtE+ey68LoAPNvwg7yEWW67KL5gPC+u6rxF8UC9kC0PPeNjHrwwnAe9E+w3PZMvyztawd48jD22OwUMpLs+gjy8mhepvPY987y222Y80A4WPQwAxDwovmA9hVXYPCHUdzvMqXm8pXgRPUleCTsJgRg8r2zivEzbqTwb1BW82vgvvVNQTz39J1w8Sd0DOymyHj07AQa9jEFMPYXKG71hNPk8E29IvMwkXj195tO8oQ1UvWIkIb2hikO8U8koO8UsKLyi/4Y84W9gPcIwjTw+fqa7G1OQPMWxw7twfxm+fW36vMul47yognk9yRwBPdt/Vrz2N1K9kzPhvEXrH733KYU9r/H9vOHoOb3pUyi9fmE4Owp/DT1T1/W80wgmu8UwPjzp0qK7aCDtvLBiK70a2Cu9/iG7PAz+ODw+Abc8EO6RPQWRPzwhxqq8/SVRvBriYry+RMq7t82ZPDYbZDt3dcQ8KTOku8Kvh7y+PB47KD1bPX7cnLtonVy6fuCyPLDjsD0a2Cs9sOElPYk/kLzxwqw7aZUwu3fwKD3LJmm8aKFyu/c987souD88oQtJO75CP71T01+9DIHJPOHouTtinwU9LaYNvLDlu7xZxfS8UEwIvQyBSb2ofNi8UE6TPGgYQbwMeyg8TNmeOxri4rxMZFu9DPoivFREDT2F2Oi7vr0jvK9oTLyEV+M8Ka6IvfczvDtMXK+8NxO4vSmuCL3Tj0y8jEftuqV6HL29x9q8PYZSvb3Fzzs9htI8iUEbPK/tZz7hZzQ7e2EHvZOwUL3h6Lk8PgNCvXdpgjwoNzo7xLlvvdOHIL0hR7C6/hkPulpAWbzLKPQ6IcaqueFnND0wHQ28xbFDPcupeT3p0qK8hcwmvGmRGr1N26k9bw7svCjAa71oFja8RWoau3fwKD3CsRK9N5KyPBdbi7t37p08mpq5OzYbZL2LSfg8KD3bvJqcRLw3DZc7fl2iPL67GDvTjUE8TFokPCmuiLoaVya7vsPEvBPyWLzh8GU9BZXVvHvijDsaXcc8UlbwOv2qbL3a+K88yyp/vEvn67xUxRK9PYZSvAx7qLwLBuW6cIW6vE3VCD138Ci7Wru9OxPqrLtpk6U8/iE7vUXrHz0Tb0g7PY5+PH5ZjDyLxmc9zJ03PMwcMrxXPJK86dIiPQx7KLx3b6M9KbSpPGgi+LwoO9C7dnnavPa+eLwoQ/y6QnKVPMso9DypciG9mpYjvaGMTj1aPMM8TOPVvOxHlzxTRhg9KTMku2KjmzveZ4M8/poUvbtAA7vaAFy9IVNyvSktg7tbNBe88EMyvbDlO73aANw6S2r8PG8GQL12+t+8NxGtPOlRHb3wQzI9KLzVvAwGZbwc0oo8zByyPL65jbyifgE9TONVvDCgnTyF0se70wqxOwp/DTwFFFC7cHsDPRVlEbzo2MO80AoAPb3J5bxz9hi8TVYOu0VuMD2hlPo7cHuDvJGulL0Meyg8rOeVPeHqRDxthQk98LoAvaV2Bj39LX25N46cui8pz7vTENK8hkWAu8ydtzv3tEE9KTOkPEVyxruTKaq8U1BPPJO0Zryi/4Y6cAQ1PerMgbwwoig8i0l4PKGO2bs+fBu96OJ6vDYXzjs3ES29DHcSPRNnHLuMvLA8PvkKvdAKAD2F0Ly8Yak8Pb69ozyofuO8sOW7O1NKLr2+t4K8KjEZPfe0QT0a4Ne6/h8wu2wGj700koE6KT/mu3TyAj3FMkk8BJv2OyFN0bwouD89lCOJvDeKBr2vbu2897I2PXdpAjywYqu9U0y5PQyFXzwEGOa8hFfjPFPJqLyigpe7+6IPPIy4Gj37pJq8PYhdPMWzzrt97v+7r+3nPNr6Or3pTYe8WjitPLdQqjx74AG9W7UcvCwnEzrTCrG8mpguvRNzXj1TRpi8VMUSO2UYkLvFq6I7BBz8vMalAb1whTq7cIOvO+JlqbtFeGe823OUvNmFd72+PB49/abWvIXIEL07AxG9sOOwu8wgSDuLSXi8KDe6vLTTiTyFTSw9miPrOS8pTzubFR668cIsPHACqjw9C+48/hkPPTuAgD2Tqi89/pyfPYw3lbyMReK7FOaWPLZcbD1hqbw8U89JPOLimDx3bZi8d2mCO2ij/bzLp248YTDjuwUOL7wh0mw8LaSCu0tqfD0UY4Y8dnvlOCHGqrx+3By8i0XiPKV2Br3TFOi8BQwkuyHINb2StvE8S2ZmPMWxw7zQjxs8vkA0vfcxMTul+ZY8tt3xu5sVnry2Xve897I2PKl0rLw2H/q8S2r8vKnvkLzMoU28d2mCPIk9hT3hbdW8+6QaPZMx1rxwgy+9aJtRu/uijzspP2Y7xDZfvYy4Gj33qoq8xauivItHbbxiJKG8/hcEvFrBXr3af9a84uIYveJjnjx3b6M8kys1vb5EyrxaQmQ9dvhUvRTigLsaWbE8E/DNO5qWoztF7aq8TOVgvb4+qTsMfbM8RemUvHdzObwXXZY8aRpMPAl9grt36oe8jD9Bur69o7195tO8hUuhu7fZWzwa4mK8703pvHP2mLyaHUq87cQGPZqi5bwtJYi9zKVjPPDAIT1QzY08RfVWvckeDD0MfTM8YbPzPOlVM71+a++8LSWIvLfdcbwaX9K8o/8GPJuUGLxM2Z46/hkPvSFJu7wFlVW9IUk7PQz+uLwMg1Q74uQjPYVNLL1awd48MKIoPJ6IBzxM2R689jvoPPa8bT2VooO93msZPQUSRb2NtAS9oQ/fO1REDbraebU8VE7EvGEmrLxeLBy9O4KLOxL4eT2jAZK9cH8ZPDAlObzUAoW92gLnO2+PcTtom1G9dHOIOz58mzwCEpS8XqcAPT6Ex7zUiSu8qXQsPMkcAb3h7tq90xDSPC+uarxT0dQ76VMovb48nryt5Yo7DIVfvS+u6jwFEDq9mp7PumC1/js9iF09YiQhvGGxaD0ovuA7AhAJvSi81Tv0soU8bxB3PfgvJjwMBuU78NB5uya2g7z9plY79zExvHCBpDl29sk8Pn6mvJArhL0Q7hE92neqvFNII7zvR8g8IdJsu2+JUDxE9+G8dntlu6h4QjwaY+g8ngeCOykvDj0Mg1Q7e+KMOyU3Cb1TTDk94W9gvO/GwrzpTQe9VMcdPYVLoTwFjSk8SeGZvKX3iz2TsNA8aKFyPTae9Lx0dRO9FOaWOwuHarzENl+9SV4JvRln/rxEenK92oNsOzSWFz137h29/hcEPdMGmzwCkxm9Npzpu7DbhD07gos8V7uMvTsBBjymeBE8aJlGPan1sTsvJ0Q7tNOJvCg5xbxSWHu82vivvKIRaj0FCA68t9M6vFLV6rtwAB8571F/vVNMubzMo9i8cIMvvIXQvDsKfw08r2rXvAUQOj1M1xM8sGQ2Pe9Rf7xhKDe90wgmPT6ExzzMoU29BY80PRpdR737I5U7RHbcuT0L7jx2+t88PQfYvIxFYryF0Lw8aY8PvbbX0DwFjSk7vkI/vMmdhjze6hM9Wr9TPfczPD1ipaa8jD02PRP04zwwJTm9sWAgPQl/jbrqzIE8zCJTPS0lCD0+Bc28Yaexu1o4Lb29zXs9zZeWvFu1nDy+w0Q9Cwr7u4LQCz2+wbm8U9f1vLfJg7yUslu82v7QOq/v8rwFlVU94XHrvIy8sDxmFgU8t1K1PET7dzx/XaI7N5IyPPDEN7x0dRM9miFgve9J0zsQ7hG6fl+tPIRb+TzFqyI7E/DNPExapLx7Y5K8vjwevFPHHTwJgRg8Ic7WvDcRrTvTEFK8VzwSvRph3Txbs5G84fLwvK9s4rxLaPE8KEP8PFRCgjwT8lg970U9PER23LtTUlo8KS2DPVsyDD3TEFI8dndPPUzl4DyMPTa9t1CqPOnODD3+mhS9tFQPvfe0wTxJ3w674W1VPJqcRD2Gypu7Gl3HPH3mU72+uxi9DH2zO5oXKb0+/ys86NxZvC+oybxwAJ+8KbKevPa+eDy3Sok7yyr/vHAENT29RlU9jEVivHCBJL0Lh2o9uFTAu9oE8rz2umK7aBhBPQkAE7qMvrs84XHrPMwevTxXOge96dStu28Q9zri5CM8U8/Juhrk7Ty9TPY8v8G5uyyoGL2FxoU8VMUSPTYf+rxawd67BQqZPMwWEb10dZM8XiiGPBNpJ7wEm/Y8LaYNvSJDGj0EGvG8WFjHO0yuCzzjfEW9myRMvQ5fizv6ttE8zogzPcJIsDwlqAe9jYDuPC2Zfr170ta7+cVBPURVxbyO87g8BRU1vAt02TxlPYK8paCPPUK0Ar0p8569nz12PVxxcb29Lwa9IGhru5mDCTzDnZq6lpjXPIVOmjuJdjQ7b4NjvIVOmr2Uxac8cHRzvETIDz13RuK6qqrJu9wdIb0/Swu9hdtPPNn1Br3Wyfc7UBcDPQ4tHr1vN4s8XxvGvBdFhzzcqta8OZwZPMmY5LxVYpq83vBQPNEyiD1aj1G8KI/EPEOlkjxN63O8ejGUu8cGkr36KRw8HbMbvQzYMzyUBgW9Zu00PB4IBjzBVyA9/WCmvIFA67tROgC9JVi6vOo/xDyTYU09/yTmvO9J/rvf4WC97tqovAPAyrrpXSS8uD+3vF1IFjy3j4Q8z2rTvNIjmLtMfJ68B9l0vMTAFz0tDEm83KpWPJEb0zy/j+s7jmaDPMI5QL3RMgg9TK6LvKOMgrxJ0sm5mc/hupQGhb3ii7W8ZfwkvAzYszxEVcU8JtZ/vAoFhDy2bIc8j1cTvJNwPT1VEs085rPPvJUpAryhBas9cjwoPdAPC7v6KRw9hjC6vPCtWD37TBm9YH8gvVjLEbwwxY27EVW4PKYPZTz8/Ms89LsHvdvINrpwdHO7WTrnPL39GDwLdNm88CCjvJh69zpDZDU9lUNtvBX/DD0V/wy9FX3SvOldJD2puTk8iXa0vPztW7v2zxQ8Rij1vLmUobxNn5u9i7wuPdn1hr17RSE6QQ9LvW+D4zwXRQe8GQlHu/UqXbvyZp07UYbYu4VOmjx6bnw8LnCjPHc3cjxMfJ68WbwhOzh5nDs3FUI8RbkfvTwf/LxhYcA7agbfOstRKTxt8ZA96IZ/OyVnqrzOyRA9zSTZOyR2Gr1GKHW8R4zPOw8PPj05q4k9Xio2u4DCpTx5fey8HEBRPOrMeTwCH4i6dADoPPd/R7wPD748mO1BPACJQD3DG2A8Iq7lu0FfmL3iGOu8kSpDPckLLzqLOnQ866OevDRr7TohzMW7nMkDvX4JYbw492G8JPRfvBFVOD0onjS99SrdPDcVwruPSKO9zEK5vE1tLj3mJhq7vf0YPYQrHb3flYi8+0yZvU9AXrz7Giy9rPDDPPUqXTszel07WwIcPbrGDjwKBQS9pg/luXmMXD2cFdy8DDwOvCKf9bvTku08gpVVPC0MybwNVvm8T7MoveqyjrzDnZq8DqvjPOeV7zx6Y4G8rncbPdSD/TzSVQW9fZqLPDq/ljpUMK27xf3/ucpviTvguIW7F0WHPBxPQTyoyCm9T/QFvQdbrzw5qwm91VqivOazzzx08Xc8R33fPKdkzzs3iAw85rPPvMXjlLvbyLa8cOe9PKv/szw+2MA8n/EdPZsV3DsW4Sy8a90DPBFkKD0WX3K8ghcQOxufDrzWSzI8HE9Bu0nSSb06TMw8GDaXPH69CL2ncz89hdvPvKL2Oj1yum28e1SRPF4qtjxma/o82gkUPPbPlL05aqy8se+CPHx3Dr0Ylvw8iBLaPHOgAj2AXsu88CCjvP5CxjzbOwG6BCQlvmPol7sOHq67+ws8PRfDzDxbNIk7Ch/vvEcxh7t3N3I8f66YPcXyBL2fsEC9SrTpOoDRlTsyiU09tAgtvRbhLLomSUq632MbvLCLKL0AmLC8viAWvZf8sbqYYIy8aLF0PP7EgD1sPWk84ZqlPGD95by0F507E6oivYrajjyx+v250M6tPGP3h7zaGAQ9y5IGOj7YwDzfuAU8nkxmvEyuCz3hmqU99o63u87JEDz0SL07pg/lPLU6mjyClVU9x8U0vV+o+7tX9Ow8ZXpqPERGVTxFuR+9V2e3vHTxd7yBMXs6lpjXPD+64LynZE+7lFJdvS/feL0SRsi8HaSrvKUtxTuhRgi9BaLqPJ+wwLtv9i29/s97vQ3Jw7tv9q27kLf4vJ5bVrzRTPM7lpjXuzlbPL3z1fK8T+WVN6qb2b02JLK5qqpJvLzLKzxqeSm9T0DeO7y8O71UMC26lqdHPd9UKzwhToA+tKTSPBbhLL0sKim9g4blPGv37rzpjxE9O+KTvPsaLL2A0RW99/IRvVqP0btnQh873B2hPJpCLL39UTY9vq3LvM2XIz0B/Io9G5+OvE2fmzxxyV29f+CFPXI8qLvmpF+9/6agvDgG0rscQNE87Mabuzei9zv1nae7eX1svKx9+bzecou99d4EPTwffL1R+SK9qCwEvDE0Yzvro548WbwhOznocTxM+mM8wPNFPYKVVTuA0RW7tCaNPXy0drw2JLI8rVSeOgoFhD20Jo29dzfyPCMSwDzDKlC96yHkvEfwKb3PecO7Wp5BPHl97LsW4aw8Lv3YO4Ex+7zvSf68LY6DOYXM3ztN6/M8h6MEPJ/xHbolWDo7MactPVNODbr0iRq8AmvgOrkh1zwCXPC8DOcjPWD9ZTzbuca7JWeqvLHgkruYYAy5aoiZu7NA+LuxbUg9uhJnu6aCL70492E9hdvPPNMUKL3+z3s6ksAKPe/LuLzSoV27+0yZvFm8obx70lY88Z7ovJumBr3ro547r5qYvKxjjr1aK3e9GKXsPAof7zzgRTu9p3M/vZskzDxvNwu68+RiPNBb4zsPD768nBXcPAAW9jxP5RU4tYZyPCcrar3ii7W6hU6au5anx7tERtU7md5RvBM3WDyaQiw8mnQZvGM08DwnOlq8u+mLPKaCrzxxyV09/kJGvACJwLySwIq9ilhUuRptoT0M5yM9pH0SPcZh2rwpAg+8kRvTu78RJjzJC688OauJvHZVUryhRgi8zLUDPWAMVryx+n082II8vYXbTzyLrT68agZfvH/ghTy8DAm8fr2IvGkVzzywCW684Zqlu92M9rzxEbO7UBeDvJ+/MD0lWLo8GCcnPOReZbx++nA9R4zPvNwdIT1c5Ds6c5ESvcR/urtjNHC8tUmKPOPvjz2ONJY9GCcnvYKkxbzVWqK9yUwMPMr8PjwNycM7d7msPBil7LtKd4G7wqwKPK5FLrvFcEq87NWLvI5xfj2iaQW8z+yNuzIl8z0mSUq7J62kvGiXiTyXiee89hvtPNnmljt++vA8P8nQvIjGAT2rDiS9F9K8OzXPR7ueTOa7V2c3vCAckzxZOmc9EABOvNAPC7zF4xQ9ppEfuxlZFL1WA907zgZ5vE1ePjwdpKu8aogZPJPjh7y26ky9hr1vvOC4hbviizW8AlzwvNwdobvnlW+9BCSlPIn0ebzSoV06i62+vG6hQ7tvg2M9KYDUu8GJjTypLIQ8UisQPRxPQb0lZyq8YsWaPCs5mTzyAsM8wqwKPcy1gz0v3/g8Z1GPN+mPkT0nK+q8psMMvQIQGD2aQiw9z3nDOxgnp7xi1Ao9mO1BvI1DBjv9UTa9Jtb/PAb3VDudaka9CpK5OjP8lzyNgG49HyuDujG2nbwTN9i8kHqQvNMUqDxvg2O8/rUQvSetpLzrox69OkxMPBmLAbwpgFS8rGOOu/ICw7zVWqK9tZViPAi/ibqCldW8CyiBvR4IhjyrjOm7/PzLPCpx5LzWPMK78maduzKJTT2SwAo9F9I8vVdnNz2d3ZC8aRVPvWCxDTnGFQK9pR7VPPERM7wu/Vg9EZYVvQ1W+buTYU28uZShvKL2OjzdTw69NjMivFnuDr3PalM7TsIYusuSBr1Fqi+8QR47Pa5Frr1qeam8yBofPatAET01QhK9hj8qvADZDb1BHjs8usaOOoP5Lzs0a+28HEDRPPYBAjxCc6U7xXBKu+3pmLzIGp+9GCenvC/u6Lxrq5a8CeIGPJ33e7wlZ6o8mGCMvOjq2Tu3j4S5+n4GvV1IlrsL9hO5yBofPYgSWr3B5FU9REbVuxDxXTwmSUq8RTflO/ICw7ylHtU8i62+vBtesTzjfMU8XHFxvCcrarvQW2O7H4bLO8DzxTvcHaE8kMZoPbOzwjxixRq9GQlHvIBPW7wb6+Y7Ib3VuxGWlTzCOUA8g4blvC2Z/rvqzHk7aDOvvE2fmzzJifQ755Xvuxp8Eb1ZOuc8XCWZvFvzq7uhkmA8XHFxvJ7OoDx8tPa8bT1pvfQ5zbwwQ9O8h6MEvWoGXzsfd1u7qw6kOzj34TyRnQ292temu+yFvrw1z0e855XvvX2aCz3A88W7Dw++O8kLL71QpLi7a2o5vCfuAb0/uuC7paAPvS9hs7zaCRQ9B5yMPP2SE7yiaQU9gTH7PJVDbbwvohA9e9LWupU0fT1aEQw8+5jxu4au/zyt4dO8V2c3vS0bubytVB485lgHvMMq0LsIvwm9vp7bOxmLAb0d5Qi9QR67O8I5QDzJmGQ9GZb8O5VD7bx7VJE6xAxwPaqb2TwusYA8tQitt+cIujzdT468uhJnPPdwV7ywvRU8Y0NgvO5Y7jz0SL08F9I8PWD9Zb1QpLg8gE/bPN2b5jzMM0m9dABovYFAa7oCEJg82mTcvGGiHb2Ed3W8XxtGvUFfGD0RlhU9izr0vNWMDzzgNks7JeXvOyFZ+7w7Pdw8rH35urHvgr3HtsQ8O/EDPR3lCDlBD0u7fGievF8bxrwZGLe8r5oYPOjqWbzbRvw8Wp5BO642vjvyAkO9+luJPNyqVr1vNwu9JtZ/vCQDUDpMCdQ7ovY6vflSd71LpXk9VWKaPEIA2zyAwqW8JytqverMeT1R+aI8seCSvLB8uDyGcZe86zBUPRYiirxMCVQ85rNPO42PXrzRTHM78CAjOt+ViLwNVnm6vo9rPMYVAjxEVUU7o9jaPNT2xzsTN1g9aRVPvJKOHTsLKAE84ZqlvOEJezygodC84Sdbvc4GeT2RG9M8j9VYvVdnNzy5o5G9arqGPa8nTrzVWiI9iWdEPW6hw7xERtU82hiEvQ08Dr30SL08XUgWvXf6ibpowOQ6SUWUPHn/pjtcVwY977zIPF+dALxx2E08tTqavPERMz2hRoi8o1oVvafmCb3+xAC705LtOtce4ryjjAI9j1eTPEcxB7znF6o8uaORupYakrsbnw484dsCPIwgibwRZKg86j9EvB2kq7ypuTk9YlJQvHSCorytVJ67LKhuPQkuXzyRKkM8CaEpPX58qzx5jNy7TAlUO5yIJj1m3kQ9Tk9OPCc6Wj0LdFk9KfOevG+DYz0rxs48WTrnu/GeaLwb6+Y7y1GpvJyIpjyVNH09o4yCPA6rYzzYgrw8Uz8dvbAY3jz1nae8cFoIPCXlbzwnraS8zM9uvJanx7xr9248mcDxOqqqybxCAFs9Y7YqvCs5mbsFomq8pLp6PfJ1jbyrjOm8aHQMvbQXnTz8/Mu8SFSEPB4IBj168LY8PtjAOzIl8zx3uSy81HiCPBYiCrsdpKs8OVs8PF5rk7zSVYU7DOcjvCc6WjymkZ+6qUbvPBLIgjwZGLe87gyWPBgnpzwUGXi8TtGIPVaFF71EVUU8crrtvBKjJzy5dyo8VcsnvZazMbyY86e8ByLwvCVVBD0BAbU8kEIWPWuO/DoMcgK92PusPPHerjzOOv87AcG+PESJzTlWeyA9phVVO1Krej08aLm8ybmEvIOxdLuw9qS8wogGPIZhH736r5Q84pwtPCyGKT2FEea7RYkmvPjfx7ssBha9ZA3QOoZxML0RI2K8M8e4vJVTZ7xT60m8AGF0vbDmE7wLorW8ZI28vCKlWTxeTAa9TfqaPKc10Lz7f4i7VvsMvbb35Lw1twC9XiwLuhGD0zzQOlg9C6IOvXsQdLvqHQw9EoOsvZfjFr0Rw0m9vvjWvH3Q1rxsrlA9jZLEvG3OJD3a65u8G8QUPbdXLzzYu908ds+WvEXJHLsrhtC8HESBPTSHm7yf9Jk8oMQNvY2y5jzGmX46wDimvCHF+7xDSde7ZM1ZvFsMXr3qrYm7Zs0LvDuItLzqjQ48hfFqvcEYhDym1Te815tiuDMH1jyPspg8z9pmO744TbyFMbq9VausvKAUlTwjpbI70YoRvRtEKL1tbjO8hHF+PRVjCrx8MO+8bW6zPH4QJr0zh8K8wTimOpVz4rp/8AM7XowjPTxIvjxMClM9hJH5OzYHCDyxtoc7ImU8vaiFibzCKBW9EePrO7+4YLw+yIM9C4ITPeJ8CzzRaha8TConvV98kjylVXI8fND9O9FqFj19EM26j9KTvDkIb73pXdA8XryIvDKHaTstFoC8BEGEun9gBr3pXVC90fq6vJ4UY7xlbUE8I4U3vbAWID1USzu9AeG5vGcNArxrrne8CiJJPU36mrzhHME84RxBPa7W0DwzB1a6qPWyPAIhsLyPYhE9VUu7vMcZ6zuOEti7VKtTvX5QnDwSIzu4dG9zOvMeJbzHOb882Js7Pac1UL1DCTq8Taq6PL8YUrud9Oe8826FPNvbijwUEwM9AoEhPUXZBrzJeY47V4uKvHcPjbx0b3M8fRBNOwEBXDy/2Ns8XAxeuwNxEL3aGyg9Zj0OPZ30Zzy1F2A84zyVvGRtaDwphnc8vxjSPL94Q72oRRM8rvZyO2Y9jru415u8M8e4PFarBT2212k9AyEJvXWPRzyvFse8kGKRvDTnDLwkxQY9yIkfvJ5Usrw0J6q8rhZuPAMhCbzjzBK8c49uu1tsdj3J+SE7MkfzPDMnUTzXG3a9RdkGvK5WZL38D4Y9Qwm6PExKyTtMSqI7l9OsPOj9Xjz530c7JCUfvL1YbzzAWMg70XonvPHeLrr6X7Q82Ju7O5gznjzX+3o9JaWLvFXrorskZZW8d08Dvdl7Gb1bDF48ltPTu/NOCjt9kGA7iCECvBxUkrwiJUY94LxPOwAhfr2x1gI9KgbkPDNnxzydlHY9DHICPF6MI7wrpqS8CoI6vEb5gbugdC09n5SoPDPHuDydVFm82tuKvQHhOTxzj+48D2P/u580tzvh/MW8VausPAhiZrxbjEo7vXhqPdE6MT0RI2K8GUR2O55UsrqXEyM9KubBvKd1n7u/mD48wkiQPOk9rrwcRIG9IcV7vF2sRb3Iuas8VusivKb12TtKCno9Qol0PJjzJ737Xw09njS3vH7QL74Sg6y83vzsum6uKTzaSw09/4BvPOkds7yf9Bk9kFIAvY+CDD1V2xG9EkM2vYbRyLzaa4i7uEcePUXJHDxOah27l+MWvHzweDyopQS82ZuUuyMFyzzfHGg9GUT2vPif0TxLaus88h6lvMnpkDzhXDe9yLlSO15MBjtlTUa9GuQ2vHZ/Dz1277g7NKc9PFeLijyndUY9mDMevH7AHruVE8q8lrPYPUqqYTyV83U94Zwtu7c3W7oQA2e8pjVQvJ9kHLxsrlA9oLSjPCRFmrt0z+S7wVghvZdzO7086KW6+d/HPFtsTzt1z728ZK23PAjC/rzB+C+8vzjNu1ML7Dw76Ey7CgKnvJaT3TzrXQI86V1QPFVrtrwyx1884gwJPXRvTLxTS2I8CsKwvMj5yDxDKVy89594PG8OmztCadK8PCgcPE8KBTwk5YG7uccKPG0uvbyXUxm9pTV3O0HJarxWeyA93txxPmZ9BLuYo6C8C6IOvWxuWrwRQ928PJgePGRtaLvw/lC9C+IrvSQFJDvz/gK7iFEOvEUptbwthgK7prU8PblXCL3A6J47htFIPdA6sbvpvcE6+N9HvPLumD3H2U28DAIAvOEcQb09OIY7CuKrPDvozLyl9Vk8x/lIvaY10LsJQus8Zs0Lve9e6bynNVC9EyMUvZdTwLyOsj89TApTO3+QEj2w9iS8AKFqvIdxibmPkp26LIYpvcm5hDzy/im9+m+evF5MrbwQg/o8l1MZPKhFk7wZJHu7fXA+u/N+Fr2/uOC82VueuWRNRjttDkK9KYb3O5Bikbu++P08RUkJvRPTDL25V4i8fZDgPJXzdbyxVpY8ybmEvCrmaD3JCYw78d4uu3i/hTzIWTo9CkLEPEMp3Dy5B4E9NIebOXSvaTzHOb+8KYb3vKBkHDmtdl+8fvCqu5hjg73qHYy9TnqHPay2/Dy+eGq8pTV3OyLlzzxcDDc9xxlrPFYbiLpczEC9wWgLPG/+Cb1U60m9Y+3UOphjg7yIoZW8vjj0vI8CoDwsVp08Zs2Lu34wIb2XA5I8BEEEvOi9aLzIWbq4ppXoPCRllTx2r8K7RdmGPNfbWD26Nw29bk44PfH+qbx37xE9f8CePMkZnbuUs/88lxMjPSumpLxUK0C7JVWEvNKaIr3jPJW82msIPUNJ17zSGo+8jyKbvPpfNDzHWWE9pXVtvPGeOD1s7sa8lRPKPOndvLwiBcu7iOELvDSHGzzzjoC6wXicOqd1Rjy654W8GmRKva72cr1+MMi7DAIAPetNGD0yx988jTJTvac1qbz6b547GmRKvOm9Qb2o9bI8824FvD0YCztJCno88V5CuwPBlzzIudK7A0GEPbZXVru29+S7lLN/vLl3Kr0bpJm711tsvbAGD70yR8w70JpJPRxEgTz5Hz67X0yGvNEqIL2H0aE8r7YuOxGD0zy6dwM9PKivOyJFwTwDYaa6nrRKvOkdM7xkjWM9E7MRPOGMHL0aBNk9hyECvSHldrywVj094pytvAIhsDyopYQ8GUTPOyy2Dr1MSqI8hZHSunTvX7ywVhY7yckVvahFE70BATW9IoVevJx0ezrT6oK8EuNEvdDav7lFKQ69hfHqPLHGGLwkxQY9ESPiuzXHET35v0y8jFL1u2bNsjvG2fS6LWaHvNhbRb3AGCu9ZK1evTV3Cj2A0Ag8wPgvu6CUAbynVaQ6Zj0OvVzMQL3IiR+9z7pEvFbLgD22N9u8bQ5CPCJFwbznXXe80No/vGvubbwbJC08nzS3PQtSBz0shik9fhAmvd+8drz530c9kKIHPVML7Dvo/V48ljNFPXbvuLyYY4M8U0vivH5QHL0ZZPG7Zq0Qvbk3jbsjxS09dU9RPW6uKTsaBNk7xtl0vVyMyjxjLfI8KkbavJhjA73BqIG8sPYkvdmbO7vBaIs8I2W8vG3OJD0RQ928KiZfPCTlKD0LYhi9lXPivNd757ws5ho9nhTju4eRK710L1a87978u8C4ObyW80486J3tPMmZMDu+GNK6fND9O2xuWr3774o66n2kPIbxnDszx7i86v0QPd+cVLwk5QG7KQbkuyJl47wz5zO9xzk/vendPL0KIsk7ISXtOjMHL72eNLc8fBB0Pd/8bD1DaVK90vqTPOrdFT3yHiU91xt2PAyCEzxKquG8fjAhPbf3PbwKYj+9NOeMvDLHXzsk9ZI7XOziPAoiIr1OKoC7lpPdO2MNd73HGUS8HKQZvMb577yetEq9NbcAPSvGxjzY+yw9qGWOvLdXr73Reic9VvsMPQJhJjyGkSu7Zx0TPdH6ujyY86c9sPakvFtM+7xEaau8LLYOPTsIyLxOmoK8S0rwPBTDojyopQS9+X+vO35Qw7uIgRo8PUgXvH/wgz0sRrM8dQ80vY6yPzzovUE8xdn0O9lbHr3a2wo9h+GLPQviK73YG089lLN/vb/4Vr3inC28MmduPTuoVrwR48S70TqxPEoq9buhBIQ8LLYOPX1QQ73ifLK8Zq0QvPK+M72OMiy8+J/4vCMFJL00Z6C8mKOgPPpvnjxlzbI8Zs2LvUJJ/rycdHs6ZI08vMKoAb7Y29i7fwCVPJbTU70aZEq9hTFhvCX1Er0IYma8JNUXvaYVVb0CYSa8cy99PeHcyjy39z28TIq/PJgznjz0jgC8qTWCPPEezDvynpE8VGu2uyPlqDwzBy89mGODPAMBDjz6/xu9nnRUPNE6sbzBaAu9f9AvPBGjzrtdLDK9M2fHPGSNYzxV6yI9GeRdPEXZBrwyh+m8h1G1O/LOHbxD6eU8+t8gPRlE9rsK4tI8nLRxvLlHnjzX+3o7sHaRu22O1bzJ+SE8mCONvJjzpzy/eEM96T0uPUOpSLxVm5s7bA5pvUJpUry4lyU72PusvC32BL1OCgW9ds8Wve/+d706iNs7oAQEPCyGqbwbNJc8z7rrPKj1Mr3a+wW9S2pEPc+6a7uG0ci8SQp6vJdTQD3QWqw7FMOiPIzSYTtsDum8ZC3LvBwkhrvovei8CwInPSXlATxdbCg8LGYuOxkEWT0bpEC9KqZLPKCUgbwSgyy8llNAvNibO7xm7Qa8uBeSPcGIhrmNMlM8ImXju570QL1Wy4A8E5MWPfkfPr2lNXc9VMtOvfDe1Tz/QHm7EUPdu0RpKz3H+Ui9rpZavLlXiLt2fw+9EuPEPMpJAr0cRIE8XIzKuwsiojxlTUY9Yw13PeK8Ab0DcZA81tt/PDYHCL0Sgyw9GuQ2PHYfnrzfnPs8MqdkPe9eaTvrXYI811tsvW6+Ez0ppvK8v9jbPKDEDT01p5a8NAevPFabm7y4F7m8h3EJPegd2rxurim8xrn5vN8caD1XGwi8Zx2Tu8j5obtNyg480DrYOtBaLDy3Vy+9RKmhvLD2JD3aiwO9ZA3QPN4c6LwbxDs9RukXPTKHaTzf3HE82tuKvRwEi7tm7Qa9PEiXPJ10+zxnXYm8fRDNOzOnPb0z57M84lwQPRTDojwD0QG9GUTPvI3yXDzw3tU8VIuxOoSR+bxrznI9bk64vCMFJD3pvUE9VWs2Pd/8bDplLSQ8FMMivH4wIb0ZZMo8oBQVPZ3U7Lx88Pg8PAhIPKd1RrwRo048yXkOPPr/wjz5H748VWu2PF2sRb3AOKY7M2fHvEzqsDwRQ129PaiIvTPnM73inK08G8Q7vHwwb7yOsr88GaRnPfK+DD2XU8A8+V9bvSJlYz3IWbo7j7IYPMGoATt2P5k8yHk1uxykGbw6SGU7NaeWPCIlRr2HAQc8JOWou3Rv8zzh/B69Sip1PDpIZT3T6oK98P5QvR3kDzy/GFI8dx+eOxkkezyO0jq8j4KMPNI6ij1NWgw8du84vX4wSD25Vwi9C6KOO9H6urwC1TA9vGuDPKJ/FL2x0sC8BZ4QvIzfvbyS+6c8jk4hPem4Ez3lNMk5VNCuvFg4IDy+SDg9sJQdu3l+nDxgp5S8ODBHPdNdUjwAIbg81cy1u7ubMb2vHkg8wvU+vYIWTbzy71W9BImpPMKwqTyrttY8g4wiPJt/A7xD8sW86Zw6vRV0dbxFfQK9+YEVPDOfGb1sCKW83pUmvGMOdL3zqkA857+FvNI0ljuyAwE9uCzOvBI9xDytJbq8F7ocujAbT7yIvOG8BzYwvdwmw7wnihA935UmPWAV5jsf+NA8kEevPAeXnr0vU4G9V0x1vTqfqrx0YjK9zUFoPQ2XL71F61M9C56hvMu+rzz2ErI8Evguu5d4AL1kVJu7NQb5vEPyRT1/JDG9VQ7SPIgyN7x9K6M8DwYTvETCF704YQe88yCWPFWgADypAl69KA1JvdPn/LtbtGa9ysUhPTT5Fb3Ncig92Ej8vCN8Gzu+Tyo8VVNnuWYIFDxooLO69OhjvdzhLbvKgIw862yMvJWorrzQgB29ZjHQOz1MMT3U7wC8W7RmvHMx8jy6Jdy8uCzOO5d4gDxkwmy89hKyPKq9SD2A9AI9ITb0PAPOvrxPN/27d954PNRWYL2M3z29MoqyvNVCCzx/JLE8nB4VPZSvID3eZGa8feaNO4xVk71Fpr48vLCYPNEfr7p+QAo9mRCgO823vbsLsva8gtE3PEkOMDp95o28/ieqPJmayjxyrrm8PWgKvZjm0bxrygG9T4SWPApt4bzjxeU8mRAgvWq1mrxm7Lq8+r+4vGenJT1TYcu8miWHPKlH8zwss908pBc0uynBQTxOby+7cfPOPKfgE72ZEKA7R59MPG5GSL2zEGQ7W0aVOuU0ybw7ImM7qDqQO+ofcz0die28RCOGvHIkDz0w1jm8wswCvCk3lzzDM+I8SQ4wPaJjOz1iDnS7pKFeuwmlE72Id0y8LqzrvNWHoDrLH548cq65O4QP2zzKxaG661AzPTkp1Tx+QIo8J4oQuwz4Hb1iDvS6qQLePOIRbTwR/yC9DpevO0hTRbk8U6O7K+uPvFaEJ7wyijI9cThkPfw1Dr0AIbg7yMyTvCSRgr1V5RU8l2MZPcXnWjyqeLO8tAnyvDRahDyyVXm87MYIvQJLBr1j+p49vU+qPAKQG7weMAM9MooyvcctArz0Lfm8y41vPe+4JDw0Pqu8kQ99uYpwWj2VMtk74kItPIX7hbtxfXk8J4OevPTo47rYeTy8rCwsPPUZpLwkkQI97GWaPbFc67z+4hS7dharOwDcorzJT0y9rCwsvD8AKrzJT8y7SG8ePPDNC7wDnX67plXXPAkvvrvYSHy9KzAlPBsiDj0w1rk7NVMSPQDcIjyZywq9+YEVvOULjbwjG628CXRTPKDLmzwv3as8qAlQvAY9Ir0hNvQ8q3FBPVNhy7zYA+c86eHPu30rIzvIVj68QbQiuz2RRj2h4AI9MJEkvApt4boHwFo7X00YPfLv1bwdie28oh6mO1TQLjyH9BO96hKQvT2RRrw9TDG9bJLPPLGpBL2WHgS8xudaPUPyxbtvhGu9lHfuPDOfGb2XXCe+73MPvPac3Du1Vgs8YFr7PODTyTyzhrk7rCysPFl2w7uDjCI9zdMWvZjfX71S16C8TNcPvK9jXT0Yupw6RuRhvBPA/LsFnhA8JlJevEdatzv/PJE8R1o3PdnvEb3m7zM8WDggPe9zjzu8Hmo9bdDyvIi8YbzSNJa8VEaEvfxC8bp0fgs8Znblu/QteT0CkBu8tjqyPFGm4LqDjCK85++zun9pxj0BpPA7CQYCPRe6nDxWybw869pdulCt0rxTMR29wjrUPNEfrzyq7oi8sVxru8uNb72L5i+98WydvI5OIbv9O/87BIkpve+4JD1x80698DvdvKBqrTzjV5Q8OOsxvUiY2rwv3as8Qm+NvGR917uuas+6W29RPF1o3zvk9iU88EJPPJwelbyzQSQ5IWc0vH8ksbuvY907TABMvf726bp+8/C7982cu2Z25TsDpQI8BVH3vDDyEjxmdmU8zi0TPftCcT7L2og8DOO2vIX7Bb2yjSs8FmCgvGWulztmCJS8FDZSvfZXR72WvZU58fZHvFWYfLx9P3i84ofCvK/1izyifxS9ZfOsOpzRez37/Vu8wsyCuwishbxxfXk9iivFO+W+87tFYSm9NnzOPF1o3zw5KdW8iAF3PEEVEb3UEcu8ZjFQOs/14Lxgp5Q72L5Rve1JQb2M37285TTJPNToDj344gO7V8k8vDsi47wyz8c8VoQnO4gB97trygE9L90rvSyzXbpKkWg6jWJ2PWxpk7qWMlm8rx7IPKv767xDrbC7fvPwvHiS8bsUrKc8GlI8vZ0CPLpXmY47UzEdPJdcJ701Piu9aRaJOjqfKj3LHx47kvsnPHuLf7yCoHc9ZjFQuxncZrxb5aY869rdPDTIVTzg08k8q3FBPS6s67usLCw6J4MevZyM5ry7EQc8W7RmvLYKBDwNl6+8/I+KvWXzrD0WpTU9EM7gO0datzoHl548Ef8gPcL1PjybTkM8CuoovWlbnjscwR+8IxstvckKt7yBHb+8oK9CvaruCL3LA0U8pFzJPGLJXryY39+8yZThPHHKEj3qH3O870LPukfQDD2gai08ZzHQOnA/Vj3PJiE9Lj4avffa/7u1sAc4igKJPOULDT0jG6280qJnPCbkDD1wtau8/emGu+HM17zHcpe8nQI8u/NlqzwOGmi8ARrGvCcNSbyUr6C7OW5qPTd13LowYOQ8L92rvPdXR7vYSPy8jxbvPD1MsbxMReE7Kv9kPGsc+ryt9Pk8p0ECvIzfPTz44oO9wXIGO5XtQz3Fvp48cq45PHnfCr19cDi9NPmVPMKwKbyMmii9NbQAPbPLzrw2fE48p+CTPFXllTxG5GE8zi2TvE12oT1vFpq8O5i4Ou4ZE7w2rQ69G5Dfuxh1h70LnqG7bcOPPNMYPT2rccG5on+UvNacB729Tyq9RxUiPVLXoDshNvQ8uec4PL6NzTwGPSI8TLu2PH+ahryhJZi83P2GPTRaBDw5uwO869rdPXy8P73RZES8V5kOPQ+QPbyc0fs8i1yFO6h/JTsdGxy9zjr2vEvCKDzPJqG6bE06vLczQDx+rtu8X64GvcD8sDv9sVQ8bdByvGM/tLwYFBm5NINAvSjdGjz06OO6ciQPPQpt4br/Zc088WwdvKPZkLxq3lY8/bFUOxFEtrymVVe9oGotvT0bcb1ROA88zfxSPH8ksTzs02s7C1mMOhSsp7wnyLO8T4SWvDLPxzlsTTo93OEtvZ29prxvFpq6Ms/HvILRt7wq8gE81/YDParuiD3kOzu6kvsnPbGpBL2FTf670alZPdeArjyhOe06F2AgvPjiAz2KcNq8kBZvPHC1K7073U288EJPO7e9ar2+jU07QM9pPGR9Vz2wT4i7Ej1EOlAjKL1uAbO73an7PJt/g7zb6B+9JOP6vHbe+LyVMtm8iO0huyOl17xbtOY8TXYhO08qmryOTqE8oqhQvaPm87z/PJG8B8BaPRwGNTyTfuA7JRQ7vGxNujpBFRE7CrJ2Pfv9Wzx/JLG7hpqXPCryATyP0Vm9riW6O3E4ZDjbo4o8D0sova6bjzwyFF28PZFGPXu8v7r4J5m6Zuy6vIbDU70467G8XlSKvPBCz7tiyV69rCwsPYlOkD1o5Ug9t6kVvVm7WLx7dyo9w3j3PIOgd7rzqkA8ACG4vAFf2zz6BM67EIlLvayiAbzvcw89FPG8O/Mglrra/HS9dNiHO5d4gDyiHia9LiJBvP+q4ry/y/A7BEQUvffNHD0sbsi8HdYGPVWggDtS63W9sJQdPdXMtTwSFAg8lK+guyxuSD1yrjk85PalPRjj2Lx7vL+8JOP6vDU+Kz2C0Te96F4XunlN3Dww1jk8FDbSvGq1mjz9O/+7jk4huwkvPjwhrMk989uAPAREFL38jwq99uHxO0UclDzJzBO8bAglPdwmQz3ncuy8ApAbPVkxLr1l8yy9dharOxDOYD1YOKC8jJqovL8DIz2PjMS6wX9pu136DT17OQe9miWHu4hOELwdie28PZHGvBvVdLzpVyW9wcR+vHl+nDzXgK48fLw/Pfw1jr3Ahlu82e8RvN2pezuIThC+mN/fu+tsDD3DOlS9PZFGvXkIR7wk43q9WQDuvPXUDr1qcIW8tEEkvR51mD0znxk8oGotvErW/TsFnhA9jJooO1/XwjwNDQW9JJ5lPFsBgDp/aca7Dl99PabLLDxb5SY6A84+vZXtwzy6twq8EGAPvTxTozye0g06VEaEvZwelTtapwM9A1jpPFsqPD3vc488FmCgvCgG1zxNdqG70IAdPRh1Bz3U6I47Jc+lPCc+CTsqRHq71Jv1uRvV9LvcsO27JlJePcL1vrz5jng9dTKEPGpUrLqnQYI6VoQnvYJbYrxmduW7T7REPFvlprzvuKS8Zuy6vC5n1rn96Ya9mtjtPGsPFzxkOMK8FPE8vNGpWTx02Ae9vGsDvXnfCj1XB+C6FyjuvKKo0DxhRiY9BM4+PNRWYDxRpuA7r6jyvBkh/Lzg00m81cy1vJ0CvDybk9g8eU1cPBhZLry4LM48WH01va4lujtZkpy85u8zvE12obxqI+y7yZRhvd7auz2+SLi8W0YVPLwe6rpbAYC9on8UPZyMZj2S+ye9uuBGPRpSPL1IU8U8bxYauxjj2LzBcoY8YAgDvSc+CbpKkei8D0uovLRBJDzQgJ28TtAdPTi68buZECA8tX/HOWQPhj0yirK8nkBfPF8c2LtXB+C88fbHPI9jCLz99um8XvMbPXE4ZD1dmR+9UCMoPc2Ogb0467E8Vj+SvPSjzjz44gM8O91NvCZSXjyCFk29se6ZvDpalT0s+HK9Vj+SvGxNOrx0YrI8OeQ/PNzhrbuZVTU8oTntuqwsLLviQq08k/S1vDJFHb2C7ZA88fbHvJBHrzuPjES8iyRTu9Nd0jxiRiY8NIPAvMaiRb1vhOs7gu0QvQYF8DvwgPI8FqW1uzgwRzxXyTy8EGAPPPKqQD0vrGs8A86+vEafzLyNHWE9FDZSPLxjf7r32n+8LuSdPfEniLwXKO48oGotPWGLOz2Y5lG8UWi9PLolXDzHJf68EIlLPdf2gz028iO9n7Y0PT1MsTyXoby89OhjPI1idjwW6so8oGotOzY3OT0nDcm8ScmaPHBwlryDjKI8UtcgvWVpAr1yaSS9csoSPJZwfLxK3gG9glviu/YSMj0MZu87tjoyPOIRbb3X9oM9l1ynO0Q3WzwXGwu961AzPLywmDxcoBG8JRQ7PID0Aj1dI8q89lfHPA+Qvby2T5k8OKacvEC7FD3hzFc9Qm+NvdJkRL3+Jyo8xO5MPLxj/zsp8oE7pRe0OUgqCbwv3Ss98oEEPIorRb24A5I9inBavH1wuDo9G/G7c/CbuUupz7haqqK96TzXvCv7FLx/k2y9VkgyvJT4kjx2zQA9QbZZPPsYLDxoUxy9RcBwPUki4TzAdEU8PwScOgYScz2mVxC8DKP4PN90CLy6Oxm8IolkOhZrH71QOtW7D6uEvIVPmTx0dae7QLbZPIsyT7y0Urq88KhePND4QLzPdZg8atbEvOUJfDxssca8tzECvdTXiLvntWi9ETCQPCga6jtgj7u8N8NjPZPyab0DM4O8oHCUvbuRj7yEHiG9jWWqvGLCFjwWax+9GUahPKKfKT2s5jK6hB6hPEIOszxDup+9gsZHvQS4jr2dPbm8mjOivGA7KDxg55S8VfBYPYIa2zzHCRE9kcNUPPMvzToO+1G8P4fEvAQMIj1W9B49rRXIvP7QEjy6Zui8gBSKPPzzrTyxSga9JGisvIir4LuFJPK5gu8LvKDGCrto+0K9oByBvTolVLqbCl69Qg6zPNOBEr3oZRu98KhevLL64Dk8rEI82udwu1UbAL0Wax+9781cu+AkY7zGBcu7snkbPTBdBTtfYok9PodEu/KDYLz/pes75mHVvEtR9jxTaWq9K6HYOnBnSjtYplw9JT9oPbdc0bx4f747PzMxu55szjyqtx29/iJDvUSVobtJImE96LsRPVHmQT2Snta69YcmPUXEtjxA3506d1ApvBdCWz0/BBw5Io0qPR+uYjxIdvQ8cZZfvQAtWj3cmQa95rXou324ajwMzLw8PVivvIuKKL25tKo8jLX3vOrDxbwdqBG8RsYZPexG7juXVNo79g4VvYQeoTyIgBE9DMy8vBdtgjxwZ8q7yhOoO/WydboV5hM9ETCQvf7OrzyMub06v0eTPMpnO70vhvG8VvSeuy9borwzESY9sEijvPg/DTuWAEc9OHMWvSOPjTuxH988CZlhu0h2dL3wqF67GEYhPU8LQD2aM6I9kW9BuwWPyrzD/Za8CvMduwnt9LwYcfC8bAkgu19iibtQY5k8qgsxvV8MEzyBmRU8NuwnPdD4QLxrgrG8hB4hvPa2uzwZHV09191ZvPDRojrWCAG9CBa5vOmUML34lYO8fF4GvdKmED39IkO8qDAvvfyfGjySRv28h/9zvHZQKbvyg2C7K6UevUZyBjsnbv08jA3RvCAGvLqG+4U8atbEPKOfKbwtgKA80qr+O/B9D72C74u62+0ZvUQYSj2fGDs9gJNsvJqJmLyuFUg9NkKeOpq2yjy32Si8DlMrvFKUETxn9/w7ZiBBO1O9/Txt4Nu7rGlbPEefuLtIS6W8jA3RvPZkizxqWW08azABva1p2zzokGq6FOSwvCRorDszucy8GnU2vRU8ij2/RxO9Xzdive55yTyUohy8AlzvPHuyGTx/vpO6M2ccPJ/A4Tuvwxe9I2TmO+L/ZD2qjtk8XmAmPYFDn7us6JW8kkZ9PKdVLT1GcCO5f2TXOwHZxrwyOAe8iluTPHJCzLwjuPk8mNtIPYN0F7uh8zw9IIMTvdwazDzDqQO9rJKfPNm427zyL009syUIvZOe1rxISyU8aKevu4na9TuIgJG8REGOvHktjj3vzdy57HGVvdzGOLyFTTY88NEivl+0ubxno2m8pP3TPCfvGj33kb28Py/ru+GlADs1Ewm8GUgEPa7BtLwHaky9DXoMvQLZxrvfTSc8LNQzvUVsXb0O+9E8Br7fPMOpg7z3kT07Ok6YO7Qp9rovsZi99413PBaWbj1LKAo9Uz4bvN949rskk3s8jzzmu34QxDwS4Gq8GyMGO26MSLxnIMG7SXZ0vE/cqjyEyg09zEI9OrT+pjwdqJE9N2/QvOqWEz2Sc4e8hU8ZvJHsmDyfbE685zaGu+UJfDvYZEg8VRsAvDfD4zzA92295d4svZdUWjy2hRU9F8GVPGXzDr2s5jK7QbZZvRlIBL2a34487ko0OnrXlzodqJG8WqqivKgykjzhpQC8F20CvUDfnTxDup89b7tdvMZdpDvyL029op8pPZXRMbwEuA47TwtAvWvair1nJIe7ZySHO8g4prxDZgy9INkJvZhYIL3VWrE8rD4MPXiogjyMtXc+i4ooPW3g2ztwE7e98NEiPHktDr2UJUU6+BRmvT6wCL1Y9oG9eKgCPI1lqrxvODW9jpS/uofUpDyUJcU82j/KvJzl3zvi/2Q9v50JvWGTgbkhXhW9WSWXPV83Yjye6wi9l1TavJdU2jx6Bq08m2I3vXzhrrmAFIq7l1TaPC182rwrpR69LqtvvBykS73FLg+9AKyUvBW7bDyn2NU8dnv4O9o/SjyGpY+8+kN7PETrl7wOp768alltPYzigbuSSsM7FDjEPHoGrTuNYWS8YDuou5DDVDqIV826ZXRUvXKaJbz4Pw28ti28PLFzcr2F9Vw9wCCyO1BjGT1u5CG8Tgf6OjrRwLsVPAo90tNCPJkEjTy6jyw93XIlPRXksDs3Gz29E2GIPFWcxTyGKLg8NDz1PE0wPj2V0TE85Ql8PFBjmbzZvKG8DE9lvD4va7qQmAU9ezF8veaKGb08KZo9WM8gOgfpBjxpqZK84E8KPVZKlTwnQy68r5jwu3C/o7wVu+w8HPykvDNlObw0QDu8p4TCvDfDY72XVNq8n+sIPFXw2DzAdMW8YsIWvK4VSD02Gz25NpgUvH++E73ecqU8rL3uvNF76TyxSoY6toFPPPubVLz4aPk8e4MEPTZv0DpcMZE7QrqfPMUuDz3x0aI8k/JpvMP7MzxwZ8q8PgQcvVnPILzcwnI8Nu6KPI48ZrwTYQi9lCXFPIoHgD1ttYw8/UsHPfeRvbxQD4Y8QuVuvLEfX7xqLh47M2U5PAzMPLuUohy8F20Cu+6ijbtCkdu7iFfNvKw+DDtBDjM9uo+sPCKJZDw4nmW9IzkXOilJf7thPQu9PNUGvb1skbw59r68Pi/rvEbzSzt+ZFc69uXQPCW8P7uNYWQ8IbIovS1RCz0hBrw8mC/cvD8zsTygxKe85zaGvGIWKrqIgJG84wOrvPZiqLxIdvS8D9bTvIIa2zubYrc82RKYPEr94jy/nQm9EbHVuqR6Kz0ocsO8onblvAp0Yz0NJJY7EuDqvNCkrT2+RbC8k55WvAwgUD2g7/a6PoP+O8SCorsE49277UbuvPICm7ytlAI8rJKfvA+nPjxWSDK9ewgQvU7cKrwqTcU8qFt+vOJXvrw6JdS8Kk1FPLkMhL1Qjug8xCrJvDYbvTtbLUu8/EsHvAhuEryzpk29GUahvHETtzvu+AM7zO4pvfyfmjuUedi8q+LsPChywzy+8Ry8qwsxPNMrHLvJY/W8XDGRvJgv3Lx945E8Dv8XPaYsaTxvjMg8EgkvPCAvADtqWe089ra7PLo7mTzl3qw94oACPVagiz1ElSG9Vx/uOvICGz3LvxQ96ZSwO3j8FbylqcA8moe1vHdSDL14Kys87yU2vGIWKjr03Zy8RMDwPG/mBLzyrCQ9ubaNvFWcxTzBzgG9trDkOppecTyiduW8qrcdvXVMY73D0u+88liRO6+Y8LtNML68TwvAPH/n/7xD5e47TrPmPPEAuLxDEJa8K6UevTE2JD36cIU8ud95vGNB+bx9uGq9nQ6kPLNO9Lv8R0E9Wc+gu5PyaTxaqqK8QGJGvRhGIb1JdvQ7ROuXPBvND705zXo9KcZWvKGb4zyBbm475dpmui4DSb2ZWoO9ENoZvDE2pDy32ws9oMYKvcJ4C7yi94K8oEdQPemUML3KD2I8AS1aPJZ9Hj1agV68VvSevI6UP7z8Swc80VCavBNhCL2Qb8G8pNIEPYFDHzwL8bq8qmOKvN6hujzX4R+9kcNUvFqqorwXF4w8UDpVOoirYL2qY4o8feORvDO5zDwTC5K9KSCTvYmvJj3EKkk9R0ffPCr5MTyr4uw7kkrDuxmcFz2Iq2C9Bj0avSZDLr0TjNe7bbHGO+joQzrOcdI8ei2OO5EbLr0kk/s8DMw8vZqHtTxOs+a8WlaPPC3WlrsFDgW8REEOPYNJ8DygR9A8ovM8uz6wCD1Aiwo98CcZvWpZbT3qF1m9FOQwvYmvJrvkrxc8rphwPBv4XjvPyw48i4oova2Ugry4tCo9OPJ4vVO9fTohtAu9J+tUvcu7zrzoEQi8/iLDvIAUijynLOk8vZV9PLqPrDyyIyW96paTvB2okTsGPRq92r4EvnUhlDsQVQ68X7S5PKL3Ar2cZJo8TFW8vOZh1bx/vDA80M/8vPzzLbz8R0E9yeDMPMjgTDp4J+U6cOpyO870+rzS08I8mwrePHDq8jwHO7c7WqoiPf/9RDxrgrG83MLyu/eRPbzTKxy9jpB5O/a6Ab3WNbO8lqhtPbFKBr1u5CG86uyJPHh/vjzwfQ890PjAvPyfGruvGY68VZxFPC3WFj1vD/E8B+mGPAOHlrzp6EM8TwvAu6/wybpKJqe8Id33vJCYBT0pypw8xgVLPeoX2bw1F3c9nj05PCQQUz2oMpK81VqxvKDEp7wS4Go8+5vUvEBixrwijSq9TTA+va6YcDyiyvg8Hy2dvJu2Sj3T08K6cu44vUpR9juvb4Q94PkTOzI4h71+vDA9oMQnPCGyKD33jXc8rLkAPEEKbTvU14i87J7HvAYS87vErXE9+Gh5vCjG1jxBDjM8Os36vBvND71IS6W8iKvgvIC+kzszZxw8eH++O4syz7wuLI09xlnePNm8oTw06OE8EQXpvIcqmzxR5kE99rY7vb3CBz0iCoK96kCdPCI1UTw27Cc93JkGPVG5j7xwu129c0JMvP56HL0QgkA8tzECvcWtcbwOU6u8+hoPPSEGPD346RY9JOUDvVJp6juUopw8q7kAvVqB3jwmFJm7zcVlPTXoYT0Q2pk9k/LpvCn1azuNuT29C3TjPFWcRby/nYk7ei0OvOYNwrwuA8k8Dv8XvdkSGL3Is5o8DypnvM2aFjvfePa7jIwLPf0e/bysuQC8yY6cPLRSujxknZg89YemPNJ/rzsq9eu8/iJDPcoTqL3jq9E7xrG3PEhLJT2oiIg86uyJvJZ/AT2gm2O9WCWXu57ppTyfGLs61VyUO+JXvryIA7o8qDKSvOKr0Tw6pA491FoxOyn1a7z5bL+8ty08PApFTjsef008oyJSPWpZbT1KqU+8aKcvPf1Lhz1hPYs9regVPDIN4Dy6j6y8KfVrvI48Zjyskh89zskrvfYOFb2Sxxo8SiYnvTO5TLxy7jg93knhvHioAjxftDk8hB6hvK2UgrwiNVG9eCsrvG/kIb3UWjE74Hy8vGhTnDyYBA27xK3xPG+QDjyYWCA97yW2O0l29Lu5to295d4sPTrN+jt/k+y8lM3rvGIWqjx945G8bAXaPCogE7tgjzs91jUzvavi7LsdqJE7DMw8PYfQ3juGfEs94SgpPWr/iLwd/ge9/s4vO+noQzu/yFg8uAi+O00wvrxBCm28++/nPEp8HT1Cup+8TdhkPVusBbxGxhk7feGuPKhsBj02xCk8W0gHvSq7LL2Q2YO8q24XvezvNTowjMA8YOYMPf381LrR2Rm8tvfjvLAMHT1+ZNY77YkZvLlgyrv9Yyo9EQ0+PFiskj1s7wm8TAkyvWVQSzydFue8dI8gvZ5Krrxqh/s7YH+3O3Nb2TsGOAi8TNXqvHSPoLu0KRq80qfjOzou6Lzviyo8eKwdPJAMkrxUXIe8ENl2vWjsvzwFN8+83n3SvHnG0Dt+MUi93K8IPb/LQb3LOxS7Ttf7vODl/7ziTY46fmTWvH+YnTw+/iM9//7lu3FaAbvZRiI8cVqBvf2WuL1wDIe9oLLbuwptJ70vcg09lUNCvWohXz0tiq+8zdbPPIFmZzxyjY+7h57QvLxi27x8YsU8vC9NPQHNkLy3kUc9KYflvPX2IT2be6s8GuEbvZisKL1R2sW8H0wTPP/LV70RDT69LYovvaifFL1BzSY8CLmQve+LKj0Kbv+8dd2au2MbLDyHhB28h4QdvIcFJrwQ2fa8OWAevfVcPr3gzIW8MFkyPOlTwbp/MoG8Ga1UPdthDjzfsZm8ufn0PD2Xzry09VI9c1vZu6++orwl6hg6lRA0PTVd1DyNcB28aSAHPJpH5Lwi5048mHkavRTcQLzETxS8N5LzPAHNELtJOi89VUMsPZ9lmjwfTJM6915PvPPBAj3YxZk85BwRPH4XFT2o7NU8mBLFPCwjWr3HHhc9hwUmvdWp9LxAzG08407mPCjsqTvZRqK8idNvuiyjCr0wjMA7orTsOz2XTj23K6u8nWOJvMgFPLzLO5S6atQdPUg5drsDz6E8fMmaPI5x9TtigUi8/ZY4Pe28J70KO/E8qrqAvNx7wTwLVYW70aYLvf8x9LvYrL68QDNDPUNoYrwDArC8ZLWPPZer77zg5f+8JINDPf1jqjq6lBG9uvqtuwAzLbtWXhg9f5gdPSoHFrymhCg8vPy+vNA/trx0j6C82pScvMc4Sj34xaQ8bSNwOyq7rLxzW1k8yroLPctuojzmHek70dkZvXXdGry6+i081kQRPaaEqLx8/Ci8zdZPvCKBMr0nhdS88lqtvCe4Yjz/y9c8NRATvStVkLx5YLS7HOOsvfr6Qzy//s882XmwOw+lEL1c/J283Rb9PH7kBr3rCJG8TG/OvFngeD1uVzc6Q7UEPfjFJDw1w3C9O5U9vCGAebxrIpg9MsFfPVR2Or0Wq8M8Ak4ZPcAyFzjbe0E71t27vAi5EDvEHAY8CogTvZ8YeLvsIkQ8M/UmOjX3tzxGBFc8zaPBvKPneryS2ls8U48VPHj5XrwOpNc8CoiTOyHNG73nhD489vd5vDJ0Hr1PC8M8hQOVvCwjWr0YYBM8e8hhPCLohzw4rAc9qOxVPG7xmrym6sS83K+IvFn6DL3oUTA87VYLPYdrwrkJOhm9E3VrvIpuDD23xY48R9IBu9J01bsRQEy5mxUPvNaqrbuTDqO8h2tCPbSPNj3m6lq8wQDhPBl6xrzqhwi7/K8TvekGAD0Losa7wprEPIEz2bydSXW9zQlePLmT2Lw4k6y8jz5nOTphdrwhTWs9ENl2vIGzib04xjo9AmjMu7crK75Gayy7uROJvMsIBrxJOq8809uqutKnY7xktuc7JIPDuhfeUT1q1B07nRZnvUDmAb0BzRA8OJOsPNKnYzpMPMC8ZR09PCQ2gjuX+BG8Vd2PO7deObxuvow8DSSIvTX3Nz1z2wk95moLPDP1Jj1BALW8o+gzPG69U7wIBlK8+vpDvNA/tronhVQ6Ik4kPIYE7bulUOE8LYovvPTCWjw4LNc88FicPTL07bv4Xwg9zaPBvHhf+zzKuos8l959O4cFJr14+IY8kQ3qO3WqjLwkg0M8t/icvWDmDL1+F5U8Swj5PB+yrzxMCTK9XheKPQUEwbwu8QS951GwO9jFGbzsiOC88o07vWqhj7tIUwo9FXf8ulIODb2wDB08scCzPBngYrz9/FQ8tncUvLzii7oYYBM9a7vCO1JA4rxAM0O97/HGPGuItDxJOi+7S1WbOtziFr23Kyu9ym1pvDbEqTtbSAc92kd6Pk4+0TxDAsY8/C9jvUeEB7wknB46px6MPDgsV72gTD+87744vSS2UTsYE/G8/K+TO2jsP7wTqPm7LyVrPB9/obx2XiM91cOIPaWDbztcSd88S1UbvdClUj2T25Q7RmssvQZrFr1XRb08QQA1PHMoyzq6+XQ8hQMVvZ6WF7y5Rhe9rIkDvZ9lmjthGvO85BwRvTqumLySdL889Vy+O1t7lTzx81c7O8hLvBN16zwtVyE8c/W8vPBYHD3W3Tu8rvGwu+++uLwlt4o8FqvDvH6XZLwhGt083K+IvHPCLr39Y6q8c47nPNngBT1Mb069co0PPWu7QjxZelw9Rp46vYOCDL2vWAa9y24iPTVdVLy3Xjk8jAnIO5LaWz2RjZq8PcpcvbHzwTvjTmY7/C/jPOkGAD0quyw99UKLvDHAB7oL1dS8hzi0vFYQHjzBM2+8eZNCPeS1u7xjtQ+9VFyHPbmT2DxlHb078sDJu3KNjzzNiY48cFnIvARphTtIOfa84LLxPErUEr30j8y88vSQvPotUrwN12W9VhF2vW2KRbpAM8M8ePlevUYE17zK1D49hJy/O0k6r7y3xY682Hh3PAKb2rqphrk8E0JdPXKNDz2eF6C8FKmyPNZEET2kT4k8NV1UPGS257y29+M8jdY5PZ4XoLwbL5a64UzVvHaRsbyCZ6C7FHakPGiGozxlHb28NsQpvB19EDwlHSc9H+U9PZpH5DydFmc84xtYvBvi87yyWpe8MnSevHAmujyzKGE7ijrFPMLNUjy+l3q8OWAevDiTLL0WeDU8aSAHPTz8kjwT9Zs8/JV/vTKO0bqHntA7QOYBvTtir7yriMo87FVSvKDlaTvpOQ49fzIBPXv77zyjgd47ZYNZPdJ01byP2Mo7NPb+u9vhXb3Kuos8YxssvQ6k17ujTtC8HrF2PKu7WLygf828HxhMvFNCc72Q2YM8Nd0EOzLB3zwZLYU7JOlfu60irru8Yls9wme2vGKBSLxz2wk9br1TvL/LwbsCAfc9Rmusuyohybzy9BA9uvqtvFx87Txl6q47Dj47POogs7wIoLW8UKb+OwBmu7xohqM895HdvDMotbwvWPm8hlEPvAsI47uXeGG80nRVPDmTLDzhGce8+cZ8u5sVj7yuJD88ufn0vIVpMTz/S4i8hdCGvf/LVzob4nM8oeaiO7MoYb0RpyE7XEnfvHvI4Twk6d87GRSqPLHzwTvvi6q74H/jvC4kE70Qc9q7Bp4kPcZqAD1bSIe6ggGEukaEBzsFnWs8FhFgO2fSDD2dsEo94k0OPfb3+TvNCV49qGwGvMMBmrzHa1g9e/tvPaXQkbymtza8ROiSPVFz8LxdsDQ7ZrcgvXQphDvV9pY82BLbvA7YHj2TqIY8G69lPQ9yAjq+l/q57/HGvPUo97uN1jk9MltDPDffFb1IUwq9aIajvL0wBrrhs6q8BWpdvYrUKD0vv86895HdvPFZdD2Ha8K8vZYivauISrtE6JI92y4APX6XZDxJbT29Mg4CvUGaGD14LO084k0OPSwj2rxl6q47x2vYvDAmJL3Y30y9PTB5vE/YNDwvpZu8Q5twPQfsnryd49g8wDKXO2qhjztH0gG9a4g0vbxiW7yK1Kg8u8h3PAY4iL15LSa6ADOtO+q6Fj0IBlK9HLCeu67xMD3tvCc9dFwSvMk5gzzkHJG8WhRAPctuIry8/L68c9sJvTn6gTyoH2Q87YmZvKgf5LxCzn48Tr6BvFjfILwZLQW9MCYkvMoHTTwZrVS9LfDLuvPBAjzn65M8Vt5nvSVQNb2hsxQ8ZwUbPbxi2zxn0ow8lfYAPSGAeTxSQOI8xTa5u2VQS70RDT69QEwePTuVvbxZelw6Uqc3PX0vNzqY3za9nxh4PRGnobxRDdS8wU0DvYQCXD2tIi48IRpdvOq6FrxoH848oeaiPHSOZ7yxJlA9zgqXPCQc7rwQpug8neNYvc0J3rxdfSY87yRVPTn5yLw4xrq8K4iePMZqAL0Czui81xGDPOSCrbtNcIe87r1/vcee5ry19ou8ucbmuyIblr2//s88s1vvvBZeAj2phjk9Ttd7vdAMKDxuvVO8TXAHu209BL6onxQ8sIzsu/pg4DpWKwq9yqB3uxffCr3qhwi9YrTWvHPbibzPWBG8bT2EPRlHuDsy9O27dV3qu88+/TxeFwq93BUlPWK01jwtowo6f8urvPVCi7wKbSc9f2WPvI1wnbrNo0G8esZQvXtIkjuPPue8Myi1vMptaT1OcV+92RMUO21wEjyRjRo8ey7+PBZE7rsk6V+8bYrFPAs8Kj3TDjk9bvEaPai5RzyHODQ7Gy8WO84Kl7shGt28Jx84POToSbx2Klw8/XyFPJf4kT2kT4k7xE8UPRkUKrs9Sg09fmTWu0GaGLxHOB69ufn0Omi5Mb2uV029f/65vJDZg73yWi09dCkEPY2jq7zKbek6ECaZu0EANb2ENiM86VNBPSpUVzuEnD+9WfoMPbAMHT3jzhY9tsRVvCTpX7zAZSW8Vt7nPNziljuCAQS9nX08PS1XobmCmi490trxvIdrwjw6Lmi9XMmPOyAZBb3YElu8j9jKvM49pTxNcIe8ADOtPZPblDw4k6w8dV3qPHHzq7yJIJI8eS0mPcs7lDjNVgA9OWCevY+lvDz7lKe8NV1UPBkUqjzRpVK8N98Vvd1jn7ys75+7M/UmPGB/N7wOPju8J7jiPDBZsjsFHRw9FNxAPZpH5LxSQGI8Edqvu1Cm/rwlt4o8upPYOw3XZbs+/iM9Wq6jPYScP7zVdQ48jXCdvZuuOT3FAyu9PjGyu3Dycrw2xCm9G/wHPfL0kL3hGce8Cm0nPWpugbwBzRC81nefu/r6wzuPpbw8O64YPAIbizyKB7c7AGY7vJpHZDwCGwu9lKlevJzigDx1kPi8Xxjiu7C/+jsZrdS7p4QoPaPOgLzeSsQ8jG9kvYQCXDuDaHi7ey5+vL6xjry7yHc7ZLbnPAs8qrymHVM9UdpFPOnsa7rKugu9Yxssvd59UjvLOlu7CW0nPGlTlTsAM609oH/NvIUDFT1LVZs9q26XPe+LKrxQchg9aVOVuxvi87tMCTI9TnFfPdisPr14+V68XElfPHz8KL01XVS4sSbQO9l5sLtOpO07yjrbPOFM1bzxJma7x57mvAKb2jw3kvO8ey7+OBCm6LwXRae3fzIBPCQcbrsq7jq9GuEbPW2907y9MAa8EKbovGJOOj1arqO8fPyovHBZSLvviyo80icUvQg5YDtq7tC7YEwpPem53bxq7tA8LIl2PGVQyzym6sS8HHxXPSjsqTyw2Q69KIYNvUbRSLznUTA70D+2POwixDt4RgG7KIYNPDtiLz11XWo9R9IBvc49JT0Czmg8AgF3u4bR3rk="} \ No newline at end of file diff --git a/dsLightRag/Topic/JiHe/vdb_relationships.json b/dsLightRag/Topic/JiHe/vdb_relationships.json new file mode 100644 index 00000000..b5e63919 --- /dev/null +++ b/dsLightRag/Topic/JiHe/vdb_relationships.json @@ -0,0 +1 @@ +{"embedding_dim": 1024, "data": [{"__id__": "rel-bcfe4067a78db61c5e344a3c6067e9c1", "__created_at__": 1752211508, "src_id": "Point D", "tgt_id": "Triangle ABC", "content": "Point D\tTriangle ABC\ngeometric construction,triangle extension\nPoint D is constructed from triangle ABC by extending AB and adding segment BD equal to BC.