)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:"
}
},
"hybrid": {
@@ -81,6 +141,16 @@
"embedding_min": null,
"embedding_max": null,
"original_prompt": "三角形中两边之和大于第三边的证明"
+ },
+ "ff86d9624db1f04a8ef2177981aa6747": {
+ "return": "{\"high_level_keywords\": [\"\\u4e09\\u89d2\\u5f62\\u51e0\\u4f55\", \"\\u89d2\\u5ea6\\u5173\\u7cfb\", \"\\u51e0\\u4f55\\u8bc1\\u660e\"], \"low_level_keywords\": [\"\\u4e09\\u89d2\\u5f62ABC\", \"\\u70b9P\", \"\\u2220BPC\", \"\\u2220A\", \"\\u5185\\u90e8\\u70b9\"]}",
+ "cache_type": "keywords",
+ "chunk_id": null,
+ "embedding": null,
+ "embedding_shape": null,
+ "embedding_min": null,
+ "embedding_max": null,
+ "original_prompt": "求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。"
}
}
}
\ No newline at end of file
diff --git a/dsLightRag/Topic/JiHe/kv_store_text_chunks.json b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json
new file mode 100644
index 00000000..cfed1be8
--- /dev/null
+++ b/dsLightRag/Topic/JiHe/kv_store_text_chunks.json
@@ -0,0 +1,16 @@
+{
+ "chunk-75b23a7e22383153b011bd3d121184f0": {
+ "tokens": 1200,
+ "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\n证明过程:\n\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA",
+ "chunk_order_index": 0,
+ "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b",
+ "file_path": "unknown_source"
+ },
+ "chunk-e2c7bd24a26246e194d4d56ab2ed22f1": {
+ "tokens": 115,
+ "content": "2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC>∠A",
+ "chunk_order_index": 1,
+ "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b",
+ "file_path": "unknown_source"
+ }
+}
\ No newline at end of file
diff --git a/dsLightRag/Topic/JiHe/vdb_chunks.json b/dsLightRag/Topic/JiHe/vdb_chunks.json
new file mode 100644
index 00000000..0e7e8c87
--- /dev/null
+++ b/dsLightRag/Topic/JiHe/vdb_chunks.json
@@ -0,0 +1 @@
+{"embedding_dim": 1024, "data": [{"__id__": "chunk-75b23a7e22383153b011bd3d121184f0", "__created_at__": 1752211461, "content": "三角形三边关系的证明\n证明方法如下:\n作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC|>|AC|。\n\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D,并使|BD|=|BC|,连接|DC|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD|>|AC|。\n求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。\n证明过程:\n\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA", "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b", "file_path": "unknown_source"}, {"__id__": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "__created_at__": 1752211461, "content": "2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC>∠A", "full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b", "file_path": "unknown_source"}], "matrix": "JPsVvLAy3DyazVC9TGU3vbmlzryO2zc9qrlPPc0QdDwRRoU8Zd2/PF7+I70f6Jg7yP12PFOwfDvH3sU6RIMOPJI7rTycq5K8u75lPe/AmbuQbIG9w6kKOrJaCbz4nKg7EBtLu8dK77tk41m84fC+POoWuTx9qFq8qSV5PMGyMb2brh89P5LPu8D/qTxMGD87lQfMu3uPQ70Joj69OcxKPPaDkbwRztK8utAIPZa607wFj8E7AVqGvM3xQrwvhx+9sGCjOwy71bty/R+7lHP1vJRzdT2vrZu8vdd8vQWu8jtX8cC82ZZjvOOBiL2xXZa88L0Mvac3nLtbUTa9YX1KvJQm/bzHSm89dMm+OmQOlLz6tb+6sGAjve7DJj2IyDo8aj21vUi4Sb1Ja1G96bApvY366LykhyG9RQvcuxhyGTy3bYa8i017uxOa8TxacOe84FzovOyngrvvSOe5zD47utd9zDx0NWg8AF0TvWvwvDwzJXc8+OYTu3angLxVbAC9tyMbvaGT1bwPh3Q8hYd2PMqLszyHryM9/BtPPTdmuzvvKTa93bsDPMjexTzcr/o8tSaoPHrcO7wxDGA9jMIgPdoOljyPjj89Zd2/u1RvDTwFrnK9XYl+udVkNbuT7rQ8TDdwPTyY6buhRt08NkqXvKpNJryZGsk8BL0IPTM0jbz45pO83vZYPJRz9by22a87+JyovD0NjzwWwh69jXWoPKY6qTyFSRQ9hOOEu5Q1E70jZz89+2jHuwqAAD3iwne9MwbGPNC9Yb2hk1W64oSVu4366Dx8Qss7zF1sPCarEDyEAjY9w6wXPXm9Cjzu4lc7EmIpPPGu9rlGvuO7ah6EvCNnP71TkUs9HyZ7vDwQnLv6lo48WzIFu6i/aTyzS3M9Pv74u8lyHL0nqAM91NDePEvRYL3zqNy8Zd0/O+7DJj2BVUg9RFjUO8wfijzMHwq89aLCvIzhUTuT7jQ8VxDyPOqqDzyBCNC79gjSu9ioBjuBgIK8PHk4PbnyRr2EIee8PBAcPaxKmTyzDZG8tqtovGJeGTz8G887g5mZu/QdAjvVNu68whjBO4tNezwPaMO8XLfFutv8crvoR429ftOUvA9oQz0nxzS9eUhlO8RfH7x+0Ie8V/HAPBw7qzxVqmI8E5rxvKLas7t+hpw8H3NzPAZCybyt0ua8QavmPMLq+TzFMVi8IgEwvW6dqr2tRww97im2vObVdL0AXRO8OmChPE6pCLxImZi7Vh8IPQuAALy22S+7xRInPXDkCD2xXZY8jAwMPXTobzxani49R1K6O8BJFT0mgNa8N2Y7PEpJEz3IvxS9W1G2vdnjW7xani68cpQDvb24yzzV+5g8xRKnPHdaiDyCM4q7RoABOiz54rxJHtm768lAvPbB87n1Dmw8uYYdO/YIUrw8EJw7ZONZO9squjywYCM8N7MzPCFOqLv9gd65IG1ZPN+KL71JTKA89e+6PKoxAr04GcM9PyYmvSuTUzzJvAe9FgyKPAWPQbxKlos8bAnUvFREU73zW2S79qJCO2yjxDuxxjI9jAwMPeuqjz10Fjc84jedvFDk3TxvULI8AsMivv40ZrwCwyI87uLXPExlt7mfDhU9cUqYvXXo77xpIZG8t4y3PCuTU7x34lW9h68juwBO/buXTio7AsOiPMUx2LzFXBI8iIFcu+bV9Lw1bNW8lVREvCfmZT0fNRE8viR1Pdyv+jxHUro5SkmTO9YXvbxmkEe6Z5DHvJ6Zb7yv9wa7pwziO/5irTylHoU85tX0vB6hur0AXRO8vQVEvJ0ULz2arp89kdUdvN6pYDwtrOo7aYqtvDTY/jwPSRI9RKVMvXiVXTvQNZS8k8DtPMRfH7wXdSa98WH+vN2QSTxEOSM9y2yCPOQ0kLuQQUc9Pd9HPEqWi72p5xY7xyu+vFikyLyhvg+7LiGQvMH8nLy9ce28vTMLva76kzy60Ai84jcdPDLnlDytRwy9WDifu/2vJb336aC8vrhLPGXdv73wrnY7Sf+nPIsPmbkfulG8aj01undaiLwYjj08Q9OTvG9vYz1elYc+FU15Pdfp9bzT4oG9FiiuPIYbTTtpIRE9oruCO+nPWryINGS7ucR/vJ1eGrs6xjA8+iFpPNpJ67wiIOE7sRMrO4zCID3lUDQ9nV4avJtFgzwzJXe9M1O+PGhuiTy7g5C9UA8YvW40jrxOX509EzTiuxuIIzsPtTu89gjSvJvN0DpU2Km70iNxPPeABLy1+OC6CdAFvSh6PDypJXk8aNclPN1xmLtLGL88WIUXvKeguLyQHwk8iXvCO8L5DzsT5+k7slqJvLVwkzzeQ1G9m81QO4NPrrx2p4C9V/HAvG2dqrzmIm08LW6IvBlBRbzh0Q28Ec5SPGgkHj3K99w8xF8fvdzdQb0fJns8ytirPDKgtjwNT6y7m0WDPSLT6Dy0CgS9qAbIPH5bYj3eJKC70FE4PchyHLzvSGe8UFmDuqeguLzFEic8eMOkvHZ8xrwLgAA8I7S3PF/QXL0rdCI9AHxEO0yE6LwBWga9qXLxPKqaHr1A+N480rfHvEhMID2BgII8tAqEvFLew7zV+xi9sH9UvYzCILuBVci8rACuuyYzXj2RiKW9QiAMvedpSz37h3i80tZ4PA9ow7xh6fM8RAtcPAnvtrwZbwy8d5XdPMmwfr2Fh3Y8JYBWvEjmkDxfZLO8NgCsO0qWizzpguI8gMFxvITjhDsUXI86L9SXPEQ5ozvr6PE8oScsO5flDb2ZlYi9veYSPZmG8jwDSOO8hJaMPWmKLTx5SOU83iSgvO12rrxVIpW8zYUZPHzWoTubrh88GqfUPN9caLwDKTI8XLfFPNDomzuxxrI868nAPJnT6jvziau8F7+RO9oOFj0zNA27KuBLvUr8Grxvmp289+kgvaDBnDxyRwu9invCPB7A67wpwRo9wB7bvD7AFj2/TCI9iy5KvZ9Md7tRKzy9zYWZvAmiPj3sfMg8mYZyPRjbNb1F7Cq9zB+KPdqW47qcgNi7pdQZPVErvLxb1vY8CnT3PNd9zLy/lg29YX3KvGVJ6TzNw/u8WMP5vL4k9T0Y+ua8K3SivNTQXjzaSWs8AnaqO53HNj1J4wM9alxmvbCqjjqNdSg8JUWBvLb4YD2/TCK96foUvXZdlTyL4dE7eMOkO+eIfL2IgVw8wjfyO5SCC72Ag4+8UQyLvEMR9ryLWQS7Vl1qvNhbDjxjEaG8ulhWvLMKBLz177q7pKbSuoDB8buwqg69+rW/u3Tob7xk41m9C1VGvP4VNbv5T7C7aNelu+n6FLy3jLc7Yl6ZPIsPGT2i+WS8dnxGPLxSvLxt6qI7BtYfPZ5M9zt0guA8/6mLPIXUbj03+hE8WIWXvIRoRT3C+Q89WMP5PP805rtM6nc9KQ6TvEXsqjzEflC8JmElPGo9tbq505U81EgRPbNL87wXR189wmW5PGmKrbxy/R+9h68jvcbkXzl34tW8jMKgvAsnf71esau8GUFFPBPIODzlMYO8CzYVPInn6zvHDI08nw6VvPaDEbyBVci75LzdvGo9tTzZESO88K72PDA6p7z7kwG8WYKKPPuHeD2VNZM8YGQzvb3mEjtpIZG7wmW5vPaiQj1L0eC8veYSvN+KL73K91w9S9HgvFREUzw6f9K8P5LPvDMGRr0jZz+9JmGlvF6xq7yQbAE8WMN5u58OFb3K2Ku8aCQevEdSur1tvFu8Mr/nOqNuCrn2wfO7o24KPYXUbr2HYis7C7vVvI11KL2rAC68QPheOxZ1JrtvULI7ah6Eu0U2ljywYKO8wP8pvUxGhjwrk9O89oORvJU1k7ynN5y8c8/YvBeUVz0gmBO8OqoMvWs3Gz1Qxay85W9lvGs3m7002H49nGEnvGVJabwPaEO8DZkXvQZCSb17Qks9xyu+vINuXzvWF708DDMIuyarEL1esau8YEUCO/XQCT3Wg+Y7Sxg/PemwKT39ryW78Y/FPJmVCD2SWl47YMpCvD9zHj2Z0+o7m64fvPTvOry1vYu9TEYGvdZFhD3y1iM96P