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-34f26cf67f89c41e368f995769f3bee1", "__created_at__": 1752211508, "src_id": "Euclid's Fifth Postulate", "tgt_id": "Point D", "content": "Euclid's Fifth Postulate\tPoint D\nangle comparison,geometric proof\nEuclid's Fifth Postulate is used to compare angles in triangle ACD, which includes point D.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-469520e112344d64d841d843cec91e06", "__created_at__": 1752211508, "src_id": "Proposition 19 of the Elements", "tgt_id": "Triangle ABC", "content": "Proposition 19 of the Elements\tTriangle ABC\nangle-side relationship,geometric theorem\nProposition 19 is applied to triangle ABC to justify the relationship between angles and sides.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-5b3cdf18806473ee2a2fc55a7b0fd944", "__created_at__": 1752211508, "src_id": "Point P", "tgt_id": "Triangle ABC", "content": "Point P\tTriangle ABC\nangle proof,interior point\nPoint P is an interior point of triangle ABC, used to demonstrate angle relationships within the triangle.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-e3c9f606eb2d48c5e37f2c2d8bff69ed", "__created_at__": 1752211508, "src_id": "三角不等式", "tgt_id": "三角形ABC", "content": "三角不等式\t三角形ABC\n几何定理,边角关系\n三角不等式直接应用于三角形ABC的三边关系证明。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-f7bcf1a714c6122abc696165fc098924", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "欧几里得第五公理", "content": "三角形ABC\t欧几里得第五公理\n公理应用,角度推导\n第五公理用于比较三角形ACD中的角度,与三角形ABC的构造相关。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-6e53094235679e936c94ad45593f0f62", "__created_at__": 1752211508, "src_id": "几何原本", "tgt_id": "命题19", "content": "几何原本\t命题19\n定理引用,数学经典\n命题19源自《几何原本》,是证明边角关系的理论来源。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-37c38a5bb6bf0a593501536eddae56c6", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "命题19", "content": "三角形ABC\t命题19\n几何推理,边角逻辑\n命题19被用于证明三角形ABC中边AD与边AC的关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-37e6f8ce2b52adfdbedbf5458829145f", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "点D", "content": "三角形ABC\t点D\n几何扩展,辅助构造\n点D是三角形ABC的延伸构造,用于辅助证明边角不等式。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-6144c8f85132b7365b9799eef55d09c1", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "点P", "content": "三角形ABC\t点P\n内部角度,几何性质\n点P的存在证明了三角形内部点的角与顶角的关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-c1933338c2519d138024b54332ba34fa", "__created_at__": 1752211508, "src_id": "AC", "tgt_id": "BP", "content": "AC\tBP\ngeometric construction,intersection\nBP intersects AC at point D, forming geometric relationships.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-a0120be6d72710158ad1d7314522045b", "__created_at__": 1752211508, "src_id": "∠BPC", "tgt_id": "∠PCD", "content": "∠BPC\t∠PCD\nangle sum,exterior angle theorem\n∠BPC is the sum of ∠PCD and ∠PDC, showing an exterior angle relationship.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-cf5059a963107eb6a8e684ceb0f895f6", "__created_at__": 1752211508, "src_id": "∠DBA", "tgt_id": "∠PDC", "content": "∠DBA\t∠PDC\nangle sum,exterior angle theorem\n∠PDC is the sum of ∠DBA and ∠A, demonstrating an exterior angle relationship.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-cb833d7578b22e93fa2c5679a1be4194", "__created_at__": 1752211508, "src_id": "∠A", "tgt_id": "∠BPC", "content": "∠A\t∠BPC\nangle comparison,inequality\n∠BPC is greater than ∠A due to the sum of angles in the geometric proof.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-ba10b682d306f5429797a188080b170e", "__created_at__": 1752211508, "src_id": "∠BPC", "tgt_id": "△PCD", "content": "∠BPC\t△PCD\nangle sum,exterior angle theorem\n∠BPC is an exterior angle of △PCD, equal to the sum of its non-adjacent interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-8e0777902c21563fb266cf02dc90d159", "__created_at__": 1752211508, "src_id": "∠PDC", "tgt_id": "△BAD", "content": "∠PDC\t△BAD\nangle sum,exterior angle theorem\n∠PDC is an exterior angle of △BAD, equal to the sum of its non-adjacent interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-f159e3b5b75d56b92e5123cc548f8e96", "__created_at__": 1752211508, "src_id": "BP", "tgt_id": "P", "content": "BP\tP\nangle formation,point-line connection\nP is the endpoint of BP where ∠BPC is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-a74bd30e168067c7a057365f82d805f4", "__created_at__": 1752211508, "src_id": "B", "tgt_id": "BP", "content": "B\tBP\nline origin,point-line connection\nB is the endpoint of BP where it originates.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-c4fd1ef4041f00039def6df0331841de", "__created_at__": 1752211508, "src_id": "AC", "tgt_id": "C", "content": "AC\tC\nline termination,point-line connection\nC is the endpoint of AC where it terminates.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-6409dac0c80c79ddf61858be7f2c699b", "__created_at__": 1752211508, "src_id": "A", "tgt_id": "AC", "content": "A\tAC\nline origin,point-line connection\nA is the endpoint of AC where it originates.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-2298d7114aac2b273f06e6e633aed694", "__created_at__": 1752211508, "src_id": "△BAD", "tgt_id": "△PCD", "content": "△BAD\t△PCD\ngeometric proof,shared vertex\nBoth triangles share point D and are part of the geometric proof involving angle relationships.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}], "matrix": "wd87PYpKDTwcjje9nQYAvd2elbxScUe8MVj6PB5F+zwuT088KesRulF27LwIyxy9EoKlPNj2QDvE48G8iqOcvFJxxzxJCQS7eJxqPUW4uzu+fQG9/8WyPMqNGb30YBG8EofKvNnxm7yGWXy8XM9APWl+Aj3h9gU6gEMgvZL9D7178te7v9u1O7N0ET2yftu87hJrvFh5U7vyYzO9bN45PU3J8ryeGfU7bTAhPQnNH73Sl6g8RlwKvQnSRDw4W+G805IDPdqo37ziAtO8NQDPPPGzFz1+pHa8A4F8O064AD3USUe9xTpOvYdZfL08Aza8HDIGvdGhcjxIBwG7HjSJPNHzWbyUX0o8GzzQPB7pyTmavmK8EoIlvNDqrjwHKVE8q3GqvBWGK7zXmAy91+2VvI2ln7xefDq8OK1IvIBDID0FICa9xTrOvEK0tTxTbKK8KJ7PvDxaQrwAaoG9IOQkPUK0tTwv8x08QKuKvNj2wLtLxWw9/XhwO2/bl7zGMIS9HeCeOytLSb1vizM8CCnRO2XWLT2kyvQ8JUM9vEjB5jv+IWQ7v4lOvUK52jzQ6i68NVdbPcvrzbsUi1A9hqK4PHnpLDoxqmE9v4lOPIH1PrzqV6G8z5OivDwDNr3R54w8IeECPS9KKr1TbKI9WHSuvFR1zTySslA8EtkxPERreTtVaQC9NwTVPHubSzwciZI7phc3vOf+ETtefDq9qs1bvC/zHbxXa4M8KJICvdX3X7yTBLg825ySvY9XvrxDWAS9xTUpPTBFhb2Jpr481UQivI9XvjxhIgy7OgjbvA8nkzzeoBg9yOKivI6zbz3OmMe89guIvP9upjxZdC69/njwPNz1obydtJg8VBcZvdGQgDz7dOo8K5YIvTL8yDyMqkQ9YXkYvcU1qbyragI9e5vLvItMEL3g+Sc7RlwKPP9uJj1qjFI9sx2FvEVm1DsX2pW7snIOPIZGh7pheZi88FqIPBSLULwRKRY9oAqGvHQ1Cz26zgQ9coiRPH/xOL3Q6i68BCpwPbklEbx44oQ5SxdUvf4h5DpRcUe9OKijvHGPubvwWgi9BdPju9fvGD1SE5O9Pgzhu2jaszwd7m69hUusvOJPFT0VL588zOaovEtpO72fZje92lb4O0sSr7zElv+7DXycvPgZWD0ZijE84k0SvBjmYr2zdJE89gsIvbZ4Fz34DQu8s3SRvFdrgzz7ugQ8ENCGO+673ryQqSW8e+aKPBveG73TpXi8zD01PM1G4Dw3TZG6mAUcPQwosjx8RD+8MfxIPV4cAzvEhQ09Hpdiuz5j7TzkUZg73/mnvH/sEz3YnzS9WxqAvY4AsrzB2JO8oLievF/TRj3DMSO8sifPPC+hNjxvizM730sPvaUQD72ZWYa8/spXPdaWiTz/bqY8W33ZPDNJCz1CYk48JZUkPdLzWT2EVfa8gfpjPYGo/LtLCwe992KUPGPSJ7qiEzE91KBTPJFUnLswAW49y5RBvU7ETTt+n1G9y0JaPIsBUbzep8A892KUvC/zHb2vetU8UyPmOORRmLzL8HK9CNdpPEFncz0tVPS80+60vEazFj116ku8WB0iviXxVby/LR084/0tPbHJGj16PZc8qRu9vL0357z7xtG8siIqPa9wC71njXG9gu4WvdCTIj0UkHU9O6ypO64jSbx9Teo86lchvc3hA71who67KEzovF6B3zyvHqS7DiWQO7Ebgj19Pxo9sCx0PFcn7Du7iu279Bp3vSmUhTy9gCO6KJKCvE7Jcryyfls8uYFCvGqRd7zY9sC8Wcs6vWg25TsTfQA+OPgHPUK52jwBfXa8dZO/OsSFDbxIato8XM9AvTJHCDx1jpo7DyeTO/wYOb1JYJC9W9RlvUdeDbxEWIS8yJVgvFO+iTx/QyA8IeGCvB6X4rs/sK+8xD/zvNj2wLvXUnI7JDyVPNVEIrvprq28czgtvTj4Bz2lwKo81pYJvXKIkbyockm967IzPH+fUbwIKdG7DojpOsI2yL0Ie7i8lgg+uxyJkjux0EI8i1jdvNLzWb0Sh0o95PiIuu5YhT1k21I+DTHdOy/zHb3AhCm8Cc2fu91VWbzeoBg8z+MGu/IMJ73EhQ29vTdnvO9fLTzcR4m7AH32OvRsXrz3YpQ8zD01u9JAHD1+pHY9W3EMvTb7qTylbkO97VaCPUtpO7wAagG9y0LavFrU5Tp9Teo8BHxXPItYXT0L1ko5Zn+hvLwuvLzxur+8y0LaPEtpu7xLEi+6u4ptPDtTmjyvelU97FsnPYlKjTzutjm7orwkvEpik7xdHAO93qdAPRiPVjzwv+Q6FJB1OnmSoD1zOC28GYMJvDJOsLwu/We81EnHvMB/BL01qUK8P7CvPMvfAD3hsOs6AG8mOwx6mTw+unm8cTEFvZu5Pb1+kwQ9zOYoPXjiBD2guB48uXydPXec6jz9E5S8vzJCvSjwtjweRfs7HouVPXU8szwDboe8PwKXvNTrkrzc9SE7k2Rvul0hqLu1fTw9LEvJvEW9YL0Ui1A9CIBdPSudsLrTkgO9d+5RPCXxVTyncsm8uNhOvKjJ1Tv3ZBe8n7gevVEau7wJzR+8EYxvva96Vb3nuHe9qhaYvDxVHT2eCIO9mAUcvbonlLpDWAQ9GzzQPC6ajrzoBbq60ErmPHGUXrz8aiA8bzQnulETE7z+HL+82KRZPDX0gbzkr8y71ElHvIX5xDwwSqo8NqSdvPa5IDyRpIC8TLuiu3xEv7xzOC28/3PLO5QN47wtVPS8ajrrvC5UdD30Xg487AnAPNDlibtvi7O7y5lmvbHQQjwn5ws8cC8CvUAQZzto2rM8DdElvVUeQbsij5s8ZdtSO50GgLx46aw8WxoAPYmmvjwSgqU7ct8dvT+pB7ySstC7As/du1XM2Tz0w+q7p3LJvAiAXT1/6pC8uNjOO/ZnOb1dHIM9+MLLvfCxlDwoTOg8cC8CvVJxRzwM1kq9x+zsOn+aLD0JzR89O1OaPI+pJb0aQXW95wpfPKHG7ruw1ec7XhyDvKVpHrwrS0m9derLPLjMgTu4gUK9veX/vGAgCT271y87bIctvWmDpz125Sa8nxTQu+VTmzwYMyW8u9xUPRw3q7ykDoy7XipTvMGSeTzf/kw9RL1gPLozYT3F40G9KECbvKxxKjt8liY9Kqd6PKEYVr1LF1Q8PwAUvJleq710mGQ89L7FvD4AlLp8liY8sx0FvWuAhby/2zW9Jj4YvWLSp7wW2BK9M0mLul4q07zZmo+8PKcEPOmurbzS89m6C9ZKvK8eJLz7ugQ9Zn8hvanEsLrsYMy6iPilPO9fLbzOOpO7Pbp5u8UuAb2LWF25rMg2PWTgdz1+pHY9W3i0PG/dGj3YpNm7HImSPAEaHT2LAVE8Io8bPM7jBr25fB09xIWNPERm1LyXrg86IeECPdKXKDws75e8Qa2NPbN0EbsBGp09R16Nu9hNTb3OnWw8ZdvSvDhWPD3T7jS9z+/TvAEmarvpri08C4RjO0JWgTkGyZm80Ph+PEELQjxUFxm9ZX8hPOUG2TxUwAy9tR+IvJ4ZdTxCuVo8RGt5vA+DxLxxlN68Q10pO9VEojzpAJU8TnLmvGyCCDsiPzc7DdElva8epDss9Ly7R2//u9yeFb2hxm49uIHCvLcjjjq9jvM7CdJEPNKczTuBUXC81ElHvGTPBb2SW0S8TxGQPKvBjjxEWoe73/5MPY/7jL2MpR+9yZA7vO5YBb1rh608yTKHvCJEXL115aY3z0G7vCM/N73H7Gw85qqnuzcE1TxAWaM8kgQ4uxzgHj3EkVq8nbQYvYGXijwvoTa8e6Dwu7+JTrxegV86wd87vQt/vrvkWEC8ZyoYvUcTzjvhWV88riNJPNDqLr1BYk49UhUWu3GPuTzKR/+8krLQvBqFDL2CTEs9lGTvu4OZDTybFe880ecMO1C/qLwl8VU8Prp5vRHe1jw3sm06/hUXPdxHiTws7xe97lgFvGuHrbwpQp48HDADveWvzDxPFjU9+BQzvOVd5TvrZfG8SMHmumg25Tyrzds7qyRoPDsDtrzVm6670ErmvMTcGT04/688kQldvESxE7yVtta8TnJmvcfnx7uMpR+8I5EevfJjMzs29gQ9Xnw6PERmVD3KQlq9Xh4GPd+nQDwBz108fqT2vReU+zyF+cS8aozSPDusKb3ipqG8E32AveECU72fD6s8RBRtvIZGB713RV48eZdFPeUG2bw5Vrw7f5osOwHDEL31tx09+HDkvLFyjj0xnhQ7D9UrvS5Pzzwbh487SMHmO9KXqLy2eJc7NvupvJwLpTuZWYa9tSYwPN1VWb3OnWy8m2dWPc2PnLn7xlE99gsIu77UjbyaspU9hUssO+oCmDuea9w8WcYVu/4cvzz4DYs8pMr0PNT337xigMA77lgFvT8HvD2OXGO7+8bRPDhb4bz5uAE9lLZWPOoCmDs0opq72/9rvQ/a0LxEWIS8G463vFxzD72eGfW81+8YveP9LT0CxRM9BsmZuuCim7qmaZ68Ku0UvacUlbySstA8sx0FvVtxDL3yDKc8HIePuILwGT1/n1G7g0emvIadk7yoyVW92JgMPOgKXzvIiRM92KRZPekAlbtLF9S4X3eVOzj/L70Qfh+9GDMlvFO+ibzzDCe7cC+CvDNOML0HLnY9SAeBPM/vUzyJ8wA7wzGjvfW3nT3IMgc9jKUfPHtEPz15QLm89RVSvI9SGbpDXak8hESEPCTx1bwWhqu8rtFhO2LSJ70ilsM73VVZPOiz0jyzdJE83PpGPTFT1Tzc9SE9ZSaSPHLhID2guJ48bufkvH/xuDudBgC9P1kjPN/+TD3rt9g8W3g0vRWGK7yF+US8Z+R9PacgYjzN4YM59rkgPNRJx7xSwy494gLTvOD0grw1qUI7rtHhvP/AjbsWgQa90ErmujJOsDy2IQs92lb4PJ0LJT0U1o+8FDnpuzVXWzyHAnC7NqSdPesOZb2GRoe747RxPCzvl7x+9t08tSvVunM4rbvQ6q696rfYu05tQby1K1U8cC8CPThbYbvLQto89MPquz9ZozoHdJC8+HBkvImmvjvYpFk8KeuRPb+EqTwCcyw9e+2yPDUATz1Aq4q8RWGvPHXlJj1egd88SGpavBgzJT3HiZM7s3QRvSKRnjzZQ4M8QrlavZkHHzzbo7o7RxNOPBHeVjyTVh+7t93zvFF2bDwBIcW8UL+ovLUmsLxkzwW9kGDpPKYXNz3wsZS77mn3OgbOvjuI+KW8BneyvC7xGr1dIai6Zi06PNKczbv7wSy9sdVnPRHe1ruycg68hafdPIhICj1r3rk7OVGXPI9XvjwLIYo6JJrJO7/WkDxqfoI8nhn1PIXynLwVNMQ8kaaDu9GQAL2UDWO7uSURPL+EKT2mEpK7uYFCPDj/Lzx7SeS83kmMPO673jyTqAY8MaphPNmfNLx4Rd48tiGLPBLp6rn9WwO8ey1QvXGqvLzO+bq7hvYLu9I8pDzuFx08jGJhPYKzIjxDPx29lRRfvVZlWTwqeKM8XMsWveAuTLzsxV46n8bcO6uDAj0Ire28QeSHvSzTODyTL0q9k40ePXZgZ71rU1S9V5RDvWDflTyzhe08+ukvPcmKpjxmEyq9CsQrPAiYgDzqO9+8fLqOu3y3T73otJ48PEYJvRLgEz2fJLG5/VsDvdNoTz3AqT69Pjc0vHRjJr2vz8K7OryJvFsGl7zmKp+7i6n3u9CypLz1d1w9EFYUvXWPUbyexlw8gSbkvB6A/TtJzsa9BPfCvKnT77w/ksm8CZVBvTLPC71h0MC7cUzoPDW0oDpSIvC8wKZ/vHVXkDt4dGY8Tz3bO2qCPjkk2iQ9PtlfvWCkFb0YFKg8O4GJutcJDb1UOa48s+NBvGidqTxvxac8S/rxO0TJnLxyqjw9B6QWvXaP0TsEyFg962pJOZL3CL0KIoC74YCKPeJad7xmE6q6A/dCvHowj7zsgQe98NAGPXcZ0TyfggU8hmlNPQ16VrwE98K75vh1PKLRBL3i5zU9E3apPF9GQT2xiCy8j0q1PKNnGj02PqA8OvTKPBTRPrzPg7q8rtIBvHEdfjy6reu7g+KMvL3wVD2iq3E81CE5PaMsGrzCYqi8o2caPUOmSLvKttE7y+J8uyiQTzzGRP48hTrjPGXkPzxA8B08mrJdvJw83ToVW7677cXeO9SXubwvuE29+I6aPXy3T72fJDG8W3lYvc+ypD3ILNK8fLoOPXNjJjxRJS884onhummRk7xi/6o8VTkuO3oBJTvLFKY8iza2POyBB71I3Zs8Nw82PLqt6zwfphC9BCatu+4XHb0Zb708BwvCPEM/nbzfuwo8GOJ+PXJDkbyuRUO9SnDyPFZlWbymHUW9zAgQOz03tLvxZhw98+1cPd2kTLzMbzs9Jtdlvc6SDznaMnm8moayPKZMr7xZ71g7Bd8WvKdMLztAHEm9CWZXPLbI1jyDgXm9Z8yTvN5GeD0VACk98ZWGu0X4hrzfjKA7FooovWAOAL0cVxG9B9zXvGSJqrwt/+M7CGmWvWmRE73qDHW8Ix78vJ+OG7v9LBk90Q06vefjCDyAbXq5ApwtvDMqIT17LVC9+t0ZPNSXuTxGgoY8gcvOvIiAC7z/hO+7CvBWPB1U0jyMZSA9t1UVO1QNg7x6MA+7b8UnPDAWIjt/zg0834wgu+X7NDx2u3w87fTIOhgUKD0VAKm7snyWPOSgHz0W9JK762pJPPLBsbzOKCW9735IPU6E8bu1nKs8oUcFvRUAKb3L4vw8r6BYvEzlhL1L8Zq8goQ4uzDkeL126uY8OAz3vAfTgDxxfhG8ZYbrvCdYjjwe3lG8IGuQO4vPijx94/q7FNG+O9pYDD2hDAU8od2aO1wD2Dwe3lE9rkXDvOBdtjzGRH481CE5PAx9FT1Jc7E8q11vPTT4dzuv/iy8W6hCPYqsNr2hUNy7LNO4u09vhDzKtlG8lXIzPIVsDDw7IPa8in1MPCwxjTy8lT+9jVkKPJiVhzxXXII9aiRqvNTGI711j1G8Zz/VPJQXHr6PG0u9kgDgvGjJVD2MYuE8lnKzPLs36zoCbUO9CvDWvPpHBD14dGa9/vpvvbmta7vNbHy7hTrjPBN2KTz21bC8Xusru1FUGTwBEi692pBNOmcQa737REU8j+xgut8uzLy6C8A8/+WCPGr1/7yYzcg6OcgfvCGXO73Apv876Q80u8DYqDzepMy8tyaruMq20bwaEWm8FvSSvLUPbbzbkE09+F+wPdqQTby2kBU9xXanvM75Or2GOuO7KetkPSgy+7yr6i085lbKu1fyFzviRYq8tW3BvBkRab3I/ec8Hq/nO5qDczzILFI8g99NO9x4IbzKFCa9hvYLPeSgH71Dboe8J785vUUB3rwesqa8+YvbO/1bg71C1TI8DalAPcPspzy398A8NFbMvAEPbz23yFa6WUruPH/OjbydBJy9GZ6nvOqZs7psruk5f3C5PGsk6rwuiWO9Nw+2vG0J/7t34Q89DalAPh0l6DwokM+8TuJFvYp9TLufGBs8HVTSvOZWyrw83B68AKuCvMPspzt0Mf073wKhvGGhVjsHpBa91k1kPPf4hLzCMz49c6d9PScyezuR1LS8otEEvdk1OD01qIo8nGvHvBG9v7z5usU7xwAnPcS6/jwiug+8ckORPPdfsDw+Zh49jTN3O75OqTwzHos89XfcugSZbrztUh08NuDLPN1JNz1bBpe7pZPFu88cj7yel/K8n70FvRGOVbx7iyS6ThGwvPf4BDyfJLE80msOvLMSLDpXXAK9J2Skumv1f7vmKh+9db67POD2Cj0+Zp48/iADPccAp7wD+gE9h5X4vACrAry0NYC9OcgfPW3dUz14SDs95HG1PLxm1T2535Q8owlGvUv9MLpHi108VmVZvSGUfDz07dw8uy6UvSc1Or2UuUm8AQ9vvKKiGjwBEi4827x4PZVDSbzFRz28hcchPVCbLz0OM0C7xy8RvRb0kjyZH4c89gQbO6qPmLwxcbe8X0mAPKYdxbyN75+7NeMKvWknqbwzzEy95lmJvVkeQ7zB1ek8p3uZvfA3Mjv20vE8vbiTuwxOKz25gUC98ZUGPe9+yDsmzo67UY8ZPR6Afbx0khC8I3+PvChhZbwQG5S7PghKO5ADHz1b+gA9D2IqPZXoM71cy5Y8ZeQ/vK4WWT3Om2a8E6JUPXv1Dj3Q9vu86m2IvdcJDTteVRY9BYSBvNce+jzlzMo8QPAdvSwxjTz8/a48oSHyuw7MFL01sWE6RV8yvBb9aTxMh7A85lbKPNmTDL3NbPw8YHWrvE4RMD1aeVi8FNG+vPE087uBVU69qdPvuMYAJ7wN2Cq8mxAyO+yBh72AbXo9r/4sveKJ4TtRjxm9YBdXPcYAp70RjlU8lqEdu98CITxHRwY8fhLlvCp4o7tAwbM9XxfXPPtzLz3CYqg8dJKQvNAl5jtUDQO8875yuujjiLzX2qI81boNPYXHoTz/hG87nxibvCeTjrwZnic9WR5DvLaZbL0s07g9Yv+qO6zn7rw83B48oK4wvF8alj21nKu8HPb9vG1n07w/NPW7LKTOPOkPNL07Uh89VKxvvBlvvTzTaM87IZc7PWuCvrxSx1q9SywbPUZc8zzcSbe9I1AlPI3Atbxulr07L7jNPFghgjuFxyG9TIewvL9L6rxfGhY8OsVgu7UP7bxrU1S70ID7PN2kTDyi0QQ8GkBTvcqHZ72LNja8jGUgvUTJHDzqMoi8dGMmPSBrED27LhQ9a3//O41ZCjsnk447cJN+Ozc74Tyx8pY8HIO8PG70ETyPG8s6FNE+vAekFjsqbI07E3YpPXyI5TzApn+7wNVpPJUXnjzE6eg7prYZPOSgn7uP7GA8ThGwvBFf6zzbvPi7V/KXu98CobqGac28NbQgvYup97z6cy88XDJCvUN33rwyz4u9O35KvMvlu7uChLi8vR8/vYa7izze07Y7Kbz6Oz2qdby88xM81x76u31EDroH3Nc7GAgSvK0WWTwvuM286gx1vPoMBD2xWUI9E3NqvCBrkLxPm688aPg+PIUxjL2VF568ApwtvBVbPrwXfpK94ICKPHFDEb1GgoY7cCC9OQMmrbwybvi7ybkQvTvcnrwW9JK8kAOfO+mx37uOvfY8eoukugsfwTw5lna9qlQYu2r1/zwj8tC6x3PovNTD5Dwj8lC9SdEFuwMmrTyIUSE9g+IMPY699jyx+208875yOuXMSjwZzRG9AXACvUC+dLypAlq7TzQEPSdkJDz2d1y5xeARvJ74BbxWNu88VmXZvGP8a70Wiqg89gQbPEpbhbxXZVm7kfeIPeIWILz9/a46/VsDvZeeXrzA1Wm8ithhPPUzBbsBEq48tDUAO2iRE7v0Pxu9hA44vWj4Prw144o9bTjpPFXSAj2PeR88kAMfvQYOgT1qG5M8BJAXPaWTRb3SaE88P2NfPThqS71A7d66j0o1vdphY7wabH49BUkBPQESrrx2j9G82+vivLiBQLxm5L86HIO8PHFDEb2J2yC8+YKEuuFFCr3yY9248TRzvEvxmjzdpEw8YOhsPT6VCL1mEyo93qTMvPoMBD1SUdq7w729vJIA4L3/5QI8ubAqPMyepTzHolK9RoIGu/GVhr1wuRG9oX/GPAmVQb2JCgu8JgZQPcxA0TyfGJu8LxYiPHIIET3PHI+9lIGIPDvcnryfvQU9Kutku6HdGr1ktVU7U1HavKTCr7yxWcK8MQoMvUqWhbwt/+O7kXZgvdy8+DzE6Wi9rqDYvNu/Nz2VQ8k8p0lwOk0RMLzrlvQ87IEHPSMe/DudMwa9suaAPPRI8rvfAiE9muQGPWbkvzw0Vsy8ph3FPLcmq7xvk349JQkPO0mimzty2Sa9/ylaPV6EAD0qeKM8HuGQO/YB3Dv1d9y7JNokuzX49zzWUKO8igdMvaF/RjzwoZw6+ukvPeD2Cr3huMs8YHWrPCt1ZL2535S70IB7PQT3wrzw2d28oIIFPZnwnLz9n1o9WMBuvIfE4jmwXIG8M8xMvbNwADs3asu8h8TivANVlz34MEa868idvNmoebtI3Ru92JOMvV28wbyB+ri8BCYtPLQ+1zynexm9oQwFPQxOKz0PkZQ7iR/4unoBpbwrRno8USUvO1jv2Lzy8Ju7nvVGvYHLzjwabz09HMpSPcJiKLnMbzs8xXanvF2/gDztUp28WR7DPDWFtrsvgAw9R0cGvIl9TD2Abfo8qoMCPNKvZTzIWzw9tAYWPcZE/rxM5YQ8O9yePKF/xjyFx6G71X8NucZEfr2Fx6G8Tw5xvAxLbLsPBFa6Lf9jOqBHBTx9RA69HCgnPYs2trwO1Wu9Mp3iPGLQQL0VACk8fVn7O87KUDxUDQO8E3YpPSwCoz0/kkm8HPb9vBZ+ErtokRO8dxlRvLUPbT2NwDW9MBPjvCykTrqKrLY73/9hPbO0V7s2PiA8fRWkvElzMbyb4Ue9rd6XvPVuhTwo7iO9l2/0u4fzTLxKZ5u5kAOfO3imjzxsrmm6a+CSvR4NPDuRpUq8HFeRPELVMj0NqcA8r6BYvC5a+TwfPCY9J785PUyHsDz4jho9juMJvV0yQrzO+bo7LNO4PP3OxLqi0YQ7RV+yPPhccTysu8M7goQ4PZdaB72n1q48RlxzvbLjQbsb+by81lCjvLGILD2GmLe7QL70PNwaTTwKIgC9R92bOluowrxV0gK9CfMVPLtplLtSx1q8ltAHvTutND31Pxs8QkszvB7e0by398A8kAOfPFFUGTwXQ5I9/SwZPaOWBLuJfUy6ujqqPOptCD1JRMc8fQkOPZXoMzupYK48p0nwvA9iqrsN2Co9/GcZPSbOjryRduC8OoEJvA2pQL0KlcG7GW+9PDwgdrz73Rm9bTjpPND2+7vxoqE7QaCUPLV5/bxqm1S9EZMAvR0Gkrw1LQM96JhlPHOYmju1uks8UPGhvDXSyLvDogO8ZikVuxzSubybAyM98skDPY5cubtbMFs9QzBMvGfXRL2pBuy6HfkbvWY2i7wYpvk8szeKu27YFr3KUQU9f/E/PBQJzLoAmfS7HDGAuxD397xXK328R815PECGKL1U3BM8k0crvGzcIr08z448REq4vMsqI71kLaE8G5HrvJW99jv/KxO9ur+pvPUL97zhHby7JI6xPOiL77lmo+w8zbpaPbWg37wQUjK9L7N+vOWtc72am3I7FjCuva4LSrx6xf+8GRugvDx01LyvZoS9aMpOvHdCPrma9qy7zECDPLrZlbxzcbi5A/0YPWK4ejyR7HC93J4GvNB+6ryGhtU8e/nXvK3+U7g45By9zggfPSuCjbwobK272W66PBnNW72Zm3I86xoCvZ/hnrzabjo97bevPHstMLwNqA694vbZPOJeCj0Apmo8BgYDPcUyu7xS7RW9NgKVvFEYhD2ZOwc9IcohPVfLETxu5Yw8K4+DuxPV8zke7CW8un5bPemy0TxQ/pc9qiBYvEZ6hDyS7PA8r2YEPTi9OrxoCx080syuvHf0eTwffF08j3YlvJHscDzKKqM7kxPTPLmYRz3LKiO99lk7vPQy2TvcnoY8a3TyuvgDX70Y9D08fTaautWDSLxcV727XH4fPYuYKb0XUwS92W66PNZ2Uj1kEzU7VIFZvSlSQTx3DmY81WncPOUznL1k+Ug9rv5TvSNA7brKEDe87Vx1PAEBJb0MTVS78C37vBzFQz3jRB48jihhvO3RmzyFHYC9vU9hPfGVq7zU1Rg9zgifPMr2Sj0Lxga8RFeuvMwzDT2uJba8kd/6u8odrT0U71+8XzU5vc6tZDwoX7c8OPGSvC9TE73CeyG8E3UIPbulPTzE5Pa7qlQwvL63kbsAzcw8ZOzSOz4e+DyiSvQ6BwaDO91ZrDyuP6K67Vz1uzFCET3OIou7STWqO8ZMJ73kQJK7f/G/PAWE5ru9yBO8ADmJOhc5GL3ZLWy8sx0evBFfKL2pINi8ttQ3PcoQN7wkTeO8xHeVPLcIkL29aU08TNLXPFOBWbzOIos8i5ipOzAOubwv59Y5enIKvbbhrbxIAdK8BeyWvERXLj08mza78doFvblkb7wxQhG8rzIsPXiQAr2bKoW9Y8Vwve7eETwIb9g8ltdiveXhy7yI4Y88xiVFPMXx7LwAmXS7UvoLvW7ljDz5a488FVeQPG+6HjsDKAc9Y+xSupsQmTzKKiO8O2fePDzPjrydGYM8j4Obu48b67wH6Iq9SNrvO0ja77u5mEe9w6IDPJMtPzy+qps8toZzPLat1bz1WTs9g/YdvAS4vrqTe4M9sc/Zu1sj5TyLfr07cz1gPE0gHL0fAoY8IuSNPVDxoboEntK8zq1kPOgeDryu1/G70XH0u/3Hbj2S7PC7dwFwO2+6nj00+Sq91NUYvG+6Hr0e7KU8tZNpPL1PYT1YxwW9qlQwvSwJW7ueujw7clfMvOEQxjz46XI8f8pdPTiwxLww51a9CVXsu63X8TrJSBu+kX+PvQHA1jx0soY9taDfPMUlxTw17LS8sTsWvSSOsTxI2m89PagsvQGZdL04sES9dYeYPDtN8jtjICu8S+zDvNlH2DzGPzG9AM3MvCcrXzuZLpG9MU+HPRyE9Tv94do8YtLmvPKVK7xAoJS6NAYhvC1xC73ZOmK97HZhPZIGXbsD/Ri9ilfbPJrptjvKNxk8WpwXPaaDqjrdP8A81YNIPesagj3OrWS8LHWXu/VmMb3Nulq94GIWvPVmsTx+UIa9ydzePPZZO7wc0jk8d080vfVzp7yCLoK9H/WPO87uMjyBIQw8eIMMPbLP2Tx/Mg67KF+3vVd5wTuxwmO93QtovPUyWb2X8c48GxeUPDejzjx6f4C9RUq4OiRAbTs8dFQ8DCbyPA21BLzsXPU83nOYu0BsvLmd/5Y8zvuovQCZ9DydGQM84M/3O0LvfTzaYcS8LX6BvbkEBD0bF5S8LPxkPRzFQz7Vg0g9ntSoPAm9HL1msGI9un7bvEvfzTu2hvO7ntSovIvMgby1rVW93nOYvIulH7ylQtw5VsuRvPBHZzxrwja91sQWPW+gMj2+g7m63T9AuwHA1rw45Bw9S1gAPHDHFL3GP7G75jwGvSPTCz1eehM91ZA+PLvzAb2az0q6rfHdPMxAA7wfAgY9mvasOxy4zTuI4Q+97dGbPZRhFz3FGE893T9APJdMibxLWAC8YxO1vN0/wLwnOFW7XFc9Ov0iqTqD9h08jlw5PXxhCL1i39y6VM8dvV81ubwD/Zg8LRbRvOI3qDySBl08ey2wPCGjPzwI9YA8Rw7IPAfoCjy5ceW7l/5EvfZMxTzwLfs8daUQPe3RmzpH9Fs9esX/PJclJ7394Vo8/eHaPLfuIzxYUl89tu6jPNWDSLwdE4i9m8LUu+nzn7xLxeG8fqP7vMTkdjtbcSm7XH6fOuYvED0MWko9Wz3RO3YBcL1CjxI9nro8PBVXkDxPsFO9sah3uj8r7jropVu8qaaAvAli4jtjBj+90gAHvfjp8rxpJYm8LFcfO3Yo0rz0q4u8D4oWvMN7obzHPzE7ms/Kumf+Jj1zfq67wnuhu6aDKj1Uwqc7/O5QvdjACj2vZgS9NSANvcjCcrw/X8a78GHTOxUWQj1fT6W9hOknvOnZszteh4k84G8MvVD+Fz1MOog63hhevPGVq7yqINg6hOknPe7rBzzQZP67reTnOugRmL35RK28GTUMO6oTYjwvzeo7cz1gPChsrTxME6Y7hOmnPJ/7irw4HIE54vZZO49CTb38TRc6nwgBPbulPbzBLV08a9wiPJMtv7ya9iy9+1oNPVTCpznabjq97ao5PYagQb1aqY08QF9GvaO/mj2ii0K9S55/u0o+FD0NgSy9M6tmvMJUP7n9CD28/e7QPB7sJT3K9ko9jhtrPNkg9rwkm6e8Xuf0O/QYbbxvrSi8rsr7vByE9TwoUsE8qvl1PAXfoLvZYcQ6OMqwO7K1bbyqVLC85QiuPdjNALyvWQ68QDhkPELv/TuCgXc9DU3UO8OVDT08jsC7DE1UvP0vHz0nK1+8V9iHPHWlELws4vg6CZa6PHNxuLwzPoW86aXbvKaQID3Mk3i8O+CQvWP5yLoNjiI9SGmCu9Gywrmmgyo993wRvU4PmrzF/uK8XX6fPCeXG71IaQK9ezqmu+m/R7yuGMC8m7VePNZ20rxRGAS9AIz+uylFSzwd7CU7cNQKveoAljzSi+A8ur8pPZF/Dzvl1FW93IQavc2T+DydDA086KVbPcnc3jwlqJ07OOScvDFCEb0rjwM8hmzpPKKlLrzJz2i8HuwlvEMwTD2xVYK8Z+S6PHDhAD11pRA9VLUxvFR047x/JZg8rhjAvG5fZD0g9Y88qlQwvV9CL72Zm/K80ZhWPUwGsLsYpvm8in69vT9S0DtDPcI8YyArvX5QBr2OAf+7CW9YvG+tKDwXOZi6LCNHPZsDI72R33q8sgMyPaZCXDtYxwU7p6qMvPaaCbyuJTa8myoFOyekkTsg9Q88eyA6PYuLszyKPW+9h8ejPU0gHLx7LTC8ztRGPJwdjz3ZR9i8DWdAO7fUt7p+UAY7h9SZu/0iKb3OFZW8AJn0vMULWbx4aaC8U7WxvDS4XL1/19O7C7mQvQ1nwDwj0ws7GQ4qu56GZLvhN6g7wUdJvVO1sTwsVx88V2xLPNaqqrvaiCa8DHQ2vFswWzx0mBo8CtcIPXc1SL2Hed+8t+4jvBE4xrxDMEy89KuLvGfXRL0YATQ8OkD8PIagQTuXTAm9xQtZPXstMLx6xf+7NN8+vY2uiT00+Sq8ECtQvNTijrtMuGu8f/E/vWAbTbyLpZ+7BvkMPGzpmDy2x0G7DE1UvbrMn7pL7EO8Q5yIPURxmrzRvzg71EJ6PLMDsrw74BA9S9/Nu90L6Lu+dkO96xoCPY92JTyf4R68T6PdvAu5kL2ntwK8iTD5PEMj1jzl1NW7fUMQPMYyO7tUwie7uswfPTcPC7yXTAk88aIhPIu/i72u5Ge92XuwOzjkHL0lgTu7IcqhPLjqlzwjQG26dvR5PdGlTL2+dkM9V1/VO7qys7sT4um9q3sSPcY/sbyXMp27OMqwO18bzTtrgWi9vreRu8pRhTy2+xm9Aec4PTccgTzopVs9hqBBPK4lNj3ppds83RjevAmjsDs2AhW9WKCjPXdcKjwrCdu8oUr0O0QW4DlQCw47P1LQvHhCPr2KPW+8egZOvCeXG72AC6w8O+AQvQdI9rxcixU9ezomPe7ekTwdEwg8TLhrPNbegjwSbB47f/41PBJfKDx3TzS9M6vmPBEr0DxzZEI8wogXvTABw7wEd/C8AQElPY+DmzxAhqg7u+aLPMtRhT3dWSy7svY7u3cB8Lu0DJy7Sj4UvTQGobxyFn68CIlEPN3+8TvZYUS9isMXPKaQoDw17LS8UNc1vJqO/LswDjm9shCoOxX81TwIfM68Pr4MvWMTNTz0JeO8Wwl5vHwtsLrIVRG9ecX/umQgq7yfk1q87sQlvLbuozzdP0A9DHQ2u6HdEr08gco66JjlvBVKmr2pjJS8tZNpvF56E71Ahqi8VIFZux3frzzCeyE9kt/6PB35mztzfi69kyBJPCWoHbyHui091YPIPGO4+rwIljo99KuLPItK5Tz87lA9B0j2OpMgybyex7K8Aee4O84vAT1Wvhu9c2TCO+B8grzWxJY9UBgEPO2QzTs/Rdo6ykQPvJrPSj0SX6i8ESvQPGqO3jssVx89ANpCPfJ7Pz2APwS96BEYvRD397y6zJ87PI5AOzAOubzGP7E8IJbJvNuiEj0IiUS9FleQugQXBbxDMEy95jwGPU/Kv7s4sMS8g5vjPM26Wj139Hk8Zpb2PGRHDb1atoM7IaM/PPp4Bb35UaM9yjcZvQNq+junnZY6yUgbvAHawjsXRo48e0ecu0goNL0bhHW7P19GOzyOQLxanBc9i8wBvYMDlDz0npU8XKWBPCw9szzxlas8i369vAWeUr21k2k9Ac3MO4Z5Xz1YecE9T7DTPIVS/bydee485brpPF9CLz2LizM9MAHDPHr5Vzz9CD29Z5Z2usUYzzsYwGW8S9LXuwm9nDxn/qY8Z/Gwu+l++Tsj0ws93TLKu1TCp7wlwom7ziKLuzrTmrxNIJw8ZPnIPIuLs7te2v47Bd8gvUu467udGYO7noZkvVxKxzzppds8IFV7u+xc9bxgDlc9MUKROUKPEr3GGM88DGdAPO2dwzzBLV08URiEPQfoijw8qKw7s/a7OgHnOLwdBhI9NgIVvESLBj2TR6s6D4qWPFL6izxUwie9mx0PuyexB705/gg9KEVLO48o4TpHYBi9CaMwPDyByrumNeY7N3zsPN5mIj231Le6M6q8PBlaJTx1x4W9kXgbvKPtRbwz8DK80PspPV/+ljwTrdU8kPnoupbkO72cCua6eDsZPdkRbrzJlNA8RmAWPdIxOj27D0A7MfV5PQiU5bxlqDq9v0AJPYUm77vkSBK6QvHJvBD7PryzUoe920oqPRSoDjzweV48gy5ivHoQK73un4U8UjOQPGG4oLz8jQe9QH22PNe7Dr3ciC295CJrPHNrTr3SMTq9Mi42PLtNw7zHIL26/QZivLSoZjxY1cC8rQa2u/RpeLsJ+A+8TzjXPNccjTy2oPO8XgNevfH4kDxMzDa9DIR/vPzIXr1ib/48oXG/vMsLkDyE6Ou85eRnvA9/ODooHbk8OHoHPG1FpDyhcb+8eJwXOxuQtTzJdAE9DAh5vf1EZTuQ+Wi920oqPfNsJLztgdE7syxgvcLvczywuMy8aFrRuyHUk7zYWhA8y2wOO3Zj27vwPge9JCrzPDhUYDwMSSi8IDrZvDfgTLxRtF09wbScPHa/kr3I2ka9T7zQvIWidTumI9a8apONvHqR+Dx0KIQ9zAhkPJ0FH7pA+by87kNOvX98yzw1ZMY81SQAPUfcnLynf408b8GqPN86RD10iYI96NctPWnW17vDrKm8+hEBPdfbXb2siq87wNeXO78djrszqjy8kDdsvPlUy7zydBc8444IPVL1DLz0qie87YFRvDUmQ7zh9M27IXsIvP0GYjubbhC9r/7CuZMqMjx+AMU8SBf0vNWlzbpq0RA9hWTyvLmTubyJV7i8/j+ePKUmgrxgOW67T0DKOyC5i7mu/sK7/sOXuiSpJTwV5hE9eBgePY67ZTw4uIo7P322O3bf4TxOfs26OpUPPQ2Hq7w5VOC8H/xVPKWHAD3+Px49ZqBHvRONBj3oHaQ9T/rTvJTsLr059g09YHfxPEb/l72evyg8Hz0FPZKrfzzoW6c84nDUu9aghrsvfB+8OJ2CvBZiGD1tRSQ8jkILuwg+BrvakCC7abYIvVG03Ty2ox89dt/hPF5BYbzzqie9GRQvPYnTPr1EiwQ9fMo0vcMtdzx8yjS9mXYDuxIRgLzVpU28Jx05PEbhYz3kKl693cawvMsuCziZFQW8uNkvO2ibgD1tRSS90L2mPJrMYruy8Qi9mhLZPEqOMzzazqO8UDhXPPoRAbvevj09Q+wCvV+9Z73Eqf07XvvqvGlVCj3MRue8sLjMvOH0TbwlYy88gNiCPUyGQL1YG7e8+VRLPGvsGLzjrle8ZqDHvD6FqTtAdcO8V2EtPE1IPT1mJME8TUi9PKYj1rvS87Y8IBqKPMLv87o9hSm9AHYuu1Vm9DxY1cC8UbRdvSKxmLwxM/26RCqGvd6+PT3K0lO51gEFPY1HUjy9wdY88i4hPbB6Sb1QOwO9C48evBhaJT1oOgI8CvCcO1G03TuazOK8FKgOPK/APz23H6Y8ngUfvYQOEzsvfB88ZiTBvMB+DLromao9+w5Vus5BoLzZlWc9IHsIvV2HVzwRtUi8/I2HPHJzQTwsS9Y8aZsAu43GhL1+AMW8kDqYvLSo5rwA93s91iHUPPsOVT3LTto63gQ0O7Qk7TzM6BS88i4hvldhrbsLC6U8ONhZPbgXMz2Sq/88k218vYvLS71LjjO9IbZfPVNOmL0OQTW9H/8BvVzrgbyEqmg7LcdcPGtNlzvXHA07Xl+VvQifBLyHna47cDU+vbSoZj0vfB+8lp5FPSQq8zs4mta7TzjXvKsL/bu15uk6X73nvDpPmbuQ+Wi7uw9APL/3Zjz9BuI8Y+4wvaeiiD1Ofs28zYTqPNHzNj1Ofk094HjHPBVnXz0kpvm83zrEvPMuIbzdQrc8/3p1vShbvDxlqDq9X/6WPJC2Hr2PfeK8UNqEvYA2VbyX3Eg9RkWOPL6D07y23vY7SVijvPuNh71sKpy8LmEXvFUgfjwTLAg8b8EqPAvNoTwrrwC9ZSRBvCUlLD1jsC28k66ruyTnqLtsKpy6LUPjPKcej7xXYS08HkLMO6YjVr2+/9k7zUmTuyQqczwOvTu8gDkBvbNSh72+3wo9Qi/NvDD4JT2uwD8+tx8mPXZb6Lw7Dmq9IViNO77/WbpMSD28446IvKNpzLzOQaC8Jt+1vJiW0jyysFk7gPhRvAfdh7wxuqI8KNfCvAqyGT3z7XE9zOiUPB+egzxdZ4i8z7p6Pc5BoLzcR369JC2fvCrPz7zE6iw9kDqYPA2HqzyD6xe9tMYaPWlVCj1AdUO8PwEwPZlQ3LwnHTm9mVDcvHmUJD1Ei4Q8NlxTPRlapTy7D0A95tx0vIYe/LwX3p68nkMiu1dZOrxXnzC9MbqiPL7/WT1VIyq9+tBRu4nTvrzolv47oTO8vObfIL0MCyU8txz6uSFzlTzAmRQ8DIerO9A5rTzMCGS8OpUPvX7Cwbx8jLE85CLrPDkW3TysBra8PYWpPapUHz0bkDW8sLjMPC3HXD2evyg7BShFPeae8TybkYu8qbWdOarQJb3jrle9UvJgPLebrLx6z/s7ArQxvUB9Nr2ZUFw9hWeePQK0sTx1Zge9PUT6PELxyTx6ECu9EjFPvNgZ4btyc0G9GdYrvZSmOL3kLYq7sdYAvF2li7yzzo28x17AO7MMEbw+PzO9zIcWvVF2Wjw7TG286lM0vFblJjyjacw8BGbIPMRms7yj7cU8BWZIPQoQbLs9wyw9hIqZvGccTjyW5Ls8kPyUPIidrjzu/dc8+pJOvZYiv7thuKC81SFUu65EObxHXWo9eJyXOgbizrwU61i88lGcvMjaRj3i74Y7U3ETPV6CEL0IGN88PAmjvCXnqLyOHxC9Xl+VPKwGtrxfvWc8GFd5vDOqPLx6ECu9qVQfPOzHxzqtgrw6ojM8PeyJxDyx1gC9l55FPN++PTz32MQ8VacjvY67ZbxdRA08gtAPvbYEHj1PQEq9JWMvPT0JI721iJc92bMbvQD6p7xfnRi8abYIvSGWkLuQ/JS8LEtWvYbg+DyZllI9yo+JO8tO2rrQtbO8MTYpPKXFA73C8p+8UbTdORSoDr27TUO8kPyUOxPuhLo9Bne8heB4vKpR8zzuQ848SdSpvdqQoD2ugjy8lp7FvHwIOD3omSq8YjQnPSgduboKTm88q815uzdc0zyZUFw85t+gvCH0Yj1w9zq9Hr5SPGxKa7ry8B088nQXPFD6U73hMlE8NOi/u4FUib1u/608/j+evFzF2jzNA528n7z8O/C6Db0evlK9lKY4PMUosDy05mm8SJYmveNrjbybrJO8w6wpPHpOrrvomSq9qZIivbSIFzt5U/W7haL1ufKvbr24XSm8QfFJPaceD7zwNhQ8XMgGvZgazLycZp28WhNEPae9kDzcCfs8dx1lPI2F1Twja6K8T5wBvA2E/zwZFK87nCgaPFwpBT0AOKs92NaWPN0END1wPbE8MrIvPZHZGTvv3Qi9j/noPPRsJD23HHo9XYfXO2ZixLy4myy9UjMQPe79VzxJGiC8UtKRvJqRC70Iugy8ONsFPQec2LqPvhG88tWVPGfeyrwTjQa9vQfNPNd9Cz1nHM688fgQvOH0TT3DrCm9fYQ+PDjbBb06Dmq8cD0xvXjX7rw6lQ89epSkPLUnGT0Adq65yZRQvStOgrs34Ew85KkQPaeiiDpNSD09sbOFvIyIgbwRd8W8fj5Iu/Mr9bzUZ0q9aFpRvV7jDry+oQc9AzA4OoHw3ryFZ568v1uRPPdcvr0HnwQ9W49KPR/chjy/QAk9StH9PPqSTr3E6qw8AfI0PH4AxbztBUu7R2CWvF1/ZDxyc8E8L/3svAmU5TnLsoS98lGcvC6/absTb9K7fz7IvLRi8LyCVIk6K04CPYToaz1om4C8hiGovfVksTwX2/I8BuLOu09AyryEqug9nCiaPKj7E7w/fTY8qw4pvAE4K70guYs80PupvOEy0bwWYhg8EywIvfyNB73UZ8q75KZkvFFWCz2qC328UbcJvSGWkDwHPga98i4hPcLvc7xcioM8R11qOxMp3DyRs3I9pYeAvD6FqbtugHu9BuLOvKVh2Tz9BuI8/30hPKlUH7uycta7s6uSvOiWfjywesk8LiOUvP99obzvfIq8cnNBvYVkcjxfnRg7XAtRvbjZLz3yE5k8/ILovH98yzwup428cfe6O2I0Jz1/Psg7adbXvWvsmDzbDCe8nArmvL8CBr1Hnpm8bcZxvB781bxtgyc9ROlWve8AhDxCs8Y83Ef+O5F177u3HPo87ztbPLNSB72q0CU9sdaAPK6CPD1tBHU5jEfSOh3GRTsg/4E8R11qPNUkAL3yr+68Pj8zvIA21bzEKLC9DsUuPOtLwbz32MQ7wrHwOwrVlLybbpA7xpxDvBuQtbuA+FE8f3xLu0MvTTp1Jdg8IfcOOxccIjwzbLk8wy13PL/35jws7QO8HEq/vFXlpjrdiK28heD4O7WIF70m3zU9VuUmPEeb7bvB8p+9ZGo3vXA1vrx60ie9qlHzvCC5i7w8CaO82FdkvTj+gLzQvaY878IAvcTqLD1tB6G78DYUvRed77oTjYY9JGj2vEg9m7zOPvS7+rCCO1zIBj09w6y8+8jevGkXh7ychmy9v9+KO26A+zsVpWI9hSmbO2D2IztW5aa7n7+oPI/8FL1PQEq99Gl4vcsLkLujK8m8UTMQPDE2qTugeTI9lp7FPOZgbjwK1RQ8Fxl2vOB4Rzt3HeW8AzA4vWhaUT2O4Qy9mBrMPONzADv3XL68nUB2PF6CELzZs5u8UbcJPKeX6buz7lw9JSUsvUqOMzxQO4M8QDdAPXmUJD0VX2w8vqGHPLOrkjzn3PQ8j12TvO79VzyYWE+8JCrzvEZFjj1h83c7E2/SvGnWV7xFJ1q9gm8RPaB5sjz5VMs7qo92PZ4FH720qOY8UNoEveTnk7zx+JC7/7uku7C4zDymI1a9KlPJPNPrQzysyLI8mzCNPGC1dDz+Ypm8ATgrOyahMr2mI1a80PupPTh6h7305X48puALvF88mjxgPJo5RyITPfSqJ7xfPBq9rjxGu/ceO73S8za6eJlrPCXk/Lz/P567Xl+VvKYbYzypkiI9jsNYPKWnz7wXne+6PQb3POOu1zzweV49UDhXPF7jjrwY1qu8PYUpPS8+nDx/+NE8dWYHPUkaoDxLCrq8qpKivMl0AT1TcRM9F53vvJ0FH7xS9Qw8vt8KvfRpeDzKjF07vz1dPNNvPTy3m6y8LUPjvHbiDT2LjUg8U3ETPZKrfzxGYBa9OhGWvJl2g7uYGsw8jj9fvAlZDrxOvFA91iHUPEsKujxtRSQ7bUWkPM+6+rll5j27RCfaOupTtDzHID07tIiXPGFyKj2ZU4g8bIhuvCZjLzuX3Ei8KlPJPHmUJL0k56i7j74RPLbhoryj7cW8OP6APP0kljwrz087LEvWPFLy4LoKUZs7HvzVvBMsCD1aE0S9R13qu+5DTr0hlhA9G5A1vGEYIz2G8yA9baRCvTb2Db0VH6683/ctPW6m0Txo4EE9hrryO15aT7vbNTy94v1aPI4+1jyDtlS8LLblPNVMBz2fC+A8HOnbvNgtgDx4qS28pAgPvfhIG7uTgU88svKQvM6nDbouOXw7NDpJuqzQrTyXwrk86MPqu6Kmjjz+1fy8182OPEQFRDy8Hj88fkwYvWplZ7x5LMS8+suxvDH77Tz6yaK8GsAJvNj4bz3KZqO7z3BuvDD53rwP3kO8r5AQva5V07q2WK87wCZ7Otj4b7v9Co09Vw2LvKtPpr3EoBO74zaJvFLOr7sqske9JfDVvGN4FL1AQ9I4Vg8avYMQGb0n9HO8B1rgPKeNtLvIJ8g7XrQTu5wFM73aMZ48QMTZPHLnO73rXhm9jTo4vY69TryQQvS8UhT6vGpjWLzKLfU8bf4GvV8zjDwz/Xw8VNJNvAGW37y/3qE71G2dO5U9lDxg29Y72rAWvaytCL0odfs8Uk0oPRV7gbyqTRe9upsovfWIOL3OKBW7Us4vPXiIFz3D6Gw9/omFPT6bBz2uV+I6hXIZvFyc+7wPOAg9ZdiFOyIw8zyA9GK61W0dPbqZmTwLdpY8EWPpPIu3obxc0xo88MIovc1sULvdOdq6y+eqPDQVFT3Wc0o8i7ODPanKAL243VS8fnFMvFJLGTwUnia8Kg4bvQmXLDzdN8u8+07IPFlxmrwaZsU7l8I5uhV9ELz6TLk7V9ZrPR6nLzwjaaE6/tPtPOQ4GDzq2wI9B9lYvdy40jxlWQ2978IovKPNUTvVbR09gjM+vCZx3bsVoLW8jZiaPFMskj1Hwxc9jLmwPIIzPrzvwig7BddJvMnjDLwY4R+9mENBPRem4jynDjy9PLqOPCeqi7xGimk9We6DPWzo/bzTaw69pmgAPbCSHz2G8yC9uNtFvZggnDvaMy09ZaHmPJ8LYLy2WK88ZPmbvP7T7bv0AxO8dMQWPLUd8jwD0Rw9lsCqvJnI5rpDgB68SEYuOviO5TyPd4S9rlXTvAJOhrtYlD89rtZaPFiSML1t/ga7klqMvEH/lrvzyuQ6+cmiO4qzgztqY9i8LDXeu0UJYrtDAaY8KYsEven+J7zjOBg9wF8pvYB3+ToBksG8P8A7uS1wGz1p4tA76ETyO1zVKb3O72a8JW/OPJzijTss75O8Scc1ve5BoTtIjPg8shfFvAIXZ73gU4G9o81RO6ANb7u0mtu8nglRvcUhGz3jNgk9D108vUfFpjqVvhs8ttenu3xtrjzbsiU9vtoDPXGq7zwXJ2q82o+APWej9bspLzE9hjt6vM/xdTu8ehI8Z12rvGjgwb2wkJC8O/7JO3PElrzFoqI8daUPPfDGRjzp/Ji8CFpgOpaH/LvFoiK9+ckive5BobyrTya9y2gyuxvlPTwP3LS74dSIPEHEWTxEgq08l8K5PNGIBrwy+208v9ySO79dmjz6qAy91/RRux2lIDx2px679AexPfvNQL1JSD06tVYgvSRrMDw/Q1K8RgvxPLZaPjsZ4y69NLeyvKFGHbypygC9HSQZPTl9Qj1KSD09ScnEPHmrPLzFIRs9FqTTPABvHL7lmAm6hnQouEtO6jxDAaa6fW89PXJmtL3+iYW8eCxEvfcN3jzX9FG8ICpGvYf3PrtSzKA7v6XzPMcluTulCA+73z34PC7zsTt97KY6apyGvH3utbxuplE925EPvW3+Bj2Pv128LG6MPADsBTzHqE+8Z9wjPLHwgb0Hkw49c+UsPFxUIr2yc5g8diaXue5BobxfWEC9U8ygPCszzzs9BHc9+6qbPYu3ITvf9y070SwzO1ES67zuPQM9Y5s5PUvPcb0XpFO7RGEXvdZzyjsY4R+9grI2vSRrML1ouw085r9MPC50OTuqTRc85Tw2PYEvoDtrZ3a9R8MXvEJH8Lys0ry8fO41urUdcrvEIZu6EpoIPL+lc71EBcQ8kHeEO+W5Hzyoj0M8dwWBvMFhOLz/64W9UywSvLNSgrzSipW9WfCSPIl4RjwJl6y6mf+Fuzt/UbxFiFq89AcxO6rOnryhyTM9ISxVPmOdSD3+jSO8WJIwvaPPYDyql/870zDRPHmrPDu2WK87iHa3O4IzPr2xcQm9/okFvCRtvzwXJVu9R0QfPP6JhbzasBY9g7TFPADshTvygos8TucJvaVQaDwrM888Y5mqvQ0e4byc4g29t7aRPSVKmjtPDs07grI2vSw13rsLmTu83TfLPB4mqDwgrVy74XrEu00KL72khwc9LTdtO4p+87qI9S88FiXbPFLOrzuJfGS8BlhRPEYL8Tu1nvk6RojaPPspFLx2Jpc8kv44vY+/3TtUrZk8Yd1lvc5u37yOvc686f6nOxJh2rxY7gM9lQRmu2VZDbwqM089QUfwOo+/Xb0ncV29/NHeu52IST2/pXM9qZHSPHiIlz0pL7E8nAUzvVjuAz0j6ig9YnYFva1TRDwoc+y8GCfqvMBfKb2F8ZG8R8WmPOrbAr1CR/C85hkRPEhGrjypS4i8eKs8PdsQCD0ZPwK9SCOJuaWJFjxiYPy7PbwdPduyJb1Q6Zg8qswPPTS3MrxuABa9Ofy6PFxUIr0fhIq8RojavFxUorycYQY9m8p1vdOx2Do8g+88OwJovKSHhztLhYm8FaLEO0wGEbvFoqK8bB+dPLIXxTy+odW87z8SPbjd1DzDvxo8r1lxu93xgLtNiSc84nxTPV60k7wvTwW8yCtmPHYoJj03wX27pVL3O1YPGjvQqyu9tzWKvS50OTzwoZK6NDg6u3VsYT12bnA8PIV+PHZucLwghhm9KHX7vIExrztXEak81nE7OyXstzyn6xY8/omFPAMXZznCPhM9x4MbvHxtrjx4LES6DBxSu1LOrzxLy1M8LfEiu6zQLb0E0yu9+suxvO+Jer1loeY8uxohvRUfrjxAwsq8D108PdoxnryVPZS8FSNMvJB5E70M1oc7rK0Ive5BIb0EVDM9RojaPN1yiD07OQe9rVNEvSTJkjyFcAq9V46SvG6is7z1hik86MFbu9gtgDy/Wws75hcCvds1vLzuh+s8xiOqvIVymbx1atI9ZJ/XvGhfurwVokS9K7JHPLoaobtn3KM8xyW5PJHDe70zEwY9q08mPW6m0TzHgQw9Tgw+vGOdSLxFQAE9nAfCPDS3sjximSq9jDo4PME8hDwghpm99WOEvJUE5rz7Tsi8ngnRvAPPDbzBvQs9HqcvvceoT71JpJA8RUABvdkxHrxuorM6DZ/ovCXst7znQmO8VYwDvWygpLsQtwC8NvaNu/2LFLxODD67SMOXvJHD+zyycxg961wKPHJBgLwDmn07l8AqOyy4dD2u1lo8Uk2ou6NOWTyCL6A8aeDBvD28nbnvn4M93vEAPbIXRTxsISw7URR6Pddxu7zpfaA7Cd12O0sEgj1hlQw6CFzvPDnZFT1iGjK9X1xePaPN0TxTT7e8OPqrvCy4dL0lb848NDi6vF3XuDpmIm68rlVTPCy4dDwt7QQ8wOCwvC92SLxuptG8z6eNvCw1Xr2bA6Q870GhugUxDr2I9z68B1rgvN03yzxmJP28ttenu+cZEbkstmU9J6oLPVnwEr0qDhs8svIQvOvdEb0PuQ89QUVhPLoaIboCzw29o0zKPbMZ1Ly4Xlw82xAIvec+RbuNuz+9sJSuvJpLfbyhRh28jTzHPJbAKr1z5Sy8f3NbvXpngbygRp29T2iRPAPPDTzrXAo8kdkEPBbdgT3HgYy9ud9jPUyHGL0N2Ba9kHuiuxJhWrx7s3i8bgCWPDS3Mrwk6ig8692RvFRT1bwTHR+75ruuvMlklDyMOKk8gjO+vA2h97vwRT89uN/jvDj4HLtIx7U82xAIvQqZu7yQeZO9jTzHPWvofbxbmmy81/LCO7bXJ71IjPi8tZ55PZuCHL0l8FW8xSEbPCCrTbwK9Q69GsKYu1MskrydYxU9TYmnPBgn6jywEyc98iKaPBzpWz0PuQ891m+sPE2LNr2NPMc8MrUjOwybSjxjHEG9WBO4vdTupLxPEFw95r09PBakUzywE6e8oMeku0tO6rxbUpO8vqHVvJ+MZ7zPqRy888zzvBgn6jqbA6Q8ZtoUvbkWA72oj0O8Twy+unUkCL1UrRk9bf6Gu3cqNT16MGI8Y51IO4W4472QeyI8FydqPBTm/zw0Nqu8v6XzPFWMg7zXzY68KTHAPOF4Nb2BMS+9XrIEPJHD+zzyIpq8RYZLPTsCaDsJFiW8ABPJOiTqqDyP+Is85ReCO3Tr2Tzp+ok9amPYOs7vZjx+8tO7iNQZvXFgBzz9UFe8CRalvSqyRz3E6Ow6T41FOw/ctD117eg8ZtoUPb4iXbwV/pe8gTEvvEVAgbwNofc8QMLKPJD4i7pAReE8grK2PBxs8juVvhu97IG+vN/3rTynjTS8qywBvLY1Cry8+5m8yeUbPUH9hzzp+ok9RsGIvaXR77xlWQ28NDarvF9cXr09vJ08hLhjvIdRA72Sf8A8tNOJPPSGqbyCsrY8t1zNvGHfdDzq24K7grI2PbtiejrheDW9VFHGvBrlvby/3BI9nYjJvFxUIrrxxsa870MwvJIASDzevn8813XZPBak0zzVbR296EJjvXepLTtJSsy7B1xvvf6JBb3zhBq9o0xKvcYClDzOJga90YiGPDsA2Tx/ccy7+05IO2whLL30hqk8moKcvOcZkTwSYdo8XFQivZSDXj10o4C7lz8jPIs2GjwmKQQ9TYs2PNZzyrx4qzy9kHsiPTjB/bxd17i7zyqkPJUEZj20nGo81k6Wu0IBJj2+odW8nGEGPcrlm7zgeLW727KlvJyGujyLfnM9yKrePBrCmLzwxkY7TYs2vQKY7jsJGLQ83/WevMYjqjwEUBW9kX0xPKYMLb1II4m8JikEPAle/rwsNV49XlpPuyRrMLz8Tki89E37O8emwDxEhku8capvvBUjzLtMh5g8C5vKvG0fnT2mi6W8bSM7POdA1Ly1VqC8upkZvKrMD73GApS6x6hPvds1PLzTMmA8OX3CPFsb9LsyfPW8t9m2PJyGurv9UFe8kX2xPBV7gTxXV/O85z5FvREZgT2BsKc8irODPFiUvzzVTIc9OHuzup4J0TzD6Gw9fcsQPZnI5juDtlQ8yCtmO3eprb3g1Ai62jGePH9zW7zp/ie96MPqO5yGurz5xxO5ZtoUPe2+Cj2G86C5PbydO97zDzpBxug73vGAvXoycTx6ZwE7Y53IuwnddruPd4S96MNqvPFJXbpx4Q68c2hDPazSPDy7eIM7sJCQvLLykD3B4j88x6ZAvXPEFj2/JOy8e2sfPEdEn7xIIwk9ChrDPM5uX7yNOrg8gi+gvNy40jylCh69oA3vPBSeprxGB9M633YmPEVAAbzAJvs8cuOdO6vQLTttIzs853kCvPDEN7ufC+A825GPPEgjCT1AfAA9jbs/PSh1e7wj5QE92UqAPPGlDb2kaSu74uKpu4MIoTy2kKu7Bv+buXTMlz1SaQ48V3ZfvX/tGr0ISDK8WFaEvB34i7xdel09E/niPEmqqLwcDxQ9CiP1vG/IGb3/yI+8hqoBvfZpyDyA9m29bviovBGwTDzh+bE7tH74PF0DNzxs3SI85cuhvGIePT3j4ik9KTIWO1waPzz3UkC9RO9Au40QHb06Jwg9hNiROtGt9Lxq/X09li8hvYhsPbzz7iO9K8TCu4jM27yV7928Q6YqPPkkMDqNEJ28MIh9PeOCi714Fy29V3bfPF9zCb3AWOS8hjqvvXoApbxGge28JneuvLz0x7yCv4q9G9+EvO/TnTtmIru81H/kvMPhvbvY2q274vmxvJVdsTzBaBi9ouDRPH3rG71b6LC8KAnbvJ58tbyWRim927XwPMUTzLz8n1Q8f005PbWnszuhQPC8wuE9PCFle7wG/5s878VoPECLpLw70Dy9ip5LPSG8Rj0mafm8eHfLvC1Wb7wUOaa8YJXjvBv2DD2mUiM9KZI0PT80WT3QxPw7ztIxPDy5NDoe4YO9jD4tPQkxKjzyl1g9VVQFPLjZwTwPPvs8ibVTPGE1xTwlIOO7YIwQvJwzn7yOuVE8ztKxvNbxNbzVCD48QJR3PATNjT1L3Da78QWsPLgZBT1yyhi7bG/POyxt97z5hE48QJR3O5kh7Lqc3NO8JDdru37Uk7xl+f88ywBCO4bakDs+oiy9iAwfve26lj3xTkI81b8nPSJcKL1AiyQ9AOIWveBZ0DyPyYU8+s1kO9usnbqz1cO8X0zNPDQKAz06h6Y9t5l+PJ9OpTxS0n+9I07zO9Jdijw/NFk8PkIOvddRVD2M9xW9RzEDvP3o6jzKtyu9ztKxPFFyYT1DBsm8le/dvLPVwzw6h6a7Y6cWvfu23LwH/5u7yOW7PDDfSD2XLyG7r1ofPJZGKb1TEsM8gL2LOwwDmjxuf4M8XMPzO97eq7z3m9a7wqF6vO4zPDt8MrM8soytvESPIr0mafk8ip5LPZc4dDvGRVq7H/qKOzuHJr0FH/e877yVvBrdhTxdA7e8av19vMl3aL1erGu8bvioPNBkXr2o9AO8j1kzPSbARLyozce722zavJBCKzyT5As9kUIrva9aH7y4gna8ap3fvLzdPzzMcBQ7jCclvKjNR7zA+EU8bSY5PcX8w7q5Iti8KjtpvcRzajwe4YM8IBOSvBrm2Lvj1PQ7Dz77PLgZhbzHbBY9nNOAvIzQWbxaqG09ql90PE+Xnrt/DXY77bqWvMkuUj2M3g68rJ+3PLZHFby5eSO9Ta4mu10av7zcVVK9RKYqvckXSjutcSe8CKhQPdZfibpK3DY8hbFVu6/6AL08EIC7gr+KvIX667u3kCs9RyFPux2hwDuJVTW8NjwRvQraXjh2zpY8BO1oPesBrruVBmY5KQKHPH1kQTze3is9OkfjvIfMWzz1kIS88QUsvHoApT2L3o68ncVLPJghbLy/xjc7lF0xvISoAj3mnRG9LU2cvHGK1bobz9A88WXKuzZ18zx8MjM9/BZ7PUNm57sUOaa8yIUdvNxV0jxxyhi+5/0vvWBcgbxCvTI9bN0iOzn+zDz+P7a8S4VrPKWyQb2R+5M8hqoBu2JegL01U5m823wOvSt7rDy+Zhm7kKLJueBw2DyMMPi8/PafvHfOFjxOria97TM8PPZSQLzfJ8K7oQcOvYaqAT03FdW75/0vvbtLE7oOlUa9INPOPCw0lTtdA7e832eFvAUWpLu1p7O7wK+vvNWoH72HzNs7oB4WPRmGuj2aqsW8IbxGPT25tLxnwhy9xGoXvIG9Cz3CQdy8BwjvO5IrIzuNcDs8EsCAuxmGOr09Aku99MlmPD802bzfl5S7ugtQPH5kQT21vrs84ZmTvbc5YDzLAEK8yc6zvPwNqLwA4pY8JwCIvHXu8TwiXCi9PSmHuxg9pDwoCdu8s9VDPc4yUL2sn7c8e0m7vPTg7jiV7108EGe2vVA3ALhl8Cw6a30Eulbksjy+HQO9NONGvbhJlDuohLG8yhdKPckuUj5b6LA8B186PQUWJL1RaY49vGQavGjL7zuJ3A88e0m7vLFMajupPZq8oE4lO/fyIbzQBEC8DtUJvd+XlLsFdsK77PN4PK7RRT3OG0i8GxhnvPepi7rNQIU8qQ2LPG2vEr20Htq8BRYkvWd5Bj0IuAQ862FMvIT6azykskG7Urv3PIY6rzzmXc487PN4vGTwLDv1CSq80l0KOoF/RzxYFsE8kYtBvFBA07nmnRG95CvAPP0/NrzxBay8gd/lO/P3drwSwAA8Z3kGPNXI+ryxozW7j8kFvRr2jLvkmxK7XNr7vLki2DxDBkk7IbxGPGuUDDzKYGC8Ee6QPc5CBDtFONe8FDmmvbZHFT1GSIs8gX9HPTVTGT1jZ1M9O5B5PPepC7yX2FW8DazOPPdSwLzQZN47SEqKPBQ5pr3vHLS9cYECvCK8xrzxTkI83D5KvOlvAT2RK6O8Yl6AvY+50TznRkY99tmaPI/JBb1B1Lq8pvKEO7mCdjvyTkK91b+nPDk+kDzrGDa7zjJQvewBLryigDO8kx1uvH+khL3SjRm92cOlPPepi71dA7c6Qi0FPT9bFbzZzPg8O3nxO4pVNT0KGqK8dPymu2nEmzv3m1a8qC3musFomDvEIYG80KQhvCgACDx+BCM9fDIzPT6iLD3wjAa96oiIPO2TWrtg1SY9o8nJvAvD1jzrGLY8EH4+vTQKg70wfyo8mHi3PMwAwrwk7lQ9gyh8OxPwj7z2st67m1N6u9tsWr2zdSU8uSLYvGnEG7xcw3M89OBuPSAqGrly0+u8az3BPIG9C71TpG88RiHPPBOZRL06hyY7IeOCPJlhrzuVBua8dfwmu/UJKrzCoXq9C7qDPWd5Br0e4QM9v8Y3vUYhTz3Z2i29ChoiPX7E3zxT+zq8+Pv0O3oJeDukssG7abRnPVRShj07QA89V82qvKHgUTvky6E7PVmWPH+t17xXv3W74vkxPe/TnTtLTAm8TWWQO6Cuw7yQ4oy8xCpUPfSAULuu0cW8bSa5PWpUybzD4b28GeZYvPGlDTuK9Ra6Gt2FPH4Eo7yb6gi9Ywc1PKjNRz1Dpio7hKgCPZuTPTzPixo850bGvAo6/Tzjgou8/f9yvbUHUj0SwIA8z3vmvWeSDbzSjRm6QIukuvKOBT1a6DA8xSOAPFe2Ir2K9Za8yXfoPGr9fbzXOky9VYSUvLpr7jp+1BM8lAZmPDNabb2qFl674fkxvKE3nbygTiW70USDvEyF67tCLQU9Yr4ePYK/Cj07cB48fRsrPCdp+TtTu3c9JS6YuurY8jpXdt86Dx4gPb00i7y1R5U7vN0/PDTjRj3Yg2I8QdS6vMygo7jNiZs8jIfDO7Rn8DuzRRY9/J/UO+lvgTv1CSo9Yl4AvYbaEDsnwMQ84LnuvIhsPbxIehm9SWORPD802bwI8Wa8SZMgvVFyYbx3ngc8LK06vMCvL73exyO7+pQCvShJHjwpkjS8cio3Pa0xZLsaL2+8K4R/usWzrbs7kHk7AcuOvGWQDr1u+Cg9oTcdu0NdFLv3UkC9evJvPM975jwWazS9/ohMPfrNZDx82+e7Yr6evcJBXD0CWzy9Z4LZPJwzn7w558Q7iVU1vGOwab2Ri0G8CEgyvNZIAT3TNk69qba/u0ItBb1URFG8TlfbvcLhPbv5q4o7ZAc1PXhgw7zLoKM8A+SVvViGEz31gFC9LK26u/1WvjySdLk7+w0ovImsgDxVa406XNEoOVroMLwAckS9VJucvC0N2TqIFXI8DazOuo7gDb1erGs8TcWuPAm4BL0N9eS8x6X4PERfkzzv0x27WIYTvRXyjj2lm7m73tB2vKxI7LyBf8e8avSqvAnx5jz6zeS7+Du4u97eKz1TpO+7LWQkvfJOwrwMA5o7X+wuPJ4laju8VGY9dMyXPKX717wGH3c9de7xPFLJrDwEzY294+IpPUU4Vz1+DfY8irXTO5h4N71euqC8rxpcO72UqblDdpu8rxpcu+6KB7y5Moy8OedEPAJEtLuIIye9+JIDPOu4l7tlmeG8UIlpPFWEFL2IbD28RO9AvOdGRj2l8gS9MmiiPPg7uLsdQaI8LCThO62Ir7wOlca9RE/fO7R++LsZhro8QHQcvanNxzyWL6G8eWDDu16sazx8klG9jhnwvKVb9jySywQ9+Tu4vOyqYjxq/X07ZjlDvXmghjwFtoW8sEzqPEtMiby8VOa8f63XPFrosDtxmom8WBbBvAJbPDuXeDc7pGmrvBP5Yr1AdJw90jZOvDtAD7xjZ1M909YvPNJdCj0UOaa8fKKFO6eEsTvtuhY9kEKrO5TNAz2xQxe8SArHPEmToDwpkjQ9saO1vFDgtLzQBEA7h+NjPUUvBD35JLA7tvDJuxg9JD1VVIW8LjYUPfwNKL3VqJ+8GD2kPMq3KzwQZzY8MIh9PGDe+byWjz+7+60JPTuHJj0r28q83JWVPIgMHz3W8TU8KyRhPFqIEj1PZw+8I0Wgu3eFADxJqii9V20MPefv+ru/xre8pguMvK+6Pb283b88aasUvVedGztUW1k9eGDDvFzRKL3azPg62XoPO9usnb0rhH+9IwXdvFZUBb1mOcM8laZHvWs9wTs2zL48SKqoOzIhC7z8xhC9ljh0PM7SsbwWtEq8IwVduX7UE70tDdk8mhoYPYMIoTy9Pd67le/dPDCIfTs0CgO8NoMovWHeeT08EIC75rSZOwHLjrucMx884vmxPLxU5jyohLE8UmkOPN+XFD3IjvC849T0u5phLzsCRDQ8jD6tPGF1iDxEr/286xi2vC1kJL1LTIm827VwvGrEG73F/MM7y6CjvGqUDD2aYa+8pAkNva9an7tfrOu8z4uaO7xU5jz6zeS7P+vCOYMofD1tr5I9ZeL3vPPXG70MAxo99cATO0ZIizsPHqA9TpeevKWbObuT5As83LVwO6PwBT1fjBC7yM4zPMk+hr0nwMS6ZJlhvKQJjTyaCuQ6a32Evc9bizwaJhw8v8a3OsypdjqRi8E8+23GvJc4dL3VyHo9Oj4QvMjluzwmdy49rEhsPbN1pTu0fvg8MmgiPc2Sbj1Riem7CiP1PAUWJL2IDJ+9t5ArvYY6rzzVyPq7UoIVvRYLljw0OhI9LU0cvctg4DxOt/k7zem5OxQ5JryB1pK8CiN1PAQtrL1aqG09LpYyvKoW3jv38qG7MrE4ve/ccDvUf2S96W+BvCcJWzzKtys9Wugwu69j8ryYz4I9BR/3vD6iLL08Ymm8mlN6vPk7uDynLeY8xRPMPG4B/DyJFfI8/J9UPGdrUTzbrB09zElYOzYVVT3/0WI7NAqDPGaplTwpSR46+NsZPUhKijwHX7q80jbOuxZrNL3lhAq9kx3uPGIevTjyTsI6DUwwPGzGmj38Dai8Lk2uPD6mSD14Se281Ud+vZSg0ryQT8a7c8BEPQYAhjv9Nrk8dDD9vC0KbL0vewc9ivcUvVS25DyFRzg8pqznPKFwxDzpEbQ7MdbWPIqYRLxYQw690+wuvRnQfTyik/e8S5ntuyUbzrr/lYk8cwMHvQQ7QDvKgjK9zaVlvCr8obz4MjI8rmNpvKXBUDuA2p28MHBhvBO7Drx/AO+8VyeAPRaKF7042l29EqnDPA9Dzry+/0U8/m7VvL6rGzyR34298tqAvIBDMTybHzi9JpasPIetrT2RF6q8xEYPvfodybwzGRm9+JGCPPwThryfHBq9QU8AvRPM9jzlMGC9TUIlvVTygbufaZ87SWHRPFvFET2N/jm8l1NNu4VHOLul+ew8WfYIvRYy7Lzsr8W8u2G0PLRylrx4jK+8CbolvIV/VDy0qjK9XiuHPZ5C67whRaC8LZqzOr7/xbwqND68qJd+PeXjWjw5AZK8TFcOvVv9LbxllQO6ES5lOrpaD70/1CG9XisHvWyEoTywyV49laBSPC5NLj3rd6k91lKkPIUPnDuFf1Q8JhvOvNWfqTzRvlU8lWg2u5KSiLoT15w8CAcrPYIZXzzyEh27AdXKOk1CJbwYDJu8gL6POyp3AL2tnwY9Lr1mPJo0ITzfvKA9deN3vfsvlDqzVgi9WUozO58cGr0BUCm9HiywPHGS67yNeRg91YpAO54xAz3u3Z68MbMjvRb6zzyiI7883O2XPL/q3LzVUqQ5V1R2PMqCsjxXVHa9wcSLPNh1V72QT0a7C1GSPDRRNTs3osG8GhPAOdOYhLysu5Q8F63KPXMDB7slq5W8bqfUun48DD1D7ZG8x6FePMEYtrzDyzA9ngpPPFMOEL3yLis9+eWsPNOYBDz4kYI9YnwTvSFFoL3bHg89x6yEu7oNCjwJuiW93P7/PEyPqjyytHW7h60tvNSDmzwk4zE82SjSu63zsLyXG7E8gfYrPI9krzxNN3+6HiywvGE5UTwS4V888i4rPewf/jtb/a28b284vbenlDy/eiQ9QNQhvInlybqU7Vc6U8tNO43GnbyxRD29LfmDvFtt5rwuAKk87K/FvO1iQLx32TS9U0asO/gyMj132TQ91ddFu4021jx2hQq7tvQZPZHfDbrKgjK8pFEYuxYhBL26YTQ9c4ioO+yvxTwKYno8wdXzvOLVkLvoETQ8fjwMvSGSpb1ziKi84tWQu1Dgtry/6ly82LgZPFHgNj3xs8y8m8uNveDfU7zAskA9+JECPcv9kDr7mCe8ivcUvaiXfr3Of5Q8E1y+PGvRpjvxEp28WQdxPbthtLyuY2m8SDN4vep3qbxshCG8CYIJPJQwGryCcYo9ziBEPCaWrDwB1co8G8Y6vDVjAL3BxAu8x4x1vBLh37y1lUk8E1w+PQQ7wDz98/a8kL/+PMHEiz0rd4C9Ehl8vHzdOzyyo428NTzMO68WZLtCHgm8IQ0EvS5NrrvvhXM97CokvUF89jte01u9kq6WPJcbMbzsr8U8BV5zvRjQfb1MOwC93yzZuxmY4bzPMg88mxgTPW15ez2VoFK8lGg2vVqpg7zwyLW8vccpvs4gRL1TDpA475CZPVHgNjyoSnk8QYecvTxuLL3Ddwa9ZFJBPV1HFb0qbFq9HUEZvQ0EDbyvFuQ8QUTaPOmMEjxmBby7TXOcvO2aXLyTOl08YTlRvAEN5zz+IVC9adtpPcNQ0rwcNnO8vUxLPFTygbz7S6K7vJnQvLZBH7wu+YO7tl2tu51+CD2JmEQ5LgCpO3Wr27uZgaY8vccpPShJJz0/yXs9Zf4WPNE5ND3ALR+9xxUYvAsq3jtoZAw8OdCavIv3lD3IHD284pLOvHLARLx/CxU8GAwbvSZ6HjxW5L07G8Y6PGFghbvOkPy7NMwTvWTiiL1ghla8nY/wvNh117zRvlW9AlApvO84brzmq748eQcOvc5jBj1kGiU7XdNbPPEnhjwEO0C9gfYrvLCRwrwxZp47R8M/vABabL2pVR89itDgO5uk2bszGRk8w1BSvS4AqTy6HvI8mHqBvDQ8TDzAnVc+LRUSPaqNOzzjiAu9LQpsPXP44LxJYdE8/rGXvLRylrxrVsi7vJnQPAnPDr0+3mS7COucu82lZbxiEwA9Pd5kvNmjMD2su5Q9lBQMvYd1kbpr0Sa9vNFsPDEjXDw/nIW9lthuvYUPnDvi8R48jf65O2702TwU1xy9lWi2PK8W5Dzx9o68ziBEvBYy7Lsjfbw8GNB9vXVe1jy+/0W8+mCLPMFlu7yV4xS9ixMjPX5N9DvPmyK99+9vPCHKwTwTlNo8XhYevHHVLT03Mgm949UQvUJyMztD4mu9TrLdPFAYUzqhqOA8aPBSvdnwNT1Nx8a8ZJ/Gu3XSj7sCA6Q8ax4svSZCAr0d6W08KOATvL5CCD09bqy8ZOIIPXaFijsrV3G82HXXPP3zdj2ohpa8Sik1PRs2cz3tmty8fKWfvf02ObzZ8DW9N6LBvIr3FDz3+pW8s/c3PfIuKz2h6yI9N6LBPMbZ+rz+sRe9pIk0PNbC3Lwx6z88zBmfvDCofboBnS69QURavM6QfLyKCH28igh9vA8LsryVoFI8TUKlvGE5UbwSJKK86L2JOo+cSzwWIYS88LNMuir8obyseNI81YrAvOOIi7w7eG89ZZUDPZCH4rk5jdg8mGWYvGY9WDzRcdA6Y59Gu3o/Kjztmlw9gxnfvDgS+rx6uog7CAcrPbyZ0Lywyd483dGJvIuD27xBhxy8u2E0PCBPYz07eO880Ia5PKiX/roLpby8VPmmvKvsizuv3kc8pu+pvPmtkLuKYKi6sJHCPANzXD30GUK9jG7yvBpL3DqzVog76XCEu9nwNbzsKiS9mAZIPXsqQTx143e8MWYevRpykLuF8w28iWAovctKFj2poiS7O4MVPQ97arupHQM9GaOHvAP4/bz+blU8Xgv4vPrlLLypEl287WJAvQsV9TyYsh09Owg3PYALFb0r5zi8m6RZPEIvcTxFgP27pA7WOzHW1rw8uzE9DguyO73HKT360EO9ntKyvDKeOj05tIw7hUc4vQL4/T0+BRm9DKU8vFdUdjwbxjq9xtn6u1HgNj3mJp08kE9GvItLvzyi1jk9x9l6OqxANrzpgey8NydjvB6LgD1/AO+7mEmKvFs1yryqHQO7njEDvaKTd7265lU8Y0scvISUvTxPnXS8q/1zPYd1ET3jfeW8Be66PBmjhzyZuUK9KMSFvE6y3TyjZoG9efxnPfOe4zpziKi8MWYevWITgDskaFO9u2G0vAylPL10H5U8VH5IPeuvRT23gOA7xbZHvD+4k7z2t1M99OGlPCps2jsrV/E79rfTPOwOljz4MjK80E4dvXo/Kjyp2kC8HosAPcEYtjxaSjM8wHokvGWVAz01mxw9X066vJXYbru9x6m8PyEnO689mLw7Z4c9mHoBPBmY4bzsDha9669FvZ2P8Dyd0rK9iR1mPIetLbxTfsg7GdsjPOKSTr0x1ta8h1mDugiMzLvfZPW7fk30vK2KHbyJYKi8Q+Lrus9jBrs/ISc9ixMjPCEpkjwJuqU8A+cVPJg+5LoPvqw8VcEKvM/TPrwUDzk7DQSNvCRoUz0W+k88ZA//uws1hLu3i4Y9k+3XvCp3gDvpxK67W/0tPOPAJ72CcQq99iuNPOzyB7wxLgI9mxgTO15OOrzmq768iB3mvAk/R73uFTs9FA85PNvbzLxuG468gL4PPRA5C72CcQo6BgAGvDNRtTuseNK8RhDFPL03YjzB1XO8xAPNPA/2SLv+blU8TQoJPIrQ4DwKr/87tkGfOk1CJTuinp28s1YIPEI6Fz38gz69N1//O3iMrz05Vbw7tOJOvI9kL73Ie4099gTZvM5jBj3OzBk9qaIkvd70vLxFXUo8u8CEvLYQKL3Rhjk9h1mDuxkoKb2r/XO8rz2YO8PLMDs1fw49uh5yPAEN5zzjfeW8q/1zPWoeLLo6xfQ8c8BEvT+4kzzEKgE9RNEDPQSreL1yDUq9ieXJvDtA0zuhW9s8ttgLul1Y/TzwQ5S8oajgOsxtSbxZB/G8OB2guzR06DwZmOE7U1sVvPcrDb0x1ta8E9ecvOlwhLvb20y6CZ4XPPiRAj2bHzi9gEMxPaXB0LxFJS481TYWvjL9ijx4EVG87hU7PChJpzrUJMs8uubVvDLWVjyhW9s8uTNbvYVHODyACxU9CXdjPW15ezu2QR88VuS9PKY8r7vg31M8FoqXvF76D71xWs88vRSvu/a3Uz39xgA9f8jSPF3oxLxcIGG9EuHfPPd/t7xWdAW77k3XPP7pM70hkqU7I+10PZQl9DxrtRi7P9ShvPGzTDlC99S7q/3zvPJmRzwF2dE8tpXJvLVBnzz/SAQ9DFi3PGe4NrxhrYq8JwZlPOAGiLxW5L08tSURvJ/15buqxVc9Z3X0vI6xNDvcxuO7+JGCvMcxprz3ouq8eEntvEPtkTwtFRK8JeOxvQQ7QDukDlY8qR2DO29vuLoD+H28BLYevVHgtrsLKl49fN07O0w7AL15VBO93QkmPIsTIz0JP0c7a9EmPZNFA72kDla82x4PPY4hbbzuFTs9RZVmPUxMaLwFfgK9RoD9PHWr27tM/2K9EqlDvSyas7xxWk+9VyeAurk+Abw+kV87tl2tO6zzMLxTtuQ6GhNAvWRnKryPnMu8eIwvPVahezr2BFm9+uUsuwcRbj0IjEw9S9wvPScG5TtLiAW8AsuHvJllmDvudIs846QZvefuADzA9YI8qaIkPWvRJj2ZgSY9PqbIO0lh0TthtK87fPKkvDFb+Dwj3Iy8HP7WPNnwtTzzGcI8AFpsvOT4QzxGSGG9/EsiPMGd1zv4kQK8fpC2PKwIGr24w6I8/m7VvM8WAbxFoAw91FznvO+QGT3x62g7/eKOvKdfYjqkRvI7v29+vJo0IbzhWrK7vNySPJyaFjzDdwa9uT6BPfd/t7w0iVE4nFfUPDzzzbsQOYu8kJzLO5mBJjwuTS69SWHRvEzcLzu0Guu7N06XPCFFoLw60Bo7+VVlPKGo4DyeCs87ISkSvfsIYDr4kYK87hU7PXq6iDwdsdE8iSgMPQ7Ibz2HWQO8KblfPM4gxDqHwhY92HVXPPThpTzqdyk8wC0fvajaQLuYBsg8+nyZvIV/VLvc7Zc874VzvaKCjzyAQ7E8Ig2EPJG/frzIHD08rEC2vBVHVTz2fze9awnDO0K/OL1CL/G8fImRO4dqa73VD+K8WkqzvFywKL1q2+k8sQyhOYuOATzb20y86lubPVqpAz0FaRm9ah4sPF4rB71NN388DG2gvNUPYj0NWDc8pcFQvGG0L700PEy5wZ3XPOZeubuyfFm8Ehn8Okiu1rzF+Qk9yj/wO61SAT2Ygaa7gS7IO16bP7qik3c65pbVPMvy6jv4kYK8EuyFOi84xbrPFoE9M1G1uxFvpjxpXnc8tjMLvRvNrr0GNyy92DC1PCHpqzxj5J+6jQZmPJWK/Dsk8sq8EW8mvN+0S7vWYII8gtiqvKIFojwn++k8EQcNvCf76Txg24C8OPEGvTqSDL3Jti+9O3+FvPRnFLvWYIK89rJnO2he9zzj9tY8+F0svRaBZD1FwMe8FbGxuaavxrtomAM97CUyvSwFgDuoIZ+8LVBTva3VAj0YxI+8VkSMvEO3KD2yFu68+IzZPPKpyLx1oLC7ogUive2Xirzjl1w987OHvAuCVjzMJ2g9bkvHOqe5Bb1DPAg8DxqUvTmlEzyeWl29Nd4ovYr9xrywDU+63eSYvNXuKb08Yj88+3AKPdEKeTviTAk8yKzwvBbgXry7dPY8sQQHPHbPXb0aW9a70qt+vZXDaLslWmS8u90vvdA6RjzmxwA9m99lvNOr/ju0koU7YxNNvaTVVL1Y0oq7HqcgvWR7Zj1hQxo9uxacORksKb1zl5E8VQugPCUrN7v0efu7ExAsvXtUlL1gcke7rXaIPWyqQT3UHVc9P9N3Pb3mzjyapvk8YhNNvBuUwrtvHBo98JZqPAzYCD3hTIm8ExAsPXniOz17g0G8rJwWPQPimbzf7Te8bEIovXu8Lbs6iE28w9MePYqVLT1Arok8sEY7PUutF734lpi7QKRKuxqxCDw0DVa8j6frvDt/BTxYTSu8p1BMPcPTnrvZmE49ExCsvIeMDr1mXxc8yeXcPKpHBDx4/wG9+F0sPKd/+TzGTpY8YqF0vYeMDj38B1G9cL0fu7tFyTtgOVs8+5X4vNb3SL0+a968Jvvpu+Xahz1oxzA8OCC0PDhZILzfvgo9P9N3vDt/BT0h3+y8fFN0O++W6jr0GyG9vvANPVEVCLxZhpc8koucPSbMvLwJ/pa9rTPdPFIxLjzYJnY70RQ4vWqhojxzlxE9bHFVPWjHMLwrduG71XMJPFUB4Tkp1du70HOyPABK3DwYEAM9hkCbPC0hJrxTtg08+F2sPOy8+DybsLi8ExCsvAefxTpEKYE9qiB/vAQtbTzX90g8/nkpvZLXj7wWGcu7twM+vJs1mLwCeoC7ZNEYvTvw5rwo1ds8EQeNvGSFJTxuEls9ojTPPEQpAT3e43g8Lei5O8wn6Dy4+f68+v6xvFpWyrxtexS8ipWtPJ4PijzzEeK8YNuAu9xywDvMyQ09tjOLPK7UYr14Z5u9UjEuPLk8qrv1oAC9Tra2O+vsxTxxVOY76C8avZCxqrzhjj08uTwqPJ4hcT20kgW8SwtyPGf2XTySixy9uwzdPIIRlzy2Yrg8zCfougNdujz82KM8v4fUvPOzh71gAG+8l2TuvBbg3ru1WPk7lLGBPCFRRT0UP1k8hdgBvLxPiDzoHJO8nIBrvFodXj0pnG88rj2cPLViOLxlHOw8Yx2MOdEUuDwY6X09W77jvGmX47zmCbU76XrtvCGwv7szBLe88xFiOyVkI7wQNrq7VTrNPWZVWL2C2Ko8qvHRvFpzkLzl/3W8QRYjPRE2Or2OlQS9kOBXvS2mhTzZmM68iFxBOcm2Lz1VOk097y5RO+RecL3vOJA7JzTWuzOJFr7hjr28NdRpu0qjWD3Bfow8IbA/PcSjUb1texS9lFvPvEp0Kz1Rv1W8pN+TvQEkzrwLgta89iRAPGNCerxx7My8VzEFPVyPNr2k35O8hRo2uuP2VrzrG/M8VvgYvYeMDj0azS68iiz0PDTeKDuLB4a7p22SvGJ8Br2F64g94b3qu+loBr1kvhE8jLuSO0k7P7ylzAw8DIwVvH6MYDxiqzM9wh+SPWPkn7vsJTI9JPyJvHh6Ir1EH8I8u361PK0z3byv3qE8Wyedu007Fjkd8xO7NJt9u+EmJL1P76I8NWOIPEWRGrzDMXk8Ep7TPKe5Bb2Q4Ne9FXhFvNZWw7yK/ca8A126vNgwNbrI5Vy6jj/Suykrjr02FxU9SB8ZPBe6UDqfKzA8pNVUvZTD6Lvmcc68U9KzvFz3TzxsQqi9tFkZPSjVWzuOeL48QKTKu55a3bwm6QK9vR87u2f2XbwbzS49pq9GPq0EMD2I9Ce83ULzvPQboT1QKA+9MWMxO+Grg7o2rtu8zPi6vPKpyLxRFYi8GSypvEnTJTlnvfG85DkCPJYGlLyI9Cc9Bp9FPTt/Bb1r//w8DepvvYnE2jwK4dA8hLKcvf5varyn3vO8qQ4YPWmhIryad8y78QjDvJ8rMDzSTaS7oJPJuwtJ6rvM7nu7uxYcPa52CL0WUrc8twM+PBz82zz9Nn68koscvFesJTxyXiU59bLnvDq3ejwigHI8hKjdON3a2TtUo4Y9SQwSvUM8CDzq7EW6XqIUvFC/1TyEebC8pNXUPJdk7rvJtq+7ls2nvJxuhDy5pEO7KKYuPQbO8ryu1GK9wWuFPHz1mTyEEPc8fv44O9Tkaj29tyE9C0nqvM1qkzrl2gc98dkVvIdAGz0UsbE7qvuQvAhdkb1xVGa8XPdPvd57X73Zoo088CWJPI54Pjw9yti7pT1uPQlKCjtmVdi8bEIovYxlYD0KN4M6SJq5O652CL3jL8O8CjeDPFyFd7xxXiW8VTpNvCMPEb2DQMS8G1IOvUbKBr3NapO7CF0Rvc/SrLyTxAg9v4fUvHjGlTwsBYC8Wb+DPAmyIzwy1Qm97FTfu/zYI7vWyJu8/nkpPXhBtjt/zwu7e7wtvINARD0ppi68TH1KPV7RQb0HB9+7xALMPIs2Mz1nvfG5MtWJPM4BWjzyQS+8P9P3vJ1RPrsGn0U93UwyPNXuKT1bvuO6K0c0vHtUFLzhveq8yxWBvLqkQ7olWmS85DmCOwcRnrxQV7y8FuodvRIQLLxbJ508Z47EvNjH+zxzjVI8JPJKvd+FHj0qGIe7OE9hvISyHL2UW8+8VFeTvPtmS73Eo1E9ovKavL/dhjyPNgq8z1eMPSXpgrzftEu8jLsSPXtUlLztlwo8ZHtmvHcISrwEjOc8hRo2Pa0zXT1gOds7aS9Kvdi1FD0nBSm8ye+bvNPk6jsq3xq8h+pouw+VtLrr7EU9VFcTvRwGG73CmjI9uwxdvK0z3bx3CMo9VaLmukX5M7u3Az681mCCvHPGPjxpOQk91lbDPFsnHbzhVdE80dvLPGBDmrtDt6g753uNvDQN1rzWYII8eeI7PEoMErxu2e68eP8BPfAIQzwBvLS97ZeKvHbZnLxOh4m8Hg+6vDi4mjvCkHO8pA5BvUb5M736Zks8vbchvS7Cq7wjW4Q6n5NJvcoeyToHEZ68C+sPvc/SLL06wTm82GmhvM4BWrytBLC8kBlEPPQbIT3pElQ9HDXIOyO5XrzhXxC8Q05vPB9IpjwelJk8vuZOu06HiTymdlo9tfDfvI0/UrywdWg8FuBePLbnlzwrRzS8SJq5PEeaObzjaC89UL/VPPWy5zzZog28EGXnPMMx+TznQqG82Md7PfFw3LqPNgq99BFivV7uh7zYx/s8I7levZvpJLywDU+9bEKoPNurLDzqvZi8L8KruzFjsTvq7EU8OBZ1vLjUEL3sJTI9HPxbvDd/Lr0XI4o8o207PbvdrzvsjUu8y7/OOxbqHTzBKNo7wWHGPBjp/bz/shU7uMGJup8rML2CQMQ9qQ6YPIj0J7yN17g7Orf6PU07Fr0JSgq8GPM8vABK3LpEKQG9RB9CvXJepTzmoHu8QzyIPBiLI7yn6LK8bDhpvWAKLrt+lp+9DFOpPCwFgLv+eam8rDPduuy8eDs5WaC9fsXMPEp0q7w4uJq7jZWEvIZTojz+/og7Y+QfvOP2VjubGNI7BJamvOdCITypibi6nG6EvFyPtryDQMS8o5zovC2Jv7ofPmc9c5cRve84ELwpd4E9IVFFu5gF9Lxg24C97v+jPX7FzLxgcse8AErcu2DbAL0KsqO9RFguPAAbL7zWjy+8PgPFPFm/g7zCYUa9QNP3OxjzPLyXbi08ovKaPDr6pTx0/yo9ybavu1h8WD0OLZs7V9tSvM1gVL3k7Q49U2DbPOy8eDy2Kcy7gDelvTggtLzUHdc87vXkO4IRFzwHB986u341vJKLnLt5Eek8cuMEvJk+4Lx861o8p97zvD/Td7z169M7vbchvdcm9ryinGi8G5TCPPhT7btQv9U8C4JWvZidWj3a0bo5T039usuG4r0+DYQ8Qa1pvNaPLz1ApMo7gM7rPL0DFb1JOz+55NDIPPCW6ry3Az68mA+zPCHpKz3jXvA7zO57OyXpgjwY8zw7dXGDO8EoWjy5wYk8xXQkPJ2517yF6wg9VQsgPD91HTtWoua8e+tavf02/jyv3iG5K956vQZmWT3e0RG98AhDPLg8qj14eiI9unUWuwAbL7wVsbE8jGVgPHC9nzsT1z+87v8jPX6WH7wDU/s8SwvyPK2JDz0opi69OPEGvVsnHbyCXQo9GltWPM7IbTsuWpK8r94hPRSn8jqJXME8Wx1evOG96rsKsiO9I4qxux3WzbyAZtK7Zu0+vF1Ngr0Up3I8xq2QPHKqmLyNBmY7r9RiO7G4E710lnG8YdrgPPnPBLzAKNq8jzYKvODtt7y5PCo9yk12vM0xpzqcR/+8Bf6/vAX+vzuJi+68vbchPdUnljxcvmO907W9vNyrLD1zvP+85f91ve1enrymr0a7Cxo9vapHhLyhigG9/UC9vCB30zwjDxE85qD7OxG7Gb1pl2M83HLAu7Yziz1khSU8ZbRSvTA0hDzo4yY9zGDUPEYo4TysnBa8NNTpPCB307wLEP68Qq3pPE6HCb1Brek7BP4/PWeORD36Zks8U9IzPbjBCTklWmQ8iS2UPHqybrw0do+7xGrlvKU97jweBfs8t5ukO1OZR7068GY8ELuZvbebpDm5wYk88qnIvJxRvrpT0rO8VQugPF+PDb3a0bo7MGOxPHagsLxFWC49ZIUlO3T/qrzd2lk8gZ8+PWw4aTtWRIw8S60XvS1QU7y5PCo8dWfEu1RXkz14qU+9ChD+O1hDbDyEqF08RsoGvNBpc7wxy0q8uTyqvIZJ47yCB9g76rPZu8h9Q7tSAgG9v4dUPANdOrxJDBI9JPwJPZc1QTxE8BS8ALy0vHobqD1PHlC7KKYuPQ9mhz3coW09GSypvJWKfDxP5WM8o5zoPFOjBjzjaK87UZAovEgCU70jud47JPwJPUeaOTzghH68lGWOPFyPNjvtlwq8zGBUPHKqmDz+/oi8ABuvu/VKzrsmwv07y79OvTvw5rqCEZe7xGrlvMoeSTt22Ry9fuKSPPnFRb3dQvO8HdbNPCt2YTxHfhO8gC1mvP1vaj0BvLQ7iCNVvc/SrDx5Zxu9JSu3PKEFIjxF73Q9jT/SPAH1IDz9Nn683eSYvM/SLD3Y7oC8CHk3Pc9p8zt3cGM8CBGeu161G726dZY8Em+muy9HCz3jL0M8wpDzvHwkx7wo1ds88cYOvHagsDw+A8U8izazPWsmAjzYvj09Veiuu5UGVr3KkQG9mLNzvLCDJjwW5zQ9aEA2PT1JyTzDvgC8g7gevVfe3ryISI877chKu3zqBbxA+866uMoEPXM0srzqGy09qDfgOzQpaL2zOhQ6AASlPBqPajui3SS9bqmpvJmglrxB3qE8K/apPVUFXDxpMf48FQlKvQkfHj0dRtg8wtstvFi8ybyFjLm85m4PvQ3Mu7xR8xg9NQy7vDBy+juJNG89clsvvQO7krwA9ey83iexvAzH07x/I0Y8gAExPMg60btL/gK9ShHgPPB/uLzEKA69JKX7upbukL3oQiq9WMExvdfgUrzyzBi90zM1PSHz9bxX2fa8JmuhvG8dBz1g/j+8cXP0uuZpp7motQ29+MaWPLCIDj2h9em8iTRvu31Uk7zajXC87qa1vNqN8Lwjr8u8PGveO9D1DL24yoQ8Xxvtu9fg0jyST2i9vimoO0i2irydQ2Q8nUNkPAHObzx1A2W9i/qUOwoL/jwA/zy8TrAIvQWUFb00ESO97GiNO9t1KzsTOhc8N+U9PfjGlj34vEY8pKfvPA1FgTwMZxa9qEEwPQLdp7yRXiA9fiiuvDi+QDz5n5k87NcCO9oQBj2RXqC8d+HPubbnsbxZmjS8szUsveWQJDz9R0893cKLvPFdoz10qI+9v3YIPISkfjyYs/M7S/kavOZpp7w6jfM8FQTivO2+ejzhdJG8jxsQvN1JxrxyTPe7A7HCPFjGGT2257G8bO3TvLB+vjwi0WC9bO3TOeLZNr3XWZg9Dq+OvY3JRzyDuJ68Bm0YPZJZuDyMaYq7ot0kPGD5V7rPhhc9JnCJPZt5GTxi10I8FQTiOz4xBLxbbk88ot2kvVfeXrxYt+G7EIMpvBB+QTwtz6w7CR8ePZfacD3Up5K8VKoGvZbpKD032228qEEwvWOwxbyFkaE8+aQBPdQWiD2dwZG7fVQTPWhKBrsg+F081v1/PMB2CL1PodC8gAuBPPboq7uQe008OL7AuwOncjwTNa87l9pwvZULvrryzJg7sk1xO51SHLzlizy9L55fPMWSm7xUqoa7KSKPuyHlALzXXgA7XUdSPGLXQr0+LBy9bcs+PBUTGr1SXSa8pYVaPf8g0rxr/As8pKdvu0LZuTtVFBQ9X56CvGV/eDyOrBq9ODcGPTfb7TuL9aw7VQ8svRWCjzygBKK8W27PPKkfG7uX39g6EldEvQkkBj2maK28DqqmOpbpqLz7eBw98HrQvBM1L71t0CY9TOriPKi1DbqM5vQ8pCqFPKSsVzzvfzg8P5sROzjDqDwH3I27vGjqPHMvSjyMxF86OL5APS+jR735pIG9kIWduwzu0LweKas74k0UPQ1AmTxr8rs8Ys1yuyZrIbzkJpc8Mz0IvcLbrbx+KK48D6W+um8dhzug+tE85mknPNtwQzy7d6I7EH5BPfFdozxTNik8IAKuuz4ntLyRXiA9kV6gu6djxTtQhKO7YP4/vCv2qT3dwou8a/wLPIOztrptRIS6PGb2vH8eXjxB9mY9ElwsvGD5Vzx5M5g84AqEvU1Bk7xFi7+7bcFuPV1RojzSWjK9g65OPeQml7zCTwu+WLfhvPM7jjzNwPE8Hx/bPHFgFz3ZoZC9zcDxvN4xgb0g/UU9qR+bvDFkhb1sZpm8nj78PNfb6rt4yYq66SCVO+obrTzA/cK8DUAZvGvoa7zH2pM8vimovOLUTr1h4RI8LMB0PPQnbj3whCA9hZGhvJi9Q7yFjDm9DqomPEqPjTutzDi8q+7NvGfbkLxvpMG8MlVNvbfY+bzoQiq9iEOnOxUJyj0PoNY8dKiPPEi2Cr2A/Ei9OpwrPYQnFD3qDPW8r6BTO4hID70IPMu8ZKvdvH8jRr2VCz69EWGUPG6pKbzbcMO7pm2VvGJQCD0X2Hy8tuwZvftzNDxzNLK83GvbvED7TrwfJEM7wtZFvD0/+bsoSYy9eaINPRWCj7kABCW9W2R/vN4nMb24wLQ78H84vft4nLxUqoa8QtTRvULP6TuEpH48TrAIPe+c5TxzORq9Uk5uvUg9xTw9ROG8JmshPV8gVT5i0lo9e3YovSLWSL0lARQ9vUu9OohDpzxItoq8ZYnIvKzk/bx1gZK87dIaPTFy+rz7fQQ8DqBWvAWUlTycZfm5+LfePAD/PD0wi4K88zE+u1HzGL3uprU8yR2kOw3Ca73qGy29Oo3zOsvxPj232Pm7AtPXO2WE4LwUGAI74s/mu4WCabzX4FK8VQXcvG+kQbzX4NI6Wov8utdZmDwA/7w8DUUBPMznbj2vHoE8WLxJvaUDCL0C3Sc9wtbFO1mfHD39Qme8hCeUPTflPbwnuAG8dusfvAUDC71ZpAS9T5zovPqQ4To9TjG8/FYHPSWSnrzuq527nUjMO6zWiLwmfv688lNTvQOxQjvFg2M9yQ5sPQqOkzwNQJk9XGT/PMO5mLwIQTO8Hx/bPBtyvbwRYZQ8HG1Vu3CCLL1weNy8z4aXu4+d4jtUJ3E7XiqlPKZtFT2PnWK8e3aovLbsmT3CzHU9DqqmvCB2C70fnQg59Q+pvK+g0zyalsa8rcdQPV1H0jwV/3k7ZY6wvJJZuLzXWRi7EtAJvQg3Y70ouAG90IEvPQxnlr2X5MC8ot0kO+3NMjx/nAs9d+FPvakkgzxIPUU9MIYavYkXQjwC01e8gst7OhqU0jvQ9Qw9vVClu1i8ybx4vzo8SRZIPA1FgT2s6eW8/i8KO53BET2AAbE8J1xpvAqOE7y+LpC6nU00vT8YfL1Opri8upk3PB+diDu6in89qEGwPNi51btB3iG8EzoXO2v3I73Efnu7d8kKPPt4nDsHY8i8CEEzPL8kwDu257G8rx4BPZmMdjyoS4A9rx4BPRMwxzj1CkG6lKuAu5bukLzGcIY81+U6vCLWSLxoQDa9ks0VPUAAN7xL78q81REgvSZrIT33XIm9weAVPAWA9bvCTwu90WSCPPFYO73KkYG8kV6gPSv2qTzdTq48EHlZvfFYO70qDm899uirvP1Mt7vbdas6ZKb1PGH0b73upjU7LqgvPO6whb2fF/+847I5PZCFnTswfEq9APrUPRfiTLyW2nC86LaHO7jANDwxZIU97rAFvChEpLxNzTU7mox2Oy+jRz0aj+o8vUs9PSk17LyGb4y8Q7K8OxjFnz2JNO87zqgsvAxnlrwEp/K7upTPvVJT1jtUJ/G8uaOHvMZrnryqFcu8aEC2O/F1aL16naW8IAeWvFfZ9rzjsrm8ao2WO2c2Zryn3Iq8w6V4vF1H0rvX5Tq9OMMovF+eAryqC3u85mmnvAzu0Ds35b081Qw4u3miDbvc6Qi6UlPWvNFy97zGZjY9ZnGDPGg25jxoQLY8LdQUPXqdJb1lbBs8DUWBPRbnND2lhdo8nj58vBfd5DwL87g7a+hrPAZtGD1yWy89vikoPAWF3Tsumfc8Kh2nvMD4Wj0Q94Y7xYhLvZqbrrxtwe48aTF+POD7S70dRti8ElysvPJO67s1B1M6LqgvPGSrXbzfHeE7sIiOPF8lPb2KF8K8RmkqPc3UETzSVUq9dRKdu/3AlLovHI28JmY5veqPiryotQ08fGfwPJQt0zwAeIK9vxrwuzxYgbySWbi8o7G/PCzPLLzZtG265QQCvS3PrD15M5i8ShuwuXUDZbss5/E7NYUAvSVmObqPneK8lChruzCBsjvC1kU7Ul0mu71QJbyC2rM80zM1vZCKBb2KElq8p17dvGQpizulhVo9y/uOvT+bET20qQm9ncERvVWDiTwklwa8FuwcvcZrnjw86Qu90zgdPBCIkbzEjTO8R1ryPD8izLtuqak875f9vOg9Qrz6Do88kV6gPOg9wrwW57S86SCVuaWF2jxsawE8czmavYB1jj0r9qm8otg8u5I3o7wW57S8EzWvvCkijz0FlBW8a/K7O5UGVry4xZy7/iU6vAD17DuX39i88Vi7POda7zu1Exc8KEQkPd1OrryKElo6W32HPJMyuzxt0Ka8b6TBO4ocKj1ljjA8BmgwvIhID727dyK85KjpPILaMzxAADc8q/2FvOhCKrwHXuC8+ov5u3t2KDxr8ru80lqyvFoOkrwFikW8m3kZPBfY/LuNxN+8bdUOPdqXQD31CkG77chKPc3PKb0dVRA9Y7oVPOobLTwkquO9EzoXugg8SzvVDLg84tk2vfQnbjyNxN+8gd8bvVQn8Tw0ESO9BnKAvXLPDD24xRw9G3K9vCWSHj3Dr8i7ihfCvOqPCjwZNJW6sH6+PBt8jTwqHSe8u3ciPb8fWLxweFw8J1zpvD4xBLw9Scm8NYUAOpFjCL0H3A09qhozvQ3MO7x6k1U9jOb0u3M0sjvH2hO8uLvMu+WG1DxA+846duufO9flujzBTws8/5kXPSk17Dz4vEY9NuolvWv3I7xpHiG8XUJqPSO5m7uklJI70HzHvDzpizsW7Jy7gPzIPBjKB73gBZy8cs+MvKLYvDu9S708mDYJu5WEA72t0aA7bO1TPG3VDj2jsb88W32HPGZxgzvPnly9rqojvSv7kTvkrdG82MiNvbt3IruVBlY7bUSEPUxokLxSWL68W2T/u3fX/7yL+hS8tvGBvAoLfrxalUw9ObTwvBoSgLyHYFQ9bcZWvTMuUL0c64I7vVClvAhGm7t0qI87N16DvfqVyTsmZjk96EKqvDxmdrt5M5i9GLvPOwxnFj17dqg8qhqzPCg/PLwyUOU8uMUcPCWSnjyqEGM8nGphvKO2pzwkquM74AoEvT8iTDzZtG28cIIsPY+dYj16mL08tCb0PPB/OLpkpvU6epi9PJg2CT1bfQe9hZGhvPt4nDyOp7I8RCuCPXUITT0yWjW9zc+pOxxtVb1IPcU8gAuBPNt1qzz1CkE8wsz1vFqVTD3kqOm8xY0zvVMxwTsn2pa8BY8tPOWLPLqzOpQ6YtJau4WMuTxVDyw9yhi8vDqN8zu0K9w7nUPku0AFn7wGcoA9Hi4TvXbmN7wbfI083/tLvFCEo7wljTa7cy/KPAfcDb3L9ia7XyBVvISpZrxFi7+8R2TCvF1MOjuvpTs8cH3EPD1TGT0vHI083x1hvMoYvDvX22o90lVKPIB1Dj04yJA9CEGzPRUJSr1r8rs8ybMWPWSmdT2i3SS8vUu9PFtuTzqRcX28kzK7PL1QJTyKDXK8Co6TvAkfnjzL+468+MGuvJ1NtDw6EIm7GMA3vBxtVTzdTq68RYFvPJqRXr1BdJQ8JmY5PXg4gDtoQDY8jxsQu94nsbwKEOa8NCnou/i33ryyV8E79RSRvGJQCL1pI4k9bx0HPQ3Ro7z6mrE8j53iu0HeIbqHYNQ7+3gcPQLdpzzW6iK899nzPLQJR7xPoVA95KjpuiACLjxB3iE7NREju1t9hzwkqmO8BYpFPW+kQbzW/X87JmY5vEdfWjtg/r87DUUBPb3EArzaEAY9HUHwvCACLj3/mRc5J51MPWkzBrxH6hS98XTKvAtqYbymzwI98RUgPTegVDx/7h89s3mju9RB37x4V+Q5UteWPGSbFL1DrfY8LZMyPcbX/jz/eym8tfPgPCc+orzzMLO8g0eHvPhKkLwhRGW7HynSvIhewzvpoSW9yPboPAE6fjztOs08XYUOPPSuR73WAR89ZJhzOxWZjjxY6vu8BTQ7PGdUXL1Wz+i8Jz4iPdKFdr3G1368Ob8+Pe94Ib2kMoS8Or6IvFMyajrizgC9PhgmvNEmTDuXRjg8uJDfPAGbEz1M4bC8SYRyvZOtkDwOw0i9M8nYvLY1DL0a8yu70UkNvccZqjyrRWm7QhD4OskV07zT5gs9KxWeuxkzbDzysh699E8dvZWKzzzWAZ88vmdbvZufn7x8D/a80qTgPJbII70UOxq9rOUIvYFJ8zv94oG871gBvccZqrzsnBi8UZlCvD53ULzx0/S8ScYdPXWenDxv58C8yTS9vOdEZzy+BFo9iVrsO3e6Zb1psRq92loGvYmcFzw25Gs7/mCWu3GEPz0u0YY9epU4PUJSozyqSIq7+uTtvIncVz0jY8+7f+4fPWwr2Ls4oFQ9cAYrPaxk0zxpchA9zQ+QO+iCO7xQOhi9YKAhPXW+vLykka47M2ouPYDqSDy+BNo8E1xwvKD4hrt2PFE8onLEOxg2jbw5YJS8RczguvbsG73wl4s8yTQ9vLZxdTxTtNW7djxRuzt7J7wuj1s9R+dzvIIJM7pW0ok8v4Juu5KOpju96Ua9lCulPFLXlr2h9C+8gYuePLXUdjxgoKG8WSynPOVnKDxvSYw7fDI3PWlv7zxEzOC71cKUu5nA9TwUO5o6TlvuO3GEP73cVi+9GNTBPO9V4Lz2rRE9TltuvdfeXT1qL689TOEwvQpL97wfyic8lYrPPCpVXr1SmIy88nDzPISGET3Ug4o9jjQJvBdWLbupqOq8+0WDvBhWrTwCGSi8ZNqevNgcsjxsrcO8Q612vO94IT16tCI84K+WPKcL7LwJbji9M2ouPXLCE7yg2Rw6+oVDvCPhYzy1dUw7hYPwOoGLnrqvPya9eDj6POZHCDzjCmq9XKZkvDs5fDwMiBW9uA50OhP9RT0/tSQ7rn9mPBtO/7zddZm80qeBPFXyKTtLY5y6W8klPBg2jbuZwPU8QLUkvfqFQ73gkKy8hKaxvOxdDj2Sb7y7QJWEvM0PkL3wFaA8GlLWPDPJ2LsRwhK96vz4PNBJDbu5UJ+8v4JuvG9JjLxLwsa8erQiPTWkKz1iPaA7m9/fPOy7ArweiPw8HE5/PO644Tso2yC8o1PaO548njzgkKy8P3aavYGLnjyVJ84729iavNKF9jv0Tx089G4HPfQQEz29SPE80ibMPHEC1LyHIO+8mMTMuzhgFDwK7Ey8PPk7PO42djsbMYC7PZqRu+CQrDwBWWi7XWYkvUEzOTwMSQu7fi7gOxUYWbwjY089bmksOBBB3bshJXs98JcLvaVxDj2lcY68ZVgzPArszLuwntA8z4nNvMiXPr2QMeg4ylOnvC3y3Lv2S0Y9xvo/PXpydz3Q6xg97lm3vOofOj1ywpO7DCohviZ+YrsqORU9CQ8OPbXXFzzhrxY9GZSBvfaq8LyNt6q9/74KPfjoRL0a0Gq9xNtVvEC1pLyQ0j08IuU6PKNyxLoKjSI98rIevV5iTTudvok7Cgs3vGTaHj1szK28FrmuPPziAby097c7Cc3iu6wFKb1WcD488jCzug+k3ryNtyo6wj7XOwiueDs4Hum7KfoKveOIfrnhDsG8ylOnPKesQT1iPaA9lak5OKYuLT2mLi29SSXIurNW4rrnRGc8QJUEvUTryjw6nH285Ui+PD3W+rq6TEi9P5Y6vYi97TtWEZQ9O/0SvKF2Gztfwfc81mDJvAyJy7015Gs8D8NIu7C9ujywH4Y8BhF6vKloKjytg72879dLvZlhyzxkmxS82ByyPBkz7DxOvIO8xF1BPDxYZr3Tw8q8WYvRO2dUXL2T7Jo8X4G3vLtrsjyfGV26GZQBvcm2KL1goCE9adAEvWgUnDwc71Q+4ut/PTakK7yBix69wCPEOt7zLTw0qAI9J7w2PK8fBjp9Epe7hIPwvLjSijtexJi8/UGsuzRm17yTboY8DMefvKFXsTzIlz49vicbvQusjLvLsRu81MNKPZNMe7xexJi9HHAKvAjQg7xQOhg9En+xPCyTMrwdLSm96CORPNZgyTsTe9q7gGy0PNREAL0ovLa8zk6avJDSvTwp+oo6M8nYPDXnjDt9Ehc8yPbovOkAULwIT868AllouqUPwzpTtNW8ivtBPH4xAT2oqGq9f6+VPKPwWLvxNIo5I+FjvK7BEb0WuS48reLnOUTPATz7pK28QVIjPKloKj3suwK8Opz9vCvTcjofSDw81GQgPccZKj2WyCO8Y1yKPRfYGD2UKyW7TQAbPVfuUj2PNIk6yPboPMDEmTymzwK9VhGUvEnGHb3i63+9q0VpvOlferu77Z08qahqOztcvbwPJZQ98NaVPWX5iLydfN67Wqo7PbxrsjnX3l08KJn1vBg2jTxQOhi90oV2vAwqIb3mY9G7fc81vGW3XbovrsW8B674vOLOAD2wH4a9b2VVvVO01TysBSm9+oXDOxkz7Dzy8l468TQKPcj2aLxbKFC8LnBxPZCyHb0q10k9OB5pPBa5rjvf79Y7I+SEPMZ41Dx3/JA88nOUvMh0fbwsdMg8/74KvZUnTr3H1/66qkgKPC8QEb1IBl69aRDFvKloKj0Ibji8UPhsPdf9x7wd6308besXPCgbYb0a8yu9I+SEPBxt6bwWlm08URfXPBQcMLx3Oxu9fqz0u+jkBj0s1pM8RmlfPVzojz01hUG8V2znui5w8Txx5go8f6x0vZ48nrxUMuq7besXvcm2KD0Y9wK9nvryPK8/Jr3vVWA9voZFvdVB37voYhu8venGvKwFKbtjGl+8c0CoOkJSozyfmhI92VqGPRJfkbp0n9K7w98sPW7IVrvuNva8/CGMPPdKELwr9jO8Ckv3PJhlIr2OlGm8HIzTvOblPD3G1348tpOAvftFAz6jExq80AqDvGQ5yTxgXvY7//2UPG0rWD37hI08NyJAveycmDyR8ae8hcWbu1+BNz1ISAm9t7OgvFE2wbwMKqE87BtjO2MaX707/RI8B9G5OnkXpL1AtSS80QfivOy7gryHgQS9Hg2JvFQ1i7xKJBK8erSiPMg4lDy2Esu8OB7pvJkCITwgxlC9PNpRuxhWLb14eqW9vUjxvCicFrrCPte8qcfUvKVxDr20dUy8D+IyPUglyDwTXxG8Oj3TvC/RBr3HGaq8Cc1iPS1wcTwt8ty6XKZkPN9xQj3aWga9Jz4ivZel4jwr0/I8f6+VPJ0dtDyQr3w9rz8muprDljyC6ZI7D+KyPLxLkjyATJS8npvIPNw2Dz1psZo9MkvEPBYY2bzbtdm8y9G7PDxbBzxEbba8gqoIu1FZAr0AfKk5MuwZugYUGz3D36y8P3YaPVymZDuYxMy8XYWOvCSCuTzPKiO99snavI0WVT0oOsu8Lw1wuziBarxyo6m8S+EwvFwnmrwmHzg9uq4TvL+lrzw1pKu80ibMu9z3BL17cne8PZoRPGSblLxrDG49svsOvdDrmDuVCOS8GXWXPMj2aL2nC+y8SeUHvTxbh7zLEfw7vugQO2I9IL0zSo683DNuO0JSo71dxc48lAy7PH1Roby95W88SSVIPXqVuL31LFw8GvMrvf5/gL0JzeK8PHunvNGIl7skgjk8EQGdvDNH7bywHGW9Pfm7vIg/2Tv2yVq8r/36Otw2D72VSo+8cyG+OzNqrj0S3lu9DqRevUxA2zz8gWw8UtcWvQvrlr0MKqE9Wof6O9PDyjwOJko8cyG+vJ5bCL0Nxx89wiIOOujh5bydvgk9qkiKvAtq4bwcDr+7HE5/vC3yXDylcQ68rz+mOix0SD15FyS8Yj0gPYhewzxhnEq7FL2FvGEetjx5FyQ97BtjPOOrv7sNxx+9srljvQwqoTsAfKk7jJhAO8d41DpN3Vm86h86O3j4OTxhv4u7PvgFvaA4R7xD76G8KNsgvTj/fjya4oC60qcBvcyxmzwpWTU9ATr+vIXkBTzpX3q8zwu5O0eIST1MQFu82fnwvTAs2jsGss87UVmCvLzK3LxqTpk8m99fvBX57rve8608sJ5QvZRr5bwQQV07oVexPIeBhLyEprE8kFBSvH1RobxRWYI7QLUkPdW/czy2lDY8GLXXPOiCuzzSp4E8S8LGPLAcZb2Fg3C9iR6DPNtWr7xzIT69yVMnPW/Ef7rNbro7HE7/Ow4mSjwpeJ88aBScvCwVHjv0j109DYgVuwusjDssdMg81ESAPBwOPzxl+Qg8iF7DPFRR1Doa8yu5RQq1PBJ/sTsPJZS87JyYO3hXZLr/3io9NwNWPAnNYjwcjFO9ps+CvcDjA7xfXva8hSTGvOVnqLsJD467GzGAvU1fxTxoc8Y7Yh0AvLaTAD3x03S8adAEvE/8Q7wH0Tk98pM0PBS9BbzlSL46rsERvY0WVT151Xi8ZDlJvZFQ0jviLSu98w3yO5Spubz46EQ9lUqPO64/JrymrMG8I8L5PInc17wvEBG9bG2DvGGAgTiWiZm89q0RPWxtA714WoU7NActPaSRrjwZlIG8195dvfHyXrw+1vq8jbcqvPRPnTyNt6q8pwvsPMPfrDt1m3u8am/vOxL9xTpaCWY8/eKBvENOTL2EpjE97jb2vC2TMjtsrUM9d/wQPSi8Nj3K0Ts9z4lNPNVB37s82Rs96z4kvSx0yLoB29M740wVO12Fjj2aYUs9GJQBvJlFgjxjXIq913+zPCDpETvjTBW7gqoIPRZahLxJxp08ZfkIvd7TjbxWTX07fu6fvD35uzwRwhK8ylOnPPbJWrwCeNI8BZPlPPyBbDudHbS8bshWPODv1rqyvAS8dL68PT35O704v7489wsGvY41vzwtcPG7/MOXvJDSPTz4B6+83vMtvYWi2ruqSAo9pg6NvJFPHL2QUFI8P/XkvCDG0DstkzI9zwoDPLjSCr0ENLu8XkNjPWSblDzAI8Q83vMtPcHjgz2j0W68GvMrPSx0SD015Gs8waFYPFgNvTxAtaQ8/UEsvb0IMTzL0bs8BTQ7vNgcsryUK6W8pg4NvS/RBjxUNQs9WOp7PGlv77xnlgc8p00XvcGhWD2GQzC9afFau3a6Zbwj4eO8jtaUuyJEZbwquN86Td3ZvHGEvzvq/Pg8ZNqePISmMTwcbWm87LuCPdGotztBM7m8ukzIvOEOwbzzEck83vOtPKYODT2kMgQ9k24GvaKVBbwoOsu8URdXPbxrMr1YDb07WOr7Os+JTb0lgYM7IuU6PIi97TxHKR87+iYZPf+76TwyS8S85mNRvBsxAD0qeB+9k60QO1KVa7ysZFM9s5iNu/ZYUj3yVvG6kJvHvKISjrhxDhS9vOqqvF1jJzvyVnG7Z05FPVLWjzvmYvw7umk6vQ6Ohj29We27o4qnvHT+xrsWq+k8ufGgvB3h8LpkAAw8W0kUO7QzszzMkza9g+vFvP4Gc70u4B27DGucPBxyLj2jzpq8khy4vNmyejwm5TK94MYJPYyiPb10SxE9u3IRvfZYUr3//o07AMxWveTqYj1aJqq84rY8vRhwTTzXbRi9//6NvI0JG723eYe8rEGfvGQADLzitry8N1MivB7zHjxxbJo8osVDu+A1zDw++Os8m36AvZ1UIL1alWy933k/veNySb32WNI85C7WvCNb6zzGXa+6BYpEPdFIzTzcgDW8hWPfvOO/E7zt7iQ8o4HQPB3ZC71xwUk87xEPvdqqlTx2Mu08ks/tvHNCOjzlN608lVm1vIllQL0l3Ns8Crd0ue9Vgr16eME8EYeQvbQzs7oQMe+81IXKvIipMzt6I5K8C6+PPIvmsDxo+RW98CsivT2A0jyTlNG8Uiu/PCBrOLxwSTA8ZV4SPS2KfLx+Ldi8htt4PB0uO70zUUE9sfa1u8jeHz2ngzE8pr5NPRhwTTz2WNI8dP7GPFXX/rpQZtu7CwS/vJ0H1ry/2t28uxQLvOE+Iz3Jmqw7LpNTPXBSB7wmVPW7UjQWvemf+TyWFUI9HCXkuwKaET1WLSA8A1YePMTlFb3B7As8Y5kuvI2rFL0ZeSS88xtVPDZBdLv926O8AMxWvPiMeL3WsYu72nfevCLsqD2p+8q8372yvAAZoTw/RbY7kmmCvIFZmbzgJJA8nVSgO1J4CT3WsYu7JpjovD7467sMySK8uDUUvYVstjydVCC9+B02vb8nKDsdnf2882gfPQe2Bb0CmhE9XdLpPDcGWL2A8js8gGH+PGy/6LtlGh+8nP7+u6T5aTyfO/w8+xbAPSujoLxzQjq8mQ7MvKW19rxpEym8EcsDvIG3Hz32WFK7TLHEPBxyLr1yyiA957gdPb/aXT3nuB07MYzdvDC/FD0CTUc8LF8tPQrzAr08VQM8W1H5vMTcPjuCJmK9ZwH7OxdfETyt/Ss9iVQEvZ8zF73zrBI9EH65vNw8wrsJP9s8qsCuvI4jLrwIeve8guJuvOAkED1RbzK9ohKOvLd5hzwuT2A9sm5PvB7qxzyZn4m9n4hGO1W1Br1eyoQ9jyyFPNLA5rzau1E85OriPMSYS7xYYcY7N/WbvGW8GD1foCQ8JdxbOUbq/7wXAQu8O7vuuxO7tjxsv2g4ygGKO69+nDuCJmI87yLLPJBX1LvRSM07pPlpPOzUkbyDL7k8q+v9vISWlr1499A7XtvAOw6Ohr0x2ac8iWXAugYC3jwCCVQ8iVSEuWbWq7xLQoK82fbtvHj30Dwgazg9bL9ou00pXrz7Ywo9V/IDvcFS9zwtinw9uOhJu7iTmjwapHO8ZRqfPA79SDtnkri8j5LwPEtCAj0b+hS9eLPdPLZn2bt2Mm09xNw+vS7gHTyDfAO87qoxPMFbzrwEgW29YRi+vJvTr7y86qo8gVkZvfRPe7y6HHA9DHxYvOZifL1m1is9ICfFvOe4Hb5d0mk8qftKvKISDj3Dj3Q8hheHPNa58Lz7Y4o8+eIZveK2vDx4s1289ZNuvWrPNTtSK788oz3dPBe0QDyE9By9YFyxPAe+6rxmiWG83DNrPCkisLzIkVU9O/9hvAjHQTybQnI99eA4PX82Lz0l3Fu8J13MO3BJsLy984G8RvPWuX56ojxe20A8U6NYPaUCQbvFQ5w8JqG/vJ1UIL2UUF48QosKPgL4F7tIa3A8qD8+PJYeGTr+QgG8yVa5O3eIDr1foCQ89ZxFvK8glrsuk1O8xUOcvW/8Zb1SNJY6Ee37PNZTBb0e8568k+EbPQmMJb0txgq9HHIuPMoSxrla4ja72ZACvBDCrDwgHm45nzOXvGqC67w5dgw9Y5muPKG87DyiePk8NkF0vfmVzzy/axu9zgvQPNFIzTygRFO9nhCtO7lgYzwLUYm8LYr8PJLHiLwXZ3a9bAPcPJOUUbtS50s9giZiPuwpwTzJVjm8RS7zvIcxmrurOMi5jywFPTjCZLxEttm7HqZUvZrK2Lymelq7lcj3vAJNR72ltfa87eVNPNINMbxyyiA8z9CzPMjeH70ksQy7iKDcPAU1FT2qc+S8x9VIvUrs4Lx4s908lJ0oPXEOFLz9SuY8NtsIvRHLA7vndCq7j4oLvZBXVLzCZCW88Csiva9+nLwanI496DA3Pa9+nDx/6eQ7jJGBvenswzwUKnm8INr6vCLsqDyX2iW8dbpTOroc8DoroyA9kFdUPHT+Rrz3YSk7BTUVPB3h8LsYcE29H2Lhu3UHnjq58aC8mEEDPDDH+TshMBw9NkH0uzQWpb0x2ae84vovPQ+oGT2+J6g7hhcHu9fCxz3Z9m09dn83vLzhUzxOofc8bci/u6AAYD0in946Gj6IvaFWAb3au1G9k4MVvYsqJLupt9c8qD++PNfLnrwNQTy9yqODPfsWQD0jZMI8H2LhuxejBD3Almo9b/zlu0hjC722Z1m9GvE9PMVDHL3lpm+8ZolhPHKGLb2Kbpe9sbJCvciAmbqitIc7LF8tvCKf3jseN5I882gfPYBh/rsRy4O80UhNPCqJDT2GuQC9Kc0APH+l8TyNXsq8Tt2FuWrYDDuGF4e8trSjPBR3w7ttDLM84MYJPNp33rxOofe8mhcjvd95P71Ndii9zeCAO8+D6ToA1S29DMmivR6m1DwT/6k9+xbAPDBhjjsnXcy8YA/nPMyTNr0wA4g8o84avKXxBLxnTsU8fnoivBejBLy9pre8L6UBvW23g7wkIE889CQsPbppujzUhco8e4EYvRR3Q720PAq8GCxau0bz1rsW+DM7vlGIvHor97wgHm49YA/nu6OKp7sI0Ji8pr5NPZUM67wXAQs91EFXPAAZIbs9gFK7XdLpvFqVbLxUrC+8UW8yPEtCAj1e28A6fWAPvTP8kbzOC9A8JpADPJBGGDy+UYi84fHYuPgmDT0YLNo8GvG9vDbbiLsNhS89PwFDu+3lTb1MscQ9QAoavHz5MTzvGfQ8tiPmvKkEIj1xDhS8obxsOzyzCbzjYQ28DUG8PBi9F7xArBM7yJHVu1riNr3fvbK7JLGMPEP6zLyKEJG8E7s2vFhhRj37FsC9q8mFPDl2jLz012G7oU0qvAIAfbzaqpW8eAAovLN3przmWpe8i91ZvATOt7sd4fC8CNAYvYhc6TxcFl08yZosvFIrvztVJEm8W42Hu2kTKb2YlrK8anqGPF6GET3PFCe9BgLePOZal7zDywK8AZG6vKISjjyNXko9kKSePSbuiTwjZMI7FqtpvSpN/zxikNc80lGkPEf8LTwROkY87yJLPZt+AL14ACi8HurHvGaJ4TtJHxi8hJaWvMPTZzzjYY2777MIPaCRnbzUQde67BgFve+zCLuhCTe8DfRxuxUzULwCAH29oQm3O9vEKL2mC5g8+MgGuxMIgTu58aC8GL2XPASB7TyQpB6899DrvJhJaL2Bt588IB5uPKBEU7snTJA81rGLvE/3mDvvs4g8ePfQPK8xUroqTf88PwFDPNq7Ub1sv+g88N7XPO3uJLttyD+91rlwPRrggbxnTsU8uWDjPE+qzjxJdMe8XR+0u2/85TtRGgO8qy9xvO2hWr3pOQ45fKSCO8VUWD1te3W9B77qvFhhRj1DR5c8uOjJPILi7rz1T3u9OX7xPCHSFb35hJO9Wiaqu7H/jLz+oAc8sm7PvJfaJTy84VO6j9+6vHSpl7zSUSQ8nP7+vMzXKbwwFES9+CaNPCzOb7ojZMI886wSu74e0bxfl009M0AFPUNHl7snqha8Ip9ePSXcW7z3Yak8DfRxvDqQH7yArki9pQJBPU4ytbyzKtw7d4iOPA+5VbsunKq8NX0CPOKtZbzJCW+7zvoTvLjXDT0g2no7TFyVvI2rFLgKt3S8m34Au6vJhTvNT0M9A1YePZBX1LzKAYo9/gZzvZ4Qrbrad967mQ7MPKxBnzyOI668sfY1unykArwNOOU7R6/jPPpRXLweptS8wyCyvMmarLy+HlE8l9olvS+lAb2p+0q8g9qJPMGfQT0kD5M9JlR1vS5PYLwnXcw7W57DusFS970tJJE8k5RRvPsWwLxkogW8eACoPBQqeb3c7/e7X1Pauxv6FL2pBCK9J11MPNfLnjsro6C8mQ5Mu5w6DT0royC9qOoOvKLFwzx4RJs8ZAhxPJzchjvl87k8T/cYvKOKp7kQwqy8E25su/qeJr2GdY076200PFqVbLygRFO97qoxPOwpQT04Dy89OMJkPR7qRzyT2MS5atiMPOb8kDwuk1M5V6W5PEf8LTs8ERA8b42jPNwrhjup+8q8FSIUvHm8tLzjYY09uaRWPIPaCT1S50u9/ZcwPTQWpTyYBXW8Bk+ovDADiLwYLFo8E7u2u1RXgL0oZqO8TSlevKJ4+bx+eqI89ljSPICuSDwh0hW8ZAjxPCF0j71qzzW7iyokvMCW6rojW+s7im6XO9RBV7sqiQ09tN4DvHOPhLyBalU7Ak1HvW7RFjyOZyE8lQzrPB17BT2mx6S8r34cPCAebjsWq+k5MwT3vPdhKTzl87m8wyAyu8yKX7o1fQK9+Ix4PclWuTyKIU27ZRqfPHSxfL1kVTs9lQzrPJrK2Lzc7/c8syrcu5PhGz0RKYq8KGYjPJKLejzYhyu907gBvf3bo7yMTY68NkF0vButyjugkZ08yQnvuNFITT19tT48n3eKPc3gALyl8QQ97TKYPDpD1byieHm8RLZZvGUaHz1nTsU8cWyaPAjHwbxNKV49htt4vbQ8Cj2uubg8G7ahPKFWgT0A1a28PMTFPOqoUL1OMjW6vlGIPek5jrz7Ywo8ltHOvFvrjTyUnai7UniJPONyybwDVh49Ee17vL9rG73y8AW94yX/vNn2bT22Z1m91w+SPPpR3Dvo4+y7tavMuxL2Ujwt18a8eiOSvXm8tDkkIE+9rrm4OwWKRD3vZj68EcsDPUV7Pb0NMIA8QouKurH2tTw8d3s8pzZnu9RBVz2APwY9wVvOPK8gFrsCAP08djLtO593Cj3LG508NMlaPYUfbDztMhg9E7u2ums2Ezwx2ac8Bwu1PApIMr1Ndqi8T+7BOm+NIzxWLSA9wZ/BuqBEU7sdLru77yLLu3UHHjzEKQk7nEtJvQAZoTyaFyM7nhmEvNA/drtfoCQ9RAOkvGtHz7wIevc6UufLPASB7TtlGh+8X1NavXSxfD33FN+8wI6FvF3SabxhGL68xOWVvGLdIT1JJ/07MMf5PP1K5rwHC7W5I1OGvCSxjDxkAIy8NMlaPRJDHT1+HBy9+GqAvR2d/bxBxiY8EcuDPICdDD2Qm0c9Qi0EvaxBn7p1B548T5kSvaCRHTxlzVQ9BT36OytW1jxnXUy9maIrO8HLkb2Akha9wcsRvc1bczyrPC89V3EpOwp7Hj1D3548Qf+CvYUD1zzU2f08m8R0PESAtbsAOnA9JCxKPTWMGb3o3zQ9Xu+zvJ8Lc7oF7aE88BMZOasXersmHNi8FjA1vMiohbwCT7M7rnM7PBrOIz2BZWg9pFdCvJ+PET3KmJO83nkVPBBohDzoun+8WpPyvP8HNb3rAf48JG53O7wYYLysbmo8D7KqvDUtMLwhTK68LwaWvDOcC72VRmq9+GT1vFuotTyKkdO8JhxYPYcIKL3qaOC8tliou76MjLxOA5E8LuHgvfsvkjxvT4M8s1PXuvb4hbuX9Mq8fcf5vFgfij0nMZs75u+mPJ2CR7y5enE8T3f5PL4tIz3YSoI8mEu7vDFVDb0Sksa8grxYPN3DuzrOcLa8ci+fvL01HL2QPIy9tGiaOh1skrzMwlW9LL8XPTztZ7s4Dcw8oN4IvMKm3DuOyN+87W0xPEL3CT3+SWK8jsjfvPFNTTyrF/q8WKNkvI/lGz2uXvg8B92vvNB9gLvCZK87eU7Au3awUbyMgWG8gMzKPIhnkbz8F6c8/8WHO6rlvjwpusY8BVSEPb8dsTzGYQe9qifsOuZWibw7VMq7tb+KPNcg/DwlORQ8bttWPR7gejxak3I7o2c0PdLp77xHYFG8dwfCOi0WiLxWGjk7YuSSPBsdGzsznIu9avu6PAiTCb0YuWA8xURLPCcM5jtYJ4O6Sul8vc7XGL2HCCi9vBjgOc6y47yoN149roOtvRsdGzuoN169Vho5vM2AqLwnkAQ9PpvIPIUDVzyUcxg9ADpwPAaGPzx812u8759sPWQWzjzaQgm88U1Nve+PejzkQcY7I/IVvd/19jyPhjK8CxQ8vKj1sD3BDb87GwBfu8kk5zyP3aK8+hJWvDJNlLyhd6Y81F2cPI/dIj2Fwam7f9w8PNEWHrzavmo9aAstvBDk5TtntDw9CGbbO8dZDjw+WRu8X9/BPAq9yzx1dp0787kAu4hnEb1cQVM9wLbOPNxsSzxf38E8xastvA+yKrzDlmq8VIkUvNnOXDwK//i7CHbNPCU5FDyVndq5AF+lvDdf67wHH928mEu7PPjok7x5TsC7OcsePGe0PDzplQ476DYlu3rn3btBe+Q8/s0AvfRSnjvdw7s88HKCvW0AjDwlxWc8qqORPQLoUL1SFei8rzkHvZwbZTyc6Sk73SqeO9H54Ttd2vA8TaygPGDPz7xIHiQ9In5pOtakGjw7VMo8A/UaPKZsBT3M54o6aE3auk/7F71EgLW8jXFvPI7I3zyXsp07mjtJPL4Ibr20qke9ik+mPJJmTrplbT69l1stu7MRqjxK6fw8JUGNPGlqlrwLFDw7kDwMvF5OnbydnwM92YwvvMQSkDx9Llw8d16yPNF1h7wMrdk8OGQ8PNcDBL28PRU9zc8fPNolTTyErOa7GXczvB9cID3Z65g7ETvWO+WYNj2vtWi8H55NPffwDL0tmuK5aWKdvIehRT2M/Qa9Z3qIvUE5N7z8AuS8emODvDN/TzxgNjK8dm4kPaQAUrxfpQ29EWALPalMobzFqy2+V7NWvcabOz0WMLU8dknvPKlMoTwKJC69pRUVPP12kLyoN149RIC1vEAkdL2fjxG8X4hRvIYYmjq2M/O7quU+vJO9vjsFL088NtsQPGRY+7zcrvg6BzyZvK85Bz1zhg89mQEVPfDmajzW3k48PGkNvYK8WDvSQOC8L3p+PL1vULu6TYe8OabpPPI9WzyU73m7CJOJPfOUy7sx0e4887mAPFFClj1mxC489UIsPQr/eLzDux88qqMRPdxsSz3+bpe9PAIrPD6byLxaD5i8PpvIPA+yKr2gIDa9armNvHi1Ij0CKn48TodrvPOUyzygILa8tQE4vbMRqrypTKG7q/oBvdln+rzWpBo9T/uXvLrBb7z7q/O8bnR0PDcdvjwXhyW8jP2GO3v8IDywDFk9KYCSvJUEPT1+hUy7ik+mvUUZU7xPNcw7NoSgPEYuljwlQY28fOyuvfC0rzyjxh07pADSPHZJbz4LVuk8i+hDvfvQKL1q+zq8hGo5vbn2Fj2GGBo8TBODvDgyAbzl/5i8l7oWPYihxbwOW7o7lgS9vLso0jtQjDy9YiZAPb/bgz15FIw7Za/rvHeg37zSUFI9f9y8vEh9Db2rF/q8EEvIPIRqOT11WeE8kYOKPOBM5zs9RFg85AcSPTLmMb20mlU8C1bpvBUwNb1q+zq8YuwLPTztZzyiUvE84Tz1O32qAbz70Cg7ZFj7vNolzbwyTZS7q/qBvekR8DzIi8k8ghNJPBSfEL07cQY8EaK4vGUjGLxmxK68dklvu6UVlTyFwSm8kc2wvHNp0zrmTpA7yEkcPdT+srnXnCG7TJddvM8uiTwxVQ09HHwEPbCldjxME4M9yhR1PZ/Jxbyl8F89DxGUPBJYErtBoBk915whPbPs9LtudPS8CGZbvESAtbvonQe9T5wuvC5IQzwOGQ29GqluvRNQmTy1vwo9reqPPDH2o7wgjts8f5qPPEgepDzA+Hs8Xu+zPLpNB70VG3K9EvkovcENP70+WZu7b8vkvO8bkjtC0tQ7zYCovJdbLbwE/RO9l7qWPOlo4Lv/4v88+OgTvd+zyTwF7SG8qqORPOk2JT2SZs48EvmovHZJbzx9ogg8/IYCvV7vM7t1FzS7yhR1un0u3DrbFVs8oGLjPMOWar0405e7UeOsOya19TzrAX68cT+RvJB2QL3wtC89i+hDPRYwNTyNlqQ76o0VPM6yYzxn9uk837NJPIZ3g7t1WeE6nOmpvOgh4rwJixA8xFS9PI/lmzx8lT68fUsYPIhnkbyIocU7kiQhPVoXEb1WXGY87xOZugzSDrx6pTC9fh7qur7GQDyHStW8fJU+O1Uaub1/3Ly8oyUHvbGAhT2Xuha8PO3nPKXw3zzckYC99YTZvKAgtrzSDiW9HFdPO33HeT1aqLU7twYJvXG78rz8AuS8v1/evL7GwLvQYMQ8pwWju5O9Pj1c/yU9KYASvUrMBDzeGiy8zy6JPQLo0Lut6o+9u+akPXaw0bzRt7S8okJ/vF8h77kQaAQ92kKJu2WvazycK1e9y++DPA5bOj370Ki8mAmOPKPGnbxT07q3iF8YPYHhjbxHCWG9n8nFvHyVvrzkg3O8hcEpvasX+jsKg5c8sxGqvJadWrxNrCC87FjuvJRWXL3CP/o5QXtku00w+zsifmm9e1sKvYXBKb1jO4O8aeZ3vDhkvLvoIeI7JIO6u2/L5LxC9wm7uk0HvaizA72KphY9H45buxL5qDx6Y4O9jmH9OxrOI7wzf887/+L/PO4GzzzUl9A8cEeKPNjzkb0rx5A8KGNWPXUXND3m7ya8+9CoPPjokz2uHMu7nnLVvIITyTsXhyU8K8cQPBzw7Lqsk588CxQ8vcB0IT3sfSM8ADpwuzCfs7x11Ya8t0i2PBUbcjv9dpC8QCR0vAc8Gb2GdwM9Lg4Pu2gLLTw3X+u7NsZNu4UD1ztOh2s9P7CLPHTAwzw3Hb67d6Dfu9g1Pzww/hw7/m4XvXcHwjvTZZW8dwdCPVdM9DzM5wq9iqYWvAe4+jrqjZW9chJjvJ+PEbyl8N87h0rVvLbxRT2q5b677496PPvQqLxc2nC8y+8DvHeg37wXYnC8IgIIvQM/wbyOL0K9d16yu8niuby7KNI5aWKdvYw/NDzuSHw8DMoVPR4FMLsSkkY88LQvvR836zo1LbA7S8SLPA6dZ7yb1GY8BXH8u02soDsZdzO93JEAvJf0Sr3go1c84Tx1vDWMmTykvqS8ik8mvThP+bzmMVS7+y8SPco5Krx9x/m8vDWcPasXejwraCe8xFS9vDB6fj01b9280H0APCRJBjtlr2u5679QvTdfazw2hCC94Aq6PNEWHjvaQok8QaCZvbRD5bwDP0G9nzCoPZc2eLwJi5A8nEgTPcdRlbwaLQ08ifg1PZQUr7uM/Ya8CYuQPGRY+zzf9Xa8JCzKPO2vXr2xpfa8wLZOPLa3kTxOA5G8A6ajuyFMrjvR+eE7eZBtPD5ZmzzSUFK9RnDDPFpRRbxKvBK9t6cfvPwfIL1Pd/m8SXUUvPcyOj2vOYc8iypxPAe4er3oun885KioO0fHszxiaO296XjSPG0AjDx2sNG8B7j6vNG3tDqaWAW85IPzvESANTwK4oC9T/uXvfFqCT0nkIQ98PZcvBFYEj2Wwo88OrssvbAM2TyAzEo8A4HuPLn2FjxyEuM5/IYCPO4jC703HT68jsjfvJGDCr34PwS9CHZNvLjhU72l8N88cY4IvbIRKryGWkc9fOyuux+ezTzG8iu8olLxPE3uTT3rv1A6pkdQvMvvAz0NIYa9KIiLOz/yOLxT0zo8cOCnvJf0yrz8wLa8mvkbPUNGATzsFsE8Y32wPN5c2Ty8GOA7MDjRPOmVDrz2+IW8eDn9OwriAL35u2W9CiSuuw6dZ7yy/Oa8NBjtPMO7Hz0S+Si90GBEPB+7iTyvtWi8UjqdvFz/pT1It0E8ETvWvIAOeLqHStW8DcKcPSdzSLxq+zq90lBSvEKQp7y2t5G8/0nivHuA+zxEgLW6Xsr+Or4IbryGCCg8XyFvvdOnQrtbBx88e1uKvDIo37vFaYA7kYuDvLrRYbz9fok8UjodPbzWMr1gNjK9p57APAgP67umbAW8lFZcPbbxRb3NW/M8cyemvUMpxTwZdzM9NQj7up/mgbykme88fqKIvPvQKD1aD5i8rhzLu2gLLT1PNUw8MY/Bu2TUoDv+sEQ7EEtIvM8uCT1UiZS89pkcPf/i/7rfcRw9utHhPFhht7z8wLa8Pt31vK85h70Rori8Dp3nvFI6HTvsFsE9f9w8u3Np0zyz7PS8vZQFPOvkBTw/NGa9PKu6u1z/pbv/Zp48Xu8zPIUDVz0E9Ro6G76xO4dK1Ts1b9087iuEPCPylbyAih09VCqrux2uP71xN5g6HsOCvBBLyDy3px868U3Nu12Yw7z2+IU6zYAovA5bOrzJ4jk9wLbOvDIo3zxTmYa80RaeO66DLT0hTC48dXYdvQrigL17/CA9eZBtPacFozx5kG07JcVnPVI6HT0EVAQ82xVbPQ4ZDT0c8Oy7JCzKOxCiOLxfIW+9zc8fvK5zuzxvy2S8K88JvQMFjTvDGom8tMeDvOeIRD1YJ4O6XjFhPKQdDrzHWQ69K2gnvLlqf72gYuM8JG53vNEWnrwPsqo6HzfrvKF3pjydQJo7ADpwvP9J4jyxY0k94cCTvFjImb2DVXY9Z11MvZxIk7uugy29LEPyPPzAtrzZjK884Ao6Pe1tMT0Ghr85ZDMKPKOpYTpoC608PzRmO081TDyvOQc9gnorvaB/H70aZ8E84w8LPWuU2DyU0oG7bpkpPM2AqLxVBfa76RHwOsI/+jtnXcy6SFBfPK+16LtkFk69w45pvL82vjwtuJ698K8QvfQHPL0xTqI8RyYiPd8kMzzpRTE9XAkrPD6Jc71kVJ48qpGNPKMcpTtWx5G7BSJyPSO2DD3OmVW9MRBKPV3ASbu2FcC8QWjYPDJDGbwo70s6wtdKvFloHrw0c347sNOmu938bDx9rr48iLkqPZCnWbwwG9M8fPefvD7HSzzj+A499+agvDFOIr2Qp1m9WYcKPZvwHTzcopK8+wt9O3P1Db3vfME8EwE6vLm2zLyw8hK9PRAtvaOg9LxY9/a4es9ZvGq1oz2jHKW8XvMYvCqb4bzdl4m8cuEqvLl49L0W/wo9NLFWuku8JTz4nT+9jBHWvGT32bwK4Ds9+PoDPUg6hTzLNqG89wUNPZ8K8Ty+QUc9RTy0O/9QgLyE5U69qGlHvN5tFDtV0po89Ae8PBXrp7zReDq9tO15vcDt3Lzdl4m8fuGNvYRCEz3HYkW8H5D1PDFOojob+nE8FMNhvCAVgLt89x89m3RtvBqVDr0/GYc74DgWvfFmL7wyQxk9e0ABPbcKt7shFQA84sU/PDrzb7wZTlw8whWjvH5l3TzIJO26SBuZPMdixTtsnxE9Z5hmPFX8jz3zbwk9vza+vJdamjo4hbK8X6q3Ovz16jxQCcg8EgzDO7FM7TxyH4M8DMqpPDsmvzxp/oS7Y34TO6QwCDz9KLq7SdK3uxjKjDyR+RQ8LjFlvQRgyjyrZxi9ubZMPI696zzPjsw8Uf4+u/j6A71QFNG8h8QzvR3kX7zYr0q8RyYiPXA1lb025CU8yzYhvXtAAb0SF8y8RyYiPauGhDwW/4o7RKQBPTEQSjxMsZw8XrVAPD0QLT0+x8s8Lbieu1Rh87zy3/U8Zh8gPNniGb1zmEk9ZWiBvHdsJbyavc49NuSlPH0Lg7zcrRs9oJqEvAwIAjweDKa8QpunPOl4gDxqRPw8LEd3vDWmzTlpRPy6QWhYPVd+MDx8uce8yBlkPW5LJ7xtGFg7rqtguzeQuzzhDqE8djnWu8i0gLxLvCW9iNgWPXSNQDtDFO48OKSePFFbg7xUn0u8vJWxuiHriryPsmI7aznzuxTD4TyrzPu7+dCOu01ou7wD54O9dI1Au1ns7Tz4qEi8okYaPNwH9jrWA7W8ArQ0PBPOajm4Hpq8F/QBPXJl+rzVa4I7arUjPTWmTb3lZsw8BVVBuxZvdz3nUDq99vGpvF/oD71NphM95xJiPLVeIbzqL587vwPvPE1zxDyR2ii9S7wlPXTqhDtT6Kw43IMmPfjbFzw9TgU9nrAWO4h70rt8Fgy9TDXsvHOYSTxIn+g8btp/PDJOIjwuMWW9RjGrvd7xYztdwMm5EGAtveqzbryF2sU8edpiPLn0pDyWZSO8ic2NOrjBVTwSaQe9n0jJPO7FojpKBYc8MRBKO9wH9jzXutO7zeI2PQRgyjxhGPW8oxylPGQ1sjy/kwK8y7rwvF9s37yu6Tg9MRBKPPIdTjumvTE9Th/avDM4ED3Yr0q96fxPPQ2ByLyeFfo8dYI3vXe1hr1Fegw7aMs1vSO2jLyF2sW7T5ABPLkTET2WJ0u8KC0kvaXIOj3jfN684BkqvnD3vLzBICw9vZUxPQVVwTz28ak8hKd2vLp4dDyx5wk817pTPU2mk7yqFV29RjErvFzLUjpnMwM8e0ABvOzbtDyoK+87BGtTPBIXzLn1/LK80yRQvMYv9rxoCY48gQbqPErHLj1cCSs8AvKMPKhpx7wdF6+7VkvhvH6jNbyrSKw6RTy0vOO6tjxnMwM8bwLGvFmHCj3bjq+8fPcfPVxHAz1Wx5E9M/o3O8T/ED1Fegy9/Si6PNd8+zzg21E9sP2bvfJbpjz1vtq7HiuSvGyfET1KS/68IcwevbxX2bwzOBA9TXNEPLLcAL1J0rc8b18KvfZ1eb3PzKS8edrivPyQB7221+e8mNNgPH7hjTx1gje8GU5cvV0dDj1jQDu60Xi6vA9rNrundNA7pQYTPXpLCr1FPDQ9sJXOO+Svrb37C/28Iq2yurVeIT3nUDo8w47pvHPWob1GbwM8vamUPP8SqDw2XWw+2AwPPZq9Tr2n0RS9dMsYPKuGBL2Hhls8bVawOfcFDb2af/a7hCMnvWn+BD3LNqG8kASeO8oD0rxb4WS7VVZqvWJLRD3YcfI8hiwBvFhAWLxBxRy8Om8gPaM7Ebw5PFG9vakUvUeqcTxgYdY8QxTuPOzbtDz7fKS79vEpPCqbYTyZJRy91HYLPdTb7ryY02C9P37qvFTdIzwwWSs8BogQPaQRHDy5eHQ7isKEPBW42LzmuAe9YbMRvOXthb2dXts8gayPPD/6Gj0Yygy9VVbquslrH7ya+6Y7c1rxvPUHPLwlEOc8xi92vHLhqrzjfF47/h2xPPGkhzx38PS7Th9avM/MpLyBgho98HG4PDeQuzxbUgw8rMFyPTfOkz3gnfm7/jwdPSSMlzyfSMm7WHOnPO3QKz0Ylz28Oya/vEU8tLwkWci7dcAPvdXQ5busPSM97sUivFOqVL1cCas8WJITPTB4Fz0ib1q8/lsJPaqRDTyI2JY86UWxPJ9IyTxryYa8Bz8vvQNrU72AjSO9OXqpvJmK/7xoCY680INDO6QRHLwirTK9MgVBvTabxDw4R9q8xMG4PBCeBb0huDs89rPRu5kGMDyWZSM9My0HPR8BHb0PqQ4804EUPKPeTL0aQ9O7two3u7g9BjwU9jC8scidu6fRFD0nOC295rgHvPsLfTyXHEI9xi92vHaWmrw2+Ai9aI3dPI77Qz2SU288yJUUPZynPDvQg0O7fmXduAd9hzyekSq8DIzROjJOIryrZxg89+YgPQ52vzz2EJY83IMmO7ZyBDxqtSO8+ZK2PDO8Xzw+x8u8b1+KPFvWWztLvCW8qZwWvdrXEDwVChQ806CAvOakJLwWb3e9vkFHvN6MAL0irTI9w47pu2uqGj0V6yc9QpsnvQ9DcLx2lpq8lxxCvQK0tDyMEVY9ESLVvBIMQ73ih2e943zevC08brwXb3c8pNNDPOwZDbzmW8M8tX0NPe1Ue7wr7Zy62xJ/vGxhOT1VVmq8cmV6vVd+sD1nmOa85HHVvBQ0iTw+EC08O+jmPA9rNrzgOBY9EXQQve5J8jtU3SM9OIUyvI3IdDym3J28bg1PPISn9jz+PJ28Z9Y+vSc4rbzwcbi8wGmNvOm+d72DLrA8k0hmPOCdebxXvAi9uP+tvNf4q7zpvne92O0iOXXLGLoMl1o8bZSIvcE/GL3TYii9/1CAu1j39rzzbwk7ArQ0uy16Rrs83V29f9YEPUBz4byzsgu9MBvTPLbX57tNc0Q8WuFkvaB7GDt3bKW8WJITPKLp1Tzqs+44T9Z4PNgMDzsA1U+9K+0cvHwWjD1x7DM9AJd3vOeOkjzqL5897z7pu0u8JbygSEm8ZexQPMLXSjzp/M+8NHP+PDoxyLzy33U9u6C6PJkGsLwMjNG83ySzvJbp8jx7Aik8RjGru1xHA7189x+9keUxPXBUgbx+o7U8y/jIug845zvN4ja9+dAOPQYX6Tyc5RQ8cewzvJCn2TwXosY8VfwPPSSrA734nT88jWMRvI1jkT0INKY8fXDmvIxuGjxDrwq8ymCWva7pOLizdLO7BJ4iO24NT7yn8AA9Ez8SvGN+kzxQy++89nV5vMArNTxBxZy8E85qu7YVQL2d2ou8Rf5bvd9iCz0/fmq8DJdaOxlOXL1m4Uc8MWKFPPwzQz3DzEE8Iq2yPHaWGr17QAE8C9WyO6jGCzxJlF+8XMtSPCvOMDpQRyC8bGE5vclrH7xdwEm9kZzQPGp3S7xQCUg84/iOvOlFMb3ixb+8OEfaOzFihT2+A+86Dna/vDsmPz0irbI7xm3OO2Q1Mr3HoJ09ArS0vDQOmzrxZi873+baO8kOW703zhM8BC37vB0iOD16S4o8mhqTOwZKOL0Tzuq8W9ZbvciVlD0DqSu8/t/YPOYd6zxkVJ68zplVu4GCGj07ZBe8hKd2vKsK1Lm7YuI84BmqvAaIkDtb1lu9xTr/vAZKuDzQg8M8nwrxvLQr0rz1Bzw8RAnlu8I0jzy1XqG8g/BXvTfOEzyaGhO9K86wvKvM+7vkzhm9TDVsvQc/LzwvJtw8qKcfO3WCtzuavU69qV6+PARgSjww3fo8b8TtvcArNTx9cGa89rNRvHsCKb3LNiG8SdI3vA2/oLxOH9o8o6B0vd5tlL3bEv88scgdPTSx1rv96uE8u6A6PHIfg72VcKw8B14bPNUOvjw0c/478h1OvPBxuDze8WO8NHN+vOEOobzNSgS8BL0OvVloHrxpglS9YbMRPcLXSr1QFFG8BGBKPe7kjrvih2c82aRBvIGhhjyVrgQ960OCPHmACDyOWAg9FDSJvbJ/vDucp7w7DnY/OwcM4LxR/r67oicuvBIMQz2VMtQ7AMpGPecSYjsZgSs8zlt9ugoeFDya+yY8N5C7vKM7kTtBpjA68ShXvUGmMDwdIji8K84wvYxPrjzAKzU9IIVsvXvE0DxKx6464iKEupuyxbu3SI89K5DYPLN0s7xzmEk8arWjvLjBVT0Ml1q8teLwvINsiLw6joy8fHvvvPbxKb35VF48Tl0yPBLkfDwyBcG8QaawPMgZZL0yQ5m8WxQ0urp4dLx7hni8nZwzvbUgybzPFQa8x2LFO+GS8Dz7fKS8IIXsvFWUwjxKS/67PRCtPA84Zz2qFV29iTLxPOQzfb2/+OU8R+hJPbqrQzzsGQ29ArS0PCKiqbkz+rc8hpFkvBBgrbt5VhM9Lq0VPRiMtDsyQ5k8edpivADKxrzvfME8bVawvE9SKTzlKPQ7a8kGPSsBAD1Fegy9HisSvfazUbza15C9kpHHvFp8Ab2F2sW7fHtvPb3IgLzt75c8hEITvUDvETyF2sU6/DNDvQUi8jvkzhk7YkvEPOSvrTxed2g9s5OfPKbcHTsGiBC8u2LiPLN0M7uQBJ68H85NPS08brvEwTi9TWi7PF3ASb3/Eig9wSCsPFH+Pjy14nC8ic0NugPnA70jZNG860MCPQaIkLz1Ogs97dCruS6ijDxT6Cw9vza+Orj/Lb2Cd5G9uIP9PLCVTj3snVw8KpvhOoBPSz2AEfM8pYriu4QjJz20K9I8zK/nusIVIz29TNA5CuA7vSzXijwadiI9NviIvKMcJb1z1qE8weLTvCkXkrxDkB49yYqLupsPCjwZoJc7TDXsvGnArLuttmm9BJ4iPbOyi7yh9F68xfQHu89Q9LwaQ9M8PN3dO9lm6bxcjfo8f9YEPWWu+Lyi6VW9EZ6FPWAjfr0YWWW8UyYFvXA1FTwvZDS9xi/2PIxuGj2Dsv883ngdu/0oOrz0EsW6sr2UO1SfSzyFnO06HTabPNBFa72LHN+8f9YEPU+QAT0vZDQ9CDSmPALyDD342xc7X6q3u6+g1zycp7y7IMPEO6z/SjyRXvi8uqvDvE/Nk7zTcIM8huDcvMqEaL2CJdu84FwKPB/NDD2vD5w8X2mvPNdXJTx+2Ae9wocAPCtWUj0PEKo8ZKglvQ/DQjyTA/E8KU7pusGgyjwCJKM71yCYu5bUzDwgVPG8tOtQvArRs7wrCes7t7ysvO5/njwrxIA8uirHOwtrgjxlkku82UFLPcdjtbx/zRq9rosnveWQk7zNP+q8Xn8JvbFGKTvQ+ms8tji4u72YYbyvwrS4sxcFPNe9Vru4CZS6oe/3vNhXpb3eM1q8rKRxPZIvJb0Whq09msZbvERaFL1OKNi8ZLOSvDNmpLyfG6y9+fIdvNXpCrvuJ8q7ioKUvKAF0rwZjha8q21kPV4yIroto7m7JfaovAGgrrzi1RE9xEXyPFPKjzxVnlu8Zt8yvZLivbxRiJW6S23WvHNPrrzwleQ7uxRtvAE9bb0iJc08N6UavA8Qqr0KhEw9bFW2vLbV9jhJ6WG767mvu4noRTwDweE7/PqGPEXeiDzBOpm7jie8u+KIqrwUTyC9gtUDPYwJ+bv6Kau7ZFu+O4O/KT1Kur27715XvKHsh7zK0c88+7iMPNNlFj1QBKE8dexsPZ7OxDynpIU9Bt+kPF3PYLzLu3U8N24NvUZlbTxq0UE9rFQaPbFGqTyN8C49XeU6PfWdTbyxRqm8Ft4BvXxUkzzojQ+8mjSKvHcgijw0UMo7ijUtu2qEWr1Dc947gASovJ409rtI/7s7LxHUPAAG4Dz8YDi9yx63u7NnXL2JSwc9zT/qvJX1kz1OKFi9WPOrPBYjbL2GhRi8Bi98u4AEKLw5j0A8WFldvDyXKTy95cg83aGIPMnnqbqUA3E9Ji22vGNxGD3HyeY8N2OgvAtu8jzLHre8bozDOwC2CL0SIwA91LVtPQNmHb1PEv68SjbJPGY3h7yg7Ae9xiyovMfJZjv2Nxw9sjBPPefHoDuDckI9ByEfvTiwhzxu2aq8Ri7gPFWe2zxt74Q8+AvovLci3jz5P4U8zxBGPWqEWjyl6QO6a7tnvS6NXz0pm9A8febkPD4mC736KSu9Ln+CvIxW4LzuDoC8KrkTPJSdPzx+HXI7TUkfvfNmwLz1nc0703CDvd3mcrz9PAE9loflvKScHLzkqd07TaRjuTNxkTz7E1E79Oq0Oxne7Touf4K8715XvI5/kLmSfIy9VUMXPNcgmDyaxls9gTs1vCC3MrxqaxC9nGCqPHGUrDuWeYi851YCPBD6Tz1NPjI9DOQJvQ8bFz1yGCG8WUCTO5aH5TwsVlI8YDqLPa7CNDvMVUS95xQIPQNmHb3MCF06EtYYPRGfC72PwQo9CLAAvarbEr1kqCU9vZjhu52XN703YyC9x7uJPFu5Gj1TUXQ8mty1vE3xyrzvwRi9PK0DPHdw4bvjFwy9huBcPEE80buKNa28e8Uxu1oquTw1NwA8pZEvvUj/uzxCJvc5m8bbuhGUnrwIs3C8ne+LPe4OAD1gtpa8R8iuPCAEGrw16hg91ZwjvFu5Grx7Ehm9z3Z3PbCs2ryYsJW8oe93vN3jgrwEkj28YnwFPB6LkrmZQmc9BZI9uwSzBL18/L486x/hu8HtMb7y4ku9c0+uPNSnkDsAtgg7HFQFPZchNL22OLg89FDmu3S1Xz39PAG9fxqCvQWSvTySL6W8LUD4O70ysDx20yK91E+8vIqClLvnZN+6tjg4vWytijzwXte8niaZvJ9zAD2KH1M8btmqu3LhEz01nTG997sQvH4d8rw+a/U8JhdcvC09iLu0ASs7atHBPIIl2zzI/QM968ScvGBT1TxHFZY8+AtoPZ2XNzxXIlA8leqmPNIxeTsNog89RUS6PPmPXL0J5w28xAAIvUPAxbxBnxI8HjM+vCrSXb0Rnwu7ztk4PdgKPjyi4Rq99jccPWSzkruMVuC8SY4dPAmaprtt8nS9ijWtvObSDbww+3m8otYtvG3y9Lxm37I71tOwPGHtIz1kDtc8aPIIOnMYIT0F6pE8g3JCPcnnqbziiCq9fZn9PDytgzwBPW28OFgzPe8R8Ls3cX29KwlrPGBTVbvS4SE9qelvPucXeD1AUqu8dTnUvONy0LxGLuC7pA07PXinbrtqhNq8gLdAvasSoLwwlUg8HYAlvNC1gbyE9ja8J8cEvJchNL2fUrk88TqgPZMD8TzjXHa8iAkNvV3lOj3C19c7+dxDvUq6Pb1uJhK888mBPY4nvDzwA5M8qUwxvSQMgzsh7r88FLXRvLS0QzuG4Ny8ix/TvJZ5CDx1OdQ8SelhPEnp4TxnbhQ8L147vZ6B3TvXcO+7chghPCC3srwegCW9cZ8ZPdXpijyHZFE7nUrQvD8FRLyt8dg7UjBBvW/DUL28BhC9RZEhPeX2xLqi1i07QiZ3PCKIjjwegCU9zozROGSoJb3VnCO8G3g8Om7Zqjw7eWY9nOQePeqCoj2a3DU9etuLvWOzEj3ERfI8KYV2vK8aiT3oCZs6DaKPvKSq+bs55xS9f1EPPFFGG73Z9GM8qxKgOmq757l20yK9ALl4PW4mEj1ujMO8e3hKvfxguDzPaBo6SY6dvBBdkTtx7IA8KYX2vKfIPL0M5Am9w8F9vNNllrvfzai8qjZXO+mNDzv8/Xa8+T+FvNsSp7y6Ksc8MLaPPPMDfzylkS+8FLXRPBhaeTzEqLM8PGCcPCFGFDxbxIe7cEfFPME6GT25QCE9HjO+unBHxbzB11c87fC8PN3jgjw2LBM9mY9OvSlAjDuUAIG78Ks+PKj/yTsi2OW8uKZSvdF+YDzYVyU9T6zMu4SpT7xegnk8uxRtPKnp77xGe0e85i1SvS8R1Dw/a3W8SoMwOkLWnzwVn3e7+xNRO9lBy7wZmQM8fjPMPMseNzz4pbY8FjlGvQseG7xE99K6HUmYuxLkdbwu2sa8arvnOeu5r7w+gc88171WvdBdLbu0DJg5dALHPVCsTLtzy7m7T6xMvG/DUL2BoWY7WxRfu2iz/rw5Qtk8zoxRPQbJyrzF38C8hKnPvBJ+xLydlze8LX8CPK7YDjwUWg29oTxfPQX47jwzGb28P10YOlFGG7w9ohY9LaO5vNyv5bxlfPE9J2TDvH8aAr2faBM7we2xPMC2pDwA+AI8GEEvPZvG27p4CrA81oZJPeC3zjsgt7I8jic8PBZwUzwAU0c8TaTjvOmbbLpmY6e9Ji02O/hYz7upTDG96s8JvC4yG7u6zwI8btkquyixqrwN8ua7H8KfvOO/t7wpQIy8wKBKvLci3rzfzSi9gtWDvE/CJju8rru7pemDPJRQWDum3ha807XtvCnot7yFk3U8mKWovJ5okz0Whi28VAwKuwN0er3d2BW8qGKLu7ROEj2l92A9jEgDPc/D3rsuMhu9HmpLvTMZvbqh7/c8VZ7bPASSPbwRRzc8BLOEPbROErwBoC48Y3EYvWBT1byFk3U8lANxvBGfCz0tJy68oAXSOwu72Twgt7K7u3cuvfADE70AU0e78AOTO1vH97yOJzy9+UJ1O93mcjx9Saa8TosZvc8Qxrn975m7SFeQvDytgz10Wps7CtGzPBdw0zyLuSE9BZI9ur7P7jx0Ake9zoxRPMRFcrziiKo9+KU2PYcX6jt1OVS8kS+lu4rSa73BRQa8X2kvvE+sTDxTUXS7/K0fPUYu4LxHyC49oi6CvOWQE73uf56876s+vcFFBr2mLu473oDBO8rRT7zgUZ08Wiq5u62hATyme9W9En5EPAiwgDtYDPY89yHCuwIvED1BnxK9CU2/PExUjLtInPo8nP1ou6X34DvW3p28EZ+Lu0fIrryHx5I7HjO+vCMBFrzVnKM7Z26UvOGTl7vB7TG91E88vBvFozy169A8cPrdvNcgGL1hPXs9fZn9PKrbEr3VOWK9gFR/PTdx/bsM8uY8jo3tPNj047x6K+O8DGAVPevEHL3y4ss8fZn9PGX1jDwEWzC92itxujYsE73zvpQ92fRjOvgL6DwRnws9LPsNvWnyiDyxRik94FGdPDPMVbyle1U8voqEPBe9OryRlVa8HtB8vSsfxbyt23493aEIPabeFr02vmS8oZ8gPerPCTrJTVu7T82TPPu4jLtODw46ZXzxuvxgOLwJ6v07D3ZbvRyvSb0CJKO7mtw1PTCrIj3vwRg9+KU2vZilKDx+M8y8ww7lvAyl/70UTyA8bfL0PEcVFr2yfTa9BxYyvbMa9bxdS+y8vn+XvDyilr1i10m9zoxRPWXqnzzFeQ+8M2YkPLim0jzuEXC8iZtePPWdzTrHYzU80jF5OvTqNDzi1RG9/3OOu03xyjq8rru8r8K0vIC3QL2pTDG9NiyTu/ncwzyoV5683GJ+u3/Nmjx624s8gtUDPexW7rr7E9G7Hs2MPUfILrt4Vxc84J4EPSj+Eb3Dvo08IwGWPEGfkrvrua+7wnyTvN4zWr1+2Ac9uKbSvKcVpDwrH8U8a2uQO6SniTzMVcQ7FLXRvNsSp7zhO8M6NTpwPEyWhr3rEQS96ehTO8cAdLxk+Pw8EK3oPAD4gr1KgzC9ex0GuyAEmjrgngS8WUCTPQ8blzxTyo+832pnvLgJlDr4C2g9QFIrupX1kzsyf+46pi7uO94z2rznFAi9LScuvMRbzDzBOhm8XhzIvBRaDT3egEG99UKJvGopFrs8lym8LPuNvFyY0zzXcO86vAaQuwnq/TtiJLE8DFWovAzkib2gBdI7C2uCPAopiDsbxSM9bO+EvY4nPD26gpu9UePZu28QuDyWNw67Ps42uz+4XLtujMO84r83PWXqH72kREi8KZtQPeu5Lz1Szf86Q6rrO51K0DwYCiK8niYZPcyiK7xJTKM8hi3EvANxijupTDE9xxbOu19pr7tnFkC8ftiHvUiyVDx+iyC8Bfhuuy3axj0S4YW8ajdzPGwITzqYpai7LT0IPexWbr0/uFy75Xq5OhuvyTxAuNw6JfYoPXe9SDzaKAE94O7bOobg3Lub/Wi8wtfXvHQCRz3jclC8SjZJveSpXTxN8Uq9atHBvFvHdztPrMw79AP/vCIlTbyZ8g+7WAmGvNbeHTzzGVm8iLE4PNt4WDy+f5e7PK0DPMu4hbs+NGi94ZMXvS4yGz01h1c9eEE9PNbTML2Hx5I9T6xMvEXeCD1BPFE9aADmPL8G/DxdPQ+9ZfUMvYGInLy/ab08Bi/8PG0/3Lw58gG9SoMwO8xVRLwbxSO7dezsOaLWrTy/HFa5NFBKuxcjbLxPdb86RntHveQMnzy0Aau84FEdPKjpb7zJmsK8pxWkOjdx/byUUFi928W/PKX3YDz/Gzo7wiQ/vWduFD1uJhK9K2ysu8KHgLxF3gg8/GC4u2izfjwrVlI95fZEPS8R1DuvGok8ytFPPN7YFT0aK1W9qFcePcNxJj08/dq8PGCcvBZw0zsKN+U77driPG/D0LyqIP284ZMXvSWTZ7tomjS8EjHdvONc9jwxOoQ7BfhuvP+4+Lxp2029snT+Oxk/e72Db+q8U6wBvSzu2TzZNww9pGc1PKguND3jSt08q/BMvfOO4zzwPAk9eh9UPLCIFryNLz89b24xPRL4Dr1U1S496N3AvPT5u7x3WNU8wr1qO8BhRLtPraO8PJ04vBfouryuTHM7U6ebO0WMQj1LEHQ90eKPu13EuDyYUKC8gg5eOwkFQTyMycy8PjsKvT5uA71EJtA8UROWOVqbCzxsRQQ8sIOwvJQjL7xzJv68kGGWvBBkCb08N0a97AoyvcL/lTz6F/u8jMlMPVvz7bxPsom81y5ivKE6xLtBxcM7QMqpvVzOBD3g+II8vdcKPLcRrrudCO28rVHZvNczSD3Lh4s7bJ1mPA6TvrzoGgY7WCzvPMTGFD2wgzA8u8n6vAhwGb3LEme8IZ7DO8t9P7xBX9G86tP0vKGgtrzkRXe9zkmku+gaBrxtnWa9HQb6POxCkbzbyxE9mkFuu/fAujvfHey8YuL3OxlJRz3spD87ntk3vbHpojwusHI7K/M/vCmNzTwmNg08+4LTu3fIk7taaJI8OXBHOz2Y0ry/YUS8QV/RPM1zc7wWv408RfI0O8JliDzRSAI9cMVxPYmlBT0IDw29an6FPJjgYbzCZYi8+iHHO7Pf1jw8oh674lQpPcWE6Tu3d6C7+/IRPXIwyrx0/K68tEVJuzd1rbwpJ9u7kPuju1zEuDuGNmm9uj4fPRyABL3LF008feFsPPDH5Dsio6m8aX6FvbarO72cDVO9nBK5uzRIPL30jmM9qopaveJUKTzXniC9P5yWuznbn7x2yBM9EysIPSzu2Ts4dS09c4zwPKrMBTxkI4G80wZXPXzwHjwtkZE8R1gnvSmI5zyaHAW7Uai9vDZMAD1JtE28kygVuyfLtD1aYyw7if1nvOupJTxjuCg8jpWxvBQmoruS+gE9JGXCPEm0TT34wDo7VWVwOuykv7wpJ1s9RSqUuu5wpDuInFs9qL51uuZ8NDwe4RC8CWbNPIEYqjytt8s7adtNvNVi/bzxNyM9/VMePYmlhTwJZk08IqMpu61R2bvOSaS8XM4EvF6VgzyIB7S7cW0PPFr40zuP9r079fTVvJ8/Kr1wDAO9nxGXPPIyvbxQQsu7A901O5qnYDyq+pi8ksIivK8iJDzCKMM7M9j9vH63HbwaROE8N3oTvc+vlrv19NU8S7iRPRMmIr34tu688jK9vJhQoLsfQp076z7NO6otkjsvsPI8kPsjPN5fl7zMfT89M91jObrdEjwk+mk8GqVtPKkk6Lkh2wg7OWthO35MxbyOzZC8MlKIPFcx1TzuqIO898Wgt8fqW71NHgS9+SatPDoOmbvAzBy9uG3UO6xWvzz6Icc8r61/O0sawLzEiU+8wv+VvCZg3LxRDjA9kpSPvEm0TTwxvgI9rvSQPB/NeLz/RGw8jzODO9pgubzeJ7g81zguPN5flzwmyzS7cyZ+vBPALz2y7gg8WQIgOlr4Uz0MzD+8k708PWwNJb1RDjC4zOiXvKhmkz1YnK28D4lyvYRFm7z1Xy68DMy/vOKMCDyJAs67ksIiPes+TbwUsf28MIG9PHxWkbxWbhq+lyKNvRD0Sj2xiJY8MRH/PJ8/qjwTtmO98i3Xul26bLt/Qnk9bQi/vDG+gr2kZ7W8M02ivHLTAT2y7oi8KY3NvEZYpzpH6Og7154gPN4sHr1+vAM89Pm7vB52OD1jTdA8O3QLPQakNDy3Ea66LJERvZRbDryebt+8AueBPNCqMLkMwnO6lX/VPFKe8Tpzzpu7DzGQPfZfLjtW0Mg8P/leOx9CnT2yeeQ7HnY4PXX3SLwCcl08q2ALPUi+GT2e3p29UUaPu5rpC706QZK8l++TPKKlHL1eKiu9PpPsuy1UTD3tCrI81NyHvKfIwTxLgDK9FBxWvWSuXLzTBte7DdADvVNvPLxYoRM9jMnMvJmDmbxkSOq8nXNFPJYUfTxxxfG6LFmyO6uFdLxEJlA9XbpsvD2injz1Xy48riKkvQQVlbvFhGm7+4yfPJV/VTzTbEm8wy2pvV8gXzz5kQW8EVq9PItedD6skwQ9VNUuvUbyNL0PMZC8HAvgvJqxLD3LHDM8YPEpu9OpDrzcmBi9F+i6PEHA3bsnaYY8GbkFvfXvb7vpe5K8a6JMPVgCoD3LgiW8GYYMvel7Er0bTYs9EF+jvBUhvLzd/oq8LO7ZPFgCID3J84U8GueYPNplHzxvacs7eVwZPS33g70EQ6g70hAjvXVdO71kI4E8eC6GPKzrZrt6H9Q8RlinPFy/UjyhpZw74POcvOs557uxE/K6EPRKvXZiIT3Z0Rk9CwkFPEzmJL1+TEU8ElDxu0tXBb2oLrS8d75HvMZfgDvLEue7NUPWvJqsxjsjDgI8iJxbPfDHZLuilmq82f+svMDMnLv93vk8hEUbPZhLujwATpY9pGJPPaE6xLwZSUc9R+joPF6QHbw/ZLc8hqFBPV+QnbzEic+8n0SQvJocBbyESoG8+PgZvEHFQzw7zO28V9SMvXi+xzye3h09j4vlu3Viobz6h7k8P2kdPNU9FD2/nok8BNjPPF0vEb0gR4O9zuMxvVNvvLzrPs06w5gBvdplH7uiluo8hasNvP8fA7zfxYm8aHD1PBje7joGpDQ9mFUGvbcRrjyqitq7k7jWPCteGD3jups8qZSmvG5usTxLgDI85oEavfDRsLt95tK8tUBjuwth5zuSV8o78W8CPdiUVL0utVi8UUaPO53jAz0hPTe8sLuPvL+eib2RYRY9uKoZPVU7oTvdJ7i7Bp/OOwCwxDwSVdc86q6LPCbVgLtQqD07psPbvK63y7w0rq48ksIiPY+QyztfIF+8M91jPOgahrxp2807LJERPdIB8bzLEmc8KsoSu138l7xmD+m8JsFoPAG0CDyl9/a8h94GumJStr1+TMW785gvvSBHgz2cDVO8umjuPBUhvDz+hpe9GbSfvO6og7yYSzq9LrByOwXTaT3aYDm8E8AvvfVfLr3n54y87mbYvHSMcDtYAiA9XFlgvDcPuzxrpzI9mOVHvT4DqzwaGhK8EcWVPQAR0bgTJqK91jiuPZO9vLxEjMK8xu9BvIRANTouJRc9DMw/vJx9kTz3Wki9EF+jPBqvOT0gqI+8Lbq+u39C+bwVHFY8yxfNPDw3RryD2kK9mOVHvBpE4bycDdO8/7QqvabNJzxQPWU8sX5Kunkkurskogc8d8MtvETJh71hges7v2FEvFxUejtKr2e91A8BvbC7D714vse8uKoZvYIOXrxrPFo6GxWsu3DF8bz2Xy67vS/tvAlmzbw5a+E8klJkvHuAYDw1qUi9ZnpBPHKborsuur483iwePc9EPj04rQw9Wf25PCCoj71F/AA9akFAPTCGIz09k2y8y30/PKgutD17iiy7uHcgvUofpjpuacs8js2QOk5Ml7tBX9E8oTXevEORKD3CvWo7lYkhvOCD3rs/aZ277mZYPB12OLy0sKG8h94GvfZkFL0D3bU8VWXwOggFwbuAqGu6yiEZvD2YUrzYmTo9HmzsPF8lRT15ueG7EF+jvNtguTtnD+k7OXBHvT9pHbyrW6W7QGkdPXX8Lj2sWyW9dV07vHSR1rpJSXW99DaBvCki9bv9Trg8LJERvfPQDj36jJ+7c5a8PE+tI7yjBqm8pl1puwzC87z/tCq985ivvIltprwnxk69akHAvDMfj7ySvby6L4uJvXkpoDu/ALg7RfcaPcHMHLw+/sQ8p2aTvMLHtjypilo8qSRoPMmxWrwgzXg76UOzvCQEtjvIUM68BakavLSwob1qQcA8xe/Bu/HCfjxTBOS79DYBve51irwnyzS884n9PLah77yNLz+9OOCFPUbytDzCvWq8rVHZvKzrZj2LxOa8IqOpPFmNezsr87+7EyYivZhLujyHpie9Rl2NPNczSLyGpic8g29qvSRlwrxIU0G9opvQPU9/kLy8Obk7zH0/Pb2QebxndVs8twxIPVXLYjzsQhG8jMTmO03hPj1ZAqC8hEoBPfSJfb1ocPW86djaPDUZBz08MuC8ZPAHvLlyurpcxLi7nXPFO/DHZDygz2u96+EEPaRnNbxOTBe9mFAgvKXNJ70kZcK8Sh8mvFOsAT2brMY8tUDjPDJ3cb1G9xo7psjBO4vJTDyBDt69O3QLPZjgYTz3wLq7VtBIvfItV7ts35E88sL+vEtXBT1eumy9ZVGUvfvyET2kYk89x42TvPMDCD0UjBQ9Lro+vU9/kDywiBY8qvDMPM9EPjza/6w7V5wtPGD2D71fhtG6sBPyvDd1rbxnddu8eLlhvLIhgr3xbwI9M+JJvOHznLuIAs48grGVvC61WD30MRu81dK7PLAYWD36HOE7goOCvA0tzDwR6n69V5ytOl+G0bzwzMo7JGoou61R2bwaP/u8WmiSPKKW6jrIwIw84VkPO3I1sDyE2kI80gHxPFZumrwUjJS8psNbPLNKL70tT2a91A+BO9JDnLxgKQm9/+wJPUi+GT3xbwK9Zw/pO6MGKTzVPRS8ITPrvJbqrT3dt/k7mbYSvSgsQTwvWBC86eKmPZHs8TpLhRi9w5iBO400pbxXNru8Lbo+vGRIajxfJUW8jipZuQthZ7wICic8/0RsvT47CrxeG/m6KY1NvB/cKrzo3cA8Iw6CvCbLtLv+SVI8udisPGd1W72SwiK9LO7ZPJhLujtsRQS7jiVzPbLuCL1Z/bk8OAVvvUHAXTwGpDQ9NEg8vPkmrbwLYec8LfcDve6oAz0VF/C8Ba6Au/HMSj36hzk8CqMSOzNIPDk44IU80gu9u/IyvTs6Dpm8twxIPa68Mbyx6aI8PDfGPPuMn7pSDrC8WJytvLzXir37JYu8Do7YvJHHiDzv+/89dvJivIXQ9jw1Q9a83Se4u8FcXjxcVHq9DzEQOzCGI7wwG8s86BqGPF4qKz2rhXS8ZLNCu98iUjyESoE8hNpCPBhOrbwmAxQ9E/iOvH8dEL2YIg08GIaMu7ndkjyrYIs8dpoAO+4AZrzyLVc8dAGVOybBaDy9BR49lcEAvTpm+zw9LXq8oaUcur0FHj0ZScc7EyYivbTacL0plxk9kfFXPUUqlDyYgxk8O8xtPWkYkzxGXQ08iQJOPfMo8TwJAFu89u9vPAY0drz87Su9pJ8UPFMJSjwhM+u8EvgOvdIQIzu3fAa9snnkvMhQTj2EQDU8E16BOwRDqLtlHhu91T2UO9r1YL2dsAo9P2kdvN/4Ar3a+kY6cF//vD9kNzy9L2085hbCvIec2zy52Cw9aHD1vGDDlr0R6n49jMlMvRPAr7y3ES69Zn8nPRUhvLziVKk8kvoBPQs3GD2Q+yO7cyvkPLcMSLlBNQI95EV3PCE4UTwAThY9OdY5vW/UI70YTq08S4AyPeVTBzuSwiK82/B6PKRiz7zQP9g7xfmNuvA8ibs3TIA61NchOyDSXrskBDa9XtUMvS/MfDwwXni90NY2vatywrwoZ9M8XY+9PG1X8TuCOQE9o+vAPIouh72smNg7ZPRmu8gpH7u/IQ48A3FjPQb9AT1Umje9zbZ9PWcUoLzaSA69S4E6PXihE7yTEII8o6EzvCZF+7lc1yu8s9drPBWj3brZWxk9JkV7PSCShrkn1/Y8+p/UvG3nzbs6KSo9Qoy0vPGI9rxlGN68eA+YPGTO0Drr1yC62ROrPAO5Ub2aGrI8RK4MvaJ/27sOcxe9gBepvBXJ87y20Q66Or3EvKN7nT0MjH+83+j3O15nCLxUUsm7FjEbPMjfkb2AP948OU9APFW+rrpcJfe8FsfUvEqF+LxLgTo9xiu+Ol2NHjxcJXe8yE0WPKN7HT0UW289FsfUO3npAb0m+229vu5JvJvQJLxDZp48KSyTPIr3BL1mqLq8Fg9DvaPHybsCBf67W9tpvW8tHT0xfrG8Q2aePJpkPzxUCLw89F6ivIrTjbttVVI9nPSbul5WHL0FSa48Dj40u1PkxLtCjtM8ZD50PCBwrjyKiYA7mR7wudEvkbx4oZM8S/Fdu4joNz0FbSW7qwbdPKM1zjrrjzI9h1p6PARLTT1nEgE9oYH6vMcrvjzH3xG8rOJlvPt5vjya+ng8iveEufQUFT0Du3A86SPNuuuNEz2/fqY7KQicu7VlqTis4mW814NOvFMKWzt4ahE9iFhbvUOKFT1/ieu8gGG2PBYxGzxkPnQ8/J21u6MPOL2qvu68eTMPvRidgLwwyl29zrRePVW+Lr2iEVc8KYcMvRfprDqclwO9Z28ZPaLHyTxsoX47TMkoPWfuCT0nZbQ8vrOJvFVQKj1VYZY7VAg8PA6qGb30XiI9KRsnvNpIDr0DuVE9ZsyxvOFU3ToNGr09v3yHPKN9PLz944Q8nBiTOt9WfLyrBL68IMkIPaIR1zwElVo9b78YvPvBLLsNiEG8yMyGPeEsqDxvC8W6MYBQPbzMcbzqxJW8DIrgOf1RCT03U/47qpp3vM9Eu7yix8m8Mg4OPeHC4TxTdkA9mGh9O3dsMLz7Czq8DtCvvIAXqbzzFrQ8XNvpvF210zykD7i8iOpWPOuxCr3PsKC9VYWNvLSN3jxlYuu8pTEQPJApajsdmOO7Z7cHvH/3bzm+WBC8mhoyPK4AAL3jYQs8ia8WPURACL1/QX05dibhO215ST2SJay8pJ8UO4cQbby9ylI82ROrPIowprzf6Hc76+iMOzIyhTwgJiG9kuyKPc9oMjxsM3o64pgNPR1Q9btVzxo84gaSO5C75buBlpm8OuG7vCdD3DytujA8rN6nupusrbzZyR29VjuAvTGkxzyj6aG7D/IHvSAmIThuVdI8vlxOPGVgTDyarsy8igoQu14MD7o7lQ+9f/VQPWQ81TqtcCM82KWmPAWTuzy/14C88T7pPNGKijwhJAK9Ot+cOzB+MboggRo8/RqHvJmK1bzhnMs8TKUxPJkcUbsfvFo9Q2Yevc/Wtjxd/UG9XWknPaPrwLxC+jg9nOGQvIdaer1MWYW86pHRvBewC704CXE8FzEbO5u9GT3genO8bKF+vSirgzxMpTG8Xh8avq1wI71DsCs9mdTiPEvx3TwGfpE89MwmvfMBCjy/7Co76G95PSBKGLxl9Ga96JPwu4daersFbSU9HnLNvAVtJTxlqDo7rkoNPKPrQLwY1AK9DIx/vHgiI70MjP88kAXzOymrAz28guQ8xVFUOiljFb0g3JO7ZBr9vK2WuTtvLR07vlzOO8bjzzxA/va6qwbduwxkyjzXz3q6rHThPDAUazyKMKY9qpp3vCCSBj2sKLW8dpTlPGe3hzwF3Ug9eVeGvbaJoDyjf9s6FoyUvK0mljxKg9m8OL/jvMVT87kxEC099IKZPKSwAL3jKok88hpyvSgsk71k0O+7DYjBvIlUHbzyiHa8N+X5PJn6eLuBqaS8vKh6vRewizySI425QSDPvDh3dbzYkhs8H0w3PVN2wLxBalw8DuGbPH89v70ddGy8eNq0O02QBz2BYTY7q5r3vA2Gor1e+yI8bKH+PNk5wTvWz3o+4FTdPG4LRb3OImO9kLvlu+t6CL2Rlc88QUTGu3gzD7x/rWK8rhOLvR4q3ztC/Fe8q7zPPJElLL0fKMA7tPlDvZquTD1nbxk9yJejvNjvM7xeMIa8OkuCPUpdw7vO2NW8SxM2vFWpBDw449o8ojVOPLwUYDz9vw08DTwVPLZBsjzfenO9rCi1OiDcE70wyl29kUvCvJElrLvYhe28WyNYPatQ6jy+pLw8KImrPCdFe7swoqi8ZV6tO5nUYr3ot2c9zmzwPLyC5DwwEky9STtrPPNgwbusKLW8itMNvW/Bt7yZZt472VuZvJs+Kbx2bk888fZ6PKsEvjxeZwg7A0vNu99WfLySlU88MsafPCgdxjxSen48kxCCPTmbbD1LOUy86Ws7PUKMtDzG48+8+g/4u/M8Sj1E5Q699MoHvXiQp7vZyZ28q07LvPMBCrzheNQ8b8G3vM+QZ721H9o7OZvsPCnRGTw6cze8BqIIPQ6XDryR39w8tRscPA+EAz1Baty8DwUTveuPMr0yxp+8iBDtOlJ6/rxvC8W8h8j+PB/eMryRTeG8BW0lvdjLvDxDHjC9oe/+PEP6uLzZowe7iQ5OO8+yvzz8Vcc8v48SPTLGH71/0dk84iyou0rvPr1dj728OAdSu6MR1zsOrDg8rm6Eu24LRT3zYEG90WaTO+rZvzy9ylI9mmQ/vAMpdbyHyH69HwTJPPOoLz0XVZI8f4nrPCZpcruIxt+62DeiPPPOxTwFWho8vu7JupG3p7zh5tg767MpPUNmHj2kVyY7ZfTmuuhJYzwNQNO8vuwqPLb3JDwd4vC8DT60PA5zl7u9EsG8A9/nvMYHxzz7waw7ZTq2vDAQrbsfW4S9k8iTOYjq1rwy6hY9x081O+Ew5jxVdKE8BEtNvWbyx7yiEVe86tk/vZKTsDzhMGY9gCgVvZAFc73O/mu9gfGSvNbPerzqxJU8vRTgPMcrPrxVF4k7eLQePZho/bxnt4c8tuSZvM60Xj0elkS860Wlvelruz0DKfW8/C+xvJtzDDxMpbG6rgAAPbSzdLxc/+A8MsYfva3eJz2/RQU942GLvNiFbTx/ieu8yCcAPemRUTzXg0682M1bvUuD2bvPRLu8f9HZvDi/Y70xpMc8iuaYPDHsNbwDS828rUysujFYm7yrmFi9XWtGu/vlI7nabAU9cAeHvWUWP7wxWBu9o+khvIgyRb3xZH+78T5puuvXILv7VUe9vMzxPDlRX7wEAUC9pWgSPVXPmrwLHns8HZjjvPzlozw4K8m7XmknPAxC8jz94wQ9+3vdPNDWNjx5V4a9FucNvJEDVD1uUzM96iNNvG17aDyk68A9Hro7u7ZBMr3IzAY8nJeDPJN+hjy8Fv+7kjaYPAWRnLz0Ois9DdRtPOprO7x4IqO86+iMvFsj2Dw5d3W68RpyvA0+NL1ngAW9v48SPdrtlLtLOUw8thscO76kvDpl9Ga9kQG1PDDstTyIxt88UlTovPp9/Lo6Kao79JMFPXn8DL3Yyzw8QY7TO6zgRj0xpEc9/fYPvaUeBbtd6Je8KRmIvbyo+rsNhiK86kfEPIlUHbykDRk91mF2vG9RFDybYqC831b8vL/XgDs449q8DELyvKOj0ryljAm8s0VwvceVBLwUW++8MsQAvFXiJb29pts8d0i5OqT6DT0yMgW7bKH+PDlNIbz9rII8vyGOPFsj2Du+DgO8mRxRu4gyRby9gEU7887FvEs1jrybYqC9GAsFPUpdw7zQwQw8k+yKuyBuD70p4gW89N2SPJKTMD3rIa6886pOvZPIEz2BYbY7tPviPEJERr0XnYA9z0j5vJqsrbuTSSM8vxCiOygdRr1A/vY7d9q0vIowJj2cT5U4tWdIPMhxDb2RJ8u8BkcPvW0x2z1V4qW767EKPPp9/DwF26m8v3yHPEG06TxUdsA7ZNDvvA0avbt4tB492V24vAOV2jz03RK982DBvCAmoTwxNKQ8DYrgvBTtarzpI006VFLJu+tFJTxTClu6RAmGvXVwbjyj7d+8BZEcvSkbJ7xCIm692ckdvetDBrzhdrU89BSVPKQNmTyiyWi9rZa5uhbH1DvQHiU84MLhvSBbBD36fXy8o308u64AgL0VyXO6QiLuPF1FsLxlzlA8OkuCvbNFcL3iviM9h8j+PHfYFbxvwbc8ZD70PG+Zgr3Fv1g8v48SPbVnyDzP+i08vTa4OzgtaDxmXq28OVHfvCaxYLxkqlm8BZEcvW4vvLuzRXC9diTCPAYjGL2tcCO8krnGPMcnADs6uyU9mkBIvHi2vTzGUdQ8U3jfPC9e+DurTss8OvCIvRVZUDxC2OC8mR7wO7bTLbwpUIq5bVdxvAXslTp32jQ831b8PPFk/7wfbo88