2hvFDFLL2kIZK7oXQkO6uXkTpQD5g5cv2fvHTob7wEj8G8fYkpvats1zt5++y5VPdaPEczCbvtwyY8F3UmvcHR4jzZMNS83iQgPUfXejxWXWq8xlkFvrJ5OjyhRl07UQyLPBzSjryd5mc8SrKvvMjeRb31Vco8kNWdvMbFrryu+hO9YMrCPCsnqrw/vQk8grvXPDnre7yPQUc8/jRmPPz8HT03OPQ6M1M+PIFVyDt3L068FA8XO4xH4bz+yLy68Y9FPYb8m7wBTn29Z5DHPC/zyLujjbu8/mKtPbcjGz2i2jM8Gx+HPI2/E7yPjr88dOjvO3jDpDzOzwQ9O3k4vKRAwzxkDpQ8AS/MPDsyWrzDy0i8sROru4NPrjxBbYS8oP/+O0iZmDyRiCU91WQ1vJ///jyBVci8JxQtvR2FFr0KdHc8v+MFveqtHLxwlxC9y2wCvOnPWjtXEPI8vpkavaRAwzwaYHY6AJv1OOo1arxXEHI98a52PPJtB70X2zU8JqsQvP35kD08Wge8jq1wPEWDDr1A+N684B4GvZaborxso0Q91viLPPoCuLxsCdS8cAM6OzSaHL0s+eK8KuBLvXWbd7zDrBe94fC+PGj21ryUwG27NNh+PIk05DsQOvy7R3Frva9/VLtJa1G7DeaPPPwbzzwD+2q9gekePTdmOzxuNI48xyu+PNLlDrydM+A8fEJLvG9vY70xv+c8+9RwOTnMSjyuOPY72wuJPZiGcjwP1Gw7DDMIPSfHNDweB0o8tXOgvJ0ULzyFtb27xwwNPYW1PT3HDI08syxCvabtsDxImZi9K76Nu/z8nToLu9W8hGhFPej9Ib1tvFs8dBa3vNJqT7wiATC6WDgfvawALj2YhnI8ah4EPGa+jrzAHls9TGU3PaLaszvw++675J0su348MT1mr/i5K3SiPQnvtrydqAU9j61wO1qerrxDpUy8rvqTvNy+kLwg5Yu90iNxvLKYaztzsCc7GW8MvKxKmbxw1fI6Ql7uu2oPbjyNv5M83K/6O6UeBb3EflC9LzqnPc/rqDtwAzo8F78RPXh2rD3Ow/s7MTeaPEpJEz3+FTU7X/uWvPkCuDtgF7s8sBOrvaZZ2jxzz1g8fltiPH31UrwoWwu7DJykPIvhUTxS/fQ8h68jPbde8LvqNWq8LY25vOI3nbsZbwy9VNgpPEsYv7x9qNo7F0ffvLPAGL1Vi7E7SZYLvML5D73LizM99+mguua2w7zMHwq9FVkCPQsITjzp+hS9m66fuPlPsLxOX508QvLEvP/IPD3T4oE9WFfQOz9znjy60Ii82Jz9PLETK721Jig9RnFrOm/V8rylEnw8c89YPJo5+jwrRts8Lx6DPBOphzx+W2K8iprzvJ56vjwjOfg7JBrHPFSq4jymWdo8+paOvH+RuLwOb427HZKPvZpNA720TGC8xWXIvL/KPT0LVcM87jIjPSPuSjxuQnq9gJE4PAtVQzzvz288j9geO0COiTy1wQU9KMikvPmejj3d9da7KYnVvIujaTwcXDm9/XkJPYUjSr007Ec8hTU8vLn53Dz0c/M8gL4VOxICQDyRdMq8kYa8PEupM71ub9c8g5AXPC4J9by6QSW9yy0wvexyEzxRRL67YvH5vO9fAD1F/Da9Ka25O0NOmbw/EOs8lw9VvUXYUrzoaru8naFmPLoUyLy6ZYk9F51Kuvl6KjvFd7o8PyvWvAsN+7xiS7S9ERSyO//W5TrFSl08lkUrveK0xbt6LIS8rrFVPdKtzzz0heU7NKR/u78SBrzXtIY7y0gbPeLzFL2LiH686GFCveK9PrxpHJU8S80XvZY8sjwuhxM8iDQbu4usYr3S46U8VUyWvCm2Mr1SepQ76Y4fvUUOqTwvkIw7TMQeO8sbvrmLtds7HCbjPLLdkbsX3Bm9Cw37u6kNUjwuSMS8tFVZPXm33rrSv0E8Dl0bPWkKIzkXuLW7qDqvOyUah7wpvys70uOlPDS/ajyL2T87iw8WPdKk1jyo4PQ8GskGPWkBqrxo77c51rSGvQuCIL3uOxw7BdWjPEy7JTx5wNc8bqUtPZWXjTv0ssI8o3LHu//fXjwotrI7y9zuvDF0AD3/1uW7HThVPMaJLL3XG308BXtpvaOoHTx3WoK8HAt4PCLBbbvRd3m9EbH+PPXxkbxW+rM815CivP8wID2uuk69ObSvPD2qlbyLtVu7tIuvu0gNiLux1Bg90ewePCjIJD1RKdM8vRwgO8wkN7tMsiw9JiMAPO7h4bs6xqG9xUFkPBFBDzyinyS9FQqYPIziOLxd1I08Bbo4PQXVI7xLjki9BZ/NPPlNTTuc8qe7xlNWvBykAT303x89XF9oPZdXHbzoWMk8AgwbvOmOnzxX+jO811FTvFJxGz3XfrA6RTsGPQbnlTt/f0Y8NKT/O67wpDvj4aK85deIvAx5JzxF6kQ90QcKOxamQ7gAQxI8nQ2TO5zFyryiTmO8ZkoTPBE4lryujfE8EcPwvMs/orrR0bO77HKTvAbMqrx3P5c8nR8Fva+Ncbwod2O89fGRPPlfvzwubCi8EflGvEBqJbwLVcM8gHbNO+Ki07qpDVK9HGWyPEUFMDqFCF89st2RvK+oXLyihLm8V8RdPVcDrbwLKGa9QmkEO0zfCT2WIcc7wuSHvDU9iTzivb484mx9vKKWKz2DkJc8bpO7OolGDbwgW5i8y9xuvEUXorw5h9I8d0gQPQbMqrySqiA9efatvGIeV70cJmM8VV4Ive78TL2uApe7KeOPO3nbwjzFdzo9VgMtPOKi07w8oZy8EvDNvNw0Jj3oars8+Z6OPCLcWDxcetM8tGdLvEYFsDySfcM7rEsAvGVTDD2d8ie9ZVyFO7SLLzxop+87IFsYPVHz/DtWOQO96CtsPUtzXb3psoM9S3NduvfDEzzRm928v4tuPRFBD73MWo29BWn3vFxf6LzSEAO84BgavWwJgjvvO5w9YJ2WvMltIL25LzM9Ei8dvNZ1N76oTCG8hTW8PDTjzjy1lCg80b/BOxxlMr0SHSs8NBmlvPlxMT3pfK271xt9vUbqxDwubKi8P/X/O67MwLv0u7u8HQJ/PL+C9bp5yVC8KFx4vGz3j7liFd48dH8HvLRMYLyWcog9l3uBPGjUzDt073a9eZzzO2JLtLyLBh09rEKHu+AhkzyAdk28EbH+u6OWq7z0l1c8wtuOOxxBTrx1N788NPXAPQYCgbvC0hU9tMGFPAVgfrxUQ508Y1StPNeQoryXcgg8IFKfvAW6uLzcyPk84w6Ave7Y6LxiQru7b64mPb+d4LcS51S8olfcPNqGiLyvFIm76IWmvO7GdjzjBQe9hfbsu1n5Ej2GRy48rvAkvRECQL2Mx008pXofPFxxWryo1/s3XJU+vc8+AT3uxva8S6mzPLWUqLy/efy9AEwLvcaSpbxGtG48FQGfOx1uq7z1+oq9Rav1PO8gMTysQoc9VWeBPqJFaj1ypAy9iwYdvQydCz10ZBy9esnQPJzFSry/CQ291pAivTS28byGGtE8Pz3IvOLYKbsFjdu7/99ePJKhJ73S7B49ReFLPSjIJL0cQc67uhRIvNzs3TzWkKK5AEwLvSjjD7311qa7ER0rPbnecbyuw8c6FsqnvH+Iv7vAEoY8+Rd3vQydCzzS7B697l8AvNTQErzscpO8lwbcu5frcLzS9Re8NNpVPJyzWDo/aiW9f5oxvWkclbu8QAS8ufDjPGguh7wl/xs91mw+vHRJMTx/iL+80YDyvJyY7byoBNm8V/ozPVyet7zZhgg8+Wi4PECXgjtuikI9f6MqPDb0H72RdEq9kWLYu+/q2jkrox+8X6aPPEUOKT1RXyk9uQtPvMDlqDwZrhs9L3WhvDmHUj0SJqQ8j+oQvR2JlryrJxy9aPgwvJ0fBb0cXLm74+EiPBxKx7sFcnC9KewIPcY4azzuFzi8HFy5vJWgBj0/WLM7F+4LPLodwbqCh547dCXNPPkX97ypZwy94BgavTmrNr2LKgG9ADoZvQydi7wUE5E8hf9lvR2biL0i90M9XZU+O3+IvzwoyCS9rpZqPPSg0DwCDBu8HVNAPGNULT3RyLq7zBJFPZf0aTzAEoa82X2PvLwcIL1F8708o1dcPIsGnbwX7gs9OeEMvTUHs7yx7wM8LjbSPEth6zsMnYu8P2qlvRavvDx/o6o9+qcHvblTlz0cSke84CGTPXr2Lbu5+dw8mikfvRHM6brXtIY8UTvFOgbVIz0awA28EkqIOyBSH7yd+6A8+Z6OPKOoHTzoWMk8SQQPvT9Gwby0MfU7dRPbusPSFbxjZp86Isrmuz8i3bsJ1II8yzapvCjjD7ujYNW8he1zPSy+Cr3S4yU9nLPYPMC4y7yie0C7NSsXvaPDCL3/8dA5uedqPFep8jtWDKa92XSWvNHarLoxdAA87uraPMU46zzACY07HZuIO9wHST0MZ7W7pZ6DvMaJrLxLzRc9V7JrvEX8tr1CThk+7ikqvehGV7vWbD48XJW+PGJmHz16/6Y8H2QRPXoIIL2LiP47dC7GPEkNCDz0xDQ90dosvZGGPLyAkTg9koa8OoV0C713WgK8dz8XvYz9o7zpsoO9+iBwPPloOLxANE88USBaPC4AfLwWwS48zD8ivbRMYDu5XJA7BYRivFyDTL3WfrC8DJ0LvVr5krzpjh+9XE12vBemw7yg3xS8IvfDvFHz/DxuikI8IzYTO7Z4nDxG6sQ7dEmxu8vc7ryc6S47uflcO5FH7TyXBtw8f6MqPRrADTzoK2w93ONkvXRbo7y/gnU9URdhPTJiDrxiJ1A8tpOHPW6BSTspv6s71mPFvF3dBj3oGXo716IUvVJxGz2L2T+8vwkNPaKfJDvXSFq8C1VDvFyVvrzdK608bnjQu8wtsLyRhjy9gNCHvAtntTx/SfA7v6bZvJzgNTxLoLq7qPtfOqhDqDyjV1y8o3JHvH9/Rr0oyCQ815kbPdZsvro5dWC8F5RRvMWklzx59i09v+UoPfXxEb1IFoG7P3MeuRw4Vb2ihLk8poMYvdwitLxRDmi8EUEPPWMVXrx520I9rszAu2+BybzMEsW89anJvIDZAL35g6O8OqK9vLnwY7w09cA8NUYCvBxKxzzRkmS91my+u11EfbzvX4A8yXYZuRnADbg/YSy9RaL8PLpuArzc2uu8gG3UuBUBHzySs5k8aNRMPGIM5bzL7mC74pDhvJdglry0i688qARZvChl8brjxje9uUqeu3r/przU4gQ9KfWBvLnnar0OZhQ96KkKPLWUqLzLLTC94s8wPbR5vbzuxvY86TRlvNzsXbyLvlS9TKA6PG5L8zs0GaU7BajGu1+UHTsGwzG9+rAAvdG2SL1upS09S6kzu/TEND0ptjI9HW6rvL/uobwRFDI8AgMiuxwm47yXaQ89zBLFPNG/wbypDdI8tII2va/5Hb0FcvA89swMPYVrEjwp9QG86TTlO2L68js07Ec8fPUMPbk4LL2XPDI8v8HEvOg05bxueFC8lirAvLR5vbxdsKm7op8kPBfBLj3Gtgk99Ls7vZLOhLyrMJW8gocePOt7DL711iY8rCccPJJiWLzu6lq90eyevHGSGr05kMu8Kb8rPLecgL1u0oq9gEB3vBwCfz31+oq8Lgl1PKLMATwW5ZK8F+4LPZzOQzyWKsA8tcGFO67Vubw0pP88CdSCO6PDiDmSqiC9v4vuvC9atrwdOFW8QGqlvJkpHzwFe+m8feOaPIusYj3dRpg8VhUfPQsoZrs5vSi80qTWPBEUMjzl4IE8KL8rPf/6ybyLtdu5oo2yvAyUEj3Giay8dC7GvCiA3LxFtO48nMVKOsVT1jycxco8b2bePJzFSjx/Uuk86Bn6vNwQwjv06Jg8KK25PMsA07zuFzi8P5cCvRw41bxWAy08oOgNPXKkDL0j5dG6oo2yOzT+ubyYGE68ywBTPZYqwDsR8E29LMcDO1cDrTwLH209lwbcOyIAvTyoQ6i82FpMvP/6Sb0od2O9KfWBu+Phojzvz2+8zhqdu8s2qTw0tvG87g4/vMV3OryDkBe8VvG6O//EczsoXPi8uSY6vH92TTp59i09FuUSvBELOb0OeIY8v51gPLQo/LsXwS49F4tYvUnynDzoRle8l9n+PChl8TzoNOW8YjBJvS9IRDzAABS93SstO+XFFjuLo+k8FSUDPW54UD3Jdhk9F4tYPblBpbzWqw09V7vkPOuEBb0AKKc8YlQtu4Xtcz0MlBI9nKpfvHntNLxsCQI8SRaBvaDWmzyiPHE7v8FEO1JEvj3cNKY8qOD0PCYjAL1sAIm8acvTPICROL1dlT47PxDrvJYqQDzSv0E8IG0KPcW/Aj1uVGw84mx9PEnyHDycoeY8dUC4ux2SDz05tC+97IQFvNaHqTxMoLq8r94yPKnyZjzMSJs73AfJvUtzXbz/u/q8BdUjPBHV4jzphSa8xZKlO841CDyvqNw7V9/IPABMCz3CyRy9T7oEvYUaUT0oU/87EfnGPCK49Dqc+6A9P2EsvKIzeDzL5Wc9f1LpPPR87LzshIU8Fq+8O3m3Xr2oH0Q8UjtFPEuyrLtlOKG8dEA4PIUI37uRUOa8l06kPBHV4jv5aDg8P0+6PF3dBr2RdEq8caSMvEXY0jwVChi7aBwVvYOQl7oRw3C7NAczPDlRfLzl1wi8Gq6bPDnGIT3U4gS9mjKYvT8Hcj2Ra1G8NRAsvUnynLzXqw08CbAevYlGDTy/yj09tHk9PZzXvLw/9f85IFuYu1H8dTzYP2E748a3PMD3mjyRmC69F51KvZchxzwod+M8xS/yPJo7kbtFonw8IGSRvMvu4Dw5WvU8KYlVPGZKkz2/EgY8NPVAvAtwrrw="}