DTyVOwyKYD1LX+K80RwGvdbPejx5IAS8xQlmvUFqXDx1uvu8eLY9vaos8zyZ+Fk9Bd1Ivb7XAD0dUPU6kOH7ugQD37y/j5I96m3aPDs6Fr21HTs8VArbOxXJcz2s4uW7FsfUvEunULtlPNW8bz6JvPM8SryBOyA7MsYfu4lliTzjvIS8DhgePDpLgr04dda8isCCuoFfl7y0aWe8rZQavVNUaLzR1Je8SqdQPFXzkTwpqwO98T7pvCf5zjzZNyI7bTHbO4HzMT0xEC29iVQdPdAgRL0y1ws9ZqYbPQ1m6bp3JuG8IFsEPQyu17wYQoc8MuqWvM7a9LmZHvA8SqdQPaTpoTzQjCk8Mey1O6JbZLwEA988tIu/vG1X8Txbkdw7ZWJrPN968zxtDWS8tmMKvQUlt7xS5mO9+ulhvEP6OLzoSWM8+8PLPUylMby39QU97NUBvaq+brwn1dc86JNwvfp9fDzOkOe7rqUGPSb77TvO2nQ9fmX0ObWLvzp3lOW6TMmoO/KGVzyqmne8Ok2hPLUbnLwWfUe9ZPRmPG6dQLw7FAA98xa0PPFiYDxC2OA64QgxOzqXLrr0yge8XvsiPUEgz7wPzhA9rV0YvIgML7tdRTA9gD0/ujlPQL13JmG9v0UFPQ4aPT3z8B08d5AnPG4LRT0hJAK7KdEZvF1pJz2clwM9gYUtvJu9GT0NZMo7rJY5vV4fmjwoias8XvuivFWphL2Z+Fk8dgLqvNkkF73Fv1g92Mu8O2fuCTyC3oc7s7P0vEtf4rvyzkW9Z5MQPfRLl7tvvxi94ggxumQa/byJrxY8U+REPEoXdLziCDE9BZO7PGaoOr3pkVG96+iMPQ3STr2/oh29/FMovb2AxTxewoG9406APPRcAz3R+I48v3wHPA345DuTSaO7BAHAPKRVhzzZXTg66kfEPFW+Lr3zhLi8vabbPCBwLj3Y8VI86kfEPL98hzy29yS8xb9YPMeVBDytlrk7xykfPHcAS7vXX9e8m2IgvWTIsTwfXfk7JwgivW7L/LqSPOq8FD6mvJH21TzJVEk9LsxaPTz8KbsJGpa8WclwPGlbXD2P79M8xbqcPKlT/Ds/V0Q9LYsDvbi02Txkz7M7GdHQu/0YkDzk6f+7ZxzKvJwKnb06xJm8VUIFPetjGj0E1ka8G92PvDm2FT0vyhW9L9PcO2Szq7yx8CA8UgW4vCcWprzhdxq8BhxbvZvZDj2m6Bi8a2AZvT9exjtstnY8S2QJPB9r/bxrZxu89EGWvKGWRbwsf0S9o5QAutigoDxOv6M76lWWvLiPCr0cB5w8F3a2vSuGxrz1Vhy99qx5vKSpBrxnHEo9/1AgO/4tFjyn/Z68ymlPPXeSrTyG7Ag9wW0GvcXkKDwYtci5oHO7PaPH07y2ik08bIzqvLm7Wzym2hQ9pg3ovPNYYbx+HJG8t5hRvBZ9uLxBcQe84E0OPJvgEL2zNrU71VOKusyFVz21bsW7VUKFvLmICDwH24M8xMiguLns6TscJWm9XzwJvQXkyjwRx4O7sgwpuxDHA70Beyy8i3EvPQt+dzyfULG8ylTJvNnKLL3YpyI7JdCRvNnKrDs+SUC632TZPIfzCj2c/Bg9HCzrPKYUajzLZ4q8AG2ovPMXCr0oJKq6VVCJvIcIkbyOvkU9HACaPC6w0jzKd9O6Qo0PvWJ0mTy5wBg9f3JuvLi0WT2UUfC6nPwYvDiajb07yxs92KAgvIpAITzDnhS7k2b2PHeLq7xWddi8Zeu7vMXIoLw9JjY8VmwRvQhNaTxDsJm997r9vJDYCD2HAY+8jqI9PN9GDLzLWQY93Ak/PcSelDpnI0w87XggOycIorzeHIA8uyt8vO2UKDyLca+8Jd6VuggTFDwUTCq8y1kGPSgBoLzYpyI9WMlwPSuNSL1DohW9aWJePOkyjLz0QZa8tEs7PS/o4jfdJcc8k1FwPXL/grzJRkW8T8Ylvbm7W7zEsxo89DOSvAkvHD1oDAE9LKJOPEUbfb0BdCo9TrEfPaOdRzwu4WA8jsVHvVafZDx+SOI8RLcbPVjC7rwIKJo7zJPbO6YbbDsF1sY6e+3HOQBYIj0dT3U9siGvuOtxHjujogQ8TqqdPLd6BL2mIm48ZMEvvN8xBrwS/xO9AWamvGtw4jzIP8O8zLZlu/Rt5zyb4BC7GsiJPBMwojxDopW9fSVYvGy29rwdT3U9y3dTvP0YEL1tqHK7Uf61PABKHjyRBFq8MARrvEtdhzy2fEm8uexpvJ9eNTquowo8xgCxPABtqDwnFiY9EeOLvLHUmDpClla8GcPMu1aY4ry4tFk8cvgAvGlNWDzWWgw8dVodvS7hYLycCp07UzZGOjeFB71F8XA9F4S6PEPO5jyJQCE94oWePGXdN7zKRAC9HPKVvEGd2Dw4oQ89JuWXPCXJj7uSIGI8d2+jvND197t9F1Q9PAquu5vgED0a7Vi7xxU3PZz8mDsWdjY8pvhhPXeLKz1YyXA7nQMbPfIgUTtMVoU9FWiyvIybuzvNipS8t6bVPC+8Ebz1Vpy9HCzrvJDhT72wv5K7tUu7vApi77uTWHI9AG2ovDvnI73rahw9UhO8vCgkKr5BpNq8KDIuPbRgQTxNjhU9pdxZPG2vdL0VRSi8GeZWvfWQ8Tyb5xK9Uho+vUFcAbxigp0863EevLnlZzzEyCC8siEvO46iPbsYrkY89G1nuwYV2TseDh49YXubvBRTrLvWb5I8aUbWPLaDyzwoMq68BMHAOzvgobyAefC8TGsLvF4nA7xgX5M8H135OxaLPLxDjY89syixPPaCbTvZvCg83UHPPdq1pjwxJ/U8dEUXvUCIUrzHFbe8QpbWPM2YGL09/Kk8Cnd1PLEFJ72hej28GcPMvN1BT73GBzO8KCQqPQKetrvXkpy83BBBO6X/47tl6zu9qEX4u5DaTTsJGha7y4zZO+K4cTw9GDK8zGeKu7RgQb0Q1Yc8alIVPfI8WTwIOOM8CFttvX5r7DxE1ei7oGw5PO/MODub2Q694oUevXm8uTx1YR+8nfWWPO2bqry512O9479zOWyo8ry57Gk9RfFwPtVFBjyk3Nm8Fos8vTEndTwWfbi8pQbmO+1/ojxgSg29bsv8vNmuJLwWfbg8tW5FvCgrLLxtxHo7KAEgPI/vU720Pbc72uY0PbiIiDx8LNo7jtPLvLDbmj3HB7O8FEwqvfELS710RZc7HAlhO8pEAL3MfJC88ifTvGx1n7uNhrU8t6bVvD9lSLyzRDm9ROruvD40ujt3b6M9Gt/UO7neZTx7+8s7aS+LPDD96DwHP2W9Zc8zvBDcCT1jsyu9amlguz38KbwcOu8831bVuteEGDw9Jra8/O6Du2BRj7xoGgW92rWmvDD96DswBGu96AgAPW2o8jtTL0Q8eKAxvOPNd70EwUC7H135POx/Ij2Q2Ag9HBfluxwlaT1oP1S5GcpOuvRYYT0CibA87ZSoPCcIIj2NqT899ErdvFVJB7xjniW9BxXZvFDiLTzKYs086R2Gu34qlbyTQ2y9zKFfPfz1hT06vZc8CXDzvItqrTzw9kQ9uLRZPBmsAb1Dx+S8jbfDu1itaL1DwGK9cw0Hu8t+1bwm85u7fmtsvLL3ojxnB8Q8o6KEuxr73LwVRag8fmtsPPVm5bpSKMK8N3cDPZrLCj2c/Bg7M0P9O6BlNz2fQi28oHM7Pc7n87zpHYa8tFK9PM8DfLwjn4M8RM5mPJRYcjvga1u8XieDuwhGZ73uxTa9njQpPd06zbyHAQ+9EykgvLHwoDyw1Bg9eLw5PD0fND389QW9bL14O6Tx37xYtGq8xLMavY6ivbrLmt28aUbWvPESzbzYoKA8nSYlvboIcjvfMQa9VVeLu4bXAj3pMgw9YV+TvbsB8LvhYhS8Zvk/vNrYML05vZe6tFI9vFVQCTxQ1Ck9jI03vcOelDtLXQe980pdPTmoETrEyKA72cMqPBw677yjm4I7qDByvXzrAr1SGj48MSBzPPESzTvLd9O71T4EvfNR37x9FY88zIxZvKSwCD27+u08exBSvLDpHj1oKk68zuDxvHwX1LunRXg9F3a2PGuhcL0E1sY92wI9vRaLvLvshiQ9BeRKvI/o0Tx/cu47KCQqvFVCBb0+ScC75Nv7PIbehLwcLOs7uJ0OvKKyzbw+O7w6CFvtPHZoobzw/cY7shqtvLsPdLyw6Z69HkHxPEOyXrwWdjY8ykbFPPMlDj2nG+y8h/oMOnsQ0jyksIi8h/oMvLIMKb3a37K8fjrevAlNabtWpuY877AwvCXXk7xD3Oq72KAgvRQ+pjs3cIG98gtLvBnmVj3bAj29qD52PGkhB70slMq8K3jCvKg+9jttqHI84IdjPYpOpTwoHag8d4QpvTNKf7uoWn498P1GPPMnUzx3fac8zHyQPSpcurzho+s5aksTvRMworxqRJG7ZeQ5vR0l6Tq2fMk8o85VPZ9JrzxmAMK81T4EvZHtjjwUPqY8Yp6lO47MSb23cwK94HLdvCgdKDvut7I8T9srvKTc2TwHB9W87IYku4Gj/DyID5M7PBEwvQTWxrz9GJC6lFjyu7m7W71P26u8iQ+TukUbfbwqVTg9tGDBPI2GNTyyEyu8VnXYPCXelb2yE6s8AokwPK2VBj0bCeG8p/0ePZV7fLxVg1w8CFRru/ee9TvWWoy8K3hCvTdwAb2TZva849R5vI2wQb0EyMI8ZeQ5PbdzAj30M5K98i5VOylONj3LZwo9LZIFPYpHIzu4lgy9RQ35PIt/s7xBpFq94XcavctwUbwpHSi8KDKuvJ9CLb3uvjS8JuwZvc3Sbb30dGm7Yp4lvGgaBb3w2jy9fAJOPBzWDTwreEI9h/MKvAb5UL08ETA9TrghPVD3s7rLYIi8d5kvPaYpcDxBc0w9ik6lvHws2rxpW1y9tDa1POBiFL1zIo27ZKypO9h2lDwkrQe9LKJOPbemVbzNnxo9XicDvECBUD2G5QY915Icvcpw0Tv/SZ47oqRJvGTIsbx+Xeg8VGBSPUGd2LyjooQ9EeqNve/TOr3qVRY8Y54lPf0KjLyfXrW8jbBBPCgdKDou4eA8GbXIPKg+9rzGADE89ZBxPDiaDb3/SR67lF/0vCXQEb2eLSc8iBYVPRrf1DxOqh09WLtsvWgaBb3YoKA8UPCxuS/25r13fac8EccDPLwW9rzpMoy87ZSouz5CPr3IFTc8kyUfveGx77xGIv86r7iQPCgkKjvKYk28jJQ5PQ/AgTyPwwK8P2xKvBLji7u5j4o8/jQYPI/oUTuG3gQ9m9IMPC2bTDufSa+8HAlhuwlib7169Mm74sb1vJRf9Lw5qJG8LbBSPHeEKbr0OhQ9evTJO7MvMzspTra7qD52vO+wsDzCdAi8EgYWPaSwiLzVPoQ8PS24vLDinLvLml28TYeTvKb4YbxUOwM9KCssvD0mNj3hsW89dnYlO2gjzLp0KQ+9et9DvetcGLygZbc8y0sCvQOluLyKR6O8Coz7u6lT/LzLjNk88e/CPAhN6boXkr48L8qVurIaLb1DqRe9magAPQTdyDsZs4O84YdjvLnlZ7za2DA99XvruwBYorxoOFK8ht6EvU6xnzxCjQ+8siGvPH0z3DwqcUA7QXPMPO2iLD2kztW8GK7Gu7rVnrwoDyS7r7gQvItxLzx4vLm7xc+iPSt/RDqfSa+78gvLvNADfL1Nh5M82wK9PFWKXr0CrDo9AokwvKXMkDwIIZi7QHNMu6TcWT0ZrAG9Zc8zvEPj7Lza2DC9ueVnPMlNx7xXZY87kgIVvLmkELtl6zs9tFI9PNZvkjx1Wp28shotPUObk7xClBE9/O6DvCgBIDwSFBo9pNzZPC/DE7xhe5u7bJruveGH4zsm7Jm8o5uCPGpLkz3cCT+9zqacPGtZl7wG60w8Uv41PRrf1LwCibC8O+4lvQuTfT1Wn2S8CFTrO0FcgbyNt0M8L7wRu4kynTy5shS8F304vHdvIz0u4eC8F5I+PLoPdL24rVc7MQvtPMgxvzxQ9zO9YpejvRnDTDwEz0S9VW7WOycIIj1smu68zpiYPLIhL70DwcA8fioVPaOiBDoR4wu9QWODvFDiLT3pCIA93iOCPGTWNb0WfTg9sgypO59JLz3Nr2M8EykgPfICBLy3egQ8VDsDvVafZLzYoCA8LrdUPQF0Kr3dLMk8YpChPOpVlrzVPoS6ymnPPHsQ0jwG6Yc8aSgJvEFzzLx3kq08MO/kvH+A8jxRBTi9k1hyvc2KFL387gM9/RGOPJ9QMbuKR6M8r8YUPUGWVj3oFoQ8HUFxvVi7bD3dEMG8oZbFPJHYiLzyCQY6dEWXvBrt2Dzv07o8o6KEPBMpIL1eJwM980PbOlrz/Dy4lgw8FoS6u30AiT1sqHK93SVHvdQwAD0tt9Q8Y5ChO0/GpblSGj49n0KtvLqrkjyzL7O7HDrvvNv0uDtSKMK8UNQpPAKJMLsAvAI9Ul2uO3g7Fb1SXS68x//EvJbDFL2Rlog6mFhiPQQqGz31m1S6184XvYThjDzhbe08ng6pOXc087qpcxQ6J54aPVaKOrw+rS69hCbKOv/17Dx82zU856GbvKoyiDtEJpq9RjUevHQSOj2DG/c7wUl+vCo6ijzVgjg6J56avLg3lDxy/wQ7vSfFvFDQQr3Y3Ru6X9l/O0yuCb3oqX08OxXwu5T1nLwtWBI9VgzTPNaG6TxuXPO8q4KYO+BeabuTqb281HdlvZeRDLmmWb08qwAAPYrckLxWCKK8XcKZPNcT1b2wr6S8WznfukPaOr13NPM67+wvPXIDtrtQ0EI7xvTxvMBFTT0a6R49cDGNPG3WKb3iM4O8W7fGvGgrNj1SYV+9bmOVu7G+qDt/+b084aYXPeN4QL0XUWA8GN7LOysIgjraq5O81gRRvYDDhDzUczS9c5ChOWei+7u/uOE87mP1vGN8ETweU4a8NSEOvIGGqTsCFHU8dzBCvY7+yboQER89zKo4PBrpnjy2KBC9TTTTupGe6jze0f265IMTvdcPJLy4fNG8MsYqPZ6UcrwdiT88C2arPIjNDD0TbAI9Ok6aPMUtnDtv5S087t2rvMThvLyQj+a8TsXvu7kFDL2Ixuo7CRabO6O9zTyRmjm8oWkMPX93pb2NuYy7abH/PDLGqrz7Wf086KXMvEvgkTs492e9xfBAPNRztLt95gi8cgfnPJGe6jz+c9S8TsE+vG5jFbwkR+g71Pn9PAnVDr1tWMI8XpARvURnJrzRWd08XEABPHg7FTwvqCK85AUsPfUdbT2Rmjk9jG2tOv1k0DyWx0W831q4vKaWGLw/uIE8kBH/vIGK2rynIwQ8jOsUvPYoQDw37wW9ClvYPPlCFz1fV+e8A50vvX/5vTy13LC8PrHfuzdxnjxoK7a7gYYpPYUxnT394rc6EI+GvG9nRr1t2lq9kyvWvGDgIbz5AQu73LoXPLj+6TzPxA+91HM0POVRizwX0/g89ijAPKoyCL1Rmom75IdEPRx+7DwMsoq9HQtYvIxxXjx6Tkq77ymLvGaaGbwXUWA9Z6J7PYQiGTyJDpk7J+PXPB8WKzyTre67D4jkO2xNb7y2aZy80FUsvflGSLyZXwQ9gYYpvRIkVL2NuQw9Pq0uPAWsMz3S2/U7DoQzvcBBnLuhLLG8etDiPPQZPLzu3Su90ubIu3pOSj0uWBK8BviSvKwPBL3WBNE8E+6avM03pDr5Qhe9v7SwvLYokDticb48lsv2PO5jdbz5xK880JIHveSDkztOxW+9kuaYu0HLNr0sihq5PNuFvInRvbzXzhe8Iav4O4GKWrwQl2i9t21NPcNfpDyZX4S8YOChPEkWSzzfWri8JdCivJpnZrzQ0xM4+UbIu9hbgzsgYoo7cgfnvMNfJL0N85Y8wg8UPV6QETxrxyU9W7MVO/RWlzyZY7U8dSG+PMd9LD1yB2c7yps0vD+4gbnf3NA65hhhPf4ulzyMcd68ApLcu9DTEz1zTxW9qwCAvflGSLyWwxS98wo4O9OwD70sDLO8BawzPdWCOL1Gdiq9KjqKPAUuTLwVPiu+DvdHPAhIIz25Rpg82JwPPawPBD0KW1i9LBDkuyyKGr2mlhg6hOGMvH93Jb1g5FK7oB2tOfH3Ar1wMY27SyXPu3D0sTqsUBC9KXR0u68m6jvHgd07VXs2PZGear3JkOG8mV8EPJyBPT3nI7Q8ZhyyvFDQwjwzTPS80VldvUDAYzoVewa9LAwzPVV3hT1brHM6rRM1PYnRvTyobPI7pMggPCXQoj3JEnq7U/J7ux6Ukry8HHK8uHigvInVbju9qV29uxjBPPSXozyPCZ28/u2KvHnB3rxSYV+9EJO3vEujNj3NO9U5dSG+PHNPFT3EY9W6qwjivDcwkjwUtfA7MHYavfnErzth7yU9JdAivfZlm7x13AC8dR2NPIXwEDxHAxY91YI4PTB2mr0orZ48RvjCOwMfSLwf1Z48Ud9GvV1EsjvSaGE7V1QBvfxgHzuhrsk752CPvbYoEDyzzay8TO+VPSGreD4+ra48XUQyvXD0Mb2/tLA8TsXvvEnRDb2hLLG8E7G/vMBBHL0YmY48bVjCu04/JjonXY68BbDkO/YkDz3ziB+9g5levISoYj2uoKA8U2wyvIjNDL2wMT09ai9nPCgrhrzj+ti8VgzTPNotrLwejfC88wq4PAvow7zx+zO9orL6O5v00TtU+Z28q0GMvFHfxjt6zDG95VGLPaddbjzziB84nhLau+zS2LoOgAI9Lh/ovBjaGjwYXLM8TK6JvNW/kzz3dB88sLNVPRMvJzyMba05+DdEuney2rzhaby8kRxSvR0LWLzIjDA8QlgivKjq2Tx0Fus6PNuFPNpqh7ya6f68Y/4pPEkSmjxg5FI9dusEPZ7NHDrVfgc9wtbpu1Py+7pmWY09Ct3wPDE98DloaBE9lLjBPE7F77xMMKK7J2E/vR6N8LxE5Q09zfYXvJ0DVry8mlm7OQK7vEgLeD3NO1U9Y4BCPeaWyLymFAA8VgxTPVmkkTwISKM8LRu3vFT5nTt4OxW9zKq4vMiMMDxgYrq8wx4YvXIDNryBCMI84GWLPGZZjTy13DC9riK5uwMbFz1zTxW84Wm8u/rIYD0DoWA8dJTSvHQWaz3kxB89sDE9vLAxvTyRmjm8z8zxPJ4OKT2VvHK9Ctk/O5Q2KT3i9ie6yAoYveq/o7t1IT69zjekuzqPJj1yQJG8W7MVvRlgZLtt1qk76r+jPEA+SzxquCE8hCr7vI36mLznIzS9NeCBPHXcADzXE1W8coVOvH/5vbx//e67PKJbPfDwYLxtVJG79Jeju1BS2zz712Q8ypcDPbh4IL1hLAG9VgiivP3maLwAAUC97EwPvDyi27zHgV08iM2MPVgb17w+M/g884zQvHi9LT249gc7lbzyOZJkADzezcw6GJkOPJfSmL2p9ay8mul+vBHfFrw+ra68+9MzvYLSiLugo/a8jv7JPGgnhbuFMZ081Pn9O+SDkzxFa9c8TkPXO9icj7xGetu76W+TPQUuzDwSoru8x32sPWtJPr0Gt4Y8kZYIPeFt7bwNdS89OxG/O9y6lzssDDO9o7kcPJqvFD0iNDM88oH9u/H3Arwishq735cTvF3K+zt60OI7S6dnvJ6UcrzNuTy7lLSQvVaKOjsQl2g8J56auzboYz0iMII6fN/mOwAFcbyZX4Q8lLhBvNmkcbwBDJO9kRihvAQj+TsnHIK8+xAPPVCLhTwHPdC7c5Chu+8pC73WBFE7F00vvdkeqLxKGnw94rUbvbVeSby3cX48PCDDvC2ZHrw37wU83L5IPEb8cz0/uAE7hrfmPLRT9rwab2i8XLv3PB+c9DrU9Uw7kielOwhIIz25BYy8M8pbPJtyOTzmFLC6uotVu5EYIb1x+GK8HpSSO0qfBT0FrDM5phSAvNUAoLxYFya6f3clPOFpPDpE5Q29DXUvvbuWqLpf2f+82SJZPPSXo7vFLZw7iuDBOxjeyzuN83Y8I7r8vIa35rw+sV+8+cSvu91HAzxbt0a8GN7LPMrYj7wABfG7B79oPZLmmDzrQbw8j4eEOzcwEj3EY1W94Wm8POcjtDzunB881QAgvUkSGj1KnwU8dSE+Pfi1qzuQj2Y8ssJZvIf/lL2lzNG82aTxvF3CGbxjfBG9nDyAPTPKWz2uIrk8CMYKveSHxLoSJFQ9wL8DPLXcsDxmGAE8X1fnvKO5HDuhrsm8jv5JvUb0EbsOwY48arghPLG+qLwoKwa9c5Chuw8KfTukeBC9qOaouzUhDr3ONyS8dBI6vWeeyjvK2A87UFJbPPvI4Du5Rhi9yhkcPX3qOTytmf68VggiOz6xXz113AA7cHKZPVBOKr1jOwW9eL2tvAMfSD3XE9W8wcfluteRvDtdRDI8xeyPvJOpPT05Bmw8A6FgPTyeqrpGels98fcCPWBiOr2PDc68dZ8lvFLjdzp3LBG99ihAPWk2iT2PhwS9QU1PPTNMdL2VvPK8nQNWPE4/Jj0492e8ghOVPJ7NHD3Vgrg89iQPPal3RT1KGny7kytWPAb4Ej3vKQu9kiclvBpnBr1mHDK9WJk+vKCj9jwl0CI7cHZKPYQmSr0tWBK9DoACO0yuiTyo6tm9BS7MPGBeCT1OwT69YvPWvKbXpLsaZ4a9dR0NvNT5fb1yQJG8SAfHu8odzTxg4CG8CAcXvKaWGLzrRW084aYXPNmgQDzjfHG8fWihvDbksjyEJsq7ypeDPdw8sDuJ0T28xW4ovJqvFDyClS29H5x0vI36mDwDH0i8Gu1PvQb4ErzE4Tw98wo4PXH4Yj3YWwM9TbZrvLbrNDyHvgg8U2iBOwWsszyCE5W8LJJ8uxCTN7xbcom7qXdFPOTEn7x6zLE8RKQBPdDTk7yHQKE90FUsPTmE07rjfHE8zbWLvasEsb0dB6e7Y4BCPYrgwbzZoEC96r+ju+YUMLquHgi9UmFfPSwMMzx2JW88TK6JO6N4kLvWhmm9pEYIvX5s0jwrg/i87l/EO05D17zAAJC8V1QBPd2ID7ytmX68dzDCvLPR3b2hLDE8a8elPIjGajxE5Y0884xQO/5z1LsQkzc8Y3VvvNUAoLx4vS287I2bvJMr1ryfm5Q7h0AhvWP+qT1BQvy8rl8UvCI45Ls824W94evUOnUhvjy9pSy9f/1uPEJYortD2ro8N/O2uhNsArwIPVA8QUkeO1iZPry7lii9aKkdvTsV8DzIDkm8L6xTPC2ZnrxEZyY7iMZqO9aGabsvJgo8dR0NvMVuKDzWhmm8R8IJPf3maL026OM7KfLbPMTlbTyJ0T289izxPNotrL2UuME7BCP5PD0rljyMbS097RoHvbJAQbutEzW8EBGfPMb0cT1cQAG9QMDjurqHJL1Wijo8xXLZu70rdjvAQRw6s9FdvMqfZTvnH4O7TsVvO9mgQL1ByzY9vvELvWHvpTwYmY69qjIIvftZ/TygHa0739ifvbNLlL05hNM7nIE9vVmkEbzFLZw9LReGvMUtnLyZY7W8qXdFuyp/xzwc/NO79ZvUvCAlrzxCWKI9xOVtPU7FbzpF6T693EBhPRfTeLzJkGE9EBVQPGYYgT15wd65sLPVPGZZjbykSjm8YW0NPek2aT2oI4S9g6AAPXIH5zuOAvu8jnwxvG/lLTwGu7c8qwjiu9sx3TzOg4O7ZALbPOk26Twqf0c8DfMWvYAEEb26De68wEGcPAlXpzsrg/i8cgO2PJ+QQTw2avw8h74IvLoJPb3ceQs9gYYpu/IGhzyUuEG9LyYKvEA+yzzCUKA8BawzPSGr+DonHAK9MkQSPb7xC72OgOI87l/Eu6yRnDp1o1Y8rRfmvOaWSL3YWwM9fF3OPPRWFzuARZ286n4XPabXJL0Gu7c89ZtUvIzrFLz2ZRu8RKSBO1gXJj2X0pi8qgabPBlFlTwPGoa9AY01vAMxDr0hiFa9UOqevCx9Zz1neBk9wGqwPNyZcbr3Dzq9cYc6PQ2etDwWT1C8O2obPNRwQD0Vn1694eGivHDztjt90BU9OKpUO/ktBr0Wn947q/oBvfUb07xnGpQ7Zv6lO1ohx7zBhh484BVDPHJfM7xo5BU9qyKJu8Gwg7xGUxO9QYP3u+kW7Tr3AyG9W2W8POkyWzwOTia9F0M3PaWwcrzeSeM7ODI/vQkG9budr8i8LZnVvHnYcjyUbAe9t58EPN8h3Dw7eBK9eJT9vC/7ljyTQqK99JPovANnDL2fl5a8n2EYPJKSMLuQPmY7AbW8u1rRuDxyUxo9hj08PfRr4Txiju28LhUnvX9yED2owEc9DqCSvfiXJDxwk1O9fiCkPI+OdD2pICu9Wo3DO7WRDbtzv5Y7JRIfvGXit7xBq/68IdhkvYnHBL2Dpfy8BJ0KPbJJXL3qkr68fiCkvCMsr7zTpOC667pFPHHzNr1QLDa9aTYCPE8QSLw3jmY915wDPQRnDDw3jmY9yJPhPA/WEL0PapQ5nJPavBlFlT3LOZi908znPASrATxmkik9U0oCPbwW5rxQcKs8605JPLNZsbxP6EC8hmXDvKkEPT0OTiY9DTI4PKgsRDllnsK8lIYXPad80jwOyJm8k9YlvSXCkD2TGpu8QltwPW7veryTTrs81yIQve2GJT1cFwy9Fk/QuySYKzy9Cs08aJSHvGg2Ar3t5og86e5lOwOBnLzuiAO87TYXPPZ7NjyfR4g8DD5RPH20pzylRHa7JJirvHMdHD0Prok8ONLbPEc5g7v2Uy89qEgyvWZOtLxM2Gu7QRf7PFEgnb1zRwG8D6ASPE3Y67wa9YY99qM9vTAXBbv3Kyg9C47fvHN7obxu7/o81zCHvNzBeLwPoJI89RvTPC61Qz3Jo7Y9UCAdPLafhLxMlPa8GecPvVzTlrz4fRS9DboivHBDRbwu+Tg9CS58vQ/kB7yJF5M8AmUuPVzhDTo75I683VV8uzugGT2gs4Q9Ut4Fvb+upbyUUJm8LtExvCRUNr0hROG8x5/6u+AVQz3idwQ9ccsvvbNZMT2UKBI8c7+WOzDTD70Wn968EBoGO0ZTE7wL+tu79fPLPHqk0ryzqT85iauWvJ71GzzT6FU9tseLOzg+WLxiSni7s1mxvPnBCT17EM87k+QcvXKjqLuJFxM9mydevG2D/rskmCu9pdh5u82LBDzqTkk7GP/Bu9jsETxaSc47CQb1PFdV57xOOE+8Z9Yeu5TKjLxaZbw7ie8LvSGw3Tyck9q8niuavBkbsLokjBK96QpUvZIKxrjs1jO94e8ZvWUKvzxlWs284BVDPJwbRTvqCtQ8I1S2PPML/rqpICu96pK+PCTcID3BvBw8lPKTu6swALzXnAO8GpcBPTUG/DxTSgI9kVrUvCs5cjxxhzo87IalPDfS2zclEh89Ui6UPN6137tkPl89iSWKvA9cHT3hWxY8DO5CPGZqIr2K/YI9f3IQvXKjKLy/TkI803xZPLMVPL1w/8+8wGqwvIQtZz1PmDK9UWSSvVKAgDzgxTQ9GfMovjkyvzxCT9c8GIesPJAW3zyySVy7yw8zvZ0bxbyo3DW9UQYNPVEGjbz3AyG9eWDdvE9UvTy7Pu28Ov4evSIc2ry9gmI9Fp/euwPRqrsY/8E8Q+NavJQoEjwOyJm9RcuoOzhm3zw4Zl89Gx0OvAzuQjzfZVE9ZFpNvVvFHz0wq4i8fdwuvccz/jxC7/O7lSiSvHHzNj0jLC894TGxPFsVLj2eDyw9UlYbvQ6SGzzJNzq91HzZvOHhojtoDJ06AtEqvfXXXbzvUoW77IalvE1g1jrJ19a8O6AZvQO3mrsv7Z89C47fPL3u3ju31QK6GP/BvBj/wbxPLDY8aV6JvHls9rzUwE47Fe9svHJTGjzBHIC8UQYNvfiLCz2wfXw99ofPPDci6jxwa8y9j470PIiBsTx8wEC8ABHkvHqIZL06Ti084QkqPAPFEb1OfES8JfgOvXr0YL0aHQ4932VRvA8ahj1i3ns+zPcAPQQ/hbwMnrS9IhzaPP98YLwv+xa9kIJbvSaoALyGZUO9cmERvGV2OzvIk+G8zB+Iu7QJIz0K3u08cg8lvZv/VjtEhzM96D70O320p7su0TG9lQCLPQpK6jzLey+9A8WRvDdK8TwUP3s8PJQAvb+SNzxcxR+7RF+suw9QhLyP+vC8QgtivDBNg7w3FlG81HBAvYftLT1QLLY8QsfsO97RTTzMswu7CyLjPBnnj72Rnsm8clOaPLzS8DzVZKc519CjPNhmhTzdLXU8cPO2OwDpXDz/OGu89fNLvQJLnrxD/0i8F3fXPDCrCL34s5I9eqRSPIRV7jzBvBy8FTPiO7+upTtk0uI7kIJbPVAgnTwDZww9wCgZPTjGQrs2jua8s1kxPQP7jzwYGzA8/6TnPImRBj2SdkK7vO5ePJtrU72Ixaa8aGwAPPiXpDympNk8wbADvUNrRblPwDk99JNoPLPRRj1NROi8yCflPAtm2Dzpnte87bAKvLFV9bxc7aY86Gb7vMiTYbx6HOg7+EeWvAQJB72FVW659svEPFKAADtPEEi8C7bmvCR+Gz2FmWM7Lz2uO3xIK73hdSY9lOQcvJA+Zrqp3LU8waIMPLafBL1bFS497Go3PNX4Kjhk7tA7iu+LvA/kBzyrWIc8Ks11vGeuF73Xjoy5p8xgvYdZqryc1089wRwAPEy8/bx8BLa8Qu/zPJJOOz2SkjA9O1ALPbcLAb0Amc68FYPwvNWMrryH7S28nTezu4ftLby/TkI8OD7YvBtTjDwEZwy8tp8EPdYUmbtw10g8IyyvPIdZqjzM94C9DgyPvAwyOL0hiNa8XD8TvRjXOr0JBnW8nqMvvCPoOT2gswS9enzLPPVD2rtG55Y7OmqbvHPbhDy0naY84O27O0Lv8zxZLeC8GQ8XvVIUBL30J2y9kiY0vf+k57yFmeO8/2DyvGheiTtz24Q8qpoePIUhzjqU8hO9XD+TvJLiPj06/p68yLtovH/sAz3VtDU8DxoGvWZqoj0DxZG8QBf7OmeuFz21uRS7QTNpPIiBsbzuiAO7PK4QvSXCEDzrJkI9e8BAO8FEB7inzGC9yE/svDjS2zxRtKA8H5RvvNX4qrxeJQO8XIGqPKmYwL1n1p48vTLUvDsmprw2cvg8cTesvFd9bjvAQim9GW0cvci76LuSurc8+mOEvcsPszy+/jM9yYdIuxaf3jyTkjC8Lz0uPPi/K7uGcVy9GpcBPfbnMr1cFww7pRzvPBdDtzxR3Cc8K6Xuu+tOSTxnkqm7V6V1PABV2TxYEXI9ng+sO8nzRD32Uy+9tZENveyUnDwWW2k87BqpuxhrvruSTjs9Zv6lvCth+bwCSUA8GRswPVqpMTy1Fxq9nzmRPJKSMLt6HOg8LtGxvGUKv7zd3Wa8D4YCvCMQwTuq3pO8IADsvNaAlb2K/QI9iJ2fPDu8h7y1TZi8XBcMO+qSvrySkjA7cNfIPCt95zrX+gi9Ra86vWOq2zxvu9o7AC1SOfaHzzuPSn+9qSArPOg+dDuJW4g8s+20PI+2+zuq3pO8144MvUwA87x/qI481HDAPE/owLpatUo90qTgPGhQEj1v4+E59JPoPG7j4byhfYa9+CuovPkRmLqFtdE8JRKfvGWeQj05Mr+7DrqiPMsPM73topM8FidJPaDpAj2xVfU7sd1fvJ/bizwfUHo81/oIvTqSIr2U8hO819IBPYf5xjyzWTG91zygPH4UCzyHFTW9GNc6vKv6gTx/7IM8XT+TOoeNSr0Xk8U6ICjzuw+8ADtzEQO9te8SvRZb6Ty8jvs8ltgDPNSYRzy9Cs08j/pwvOxqtzxDJ9C8OyYmvU2I3bxYEfI7niuaPCU8hLsKcnE8sd1fvAHdw7zSOGQ9s/nNvDYGfD1xN6y8MCOeu8k3ujqFtVG7+OkQPfVD2jtEGzc8lQ4CvPXXXTyoSLI8IdjkvHqIZD21JZG9FcflvOgWbTwuFac8Vs18PLTFLTw7hok7RfOvvMgbzDsh2OQ8lQ6CvDlaRrxxo6i8cnshvVnd0bzsAJm8D1AEvb2C4jx0b4g8TCh6u4cVNT1YVee7tp8EvUUPHjxSLhQ8ve7evZ2vyDzUVNK81Ug5PYkXk7zKv6Q8v5I3vX3crrtYOfk74VsWvcwfCDzBHIA8NnJ4u11bgTunzOA7OGZfvCwt2byS4r48CQb1PMgbzDw7eJI7h2VDPEWjoTx+0JW8WQXZO/aHTzwkVhS9/szuvGWeQrwLjt+89ctEPXKJGL2m9Ge8qfijPKjozjyELWc9evTgu4aNSrxyDyW94eEiPW7v+rppNoI8De7CuomDD70BjbW71t6au7Q9Qzz2N8G8qyKJu9UExDslEp87wbCDPX4GlDojLC89343YPFv5vzwZ86i9j7Z7vBhrPj3LpRS6bsdzvWcMnbtmdru77Go3vDvyBT3ByhM9v64lPIY9PD0sfee8LUlHvSFgTzyFwWo9ZmqivPbnMr3e3eY8v2owvSIQQT2dr8i8hS3nvMczfjr5wYm9yUNTu+JBhjstcU49tv2JugP7DzsKSmq8GsshvV1NirsONBa9Y9LivNXcPLw54jC8I+g5PLFVdbx5AHo9OeKwu0SHszsZ5w89cP/PvN9lUbx7mDk8IdhkvMEcAD1/7AO96NL3PDjuyTyo6M48IfTSPNMQ3TvIJ2W9LKXuvL7ixbwvZbU8y7+ku5EKxry1W4+8n6UNPU1E6DydN7O89RvTu6XYebySkrA7vv6zvIZJ1TtMlPa8DxqGPTsmJj1c+x09vYLivAsWyjpxy6+9cssvPNTo1Tyc/1a8RBs3PJwbRb0uqSo8JXKCvMLYirwA6dw8c/UUPG93ZTzuUgW9RiuMPNf6iLyZW3479dddOvYPujo8vIc7Zv4lOzHhhjzBDgm9qownPaqMp70xg4E8ehxovNWMrry0qb88LQVSvN0t9btSFIS9XBUuu6jAR7wvI568T8A5PfVfyLx9mhe6GGu+vC7RsTxRjJk893s2uwDp3LtaIcc8qraMPA+GgjzTYOs8Z3gZvHGjKD1lnsK8evRgPexqNz3AAJI97NazPPbLxDz3pRu9JWQLPQnCfzx9wh49qNw1vWjKhb28Fua7OpIivcFel7wDtxo9qOjOvOrizLqD6fE8ft6MPH3CHjpeJYM72JwDO2UKv7ziQYa66BZtvMGwgztc4Q09k2qpPP9gcjwxZ5M896WbO+PjALwY1zq9LqmqPLSdJjy2aQa8AbU8vI9Kfzzetd+8nP9WPWRmZjySurc8Q/9IvbTFLbzslBy8yzkYPddYjjsjOEg7AHFHvKv6gbw5xsK8UUikPNPM5zsvPS46fhSLOcEcAD3e+dS8qAS9OnzoRz2oVMu8LY08PIeBsTl+Lps8UsIXPVJu1TxhJsc69IF8vaJN6rvF5zK9bYnmvHZBrbxXNXE92nsdPQI6bjxgu46835cLveMCbzyu2hg8G9XpvCHGlLvTZhU9m5SavFHgczwO5Og7OtPZPDJFIjuhsAg8B2uOvGxeI715Voq8StLRPPUPXrxaGCW8tnYcvC5+Bjz31k68FFUpPVG1sLozRaK8ngZkvN1JHzpNtYU749crva4+6zzRStK7Pm8yvQHz5zw7L5K8yLwaPXDsL73V7RA8BtbGvN2CLr0xhRc7G9VpvB//ozsKqy49yLyavOYQ5rzlSXU8mcaYval3T726Pbi8Xm0ivJuUmrs30648sSEfvN/09zmRXL68v5I1PaCURT0SR7I8RhIcvZZGA717z7k8ZXtEPbBaLr3Ng7Y8Ngw+vTgoAT0SOWY9HapRvXkWlbwDD6u88LpgNxaA7LyTMSa9EbnQvHlPJL1WfMy8NtoUvZMxJj1QvBa9u3ZHO4oHwbyLQNC8cF7OOzj+cToRuVC93q3xvDuayrudhk48XYpuPdSRWDxWCi46FI44PRjH8jxebSK9V0M9uxQjAL11SJM9ty9BvVWKmDucW4s79kjtPHv6/DzpepW8bhfIPE6nOTvUkVi8/8eku3Ts2jtoV5I88t0JO0Z9VLwvBYI8LqnJO0Eo1zy4L8E8ynU/vdmtRryVsTs99F0fvAzyND1vl107TjwBPe3zRL1CRBo94JAlvQDPirzKZ3M8mI0JPZRqNbq/2ZC8ozcEPO2sabs8KCy8kU5yvCpwDz1gmGW8aglRvF7RdDxpUKw8anvvO0VERbwcKjw9RMsVPfXrAD1apga80FgePS1+hrzqc6+8VkO9OsbZ5jyQTnK9KI3bu1AnzzuJed+8GQ55PTJFIr3LQ5Y7DatZPfy5rbwRRzK9pelCPe9zWrw0jCi86jqgPOXlorudGxY9rnd6PdwCGbwlWwe8a8L1vGAmR73KCge72kIOvXP6pjx3bPA73YIuPNXmKr0YVVS8MGLuPCYbEj38wBM8Zm14vAarAzsmGxI9IX85PUVERb3HLrm81MrnOrHoD70jxj+9e50QvUUZgjzlV0E9kngBPf5y0ryfP/M808rnvD1Tbzx+5Ja8EtWTvFsKWbx7CMm8KzcAPC9wujyFhwC9AU8gvUT9vjkum307IU2QPQcP1jverfG8kziMvNID97tpiTs99quLPJubgL1jptw78YHRPNQmoLtcw328wSAXvQTIzzudFDA7LwUCvXJsxbwCc3283wLEPOrlzTzTA/e8/znDvKdpWDvKdb+8BkjlO61MN71Op7k8I/9OvROcBL3FWdG82y3cvL+ggb25vaK8oFs2vSubUr3vlgM9yefdu51NP7v1JBA8WRilPBCODTx1ery8ntsgvd2CLryAltU8NfD6OxAHkruqd0+8e5aqvFc18TzAYIw87Lo1Pd27Pbzvc1o8dYiIPH6kITwEJIg7i5UiPYlVgjyR8YW8Mqn0PIEWa7xGC7Y8R5mXO2QClTwhTRC9+as2PTKp9LwOObu8+zmYPGEmR7u+UpW91RHuvA5Hh7w+GmA9ct5jvUqnjr2JThw9gSS3PHDsL76C3ds8qIyBPNUR7jy3dhw91J8kvFsKWb0bY8u8XC0CvX3kFj0acZc8/GRbvVf84bzXLbE8VVEJvbY9jbwbY0u8iVUCPSaijbwlRlU7G6qmPLHoD7yl6cI8949zvUpEcDzVEe48YCZHPSgpCTzjZQ07H/8jPYmHK73pugo7tnYcvJ7bIL0EVjE9oCKnOznhJbyHMlk9MP6bPGYQDD3+Rw89uj04PZZqYLxQ7r8738k0vRs4CLwm1LY7MMWMPEZ9VL3KPLA84R6HuTJMCLwfODO8vIQ+vT5vMr2NHJ46itWXPcj1KTxAKFc7MbdAPTnhJbxsJRS9J+KCPPsrzLzMvMW8AwHfvE51EDy2rys8fk/PvLNoJb2pTIw8Aw8rPVTuajwBulg91GaVvbITUzyhhvk8XRjQOh3j4LxepjG93GbrPNyJlDwcKry8pbCzulkYJb0F5JK9AfNnPJzNKbzW7ZA96kGGPsPZOzymPpU7BeSSvUYSnDwojVu8uwQpvUBhZr1Uwyc5z5gTvU7gSDzpuoo7VMMnPB6q0byBFus8ewjJPAzAC71+pKE7Ve5qPX9rEj3uOss5P5p1vRVHXT1H0iY8zLxFvW7Q7Lzt5Xg87IiMuoiHK7pbnyA9NP5GvLKoGr2C6ye8MbfAuZ7iBjwrNwA7Nbdruz52GL3aOyg91a2bO+uecjz4HVU8ZjTpu9f7Bz24vSK9vRmGvDfTrjwHyHo8Djm7vGY06buqsN48At2BO1xR3zuXauA6hfkevPWPSL17+vy8DCvEPA45OzzOPNu8btBsPS1+hjyyoTQ9kzgMvVGDh7xYisO82jsoPNufejxIYIg8CGQoPDPMHT3i1yu8DB34vMFL2jytTDc8ymfzO5BcPj0Yx/I8vksvvYWHgDt2bHC96uXNvOCQpTzXn0+5iYerPMegV7y5hJO8qgwXPZS/Bz2ovio9MbfAvEc2eTxiptw84tcrvESSBjwQjg29ywOhO3BeTr0HyHq8GPGBO5i/MryjaS290wP3vNOmijxRtTA7XqYxvd10Yr37ORg9vYQ+ujlTxDvTZhW9ewhJPTF+MbwTx0e8eVaKPS/+Gz0HqwO8dUgTPbY9DTw6RXg7EMccPLcvQb2oIv08NVMZPfIBZ7ux6A+9xCDCOwGBSb2yqBq8Eg4jPYLrpzz+Rw+96DMPvPadvzwiqvw8f5ZVPSgpCT1AvZ689h0qvZLqH70d8ay8U6dkvKjFELzsujW8oqK8PL0Zhrz9gB49zq55vNCD4TzCoCw8KemTPOtzrzrTyuc8gqRMvUYSHLwrYsO86FfsvJAjL72S6p+8n6IRvOo6IDwgjYU9N5ofupxbCz0psIS7wGCMPKki/bt9T0+7pzBJPBM55ruthcY8dexavf5Hj7xSp2S9vJIKvcY8Bb0guEi9yDWfvE3gSL3E7pg6FUddO5/N1Dp/CHS8PzajvHiIszr6cic9Y/suu98CRLxZGCU9HSo8O78E1LwYjuM9UO6/vFyK7rsrNwA9mb8yvcjDAD2jMB47fGQBu7MvFr14Voo5RMsVPdwCmbtapoY7RIsgvS0ptLwwKd87KI1bvGkeg7yskxK8cmxFPB3xLDzCp5K9xhL2O613+jl6eme8FuMKPcp1P7y8vU27gCQ3vaRprbxOdRC8IDizPFfRnr3DLo48RbbjPHvBbbsM+Zo8btDsu31PT7iSeAG8tJNovQzytDyy2kO9YnuZPMp1Pz0InTe8GzgIvEA2IzxvCXw8LzcrOwpyHz2qPkA9KeItPUILC7uR3FM9YbQovNctMb1z+iY9W9HJPAqd4rsVHJo7kFw+Pa4TqLwTANe7GqomPGLf6zxQJ085MGLuvJOjxDySFWM75eUiPfIPs7trZQm9IU2QvOxl47sLAAE9jM6xPP/HJL0gjYW9W9HJPDZ+XDzhScq8CuQ9vQs5kDxwbBq8CVbcu0G2OD0C3QE8a54YvWeXh7x4jxk9GPGBPCgpiTvLPDA8fIhevSFGqjzS2LM8lz+dPPdkMDw7L5K72R/luzFMCL1kiRC9IkaqOk48gTyf26C7V5iPPWeXBzxBfSk94qUCu2zQwTzZ5tW8PfaCvdZ0jLxZH4s8UYOHPG9sGr3j1ys9xVnRPGUmcjxJ5wO97cEbPJm/Mj0om6c8HfEsPOXlIjw94VC80RHDPJlNlLyTOIy86uXNvCHGlDz2SO08XqYxvYwjhDzOPNs74jv+uxVVKTyBFuu7UYOHu3mIM7yblBq9PGG7u8W1CT1ebaK76jogvTSTDr1lJnI8fk/PPDzvHDwRudA8PzYjPVrflbsC3QE94klKvDlFeL1YisO82nQ3PazTh7sbY0u8sFouPW3lHrxMUue8nRuWPai+qrxzbEU9HePgvBjH8jyVsbs8RIsgvN/0dzwcvwM8BkjlOofOBr03mp88T9L8PFbYBL21Wlk9I9SLvcCE6bs56Is8Z/tZPd1JH7yszCE8L3egPFYKLryAK5083ImUPPYPXjpImZe8ZrTTvP5yUr1iply8EjnmvPkdVb1V7uo8krEQvPiPc7pl7WI9jeMOvUM2Trymadi7CCsZPYqy7r2WauA88t2Ju0nngzwEj8C8F8dyOl6tF73mnse8EI6NvAIWkbyJh6s8XCYcPbKoGjtv0Ow6rL5VvKGG+Tsdfw69xa4jPbV9Aj18JAy8ztiIu5ej77wSOWY9Z5eHvPp5jTvOrvm58LpgvcNug7wBSDq8eI+ZvOOeHD3QWB69ORq1u/XrAD0UXI88LfAkPQzAC7xyQYK8DYAWu5vUjz2whXE86boKPQmyFLyOQPu86FdsvGYJpjwF5BK7BIH0uh//ozu1fQK8gzKuPBzxrD0306480IPhPIZHCzzREcM7oqI8vQQkiLuzzHc8eYgzvD1Tb726dse84JcLO1rfFb3GPIU9TYv2PMCStbrFWdE83VAFvUhgiL089gI8xy45PUUZgrs7LxK9VVGJuz1T77zTnyQ9sCgFvTsM6bwG1ka8v5I1vaFbNjxANiO6o2ktPV9f1rpGfdQ8qgwXvRhjoLtNJ6S8cboGvW2J5ryCeYm89h2qvJv47DybMXy8ORq1PYekd7xjptw7Wt8VPfSB/LxtUFe7gusnuyFGKjvVWMk8cnoRvYOkTDzq5U27CnmFPMrn3TwhxhQ8vIQ+vfarC7xFtmO8fk9PPJSVeDpnCSa8Ze1iPGlC4DsKeQU92nQ3vP/OCjqiTWq8DytvuzNForyZ6nU8CquuvMyKHD2Z6vU8irLuPGwllLo3mh88BUjlvfp5DT0Bulg8dMEXvLf9Fzxjply91VjJPOPXK71H0iY7ct7jPIjAujywWi67G6qmvK4FXDy49rG5kdzTPMeg1ztJfX+80tizOz22jbxH0ia8sa+Au7m9ojzFIEK93YKuPFwtAr388jy9x6BXPWJ7mbybFAW86jqgvf4OALx+5Ja8rYXGvIcHFj1yOpy7tnYcvDbaFL018Po8kFw+PEJ9qbxe0XS8YbSoOzrTWTzRHw88wb14PNkfZbw4jFM9/wA0vUVERT3d9Ew9Tm6qPTghGzw601k9lCPavBjHcjw5GjU9p2lYPTBibr2WeCy9jFwTuTFMCL16CEm8wqeSPF0YULwrYkO7A50MPUVSEbyqBTE6AhaRPDxhOzxg+wO96XqVvOy6tbx3M2G8d6X/PM1KJ7ubBjm8ePrROnrWnztExK+8S2CzvNo7KD3REUO8gRbruz22jbx+FsC7UYMHvSRUIT1EiyA9n2mCPF3fQL0xfjG5xeeyObySCj3LLuS5Zm14u2Km3LzD2bu7uL0ivbehX7sVI4A8LGJDPBKAQbzoZTg9gzmUvD9hZjsF5BI9lL+HvFbYBDy/PeM8IcYUPXGzIDuQTN86T6fLPBlYh71wZ0m9ej9kvLQXjjwazzM9RbEOPXKbOzzfs0872/3/vKBCLr2QTF89CKXyOyt/aTxdwrK8ZSfKO/+y3rxZs9g8zumguhH3GL2j13w8WUBVu7BL7jtSD7A8R1gEvI7k+rwazzM9GJvBO+uASzz8Axe8FHJuvMnATT12HRm8dpAcvHPPrbz5mzK854vquwf+/LxieII7lY8rvaDPqrzAzjk9NF6Mve51LLxxgcK8qL0VvaZrAb2A0Ju8fMHBO0/XlLwGtxm8zSiyPfI+7byacuW82A+nOz73Fb1ewjK8fw+tvaycpryhdiA8kGZYOuzKDb2snCa8TgDWu8WECT14awS9bD52PBDDJr2ZJHo8wEE9PcVQF7wfhYO8KZGQuxrPM72/5Am8z0r9vFsxjTt/KSa9qI3MPKuCrbymzF07s3CYPFpazryxDF29yz6CPCIAWb1zQjE9aaknPRKEFbydZ0a90d6BvI3+cz1c2AI86z0RvD1QILzyEYO9pH5yvA4CuDz8qoy82PWtPLlXezw0Xoy8VquGPNpDGb21jjq8ljYhPUSXlTwkC4o8n/TCu1dLdD3mtwo9efgAPOojGD0v2AW8FHLuO++pHr2Yl328v5rHu38ppjwEwrg9Dei+u9WNST1tcui8immlvANlhTwX9Eu87nUsvFjy6bv2wEq8G5Ciu/iXCbyv6pE78FCUvEyFAL0R3R+8xfcMPOBaRTyvBIu8s81LvOKoMD0Fgye9tY46PG24gb1bvok9KthzvciMW7w6/gu94edBPVsbvTuJS4M8SqqYurUbtzyAtiI9GJtBO3sA07wQNiq8XEuGPNqKfLwtF5c8xsvsvL49FL1Fm748rzH1O9j1rTykUQi9SHYmPTWlbz3n0YO87c42vTfz2jxhXgk83yZTvRDDJr3Wjck8ZuQPPSrYcz1zzy27HTcYPb3z0bzXaDE8NTLsvDsCNbyvvvG8SR0cvM+QlrzR3gE9QHLrOggy7zwkaD09Hph0vVGCM72jxIs9s/2UvEpkf7yXUBq9BiqdvDT+eb3lgxi7XoMhvfDDl7zmKg68GLGRPWe0xry9TNy8DCfQO5hqE71c2AI881jmPBnlA70ZWAc9wP4CvZInR72iAx06qHNTvFgm3LxUXZs7Zs6/PBoovjz2M867BRAkPMAnxLrmKg69qTRCPbwy47xRJQC9b6ZaveUQFT0hc9w8VaT+vH2nSLz8kBM9RrU3PdDX+bwvG0A8jl6Gu8IcpbzIGdg8uPYePBixEbvRfu88zumgvPWMWD1RgrO7JZyvOxibwTuBpPs7FTPdPNyRBL0IMm+9Wc3RO6y2nzzijje9q36EPIxXfjzOzyc9J9AhPacA0LuuQ5w8AM3XvBDDprwkJQM9bbgBPS6+jDxymzs9qWQLPUgDo7zPHRM7Sn54PTUybDvtzjY8IY3VvFWkfrw+95W8u14DPKhKEj3AWzY8Pt0cPPIRgz1ARQG9fX4HPeKON7ySJ8c8xREGvGkcKz0j20C8m4zevKdz07z/JWK8ukQKvWd1NbtGQrQ8sX9gPebKe7ymWdq8JkMlPQDnUDyvBAu+NNEPvYb9l7yLgx49QwoZPduk9TtlDVG992dAOwTcsbzv6C89JAuKvcimVL3tzja9uIObPM52nTz39Dy767CUvNPMWjzV5lO8iTUzvQ6lhLw2v+i8ItcXPWv3krtGQjQ9djcSPbrk97sdxJQ8Fabgu/wdEDyNcXe8nZcPPT73Fbxx9EW8s/0Uu8BBvTx8wcG8WzENvIHqFL37Qii92bacPBpcsD2DHoe85T1/Op5nxrzmtwq9ZuQPPfIK+zwH/ny8JJgGPQM1vLwGt5m7gRf/vDZM5bzP6aC91qfCPL/KkLqIAcE7EfcYvGUnyjxRmAO9Do+0vBdnzzymWVq8ZrTGu9xL67y+Dcs8UYKzvGcYgjq6/nC9nrEIPOuwlDyymdm8+lyhvDypKr20AT49lY8rvZPkjDzwNhu9zgOavR3ElDz+mOW8lHEJPCa2KDsmtqi8BrcZO8DOOT249p480aoPPQpmYT6uF/w89YxYvXDaTL1TQyI9mCT6vPKx8Dwqf2m79sDKvLpECr3udSy876kePYwQm7wAWtQ6GMsKPF3CMj1KUQ69XoOhPNsEiD2Ijj27WUBVvEPA1rwjZJQ9+3YavbKz0rw0/vm8+A62u/rPpD2+Dcs8wFs2PCI0S70N/o48Z1u8OXmYbrxH6Sk9FHJuObfcJb3LgTy8I/EQPESBRT3d8mA9wEG9PCOnTr1OjdK8v5rHvPrPJL1k89c8hpncvENN07wURYQ8E1h1PRlYB70TERI8mISMOl3cq7xhcXo8Y9levU4A1jzQxAg9I9tAPD8+eTwMtEw8T9eUPH5OPrzTzNq8LVrRvL/KEDxU0B49UNs9PWLRjLvysfA97bQ9PbteA72FmVw8j79iPdsEiLyvkQc9HB0fuyQLirx927q8oekjvV6Dobt5+AC84P2RPJappDzcHgG9C4DavPUZ1T2Zl309zJs1PERNU7zAWzY9yU3KvBUZ5LyCdxG8GMsKuob9F71FPgu9VNCevAgFBb0Sng47ib6GvSplcL1lJ8q7s0DPvMWX+rzg/RG9v+QJOs52HT1bjsA8WrPYu54OvDxFywc9lqmkvJ+buDwnXZ67i4OevJSLgry1Gzc8G5AiPcIcpbyMV348r+qRu9+zzztWHoq9tjWwvKPEi7zrmkQ9UPGNuuK+gDtvGd47k7TDvFWRDb2fywG8O3U4PaFcpzxadMe78ByiuxT/ajz6z6S8v4BOvBnlAz3HWGk6+ZsyvOwnQbwiGlI97OQGvTsCtTvb6g69fMHBPFUEET0bdqk8VNCePMKPKLumsuS6Swv1OuIbtLxtcmg8cfTFu1ZLdDpd3Cu9cps7PQ51u7zcS+s8Hwv4vDBPMj2VHKi8Mp2dPGWazTzpMuC7ATETPBRy7ryacmU8XyqXPUWbPj1/nCm8TnNZvC+oPL15+AA8GnKAOjt1OD37Qqi8IhpSvIM4gDzhzUg8Wxu9vOxBurxFDsK8h+fHPHO1tDxwZ0m9903HPeadkbxQ2728MNwuPJdQmjv5DjY9qw8qvIwqFDxlV5O8lqmkO3u9GDx81xE8ecxgPYWZXL2pZIu8EyuLPDNxfTxQC4e8at2ZvQkyb7yt0Ji8zSiyvWa0Rrr5KC+9BreZvOD9Eb2/Vw29YjJpvWmpp7z/P9u79vATvO+pnruys9K8n7WxvH6CML12ZPw78d0QvcOpIb2ay++8uPaeu5mx9ro1BYI7QHLrvLImVjzrPRE92tCVOy4xkDzPSv280KqPvOhEh7uymdk8mPePPIfnRz1sy/I86kxZPJiXfbyzQE885sr7PJR1Mj0ygyQ9t0+pO+3OtjyOXoa8hpncPPrPJDxFDkI8beXrPDwcrrzudSw9ljahvOpmUj2CF388tsIsu4BDn7wmKSw8PcMjPMURBr0L8928c0IxvLKzUjq5V3s86tnVO0vxe7ltuAE9gEMfvJyMXjzBAiw9R+kpO8TdE7xe9qS8+IG5PFDxjbywZec8vydEvL/KEL2/sBe9tAE+PdiCqjwIMm+7wzYePfpcIbwn6pq8IhrSu1dLdLsOArg6rhf8vJP+hT0C2Ii83gzau6PXfLy058S8Df6OvMMcJb39fuy7ksqTvLdPqTz813Y8C4BavNfbNLx31/88g2VqvddoMTzLsQW7PmqZvH1+hzx4suc7fX6HvawpIzuw2Oq7IgDZvCmRkDw0i3a8NBjzPHAz1zyL9qG8G+ksPHvmWbx8NMW8ik+sPCrFgruojUy8hxcRPLBLbjz6z6Q8GwOmPGf+CL0R9xi9PsOjur3Z2Dxk2V48Vh4Kve/orz0Sno68i4OePDKDJLx7Gky8xp4Cuyyz27v/C2m86kxZvHI+CD32Tcc6DYuLvHvm2byFf2O8HB2fPQDN17zcvu48Zs4/PaF2IL2n5tY8f/WzOr4NyzvnnRG7U7YlPEQkkjwdNxi98+XiO/yqDL05VxY8IXNcPTUFAjzAW7a8bVhvvIJ3ETz98W+9u4ttuz8RjzxbWk68KmVwvITy5rzd8mC9wFu2O5InR7xIkB+9SyXuPCI0Sz2r9TA7UAuHPVBOQb0n0CE9LnRKO+q/3LzhpAe+7bQ9O8PDmjvVGsY5krRDvZ8+Bb1mzr+7ror/vG6MYTyDMXi9AhvDuqIDnTyJNTM9aRyrOwNPNTzKZ8O8cGdJvYDQGzw2pW88bMtyPc7PpzwI64u7CIt5PNkPJzzO6SA84qgwvanxh7xa50q9alCdvDDcrrvNKLI8RGdMveIbtLy0pIo80d4BPZgk+jy/mse8n/TCuxlYBz3KTco6zVwku5PkDDwvqLy86iOYPNIlZTufJIw9O6UBvGe0xrzb6g694HAVPQ3ORbwlnK+76TLgvGHrhT1uuAG8bVhvuzoYBbwMJ1C9oemjuzeAVzt4awS9I8FHvHxkjjsUjGe8ZkHDPFnN0TxysYu9rJwmPI8y5rsZgci8Cdnku6mnRT3iGzQ4ZVcTvdE3DLzBAqy7xSR3PRyQIrxhcfq8WnTHu69L7rwIGPa8MyoaO9PMWjx3UQs9VNAevBdnT7r4DrY7GA7FvEWxjr0pS/c7u6VmvEa1t7yHpA08FP9qvNTmUz0wZYI8yw45PJToNTua5Wi9LM3UPHsazDy7i+27PveVPKay5LwE9qo68MOXvIuDHjyTzrw8rJymvMF1L7xhi3O8r+qRvEiQnzzDw5q7Ht6NPLhpIj0QNqo9h6QNu3pZXT3sQTq8P4QSPbY1sDw1BQK9iOfHuSQLirwZtbo8bbiBPZ3ayTz/st68qRrJvNQwFr3mV3g9KHcXPWzL8jtcNTY9jBAbvanBvjzFPnC9h1pLvb1mVTtCjGS9NP75uwa3mbyK3Cg7sX9gOq5DnDwe3g09IgDZuv8l4jvY9a28E+VxuzIQIb1IkJ89YRjwvN9AzLwTERI8O6WBPH5OPryCd5E7BreZPLJ/4DqZKwK9pMQLvNFRhb2QZtg8ZkHDvKJcpzvb6o68Dc7Fu8dy4jyVAq+3wQIsu7nK/rzDNh49lHWyO371szwTuIc9ksoTPW4Z3rw+95U8zgMaPdHegTyfywE9gbYiPADnUDv39Ly82IIqPBA2qjzrsJS8YXF6vOfkdDwMQUm6eT9kPUkdHD0EaS47B9GSOnUDIL22NTC81mSIPHYdGb20ipE8Ed0fPNY0Pzw9wyO7v5rHvFnN0bx+gjC9fds6vSrFAj01GHM75DWtOx3xfr0vNTk9BMI4PIWz1bxB5W683ybTPKwpI7s3gFc8oEIuPewNyDxk89e6hX9jvDvOwjq0dEE9mYQMvapOuzwjp848U0OivM8dkzuU6DU8SvH7PJBm2DvX2zS9AVpUvFGYA7zfQMy7GJvBO+3Otryj8fU7I9vAu+X2mzzJwM06"} \ No newline at end of file diff --git a/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png b/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png new file mode 100644 index 0000000000000000000000000000000000000000..1a5bb1c1fe5a3f714bd853e4050c6b667bdc7942 GIT binary patch literal 80676 zcmXV1Wmr_*7N(_y0f|An8-@k}>F)0ClJ4#rx)JFdN=a$yZt42yZt1#+cYg9b?7h#5 zH`duFQc+&wJ@Q9nC@84+Qj(&|P*50LU( zoa<@yiDKTgi^7;E6si*iR1k$^07Zl(NGjiUSpB=L)Y$IOHE;jv$|>R6rn8T)udNiS zAtoE8(nxYT8x)y^q0<&Yq$t@P ztDvQLzJ-BT*+q(m@iR#fVz_bTsgG{s4U~y(v-=nMT-h76ziV#E7>0CP7(5=A?PkZ^ zJ_)L&i?P5iMB}7XXrhtUZBFj5_G`t0xhY?Fry|Lh!epZ}@I61W&t`$`Rtyd^4t4n5 zVt$_4ac4AE)2qx;fq(4;JpYZUizOmy2+*iUQm@AH*x-rVqSvV` zQzcAxMw$XsstcBsWn_p;pZB@P{WWZGt2P5-P6L;-6<; zYGQwi`6XCYTVW_U`pQz{3Umr$e#iBSl&FHB&kG_-uiFDVEv!G>D{PN?GzH z#a44am~d^146W__O<8G6EuzQx=|(Dd?16b1+EJ z1q=qbxx2rNzuXDX)6uD_Jw0YIhA3iKW~L@5Z(ZIgtEgOFTwGjUI>T96Sv6P13EUnf zD>xe3g`*RD-F5~Ri-)Ko($vbjtIu-yUl+jZG$IqG$l|{(UibkmJdS|J>Hg1twVQi* z_qtQl)b#Z5(9qEEuttUE53j2O&&!=A-6}1b9I}T+$D_UVaAII-IXq+t3XV!ndR+Hu zg_vQvK@YN1M;@y38rx3*VY%t}0Vcl%QTifwI^f5Tkn(cxhvP=y&jwObgY|RzEhhc3 zG5B0m)YNg|4Tf%|JNwh&L|)%JijnElS$@e*Z_8+1eLH1buE)PjksoCLw=6uEMVdCm zL6^JZ``E1hO5L{GhMu^DgaV4b=XMIdee1cx^Ogdq{p!)Vhk2_T^2|{Mccc9{GXnj% z5g2&N$D+HMthV;By5W7I?9%UYnji9SS@dh|og!rm8HS?YH5Ji4DN7@Aiv8{F?P>a6 z`~P(Y->iC{D)?O_-CgdE8y;gp7BsXxO~;>}Ead5RIY`ML?VvX5wkt21{Z}w43_D`=rKECCZm6h4q*~v*3K0aAm!j6ZZ;%=_4 zEB-G}S65dre-vKojJm_{%Dy#N&(0Aq)mr?w=NQVBEoiOLI%0HhTDg-~&Ji1S9|gEp2Rg9XEOcVc*Gr`!q8%W430~$}mt< z!L{mPVrclE!ON8am)#~;h+4Th_%$H}mR~+UP6QK%qr<@Abxlx2b=Pm5*jGFk2+Z;mW#q}R7Y??( z#*Xu|#L|4IqBNcf9vm4PdeSxuT~v}6a5=0DbfEzNkVKHO~I7Z)cy}k zYkp^)?@rqvPNEBOg>PHdo=)aEo;gV2D7b|&VD-LH6ZzzBcE>@j51}J=0-2XxA2Lt< z*HTic)Yw=Ox?a)79JL{0@uJDNH_HE^(SNDIZplM^7L7$DZ-Q-{&-wajAq4GHDA~QY zSFFIj!(sR-sW6FYymCeU#WC;P^FDf!H5Kby1A>zkr1x7rFP{(npQ>e288S-00lJ)b z$DW>VIvN@1h3Zvkj2&`cZj<8XeEt|=8Ao9Y;srT8Gd5N}J)^Je<0*4|!2658rsBrY z8)5J9{mz1kf9h66&IpFYbFKN*R#v{JAQ8ss77^(u_RqgQZj3MjfuYF}zt`y4>)cof zobT*N&B!_wI=q4$UL<2uRQ|H-oSw~GRomX;>oExVJkAbBpub^-kco$dEAU^bUY#0{ zi(`?%(Ll$i+BRD~#rYqNCP8>$we$YIIQ!k2TEYiCIvQs20U73tKRi%I^% z*N8`}{^?Ya4D-~$wy=lP<0v5IK}#I5VsbBT5pf z%=0oPNkIVn;IJ1c(xt}c>UVcf{9@MGeD!Fq%wa+GZ$rTkx-NM}!0F9vG*a@q=at5| z&(D^*_E1J6^~u1pA~XEw3+Cvm7J1|yuz0ccE0@^{V!Zx`Rc7*3*&3d>CC-mR%^8P;{4a&#=LSVHZRK-p<7xM4cCW_8@m(wC77!Z2V*m=w zm5rVkiJwdV6o0ko^ROG-C40-?Ysgw%cvRG8%4X%EGCx0U{nvf-zL8Tz%?OYSlo=Y; zdD#`n@IS;!s7)F1FomeUrW}Fnbr%=+Gioo0q;^A3XcaZ&NO~mW;U&6b4{DWKw6yj~OxpiOI zsjvTfgWb8N%8r!<{J)6hc69ignwmapES-}uGRnx&mtn2 z;%!+ugUcrY9hZkMVn@NIv;RsHA@l3kW7XqZQ5(Iv+L{`w6;8=g^YMjRiEBP~r-sEr ztQbQA6M6f^Oo98(MBbCGW+t|}TGY3)LNFOFGy73n&|p)`JQLM@c6sSfo*H)CF2736WV!z9=ImFt=iuPbV^_C*ZOps7 zyCg^^?EClch*qZ^A89b}B_l)i#?034XAkUG%MCVOs53YQKL1UA?PXo3;n|A&+Iu*d z&EX6%OUT6i)nQU%VqY3x^~ncV#BgoxSiWnA!}D&z&;b~5#=x%qU5NQBfd|1M%29xW<73~0vXWO4XF{g8Z{9C1l1bBlvcQhwo|^I8N<(*^ zF_nb|^hHEn_41zTUiGiJQkA>{+SNeBUrgaUGOaMvQs6u9(Xnsi$j+;;t^Z4I?x*ed zp4xd4f!QY}3Vc(ygW-=FaCnrOLYIwp2G36dj>W~&Gg&DA)}XMB2?2-~OqS&M-R}y# zc!GefrCOKQOZFXiJ725sU&9gX+tyFCHhs3L6T;e)lMGU$U1>HM&3T?kN}*MAj{R3d zP<^hGu_P_c%|!l>=dY@(w7S|}mjgpMdCF`!_312JKvqhssmsARp9eZbFr;eNpWmMx zQA8xTKii{jqpi^-fDVxs#|)6XTC=@K{76H~s{`3t7J8E+MDxHL*W;hEQ8UAu#y=v}axR442 z#UMf)DA>zBm-nYH17DNK)tu!?-()2^a5FN>1LFg;1sEPCu&SzRvp=rm;iM(U=R!(C zBHZ_@qi?<1Wr@Jke%sAzG|O|B!?d~_RDgh~%loiT??i$NCQFTsLK1bg-5_iND=8UA z%2=o&*4aMygJBv5p+?<#BF3PY+(dkPt;>QANm_a;R z?3PXuWqHykXY+hPOC5x!Y11xIT)%Uu%-5@L1swvjs%mTiL@gFLL~&Imnt%xC;2)YH zf5eRIpT4QRe?o~7dXeZapqeG1V=pt`cyyh6^+9ne(lUkCV{&gWu%D;p5X#j~Qzj#3 ziwHF^IJnT{yqoj9pHrpRay`UWXK@fT?z61N2FeE%m(m46u}IQ#jn&czll;OF4Tzr| z6LetTn8xK^!2z?2c3Pge;?KSG8dxxC(x^F)y}`FEe8Yuap|t^I&`Fm88VUlz!N%5m z)t2sSzBk2kUthVoC(t;jIKkyS+V&Qf%(AH^+iWi-t%BvP1AsH6zm$rOi(GEl6d&YFTDx`&VFkl@dSK!|+p? z4YCsxS(!34@-v?b`sm+1lzU0!;h4ool_o$_8IPXF7zjewf(lT7eTN{_V+k;6W_NgQ zHhvk?s}b(YbS8L1+o?dnL30%Zl22nmliC1B7V>KRhPS0(e=;(|V`EJ8^g1=BQd(MC zN=i!F+L;gtu4|=FXE%%>-jczJe_dPj9)c*Ga^K2ydSzNe1F~mmys$Z>SUSMG4335h zA&lOWhJPucLvUGsXeUejt@m75+1UK=r*p2auNQ~obDU)m^YUpRkb~yzSBH4+;q%$R z%d2^OciNTEgwJo7K5c{r78V4;!>Bq2oq zCjLM$skxA)HgZJYS%d(BQzDg}1tlBQTP7OFliAF_OQJ?{Ukpogn?flGGR}Yk@M3#= z%#v!$6Epr<8wtaFzgc|(Lgs>^v}I$02f6_g3PB6W9}e@XB!Rmq$rR2Xcm}jzf!ril2m^I{wgA%uAcov2MI7*jfS|3N?6h%5vb3A2nKt zKe+(SG<&UZlgmi7Ay63ckPX>5KD#m3fAl2aCS`AxJy&G%#oN$c1IL{ekukzVvqYBh z!fN3&hNJWj=&kQ{^VqqHxapAqAB13Y5e1dillNDd1BwJ z+QSc5rj_0K?;w7$T0jJhDds>(Coh&o*SOAYPXP2V-SBy(Uiz?q8cLQk{#%&je~HMz z%`pz?W>@Y{(wKgPWVU55R8-f) zO6o)eJTVl8(a!fPp{h}ddFMpf57$1fAA|*IX0Ym9)%xB?E8p(fE_CzkzS*W7C}ECw zi`wV{&x&VzNO9%Ag6L#5j3FpcBch`f6Y}0*4pT5XP66O6xS8;v!N%!iS@A!ovk%3p za*=P3My<*=G2^=zDS?kh;E+keHX9iaO9D3)ZLCU(WmISqg7-Qmnow*%k_yO&h~X{T z9oBF$jsD@@UQouAXvcmP=md(RV`CrU_?FvG$y1cDp(XRJa~rws#4ZjzD}DW5EEzr) zQAJ`115FXhrzyZR_!?VB&7>Wm;h6Z53F)!7p}~mL4C>9FEYClaeduf90fwQy0M@#~ zJDb_mRQX=TFAZ#wi#TtCmyDs*v8P{r&VR=`TRPlgNP?TtwT>baX%@CHAF|G6}wX zFc;;&Y@6p<_XXv#jXy$8w&yf|=SxNkvyUiR-)(T{G&Vc4!Kfz-5AiDAzF@_5u3&-T0Xq{kFS{VEtOXz@J6 zQEuNM!Z>tU{_8hr9hNK44nG74Tmlw`q^EZ0?Q9qS)Roqgc^#jXdgzvAC364M;Xe{9J42&Od=MPRuvhSCgLd>hM4E#bOL!{p>h^SeX(v(mgtLX^II2@^3H zwd0qoY}*jds7&ekHw91#n`IqIV(#$TXzXBl>|Q2PfMzK*O{voTag3&`h!slLgN8y2 zN4H$0Zb>?);P`Uc-REJPT3F)EHkJ4kC~0Pbp4atJi0q&9trg`MwLDsmu734wc&zM& zDq?}3g2t8;FVvP!e-)VpH)E=>BY*-dNAlDWcS9t8ymVuyDd%vN)fFOw9Ga_q9oR{- zMa^v}|FKYNPbNq8)ARDQf_67QoiQRU98W6`%IwL{B^CV*_i`gWHUOC}lU-$9Xi^R= z=?DCq(wG-ipb8+n6-tUp)Fv5Z6h^h1 z{2tJiaSTkX(ZFgb^jH_pgxhR9v@o_6B#46Iq`1@Pqw=d{JtX8Kd33$-O<%%Sf6vZM z@qnHS6aNpTY#5Q#J8_?R?uPsGzcI=qCWIO*ZOJq0dLCXUo5_T`P*xb`lhCQN;R(WB zm{vyM@6WqEuQOS5V|4dg>dP0;Z6598Lu?Kb7qlZ|-T(~N2o*G2=l&8IPJ~=H2P=wX ziV-2Cy?U|aR>G`<>Cp8Z<~^{5w`DGG^#yO{g z{SgrkDp+gbvhmB{ibGpjNxI}afJxX-c*ZUKpv{QHMGxp>cqJ-@-B`N~4bph9soA}9 zA|at~!PRjv?y^3s#=lNUw|2|stAAPN7pYhK6pXA=fKkdlrSWA|{ri{T{Xg1NHNgDz z76L^$q#eJy-6yo3f(U4MM=DS`8SschrC_~5zeSVyfHu)Ehq zzK*r$@>o|F3^+OJKD#|H*Y_!z;0J}!zr(_Sg%DfD)sFoCR{A z3Sf*7u$hIKg@xHIY(muimvv40G@f1dw-m`Lj^5w5c@ypNxvKs^ET9og*mhuSb=-WE z!~fC$Ed5B;#eX9G#kfh ze|)r#uvwTgaC(Hk-pS($W3c6(B2=S%GSiV1o4|#2L zKU9&+iU3DCHR}z%Tq|EZYK1k~esaa{@#1ZEN&JWo-oTB*pmAH7z$PV%HA1~`nqr&M z4eo|bd9O#NMPFO*jQbajC`gS^N!X_rJkRpNwQu}QX%Zs7hy!9i>Gd9RrGA-*;fKfa z!2WLnQI)1UCxH)J<{K^z<;xv%ml$VQDJPkh)?jb177M-Z%x@w@@mz+=Z{7d$)Lg|g zHC=ytE@6Z2Ba2ZFiYRsXT}D-{|Kq<@9V6{8sFnd`UC}s>c)Zmvn`S?7?LGviEqElR z#n|uiYI+>md?K{=(?=7pXfG-$a35G5-uHB*n0{;f#0Uu9(JAlkZTD49YqZ=4Xlwv~ z6yd(j97DSe_3$_+mMvXtLK2K2Njt`B9*<-F#bxMa&7$Wdf1hYFj3CfBmqb8daC4ss zXl1#Zq+GcEko8vlQrxdf1f9TtD`BT`Z7M%3*wFGI*&{ktztLwDGEA$=I~U`Xwp zX^7v4Kk6gQY?aAdTT_YohBRJP4dmvUtXo;NZ%-asl$ns1r=sv#>E&c81QRZyHyPxB zUEOZAaxE~ywu=u5Ckx$G3$^wQBc4!0fDw$`{{3faLpg3*YkHmyL=bWM-Sp(mr&A3iEUpj6vh=zWY#o3Nxn`C-zN81Ghl>QY2$nU8^0Pj2@0MNb&-T$osmgh zZcD=6j-iVR#Tvls0iDt`ftFh4ZpRyZ{ImwKv{7hZ`e8un2~`$_l<*QFyO0)| zZKeR$ovh%03D3*?A-LC5?Wb~gP)>t2T^bc>t!3?XcagH>&W(IQM%QrLOm(Ag0nm=m zX{qW_8$Y3HGSr{ffJVLo-?vIT`r!zdHkY|OP_SR4CN}+h?e_$+5+^Iszddfk%?XF@ z2&Rqap^+Y<(`hq0`%K$oxFhMBVlMOK&x8*~6Ej%Hj4_3)s{uAS}V0pja z@1T27=_Ln;N2SJx_O8Om*xgiEYR#r{bP^5!trnsvG!2q(yB`|d&EW_N7NsN&y>+cf zNo81WUeRlyfpdl3$D%b++IHC%^VCFv77g%hI{{~nd^h`6bqu_gFts}Vzk6#yWn>wx z?eKn@ug+$bxX13n1r$#gT=vg12<&p%DY@>klQ6+!gf(9DTwY9vlosBCe zcI^#dC27@MDX9gf^EMh%SF4DuZa?F`fo`!B2cz;`3zt0KGjRXV5mW&fC6hN83%b%d z8PNI;wDi)Yp;o<-rGMPVGXwlc>^eF!wf8@@)KfXVRZDCNeq+~dK|zM{`{Twq{yR?mm9t!HZ+x$1N7>&<-Ee2o#dU2=bYmP9lKUqD_c!Y-p#) zWV?M#rd@!S3VIut$&z+Gr6?)hJimK=dBOmiFxqDi+b<1r6gr2jtc~cniU6s_608-) zfl@%BsD}k%1iT*v9~l^joVXR$ob68o>HwMlGN~e_t7mv6aZ2Rz_-yF@K`|myNU>8~ z-|hT*X-d5UnN}OC8_^iS7%nn_GLlT{ya5+69g>@sC7Uxoxj1dGVr*eU>HJTIAqRdp zT3Z!~;|F}PQ6?2d)lqdf#j0BU!E1kY0O&#>$037b4LV+@Hg4AthW13}VdUo#5FiJj zWtG{Jhj0y3%+vup>M=ntjoR$=?UeM4>Rn`(VV-wQfMg^IEy zQmj5o8Kg7?&t$5!WX`6JVP!xQ!vZZXJ$)80fN{|!332HOZKIA}s>8hOsP zrO|X|hvp(33Zn@fkz>v_u12_kEV)?*f2;H|H1OY>(0 z1N0?uV7zKhH3>5@srt+mCl+F~Ny@?^PvF~gH9;0!ua7$4`Lp<(6h=dbTH`o=PhR%? z+PGDrBcZIq5H9SnT=z}zS6?#Q4lWT0OtI?^G;VQj~eN9oT1gzVh|!Xks+QdPP@tE zwt;3S9tcHIye)IFwX+jiu%|1c!2K}^N7xzeE#pqAwR!u~?{4adc|%Bg1tVEF_AbUc z&Qn9@R%|Kn$N)=WUXM9Q0X^Xo-2g%H(tTwkEB(xqkeShyZ*Aloiy01xiPhnM1LSn2 z=KQnhc;X4&)z?chPc|*1)eIFDnHGbM(;|7%VI7O8si&;w z?ruLL!%IiO-_Cj5dkIe)mX>6xe)o?uAjg@d`q^3!z_KLI~e-4G5O1?abXF9 zs`-T<8Vdrd;)zH61mo8nB!v;-)WoAvc^TFiO*Oq&xMW{>pv-W2i&HryQ*R}lXkq$x zzXeW$q|O)zrFprC>x-7l^zrYnL_+a~h)oMb0Rb?QKzm`Kh{i142s_f`c<@cPX2_>+ z+Dhs*AA%wGW2=Em3(2gw|IU|bjo{@S$M;8Z^W7;P$w#HiT;bp^8rRKN(VX^biL6jA zf?+K7(njgt6Re_$HQ>Dg5K^crk-xI{EtPSycdPSPcVtYUwbn;*Gk6~TwAo2EidPl$ zmXNK3QgaW(v#o--#`cG7b3j@d3FMmBWv%{D-R^-(eiX?no)(b|4$u>i-XID^!IJCh zKHGk;d|X~VmAXSQfMs0P^P6T8NyWpR8eRU*4QbjX7dM4f2ujn-OWIA`3uLYS+Z}@r zb5#LF7Cdh;`^(h0c#dG!7o}FqY2cb;0Br zhe;DuZmeFrsZdIf;td&o-rnv|U|#l@~Yy-cs40+;GFI43UtDn_>sOU?JTYRA<&E-<6T zfjz0k2!vic`C{en%LO=C=t9}%y$;5M6}M6hFm##iTZ`{c5D$5rSh0Y=Qj17ZgDMrh zR|cO0#}*gi=T_ot3YXU}deW^yVj-2SUWj@mY18ydU>564@x-}r-%?f=7qzG7H_^p> ziNZZRi(Tg^lHQ>BVjH98@1?G6@2Z2lT`O)l7S4c;IYKEJb;kDNFUfkG*7yx<1H-0w zz8huQi0NJa;RwRgR-HA;D`KISW4`x7{=;~o;%ZT)j6fPVcKg9Dn}!ot+LU-u)V1y3#G(#_RV$pNQGFdx8F`>81S3GiKkbEDKadrHc07U_WV{u5qVv@eRliuYZ`1D&x2VP2(S||n7YbZ?m@A88ws~I((t7 zpVnfC=UONR;N%#H7aJ5?v>LwL<*%MNbIcK7cLc~R_YSn*z^OH)sWE$H{fNL6Mxdp% zDwAsB(IV7?wXj}lTxnJAYz1qw(!X(EyJ>}0W(sqM&&7U!0eLVYJzN(6;nkQNy008F z(4t?+(uqE%8t66!Ln+dz;;{m2mj|`xmgDv7>W*(Ci&fs4@XJY?igHAvu@nZNp}G(+ zE~zv_L4wxR>7;aiKMK3|CckiWJ;;X3pZ{$c(0FClwLr>07GEd z{5LlHm1}#iA)I#!FxVqNv-loLYrfp*C3syD3ZGJ-ArAV(&silg6D>Tk#+A&b($>S} zrf27p0>*lEib5;FZYUiVlS23ZdL|TIi>RsBcm)K?eT>ZaG2NZqLX@_8lF5bv3Mhcw z4FR7}Y}Py%J^@s`o8%l#2!*twT_#Si{0O-KSN|Rg*yCU$$wdvCw;Ih+e11 zT5bOH%VA#6$UR7Fy6#FN^ZWKQlb99`tSRo6T1~>W=_02fCNejAh-=93@MKQ?X7;fg z^d^Sf*FOIl4iA26)11MIKpG$>>zj3#P-@dbb2rZh=j$cqSc45_pjEAFKs)l39bB`oE@Ry4EHQnaT0_{xTTe z-L?XxMOFtvd0C%K5#AIs>ad2e1OrWolAJI;3Cx@3o9hPpMX=L}{R;WD5tm12T{E0f zN5kLfa1Lo$JZOM8lULSb_&2`OlrQGSP=_X=5P!!j^3+D|$}zjH(6-;C1rIO9lMy?j zsv)0AO{=BCH?R+;lUBvX(~T}kfL5S!E^BZfb%Wl@t8UxW#TN4zTE}TYj6B1j13--$ z{~|*m!71j`4SV#9SAugC5^A4QS(%+&np(*Dmd%Ick3RV4ZG`W`>Gm7mXtUk-9kF-M z+DslPHi&@i*Voi$(Amz8Vsr@}pU&Uxa`ZT+VPXu^WWNPI zZJh2EVPREkA*r;g{+x*pz+)M5a(1ejQf|I~ILP##WoC{xpv};G;5>GRgzB9YxOEwjG4Vommti{Fj@eZHylWFyI>aNhHs`kS|$vc$da!8_*xf%RV=b%#MA2lZWH4 zgH0Zfv%PGIN4ZMmS(0jmuCe5i6rDzIjVk13JwDb=agT^d7(72_-hI3mt9;Vyw284F zloEX&L+Yxx4y2*U&`B`Gd)n&yRm`=P+g+9hhk`bh9o3E1^=uP!`0wx4FvUhx0d7zs zK!e{D0hwWuvLVp5!1pfKP$9X+S3>Jg5@oMffukoETVYfBGeXkPKZw&(@L~4iC^3Y2 zPT?Gad7#0hScmu%yDBI&%XEN?U1P9yrna`S!=J7FzS;J%)pgYzZ`Nnl#QnDc(4Fjz zEwAgvuWoPgkNB!`-I|f2jKha|_4_+rYKQk(&5>9!)M`zuBnhRhg{ZEN7QFrsGqww% zmw+@jqW5$VsBnpbC)m!0;>p<5Uy|bkh8;Xxb9kzNn%gP* zZe4p3Heygc>-~fND7liFeYHJKm=?;?hHst zktq(8?1QZE(Z63xuTv zyqVoh*!ub7SI-cMzA5i{p1>y3Cd)SN@th`1nnYBCA$f}d9GNVL4T)?b7>i4lZK_uK zG8GEQSs@7`AVhtT7*!k*01*%!)rf~zNP@-W$btE(@X+67lK@>7`3vtejny!XP%*@# z4qRH)!cl~e99mZNbNUZOm~dszJG1yyIsq^YUZS3H(ev2wo4@N+)p{*#bQW9Q?O>ZN zG4IdZE=gkkyMG9i3=?v1a~R9_)8b6G2*qk%8EO*Ce(15X(R9Vj4w(y8mlsTygN{e!GcCAEsR91R`f=E<1iWIINaUUe200ToqBco#<(L(6) zKiRi^i7XysJFXCZ=6U^KLa^||13o?){~y7d$W0(U7<#%+FskJ!b(9C6E6n$E6u&;|0s%>pDvZ2k8M96UvFgs;t3_IPz)uNCLyxNU0;}T#C4DV`Ffkq`V_Ka z@hSTwRZh#L$s%_H8a^@TV>NXRuFht3iyH)ob%;T38U@+;8(L+XcWIdkNPyQ4f~Lxf zEvbPLX*x!(>in}{bNbzN9T8v9Z6;w<<~D--%T{wc@_fFVNA&cJr`*6p&SK1 zF%c)9$IL$gkx;4=x6dip5QA{m074NLh!>ZfIBRDi2FE!~*_b^ZDCGecf#!Tn+ru5; zEz{!NEmJTY8TR{?kh7DCeZTh<8h=&l;Ig=>rNk#*bb&t(mnH82zkoD7P{sLacCC)< zCrjP5pM%|P=Mz#b9SAz;Z~AIWV&`AWmOYSMp(W;bHlDa=_h8CtIbpH>Rs{R?_iM|e zTlB|6xO!QG#9EL*e_>tC5AOkDBCe;D5tzR$;tXupMhbp<3MclhusZ#0tereplApf8 z@bh{Rp0^QxS_NiV1}zRHjFIp>hKo6y*c{ISLPmdnwA*N9kv|6;_AAfoj>i*{&*g^N zaDx_YgK5Z2sR8@wX-xln}5AL z?*9l4uNo+6gxniDb%me0?3tF3^1&1+^qz%bCqy>un9tFpNUsi=`b!dR>W6M!UJ+{r z2#$bHphM00YWu+#J%Wox-T@#<54h+~Hx!;{J>3yf%uf(`u1%Iv_3iCW>`tk*cu-)0 z0>9cz-x5t9doI0bp5SoDPUeMP%Scub(5-ABu*oep+~u6tK;EjD?s==LyM-nX2uD@y zckX|;{fOy3bHPS$dh89h--K__!1ku$3Q6WBp&c4`;`tVH9J~Tspz#n%F&$uPRF#{AOKLTs!viv9|=|jTRQ5St4B3f3n(hhsj0{F zASqB}AiO1Bfg`w6ML|I4?t-4gS`ix`5hH9mjX}%h0garC8u2W>KtF3ZWfdGfN+F)% zwyKg`>C{i876^G|)v!hFue?jV!kzyO3`DG*x;N<#T3O*`WO&}eH#OZ2(w2o8VMd<~ zPPKaWp+PtGDG%o_4+(+=Fl?Hm@(n7rrcFk(b}Iou%BHf_#MTjoIE`$`{(OTYEtgMP zLp>Yu-{Q#<%Bmf;{4-MR@4PdEOK#p1hz;Y&Y|e8zjC;BW9~}*YXp-x6`6qtU$@Qg?2_9qwPGvu1mBD!>Fr?dZ_H4J>72RefT^GF>zHo8ka?^7`ayUejd#3j6& zGp*^-k6zBMSKNIMS5FIzw=^3rp*CgeE#!&)uZl{7VA~#VX=wE8UO%IG670+rsyLr2 zDc5Q3{;3ByJbGnb*ctnr-8`#Lnw5wb_d3TgMJwA`*v%1m`lDh_l52>aNi&jLUgvUr z(lS%yDFj2R_?e#I(^?_7xdW&Sd59xv?gLSqemwNNE-b0_uY2V1+Prm$-{n;|uhJe)X619&Yp`h*drnZgj&_Q#8i-E58^ z=m>0tWRPOrR3fGOiFi>j^ydi7oW^f$%fg#IGE|=7q5JeC08F-z9w!<7L`#>K*L~Xh zcp)LDgu%(8k=TX5v6zmiik9061w&c%pH0MK*4iF7?6bW;;h^!V_7)w!nyZ-l6n5*2 z89Asd`MIg0VFGzQtc@t}cRK|C`ZQv>VW*a5_@=vnAB(9cr2c1+{`$l+iPr(y;E{%$ z@Ib~|hucP3|7adYDNRH^NuIRSbEf@TdD=L-Fg#1Bg=K&D;C^V@j3PF|)>&aL4!SEmw1Wj5-TB(aHJL^-MMMs)# znyrSFO?#;Y@^NvNi7~~jo{caAk|JsT!`i9R%HyytN+R2^Ef{$g>KAF0q2qd#{o2=N zTRCtU-85EIsU6ZUeoxU!xyO;%z8J5*r}sTj!-LxYnZ~1=8zndCj>TTjTIBfIes4@d zXW5(v-Kp$g<2)ZLygbLXKeR1(kp*C_+99h6ay0VV?~d8OtgJn`?AL5VktIxSA7+;* z5LR=$dwE#q7B@!;K*#BnE$!>qAAD4sIZEE&qLe?5RT?VoULP19B>nwKV-6>>&x7m} z2ATJu#$W5gsksKLC>9sM45ttcwopT~>@sgX3)*)M-4Gm6B_$_(8zhW1>>r z8-dmSb>LXO`8h1+OLdyku-krl1)uZYe}2{(4QWB+yE?9;AH#<^IyWs6(WB-Pf4LYa z8|nM?2x4D-OGqc}cOJ9+%a^rih)d{%pL|}PL@Hwh1EKOk0qh*U>#@ffa}|-K*vepF zF#vPG`}5E12n_NZQi_HM`ChAR=r9m!*rS@-ZvHw+0ZxAF?{^?|PW#RSo7w2^iM-p; z0}>%Mk=}@;X7eB;rTwnfM`L}#@(aE{XJ>-`294Zst4>K7daU-HtQCd@;S3@te%KL4re;F z!G<*xI^!lST3RVDiE#&CnVg@x<~A08KmJYBD$2Agktb?DZBMvIz_vl|RVo!#PQpE2 zRdRT8WhrD06BBy>^52p)Tj04L);Z9|hSE=5n6z6*wxw`B z$az%IR`D=reb9&5aBGQ1i6&7kMP%&a)n)420-^h>U7& zN%8gOga4|Y=d7}$W}uK5o@3Lnn{AH!Fk@J^2lNQ$^RlWh&=9FMZi$Oy2$h6rY)ykdZ;?57lxU zk~rmgiNmZz)y{Y3NR!685RL#PDI>?o$OtzADYZulA*-oz3rjpBrg(i7q;-blw`Fg| zd(}a_$M2EMe5+)tP4l0__F7Gu>BH>zVIjm$pFH~@Ud3hN2#sMd?(bNEjX&9gy{Pi$ z8L5gaEfwJgRlHf6>uNP7Wpgrs;f#3RGtxdmX>DsiC5&H^q66_5VOXxC2R5v1&Jm!` zKT8>`A%>9rt=(r z7xR3x+3!4jMDmc$L`?MG8()MRjig&uNrM2FdOLSB=WQmf?xKk8mN`w}U;V?jcTY41 z<00_yVvrrfY9p}gGeW6-tKqygw@ z2UAiq#F5HM4-xxil{ncMy(#Vv{!Vtyi>Z|Imc!CJ$*de zwry^BUi+qPYsH@h}Jci-RZdG&wSeVyyfoS8W@?+=PIP0@;>Ui)_| z2F4f=gPq+&!|Xh0k@sAK`^1i+d0PzAqjHfz@uWq8iIu(*93 z5E_Qh*rUK<3GpUU=f?Y8crQqRyuV8k`xHJ7 z`~>%-X%eNub1Ajqs$|}&8%oH4`wf<0ssyo*-h3`!^;bX38k@y?p|2ZCzK>?@Sc6rI zzat+T`=bG{61#S4ZcyMO1BC?Mb2)bt>M_qdfY1MI#5b7{MF|*%%=aIX^#zH z?4ju+nNef4YP7IP*rUx>@LxjAvV`yxK;ZKh_2Ri*5QJNf_JgMM1b3yHexv)BrKOG^ zYZ4n1i@ICVpH`>nr2(%akC&1N1FW2gCK!cVpKPWl@rcd2xrDi06Q=k5$Hsk=J8dCE z$1;-?6C8}$;^N`QWvl@5oJ32QU?=X)l@)4U&+A4)B9JuS^Zu+!!1?{6@+9}hCN_I( zSUj*O&G6r@kl`!{?)@+l^f{{9$xI2u>4gZ@U_4uQm-D<-Zg8RTAmLEK5ho{4of~s( zY303+oIQMO71)l#jzd5K{;j_J^Y#pvUP=zy3EUf;Q=a{au_R~95G@$JDA8Da>NeXoW*>gyIGoweNNA2_hXss1#UO9T8b26?o6 zsKJEROwYTal_hOHlRPFVV?LF}WC=zNr1J>)+%7YM;gIzd^J1QjaO0S{xuu1LMU>Hy zGdKYP)W(Lc!URgU)OiR`o`)-J4}cb>)vc+eqw984hZS+i1EHRMzOkV~fBRVAE5{*cz(|`cVcaMYiV(b-CKz+o#Mas5$7aN_}>V@&I#%s6&&PgshW~O zgY8AOXT=Fm=t)|c>0Xp}7r_}%+wVT1IrCezL8QIL#m10+GQqXb&+!L9+U`rnsWeUK zEW}o)c|MidB3taZYsrSL9;oOf+dhx-jgpa(qoX62q#xb*eQ`PC!sPTg!{ih$5n-jZ zJ$B%>xO}#pAUrTIlrbe&tk9(Jd5p4}>AFtDjkQi@hCs4iZL?jP_w7Dmq=B-x*GSqi z*`rN+onaLeM*y|l=%6-C<^iovNaohRw4m2)-*o85*;V`2_I|$BV1;jM=Ve02c~Jx5 zQR&^y9qA0+6%^>U)9s(o8~Jzpz!Q+V1je$uva+!SiBpvF_j@{6%kPPSQkzynTNA^$ z@TT?UZj&Akzg&|q^F}k|ESO{O`IuTe4z!abham^k76$Lej2Uma0>K>ug=Y<=fjD44 zR@fLD!*w#W1VNExjA1gYuWT(;myW`r2v4q#Tkd)lgp~?Odu@m@Bg7w|6}5q)SyDe- zJXt7F%EmCD!Fq~l65|;r84lk4STA=SBvU)6d%|69Mu!Wblz^m_seUQ0K2ij>^bLGj z8%3k7>H`1kt(=shkD$FI3j|h!B*$OvPV47sgYACPA10-?DW)~LhWuHom6dC(mZnk} z*cjtvF|%*^i5h2IgYYWew!cu>UplmmwmY8Cr^?`xz+Yp)4v0GCO)yH!*B3VK=3|%< zo}N}?GB+zC(D>Y^_7!ad{#|xFxG$AQ)3D+q^R-2iZIoHV)nR9;C3VrtTn2*%x)*d! z(l#`)e{pMMz$%I*=#0E>2HBO;3jz?YN7)M5j`N=OzGmv1v(L!~qMO;7hCrQeQM1Jx*zl!&V7uLShQbicR2X#`h=GPFVuN5$}0k&XZGbLbo)K*Xt@I}ul*}p1_<~S(F8x>)ogtm)=_~|$Z8tYpuzlz9ug%cJkC48Y1_GR zMrlM~zHu#nzJC7eF?@S){pbq--s9$bxh<9L3so9pC7SmKZS^3Uo?nJRD?oGSptWqeK*74Ly|=UNT0Hb zaCEh;V+1thk{9C+-)C28rf^*)u?$F8>tU9Y4LUrvvIN}suBl;6WI>x4q;;&!w){UI zdmg**9_NQ9;O^j2`@7!Xsg;NYyl<5m@Sr*`u|T6aB91qn0*;6AThw!^czn(wdeSod zs#5F8Uj=zx58}(q6144K4R)SS0$+vpkKolfNfrXI5Of?YEp6*t0#}VT*1HNB^p=;W zF}_?=R7nO%j_>is{!bx$quKn@WeKuWrRPb+>vBC9rNrrgC<6Ke288~Unia*20W0=)MV4Z?4{0W5z}YN zq0d9dPm_Umd`8()mg*uH5!Kupq7+Wa;I#^9@QEz0xkQu-xASfxogSh-lG z^4s0cS?%`(ec2T`srzv_I9$3J(3J|}?9b_11fA!(>FI>jRCkZF+KG8i?erhuO% zmhsw)0NohP%J-O_x3l~`Fj2-{yW;Cx&a;mVq4zuDx4EZ<`UXTEIAWC~4o{b^4~Wm1>leisxK7g`f3B~cTwHG5uENFHj#10k>aP~eggP8s z3%2`vRTo)2lpRkI`L4!wx}3$GQ4mM|ox%;|vnT2OiEI|0o1-yRcs1z-NU5i(Lcuh7 z?Z7N!kYiO<^FHnRUTJ3WtZi=-#fg_%fDQn52xw94fas@+YMrN%o!5{0q6rvOi?L1) zIF%$5Y4W<=_Lp&>1LxpuhLU{K)}SRltKM*VYWe8RQKvKH;?;nUP3F5cai=kVJ6htR zFV6^YdQ}K~&(36(TuAtq;>Yu~*I|RWb-oevxB<~So~>;|E+ld)S4wp4otn`rLCp4m5r6H4R#K0 z4A=<7fkn5Hg%f!N1!g)1273C37r$f{QCMR10me(z2K7skPy~sh@(@@^$;tYLK7IXX zC68HJAHfn?ZeW8>Kb88<^TDhyF`>SO;iF@qtCpoM+RyAF7piad+|pz+2uu9ldr1+W z?5l=9Gz6lJ0j8cV+njoymR0%}S`W3QfWFWj0@cV9?I4>cTYVM>J1k?Xv@oOJPC_V` zLcjt)jI)D?&RFMAG3vfTMRHnrS!sEQ2F~YFG>$$Ss!{8K!EgQGFd;@WS%5YcbBStD zzH*E&`KmwPW0Jy+$U4$}bVzhG96ynjnx2x}v9YD@JjPY{0X@kIFdRP7ntEKIe!P6{ ziNKo{h13C&DwFNxuD2N_TitKE}xI4)>mhzq){!1Y^4S8!egfht0 z%ThE-MnVvmj`imvbrV~J6e6wI0ld>Tqhc)?aJ-h4Y>Fk$!bBx+~5GTFOfkGBsDJlWS?4WzcJ~BuD80>(g{} zK&FEVON7cTkvv4f7ZJx;8iisnF0!I9jfyb$L|`jogyD4g;e669DdYHbLlWG?H%~Wl z^uI^L)+H}#srla@f3oW8zy?qMUI=A6lF_O6mfHMZJ-A+YPX@%x zLoo5NyY8tB#Oyo18f|O|IBeNjIZ!)1c1`yboBd?@RYN@^4&EDi=*|Ow>r$&$b#nUs z1P?_^_E7%6^3*~wa4HM$^l|I+(=CV3@|32WmUPOd$dX~LyWl!yD&XgaI1IT&fi!uL z-t2U^?Ha9Fc&8?rvL*@*1B3LG{24B8nFFckL{V|iH`Nq9-d9LAyDMEvH@|#R)G|aE!CPqJwFwN|o z|DO-&mpGyal8A8@W4!r=nzrY-TZI-R-bT`}Fb(Vc8#1MUa7;~~L>(AYb^AhYA?AT& zyQ}jWyOez%^#2Ox$(Ghq9qmtoPDT^mKfMd{=urWp?G*aG38`qNVY3rgQL=D zeb^;7Lii)5ZM}4Z6Dk3K&GU07Zq2#X@3+qdYzOlCU+zV%B%?1l*#GDDPV1*YWMwTJ zRNaYZ{&|y~EU=z$ev~m9Tvn_zYons!b}V-Uf&eNRb?Ctx6Mai+4(v_`Cl_&!^+Tqh z`N}lQRHyR#x_)l0yzS~Kiehf}TB#Oe)aZ6Ny*6v>N+Q^z+~Vm*6p`e!ZeKBjPw@mh zN#}!TKezFW2`X6uCyzR|lF4M0|NBWQh!{jfFZT&X9NiD)@_-Ej%OFPwy+%j zk-VV2on?+5JWX=l7$_hLDh;mn{@aC*IUh&U-6z}RV^;r_^Td|`VWO`&0SAM2Jy9&| z=e?w(k|?q|b#6D0-&q7^3fpbV=yvC*f&nfS&Q5CzY|zFqb)B18i|RXnuAMB*Iso6$ zvA(vHd08=L3{l`^s+G|TW+W;?HlW<3ym(r#@%C|RI*|>`9X=0-IroqXIvJk22D<&6 zDt&3tKNJUCFqfHKAXc}ryljCuT9~y(BGLM5vr|cNA{N|g^;Ex4-RX|H=}ke`pz z=r{Wu3y{=Uqx6+RDcB>om;xLZx;7GRBp9sGBE;xvMzz$tx(j+-jivR;f3fd=WgzAY=nd;|06<3Ynu=z`$VxPCZ%uoTC>5X7BUF8^IRbPAKB z#mG~ZblDS$CuqN{TMMo+d#SW#QQ>-aHTH&jDYAPvGsnf+LVKz&ic4Yzt{oT%UEtIB zoD~sb_?!3;OfL+GtqhRb)a)%QD;ApWw-h~N(uhL-m#oV?moYbSt*d{mD~i-yli_^0 zl7ksrtg61Q!*P_D*o#T#zbsh`QFgR##fazjFOeNhP&_zVwm7Dd=A66dc6R&k%|RGt zThej8N0J7XR*DRqiu^G2=9uclNkehMw6Fx88XB&xLkGJ{2kVQB%j`t`uf%9ys3fHifdB4S0^D$`!sQ*XUDs$pcx~z01hj|Gt%XmM21Xi@HZ(d=wM5~s?bhueqI~i36N&#ix3O&t785=M#!Ods8PRi7t=8T<)HI(? zd{Isn0v0OLcRtQ+1vFNU_Q|WI!~*dBdar__fe-=*O4HCo)h8*l2LNL58U4=w&MZ_cPmVn~C|_uYl*{>UyOqrYb=Jl0ebl^^H#& ztM_8kEyDRm9OmroRe95&NHIc#$4svMbuJVfE;QhPnd8tho9@Yb z402ly&PNG^7^}Au-yMo?|NVD?wDy*EkI%pl``UcjFueR|8Ry;$#twh055~-XBCa76 z5jjdf@F13)a>~?&9@gChL^}0G$2g;a1Y6nNEHRee$h4GwC)%N*Hatz+Qyj$X^y4WB8-WW!bL>SznPo{>MePVsOd=fzv&YWYhC|RvQbm{Dp}+XIpbjz z<%bP1tPKmpa+j99Pr4{vL4Cb5O$Nthqy34LwkYPK-IY;gq(KD2owmoru zrX@%qMn9lIj1o&osHtt^T{#Vs$BUE2fyga$kN#iL!KEe!MG^bQz~0*C_otm5@3-I4 zFd`{N;O~n1jou6M7aeKrVY(TT7}O%`+66~T-nKvlk2Q4@Luxhl(V;L59iA^#_>X#8 zN)e#DOb=Uao7;bQ|GYVE+kfC6d1zAnMkdC$y8ST+-eWD$YSb4=#~q@a3&q~DrR?;S z@?c&B4kR)XXsI2s|K8TiutSfSM3sNA z)K2-9XY&Xa`{SXVwb=VR^wZ|fWQePkmP;YzkpetdD$~-e(T_O&9oszc4L%gYYnx zgk5fATps=`9D^KUi7FaoY9&{YtL^~VEj%REzpff>fE*0-6c&}{Z%k7k1)1ZWiX}E> zL9}$?5WE)%8Z-ZJh`pw^6jlso5HWSm=h!F#%Q-b+ylR61SV^KhAmVa0g z@~4@zO=w#sB{!Hh_Vy(JfgH;FWMSD#(3$`iFE_oRNn_zk=ysIcy{5AiKSdVPn1`H& z$M-!}&T|J8&P6JlC4?3v{%PZ;kNVb?A{~RIB`056qoJM+g@iLUn^0h253ek1A?mGH z&hp#i^S=6f?>loYpZ45$BW@zU?N)}nnda2v#tz}o&Q`|>>z=;bHhfGpFLU85c?&&K@s6VI6dzv66_jW?3%_1i3=ow|C4 z6)V(XUpmqT9ABW9DY#m4Lylk?^?_Y#G_6CQ`FJ^pXHL@`oYhti7Awzbce%(Q^z2}l zMaU;DKULq2)%Qba5@%~$eT=m!8{^^8$#Xie|ISyW9w3)#2t1!Hn{B@}#=hOgu4i1D z6c#+9?k9NK1$s6vVeBJ}SbX=E88^BzY%Qjcr~{#jkB9-e8FF zc;3t(dS1>?z=_e-Vi-b&nky8TpZ>Wr6=jTNcC~EJj;r2Ic){}JFEL;L@`Yuqx9(GW zl~>=Hr>=Pz)Y7VqaR9nASB@_i+bK?qjasbVAsHuc{Q{5Q&akXR`+LU4U|2$qGa`t+ z3!3vS($Xvs;hEJ1A1H7L-B2ut(ujF~dCO^Ty4MugZNN1S!M z|LZbYjZ~9GB5Qoo>C3_vygt#}#|cvm3j(Os-7r)L@x`K|MHG>uo$|}jx(lP;?VXCdqFNu*XiYV6{ z?Z+0s%)ViF;unfx55r2?{>XNX;|Xk;HcmeJ-PXQ=itSt9(H;OpOP>!^`r&kEjZJCg zMo+54GzGS{NVuS>gBb_+rZ~Bsalj%Bq;HJ!PIJrEbG%c6G~B&Vd7Nc`p%j?4NvQw6 zsqu#p(bkX8-gD=4M{IUO20q?^?NozJ0$8{-w`3=JsWOazNV%$IaK`#ZD66*!GxMwlpvAJu| zXfFOErCN3Tj2*^teX#yXoNb7uI(rjFL`_)5LpEHCm;h0e>uC+#w8Z!7=qssY&$&q& zxt(t$-l}t23o(}_i_}43gAn5zTyrZnS$v!dM``w}e>!;Y5w?1I;jLH*@gJk8Wcg8A ztwQ-Otnf5e{tfL%8m&hFHk)9WuE#X+Wj4y_xR^)w=k<7f>@xNRb%4Epz%xnH#LCoF zbxUZo*=u9n57Bri1n0Vab$vQPz;T(N{L&)m8}Yj5zwSWx4EoLlB2S}V%SO9Y?{pN> z&ZY+ztWryDacWlUA*^A-v7&=CVx9Pug7&~%T6Vak6K$BSfo=R4TenVH!T_510lX-1 ziG!rVma>8UQeI)c$M+13OLIqH8?Tv0Oj$+R?sF9VYRPkP5xM6s(^x7(X@stkBpT0_ zqKO1|zOdOuE*L@$B^F43xln;hWn{c7)dm-@+gGgaM;qhlOA{Npi)pB!KeNr`^@Wmz zt6#9M7(Ll;_(Fb+F$`AcDY%sHbhe4R?yexWKo3A2O{JCk(!5EIDEqK5j;ZBC`l5i6 z(EHygWX>;F&%~7fF?T=y!;)$U8A`)ru)~3eSfj%$M7?B&Vgt&*?g2p#N$jT&@&x(ez=KhE= z#$o;MeVeOlHdl>7BMGyNh)F4H{u$J=-A4Npk-!!w%Q(gs1``t)omz9E4JdmB3ttfp zGan8)^%);ye?!wkmzpaQQ1rl((F3un__u*w10kIE$w0YaAb@rnMl*c`z9A+{vC4cb zF(j5NO_ADIom$g@ZN1g9`!e)b6}ZYabqQ%G9$y4tbqs&Gnr8YQ)zVn9j$6%{+&jvg zZkGr7$k}=gw+yCnvHAWH5!wYfAgFYVK~4^g!dDc>StMfw>h?a=#(q2ykr%UAlklI8 z!yGW2%S~T~=|+M{GK3A0z!tY(bIMJ~!MhH1Vj$8IO{K31!Uzg#?tEjB)qqCL#T#{3 zlgv&m^Yqioifio5vQLHDSog`?crEcQIU)nva|7NmNeFl>BlOjd8Q~{)K@Hva);TK# z`bpDh%hKuS<{a|l({M2?aJnJ{XDwy=u{;Ouw)>2*A_p9`vNF2peBYPwfm{M!jg@(c zgyHyp5WKspU(&@$qB@f#kdTl=-fMlrrR{ZUc-=|@Ur)nU`M$cd+5FTk<%3Ktjf{8* zaHBw0_suszvL@+e2+CI%P+JN3v)Yyr2}vMBrOY}=*EG-3?(E#hNohmG7Crg97(~Mr z0b|)}4kg=grkRX~rAfQ6@nUoA~c?u^X-ogX|Zmf-GPpC*(**t*x$a zEphRCV2@#t#{8gY(BuS`1s{d}2~U*xvhICbBbA8xdns}Djj8o8_BuH-Hu+t=RVc`!B))C^3vSx0OzB38Io=2DyNXWO*b6 z(DBUhHY-eXkRg_qKfQj8pd{j$(In=Okk4b?h1Hk4?ZuZxckt%)$LeH4FNteq86Vr* z;J%L>0r$bOWe&P@ro}6nO}oQGdM)%sRvyvE?MrfUcMY6_gXge_W=6iLbyvy?dQUXU zo5?mov{(f&N!~@?c3QtW+(AHfT7SC@?YZQtsTG>Un9u*2I7Sc&|Ca?O3|ia{=Y{}U zsIEVPGd4Z0U2B|U5j>u8nP#%qO`KRJBAJz_Q<~BD@$us)|NQk_M05zLD1a=w(}KPx zyXB(UseS;Y7)r&V{CJo%MxbeGDfS`-HZNZ#s3TnRiBLf5@BH&~dJ1OvY+*7O9@E4P z&vm~siGE6I9ynO!5FhWMmfu)m5Kb=wskrh8_LjU;I*NP(=aeg+;}M zg-uA|)88K8c9Z2%zpO=;b6|iRI^cPA%`>1xxs?1Dn58a*<63=D$CWtl38^(LKj%b} z0gm=4n?FpIktzg^zyb#fc|2E*aMud4pi@1Y<=_#vrLDF~P+2_=M?nxXH!X^(9!nT# z?xNz@FZQ}^XyCAN5QcIYNCTU%I{WDpvF~a6I@k6hW2v$MX?&~G z@c6Gg&rP$#LP*j>_ozD{()+T z!gdS7dJ(LPR~%-7mZU@VLAW@7zn7J1tLu&u(0T3{51u(6nU~}ZAGN16clXV`RjS*N za&UfqdbA~ukiLB-A%o}jiAfgqLRxuve9f0V$QaLU(CC;S@p?XFP{UYM-gWteKB910 zaJqH10FrlkiC7^5c1-F}<58TlGDpTq>6vkvyh-!;YuDU(eZv}3_%jM4w2-u@HYc)S z5(_F*I54CzN>UVj!oSsa7r;AWn=*u_rXX!$&{=r(SkpB7?mT6s zDDxUctrR1kcy5nw9F3mGR%7-T|1C4UIy(XH$7GU~;Tv#XDU#&}OMd?SE#|~kCpZ=c zbe>lMJL|G;XqH)D{=ZZa=_vTY<>?tE_p)4qnp4;jmf?(YhBP5&M#d=?Qxp*huUe9r z4@x6kxZt4%0&&vbFb#z!mMCp-aDR7B1!^S^F3v=!-adKiNK)y#{4^*;ym(q9N&zlT z`W6a4A=e?>gISs@^}cv3ZyCjm7Lp0Qt$EeC)i&oPGQi&2g`-RzT`6?juO{Q zK4NB|$KVw9sLM~5AHz0g_SuMvts9bm%^t{P0|oax*$Q=l=Mfzic6ImsF5&oH<9C$` zD+0AJji4)`N+>y16swi3iMP)#*iL=oo416FO!sdwd8eR{C1*_^3o|nd z*O^G631IrRBwKHiXmH%-wI)?TMjWzyh&Ki z+w4TN(cAg3S5I3%jpb2&K1WMG6g2cP_EEdLXxUhkyQsnl262(OWgjD8#*PXMvD2sIw*%TF8e9Ju zNq#*HDJl#jga)gXa3^h9w3CTpj-Dq+3v%N_TwxK#SaCA#*HS}OP(=;V8G7yBvn$~S zqlCeQ08Hamb(_ss1X|s6f_PB=xQ9cKvCbaMFUwIuuo_a>flexMOO{eBs3o2pxySUP zxC=Y)Vpw3aVNyNIi&NmFGUkjMgQ%3V6tlpK4ctPv)8q5eD*`xji+~VS5vJnk{4kT$WdMAYP?^~|iaSK*K;~;!85al$jv_rY?SGd62 zJl!T`T^NNg9SC-Gm?#^~u8)_plHAy5aA_6NFpNKi{UJpi4pMh=Z}BTiAl-Q8XJlAH zMz{dLC&x;6$H+p^V@P$R!JmIx2siuM&c6`4nZfrlh5Z=OK}*@T;fu)rP-qs`RFvcu z7qsX1lm$bEXL0-;#1f~G1>i_viH@co=xVE~c2ih=s5)xWx_X%chF}7bW0oM8Qp{|O zm_|TI^nSxybW<4Vh&bE5{z=csakQ@^K$5VuqXsgf7XlJr=q691U7a<550-n~JyGZQ zuzh2joVgDb$92ZSVBU0wW-?+cyya@{f0)VP5t!D}E6SU!izDq(*v>bI z6nLaq#P`-2RQ)t#`%45F`K8*sgqWcy)u}hNRt~Hm8b7o^hW4Eq>^Z#<@tT9+O%d^Z*Lc!x%C>V764(*5MY$=HVlbv{ez0Q24E^(bW(E&c zR>9EFppHHiN6kJI9;K=Bed+>IuPq;uX`*da?1lf1&*-@v8_3YF`~)Lpi7X4lIXZse zxlZ(>Y>jCBM`gmigEmR%Z{upVb&@nPlg+mxG%Li$Z;hvN(*B}$E_WZ1qo=!ZlH#$*V|n`&s~+nxIUD|)4wZSZHV3OZVGFhyzn{ho+qh`67o*7Mn*@y`sj%D9M3!hDAa^Uj^R3YfXv5=EBJ9LO4kjs z-UHL(X#%Ch&aT?fz^>~;xWfy%Ps6F3%Gny?~OKZ9t#|etIV+ z%E}&p?>s5iYu?Nc&n-Dn0tx^C48>sY zxJ)p%Z2O!gQp#aSq&Kb8X3*jbzFhx#e}d-aO~_}1LX0-?8P4DEEUwf!)8cTp4CYVH z*M1#vBbH(Yu5VbsGJ&H|td2YSCl~()ix0Z>M89uP9*~fR)+2D1v=jeZ? z7kEn@sH(5e&)0QCAJYKXzc_TN01+fBZ@^Mr46UX|FemV)gXy; z?XDLkGe%IBR2Z(@>3YmG60El>ZPB{l*_f8)k2YQ0D;o7{*jF4a!Y~=s^Q9>$e3?wo zefaR@fb+QQMz?#}{O8l(({Onl?F&0WCL12_VpclQKV7@;VayP(yNhQTyAMh^QESy=Eu*^8zCe@ z-us!)w;7-UOQyy;ZHk>PP^7K)I5=+^D93k9V_4bWX@2;jNKzt6Tm#zWcx(L{Y zX=(z{kuJ);eEl~@O@x1X)rSy17o(QHP# zC~i_vlynFj;ga^0Hm`ukb&Yg*><+bP#w>nO1SoPGHEG72K8xh2+wuv&!&ZtJ-rW#6 z*V=g9l$nd^sZl}S=8E#VKx>ZV^rLJI>R<>lI4e`%fP+B&dvR= z0jMPRa#oW|Net9#`ANw4?=CmO?u;;67W5k~)Cq1(^VR5X$C5Lc!boc z?U~S4&*#GXYj}i@H_kYW=CAI{I4wh;fSX%P?;(piZTpn&k4+s}1d~H{860Do;(P?? z_VTzD!guS!ranwob`Vo63J5d?ozf$LL^ zZO23s#$Ko0;;?lzm3gsUDOba(z>XFLycueN=jG%3?oP0x0<&9ZHu7<3^l_LML6m{W zqn8I{Y|aq0es+Jf^D3y2s>z2d7>&;p^1(T@)1Jz+F?Pdo3Eqpl6roasKZ)qkwxf8N%7I2@KA!a-p*;at6&AVqAP$r)&On=ce+?gX4o0n6sUOB%vr zSPD>r8>oK*N20kaexpp9{?h}p?`&bxBv}?$*B(xG!_}aF{WV65J?SJj_`VX@#Bf$0GGYe;6E$QCJVk)xOukQ-?^BKeY6b=Z0afqZ#6Ui! zBTzOl@NFazf*mg}LjV&~>aruSwj9rH?G|$Nm@M& zKxSRWF$gm)4{QN{*|gK_+w&`Le^YJ>8rS0&x`K>ib_#$M>baxOYj*DJ%9)u#q&3v? zHu2DN905)!IW0Qzaq8&s$w=?YGo0&^N~Hh8d;n9|aOWlv%&n=dy&lGQ+-$O2>3N&z z>HK&(3(c+lR{~9Ho^d3{+~s!F^)&tGw_2&Ck;Kq$?z{b;MO;L3@LrnG!F}EOi{?Z< z2iP_NEKkSO^5>#Ia4lu!MM4R#rSb-LWu#OEJ%(S+EuTVpav_7efE`Kqn{O zpJ&}lz|$)d;~7!?J-N6%cVMQcWw$DHiklkUoru-vtFykZWjR`42|gs{SYOoqJSmx? zjw?;rMHmGsg34Fd-gB-Y#${q+qUUw%ibyDc zA1w;7LyrNcp`kG)y=1P>39XlbByer~8ilUD0MZ9hTY8z*a&wfJ=@4^jIBbV!(e$25 z8Nejzhn2asvtlPsPNu$V=PA83j?JhrH5#gX_>099V|g`*0kvfP%=uA>ZhCTD6JwG_ z1VK9}L7U$DksUZTo$l_f)KgKQvxB|4i3JBqyM_y}hoh!LgM=NDY|Y0S8LhiC|20 zb#+x#=DdEz$L?IUU<+Cy?4b*;&jtJqe%*KsghORxg(uB#6*$av$ZT=hI)2^-4w1)D zO*7XG#z$T|CH1s$fOTrOfF(R8N!bcLlguxlgN5(0q=)6J$Nr}9ym{+9TgI+72%A@v zL}4LyrHkjoy*4rJ@3IXcTQAc!S#=o6Ncz`(IOYc9;_AAfs_OG1W%osg8V_uUWj$K5%}vUKnHMBshBn*r{d4qlF+3zCsx*lOZGca&KmLkoezP{~u`3sfR| zYeYf?44VcU_hL!to$=>Tq)sS!`6NKg=Njz~i1*q81)avR1ZTvOxdzgYmyj-4t0JFl zMFF7FY>exhny)|;{1wq_U9$j}smlNWHB(&5ZZ>|evf%m-`kZdE1r}rzikvsh4~}ny zmZSZ_o8To<`M!9Z)U35u2QHeDkdl)AE1ASI?qkTRcPv&Qm6>+_&*_7B~g zv9>3p*=7@;G4?Z5l4xk)bXhZu4E?0iCH{>X`}pvPBKi+N)R6`ws+1TJsFleRNZh@j z|0l{y3zeAtR0OF+=$q5a!Jg+JD6lO+yD**;R zWcp6agi?Am7q2|qb;_ojjWtT?JuDCMaV_sULB9H9k-)?i16@`9toefhXVE9IEDY$M*XDFXXWVDIZHxWq^6DoG`y=s4% z6DaNIURYdwR}?%LP-6gbXpn|*tDzSXgn4S~DB#uU{W&t%hn1>GC|@KDYlc{y{Hw;m zsCJjv$|1*SE`K!?qm)CiNWAetpWu5galW@qxo_v^f$hfLhQpP*N>kP*K}2z*`(tzC z6EGXmwep9p0yhq8aiyOQn^iQmRg#d9}F_*+WX%b^rq#R7>mex zQq&k4cG^{>XIk8N1yLin@c^kE>6h6#d8+{;{HlAIgn)pt8WL07Bn@@-#l=Wjj#m@V zDQTsd@$q_tRP^_lb#HNN1rST|g1YXM_4c1a(OG5lZv{lwI4QV4SjA*+nY0aS1Jo|- zmx?ELwMbN22hfbHTO`!nP5?#vVd$@+JZ0%%Ja#agV^K_Q-o--K0X>T2F}5ua5u^dfqx0U+{e_JE z3MaBz=;#os@RuFm-jX1oYBa928F;Zv#C&cq3!dbJ zRb#ARw46a`zY(atkE+@{J`gt=`)_MA%-NtVpva(@A@V75X0ZmmriIM2W&%?cE&WlL zxARYEyYt_&;+j9A*Sm#TP8D26Ev74gm6O4KhpEm)z4fLmVDyK~f89I5+`}J`_kJ~< z&4d!rKf{7#+gx3_p@#0GO+idPsNrTj9k0q?OB>~dG2946f4=#cwh5%*Yu zh72HaWTEh4c)^VTH5Tb67+Ki8f#mjeV!N7=LeU-+MG+TG0A>R>z0}0yCLD3k$taa& zIlt^yc=Z)yv<|3FU%!KO?n0o2>9)%l2bO+}=B@uA?wwO?v8cu2s3Q+orxfV&TR?=b z>56OfLmgzWB`YQkLfMaS2;7fEJ~}uY+W#hoT}A&BJ@7Mb#}qBH1f9khr>{Q$4Sl5I zEF)sQT{0!bYU2OjJZILMvW0+2`wo^*!KKl#i>!VXOTLDC!y|xQHi8 zj#2J&v;u6cLZWq6Q^@0nsP*g%dFH!ffuCT2KppT9fNO76GPqqr*{RsGdasMwlhI=W zUz|R=W#^A&-n?1I{a~7BIlH)g-m+uv`Pc8-*IRpyzn9I3MLKjBol>n&N)<5~8Eqx` zJ1qW$qRz?8Y=0a4{dn5C&x9}?U?RJeHlSAPqVYVea2a-JqG2_;S2X-KYx-D0UQ6%0 z$5@Rns@S1p+iC8>uYrFhRu}t&N`(8uWc8-cCw{*3e6n(JF(+8q-SsERbozB_I?q?A zdwP1h?fh->~qDUl!hxBuJUsbRw9S9m}&gKJ(MAopV zvH7oNe*=ifK^N0w;FWW0z4t+jxogl4sz%v>p_pplSTbz2+VoAe463RPNJssQCej;^ zJtImL>xglmoLauLB=o$Dd3wIqP;y4Tu^8;W3e^fwwM>n!x1Q84pUF(h-d^5vD{lV2 zQY@hu!6Y_a5s5J^-dBy`|NgK7)Y{ydX+tC(WI>2gQaX^oFL`+OYuR*}Py$L!o>g}s zQ80*dR!JA0YV}mTE#385uP$N;|1RQH(_&;^3#ic4w>5TfVHU-Uduuc@VB$3(|F+CR ziY3%07hDMZ{NnUpeI!%Ac>dc)(0NsrK@{l}&& zGW_=eGi1}i=h|$TeFwDE!1;;5y3EeR-%(2apHO~iS;bh`mbu(|dTX=u%L3YliS&%2 z)xZi8I=q-u7<^Wv%1tLrmh z<|N6jm6(nSltok>y**m9ioWf_QeBfJgfO%m#W=?Rb0Qr(mR;tbU!$@w;O>sCOGb95 z7s!y|!d867ygwxcCi*xH9dBUvV+6##WoJGf{|6>P*}ismNl8gcN=iZ(1OZ?fM%AmY zop|<{XmHdCRb)bnk!Rk#{2jNeCG$uZ$Frs{{AI7}LbNrnq9EQdm?(JiYH_wOX1=4c%IE3^CY=S z*u}DAzl?RCh#$rpP#{L!r%AZ!iC#y@4QhEikZ1`4fMErPBcZD5YOLz%nFRpyDj~ZT zcY1@)O9N>}nZ|wS$zbidGjIQHxV|BYLY*+vQlgaMg3Lu5Z=JVlW7v@zfDkFVnEu66 z*un zIHVvITQ~qQEGwCR=gyQRi$a>l7!v;Bm)Ye6FFTo82xGYMU(R2C{xSwEQYIeln(>xR44Ht*I)l69rrR?zrQQfB1)g_^hg0N~vj@hG7H(fzHm(6DLmW z+qbWxqQWqY@!Ov`apI>x{b?W&`2P35uP6!f_l1;@n)ly7{>#VB-hNG0Vh~25qLviT z-@VhjbV)?hDL{x%PUbT#Oos4HNwzZ9LRE?(`$1k5yK*N8Anwq3Jl675Ulv!rX zG-HGjUde_c`_W(L=av|z1tF%1@O4cb4x!A71X}lg z*s}K%Ww1wQGzLkC82~#AS8OQXx)m)b3@iMboyxx@z=>}^dpgYcZsrp$wcogAenOjw%_tJ+rCo}NB$-n=Wk@pr!So#y7|mtK15(MKO` zXlSr6LC}Xy8fo}jkmG%yb!>Qa)$?=60yCh z#`gTeLrA!~r_V<$;uxBW^7Aq(>g&$dw~hG2smY#1I3dgeq;Mt{gb;g~^Yh=__6;C} zB_$>Q@DKk`US9r>|M-u!wYB5sv|U|YKmYm9mo8m8Z{ED={HTZ|ZSzN;9DDS!XnU^* zXpDq|%+Rt63wCdFu3jEd9gMFgiL+8X>l`I(7F9O3nSlMK8~5H|LXKw;lz;k=nUj~~_JXF4?zWzx)MU?e@6{|} zX1x_=Kk&-nnX<8V6vo)@-MjzGfB7#ypU>7v``^Qd55M~AtJ68lS_oj<{!dTsc_h%* z<$zeRSV(t}(y~RncNeT&&2%T_bE!XH1#Q)wxE422Mm|F3^tyKV#JmH-Iw(bozi)`#!Cv-jf+d z=X0vC-w_r9F$I{=R8fo!cb$FvjpmQ``a&_62_eM{JG@y%Yq#B9wrOiPHDyEtQC$qL z7Kd+}w#Ubjo?i^6_GTBW&a4wAL{L?f+?{r= zd-wI%UvFP-UlNPO-hA`Tj*gBCW4I}eHQPQtaO}PZN19s@<|*2U3Zj{LW!vw{TDyTL z4ruWJhkx4_mMn0B*Y1Q6*>-^w1uYXd$yWvfiiE?=MVFojK?Hdk0Aa?POcaI?f5{Od zTtif+EA56GxBShW2#l( zUj52zfy0MWM#D~qLI?z$IC;^66}#{BF2BaF_y|iv)TvpDYH<_V&wuz!R@r9^eEowm zm%~|DP~gz?rncVpu0e6l%sZAuLkj0?z|PHJURCsW~}Ycb9J5#2juaY+2%CA#Jr3CuzP)MJYc$({Y<@yF1|0@aVFe zPSypRnE1k+Ii9$7dPMtpXv!4&2 zt9CI}B`6Azk&#ip^R9v$w)g=wnHirhadC(fAIfpL$Gvp_rD}dfxFp(k;PP_~kF@k*F^pz`DyONUP#&i&vR-~u9D;A4QS?2>cJfc9QmdA_*YATMr^6YT) zDGi$@f>9Mmb;tZ`H*NUFpX!B+!&oOg1#LoTs+3{C-Dod)yo=sW=ck9wEXIbiAj`5+ ze98GaIgv=Ls;;$rmDpbM~O?I>zTu1h!a?jEvZ3+*7g4DO9t+qVm{-5B8j^ zbW+V_Y9`bo>1hkLZ=1hM%YXWx^y6bjhe|`@iR3 zZToK{zSr#^ z%Fjh44S2+v<0f$2K2HovMq^w2=ZQ6qW7y|z`*NwBR{^_z)E-wo zc9|GjZEyBG$M_WMi(hb|xMR`^8NvvwDu0XdnU(R>0il$?6{)Zonves%%16QbPZ*-i zVSywQ2kRP+zWVFYhH4*x3Pl!GBkrW)TQ`;O+F_)phL}YW?~PF?<3qeB?9S(`UXH&Y z6B4#y1|i1CaaR$CsutuIBqgOZ4TNgj?PX5+3Hn+{;hYWF!R5ffKr|Y?=qjhvITd+Y zp_+a5b$cKDS<|VbOyyteqezJ)r7XE++oJ0?nb--D#{JvJs$%0-*<$x69*X=(Pa*a< zk_%1(6GG6>3cqN46Z0v#weVPiUA)t5qrR(O$UU*1+TL%>D59p$%)y4*gRj06YHjjb zre+z8`?Mx6+PrnimK{M)(kMVw;igpl-tkm({L346d7MzA9Z$=SWjV#q@rv&YubKgz z{}x1v6^mqNre|embd3g2HTGJTNDoZ+9?oc_aLyhY8yo$8|M;)=GG|&^+Qj_rqwwBFHnNb{46mzB+hC@!k%m6bOgh585(K%M`s_M$& zoU`{^d!MT6>P8phd5|5$ zd7H2}kHV{{FXi`;6%Wa!Qodei%QZ@oAV>fpo7JY%=?M$y-r!r=BnxD{{fH%+)34_40yFqv*v8kB)4$} zHHT=+)m&x6vUSX?c1o?;4ImV9B2ph7pU&or+9x`=ZgiM~Rz0+({ldb+kt0WHwOWe+ zfl{i|>H7QoTd&-t-2(`7bJ3$;`s&R4hXKY463S3gB=g4mAKLuHKG|YcumA+M;Ais3 z?W8~*+DAB?|EqR(@z7hqplNV z#$9^l6w$Jn;U$xu9o!)BU@T8nE^-vq>s6&*?RxsjzJ1S8 zqlK{cQXWm#j#=}O**|vLoLjH4@ixa;yC$uFcf$18Y_B1`0awstozLb^kIeBmI?vbj z<4zbEcNplkK%?I~b?VgTKKHqJJid%1XxFY?>({Tpc?ZgT&G_8=U;n?y4*mup1t3hI zs3Oz)`ySfy%rhY9%S)&%K$(Y%(W+dp-|=x-)-wwsOvdAfKR8scR#*&*Nrdn~pJr(| z8GPd(OOCNp&AO~Y1ZQWa&zw3*V{SO49=`*-iZ|9;DAYQNZQwwGRd$?bOEl$K}4 zQVPrI%#nZi>fnLbDp08*ScRw}nELN~bjQA@sl!!7NI|?Lb0OP9gN|ci$cxy#Rp1 zKgH~n-|y?~>1kEpe4K;4czi$#1ew@WMVTBv{j={c3=W!EiLg?IYSw7-?R|RP-seP% z2O&K|f>x)*PeF@bwCLKG4>|t#B};$W#^EX-kCakTz+FMF!)BU{rlw-^xBG}zH##}a zm4#ZZRw|V)r^l(am#C^*DwX2#_|VYM8*jX^fB*h?Jl_5p&2YZ_^2;y0@ItFf=tdqT zQ(Zu%`Sg*mef`33-#`Q*ie)TSbh_}4-P@ji2{=r$fK|w1ej26OQoZB`Gfn%S%XV-h zkG6w0XfbmZS8Yl*Yr1a`g4vm=uYBbTih>?};#rIklLyfFb9nw!`!c1N0DvJDFgo(V zf!BWhE45bP{7-B#g^}>^!;gkSAw^LyArN;hSe9xM-|E+G)M*j>|7uWY=xonafT5s2;B`b( z*>e-IZEL&lg!8&h=orqG0?k?c?Qee@i^VR-^+PGuENh`qNG6lfXjJPzY4gQ%g&$HkuA9pGtK9B3sM;jvYI0lGUsgipRh8y^&x30w`sm$5d~s z)L~%Dj;$}eNCWNyAX>jBOEE2(iIzE+O)ut7o1s=TG&6FUP&kDc&dp4I@$>)ly?5Vu z=9#B9Z{F}H43)_K(sJ-Ouit^I;r zHo9>K4okgG3WtKa!LgBp{nG-cGdF0bTvK8fqd-E8=`U->zM|KK2RyX(y<@>@XSxYi|aXzMT*6WibHF+-1Fi~Vpn&8Vu|XwPs1uNSw@!s zq#qr%Yq>z3YPDN~X0Z%o3DN?w0AUthr$lD_J-7%JrHYt+$eK15pJ+Rg!C??;jj{pZmkJ z!)He4p4q)w5^pj)${mW1;k<32l-BEYje&jH>sRx2K@iMlv&-e`@9*EabLT@3J#_EA z_XdN(n^g@2p;D`z`q59${OE_Iw4i6OWfwk-IfBus~Z|?$TgxexzT%e7*4A_`^ zv>EE6lv4YNui{y0m4mm;62THmEcTelE_*>Wc`V zGO$>!J9a+sFaGS`?Aos z^P(=)zW@}C?}IZP+-NYi2d&?n6G zI)?MM!D6xe>7V}TV~;(yOnv&wKnMwfU^1EPcDv8#>+bIM`~6O*QxwIP(Y@wi@8bU# zYhB?ot68m`{qfIEefK+RDI-u(RWZ;TJ^gF8y!4XPH;|TKU7!My1qB0UIvF|3<$Fq6 z^%~3G?>xP?1WOw)I7bk5xqN^8FaDpWPM+NV##;-yEKpT;=ViiMIe0i$>t9iuc99~T z$+&6LmZzV6Vb7j@;qaQ8DiGEZ%2^6-%$;PEembNsjE@h#@j6Y!b(q#5sZ(t1UBB)5 z7lfWbRiFqU-iyl5<%*9{E2)0*CtGF1ZH!6Hj+#5B#GBt1Nx=O*T@I^hVlF;9mk4_7 zxBIYGB|3)lHb66MX0!Rv{_M|g)HbivWVWJd7u8T`mXtRwK)F^w^^dLOJzl_dF#-S6}ws>x~A3$zXE0Tx-{_-MDGfwtMag zcl9ZXP*Vj6F=CtpisqSq3@lcS2|$%&ku$&f^}^_|T_g%3HHeI!z^-RMVcmXDMiN8_ zFk!vIjbgN>nOn9HZ9k$*4zh-kWS%Q8vTNw8U8?kURYL13VwZs^ir3@p33eYFoH=zN z`RI;yo#*a4&@r616W7h$aj}`a4lk2;h_l}-HF=>>E7sIH=d?8I1&3Lumjun4QdPO| zt6v}g&UcFWIK)aF<1)bhzP`23KP#?VUlPrL0-elgg9Mcc&T~bo#p7!1t}zo`Y%JT4 zsDoQcfY6fPWb|@O_FSeWqy5RppL_7Z$MeNvERo1$GYh$eN~Nrcaq4tBtIg_mI^AxM z!|gN}j4GgY6+n><6&Ap42xMQs{1&88AW&t5w5kMvkSm;h`;GMZvnHqzk<_3f+T2_A zJ?h=OC5H?OVyX0oxNCEn*3vd<+h+3@{__fl)>!AYef5SgIox(MBLM8$)N3^nA-~rL z&&CHwvbjRdZq;|1Qmz#p!+AS#-Km9-nUl~gn5vSQRQcq1W_T`_%$D<2RUtsc&}I^S zcEg4)+s=N6$0Cfp`J1!f{u-R0*9rAHAf&Fdg~D52eAc#YdkI(|l>n#BBG(W?2B*{Fa0V$QoEV+ewGz}^t|1nU zRSBuqS=^SgiXz5!(aHjTJckpqfG;3OqQ+8XbpL_qkt2p$MZ&NGsA@E>duUJa;Ri~R zo&u~_n7SG3eNh)hTNe4+wav9J;#xsiEy_X{)lrsSp~Y{k_OhTB8WLm7K0*oOaKLFX z!SP6Pd@j9fQ|Jz=9KJ>97|y#6+9NW*P=4p!+&gD7v-34sA#65m#Hv6dCyzwRheuL} z&KNcsipl-2=2%|w)WOQaC08@7 z5{Ho)0Dv?hYIY+brBG$`wN0*Jtq4aOEltbYQnCKHlP`s|&S-8G8zJfACnn#1S1cBc z%+QNSZ|>iD-@3=2t-D->8pMR+rR6|Zh^n>+I&P$5%jyHc2m^@1es8zmF%g*`9FN|! zDcG@^*NTqeyz2k~n26?n^xpW<@pP?IUO#tf9ReP^(ngYqzfndS+v(a}%?L(pIaf6Ro{AbPVTR z1kEFui08iX=GoIzc?$FbLM#^7c)wLq*vN<=jEZ`fh#2i`sV)X=WXH45TQ}}XBTEg5 zDkK7X+SEnPw$6jMda(RnH7q0#xw5-SSO*GoH??0DZ>}~*ZeU2E(dxlhZJ1C=QHs-Z zCw}vrh3PRJttwcpQDpD#TKo7@*xg-MbdVB(0!d*7LF!f5HErXavDpB-tEx%T1)Mev zs$;XUxkPqTf1nesy(V-F=iLJBu}Cdceso~+%v4c;B6A{G`f7O@Ma!9>5Xl(ibSC0j zOQ3Pvt{%g#Eel9g1=iojq%v4FBg=ucZ0{v)=dxm<#?0G!NN+XT`-7UEB3I^Qc97@^ z)pMs)3%#-)6#{u`^U{q)EnlAY@x3RMWP3Ux#j$_uC7{ay0HQ45rT0BVv*ef~8s zKVjb5UuIMdtcDvg1yD+Ps{^qsdP6|YHa3!!34nhx{O`IIdVjyaiF}#dlb0@TFk!FnrpMqH64yttw z^Lnf7?ynyG9jrWDuA~_PHY7vXna)%|cjJB)OCrIzE1IzbRMHD^MX=mQ4NI?_aa?eg*0v6(KY2{O}m( zL8IRFYF2E^7IsS_&)0X*s~jpNMw2ld3JDNjn2aSdxsTHwcNd~#IPVVdS>fDNdNx%S zFe8I$0=50SEM=}jfQt30Je*FHWhhe4Q+geTpw(zJ{?w{CJCEwE2kY|JWKvtP0?luO zybY7r$zH7)`B)Z*?_4v{P=LxpWc2*|za{BeiwL14E{LLS#}-bHd|u~!Hcz5$%#?