\ No newline at end of file
diff --git a/dsLightRag/Topic/JiHe/vdb_entities.json b/dsLightRag/Topic/JiHe/vdb_entities.json
new file mode 100644
index 00000000..be5b1405
--- /dev/null
+++ b/dsLightRag/Topic/JiHe/vdb_entities.json
@@ -0,0 +1 @@
+{"embedding_dim": 1024, "data": [{"__id__": "ent-043d3380caf00eb2310dd3faa6a84004", "__created_at__": 1752211508, "entity_name": "Triangle ABC", "content": "Triangle ABC\nTriangle ABC is the primary geometric figure used in the proof of the triangle inequality and angle relationships.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-2c9cf7515ca52c1738f9bde898fb527a", "__created_at__": 1752211508, "entity_name": "Point D", "content": "Point D\nPoint D is constructed by extending line AB and adding segment BD equal to BC, forming an isosceles triangle.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-0da27fee16f5a66aaa3b12733a1859a8", "__created_at__": 1752211508, "entity_name": "Point P", "content": "Point P\nPoint P is an arbitrary interior point of triangle ABC, used to demonstrate angle relationships.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-db5203dcd8d28444cb765e0a69fabc39", "__created_at__": 1752211508, "entity_name": "Euclid's Fifth Postulate", "content": "Euclid's Fifth Postulate\nEuclid's Fifth Postulate is referenced to justify angle comparisons in the geometric proof.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-81488909290e49f135623bf765840588", "__created_at__": 1752211508, "entity_name": "Proposition 19 of the Elements", "content": "Proposition 19 of the Elements\nProposition 19 from Euclid's Elements is cited to establish the relationship between angles and opposite sides in the proof.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-8ba3a27004f706af0260e986bc6a092f", "__created_at__": 1752211508, "entity_name": "三角形ABC", "content": "三角形ABC\n三角形ABC是证明三角形三边关系的核心几何图形,用于展示边与角的几何性质。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-8a5ebf15695060ebf00d53ab04833554", "__created_at__": 1752211508, "entity_name": "三角不等式", "content": "三角不等式\n三角不等式是几何学中描述三角形边长关系的基本定理,形式为|AB|+|BC|>|AC|。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-c28aba2ebce9095cd8d78f1df53c3cbe", "__created_at__": 1752211508, "entity_name": "欧几里得第五公理", "content": "欧几里得第五公理\n欧几里得第五公理是几何学基础公理之一,用于证明角的大小关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-33baeb08781cf03b07b33ac6f4b4165b", "__created_at__": 1752211508, "entity_name": "几何原本", "content": "几何原本\n《几何原本》是欧几里得的经典数学著作,包含命题19等核心几何定理。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-9ac5593950faa90a93f1b5feec7e9295", "__created_at__": 1752211508, "entity_name": "命题19", "content": "命题19\n命题19指出‘大角对大边’,是三角形边角关系的关键依据。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-1c05bc513bda1ef4c9e16fbdd1e1776a", "__created_at__": 1752211508, "entity_name": "点D", "content": "点D\n点D是通过延长AB并添加BD=BC构造的辅助点,形成等腰三角形BCD。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-53f81d92778b193b6fdd66710857e1d7", "__created_at__": 1752211508, "entity_name": "点P", "content": "点P\n点P是三角形ABC内部的任意点,用于证明角∠BPC与角∠A的关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-96d4cdff8ed57e93e3b3d843cffe3af7", "__created_at__": 1752211508, "entity_name": "BP", "content": "BP\nBP is a geometric line segment intersecting AC at point D.