`{kDKi-F+wneVPz=ide_yBo}jY`=Mk5SA}&@d$A% zcA1-b$$PuZ)LgBH$`wyoX^+Y*I1z~|6$+Cd9L$cM6O}SSw16QD1U5eLq~r}&i3FgY zQ8{W(aHIEh$?mSz=H2C^kqO%n>TKQl7ZVXVC-bPVTR06wSWEA?o)s61@F4KxFDjbE1h)3TosP=aw;mKCD#Z8o&bG%uC+uw3fj(pCIoHnlCS+QCgmyR~aE zwX@p>A;s(;%Vjf@*{G*&RM)W5FYcT!`*%g#`O&^$YZ$1!>sMjLX^Op4&VO($d+4aX zSd<7=sX)xGosU21U%#=0OcWU#z9##k+6*AK#^{x-<`uljyLL2cp?N|Sv&q;M3PM5# zM`ts+;>A>j9b66_!+EzLUzUrE9_@O*+v-v&SIU)Qd5JCTJZh^5jL?-Z4Q`wsTdl3Y~V8y9Fv+$Wy*lYIhfwl~%UP zCoKo1R8@(hD5|O=jS#yN-dTmf7z?6gcX{kSk07#8sj8@6e?X_#G2?W(DC~_ZQ`LM; zfdZWhO;l2nk(2v>Sx8KoBupu(LCLdaYyTsUmL;>IU?%LjWM3WJ06@Ta69I;rw$j|} z%!RSo{ae>`9_On>$8g>)5CtSKTG5L^+5!)k>BH0b;E9R>#G(KYrmE&^vMQ6tRyBEw z))%x~S*K-lWr47}g^c!tyF(j3;JU5dC9*4_rlSBxSf(5D)g%Y(X z>%_oQqYd4S4ptgeN)Q${ZQc&y_7)vKQK+ISgb>7S=}iTbI%kV1Rg&oJ$kFrfy{)ei zy^Ly9DOjccNA?&uZYTjHA*?c@gNx%L9egZkNo=OkP3n44TG#76eF~1x#AoAayEWXQ z5V{(44Ch?{{uEe@VzSO!hz4?$|wlfIC{VKu}u$&u;U z)^*{I)w~*X4CkE>jl)~SXj6~#{qvccO1Y%%@`C>6XP1Kq^Hcy745`t8<`?qgvvZ?U z=S^ml!(sIYJl);la5&_3IrWmnw5JGFS)&1Evc^n!sx!f@NL-Z8(q6a)SuV!Wh!iZB zCJw!qKR;w6stR#I(AoOdZ{PQl}wI)?M^01v*DvkSEk4|*c0yvtvdEGjS%HUKVJ3<81H za!%`z(Q2!Kkh`nfOHoY)H7EeHRljj#|JpUZ)ry=qZtm`QbV`WNQvwm5Uyq{^p}PGj+H#!bp@YHKkHfJlKZU!OU6 zB6s|>v0eoNEkd9Vc-K9;hdOOl0M2%yJ^e(&Xrbtrirp?vE{~fY%qZ!h!J99 zZB!+MuxbGIF|8o|QYXdB>snxBh>c)1OR}`IQ9mZM*gPSs+wBbc{bvTJPme^Od}vdr zDdi*4F`Rdc)vV<5NB;hsQ@{L`&FT?^Es~|LB%q3jTGmVZXyX}XX;Ah6Q(D&>Y2QG2 z!=`SFRS)DcqvWQ9GHDbdVklVzyDiw;<*960SICv3@pxorE;FBRPEJoJ5v3lV zEf{cy!`|+mkjr7$>2#7Hu$hImvoBJn-o6Xe!OaI({6a+45s)1li5xp-DC8wktrCok z_N|XSY47gMPy(4gY`cHiGAb+0MqU#9VPZB>Ma)tP5FnM1TD2m}GPkNk6p<2W zYB>yTvDl{Wr*X-)Z&y`s(&NEwBn4KhxjPg(eP;UXNHmo#dYzU|i}sb#F`RdW)vV?V zC%*ID;h+CRkdr#JP?<%72N`{m43Nyp^O{Wv+ApYHmmvfQ6SD=aSr^){smElJRJq2Q zHmMFl1we&O6O=7iRka2n)f=$MWDADf+qSOH=ZlfKcp{!oCUUVzd@i{#6-`R#MqEyl zKj7^Og#$jH%VD=$Z3d&niaX^x20-AnrR;cb_ciO_MuWRZlt@q^xzzZ{cZ;cMt3VY> z%Tx@kzo&2eBV}w>0aFiPj#ZPys7<}KJ>|LLpmky?iXtF{F+d2G3i-L2>9Nt#`BXX{ zkCiHAEFc7l(`65L^=#O%G2Gp2vDg)rC@NvKP|Z~<1)x+Y2+Fe)}HPZbPVU6Z#8SB(uY6%{+XZufYkGXD2Oseg`9V- z;JIhuLaLHTrDaA4q-u&{glOUk6pP5?wXNUK?e*IvsZLZGvj$M6>%=#!^7S?I8MOo| zphRV@fORBbyVGQMu35jOzg(_oGKJacSRM#Cn#lMNeI>I^!a1a;bTTns7q=QLLnF)c=!p` z7OF4>P|W1QmR6>;I!#wNCtO_poixughDK@#*j zW4OELo_lvc{^Zl!w%>yQA}WO#X(ug;_{fpNKmPs?YUKhJP+d`X?7IJ7{>%TD)he+^ z<0g!K%2*iHP$1y<`X^#@XGUiCZ0lzaV+WT<$8g@^R>02Zlw>-aTgWXeWXshG%eo+}HyTW4qtoT^d7UPcKwym$89`<;IW>19 zimTbS#=bNS$A(+LayLkT5`dyn@9>&K-M%gNtS{t?v1lw7iO#3y%^tpX5r%tcKY;CRZ$|RyGk?}-PYfq~TDv=R`NT^0OhgXR$xRHPe8z897 z&P^YB4`h-8hAI;3f_d{J`|KMxmJlOlK+N4_WkH;EUi;eR4CjiN))x!K`Op^yJUub? zqwjxb|C_%}#$tdfjq*As4wYyne`+i~xds zK7Ztcw@)5^TPxfF6z#lkx1`tIB&(@qItfv%HhovOYb-V~I6jwMD7qY$PE*Pi&@r5M zE+CXE)zd%u!Py`Fy^zm~7*!#xiP*Yf&BjkXC-nM@v|_c1HoKDmXSEur*XtBQgpt7V zFjx=-41uc3m;eYxHkm;Jfy}1}rgO~a4a|GxY0H{wlL@b7;F8FU2UW%buv)R*?&=D8 z$j;5Vg+eSApP7xsV)1M`Gc`9oH9dR!>;!9b|X<8+!VR=r+?ETO6p*3v>* zJnKf4Mcg_-N|6Gw0U#Zq70P=0Sup&PpKZqCR@*sV1t2A2tu+3@`_~1ecH?t=+ikQ=b;s4P<#12@^sHOQq;_Sg$j3!db+s8d=PiRsXT6p&=aB z5MpW=$aY%V2AWT`woK*6z`W9?Vi{5DkU{|=uh;JLIyY_@C=|-fc*YWmST-J+kEe2x zNXB@6(r7ZcJdW-jZ-1}f?X=j;W}{vQ38U6zbxE9{Xel-Bm2qq6S1$n;Yeq;VQY@M? z=#kMZN)mJG*$m1YtL9~0EW|)8NPWi%&QL-mAV_(ii{N(CHI^C=dxOLkSR}GN2So zI-QQSHCHPYRaF2GSyB^1ETUq$_=E3%HyjRs;*-A*i3$mv92<_!&GH9Op{ml~-@A6* zT2&>jD{?cSwaNtiUZ>rfStyK7C3kG>?i2@I0Ug76$AMccwJx9i`9B{2hi{d0StN>O zA{2m0H?Vf&i=PtLZ(cx%04%D^UDPDudGS2tMGBB`DmE=Zs%11A!i-wzrXjJih$Rmg zT$(%Ke`6k?WCb6*mY%3=ViY9gbenC?HS0I5k*jJZou8eWO(c?uL^>W%MTg_(Cq^x1 zqtj;Y>+)?F=<|C$W}{KBmoOIDOw8DEnJxXOaMGfNGq|N-)ruN3a3-gGaB7^?1-o7E zatdqu0v3}A5*CJI*Oo6#wCm5-7+RU*o#k|50oT&8kt1(a(-8**G6iMH5Z<=azGZU_ z8`xS1)%og73(T`7ja6~}i1~mN1Ngz=_x{)C|7K+997H@t&w{k9RA9~ejrZPnZ*TvA z-R@8nB_5BSJA3xjhaWCvG5{e}RUv|e#VTE~mv$0f0O2 zx!33Q*JTAkeDh9($y%$xX?J!71Ci+2b7ONaRJNInx=ytAa_AV&JJD(?^7-HV^7uDj zDP_{K0VznWQ_L)5UV8EZ2%kJd+ou@(|Rw zZ{DEwTp%RWYO<=xdZPidnUU#gQRZB)3d3=QifEjQKIvA zuY2S%)#;Q8Mr;M7@Iu;)hu#Xdp)3W@BrRvB$G-WEFO3X-2w5`?W$h&tiIV>5XI}Ws zAN)VIY~Q9g=-Ju;AxhL#D*o=f?|l24-<%j3;fqoV1z~J>0++L8l)c{9j(S+H6mzFDmoyv3x#=SFTg+u93QPdJrTgpeQtuh-`GS~qN3TdAnY#KP=! zd~Q0GjKyc7>6zJ-$u!|`SY1v>IN;aXTFho0f^~=qhLorc$F}9Xv;tgB=9*i=20$_Q zLkIz+hK1Ndu2icdYz076K}}~iL!GGB6&6mXXmEHg7R$Q5POC%j@i=WpBX?sM*)MOB zU!~I)^Sdx*hSR8%$ZRtH-U%^N&_k$FqL}o(58Q9-4!yC;P zZ>KfYN_|+ggJm;nZ@&K8haVn+0^`SG8Cr+{!q2_<^8e@G{ztph2O+IiWR)dE5QNlf zb-eiE%LcvfZ$J0B=&K2B`{XC1LqmgeGcy1+oXfTA)~#K;o~;YnR~LQ1 z8&qlBM!cXUJ_zmh_ilV2bV_2aNbd%Dmnk#-yD18%k{{t9tc&IIg(6W z1N|?&WZQ9135#syir7O!A!9aMy25XD0<@k`a+!7i)vQB#=U$t`c}X<8_1Gs>MI&Qi zHr${SjC$yHnAffCD&^HwB0V=7jm*W;nfZ7+H9a>oc<#K_?(}Z)5&;g zZoUk}Vo#U%!FzU^CB$;WtF8>{Qi~@Hfmp9ho;X5G}BPkE4d+oaZd+x0PfxBm% zU9Z)7w0gix(81)`$o{u}tJGz7!&vbTBC5LMo_qhrpZ%HJ8>rPOVmA{aED*rPrAmna z(GyQR8JmlK?W>Fb0V~q(6M*kKKgfGtVX5`NK#axj*No8 zr~kQ^tPebp$9kczB^|lr*KCR8zkEcUO|ypf+T%8DWul9&-(`2x_Fu*;#FJkTSggQg zarUk8R4bb@nT2R17LO+86WPo{Zg^^RWOCei+Te9NJsxLIPbe7hTP-G&!C=zqnSd4x zuzo@|8@XUV}PWAuMaQ{Aw!(UKTh`C+i>Gk&S zf>iZr4qf-^75yCZ_Szw)f&@10)a*21ZCq4URiD>?&#rqVNvhOTz?#8sCU^}zAXFy`{$K!H zm^?c%9Z%;%UPp&Q=#uCd&N~8pU{4%8c=(ks7n3uB4%Jjtg(e*6U-#T6tUK?|0|6)y zQ$UawLT&%v;x9|;7aJ5lt+3d#Ib53vKH`aLzTIl~yyi1w3M&nkQ>r%zp^&$$J5aAF zxm-T8keivAofw}^C38blQ>QPCSWcRpPKVdy?g@u_x&nT;(`1lDQRGovl~)LJV*AE5 zXbVVR>I|eQ)nsi-w&VNp;Nb=`&yJMX=}&Xmv?=Yv)O&Z6$E8;FpsD1N_x z`;MK1=gzPiItUb1K63bdg-|G9R*_5Tz}kT|>(}xMA+0>UH4=Ea`VAcq+6`d7F^1uu zu*Gekh^2;SlOeC;2JYofLdS5fez0cr`VkywG;klRW_uQM4 zj8su2UI3s8*z&Jkav9l{M&Vr5EehGCls&g(YHKvXvDv5DH3w9xKq3POZBDb>Z|~~! zY}vUkn=U0{xv9xWJeHVWSV*K&=Pz6^84X^Sqbua?@9PcueKwO>5)g*W2W35>tP)4# z5?`E>c#*M2jPx;~5-0;GRjVYO&Z-IqSWls1Hj6=@9|J*A>k!j&r4~yslv#C%L=|Y% zLzmTxfy#Shn9%`(uK0z_nX%a3 zookz9oEHYt}7zKKDW#7_OBm+58S^a zozBnA#%88wB9TZon;jaC504Ca&YbhQd_ixZE949KZ7!!-uQy;U0RR-4Rrd0kf#rGl zz8dPGAMd!?gsB3YE0&ApqN;`Q0CHFzR>=bD%;kjwDwgF;zCkMk6dX8}RbZxrQ(0cq>_54NK zZ9GLQ#_3ry!SW(QUfIZ~wJ8BI07x(4P{8T)*mi7Rm(LXviNy5ObUYeOCQ?Hq!z05} zHjB;WvIhL_V9?v$6>>1WZM`6}05&BG&q8VaBW<;;*H=`_rXhh)DUwK($`yn~h4n51 zx7Wd{mq-nYfFdEDDpYDJh9V%c4y#_L-l&6&w{&$VfqVo6O7hdA$)VGFr3M9@uT$*z zue*0QG8x%|jIU2tHB?oJMk9q{j?=ob0w7AMKM)Lc^*}+V$SPkM5RL!6X`#44H!H8j zghH=B7!HSLCeHEKTj>J~RJv}%hV`4a$V?NZB@WZl^ltrm1ARfhcitW&A{ubobb>HG z9h;6OJWlJ4+smDUj^SM0zGmdai9=ud+xhdSMT}*IMzHKl3zU!ff^G2P4ickgh zW;@8T>e802qRYGjv^DrrFzz5N^~1Ypcp!|?hG_{iy+JUU z9sZzweNz9MU#U&9r>}I#y(c9D2+tcNATFoY-UMI47gVo|P z7qPkP>nU!f6j5lX)$x3$qN)P#$*USoM!(N)Gyqbo3y79wG8f6nb;fZ>NL6oC-EIM6 zm8x2M23U<~g}j+!PBA}o=5ReTr-yQ#!YZsC~?Eu+%zq2DCURJL6Kfwf&;pTjmAO%6`Pc5PnMaW^kU$8fGj zXo3zpj24H-wtmZ+a9KV9+0M*$gHf z5JZ8cricnD^B9_YYkA=`YDurAf z0s~+)gv9MJxZDzIxE-q~D7y$Y&{)+rRVkySicL?<4xX@zDpA#vqF6({J=^!xuu-L0 zTNkWmx0>A^S(X>FS&BhLe&@yxk z=PCpr#fhN{N51@}_?gp0heZlVjjC?PhG$;rdF-jYPA5|;KtYB;Mw%Y=(jwB2UqP%6pkOg@#!MCKxqNHm#9 zj*N{@OwQ`{I=kK3?GN^K`MW{^yUk=a=|mkSvcfgjR9?uUd4tWUTFWzC3JS5R3iI>j zQd#DuAymZ3Z?jkgOo+m{zi~E`FO_5r4TLHf1Gn2{(3uEjya`~Hf@!rvNK{Fnuv$3t z;o*8VL$Fdupsp8tcWu}AgsZI53-dzhE0jK6c3`e3D2iMx7Tc1JY-Cu>7KkttxLs1I z4ci{Nmd{8cbN*#FmW+}zVYAj=B3R?Un_;}O=_hHm21NCD96^*!N$ z0O`n7ESkz$%`CdUlAizDkB;G7omO*r_|R9rm^${M4j`tcR|kU4vF6FA0*^jcG+1QD z-3AF@8V$>7@0M+B(U-btKaGVgTqRB?ui0AQbck0)Cs>%KZU_FtIaMPo#l) z@)sQ#yJQF{GMt|;$TEQa&{Z z@re(<{N>rBM+^``l}%0+i>>du0Et0%zGvJ|@5`GltcP%sCj4X0K`Yd1UJh4C#x&{o z77V>n@f`+3dpHOmt>8noedD>Dfr4c5e8b!C>g??d|UB3IziW zr`=%G8FZ2$@cE22sWX;&=HD(gYzPU}nvyS+n4Bn86{Tu(yIn35L<%4Z!Z24T&8HW5 z)4Zyv6{|<@uo>%e$-wFKSA&_nbccpQi2*2JVSei5Q8||}0i*y)mV~Z#_n19lh4myN zW;eJMSZV-P;VC!rmyLxK7qS)%Ml*l{<3m{NyS&7@hYv)?@8J#jT~1eQW|ZYOS$2T> zLjJ8gb|QpWLrdeU8Xe)q&0sg>qEQO!b=hvS^@M}RPF*-N5_$fS?UKkeay!x57CMG= z^?;Au?DXu>ue}mEdJIFXVp_+bY}JJx-RIx?Ox|piv7l?HC@d-MxnA6H4@$FTjg$0h z&63Pk+3W_V%h=N!xTmryozA2a*}1vI+)O;3$s9X<`t;C{)oO9MTn?wBI~3~c>2f=4 zdYveUh!K`5b*&DzHB}NyvkUn`u>>%q0}?Rxddzw~rLYPS`*5*XEEEe6@fdUOouYOi{F>-D6RvV&>f03r?pk;PZro{+^z&$K^0eqKHJ+56d{d34~N8>TEKZD;0rc z01!wba@x(9bt}jKsxqOee6d(pDU>kA7K1tL^%w;tFrV!P(Rbe-u=*@eugngfk~0ZC zP=O*7oo-;;E_?TyG7ZX-yFFf;)rJvL0HdgFeE8O09u`VQG!XDP9hP_^GddCDhO>i3bPVU}v6^#{BY*d` z$#>oc1WJrQhgMw1z@xkSpLj-fxQQxqRSl+}#h<_q-^V4v3>;(^N?XJ?R_C-*Xi-P zU3xtLpkBzUv#~s7Azc=HvzW~ehm%pv@dReRT${;M%h-m2UVzkPG=~f}qssK%R-5%$ z3JOiCSe%K@4i5@M6#=YLSr_gN?Yc+RiA+U~T@J0Yi8KnVSkShe&~eoaT28r#C8kTx zdrTO;AhVn0Vwy1NG$TvpEC zz*Emv4UW13q0lH*L6l8VxBH-1GTO8|+h5g4Y*_~$O&v`zsO1>kmBJuds!%|f{# zCz82HBsM!YmrN!X7BXkgkDeczu$gU6tFyPiFBo+D{oZW8o?R$ngdu_|L2j4VVzE)i z_Q$CH@|0ZBb}|^R#9gsqpO!Bm(z^|k*G2YCqO3ZmriHo zdR=b-3VU)n7uAwyv0?EviOpi6aPHjcS~-s(R0+{KSdz&^CNtmF+rMm&x6)p*BOz46 zLRY}|p-!4eq{kyEpQl41w1|%3Tp`Rz*rEdT%WygTFuNFX$??OK~nendu&~6D@1^tkM~X*o)iE{l>C8!UT-KDtAyQW z7IuzCqm^>mV7#PKKwCnW0*vA0@>-XZ*&3AJa0TzE;cG z^0Hk<&IQ%(aM0m)O~q4ZCnLMJ_47g60Yk@du2?XuS;^&3e(ReTUi}5B6A1M(Ks8A; zZQt7W{IehsDgyx_2~tfetnESV4DX9^^|SURu3obfmM5|(;M{(IB1|L!IQ3?SYr~dp zec4+kDX=hk43wVFzB4y<{*0;1@9yvNOOifQs6mJURUjpPo5gL^vnV^I zP+hb`OY2Qn?(O6X)Qpne2yr$xpBWyL6d9^AW9D@j-P<;*7K@4%76-p53f(3(x9W6Y z8p1CAK+tS9my5ZU{#z^>jVBT=Pd6(Q)1-(Ni=VWWEi1o8km!?_~Chi5gPKmDz55C8m^sH_^HNC7U1l6mXqzGt6D!Co1N z661qrg$d2+mCs`y1b)!xU+5#?vji@S787}~y50Hle1N^Pb?8Nx@PdeF^fwvT1VC*qZkE2QpiFwDeDED)y!fZ?C>;}T}H->Aw&rG z_Vnq`jEzmj=i>7YYj>wyUqh!*YNcAuLjL5pzccvbpVTWgS<+QSVLS&5CKzroz=>3q zv$5H8N0nk0Qbe#0T0PyH?-7k=rsC129meNN{Z4qwlkpb|XV07(JbRk6x@(~ZUN6L>43m>%`CJ~c zB4mvSUo)8vjlb)9v>~Bbr2+sFBG^EIxn32MvG|9F-~Z8f&+q>ou2mXL4U4q8j8j;E zG~^A09DzhUH#9zbWsZ@%3LTGgC0b3nQa<^kADsQk4{5PNBtbPvIaRf<-7xTbFVHo; zr5e(!0$&@pPdshLvg3E&GH87)%o0cl>B}WGlPn@CL4*OUxLu|-YaBL5F$bpi`DkP?g!ua z-K*J!EGHZU0Ey?%pFeQmoj>@4&vF7UF6*Z$r)ZH|&iY>}WcR=EdOnkaBBYAeIN8wR zWIZaQqr<}&_J+Duxvps%F^8SoPi981ORh@aa=4xj~WNVF zE-Vze<_QKAy4*IMs3=Ma38KsGT=01YM`D@_q1Gxks|m`^bTS@4o6{g`fZYr<*r#+OlPvtkgMG z5-+Xg#k5*0%fW;1eDJ~hT+^CaRxDthL0>J`2nB+u%ja_c__LpE+_c%_@yd$Aua>4k z-{ii%YTMaJvr;NSU=tC@#G_}AOrQQBGdD>KWn)RUVyTpfPM$ciH9SBV$2G>3sSr?z zIpLpTHmbd0VyWO_c9TIdORI!!4Z!?^-|&B~dd{`|yuzc1(V6u~+|HK23#Zrt+X z%esLLX+RKRb8@}$B=Qy%&K}1{d+TxPMBr~V2%w5Ar_&ilWtk~erUt#vW%pp9$3THV zDb=&n@##A2i`P+F(@F5b-8^E}n2SatiRkfDg41g04h6b{zOJC( z>vR|l1`!LK5|fBox! z^?&SsU=KnKG2&FWbYR2U{(&|7-`rm>SBZ)Mgzq1G z=O4Zi_`^T^BYz+$NCHzAK%xS$CPb?RZ?6Ul1S(XFfJmisbZl()$l=V{leCy%w8;oj z3DpPzDyfY}NIZ#q{H*R<`cy7q6i0kZjZwppU$-MHzc-vjH`r-=$M5?MlpGW*G%AMMMH_UqQ~%~`2q zK5r3JN(DhI6zj>vJSD7{R#8=l&F-{27zqNDFv7)BDVbSdYLp03qB@;spV#Vi8olnd z>(}*U(+l}RetKp$5{aY|saP@|nVUN;8JrGV!0qnp?(+M59*@&(FoEAtt%AQGz92pQ<>cldqtOcJ%7dY9$-+WH?>KQy`#2p`@1 z)Ccds`_^xN!=-NsWfD5@)Q3kt_diOX{`4R0dGH~J!+|lA)hw4wr%s*thky9y#Kmn3u0xCmL!5CQ`fxh)?H{5488cM8tQ;TV^ zx+ZR-0i@XL_IC&U$IgzP8;?G@d!xwIYVY>i+K%B|31GvJD9Ye(UOoQZZ&$Kewiu+8 z2qtUKx((00AZ_T6VO53%vmW_Y6`~fKZ8eqO2@$Z>2wv?0Re~25^7(}dqB=^bAQG>~ zZZHZE)c{phMas+<^EpDH03pGG>h)O-CRnRxF@&Nh1%mbvcJ=o83xy4tOfD8l#pV); z_ z8+hr3^JhLEnSJedzY2%D9CkYZFqKN3I(0G{iE7og27N83Zb45D(O|1+bD_(fHlV5SHtmWO|44^!FoM!v4CLEB{KR% zmD2^WmKIfkk_6ozi`!%GU)x(L%f&(^8c9x0&O{^8g-quB_~^Nj3l@Xf<#Gmtf&Si} zkl$}Nn~i2sCqhUu(F!(qXMgr@{Qh15l+S$Tv(uB)vlA0sHiwT1KvYJ0t0Glo z=~1mKs_pLbHkGy`(sJG`6af`QjgOp1##uuN1TQ;QyLNJxsP^O#*oKK8P7w^p?+Pi%jczZwr#IRnKvzY=R zIsu7*Dkh`e?ldAvQI$F&pk7zAnLHsX#6Tgc*~KvJ&rX1bS<5?RKJf)PO)( zbcE;dnoRo51Gq!bh*q*y1VUKa_r#L|!r%D%-<>^kjImo_-b}*t(um&&c554wu*_9e zWa99I|LH&bvxgpjoHYak{NRI+{lEV$`R3POIe+#Xt7t{6JO^P+31&sw8bbo5tP!&< zCf_P+;4=h;iflquspN;xoS1s|Ei^V_C#rx!4azkE5J@lvy87?kGPG#PHA3&JHJp&O$EZwkib7dcjRL5olZnw`k;oDT6-w;Ees|yII?`1! zQUxtQa>Ajd z?*Hw7|KDGH=_U4(%sv94?#U;g2?fGG`{_@P9{C^ zwCB1>o>CByFMATvcS5uT!YOWU#v&Jw1K<_C59V)6eVl z29*FsrHn%Z0fgYz?b}1$-D9J}!^1=AOh#)(!lKaEKOom+%yX!Viw{;b%c=zhs)#_< z*K38d=LX+5bUqwTdF4N}ai*%)m6TR7s=3Z@M_8QBLm1YKwqT6it>uS9h>h zle3wHL?RW9#1o16bSghSofsL5>Gag?F$Y3+U%=t_`Me&t&1BZ=bO^ADO%^-kf-J15 zqP3fk0;9fR{t1f~8Zbb)GPw!wfTc=qMFHnp2cp{r!SXfvnm#dTlNy1K-&ExUUUoZ} zdMgCPYPa3-%fzc_UQ? z%F28y5a@iqbzAP~x%UCxKu;NA8DKW(AjO>JQFDZ~AI;NR%yBlT8`$B|us;xRd*))< zp^5me&EeIq9{VxTF`TypJj^k5?C^nae0gDNTn|OSo(dp3oLx^pX}otwMyIDxClY~h zmB?j^w)~g7dbzhUz{6OS_4H-(g>0^-uzEyDVBKt!%uIr*!as&{`Ff!!6Lyy&QL8qa z-sv(?T82>NMVO2A9an6~)MiiK`p%M}EQSXm&>3OCUgd3tg_HaDM6 zEzBlT6HMt$ayV@+hodVPSku=Z^m>hYsY#m31`=aVW$_HQ6uUV7)@-+IB}Z9E83D-1 zX_JwBWI_k)gy2#gS{*)1C|HpokpZSe3o70PE+@M(yss0nB`#uBQY=S}C7au4cLlZ7 zipq2W*wvOK0U;>M^_oK1Ro7T8G;fp@>l{_;VtJGwJPQ06=wH?EG%fW}+?9pR~zxbv6$QWYj zBBEkJ@O#%k_pEdG?ghPp01*QLX&%U8>Pt&Twa>I2NAvc8yZeMfHoXxfrnC8CsYZYm zQjC$oC$W>=%ViS`SnM|gTFQiiQgM&jB)6t;U7Yg{h zL%~oeU^iQhI*BD(na89kN{!e3T--FmOhTIh6c9y7Rb!)5<#fh^fU2rQG6e@VSRKB+ z!b?mvn%28;T4e?aaY|aKsD!GTG7NhMB1{RD6@JSIE0b@fnK`GT79B;D@e%PQ2e)KA zi^m}6F-p|rdCkb9>ePx&f5cx z;E+{0VzH{g`E0SK01PoziP@z0dHfiPDnSAgD`hnrOIK@k#sW{M)gpF69XoVkK9I zk502DRfrTQ=p5eQx{ab>!U~H$V-{3woZO10slVZ9$)IzJS$4HFvLCLf!b1)k&porI ziwg^lkrpg1;o^6{F$c8BPAH4(vU`B39#TtPPLGeDd*khe^QTO-4uQx>{E%b_de`mU z8+>RFcG?Sd6{(Ednw6lj%ro00FO6=m*ILFO-!z&8r^{)MCbL5m32r#= zUUUrSt+tx6bLS3!=_|=|=h<^ZaYY3+i*5TePX`~|Gq2ZCAR;KR?zbf&F0H0x=}_0+ zxbQ%KrOIOyr^34{V(qrm_X<53_)X0D`4ASFUG3C7k7h?;?1nV+l16FMS6 z1nX4th5PM2YieAIim@IvH9_vqb=}1$-Jt2eVgd8g6-MJ(*KBBWtGpeJQq0DZY*p*& zvx6sId$Tk-W0k8wsnkCaRnM%e{KjR&*wyfhw}=AyMt8n;oFaCZ*d+Yi192O?F(RHB&A*C8@cRTV_V z?G;QG1wxrIszI?*u2pLa)!Gd(vfJ$fV=Pk|?ekaUduk7lUg1VxA|lGBXjQ8^Qb`>` zDCr=p5(>K3uItS$Y|dtKk!UOyO~hh}cqTO+pF4G)+HGd9$J5=_)!WLkg)BS5@T*^#I(^(A3Yfq;!qj5!d;D?#6Z`TOD*;#}qRI={ zK00@BC(l2t0gy{L6Q~lDPL_$R69qj0L==hBZWIJYSV{q`Rh8MfRH>}+ni^uz>0B-w z#!X7lTXd)_smAHyS&b$ZbS|I8;kNV)gi7UdCXJ z69@*pK5sba^ExbM5wn&P7I$O`xO!zFGdl(=WtNeHK<}`dgTVz#R46dc8;+}@Q|;g? zpoQzX?id9sW!dQJ!tD9e6K}t*MrTA?CzvQ$l=ar``**E<=|$l7mlUj1SlCt@s@lZ- zF%N@MmcS4B94?zNnp_x}PB6oHyU}iRu54>~eR8Xc7_K10d83Z$jZ*?Yj%H)F%6-b$kM2MfN7B`*l1zVR8h5ibg6P~?Zz!TD4thfqsQ%W1boinsnpO! zeDD411%XpW-tKGOy7F}nl|$nT#2AaBsMG0CTZh86d;d4naOU&*Xf&!F@!}2yp{uLQ zXf%Sm*lOk`rcQq0%dta84UjRa6a+!B*?S(`Gw{N*Rkv3r2m;*jGcUH6OK|Ny>mA%^ zXr&(*B0&_U=aTt+3P6FiSkj8y>9<*IfYf-uosiBflqxlZMNVHpolc9fj({^jxUSZbQTSHbwRS>{B35zzf+p&4`hK>0`F_oN;M50sEGpR%}9*f3fF##e; zl=^yl`+B<8c8ibfFmhP_b`LX!m zcr=qQd7aiHQQyv?%I6(3IdnHWX`|E zBCT2D%@k^da-~|Tx;<8%D5z=;3!<#j)OddcyhNq&|swxmHOOhDytbJl%V9%b4*;)q@giJxb`MqYIvQeiCmdT!9r5bh%gemX{ z0|Nu5V?&d3^HY&|uah+_-%7OX$o%~L@#Du29z1yD$dU2!@pwF5sc4R2xm&^U)7r!`p^5n%I_|>m|^~^KR=yW=8 zSAh_KP%aif`pVbF4;^4)QV3Q7&FO{kLl5*k{#e=Nr~$;f6xvHF8=WSXC`xQ2!Rp|) zgOi$5+2yw0@7+|Y$%SGiJ)aH)9Dowu%qPh8a(aHgUQ=`!0aCY^3@(>h6p5;6TriiN zv>Nl?EoI%|tTjO8)xU^QD_~@@N&~j;{&l^DLOC_Ruu#a2PfjE!XUTZ9JfE~O!DT`* zstJZOb8(+F=`{!RCIN~}w15dz@vLfVK5C!KI~MXIu{a|@gb2{fL_#z*a^b>neud_y zEQE+iSA`Pr`qn)CgmcfmS*r~Ky`V6q%%ug`H*yd$-2jZ;E|=Hso{Y{6PDbzF+JDPt zB+bx32=n>;Z-4vSfBeUPJap*L+}vC%#(BA1p|&Pd6eZ4a=+L1b{NM*$wrqL&>8D?M z>7{Mkwq1uucf$*;4JE>{H#h)GPa?(){xnp}E~<#%)PY%6oqG8XNfoE_X+ zaLN{D8~I&QL6}4_O zOTK_*Xr^>#WVTSQS&X_{P+HpxOMLLb2d}*H%B!!wnoK4ywwJVt_U~$MwQ`(qcLOgpy|yzE8eN7JfRRY0i7Olh5$Z?U^(ko0@*+rEBHF`HJB@oZO@$Ee4O zT88ZYwi`~a<g;jqQvU%Re`brZS#==3SwI5gMC;{rmsPKlvvfkLS*JI=R)XWHKlI{_n?s_d6y}%(4!+g0N%9ww|XRulYQx zfDjTE3-()dk&W);MipG65~wwGa=nQ~ijTGy&kk-2wBkd^I?Q>kvo>cjo7#|&(o3S> z?R42-SIDK)i7F@MY24MNtSy=l$};nLC9Be&KWx@ve!SVT8B=X1VbBhO3%C%Oh*YV@ z;_>kjS}P%h$_g@ieA}OUcALvRn#fI0rlN^dG?^MX9~nCz^Vn?xm&@aH20Xr=?k>02 zU^25=i+Qqy{Xm=;y(#&_iFP_;c`;9e5c5YA9aV6#aN)q~>9fb3ii{vFLVeZb-oE## zzTFQN^?JrI&q(-q&(R`#<4v<=T*4(B^toNu`Sikt$p|-`H{ELHa=9;l@r!@^w||>R zBwEg8durTnxA*n+_4oI8cXzv7E`z}!ilQvb<#Ks`etu?VW@2JuW@aXv&9?WhKnUyg z`hf!nMn^|CZ{B>Xi-QgwIy5*qc!duf=XmznXThBf&1&Wrj(_X#hkx^HBFk)2rJx9b zd)JPEmtLs)d^Jgjp{V8PHF3>$X#L{Nrj$llYw^w2ha1jFXT826pb^f3WjSd8mAcG> zw#3L(s{v7&lyS3erqy8HbSs-G$8B4<+=O%~zq8S(egn`NSX#xeW+?9>2A#-se|W50W%3|ACfo_5G(liPg+_#mRLc$>dTZ>%H+6DW1ae)4RY}*g>(QJ9~B@iS+Jr=ELsr(U{QL^_&v%;)p} zM9l_wL=hY11aR+ifxPN5AvUv%mg1uGcUS2|!f}?b|l5fAK{U?vh0j0|}DFwRIzh zd394pr=WI~LF>jtO4F5)R^44>kwZ3%vo=rz6k~H~HJ6tVkQEAyHh2HJx+Ij;8UQuD zULOcqT|WDkZT+P}X)Y3-n~rAYv-7FUd@dPDPvHx|Xgm|}2D`(-{%&{B?>3qZSP&7* zs1lXM+E~J$rS;kq`m5+--7qjA6-PGIDsm-c6e}z4+pbJ;Vqkt^0V<(=3O@On|#%+y>oGIGLr%7EXr3X zxW}~YB`pnuC=vPZT-dqknl`%vmJysSnf{i}edrQGkT?7+n)_{ugKA-90-%avF;mQq zM{v0gSz95dPKQ1eu3@Z&2?>#TbrF;#taBOcj{bEUdTLd|0A2>eW#M=|v^KUHH?CPXcH_*aCbP=<=_%=QdxJJtG*uX$ zNepzkZ^mL!GsdsJ`syXE<^vBr@bCZqzkmMu=S?QlvNqXewy^yzNs=~h+_+)Gh9{qV z@`peC;dj3CovEp*TiTA&3NarzaA0g~to;xlc;JE0eC9I;4jj-7r-s47!4E$8;LbFh z+-la#yu+0eOkd>CpCH305Q(=#e$z( zNVaz)(5&%R1xTyebUB$Y0*O$yhLNo+sQ0-RD8Ph?VKYKL$V#KQ6=e}HorrXj!D!IA zy{>KQmWAv>Boc{4W3yASd%&{NY#A6Bc<{jo|I2^*FT=yb%W8{my2qJHrQUesjaseNIyjrn_W0wE`~ChW zo_OLHzxajb3quHt#p3I)zy9e@f7)y|-%-)prqw+Cy&s~sD!Y6>y|B_ zd+xVpNq}ELu;eOpN#usCvoT z7Y6KEX3jKE+cJMz<9637XPF5ljQ;@%2uq^bJ^;WYk32FkFmU0*h1Of|zyJQw(9nJN-FN30PCjkOwc4ql{^Z1uzNZ%Q z5DNtX6fp3vS-bJ&=cR%EG86z3w6T5J8p&3#W=HPi4oA!PTpfUnUYs$$>1&nQ$uUyM zAgIceAcM}*6RzrnCDPZ8uV`ox2=Ndzp|qwj`BH!c;MD8w4#S!a-fBTfCl`{*R5UU> zIX<2*!RhsWja>hgPic9+Xy&`Saom`qE9vA#6}wpR-*c89Lc$4E;c z5=j)36BjPL^IIX8))r~`vo>IiwAw-LWnR?pfAi0sstT6$y*(kb zX=pkcnU1BH;k?n=`x7Tl{Oo5x(_F7sfYa~y|A+tZA9nBF{V|P5tH@~U)~)~fKmX@z zC0f5u!>N@ssjB+M8*il3>306&ef#!>LLmUaz`($xk3QONIA>>P-+Jq<`|i81oo{z_ z1431n2Y>dnli&GPDWA~^0>VN`gm_?J?I%Bh`Ui6CR0XP0E4P2|qWZ}tyg+wlMMMWH z5Wy1TmqL6^g!(}|)0AXRF$3KM14W)kM- zVn}tZhAy6LZAEuiLyVW#MG+tiv`$i~p|{_vC!=p-|pQdQO9T`ShAe2 zAGEbN``VH=-1gJGdG$erDE@%M=M^VniSy$#4{jg0QNEC75miZu?9_{Uno ztrnzy^UXK^=|BCa;c$4>JDuFuRO+W9v((mauY$~z` znyJWYI>aqK6ODv+NhjXYZLj9*(!m`DX8SONnM^vBikg6|BCH~0@p^Q2TMY`3MQ9gW z2b-OLom#mI(??CtVd$%tvlw#4;+-y7^PbCuZnfUy~ zOzOnRF^9z#3WU1D{;sgw<2LK`Krcy52V8A*FtYm61}R&!u4z@35-{a+NKEy@#G$v# zL+8y{2QVn8GVb>EJpL%~2kKa0lGMEYL|a<3l8MG5TPr`lbq=?xDkih8x5qmknL9l) zmn&B67UK<>)wPWb4-fzDcfZq&Wy{@Mvu4d7|M4GNtv8ZczU9u|I>UMJ;K7lRk@m8s z`|i7M%a$#z58QLlJzKVHIe743>yB?mDn(MNnxf8n2}@X2y*~6iKiI{n%*c zX~*T^lJ>9i30`v-TAjyjWDDAgpMRjP)S2+NUg!1MoG$yi4QmSdLTWxeHy2ID=Tq_I zd@>zPrp^uPZ5E5)>kNlI!LZxsb6YJIolewv)(ByO+bw3I)l`JeF0*Q-YI$mE>VrdK zwS*C_5+ob#+aG+~*Rz(2de(Nbs8ZI(X{=r529x`(I%P@>k~GlQd+_k-3lq`Vc-C&Y zF%nps4Lf-7pjKPj?pZ$l^wT?b?6~220Jn&%Rhg8=3&0d+GpWnZK|Fh3NYcLpAtJBG?CZ%NXjn|HT;}sf@V?n55 zm<3Sm?cVmOPgpl^Dq)c&b0{mQWF-^4lD3uI($>LDU2}QUeB<>FI#@YiVUxNl$5TS7 zCLp0sfNId0x`RZoSD7MrTbW8zr{H2wuhox#xdsV{n4`#hTG$3e2|8Rxr_0y5yf^>T3z4vK!&IEx%K$(E>=6l0i_CU$Rd`;eQvY6Cm(cP8|O{?Ot(Z6$3j}~$} zj}Y>?JZ`&vE}cI+7TLO%W$12HS1pd;2T> z{r!(T@<_X9ElJY8efz%s?QhS{P2bYl0027QNklMkTsZ?vpd0m|d6qgkl z+pMNgpoRcn5DUwk&g(N&Y%0{EkB~ylNmm&SFv0>71Z1)Jy83*@QZb(|CZg%7iTLbX zJe{5&o}3+-oH6K)PNzNK_4IUgg@a+Q$7RzC5|1HMPVuKjiQA-Fm;q|0KyO>UMYGjX zyJm_2>tiPlPk(sWUat^@O9<*+-ferHFnGGEya|N$ZC*NnbsGRVm#W2N>gozlr3Oz8 z&wg^>4x?VWA%yQ!Q&VTpo?Z6h=FOXT?AQTT288R*+`jwnyE8L0%i1^BuV26H^E)^+ z!>M6-c=*tvL)*7+zwN7r>j7ot)>Hf6Ir-&Rim@0FB}El#6zRj^flq(hvU5ic2^fo1 zW!2#P>1;0>Z-iGCThbbVti?}t+|3SF6j<64f@-OdOC$xAVgj&=jjk@y<}ERQ6LYJ? z$ZJ@Vt(DzuD_zmpQ=ISx^TG5I5aUnH$RuiuIusLklNabiHW(nxn(bI+qUgGs(4nG$Ei{1DT>lE zekPM?-@bkAJ(}82x7+>rzZ+!N%pS9cVE5Yf$2JqF??7Q!s z{L(9>$ytL=kX2lw82bX-U;2b;=dK(Q7=s5RLT(JMPN7c+s~w2YaxPad7LAC=rZr|YLcWWoMeHROrv$3307@_xJWi9xW!t#Ezf!8^a)s&X z>GAQ2Oe$3<Hqu7>B&h|!ia)85lGO#;iVTG z_uaFAk*X5J7=jw9OKttYzk8)~T+DxV(7_4=1VB&0LVTVSO9Fr@ghhdNdt6knBdlb6 zdCNyD)wZZda1nX^RqXSUe`w2bt>#FjfGKGs2ux7auZ0|+6msl}Nn%@;(#L?Q*JL+5d+ zSb&7dS&@de=w*%LO&HM>K*pO-fXd>?jaDzHHzJ+U?(kUp*Y#uABPI73Zh)pkBwQK(KdUYhc5D1yxibYR=Ki4d>$3xJ`f%5=Azfjb68xkkQepL^7T0 z3VvL|cUhKGsnjynFtge0_xr)BHk`x5!|%QKUi*t~w|n2deJz2|7PK=r7z~d;{`gOR z@{{%w+;`r2XJ%%mx3?FpmI&?16K{Rv%kwkmt$G9rsX{0R{Og{5)_32%Wl2vU#!x_z zbye{PaFGhAy{(PEqBV^#78fpKLg=7_l>=7LP%cywQCzDD6jv#+xqUX5k2^q1drUYk z)0lF@(dOnhZ5^Si%CeZiXc2WrTd2#sX$#(xTA$07BXhBdsfkn~8JkZg((`8q2MtDJ z(BlmUeW8Fe6!17~Hc6C3)?q61vLwwPXq=yx7QG4Qz!oAH&{8ZK89XDa1wjHbk$~IV z|KNkF#a^RzMiN9xs|Ea0R&$BgAh?BqyoE*(NGRmSm`q0#(~(qH(ETwtTd7pC+3d0x zEf$N}YzC{;aB7C|?YG~an3!mP{oZ@;-MMq;6~4H8_wKD*w|?-!2d!7mojdpb`|qy; z!^y2?{M4EEzwm{bu`@c1Y8a>(V6Qv;^yAhC?<*UODl4VOjL}1Tkh$P=Gn3CaQYuVPaZ7yrA<=tA{Rm-+(;bz-5mtF7K@BRNd_uS{; zIp61l?}wF}SW|FBoU9D$Zv6K0q!(1ViI1W z_%5+Or>+PAuWR3hcDRpklD=?+$`#KS54q*={pkD|rp~}sL&>0>GMG#-bWs*vCI1;u z4tCkQnYVl}PjK2jOl;TfQ#9VpB|C4A_Go7sNX171@9Mjv8WnCsB<$HD2n6)I#8|5( z=OB1}R4dmW-o30LDAzvT4e!xz*_>G!wcu<9k{j*nmoCX@KP|O-SC02jb*EoV`1|>h z2i1?zJz8g9p8Ni? zb|#hEr-bRp4UpR<|S+%QK#c5*F{QG%VhWgZQuz#n4(6nqL)1 zY)&rLhHYErb?tlIM#2Vx`EdU}2`kr%r%0u}YU;gws5G)%jXMeHfF5VmDAo3iPBV`I zUF}yhp~#h~ihJDqH=K!CZ28*mRp-fH8&fZK& zVi>U*EZQ9eoK*M!tKRyzFXjw@5Xi2-fB&}Mt)XbsHO(r5DMT(Hm3=DNk%$URMJN)p zW(R@KYUh%zmT?iOn_Q8f-n9+n=7RdtKF@>`Iy))2A&{-`bJLl?<$Qt2=SU56!ia@v z@_Y&%*PAs5#VKqStV)HyV3d7eDdsd)2Rr1>lT=NfAj1h89FfRF?5GptrIS~1;tQu1 zHJMPleB&kwksm{$z4;H2q5{w}(ah%>yRRFd#lP4e1+~?Sz?U@G*CvI9O2 zNsL;(Lhuk@O-B;q$zHk%wq?JG!&zXZVX3kdc#aE`FFpNmsKy>En&&m}Sb?CQVTz@d zShN0Q(jri|RWC0s$%PT~r1lah!A`567-BkV42_S%t92++WW*#CNE|yoJu=xY)t<8= za7%2~^x);;!x=1?9_+f`C^F?eY**HC_U0!=h7S;l>S2?k#*sG{WJR8okIb~Z$Vlqp z#PM46;jx^r!Oa2-iApI*O94%R{3`S8mw9I$N{cee6ptS(CQ4C#p|GGgyqg_)RX9O} zq%ltG3oot>F&umCND9B~y7^1TTLy!o+p>PX-s*i0 zfNpDc2Pu{hqkQYn)^8_Z-}bdsyz*Ub_s;>BJ?w9*I~RGOe`I8`X5@Jd?k}wU$b+>x zh!724xslQYe3USQT@x=`K5=?oz`0w#RLx4&EOuqRD?gD{s2a>yWX$|kb`&|IrS*ZR zYFOV$AHFEwQn|WAJ@Pa)A-o>!(x8>P`@vEi%Bs|+9%$655-2okRePapX6470I>KV% z4&+_XXiNh_gMEO_KQsM9fgTlzpE>Q&t5{s8T-5zILFuF%cRF*c4?jx_wn1ckCsy|q zb~pm4nWE$l$qz0(yz!z-sImBBv$+LnhniCG$15(@_l%vww8@Ohcq2=wms!ocy-nHh z1$=`paa7K@K_2s`$>v`{Fk|WiHDwHCDSld!cB1ziVF1>9OLzicM3B==0!jOWl~!+O ze$wphY^U~DAW}P9*!L1-oej;5@Eo~cXgwBin0nwJ1uel8swIzCYPm5fE1}Y+%F{xr zrFSG*8y#<@BxlRjRwairV_eYbfN6BtWz0COg5b?u*CD?56OXfgL^v-dL`tTl%S;Ae zgG{|F0)4RtvqG?Eu@2By_IE->OK`x*;BbSCy1rW|*X_OKLuR*?`jujv z2sQ0*@a-^cO#L=WS`Ms~F%$dVer;zrB=fi^`KTy6GSt;R4s1#C1uEm#>^~_QGDeLP zT1)wW_3Ak&VbOw{5VfsUO)HhS`%B4)v+P&lDn{v+CLwKeO+2Zr;o~|Ivg3KYOT9dZ zcw!N~CbVXk0=kQB_>mb|_p(cuZJth4@*xiK<-&`yJ9U$j-&k zYnhnI+0yTa4RZfav)))}!{0X-*jj7v#xAS^R0bnldN^@|a{sMUKw}b=} zMK}NDfKlD+0cMj-{=euDF+4G)#5lS@pL0oAm5(O8{KqFbTNra&Mn=?1zdTPHoUa>x z$|H~kkXE6>hWN>s9I}k2UTcbli+$qu7uLl#=umDIG#+-TKrZ#AwV@9wl4pW46_?VE z>N?}Ry?rR<5y%`=RvGQh1;Rv9v&Kz+WB^Y+FX0VaI?cviL}-Z1!nxbRb<%GF4wQGy zu|tM1Ue!yWBG4lp`;%6YR1V%T(Cj+_O5Z%DOa`p-Bwim_-~M1RD85d&{0R$u{j98! zzMdx6Hx>`%@C`;D=L4ndo3KGYnlDk5Y9J850p|Zg09yQyj5&ANCkknE?By?o-^F z-Q0|#M6LMN*q5~EO=b&Z%LsUKG?}c)gPVKO-6^qVUB%wotHG@k4`EIM5+X1u5qRd< zldTbG>U01gXF-+g$3Ql48D;uVG{luiN41BElZcS~x0#l2ktegsP|_JUObikr_c&}G-^8vd}$6`WFTW|*zNfEAs`5Jqjw1G zcpiW)cH^3#f>3f=C0>lw>rv&ad@1(pKob2ac2P;j@UA{M3KKsL0uZuS8sNv2p3Nr5 zN&P+hTsOhMlhjU<;8VWG7Wpr_1;5L<7ASnm?haMd(rZJj@r6UabLZpf`glEDwoKMH zn;mZm9&FJ3VGh#`PBp9?-o@6$!;_GQgVvX7$DnK|GW>ns1gk_B)^}e}{(X^sDFzz^ z!$fVzLsE{PJWil$p~*OpeKB%k=;6eRoj{L0=tGV5F_3t%48O9U06jc3$oa#8%fhuE zGzU3sLAnf~J*Gi9*VTYm-mWjyo>o-GtP@;srlmORa`VV|=gSwMiiLp&cTp-rlJdBU zJ1B9iI<###!2ptFRjap+G4)lV*^r!!OiK&TybU|aPv_Vbs4b%akFox(S-EyA)!7wL zX^sQ+`T$MBmt_K=wI5eh=SzIo`pdf_sVKM-Q)%oMVCQ@rK@hWQVr^!&)ROU%?yA7W z{aWkb9#{U8%%cjqiw!#xyk)6{+84j5$!#x(g$V;Dt*z>v=Kw)`Akv{)QPBOf$Mwoa5yasb-PgY*FsO3+ z+_mXMJ4~70^pCKrHd(HlFBe?SfG@g_oc)7(_*3D=Z562@ZFKH^z*$Ar+sNOO=E=o= zz+Y;}9-$f>+&R8)Ak+4*Ij_IZ;kMf}sYZc5L3yt?PnsnL5W(A-a^ROemrLPYr0}q6jZ%oH%Wg)LIBm-KIgN!+BLmkDF><^*m;9{r^C?ry%dJkUEhq$R zb)7zEE6tOWle3@sdA=qjbON~D@WD|!QRi`3gOaq`TENw)=tHt7QiMd~4BEbTz4idb z%PSxI^RxA%1YV4sOlYWd|Cl2zyKsV}5p6gwDx3sdym&&wTK;bYWY5^Ix4WFgLR-$Yi-%a%U+P1{CycWs-`8y1TSj3? z{NybK8dbA1NX3~GxPSY~_kztRj^;UgSi0Rrb^_%$i#eU>BCB)~bA!4;6arT4w zq#nytvV)fWwQ`WAmq=Qy6m^U)HAqn!C#-PHuxiPn%k&pBE;7P%5YXI^=ji?KWH`#& zg0u$X(KNbVdBZYEZG+)97x4J@U5gCe-q^Phk*e}H!ROJmSa$~8jI6BLHlEXcKq&Vp z8+3?lYk3pHC$(i^kzqaVR82BV1ml)R)3v3ULrYS3$;Xnk^yhP5r)kNT^Te%Od0rI zLeOG5aR5Rbec<40^WcG3+0)h^@7Xi~F z8J)_+KGOYZ&X?NK;d9T{8^Mp2k`|=RDJ5lP(S`aX>N#;Y&y5t{DKM#Kwr{UJyc3j1 z(Ben&6trqT1qasG14wl+@U92_4WqE(mEhtoQ~|#NZ2l`j@C5;1mDIsw!`0;fIc8FU z+?R^1Fy+Fh_VuTBfFcb^2mvIuz;~n;_~@eRU)lc?5jyd5m+ArG<%8p6&wpj*tAFdj z$wvra<)FP}iafCB;jmCqVxkhE$(ehO9Dv9B z`zJ*r?RL-mPj!IZMDF6~VSMV8x;i}O;;CPz62;jiux4to=^#IJ4;&oq_`J_7QBfXO zR#HClSg@-F_<*OjHB$z{YyVLzoWAf6#y&D=7*v=eR^mr09Ytw-?P1 z#WrrkOZIyJqVRRn=J{p)?FE>RJFq0~nrM~IItLyb{F8I^03DXhf?jlGNBEeBYf4Ip zjVAwz`S7*00=MJ&^poh8kboeoO#the*M^>VJy>eIJz1;`dU*sWx;kSD3X0(UEbj)V zRljnQwz*YU#MG96M~dK}=cn}~6uqx-MSn>9TpZt)RNAHHZ-3KLLxm%$`b2sAFJE$c z>?NR|$=QG!{IU);F`)-kX_LOmCx!YjyIXIVAn*%NK}lJj(clR3fZ%Iq_imQ`A7N5s zg~5hDKwn3c`pqsLBFq^5p2H~-$s3nXT>-%yz`lc*cion*1xFSbq9rV0qK9l_w596t zEkqf9*)d?c2$5Y#?XCFyBpEvvZuw`+eLAUKe>wABM(f|$*a&`deq$v?zq`G)6JI@E zZnEmclql9b>KA>zXmDJvh!ncD`#1)G=CBCpHVy4~seu3x_VoD3o$MRPOChnazTWA7 z=QQflppA3hb~OfQQ}q)1-D`8}^(VBn$KD=w3Ok?f+=9rFsA-#G;RDw*l)#U_tGtxN z3(fO4ku}tdqQxl18bg~R05%Cy$@ml~sNlm&_== zJJh$g=W*Zm5PaKFdENQD*<)^Qj#v!|^*RlDT3&yB;}7jJjlEi3vs+1)K+FQngi zprP^+-U)eORRix~#lG|TuaHTihAYiXsi$G2pS{iM5`poIqp^vYoa{|(EGSg?ORfay z-v0@|PQyktOQ;c{Ev%IwnrR4zmG-@Uaw^joLZa&dTeT0C@W06nx!4NK<_pgI&Y9FS zVKAk%TPLj=BU=En86!o0SC>WLBT-DhMvSf>uLvKH5Y4BF<9dXEwQLukUxoAAZa+K( zzv?-npQEHMzS!;<)b}!bdt{QT@C^oFuW1hDFXPriJ;97=gt>V5Q6-I39=n=&vyTGG zibwXh-OlII&c{-KmqK1(ioI+<53DquWj+$S7gc0q>;kX3hYxfO_^qeHqQAX%-3S(l+vF3|rggpGQW< z2$Nk#FvuauauM3@*tsxLu@Y4lnC04i{ylzdf^ogae`@09n1GDwY*hz%A#j#_t2mXaC*fVxi*l_9zDj~}Vbf;YUZ95Y=@qmE0^?ju7=|IBn@=WiJ0_Seuq?1-;CAXAebtgi_+Kl6Wv$X$le8 z+jXCRe_+bRq*0qCbP)8q5_BCz@y5!Fw zW{-H8?cFk&X2Wa{NWkyRhl1UT3u6i|u0v>`(8EFiaUfAL%CgN5(?TD(W=sWwU75ng3OI}TGN5`h0>t~b z+jur=sky)b72fv)}z)Er=t3WgH>xJuIYe!Nrq@cEs0 zRA|okc`Kf!5xNonM-1nF=fzlvq{)N2s~2&Mgi$yrk6cIg z4frv<%HCW)>U}6GF3wQR5nS!NyWs^;R4%GJf9j+&DszJCiylwY*Do&mYz z=ZO%yIP12GY+Nm$0?pl$-oK9(zL(Kd{xI$y)E3%OedY|BNW1#wDror9_D;Z(27eCy zI`bPTNoLG9S#|M*(-xJE*`bT|x2NE{r86Z zpB&J=m_8YQBNcE1Yz3u_6KEj|ap_%4B$&z+f^IwZK%WXL+M<5lGAg+8uC;yRxzlEP z8u2U%j$Y(e3`6e9Y5`WNi4xDfaR2lbPXNYu{elQUnFF4^+0fBcQ-?QlxJ~4$|7^M} zGJonmeH*aTW3;~+RsCYzI121fm#RYWaHO}ZZ8(WkAi2ew!r5QxW!V%B%C*yb@Bp{H z#H-7~sT+t^t-Gusy{KepSdj$#7uwZ`qpc7gaVBx4UriY1P>Nu?F?d{*AMfKw!Mne= zJgnRPWO=f+iAF|7!4K)d&92*h&H>vbvI*p~4r?`g=tF)*gluaP{)eiiV)Oe~ftShP z=l!>5@cByfRmRDZTTk)gU;T0bxUaMwqA&kaGrsQ+aNh z9Zhg>aGcvN`YMcCD*}j@mKw3x9iL1M4!NFK-F6nL*@Fc>@-T4Ho6Ec6T3u%)40%u?5ApY#hC$5vz zimMc2x?EKNL|Ph_SaLQW7;F#d3BEO-nF*2hKeK@upi#f zMN1$SYKx6fS%$KrSy#;RxZHe!Vv@o`dptWktKFW&kp%iCK&&`e1fCUI1a%gyY74hj z-mX>tF**O1cR)Hm&TiN=5gW;?@5<)K52cicT%}8rf2a#8#j=OD5e$1 zqb{Qz&(!weFj~Q$Klv5biV*NvHtZ>#7*FWFD_53$ZHW2XoJWV8`_Z(7^DeOwutxD) zctrJ(*LMJxyMCO(#b!C~48?rTG+&jy9ZWWEr2%4Cl4VhY6`ZNhSSa?OV$FSz4b(xDCwn zdDrB1*IMKXG;b38lI6WdL`tgo9-H{;A(c5$O6}UO9oQcJt60H7kB4MJUJDK^kpW}^ z;y*^M*c%#wGPgGdCttl-%R`EhjF51l#q${Lf@e9WHJkf%x6AH2Pz(wGv zaV0$|YIt|ouX%gUXhCSoA~CJcZM|Q!a~SsmFN~?4irXU?=9#UIY*cd)4@TSvBhKHh z>m71#Cq9yNi+DHZMiXW#g|6Eg5>#E^kG>aON3imsGq)e?1OJl{hMs6)kCFH z)xSVZISEP`9vYb|+E#Iy)E$q71JxU}75`xOAddChE6JRP;(I%y!@0n{1XA{PRk6r# z)6MERqq>geUx_DqlkY4T<)b;QF`yu!NyE4}F&-9loFBQ;hpkfm$WR6xxP4ZgI{Vjg zPLL2@oC?({dvIrb9ogfM_)tnd+nb=JlE&vnck0mtVVJ3M#i)d!pF*OX`l-;E@1c0u zh!8QqOLdvgm1BS?R`C~>_S?|gkK@pc^VJ7;-FDrYby>8TQvKSM5wYO9X2NIfc!=X! z`_EgH_GH~>ji0xauvwdZOwyOt@(VfwnO+~OZQdJMUD&~W?%BC8kZ@@)7-LOwqra4V z@HMabI?C&=B!#Svx>m2!zT>y^8mgCoM~zuTou+4^7;kPbFMsw>O0Uc2HmxcaZS1r^G&2LV4Wv>cW8qSH>EAfD z=2!BuoG)Yy?rl};S~xk`*>NT-Cw#?7NKgX*!9j1$V?H@Kya3`Ql?x#@6LF!@&{QQ7 z#U-{8muU9xR_3yB)bEMpHHk>G1cF5}*|l(~DMR3IxzT-O2HuG&<=3LzEJi#RH;-s6 zOOCHj?^YdDoN6wYgw%c*zx)Q(UqZrv`=Iq5ZpO87} z!Lz{1DWWq?RW;;XU|K!SkvfVg`WEWxf7eVNY}#d|O8Ef@TYnC^${g47OKSzx9S%rb zbGzM*akJK0P|gV6h)wp?IAbufZ*Qkran7Xuf&JE26n7hB=lA@VasbR!k4)oGb3Ah!k%@Nadw)#z8u`P06gqgZr9p=?(^wKQ!oRf0z z3;zAa+UnUDE?2F8qqp#prP@kr5CuwjbK{Et$!Ng-9ce6{(R7%&UMW=fq2r2Pfizc= zgvB0<<;bt@^wOi>IXN{QB1_ZLu8wxw_X~h+b75iNq}Rskeo5}l#RRhNXJk~C!;z?{ z$wzxkg3Y5OHj{yx*kGruW+ zZ!}YX)m5X3OJDw#%Ap@r$cR4}Phh2G2m4C;`i{ybK^X==GDi)`G6=~@!GvIPaMl?G zQTITsEVZFfvghfkqtakYiO za+1i~T#>rJ*q(57k`V58K6Es(?nkFkDoqKBcCfk-_AWp7TzFA^`DW z#ABeND=8}*X8sTkEI#*G7dz-Zl%h^_usN`?JFqE=={N8CUSSjasc!S4xi+weNHR}u zlYDhbM}x^}1z0QlB%(w~Y?Y)sI?5MGgnmDm@Jpxbr5JOfg9%AMdYZT+MGN0#fyfd8 zaZZrz^N^O>SKe%SrQ*+KNj%rD)gCoyhtR1XlKbrlG2(_iYvm-En{1^SraRm#LX|JV zrSo&yCRs_-5z++$q5oK$_Ttv(a!#$}Zh9=~j)dpNRSz-D5o%y@C05bIj_+HQT#fE; z$FVDNq#CH=kGV%C;wquM;;1x>t=OC-tTtOXOrpRGW9L~s^ykF(w34=OPwR$ zMo#p`%sto~#rVh{`x9igmhyrFkz!D(Dq0}T#OiiYrD8?nQ5x(`QzEGWo!s~KrZP+F z$VSP?L{*}iwD7xZS}?5XCKr{KIyscsI@p&)^Zsn+7ZIudBA0T(6HDtnI1PLafty1g)NfIX5~Iuan|ddZ8@|BGh{jQE8Aw6S{g?| zJsVzK_tRdW===4EDJRT+p6Uf&&s|v4?Bl_xM%2*e_nehkH4*W72@Ju}Y3H7dNkR(f z^8HE4w}(Rr?GzSQ@0#euY>^h03r*KFqnH2UOQe{R&ZXK=8j{!p=5dfhVWpB1D!S3> zaVw`l;t@rQpRegJPGZ!)yo)8z7UJ3;bZ#n6ym4RIo9=-frMW`kqZNsL_nMB9C?fry z-h}nLf_;2cCnw|cVW)XqfljP&+;H5lx^&3^62!yvj%U)0DmaL0Ol_~_thI3@n#HJf zR|Pf>=P%#we7b(fkWH0cpbQT#n$~x*F;x&F&ZS~x`Buk9L;gWs(GHI>{(8oEN|4wc z#L)yzJp5dRPD|;1A3??!Jvm}#Wm#VlB;1c$YrLtS0=JR^wjV5o#;&k=D$=^qAR2!y z#bgU$TfD_#9FQA%I#Z|+L3GYhf0zZgt6f;u=H}+6S_2K3>Ob%b^6-BU78DfW<#C(< zJzC`F+O&b&-21hwlzQX6_DnXld*k$uub6B7d1;v>8YvFj?0xk4cl#T^b0G9hrMMD} z@R<}snDrLZjM$jT9(KA1-J_*GPaE1H(O{!SJ}}8QMRrLLYZi#X%le$08OKBgEmb7#Q}`Xq{0E;oj-F?QaY00T zD6+Zig7-H~0o=atEM`@eRJ9+kwg;43Jl>S3Oa_7k>9v#2=|=k*z0q6O<6QcYL3oih z?i>)2(|5Line&OuuMb8QZyG-mq_p3cjIfM7GrlcSu`s4R-yh09f8R!X=A~}#RD!yv|SrtyRCB>N?_08vBHlJ zaExYnw{;^nme}o+T#a2E6M#3&(s}}yc(@p`-Ov8_re+${@GC`H(guXke=EFe{^53* z;e=Y1;n8Cp3vy(@kN)u)N~I^)@A7X@AJ} zpb_^dWJF}~Th*c~-xKWuJKedSXQzyHh=Fit8jghC4|d7ov%DHJf6Mzhs@-pK1!2BA z9-EGz3?3tsU*yx<(V2~&dD%P_RP>uN8!Uzb)ldBU3C-T!6>V2xtEWz=M^cqhSs_Dq z&|`r3v*DonP8PVl=6nY`jwn_5OW`$qt#0A3}wOU;35D8@bH#0oi4OizRMf{CB zU%@OP_xtDPld=M)Xg%Sc5#>j>V9}LBU$&KEu`z{>!VA)z?!k(p82fg*sK%Em?VDC~ zDDQWR<{J0BmSL)kJ0q@HYd;yQE(wgRrsT~hvq-=cbe6Am+#a^+$+!qYjT9! z<>1LHIVN51zc!o!mbsGfxyqwCxA%OC9YWks|AKGSX>ntScs3yLoBu=~f4RkY z(AXrT8)A8;wf5WO>7iHb2eL{>%mV4>5;iZVy~wXWlASl5mYl=?7OzpNB z2$awFsZd)CX|Vj#W&d#>$yu2Bu42ns zOJ+vOrS83-7P2`@5%cCRjQ4|A-HakTa&o0{$JUigdVhsaBseg%g^;ShWw4E_?mHQt zB}>;8(>2vIV@0PUbxqqptAgJ&tTmCG(BG#;)3}q8Op(f6)PJyJ4ty7 zn~jgH*GM!mTd}u*uwQx63wM?Q`He~D+GBzFEZ0?zR_zn+?SB`=YsC;-emvpbI zXY=vnXYEajU5X-kCkW{YC&bm!DKc2z7F?Hy2z7nIyYOStJ~FhYzPyiIva=}0-z~58 z8BYuVWBSwcU$9fK?z7tZf_TjZXYV}dTaTCntG@#mv;JhqzM7gjw> z)A5lAHdSe9KVbxEhtINDho?nLE7+1EUB}(F)&^?&0z#yjoh5m=eR`8uVRwArrI~VN z9g9VcxQBn!)%(pwP^=r1Oc<401Hb-72m!~)mST10UQQ>p5tTlzia&zUys^hK>x9!y zbEL?&o{rkzpCoXSYk<8%-`L)NFBm;5_$li<-UoxZQmt~L+`SLyX4Eb2L{9YO*AQf! z6f32vv}ob>!eW6zX1hRFQQ!syAmG=!uweTg=GRe@xk4lJSg0Cz@8&rH_Q{gFGl!P3e7A9@oX_+TNLG03IxG@)e%Gg7l!k zlOb7adU|z*caU%f;Zlu}V|uY3Z@?c{W~L1f*=Mg?Ty6vZZuTRfk6_$J zfr>Y2dp@KTAT)G5dY89)8IxxV`T5>%4LskUOqtE42$D?IxA+v*QY|fOtxjVnMAp{_ zkpQQ>qfyYidUiSL%?F`K7Ec~RBEEJV!*i&^+9|Ot%wn$28P_+Lm*~%c@6lC|3lF~f z?rtZ1>j-km?Nm|2O?7rjs*rn69<&*C3|@)DgQrU2C_8)@nK9(8x3NG|&`H(Rt^D@R zjtQ133%rre&jmd0?QrhMZ>RvtU7PFl*7vmhphkp<;PY#OU|IV~oF9T9 z@OO}2cHPJEaf|kM2|k^|!dF^slfc&qwDlDQ&DpcxzFGFsV39Vme{(=Qkx8x!b|gti z%|o1R^EG1?c6%xw)vs%nM4jldG zGz6mJZ)MD@@U+yR)?Sc7L$5+E@OP>H${KMqR~e1V5O4i;<#p8mO=_|pyQgEO@9sPh zIIfAHifPjyFGW zj0?sl+UCxnn9tTqGYtZU;!nXCT!$itFhyG8#mf`-kL!~eU|NHjMOwpoKSQ^7I@CcMO zE==-OMvMn|v!PU~z3}PHqrcA#4A3K>qrbgMM%+E`9*Rk6@rvAB-<}H-e1rVVKK*xc z7cfd;6^#Z>4+U93``cZVFNS1F;jO-i(`C>=tkT%^b=l7#Wxj1O$3}nH0?ydM2?0MPm-JC>}mK z3pZc+v&&+CinfOV24+he!Os577JQsDAPBl)w$P7eh*k^L-N#v9c-T@%^ix#=2K|{{ zk&e?~*iyIK!w`L)gqXbY4Q3##S3^G33*J6YR&)k&EKMMmAOS;tezsb=B1@03vXMU> zCIIA~e_A3$sw)M1+F|+Xpn|}p!p;_c7Fe~R+QyBrlyjmNJsuZ2U#_o%UkX8k)Y4t3 zRKrIrFSDza&s8Pmu$nl)$iMJA6^j}4Z!f3g>p}g7LzKDHeMKPq!$6+ovnt)YQm*Uo&K;8%|qI{OWJJ5XAqxGZZ-$Ep`A<9rSvI zBlls32i?wNgy7n<&8*U!-@p{0Hgq;|=Pa(itr=CeY0lS%aB9ykPCj+V ljS5jfW3U1Pz61=v!6F4paHSo$js830leDr_g@kG7{{Z-nS`GjJ literal 0 HcmV?d00001 diff --git a/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png b/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png new file mode 100644 index 0000000000000000000000000000000000000000..6f6fb143dbabcabab48f9f732571b978c2c6fcf7 GIT binary patch literal 12168 zcmV;3FL%(1P)Px#32;bRa{vGi!~g&e!~vBn4jTXfFD*$#K~#8N?VSglRMq+Sr);5%1WSyF0Tocd z8Z|00iUp%a1$!(p#1dmcqOU0*Y+zTgMH35_m?$PFL3lNa*n=WiFe(ayU<2vP_MP(o zp8K0Ud)Zxf?##~Y&g|SPpYhJ@x#ynyoZo%=c}_4Mj|cq2r$D<>Ak?mR_iye~z)-+P zp^t<1r+|;b_MZcP1U?FV475K5d=$3-9QY&fQRri!{VCw1u>I%2AAyfTuNZJSR%3wx z|IE>F7KlXy@klK3yVp+rb`Ax66nX*z5VVJ<3;af@P{2oFa%u^Gv`d`C;sO5oN9HKt zqc90A8zAT)FBq@K;%0E@bImls>7y_S(Sm_sC=d(=szLB&?itbX6S$@7&9O75T9$lTlvC^&#(Ayby2t&%=PZw zySAq4(8GrJ>({S38jaRQN{WiY!9YA(7YK#J#l=FQL8gCfh5|k>Obr^LqHyot-~0IE zk1zj!S3dsu<2&@-Va?h#=bnFF|Ni}_KJ)KR;V=kf!+d2JpFZ)pu2OF*HUX2ke3+B|&sa$GG;zam!TpQJ4Y> zanRJ1Z{z|rKR&nEVhdgT$}6vkHFhorgaND<^Q-T{_DotIg`P=ea1|@<)}0GBZZue& zKY#xH4^BowJmr*AF2DTpi!QoIePL8{AdXY$y0Dx2C`@7gL!nSCVz9O4_rAv`a(Snn zcG`dc{YRcKa^}pL|M|~<__3-k!Y3@Trmog^ZF?lHkHTbx!sk-&W2uWqLPaH9P*YRG z=We_0cIZ!ka^lDnranEjYuBzP9DB@yPZxDAHo_Wpu%x6U7Kp@xMlk!)<(8@Jqc9l? zoxjI|=AZSgN+ZNgZ7)9Qq?0&*{`uz(JFKlSb__m4|L{fuABEoNB!#cu^DJKIK0f;B zBfj?N(E};mxumqJs>;My{KFdsd`fwvlhZ034sR^qz{!dgEBLgY8Z^Sk9(ycY+Ue9& zPLVFyxpNm;F#h3%0)7N9IhBmt*@@s0Nru6F_`!SQCro&H>a?MI>^W$+A>|t@KKkGL zKls59rcIwgu(?-{t`0yqcInau$Dy%Pob);Wb#H;tJ_=JnVYD_1ha-YVK5HNtMpdk- zi6H^J7gw+v-$cC~FT|1YS6c?Guvk~Gx3X>4oN1;~~8i~w*&QV^rwp)*0?kl5_ z_=fU|o;|x6i#S58udajynV%TJ_1My6_&W!IV*}8l zAP}sosg1^>Yu2tUE-s2H_sc&#P{8Mf9*E>LNd)6#@o>n=)CwbT<5e|v;c%!pjJ_Cx z?bX#q2;YU3Vd#gCy^_{fnmtp>NLG$;sIsyG2!8qHmsekXHOXB?MTp*nNHK|Bz|c=6 zOogfml_kYX3beUpZ(X|efCPQ|^ub@V-+ud9=QK$4;g=pbe2JVM-2xwc@WCE?>@jfH z!JmBeA({PfL|}@Fh`6>r`b^OyaeeE=BcU2MyZ!dt`DyU31Bu!d7Z)cuWxOF`>_gBy zWqlNSrYtb&+Yrv=~IM`3CZ5YFbznX}baTU~I$ z1wY#NN8~gp%hi4Oj4&m#`Y23^T&8h#b@jAq)1G|t$%={!(i-l%>#iwNrhN6)SMC&> zlshf#3w#tNnSZ+~-hvDf+_`h-!Gi~5BTGQk(ef#$1q_nhD&^+_ZGr#%f8?0u|u~foEVX)|h z`hFWxz(?U`Q3%L@6d^lWe9uYo=XmO=r#5WZaLX;Xa1Km`HUN6eF~{J+wrQ|9ZsN}3 zPakJqDBz>887i50aWpDJ1jYuQII%09F24BUZMNCQyun26oQ1}mj~qF2?b@~PzyH3v zGppjc&_|&c4EnsVSt@}cxFCO0p&3do@Y%h4cbFdw;Lkt*{Dd3{g*tWWBy$) z|NVRg#6BZTPTBevzC=z!E3rew>!L-A9(dq^JMX*`guxW~5k?3QZS@5VXXNrrFTJ#6 z$r5o#@6%A=EqzKQ0f0m^$Ab?(xc&Cqv%ZOQ0LLeeLkf0D?8;bXc{0IeMN@qDq4!tI zM`81{LIeXN3qd&I6Hh#G;e{9W?AcQn070-QrpSSrEUx+UpZ^>baxK3!TC=AlS>KP? zl;S=Ln@1rc*eq+WH-RxbSc5!v>{wcB=^f%2RIw`0f>MxWsr;UM?)lGu{!_op=`CNQ zu~$q1PM_wDY3@^`c@&nHm*biNG2&-4X3U@%lFo%ZxFD_>Yk~ku+Y#|)mM6da?z{XV zr?)=k@$nCz7ka_~fT7|Ct{Jrkf|w?kTyhELreIQODHuf@*-?aP)eyZ-v?WmSMn z6hzs-v;mR86nODhvnnMN5<5gdpL5PRk38~-HD7ca-!y6VrT0;|S>Y!<;UL6K{nMZR zRPj2wqh)Q7*#%6c5$dmmm@PZpYp=Z!>ox~gW{R!)Utl6P$>aJcY=%J6;V@@8x$(vu zfA_oJsgbyyEtRCN*5<|dz?+Co!&S85lb9X}u(n{0kHXD?(MMtP64^-4cfCc+~T>%{cPL1aS!ekc3JsD|~P9b+-qyMcVZ=%X-! z0p%aK0RdtrO`0@r+&GUOzQh732a5@A8VcQX(@hg6P9&y>C`X$F!SY?ped8M|2_fUZ zh@wDKyWyR8-eKwc0S6qQ1|C&9V@<2Nx^u8>dH3CS|M$QD%{g|r_@A>MiVwjC==r=b zK?@5D*}q`r?z`_sBed*FyGwXEhsS(M{ATGX+4OIxUZMaJ7k-JMxm55 z4)~nRUf30B(wx8r-+1GV@#Dwa0I^l+lHvf6xrI1J^s&btOD48BE{02j6Z-71o|FZR zLWlqoOj@EU+NQyxDJt)wV2^@EA;1EHn63(S00Q(v z7LI)P-FHVHeYDc5!3XlXk=g4JF5<8B12?4~B7yMN*|TTU8+YVhgrRj)BGH@>Wf2_H z;JY4&l$*^89ferFOguQy#B)wDt}Cy+Qqf_sVj-9YGC*5m*$TIDaCX*NXOS=q_+*kd zGFG^$nx%2C+=Q3MQ57@_g#(pRkPi3AqmPi&fBI>sgC3d8R%J{hM-?#1(W6etN+b=N zwam{x`z*g8n#FDr&0>LOExkh61(uIp=qS|mTh4?5K{hM6M2%BbLczkg0K$PEj9t`lm z{`If6^YrW`oO4fS#;fG0Cb@psB(Uc5Akj~Nhq$Bc4Q5y^q!g|?& zd+uYd=?DuNg;xE-5rbcb>L2Hwcb?QTsc0DlB5I}5YWU=KZ0xOddRkgg;OwxVQ7Dkf zO+!`8t+(Eqs)Tw|6$@78L2JUkT&vKZj9*)Rj+{k+{@?%pSH`#yFVAIW(VrKrvCvVd zkQ!Kl5&q#1e`vEg1CFeaQc)X$9;OIhZN^QTjU*RtRM047?v*JsfBt;dh$xk?Z7O?! zIjT4S#G7xvnVX`CDsoep#TyD8g%Xie#XS4$v&9vx(99l_K<2{p;K4^7brgpA;>C;k zief64O#$kNg@{5xU{|oieqMh0WwwpjZ{PiZUE9QS!5M(ViOpUWg9Z(H>#euAH49cO z?h6fwg@{7Apq0%E8jy*2s+HWOmBrcPg6f&q0QAd=J$m%$fBfSgTGY&^?w�JloHb zk^T!2g|Y_3ZwTo!<=0$u4PV=AQ5=i(K)-x6?3;4pi6^qyk8@m=vQAX&p>U1@MWLNw z$|s!j%X1QygM&d>R2#%_NjC)g=!GPGF%mMd*&^V>4?nb=QjEE9j>39c_q@s)U9e!m z;YS>9^Pk;m{Q#w9>1>RQV94?<@5-EYLsD#nA)yY_3G8jt%SK5p_SU3n<3CsSykCezQx^<&d6ng%TG>ul6#S8gRqv{TuBuj zUQH}G6vAV)i!3M8r%xX?Y?w0p-G|3K19j!T&^tS{SLt3vP=5BapS|$H3(^fx5N%h5 zpe7a^3T<%WlTSX`amO7gG-v@~C*ETW4L>uhQojEB>(+=f;>!}mc(AFP{oHfU+1~hF zYJ>F1*4!n>uPq1^+9|Y|GR!UukuXlB5h4MVRwMjvE{tY_ygDK7Lj7P?)>*3}Rje=` z1bSV>*;OSNB$`5sgGxA{4)QyHbuXmPaWJJlyn;YsQ=z%w!v(8Wt%4ECb%#Kd`b9p0 zN2#ikNF+eOQ`4rtd_&eYVzuZYha5t!I*^C5s4ackz<-(c_%n53!J!bs!3fEqIqa~* zG|e_-rz!Vnld2dE?65T`0c}WR?h6*B5uSb4+0@5bzI=Iu;#dIHunQ4|3qM^*xZ>c0 z54MsNT;jSDTk=?gLDn?EU#%TU>9CkHyFJEC{VsSgh7K`3EcX*foro9HcGyZAJf(rP zSL1>}VIv_+0s(3L7#1SB$*d^~^Ht4SkjV1gxIH*7@mu-;v>}896Vr(C!caMy20GJb3LjDIrtPQ4XGedXzfs> zC%YvcfBf;#NHN@8I~b}8Hc&L|vdb>>d10YUwzePOL&av^EWs4_Dhh8B0`^F+tTvMiom=pdz`1wc zdFOup`aLr(vH!f>idh{%dv#tYCcgb9ED``>Ng zu?=z`+XaXn3We@?u~Jd24{zbZh3~!h-o+PP3?o#0EC=(MHGUJwuFrC1w3L)31I?Xj zfyzjm%<7}<0zP}w4uwKDDVZmNY)qB5GiHesNh@}Ro5x^rJI)Owhhf9QDf9Kk7hkYG zOM_wL>uWnywgEHc^wUo#*GA@)UMjX` z78X0k(Q#2&p9DY_Alah?$8c7Qm*jym) zp2W@vGiSoGA+wZ8Kf*|;5Ug|6Qg50jojcQMJ)MkSr6V{w^UO2Jz>vuzfR`FCWp#NtQS&qUn%54Oo7)}94kb*HdM8nGGz+d zArM4m>_}dl4u`^cV)GKcuPh27SC2imIaem1VT8_+@fSL?9jeAKZxlRFo0ehYv-9_# z|NLhls9i-fd&hR{twW)ZiIE9ur7b=}w!1->mmm`(lyf)-XVJ=Hjo&&u?UDdWI`Kqn z)~wO4qVUU(;Wg|~C}d*b9KZ|aLA7d5o}T*jm@#9rQ6aePIR}q}fy}~`zy0lRh+`zR z)<(7cNHTuMj_?d_q5wp6d6)+ogik#2#NPYt&CU)qz+_>YyFBF_8a9tc%}*Alkemib zJ1r;Vg zJehS#9%85-7XvK;Z)ZVlx)QVDjF7zEAhxK5 zl}Au(0XljLpe83aHZmo+sdk5e7T3@B$Lvrj6vJa;*jkp&ZH_qNh`i$pEeu$UP{uyB zO@<5^g5t~94p4-+L!r=4;fpW6NTpt!y*cQPN$b{+M}> zLc5iron6+J&zLcT-8ZEU+HH>0n|}9Inryow31lD~xt-c*v1#k?(rgdX3t2pmfuaEn z7%+h9N>4svip@a;xepm3ZL&0m>~)*>C^UP7IQt}8en492cH3=7sRNZAN~3nd=E&`i zQ=3$SqA;9^Eh^OBm_AO~knA0bEQ2%d3#b3hZ+Du(tCM7J4B6;8?@`z& z-hlDQiXqleqC&x_JQkhtPFWkL7U&7pY=XipXGkdg4Lj7`ci3SEvNZ0#`)=>!&&`&3 zkHSWd=%q`SjvP6Xf^O{h4#kxyn!!W-#^ggdo@AJi8|ZCdtLnb;M&XwF)vta<0xwQ% zzT%l@VEMR&Ilob8T{FTN>&Yp*cJ8_7s-_#i&>*wy5J9gDMNZHHSy%eiS6^k@IIxaD zZmM1TbVmu|^Upv3zWeTzL`DMGt-dq(?q$2HJVs$tCoOx~;ljW=R!)OZnAyFY#O>%7 zeH6Wr1@?7WbSCJ7^ecA{#p@do2f7btMIHzM|0b17IN;1S6yj z5)kBE+pzOHj8LwP3?7om!U2-8qN1V!^x3a9sEjXT5j&+8IpLQx&NyS{%$YKna<=|X z3saDnD6}AO*WIGp8e4hcppnEhD~^N4K*_jj=vMw12@=p|US-=x78fK?E}P6&m>`W8 z)$r3#Kh5CF)|Or6B??6#m=NzhGDwB?Z@u+a3cDC@i4$M|8S>y{gPQKb*KQ|~sm&TE z|1|Lr5$*cdFc7OtcpP4%@VDYaV#(4sAi|@MK00aABvKFgii=e8!6w7zW;ql~k-S8q zpr#~b8^6M1^2=ZTQV*6r?{PLTopzs60i}$xV@m)2{YgFKoE#3N@$w#ubMsDmM10zV zY0ZUsi9#M29Z2et9{w+X`3s~ccC1-x1IgGLqG#$_-ay_%o9Idj9&8k`Ly<`I5l3tT zFH+jim9Hq2KSJ_|7}`De+=KsCTtSQB)22v%T?hrBgEW(!cG?LduwYbd&zkd`^Gh4p z?`e}RUuVnxW}^`j&LV@x4ZcP(m9z=u`D_37SX3XG01I;yYN|eL`p#~eG9vSH~1#6k9D>hu- zbB{ewJ?&I8s+t<@sv@H0APUoe>^6QF=|FPO*w>o!te{Yo%@hP%crKGsOM!<#yr!-e z2*#p;s&ccDu`(wdbir;62kPR45O29{;-{Z|I{dK1e*EJf6WbWF>!8HixgdIC<|$7k z$-X~q>`3aNMg;_w`YP$1gGc6Rk)?-JwusizaSP&dBys)kfBz$+#NIL6X~s+^2c`!0 zFE@=u$$ah;U;fpckxaPcguq^+Ovyg?z4>W-U1(?9<4k5sZEt(rff z1Cdgo1iRJ~Wph2yxiDmwfJEUjMd<^GYDxDr#T2@7@icE!uv&@AHfEyYUmkwfVZ@>u>m^P>C6~ zGsvY&zu>b^pFSFMMpRh$^y3#qTxiS?iuaQOOLyIM7sNqnwka2_L`*g=&nFaW`jxr# z#v5-89z2+wYD<*t>D`J-+l(ox`S;!T*W(T!9$LBLhn-3TWr+n)K&!ScQMyy(>D0+2 zMb}27BTqc}+poW5O^o5Abm$aNWW7{2Ce@~Nu(2am%UBnyRJYtcj6$2MhZAdPIP5SH zzUV!qkT}7Ks7#g&9=fGEgp1hzIVZE4iuM+_$ zF73{kvcQk_OQ4~?_Q0%vb|XdQjvq~DKZ9# zStoAI0G2Jky-#1DClr>Kt&cbiE18- ztr&Bw$en@Md^VytIodRC&d7NL$aUu7hN=V?AYe_cSuZd z1W!^)F&db$PO#S6Mw-S3_ZvacVmEJmDEo>>Yh~thsj{OZVQ>?Rw z*GZNfpSj?^$!Qd77FG0(j84dkMo7F41z#cjR)*(gPQozA4da}hMd(?JNSH`+7Eu8~ z{PovgPfh8*efwHCB<>6NV#YTTaFV?dwPY{gHLR&F55#I#u2{*B=#d+%&B7PMW2{hAC09l>=+`@|@;{yttAeVnt~B)JhvY zdbA{_ccG@nhHW{*9Tq5+2yxG!Ok5!nf&X28`Q^ypJMOpx6)?5*6NkYR!F~b?)S84Y zG7E7sGRbD}p>P+coDJY^v)T!&G-q!|X{F)Ahu?eey^=7_fQ^eg7kFV#qp%SZC#RYv zPGklc>6v1Adjq?W5mH7~s^7bdqBaDhCr+G5*&+V)zylA!2)mf1n1of~b%qqzabhPW z#huDFtjA0)?%btf<2ur6s&U8g-7(J@L-xGuZgSc58E$8nOH;K1e-kE`UT?*L+U%`p zNhD{3!DgyYx1=y7?L(pKuDg!T8+i(o-mY1>Lr?+9i~pI-WNir0R4^qGRTvzLKD+7r z+s5mqZB1=eZ5>{^NVKjB2s)xUUQu0D6N{ER+sSg+P;cUE79=wCv5t3bV`~pmdr)aK z1{gCw0oyVu8MD_Qr+FcdZTDY&^UXKWsg=+wcb)uvqNdy1=O&ikKe0e7!NDK)4Mllj z2Jk}(6?$sQE71zwPS*zqLMD%uxSi=yOee+3WmDY$I#q48HO>NWNiD- zT%dogIb@n>@QwUgyYId`1~MUdv}D*M6tHXdT64!%Ufas&ZROpQT&_jOYJ}hJPk;K8 zj9H5@js*gU2^dy+itt<4J@HZP-oe)tsjE1+`jBE7g1;&U9JMrDAW|bkZBBD6z32@-4z<3qw-(u zwRp&2eyqU2?aam#tka`-gG~@b5^*DvkaHn~l?J5JxWuZtBSwtCC-u_om-LHr$SqaV z=()9*WY6$PuV?v_-R@SFyR#RjtV{Jto`}4!G6wlYww}Es_Qy>(-Gu%7_~VaTBN4q& z4Y*1i)P0w9Mr&&S)5NwA-qitOvU_^{37X0MkjX6xN+mq|FD12|J0IZ2x3l*FE^anz`Jm`U{hYj zqCsjsVl0~!2SX}TKc4t+=T0WUSjM1&1V9iGEHRV`Z>^xJh&m+S{`+Z(XTh>Axn`{RAOuJJ4f}&2sp4<= z7aRF$b9NDKQg)T`20{ z0V*mhWCWmV{hgSj~T@WWX_0e56Z$gos4xa?)OvZx=k zMbC_LS9K^+XnZa%0I{y(I=j1~TBQl0DL#qH*WHgyYg z_pn+r5?SG6#1XW@lfXI(pr%?s3F*|ZuN&|7CM#C8J|>e#HefEEWUU09Oqz5jN%O}a ze>_XId4LHMCN#RWCnv$8gKy zF_(@7dFXizfE}|qXH7e}Q5#DUc?bDr%$PB#gRnRHA^yh8N~uh_San$0ovOQaQ)0Gm zPN~wWTx)A1=R6Aaz>>L;SFbK)r;y0V6GrNHkx0Kghe4s6Qd&fv!6Pdu)C1U2l8XTB zjyvuI`wLnKzX(-keQx~&tAVysg86|w^uH-nreF)}PZqc$mSvxoa7js1;3%{luBp!p zZz~G7C7?|`YypMtSx!p%78+zwFWh8hZB0!T>oBA`U`FtH+Nr;=n#9Q`pZeT$&r!F4 zU$m#DA|Gmi^2g`gxpRqivi_G$B(>x)NnDPznsb||=T2W}L0N$cx{3oV+L(%W{YE|L z?&d%ZHOf7es; zF(#46b*xM?V7{(gy~@zg`RB~Hr{_&Rs@6bw(`y?QyMPy}0!Dm?9d=|K%a?uA=w6Bf zBXg}2RSga};DD>Hx=JsrJP3;2pHZj3lY+*{L@pwPjuFvW<-w{`+U+>ZUyJ7GViQqM4@i`V8=fF;m zQ$}p-K*GZ?@kr3J>03!(H71PCvHtYlQ#Ff}W36w8Eny_`yBEi-SrZ*GF5iYbE?++J zCkKyRv@lR?yq;}&h$b1y2?E?UQULMExFLgtXQ`^HaPsKLJSthWY9*n8+S(Slh@eUlY>yo95SA4sAn{7>EeN7E}n-{ChE#NR~W20sl zF*gomrYO<6A#fZvE6QMpsFFlVxQaP&XK1z@lIM2fA6VJo+xXI1C+9fB`OymsY0ND! z*qJAI#+H>8f%iYSa`fomO`jg=vz=2T$&--fzS2OBab+Wuh(36?bYM1$^#TSLkw2eRCFpeIjVyO?zZsLk5{f( z)4O*sQ@p@A@ER(ERouwFj!YyhCrb`Lp$!nT^q4ymUE~+V6}=>t=-t5Igi?#m)Tg9) zuTW^=rwcppyWfgyaF~ZR-!znVE`jFTx)(jalge*{9IKLyYj6@mgSg;}6B zYSo(SCtUyb+&Sbw+u}p$k>X5H!75&x6L6_M?dDhor1t`XrtfarzlhWGpNhz&dbkG+ z7KLdsHZL@xy^<9cELcFDcXH9eAL=r8v3M=LF$=&Hk#*}Ww>p}=(f!u1U)`_&PP1N| z_0GHRU2yJsvtD_1_`yasR249LYcFGH{*hZ{+iY@igN^JsIb&7T4K*>In({Qa-+#XY zrad!#)X0;z`~LPQXI8{mbI)dfxtGeyl-t}m-9}%_&q7POwc*iL#hNRt$W)7$t&dmN z5F?^4Nao0xq$e>gkAWiZqf&=93r=ooXKl4PZl8Gb;32zm^3p3WGmqnMyvg>g@w7Zg zNr#a^i7b>mD=!1lptJK47Gl%%&?!8q-EZ(EK>g;)Q1O58rKGYz+D{AfdP%YfLJ~(2mV=C`lc;SUl zO?m3#i!WXH+2UuWPCfd#_~U4%@*p`8(TPczep zdEo>(%x;OQV5xUSdYFFHFJjjo5YXmLOxYQ6_r$-%FpG-)U*k*}7pp2MMy%;Nrzg&pP|8E?v6!-M-I}M;=L<=VzaN#*Ish&CYw8 zL{pm&(=xFKU}~ev3JT+9+D!30DpZ+mQ5`vjYK%FiFo}MVGMnpcBi-$1z}+UHF_riDKugar#!7$d-Vp zN7w7?{m2RmDK1I;M~jt!n#ulm{L;7;to^H+9u|wjO z*I%oss=}HsEiFOy=Mot=sY1}uEYq*7X2nQi$4z54i^D=;h()HJpEFGqKdnFXwD~e& z6cDDekr{hM#jI}KI6JhWCeWoMuzKC(9e1D>&gjKU0_?z(f<}}Bh--cbvM@{`My!*n z%Brs2x)v8DHci1hPi((ysgVOPLKq4*wJA5ivLUl8v>0Iu3@(MH=@ASr4GZMpME?~3 zb<~c$n68G*;^v6uymc&~c2>-Eq@#Xz;-w{Bd-m)N1ld`J%}sem%n(74ubnyrzam7O z@vA$tng(mj5(*{45(jUU3>5c~pA)tTxeV^~9!2X2brJaqV7TPPo0S6f&FocHvS0(R zO)=HED{HDt9ce}>Z-@Umuc1>QH0=;T#!;A1q3|=|qmi42!C4k4Mre6qE_1|s=C;Wj zm6$#_dN@QB0-ebGvVL8s+UhF8;>H6YdDLK8*Po{_^DQ=Q+H(W9&eT1uD$EI!h;{7z zVv?dL$EdroH!A;>CuJOR3DYF;Ev1oU9EB;}J#QPYD_hH&RQ8x4Cv<(;qX!;T(Y?pm zci#(ap=yh%S%`T{g^Ue6>XKa4wCgF@xX=+Sc!(`8Sh}6@=bxR-2$a8 zd&_(jZkE(O3R6O13_aZW$BL71Lhy=HI$MNRwDZ-^ih};Y@2P+#4la%%Wiyy zL0}6$TOWm+C2^)mll~;1HN^qQh~(=kDX=@W^}=dY>F?7Kmsj zdChnz8UxQKsdtjrzrUG|;H5l*Jh{Lvm-A%E`7=!a#m%3&>bN8IZRCzSxB2sAJ}=Cl zx$3wh^-XRbQ#NdFJ+0#4a47p^P-0000< KMNUMnLSTZY%(bup literal 0 HcmV?d00001 diff --git a/dsLightRag/static/Txt/JiHe.docx b/dsLightRag/static/Txt/JiHe.docx index 515b511bd1deccaed3ff5102e4f67f992753b871..1cf3d6fb6068281b9aca714261a197bd8e90fccd 100644 GIT binary patch delta 17922 zcmYg%Wl&x{v^83sA`e#F-6_T0-L<&8yByrzwG?-EDeg{jDDLiVAMgEs+{b^r-ud)D1UEx-MdKyBQAI7{5#o~qz?O-~)(-rOsKOC81pe9u@*CUgP-vRzyaSwmeW+O^Ld}< ztc0vpRq?7?eBP94Ns?))t8DW((c>S4s*|uPqc<4kMc7S+7^R#O`FvTAPg9c8$ z6U&qw2-q>&aSqFP%jZsIiDKTy()0+og*ny5`_nc+t#P73r~0HUsIQj*{a~ z?RlQB3yB~rt*a7PKrUN0M9nD~CoRhFrBQ@-Z3X0wj+RqiqS z-=b~ZbjL}sn*7J-0^7rPJblwgY_XY2S|bUl`Zib!ZCo5;AeH?r!?dOmdw@Ynxk@!` zKj&ytd8LT7iT0Tc<OpIxA2GR1go2XoOgRurpbkz;dV(nMYlPi07xUhl%3DS9kOMBK#CP`@ljkuwVh zdLhJ$$`ZCZ140MrkW9j09cAPlbcTq;y%OcTCt`TKxtaqUTct!X>!c}ihmc?4XJIzy zU$vabKotAmqn$AHENFDqXHXS!WlOBFY$s25hAr@>P$t{&lV*iyV?$kY575k*IB>ve zSxS6KA7UuS_lmatirMCSgF{T(M+?Bw{5=W;`jmH}fJ<}`G+{x>M1m{N3FsNy5+bim zvYkCt9_G0vAirf4T0u%JuaHH3M5zGdoQzQ0X@;-?lPI8Eheio!NmGr+q)k@!Ax=!Q zoK`u6|DW=i6^W9Hj(5vUzM*y}jBsWfbmI4c8|hzF3Kk^pkJKKQGUCdAd4q)aIFavV zdUDJw0lf{c*8}|*VoY6Is7R~q#>z>ooYTtJT%QXHnzSs(hkN&9+#9xXe`CLjyp*rH9LsE5K|xvx#Tl#O~-!w|mzAbCq; zw^~+RY&wDT7A3|5We3>yXquOPGanWw!V;A-Y<8~I?)6dL6{4a_S!vKA3pJ?c8LKm# z%bmZS=Avbz&8JQv_mdbOVsKdB8M9=6h1O7E_g&Q=U(bZmPD~T$0lu&b6r7p0yZOjxiYJvNK7r~;$VUEau2(8aWvKvGP! zsjRvS#zPdw@9j+kVrd5~WRbri`?BBKlxL72n*v zHyJiXHDJB|h`V7)N0GW@vOHvH042x|w3QQe$UXJ$St64gjP`Q&&DI+(E>^Nv|DU4} zfy={vp#I6zdv^9@>V^xuo7DFDUoA5O;gCqGCHM7}^>nPgC&NP{yVEo8`Oc?_4jGyk z1i;Sb=gGQW9$BDxNV~q>m1Z+49?L(U%{sSgUKEqku&H53p#Zmp{(NJaO-e$FQ_sK(fxBE+v*h_t}UCh@@Q||OfqV$%ty`i4Jfp3MlJ!4(Y zDXH3-IWUo9+5A49G{oSS5L&7UyPGpR3;VLu+!dpLy*8>la};JA6Er51H&l5pZ86Ra z4sKL`(-)wS%;}pzD&b7G0BCJ~1j&#(Xf&j?Cko{Lo(&JlNOT?l+%G0*q|A9mF`(b9 zZ8qR+-z$B9CzUxgLyv;f`}_AkFX#8S&1FmM_JDAx#a}Lvi-syfgxU$>QAVt-c=UL4 z+9Bv<6k{oR#m$tcb%UesE!H@4m{1{8lr_|fMK{U1$~o47yp$B$Ko#8{E1M6|tPF{E z2|C_XSVNM+run7BJ>T|fR44i10EMo%3wVOt@WR&#sdD{?p6#2>*@3s%oQ9^Rm7IT; zm3qMv;La{~dm9ETUlXrFs-;Tx*k1LDroG6Vd-ixrYzXcyMdk~0GG=Tz{>`mVDjmRe z4oK8|)&0Vlu`~1d4Co!&J4;r;VvpS3D~>v7zAGf+o#JRmBF|)YhTHwn8=t0w+$VJF ze=?+CG^rB`w>DHMw#_LRPt8lfm zxz5Y2QmWUzB~$z41Cd}Y*or4=r`(ZEfDRuo&hNY2c<)+@d;;m4hQFRZ z$fdQ{RFlrYi8@>@nN>-SNby15pAb@u(LznusZmSS!aT2>T3zCwJBJe~(?D{)2{9%9 z<78yjW!?BlAfP!GE0aj%!JPp4wF79xZGN!vA6{*F^*YP||8~gpt^|`3#KKs!%hd5-h9?vu$t&UCYr0LA)dyZMnO4_yL zckdfr1slj_e4pkaW&`)&nRySaE&+zeIA$#B4sV`15Id-h>u34n-xv|CBln>KY~RwX z^EXqw?XFKO^zi`+rXURo1p@m5_6d=|h{2>qmGV>|!N4l(4UoCP0dQyoyY%qD5{`1G zlN_AA0fAWw;n^D5a>$(bZxrWkt!pE^X(Oh3b5(jSF2Pmsz8zkY4kxe{{w#*@j@oEi zaej0H#&+;0^M_(sTF^HVn_E!=%2Wo#|JL50hK8W~33f6gVE05L%j0@MB!kyqv*o}^ z(mX}E$B4HQnet1AfX9S$?p7EyyRY04WES|IrNsYyi0Pw6FdzVfeVVv~S{ z;&2qi)ez#%2vYNBB6vD~O{Xqk5?H4#X>h8;;^M!b{!oe^>^D|GK0aH@8jbkh_FV9=Yf=Muc=zqyIFF`Vl9F%DIK2y{0Kd(@( zKU4>WhMqDzObB@!Ry5h>xXbAXA4;d9&zX_9n@MS9*}zE+v!*Hgw}V-(NnUKvwkV?A zVVcq^V$0Z%05EFj*5jP-SdqTj@{3%``hXK(Vd8AV#XD$E;>ognS4Zl4QL#;Ssf_fg z8xE9InljQ;B!AFMW`~!{;-Ed~^WoI?U-uqxnSF|Pvhu~2xg6115ED0H8m#5lU3^(~ ztq=PX?*MfK0l8~lzX#WobTjnDCCBTKS=9u1HEiG?1Ljtwqz7W>x2P{-?%%M0hX%am zF{$Ofg%w>S=^U9aH%9l*OUGlY7|Z?;=GWSS6+9c4bO`S5r&wR8uY5CD_A;nx-xKdx zuhpja%C+>#LsGwF+-VP4b%{^0t&=%ScTr_2eoR+>Ydr|w$@lH6&0s(l$zP0{|8f)= zLUz3J0=P04el=Jd;yG4*ObZR-QyC%F+ZryH*tP~LZ4JNtid=T}>~Ns9Z+S?$a;?Hq zmW~ZmerLtSFxcG`UZL&sJ8@R_$yv;OT{uxlsj>*T`h!K0u}4eQr8={Ip{Tgdr89># zvv894Z4?KGeFBf2bX`??PW)oEZ+A0}PW|M9K`vK2AU5XR$|Y8gt&A~t=hl7)o3k!* z4(VZ(?Ec3*7l$>tYcdC(vyq$P&tk8^@1$7QSrt5ldLkdR&XYa|?flEl9}xe$%u=ge zA-@GaqJ=)9fqy25=0`Nh2W|!U&z1MzLktE3CR!E72nP0F!uZVjA791B#Mr`s(Za^S z%!Gx(-qtK!K~5YA{@Z`GkR&BUls?~!pQ!`(vn4QNx(csE26QrjkzP_nP{m#MEE^_E zW&Y`**g7{7N;)bG97Cb|+jkn~2KT`jAIs_u1DUzg{wVy_R)c&&MZECr|&;=3GslwjTU?$=dLF_K;&Dh=qCW zD;8*1BATmmd$2nPl)DwW#dBi=?~DCnd+&1~0VqCrAH)WJXm3!{2i_y;rQ)H{?>Fkr z{F=9eZbJW9p=xYd(1FV$SVoDtM)~?H&^7(DxMG!C=H>-2(MzLpPw~w zw1fj1q_g_B!QY?6_o+7Xnc(Pgi4KVvv8#u+P3;ezCIGhXqtD!#0DpZd6vQt(JqrJ_ zf`ohGp0HrqmCS`28yiJ)71-o0MfVIJo}6FjhDxrSjG=Po$vi|hx>NTU}EL_!7o7fM8HSlKD2%I%8K60II3UgFP4jL&Q zBxD>**i?SA|0BPONws;?3(`Q5GH7W@LO|&Nyw%jyj<>-fzg)ID&bz6)Ftdpf!JGz= zlM6aa4z=75IE<;>E2crfJ50|d+3iBG@$)q=86xPsj?z|#eRpN}5(Hj>byI%Pb1$Ps z82n4p#2$n8Y#|$g-Ih%wiywG@`zj|U$g`KE%+U3E9m&up;bWlUL=>ZZ*jAJIOeJFg zybI?l&>7Y=?mcu4Q961QXS=QdA8+Enm>l=V(?6c3fXCW0hF(g#+M=ojHybaqs@PuR zpxy(e3!~CVF(Fa%p9;##eFwJfXRe3xfaCTsdJ!LQqt#*+C7#!KfIOB91AFf`mzshC zGR(0405PVQnZ1=tiJ|ykDKb(Q2{?}U2P*yhDum0MH3+*lCk)JqAgNJNKx6wTk zfkFG&@ar2}?+}3(-OrVyIc2$chNV^~EKR2OtzZaWC`QiYsMY20O;pK{9-l{`$7_dD z#@+L{A=m4a)4Z8@50{qjdEr?}t9on|vcM15qrcEYxwXn!x11j?cK*|R z@X7)P4eaotqygf5Rz%ohsuiV?NgynAWw_L!dDM{MkUAtC?$i_zR{C%~>NX#IBFeIO zt~%&j_&6}BsN2+}9jkjzn;#E6hFnMd;%&!?Us6{G0qgs; zm#VJk^L<1|R5WZoNP;y+7ku_wp-mN@;*UPM14BCMr}_gQ9!)WPSZpEUQ|kM_6w z)hCO~D#-8^3@j{44wDXm*zi<%n%l$&bSEgZM5R)!4kxV-yp4-KRN+|15HFak*=-nEmB_ zJrWTC|M%N@+esC*a*_Aly!tsPGl`r26u}!rkq)%etOp>X{sUT_4tfG%j7X&gF6yWF z9@f1W;exZoN#Zr;ptA2MKQ4tnZE!+)#J!-rjLCN*zMznTFh>}WIsmV zY>zAx%ns%`4loaG_B2`4aM*57Zp#yz>3(jKH8?cs?hb4;!cc=>esR>&{$l8S+_q_2 z9_;85Im-$j%!C?RsILcLE!t zj1h(hTqRFOHB3ENdQ3!>y&rNP)W^gPZW@H3AW0DfIkwT|c^tNavF=Zom9fACYp9Bb z{nP2Ho^EnJ@Ia3AU2IzQ#blZru}evxD=br-m}H60s``gNGq*+{kL#(1mempdHnvJF z%~XI=oJr~HFR$~@4eedIYwU<#FTYk@23!uv*^jn3S1#}XrKG0rWPmeoo3WaX|He+3 z4CZMes=~1f0Fzopy)sFm?0PwGe$g>S^X*zWJ$d6>`S557m(0uF9SA)CQw`;Q}*ptB!>3MLZH_8a_~ z^Q3xZEa39 z)*cUQZXXX_9}}Fe&5t?tgb~2ko-c<_9ZZ4<2nfqv`g`Z?7hw7(7#4rCx}i7RccQO$hE~C9RgV(3 z!QxtjImB*jhX|x8nm8Cjqyx~OPiuZ9K}QRPfuYH0HP&+m)lh-uPHh2~iNtwewG-A7 z5xqr7a=dqQh0>`B;b)2iGCPo0jgOVfodb<>})u5t{(n?_NrX?4P(o z)HTB3D@8qd)HD~l`mq6G#N7}9X;ttpU=X)Lm@(d;gDOtw)9|;f2j;phe)$BIVY~Vk z@<$;diT~x|a=qCsuG_9|P_BzI$xIfC2`b*~W;;P>Qsx9aelVcXDZ|4t-R~sFTt!>m zp)_MqV@RC#g+)Nya2dYY!QOR2(=46|;n6tZ2a8%uX-1(#^}nFhAw>)}_+ZFnr8wk= z;r!URS>V~CIFKNHT+Kv=R2+k8WF}v3Sc(iOvvGWi?}e_5C}Y4Db;8i!l>U#<5_C$e z&LP#@t@dOPxFEnz+aeOJtSZ#g+XB`XJ`uy)xzRQ%cC24MDrI~H&smShPCy_2)BJTx zc2G#1c(%*)&QcKyHh>4sfX<&K4DqDV03blT?0UbeZo0WWCAeS|K5wQo2f^cLAWAKG zK5m6dYP#H8v&>5RxS!L7 z7OyhE^Kx20fKf3$PLL?D-+Qy!BaZI^3VGTdh$eV9>PDV%b~#>4c=WYORPD zc`MN6&32mUxE)Sew-oF2Gr3Mqt@UeEjchyP(uZ`-(KwGE0o~#7;U~go*%0WYQ@P-UdhZP zo>taWU6$$`Sc{(=HVGJ$m-9&QiZ=%WYf@H!N@C#a%F=OwdW{+)=_qH5Lu*OX?y{d1aHUVqfF47?p)_(wieO%DrNp>6=uS;iR< z;+f9BVTg^ zE{p|J4oro-9RUIc%DJtZebD7w-uE};TR&!T+(;-zH?5@Z71%CkkC-ogv)hK+~B zp?E@-TyddwCG9poM6}XLr z@i_u!A?h!mh2^;+%}#HRz-$)U`%TwszsJ`?0*QCVK5CFKv8#X3M+eig9 z{Eg~_R^0IQS_?0Sy|T6nYpL1LBr`qzLSwg-)lbkY_os(al92CXt4$#9#_+y5%OsL zHtF0V9*=$mWsV~Y(AM*>)rq$ZhVv0bjZ{jcV1A}hK-o@C0K8sJOECZY$&FnG&#u6B zS~tdU<6%%Gt6;g~@N!>pOdS6S!fo#V8uW=E8VuNL0}X>>ww`Wy0(4_Tx5Q(Se_hU@ z^D7B0C+`(dIuz!H;AGZEr*nn(vTM~u)wI$SWR!Pt-qeD(xP1xI4Gwjwh4* z8)ZD#;?Jk;(Di^GXyEP8AnqlqE7%hevb8T0x?A1WJq~=|o_Sg6Yd<>vMQGv+c)93O zQ9%Xls(ixHceH+y5y$DTX1p8%3NjA8L2$sw%ZANnEs`VQDs&h=eDJw@t&(EJSG%p= z;EO*G>jMCm4kD?FHyzAP`gdRS;i@S|lZK=ua>$8n3;$7x%<<#=GYCGfS>#}$AJplT z0oF3fO{}Kj=#sRq!I?w)4&0MSq@f0Vz0@~%16X=BeA0miySqLPhRsQqLxQHq3-~y} z=hmQrdb;)o71k`4Unf@FDox<5d$+Ull#62fNxA?{lPM-9_u!0!qDBss04C9LKGcxC zT4d^Oa15iZjZ&8oag>P)Y}1^u9+bBRll4S}4;0kYmFsx?1b;R{alKj0AB`6h6 z^GbFZ6xrOf7QER}dWEDMoS$C7NO#-_iC>C((!s#VZg9=#0Bk!MqOk~a^e}8a2!G{O z0d}WBG&!RP{wtl)vT3lPXv|^?VJ=hUg+8{Nf+h{x%gt}FtiD5^{qH-@V{S$WVZvW+ zCG^;hrwARDtiV!o(xcuLl<{BGz@rsuWmjp;WHEtXAx04~IhD}OL=NqBH@rdnQ%wg? ztRBnT#Hmh^V-PeMe}%xX%*6q`0m`tQIO}s`4(!Vz$1YDo`04ZsK(# z>RHsPXa>fZ08|XjYo7DAoW*25e*0>zno4?BC~ZH8)UZg?BRW5j}@Dc$1IA=`XavTGo}eitD5F20J0=CVxvUU zT3!$=G&8Q-J!)X~PFH*6iyv^eQ9*C-!^1}k9yWx=py208cahv>7}g`znXYu-LnVnH zxCV`e%c7VML}1LVH&D$*D0%Gy_*~o|_-MtWL&+?nrjp=faRn=IE>HO16qM}jEaWYv zuAzRIi&GCnpB)7C85u5VrA*kwaBPQl?7-6_YD6gv@-@naAmRjUk1ZlA1hoj~PRngY zGImN7>Sq1nJdBaN81UONaO^=I_y8j*f0hI(**(3ddBh5}C+BACETjNaY0QCZKMIjo zY+`0JeIHaatlLT8jEV4CvscV(Elw`}T7UhEpve>Kp9hYJ&E$71CC_INF(C-m`W1)R zrj9M-)FtzQip?vCe$XZUu-XSrY2H6Vtd764nM(b3?64ffbHo6 z@<1|GMvw68;I1&oFXOa0+(R4v^5f2Hv8|Nn`D$NL2u3;U&TSywO#i7Rh_g%4T!*z6 z=VXMs-SxcnpsWbDYnrJ36h*KaQB-akLR0;DUR}>*m7^v`z_v{1#aSF~`xBLae7Z-8 zB4Q9rm7T1Q=O*ptJYojQl=NQ9TfN;}YI1=JY0H1I`p*tAeL#QWpzoP{ zl&rHZF(0xJxdC%*OA=ge8ZUYnbr*7Iht9m|Ye;=!94OKPL^PD$pQ|-D+))Zu(TD^I z!@b}MwRw4Y;J3@w-%FwxjZnD@F*&zVStmJ+K3NHtG{>fQIRxdnRH_Cd`^B}qm2cV} zTfgJ`*=S<|2L(o2EDzP*vEk6BO?6FH#W1nR6c{qc)qpgjXsr3mS$Y16&9Q|Pojr1R zQKB@I3tkq9;Cs72cWUtM*mmLQ`d~QMo5q0|=e>)zl<}n#-zY!WuD+t4Jufn$luNtg z>E>THZwnia{QW`Hn;*-^W$~9x>FZNOq{?*n~@m>kEmN-2N0z?jnH_7b3#rYGs2P7=mRR&QyDi|H`2IE7Z!;OdS+v9runF7 zlO%zINS$KL$qjJ3dqT|{B4>f!-I7m68(D4UJl|lieMQD;;t{ceHknmvpon^3?G1OT z(6}2IXxc3zQq3$<*`FeWu6WL3L{!UZt6F+xJMS0$r-!2CFj->I6EVyeBu>ajh*0(_ z8~{d{FCM4HgWKvhUI_UAxLb@b7t*1v2=WyWHv^#wYcwZH6!YnHR`3ImbM^@vzUQR$ zLl~wsKgj{4j=s$JTJ90-Y&&PY6ogl*Iq8V zrZ}0=$TJ((v8}f{DgJa0R}@4HLK?tW6lZ&{JmL--;n?dct7@*K^8`MI+*wuqxnJ4N zLsOV;^olK8$(W~A*W)rB-xP$L`0gN;)DMyS1vifX=ZF>BD!r7J{pY$(|*usnh0pL)~dVqcd`hzzoIKGsLZ+Q5G0O0j>#09<$u45RjDJX%;3+31mcx`L$xoU zn>g`Kw=x;0_=#*Wiyl7JMw>LMUh*5obD*$2dTx{E4`UQqujZtvZn|d~A zJu#B}MteQc`_O8#PKPTE73yGJ&X=L}n#2V~)VbOW)$NTH$!5CtKw}*~CD+AW&6}s_ z;7sMzZz|~;-bfMsqp{R$0WQ{&a_Col+b?b+Z`!ZWdmEqHwomLH3lzd}nplSmrMouk z<#YJHIf-< zJWs3DUBVMb0&~q^e^YSmi3s|9GQ>GRs5Jt;{)2nNT|qc?;q= zdcsR&QVoX!=Dw;pWARmUTEO$P`9_n{uuHcoOHzW(gKlypE)!p4a ztQ@0-(uA8Ahn*M>;Q8>(?U38*p7vaD(2&haqI+h~f^Y&YVm*vb`3QlgQoEVqY_i_R zATLd?$u3d%!*(?9UkN(Akz5X6b})ZD7whtUO^f7(ZggASA5B=L_`p+YmM>wNl(rLK zDfC@`G$(udz2f(?)W;;3T0X6J$T04{w%mAUqLNgOG^;3d(+yW#-5oWcZ)Njacl2HPt zx^=(qb&=$Z@A6l|4TRSkjQO3k{xs>5o4-!={;YW;=CBy~Kom=d&GmF?|G`Z{#vV#u zNs{?nTCH5oBK{wyTG%+15H808Vbf+bFFiXj>DJ_RENmv>V{y?)&_=DPL%((fzqLkrlzolB0#z^d8JZ||!FV=m42%>gA zcl~6q7{D=KUY_+$VDKd9+XTy5U9<^=d6lZ^lm&$PiI0Mi6UxfEu`}vw| zWoqY)mW~g!2aO(sbr0&ytH#{;BCc%<_`EJ3zZ>c{)CXAqARZDI_=@|~uRj8e5N!?0 zsZ&_=o=1h6!Z2UGz0OzdI-kUBc+|9%B4)GQMu6{SleWl^-&iC*AD7T^4FxRH0c99lH8S}1YG)4=<%a%2d#VqG$%)%|tWesD)i0+FGp`SY9< zF0W?;S&>_A(O`%TXD>b`RWhu@RF2F~Vl@8`olhZWc!T@A1rmd)@fJO_2h`&W0Y8@! z#K3~!z``#t>*!_eg#^AwKoeaDHd2MqYH zoK~7kl9>hen3l;m7ch~Z3Fn?vwZ}~2dcY^HS828iD}awgex#2Z+rUn%Fp;CGV&g^f zwI98#4xSX+$l9pd;On+YG*rREa^-RAD(a}BN2YMEjyNtU*lk;3lCj*@#<_HrB13c*Y+)VtKDNUZHam#-7&MR77J)lTg=dTr@?dc)B zM-ufg_;Sf#wr?ezR7A2~KHY37tZ3nY+GrGzo0q__R%3za(VpZ=10T}1Ff{#-6DNc@ z)7biD>gR8ulG8ZD{4)Agv;Crz`wI)PdxP;38K}nUUdw4nO?P$lz-DhP5%^gpI%FBN zaV`%$Cq`*T(i@jwM>m44bLD)8>7|NBf{74Oq`l(L|Il%~B47QKS$9Jz>WRM&PxjU+ zMixSOI0cRVjU8by3Qm%>J)AF3&3anS9>esSLVdP&jVepx0^VQky52BBj#VPAwG8ch z*&uvXrfvBImeKQm6ijsi;N8#=_m!9D39IW7dXp8!)wv%+Q!rXA>n5Kd>zJXWqu$4XxSXc6^@aJcLeCfq#erhSmGAVjFN|>WgL^;CsNoID zS1?e$n8Ack4O>d8tq6%OS3<#Txvr8hp!Q$qDHE2WIi5}x#0=FO0P2jhK>P_hKoMNS z`1U*hTJN;ceOTYOqPzQSd=R~2Hs3u^7DWWjfixk`i8v_vOTpik{<2n5v8Zm!yT7NY zw~>y+^s2Lmt&OS1Q1N0=V~eK^;ks}(sz=-!aAy1zC4LG{rW?CKP3BOE$Hn( zpRUu!;-_er5XaM-r=ceF8lG(E_%%(EQ0 z=cY@mcO-iZ48&4uX30wtcgP~j47?`2k{rp1QM!(|IP6S+)BrOda|x!fhH_DiKeCp( z+wEKQm30U51TA?D=`uku;=va5{8j^ZXC4=(p=(s;f;CXUn#WR&0gChhY-RU6{7)h( ze~6F1cas-=wf<;A{$G!F2XYiW8iT(Bpaf7*>6nw?>?#X&C*zr^$=tp1LYJt@)vD_( z9ojWV(+$g_pKI|5IH@S>4IA;&5Y(bb7@o>?wy8O-OsEd@VN*=G)zzc>VIKQ3Wf>^n z&A8lNETCrrI$qMrBN05#_`Pp#_ux~3!r;!x>>)kSR>i^r1B0oRzesZed0F0rmOaA_ z^qJ^QG!y3fIXzrh`eEabvUiB1T`-xY8x0gWN>B&wIZj5~KHgs}!p(Z>7+Os$9*LmD zUy)t{iAuNa9BOPERd7VSsJRY?SL`Al8l4XWwBgm!WvJ9-SV-Velk*Kon`v8 zTSjMlw@(K-^=P-p<<%532>c`in%3Ce^lH|y#5&K;OD9AuLV>Luua|wAg5Yk(V#75m z>@C2lNpoEZVZG>7l#{v(m7=*f1H;akR_T2aS}ISMoOuQNPY$npYa+jfMtmt<1^BQA z1N|XG?RBF!)x4hxqH3-wzpN5%Z}doRq=ad8O_OkVzuhhdV7OuaYzj}O*DcxJClb4u z4Y@1Ii>*)z7Oofr30B;y?$MSYUEncNl`;TYw^e$F=pTdzKYsdr%7qB;`~@9R81I%! z*(W;#XZykIE(lH!HCilanp;Nws13b|-CXd$i?sORj^=8raWC#EXw@3|C=$il^%;H{ zS3+gWWH?hw-V6}}JkpIGesJg%Y;BEu#;?dES4=xtD!AAC%)ZQC#0zDr<^OCsbv1$M z5rgJ@i>GjwQj;Hh!I|eN*+?r*b@G`kbav(ausL*8UY9*EHV54^qEuORgMq8|4UY4c ziDtv2QVIlqL-u3a%&9TZ9)})?e)#nqX0qHZin!9K9xzWP<7vz#fi*v#iQfmuq)KI4 zHC!~7v&-6Dlnt9~UW0@46FOxI+bVGnKSN zvU^BrspcS;6cZxB{*w`*UJ$fkyI@sKeQe(#%l(^_0-pSNZo5A9eSL%zdCV4)6qB43 zdr3*uYy9xJ6? zH5vUQlsV6z9Jyk%pI$?85ecEC-}TVJCpR1JQum%JL)N&6L@KEo-q= zzAXZhZY3?k?M;mL@O)nY>HDa1(jUVU;Ie_W(pmFv|7sdkR;#P!b^d-_`-Amffn;&R zbpSzre|0q3^yv4EGc!f}5a3cF!>Zp|_4Ci@^z_rgcysZAEMM7zfcvZ!E=Ic_RvCnt zcPPHAG2U3J&+MUY1O%y5CAumSGRLN0c~zSfV>u6O#9FQ%JKC)U;`*O2qsQ5$_eM)K z^<_Mr&Lc>x*7(&5HX%u|Npo=Kd&sH9&XxG-+Vo8aud00TO5qOgPJmLA1Fs9|W zQY^daIQjTaC?R0%70CwMk(9IMBlyLt)z*-mxkuaDK&tr4oqwrn>iGKxs(Oju#msBF z!6j<==6B;OPE5RmZn+p`G3yh7-ae))iRro{ZArcF6j774@3-s9-y@TZD(yn)4alzB zv4$!%(earXHbS@=^Z>pqN|;!k1||jTj$bw&VH7wca1j64mB6k>T8IOK%u373?5_`p zd1y2nEy;8JS5}5;tN(aj*5n*Y=9-EHS*R(Lj4)JFoy@H5ULoVvoFo)Rs(ZJ4X4=Ra z`p6=AWnz_&({D0a8ReT|G5^gYcWz*~&dGcBc4x(}u#WB5Ptw>aJ&Zph{k9Mxwlla3_D?RBmYQAG=H zU5M>U<>wTo3TWsujk4ww@!d`b(ij>(O6Yu-Zqs$YdLoVGh^Sut>2@~1Q#A?+;u1zw zTU2qT`OaAu_yss`x}1$wuhN)pcVkrU=;plqMiZ#|Z@4o?hK!C<8ks*A38nrvjT=p8 z7i$3H4_WfzTK7hfQsl&3ae;fag85c40{2DxMudAs+k({~%cP=`?Z6Iio}S|O5m~j7 zI8@6+S)vd%5j_Cp?QqMB6c~Piq+j-Kw6oQ`CA>CHe7uaH~j3P>%ZgFws0H-;%<_ z+&e?pN6nJ{9JfTbfQZ8ytm9V?E;6RZI?IWHqf$9Nd}w;>{KHB`>1&p@Yatzbr>964 z4HwlEo*6)MLiicof*>URYRHZp>$&0_?R5oliH7{ibz)p&15iS_{Ls_b7y%IU!J5C> zcN54X?K<~9g9l_4;qgD!lq9^Y)|>rL67^>FLhbI*dJfIfJ5*+Cx<6i<%K1}M(^NB2 zmSo`o*1cX{&8vw6A9OFbcm~@o=QBiY{zdy255}aw3KcJX>H8F@r6b*%{e#|0G~w(rE}}yE)GE5FWF**1FUGVMgc% z#k-u)H*;nDnR)vR=2)x#kgM0tx|?jj(6K-FsMqyydF&DUu7bhjWyNS@{vNMwvTE(< z00c&#a&Q`{&Le$i{*`gf*1Q39K^F0{`pgX{Hod&xQ<`{UKUmG8XVTBRR#ZULGV0l@O?fN;ME zDzy(8X^hBi^d;W}I#|x*AS16vQ(@Me&4v-`&up)-G%S7r>`(otRJ+r;*oH{r9B(u# z1`prEX&3)#3u!EvrgbTJ!y$oORv)qYZye@CjgSoO)~98SCs+HvH+Rj+?wt{lOAm!q zVRCi^%PL_}LwGwnK{7qL*{E*v0PAe1#}*XlxNUfueyN+NXPWOEqv0X}%Jjah%rcI{ zLw{F4Q)DEB_8m!@zEa?`E#cvYT|W$hhPTVXCb56x$*OnKa+?7!3|!sp=JtT}6xT}y zgHGGSTIW=}IDurw!6(r-7%d$+G3k{dqMZ44mZcU(-!gv`9)8DkMdpeJpixP;QN-sA zwv6H|VhZ<-XUROVCSAu1r&10ljo!*cl9L(L;sKpD)$()?Qci~Ocvj67kvwS8=0<|J z6JnENhnV$Kbsn>X!VM3~9iG+Fhg1AY#1~Ia-iG1fsTm|+#UqpbGDhCrUjMdWRJ@gE z5MV~Gi~n<_SM^yby)Fa*hfF?fcvhH4>ZsXqJd%7T-JG4Y&YmS#`IcpF%`eP$>;DdN z0N=|ve-Ij_cb%`%@;|qA95&;_j~vdMPp`kcq^viCfu3IQ?f?zvN2$>CG~H}R*WI#gL-4yu%eYniUbfi^U zF~_noNEm?noB76B3NXV$n-dP%Jt(+z@0EyGWgHL@$vN>LT;H6tBS69Lk^M_22fYWz`TJ11G`81KX;OyOq`u9Y|WhhyOZ3Y zZsWAVf%5Ll`ap;c@IkPDK`UwqBxXB`YeFwxoT{U*VW``UH-2XxKjQqZ4~wH~F4 zteZW|ST-_lPqc?dxHf4>^e(f(PCX04)MsG@*%bApwwpZg97+Uh0RB{F?%z&pKat(r zP3({M@O~-(j8ib^#6+5$FNI2X1&fIu;k0B^?$J1YRtz)+o66Rn7-$c&YZD%-q@pZB z;VTb$z5s~h8z0iQ9*USe?f9SeBa2d*GLN3Jj;HS)2v=D?l_LQMvcc&r-1ksLn~-L8 zWR17h^H$4Xbi5lQu`%WH*2G0<$jRL|iBkHXHnqz#jiZzaR|HGOG zoYS)y^OA0!)6DtWgT7Q$5q^{?$Ja}i7^k5b$T1@VrH&{w=S^Z8{l1x#EKZWRV46{^ zS`oe~UYke|O+1frylFq9lcoFbRdt&vG9S4G4RcWz|DZ}qAeBXxuXUY?K|!nsUm_d% zpYM=+@rMw~9e;iQSFx%cl#XD6t6`7%Wm!u)M=FpxlL7ys1rg+r+!MM-@v6UKu95Y-ms=kY+4U!NjX0g_0Ia z8OzSRM<84e1L;D}Gb_46djGr-b*NLH4$K&@>P!$yUJ%D`#1PZY`u(b_BvG1v zzW&AfFk7I%zYjj@eoq*Qmydo#Yt0ZEe?*|4g8y9+h+u#a4SN5AYI6fmeFMQ{~` zLAVKm!nO(0yXdLL>z28Ag&RG#)!QK#LlI3&?lNO_GLx1%#)W7kuF?dbzguM|J^7AV z11<=^0SGLk_P9|@Ht7S4opA$Qg9+Qk5@d!zW zMvOf1ji5JbyWul(dNhpBV%sm0)Dd&$OGT$zpp4>q)6lexsj?}av|sA4VFQ@&ENEr2RxVE|;L&E;3NS3q z02I?T#!@-SsDcd1fTA9w>1~@PPVe2aro~M|Bk_B{!n&1D zv;8#hKYX<6XuZHqg%d(oD-zpnQ)IR?ng2~qx2`|P|6#=e*1!+iOVwOkAGk_>Q#QUc z*UZ%TRp+{6TZ;ZpaooQ@#{ZSAp;_erx%$5ZCkdapP!gZ|*28{tU$D}``Bx48ii*qq zKAn)rqinwaTK=*dwqnOVr_4B$#La(pwd2fb?BDCUuX9e?Q82??HtKSIp@{2g70L4F z%^5d)+n;~v7SFYmE7yOVct`$dcekt1-`B6M{ZFX=Ex%nnn%PN|HE2>nMDg~x0%kSF z`gs3C1|moA`~KnczVB|HkTuQl(fki8ot+ZB`CIooq`sZ??a-6kw{s2Ve0p$uukHTo zvhrIwzm|3-uwOeFoEINN%z zwJm%pbMj!&hjW*5axY47_$_2$m6GjcH?-Zz5w>$PbML3-5TWmE=N7qdT)cnIn**y> zv0Yu^`1hY-?QDBH^Zim@vFS$}pUixq>7}D^{>92KQ*YPRFdhH4BfI9Tu7OT&o%WO~ zmlm$w-Dag#`mA31M)*?EbLYQX^>Y^7@oN637XAHR<8tn21@G3EX*%9{TVMY|Kj3`C zjg!A}pLjZ#ywcK-(+r{d=@%jH! zR`7BExoqg!{&?Txiwk;J{P*~r58OV6z9E!dk>OSKLB5LZY{kr~jP<_$hYfi4Du0w; zbuV(4;)NM|d@?u+A0%Je^;SkTPkN$Sppd}t?>nYURmyvkVt-rzynf?V_v}sOJb~7` z&n%y;bpC?Z@-1tp|6I3c|BUC6K8Lgt=NwI~J2GSakDrn`O`jzu9h)K8+IxDB=Sh8u z?o9{7j&M%Z4b>8lnyA5RS{%Amwf>&v&ufc(bHYTf^VkbTwZ1yU-%@#gM}_}?)lk2( zUyt_LR6Tkeko3COkp2mTCTMw{_cujB7Ebaa?3D~OcU19i1a)Vt%Gk4b~%hIok zYorBRe4Z%GkMm#O(95vn>%9z3p_!-WZ{g9~rIo55-?h1q;l>WujBedi+ZSA(D1M;+ zn5IpZH`lU~V)=>N6kaLR2wPuV%(E>>B4#q<9w9ZQ4e|`v)_pxBBrmP>sJhoWe%J1E z-R~#fe~@vu+3)N%?wg%6@BfLa2x-z?xFVz3@i4;y=Dl79cUeucvqP58+uwTbQ0;%) zllMIxpP$|=?AFcyzpWm=d61DwmqBFu+EV5gPWX8y)2+&wO=aLacDWfCWPnkK0Jr$3 zcb74HL==c%?j$q>?IaBF1{sTc`ys-p#sFr_&4|-qlrifu*)&X-C}&oeL2uI_H2bzs zk1l7nWyae^~}37yyz>d$a%m delta 5151 zcmZ9Q1yI$`+Q$zZIs{4S?ha{?5(%XhNh#?#bb0vE-F0Y{4yC0*I;2BVIFxi8&LO0) z_rCAk|2yyQ?9R^Y_t|-7p52+xey3(1b)6E{j9~#U&W=s7K_C_HYMR&(y6W;`*^4t79_SNGm&aWSDDgAAHlf8d0q!`Z|_x#?Z<&(1KrksD}SeGOKCXa96$ZE1Gs!{UM|4Cs`yZDTzYA{BWpf zJIL~=K%32USYhin8$b_&Du2y*Z|q4b=+TdXWq5qW#v5YD6;jwhslut2Fh9^Zt*H&P zS2U}b@Z|%{c@r<^3$9LC@`8_?Mta=Iab2~gKMk9tgtytXK9;5!&sMG>l<{|&tiPR= zmKZ5euoXbt`yLn6X~nTQ2bJ7>eIq$h=A>&zL&JbZc`N>FuY_Ik8?9M7K*CiXRj zQk1$mbk0c%UN1G%_w_B?p~A+C84r7qQa}cNst}$XUriFHTW_J3Y)~ngR&oiBK*J8_ z!U44@)se~S_q!&@2?dV~eFP=I@RD98_rulc{R+|GJCpZH_M%L}@AKy^Tgt`K{Erx` z)jPE9e_&bN*!ty_LYO+ux+X12EgWCA7_G68hHaD5nokdIs5e}m!Xr1a=X)Pao*aEZ z-cG?3vG~&>roQmBY%B1`kbir_U5VYoN#kxR6sW+T@F@d)z0ihsL-gGrkm4`de;%>J<%b=-i7WBPQBm*@NTe--UTv9M4Q1F+jclMCr99rcNR1 z+X^G$M*vE8QgUgLZgxKufD`UtuU!>ZV?Tw0(rmP|a|I6AzL|YcT0PXVQEbNbV`3ND zd(mEB)ub*{?GaQh5guAlZOEUCNwM@P>9U(Y8Mbe~=VWAgL*XYsndEpO(=#;86JAij zdEN|e`nu~a_P*cTAXxxSx$e^KVn26+$H6T9dAGGCZ+S}$FACZNlxbq;G(3*~c4ZkS ztz-TxMllwu!m>^Xq~p9qfwtVsdrh-VR!K;BQI~f!7+10*TL!^L)b=Y`8TI*oa;j#= z8AJYsCNt+}^zLoV6o1U6L?UNyk>`o6`vhrdxal=2+cW6~N>>?b^EiKg>uFEl&hm27 zQH>o{8?i5oRD#HXNTS%_#AOa?F0Q;vf+Am6X*;3GHPTr8qq8Y4!-G{_hwRdwOnbBJ)xkS6jcagw zP=!P5WZ{L%^w9;O3T!9sh)H4SYOSwiH-pu+Pb+(odZ=3wSec8cR-+bQ+)!Xx{ zO9Tl6;Xl*%dL6wd?x?%qeeH|lBP%RgI@ zv(Ndcmsbb(kFNIHZ;Y5$OuP&;#7CKwh1ID=SbNo8JP+6~`64hGu1Ot7yCxU};;cU< zl12j_V_LXoMTeG2RC*kIr25@2KclKNQ}e12{PCWe{kXYhWmq*yT_!t?GBZgs1ap4!0k~o1NI~4|u(3L|@Qv-ZOTPY(Z8>`Qb78V#})xJVEE53H3**k~7P>X~C=Q?B&N8 zgKZog?u{agi%YwylD!Zq<;3Kl#$SLV2OYYie!HRPyyFjHN?v3Pd3*_VP(^yprw^48 z^8wsG$db8!dPAFg(W;$f4xSX$7gb}bLGQGT*s0IC)e1oEcI)uQP|MS2h|)h>UmOZI zr$4R@`=@9A5!z0bP~S zFXD0pX6<(~4o+XW{XS;VILdO%3e)i?>>bqpgf&gfgrM6Yj1|7fz!5U%e!gEQvAEoT zOyR3+u91h-a}lK3WShaaE_DI{LeYcEMgt%*zr0;-0|L>J=(zu!_0)X=fAB?Ugq4^n zZH)hSCLTgzVlTDX*^kTpVR8V57ejr`yLBrH;%n{x=ZyoOjguEv?~GRZ2xN9pD~GlEePcQf zH8-mRsybvJ?jxiqvhnADfHz3mos1wLxqh^oG~g~f+3I#Nc0qi^pe7)Y%d_(e2)Gdd zg*uQ$I*_6L9q3ICWMCSZCix&R4K@I@-&~+DK%gGN|3kbU?>#;3U2Hx6O}q^T%Pz|j z#L#!<58aa}sYdHXwYb*s_k*uuiufu#Z(gc3^b-o8t1Y_4++EVG@;1GSWsU7*oz2ba zU5D_WRf=E6T{OPsX8yw)qZOe;gwoXybG4b;S$_S%yU!Kx3xt=g`BEI!#;msAqY@3; z%6p7Lv-i<34fNiO7Z@GbNIfa58z3kroicy4W~3S+`r*e|5R>1$*qv?-mc1^q`dMHS zL1gOCOqAiQy4*P#R7IUD?X9DgF!{k#uG$Am-YvZgFLn)`Mgk9KA6nIy-Pql)Us01U zENCo(zJP}>41mZ5Vd^vQQv~kd3a%j?Z~jKUkX;dHtu90%4htLiL`)N4lsbf>2i&k2 zaSJ9!dV3vS{qe&XCc;Q1fj>*!9Q7dRLS{zlPi$t<`l?bc_#%aE6L9p4E3XZC)uIl% z7MSB5iXItSKRHF^QZwvce2Gmi&>E)3HceGz-gB5P1qgUb4QTjTxjCD`RvrY3QyCQw+u;B`OR?!-J5vj_bBlO1T!3@m2E+p)YE! zrxP#rCjGL^b1do(E_VUs3J*G=mZStsFu9O&?ysJYRrT%okEq6zx-% zVu#J@3b2*m59p?nOtmYpMTI!Xv&i&i2-3m4K;z7MO?li?twHp+imIOhWO3o^2IlwR|(&fv$Ip zZcd$WRr#}Zk{U0;`2akHO(_l{-|yev2U9z0*@t%d2}8Q z)Ms_nle3Kx2K%QNw1>ppI_D&xQ)?^)$;YqCFFxk-78|b`0_HoDEZ)geNv-4PHnxw1 z&4rjA=TKYTJ-AF$pw^nl*QWH#YyM!Y?0v%P@MzDxL5lC{CDp&rjn7DA+A+*F&6SN9 zok*1!r&ppVJd-)!d!Q43Mn~vePenTpbd_vhA$20sxx(l@DDeC6)U;0qWFS~7g-JeC z>u3UkFCTx1+j4%~6$nR*VNy4Mu%Xp3nKz2_pDtDH5vJrM%sURfD4raH(>0GebtCy+ zMh|?Jj;4mKDX?kkxvEKca!_nl@FC6nEsp6F1l{GFisSVt^H=nhdKOgN;#(JiAioC> z7hO!2;+>dJhG*KBlqb+C-K-p$Uhy(}lU9lxUkaTWMk}k5^~#Xa+B;6M=s}WLwnz00 zWulRo&fj;f)spD;;zOKfho>1eq!%TI2J)OptVvlaKP#wZ*7;~lTG($nDwHp*@7MJL z#4U_v)K7i)A_T2-A?VN2U%N^J{g(*&F7hcvY#|f55<)62GMcW{EN5x)G`^}k&K<=U z>ZfsKCiG`u!RF4VGjmWujZq0D%hRe8ut8g@tnks^oZFEJd;#mo7A~1OqG!D#1j_JQcHtp6_{Ta-T2Ees?1c`&-uWlJKIul)# zW_hjp7}nKDNQJ234gvD-kFqb!5%6Va!Cd6pvgt{iYm;OBuqJso#h27#`cz-yWRR#p z`0R*~U!GR4F^Pn=QBA?DAbSABI^~_2^{=A#285Fan1ZdjE2lxDg({W2K#j}m17=K1 zFh_#`zk1~p;Chz7+~UJnhI}e#YYAQwZbaN%&!ne{yEfh`*Vq6>ygURClXG&{P9|zE z`gzTdJZC%ZXR2&&u4}yhyxwQy!;ijHIA{~n%uX=OTrSRNpejGlo>xgE$&kuCkH*}h zk`0%0&zTTdTcG!ePHe%9C>}crOEHpa@S4*eRPR7NbvUe?#@o3G$Qs0ua4A**QonZi ztnGzJ=3Z5rsuEw`z!|RbXJsiG>jG)~rio3n=_pnnVKXD})t9~Kd0cxV2d~n$)Y9U5 zcG=@L{XEkXRP4#1v#9fHEk&;iukL%M+#;fhJ# zwTqFBD9dyH;r}`v(`YZP5vsS^^h`_O2Q#}xy5P8_9=%Y;{OuOaFU%bw*7#aRJenML z)!}zS6u*NCqj;!|vpxCan009Uw_5>Cjdm}jpK{JZYlRpA5$;z-uYKDdcgyyr(&`j$ zj{43&lk~EuZgy^GDy&-os>F~BreZFF_f?~(!C$$P-PdJJ^X!Qqp%eGo6ejtVztWI? zk2kTxkTNdv`W8vBfF4A15}(1W(|ntl(fxeBcmp20!AuG=rblzHRl1_}lmd`=3w7b} zB^$0H*9ui*VkmK7)GaT5uJnSM1w;c4p_v)gwTiaTI)$(C!Ko_hglqL?Ze^R-%s?&# zKPOR&P+Gv60<{^?A=>_=J3(82%Y04{jEKEg7ra7W`X*b^B=QkkvL|xS59wcDu^TXa zNXW8@YFmFm1A!hMz#wf6*hL9A8uz~j87!(4{FL^;jE)Zi(f&2e{%PuuV2h<-Rq`d0 z|FzMa-&@;T2-rJY*uEEn`IUkB(GN6XJ16|3qp)VEg4@7Uln3pudXozY5}iw*RhB?qJYg kYfszV72+Xa0fGD*cC 三角形中两边之和大于第三边的证明? +
+ 求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。 +
苏轼的好朋友都有谁?
苏轼的家人都有谁?
苏轼有哪些有名的诗句?
diff --git a/dsLightRag/static/markdown/JiHe.md b/dsLightRag/static/markdown/JiHe.md index 523f830e..ba4c25e1 100644 --- a/dsLightRag/static/markdown/JiHe.md +++ b/dsLightRag/static/markdown/JiHe.md @@ -1,8 +1,16 @@ 三角形三边关系的证明 证明方法如下: 作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为\|AB\|+\|BC\|>\|AC\|。 -![](./Images/778094016d3642f2bc43eeaf1074cc38/media/image1.png) +![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png) height="1.91044072615923in"}\ ①延长直线AB至点D,并使\|BD\|=\|BC\|,连接\|DC\|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。 ②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。 ③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到\|AB\|+\|BC\|=\|AB\|+\|BD\|=\|AD\|>\|AC\|。 +求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC \> ∠A。 +证明过程: +![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png) +延长BP交AC于D +∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角 +∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A +∴∠BPC=∠PCD+∠DBA+∠A +∴∠BPC>∠A