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-4144e097d2fa7a491cec2a7a4322f2bc", "__created_at__": 1752211508, "entity_name": "AC", "content": "AC\nAC is a geometric line segment intersected by BP at point D.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-f623e75af30e62bbd73d6df5b50bb7b5", "__created_at__": 1752211508, "entity_name": "D", "content": "D\nD is the intersection point of BP and AC.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-878558a0c2eb6eb671bbfd2afe6fffbe", "__created_at__": 1752211508, "entity_name": "∠BPC", "content": "∠BPC\n∠BPC is an angle formed at point P, exterior to triangle PCD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-c69c23c4d6a0f62cf8c806e672604277", "__created_at__": 1752211508, "entity_name": "∠PCD", "content": "∠PCD\n∠PCD is an angle within triangle PCD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-e822ff503b5b3d69f26d83cd5fd609c2", "__created_at__": 1752211508, "entity_name": "∠PDC", "content": "∠PDC\n∠PDC is an angle within triangle PCD and exterior to triangle BAD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-4d97ba9e66f17b798922f66ce8ffffaf", "__created_at__": 1752211508, "entity_name": "∠DBA", "content": "∠DBA\n∠DBA is an angle within triangle BAD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-a66673bc9ada03cd05582a6dedc42019", "__created_at__": 1752211508, "entity_name": "∠A", "content": "∠A\n∠A is an angle within triangle BAD.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-581cb468263816a10d5d204a2a4f465a", "__created_at__": 1752211508, "entity_name": "△PCD", "content": "△PCD\n△PCD is a triangle formed by points P, C, and D, with ∠PCD and ∠PDC as its interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-2f59ec3e44ad87ae299f0547f44dbf3a", "__created_at__": 1752211508, "entity_name": "△BAD", "content": "△BAD\n△BAD is a triangle formed by points B, A, and D, with ∠DBA and ∠A as its interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-44c29edb103a2872f519ad0c9a0fdaaa", "__created_at__": 1752211508, "entity_name": "P", "content": "P\nP is a geometric point where BP originates and ∠BPC is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-9d5ed678fe57bcca610140957afab571", "__created_at__": 1752211508, "entity_name": "B", "content": "B\nB is a geometric point where BP originates and ∠DBA is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-0d61f8370cad1d412f80b84d143e1257", "__created_at__": 1752211508, "entity_name": "C", "content": "C\nC is a geometric point where AC terminates and ∠PCD is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "ent-7fc56270e7a70fa81a5935b72eacbe29", "__created_at__": 1752211508, "entity_name": "A", "content": "A\nA is a geometric point where AC originates and ∠A is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}], "matrix": "EDOcuiuc1Tw+bHi9r9LNvLQ/PjsgCJ68Uq7qPF4+jDyEsHO8tTyXPDsnGL1HMMa8yh+mPB7dZrsf8gq8zwENPTvjJj1vbRK9jLvZOzJKELt02oK9aeoOPallXbx08JW8XbMCO+mYJD2d0aW8vO5nPbs0kbymZ5W5+TyhO/HqorwJheE7LQ6lPd1LhbzDceu8k7AsvDUEZ7wfCB69V3cXPTYvHrxcz+M8akc6PfbMibx31SM85Cu0vP5N1bu33bO8Vr4vPALTELymZ5U8whGZvCj+Xz0gCB67bCzIvGrrfTxCNSW9Ht1mvFYFSL2CPbW8EtdfvPzaFjwGoFO8EagSvCyDG70AHdC6GoWavMX5zbtFYcu8Y/IUvDdFsTy7SqQ8Tslcvdpn5jtbz2O9LlIWPPmDObzV+nW8nKZuvL4E+zzbwyK8DH+TPIx0wTsLDcS8eo96vIUfnDrc70i9qcEZPZP3xLtIjfE8+Sf9vHnrNjyYq009K1U9PCZECb1wJ2m9W28RvaKCB7wgTzY5eo/6PB9PNj195tc8P4EcPOTkm7sjNEQ8YA2HvZl6SD3epYk8TsncPGwTjrx+hgU9jHRBvKWx1LxY6lU9vgT7unD4Gz2c0aW7q3vwOrfzRrwGQAE9Rr52PFpyOLyE2yo99p6rvLQ/PjwCSAe9sbfbPMBFxbw7cdc63qiwOi7I+7yg/Uu8L8h7vMBFRTwv87K81EAfvR0jED30zzA9BorAvMBFxbxD2Wg9mB2dvHQM9zrnySm98NSPPbmsLr0z7tO7uE+Du9ySHT0pcK88z9MuvWu6+LtMVh48r+hgPPgRajwX/Tc9UcOOvHxCFD2C4Xi9ZxsUPdzWDjqzJoQ8clIgPYkd5LxsLMg8xshIvbKG1jxo1Wo9nF/WO+ZX2rxObLE8Fi49PcFbWL10N668EuwDu1HDjjzuqdg7YJgQvEYaMz3HD+G8TCvnvK+5E706nI68TyWZPO16Cz2S3gq8CVYUPZOwLDz3mwQ9pSMkPUtyf7zp3zy8CLZmPFJnUjsRHni8cODQvGGZf7zZIoa9qdcsvXYGKb3jueS8Nr1OvG2J8zvD4zq9UiA6O6+LNT3xMTu9/gY9OzORqDwusmi8v9P1O087rLxLtYG8XrRxPGyel7zHD+G88nKFuhHX3zvOGkc9kEAVPais9bzZrQ+9RO4MPdpRUzy2xyC8mdaEvXOWkbwxwq08TslcPZCgZ72FCQm9mAj5PIwtqTzvYkC8xmsdPNx9+TxJuCg8p0/KO9KfAj325cM8j7ULPaGFLjuKM3c9wRTAvMMRmTsRerS8htgDvQi2ZjypwRm9p/IevdfJ8Lq6H+289leTvZsCKz1tEw49QFAXPdGfArzprje8s/ilO9lRU72TVPC8pdwLPPTPsLx9LfA8ljgPvL52yjoGcQY8eqSePOfJKT1mBvA8NWAjvTfohbyZM7A8Nhp6O0D02rzaZ2Y8Rb0HPEN5FryExRc9pbFUvQNeGr2t6pi81Cv7O6RqPLqyKSs7xmudvAhvTr2lIyS92gq7PDKRqLvMkuQ8kMuePD35OT3NkmS87vDwvDe3AD1mqcQ8reoYvspNBLz6UrQ81ECfPPvEAz0lGdI80OlBvJKaGb2GqqU8Lsh7PXHHlrzfG2+9UZhXvWiO0joXbwc99lcTPLETmLwmABg97gUVvToqPzyPWc+8K/iRvTVgIz2UaZS8OP4YPSRg6juO/CM8WNRCu6fd+ryFCYm8K5xVvTi3ADuKM/e7aHg/vFzkBz3+TdU8ooUuvLJXiTwVFQO9c2gzuxha4zxBH5I9OxEFPVIKJzy6Cdo6rQPTvC7dHz1oeL88a7r4vPCjijzNkmS9+ZnMOlBpCr0VFYO92N6UvfXlw7qB9hw8j6DnuwOlMrzmsxY9kZoZvEhGWb1QUT+862cfugzGq7yGlBK9nabuuq+LtTyWTiK9FF9CvBbnpDspcK87KRRzPJZOojyGOFa8zNn8uq1K67yWlTo9ya1WvJymbr1Ukgk9c8XePHJSoDkQqzm9oczGu4Y4Vr2FCQk9KKG0vFoA6Twm6Ew+Uq5qPWZiLL3juWS96CbVPJdOojtiUuc8xyX0vNVWsryPEre8QPTavIC10rxAO/M7E0kvPI7mEL0lAJg8SvwZvIL2nDxyPXw9YfW7PKOCBz0WRNA7EncNPcOGjzsTApe954KRvIrWS7wVGKo9aXUYPVfUwjwVGCq9gvacPJ+goLyZYY48o4IHPeRyTLrLNTm99p4rvQj9fj0sgxs99uXDPKfdejzZmGu8Nae7PFEKp7yddem8MZd2NtXIATzrIIc8v10Qu9JxJLwUX0K90uaavIC1UrxAO/O8aNXqvANeGr0Lm/Q8iXmgutFbET1L/Bm7ShVUO6BEZDvQjBa9A6Uyvf5NVb32V5M7+MpRPenfPD2XOX47buKIPVtvET0r4229+id9PD0PTT16Acq8j7ULPYV/7rxlkzG9LDwDvTvjJr0f83k83DbhvF2eXrzHD2E8/vCpvJbcUr3WD5o97pNFPclmvryXOf680VsRPdkKO7yPtQu9kKBnvdsgzjyO/CM81siBvSOmE700joE8NQRnvMGi8LweOaO9Z2KsvJOwrDuZHR29fCyBvNclrTz0/Y48F7afOzii3DusA9M7f246PKdPyjxrc2A98wA2u5l6yLxsLMi5EdffO4TFFzulUQI9EneNvHhKGj1oeD893O9Ivf6pET1hIxo8n0RkPJvX87xD2Wg8HJgGO3h557we3Wa9jorUO5G2+jzLNbk84UYmPa11IjtgbVk8u9hUvfDUjzzv1A+6fp+/PLYkTDzV+nW8Ddy+O8H+LD1mkIq8OIxJuwRJdjwIKLa8io+zO9DpQTyYHR27vY4VPTqcDj1gDYe8SocjvWILz7xvbRK8/k1VvS0OJT3u8PC8NXa2PK0D07wXb4c9PiXgu4h5ILw36AW7A6WyvOtnHzsFLRW9MFBevQOlMj03twA9waLwO5C2+rsSkEe9CvewPBKQx7zHgbC5w3HrvHiq7LyftjM8IxuKulCCRD0H/X68+IO5vA1/Ez2u0k29a0STvHu6sT0O2Re8UIJEvOo86Lx8F1079EEAPRrixbzDho88aev9vLxKJD06nI48OLeAvOSdgz3vGyi8pcdnPCYZUrxGYcs7hAywPEgwRr2spic9TfrhO+FGJr1sc2A8agCiOuyrkLjkKzS9NWAjvMkJk7ho1Wq9j1nPvDjp9DxCfD06g7DzvGcxp7s6FKy8PvaSO0WoYzzS5pq8zqh3PLOxDTlyr8s8ikgbPANJ9jv3+1a85SgNPcEUwDtXG1s8aXWYvP8GvbvomCQ8aI5SPVMHAD3Dhg89ros1vDoUrDx8c5k7lwcKOwdZOz2svLq7q9SFu3nrtjwdaig9TfphOqIpcjvKTYS7+69fPfHqorzvG6i8jkM8PQmF4bwzkSg9RJLQO39YpzrJl8O8WYoDvOFGJj0hwvS8MPMyvRwObL233bO7ZxuUPHoyz7zB/qy84UYmvFiNKr1Ns8k3qAiyPNNxJD0cIxC8KbdHPKRqvLnuk0W8U9mhPIASfr1EklC8JoshvWNo+jwYWuM87kwtPJOF9Ts1dra7cj38vAolDz2cX9Y7S8sUPYkyCL3a8YA9SocjvZDLnrxKzju8jVuHPN53q7xh9Tu9k1MBvSBPtru0Drk8U04YvEgXjDwkYGq92ILYO+pSe72sowC8YlJnPVTEfbwPqzk8pJtBPDsqv72Mu1k93qgwurWy/LsiwvS6v9P1OnOWETu5wsE8+oASvUQEID11TUG9kuGxvJgI+bzaZ+a8O+OmO7fzxjvaZ2a8agAiPGiO0jsvyHu8y3xRvQDWtzyddem7HcdTPYwtKb2AVYA9yJfDudvDojpP3gC8RnfeuoUfHL2qHkU95/cHvXP2Y7wK9zA88dV+vLxgN708nf27rUprvDsRhT1ObLG8jHRBPHKvyzwyvwa8gYRNPddTCzz79vc8vl0QvHD4mzxMnTY9uE8DvVcbWzzbfIq9N9NhvLx4gj315UO8S+TOu/mDOTz6UjQ8Fi49vUn/QLwM9Ak9hR8cPMBFRbs6Kj+9gBL+vO5iQDtFBCA8U9khvWzPHLtrRBM8ZcEPvX+cGDyd/wO9mTOwPA/yUTiVI+u7UN/vvRkTyzwEGPG7dpRZOe16C72GlBI7LIMbvPqZzLs3cw898qR5vZFv4jwIywo9wKGBvOazlrxZoz09B1k7Pa6Ltbodaig9BvyPvLETmDxzlhG8oOQRvNpnZrwgCB67TOTOPOyrkDxZXKW8A6WyOsGi8LxXRpK9YSMaPRJ3Db01YKO83xtvPW1C2zsRqJI9YA2Hu3R+xrzd1o684gB9vNPOTzpWvi89iY+zvPdtpjk6nI486JikPDbT4bwwl3a7YfW7vB6AuzzsC2M80xVoPAf9frwBjx89WEaSPCttCD1xmTi9nBg+vRqFmjrJCZO88HjTvE6zybwldY48T/STva8v+Tth3IE8X8kVvYsCcjxHjAK8rRlmvAagUzwVGCo93WEYvP5NVb20sY06ZzEnPCNK1zykajy8E1/CuesgB71Lcn+8gFUAvDFQ3jsu3R89hNuqPGEjGrz7r1+9IteYu2bw3Lxt5S+9wRRAvX6fv7yb13O9a7r4Okn/QL1ZFY08UmfSPA+rOTzfpQk9UyA6vUDFDTxWTOC8t4F3u7bHoDzXJS29v12QPa9EnbvsIXY8NKe7u2Qh4jwPT307YvKUvKBa97uFCYk99uXDvIKaYLx7ujE7HvKKPVIHgLvypPm7CCi2PDNKELwmABg9OVtEvGA8VD30Fsm88KMKvKZnlT1f3yi5dWWMvcNxa7z0c3S9A6WyPOJcuTzpPGi7HWeBPQ4j17x8cxk93wVcvbs0kbxOs0k7Mh9ZvAS7xTwNI1e8iuzeuCAInjubMIk8sXBDPAS7xbveGgC96a63u/pStLzoDRu90aKpPfAbKL0ffRS94XQEO+CNPrw9siG8SOYGvHvoD7w01Rm9iB1kPL4E+zy/RcU78xbJu/kn/bwF0Vg8SBcMPRKQR7yExRc9Q2MDPYaqpbyf/cu83daOPShFeD3pmCQ9YN8oPb4vMj25wsG8TrNJPXD4Gz3UQB89RO97PTsRhTzF+U2847lkvaNUKbyOitQ7cBHWvHJSIL1jxDY7EuyDO3aUWTzOYV87BKKLPHjA/ztvyj279syJvHiqbDtsiIS9+lK0PHKZuDw6FKy8cMq9OyF73Lx6SGI6TFaevMH+LL1FYcs8R3dePGKuozvVnUq7ejJPPfblwzzVyAG8hvE9vCOmkzvGyMg8EGQhPBnMMj06nA48pLHUOwR0rbwbP3G79rQ+Pc0yEr3eTPQ8S4cjPKymp7vLNbm8FnVVuzV2tjzKTYQ8eNWju6ITXzxArcK7i+xevZjyZT2JMgi8ejLPPLQOObxEBCA9f/xquumBBT1xG0A8jvRVvRziBL0n7Qe85ucLPMDFuDz1WOE8xOS7PDi7mjsbcP28sTUGvVWzDT3hTG480S2fu5KEvLxBagQ9CCgYvCaGNz2090u6UA8BvRdICzzEXzK9wbslvFjcI70yaMq7oRUTOyUBLj34JgI9zDeMPLDYSLxglSC9EdcBvWS0oziNg3I8+L8xvF7ngLzD7k68dDpDvRc9VD29ko+8AxMoOjNKET1X5ra8IOw9PGNDQL2iCly8X7PZvPcwFTprn/+8907Ou7u62zxwoMk8caBJPI7WHDxR5Ww8C+pdvfK+57xkOa29m8LCvHCWtry9Fxk9j1umvPI6ArzmTbg8Ww/NPBdHZzwx2S08Z2zWvKeawrzxtFQ7o3EsPYYdoLz+lme8G2eOvW45+bzHnG663gUfvUuJLbwTrhE9aGLDvMR+D71Us408kR6QvOIkIr2mM/I6KaU6vcMDmT2fZk+70NGFPDmxB7zm0sG8XfsmPdw3frx7toO89lhhvb2SDz3NGK+8prh7PCX3GryZ1ww9yXSiPNRgyLvzoC677/whPJlR37y2pes8ItgXvKtI4jwtuiq7byVTPR40Cz1glSA6Sg43PekPfjvJ7xi95fGevJlclryhFO+8xtCVPF5DGj1vMAq9xsaCPV85h7xrlWw8wTYcu2GVIDyAq3I6Y03Tu5NwFj2FJzM72mslu5o9ObvF0JW64rM+vSBxx7xcBbq8RojjPDkr2rycM6a7vSGsPKuvMr09z+a6UBkUvciSWz1oWLC98xGSPDbunTtViXk8DFvBPN92Ar3MnTg9D3rEPAc8PrwGRlE9ykD7vN6KqDubuC88MffmvP6W5zyT9Z+8/htxvHKCEL30G6U8/aD6PE43zbmBJw09bzodPcw2aLzZf0u9rnKcPOZDJb0ougS9RpOaOzJKEbtktCM9D45qPfg6qDpKLHA8hSezvM9ffryO9FW8PUpdvPdOTruDb4C82vAuPRD1uryqzes8d3f/PEqnZjscUkS9CDy+OSbthz1Haqo8Pza3O/beDr0gCvc7QuRWvT4spLo/LKS8nXuZvAc8Pjz76Ec9WdKQvbTjJbyFwOI86XZOvdTwCL3NGC89Me1TvNbRqzvAuyW9aN05vQr1FD1yWHy8B1BkPLlzDLxPqLA8RvlGOzFzgbyihVK9VnXTPNE3srxvOh09DT0IvNgPDDwXR2c9GaQku4ytBrygPoO8VDgXvaIASTyaUgO9w3PYu4YdoDwpILE8tPdLvGRYCj1Ox408rl1SOyzZB7tfvhA8vJwiPVZ10ztyjKM88r7nvIISQ7ujhdI7LOL2vNrwLr14Y9m7hSezvFPHs7xfOGM9WNwju992gjxT0UY8Pja3OvHI+rzE5Lu7dqGTvEYOkTxDVbq6rCAWPQSiRD0AZQg9HEixO8icbj3ugSs9/hvxvLTjJT1TQqq82H9LvDH35jwpr008LrqqPBtc1zz+B0u89d3qPFokF70uKw4845UFvQQTqLruBrW8/hHeOzb4sLzQ0OG8Ju2HOwX/gTyN/wy9JnKRvernsbsPj449IPZQvIrLP703aRQ9sboPvQgyK76rNLy6WOY2PDohRz1ngHw8daumPMidkrwePh6990S7vJwzJj1oWLC8u0CJvUwEJL2Kyz898jlePTdzJztOS3O85fB6PPtjvrwR1wG94bM+vG1toLxbGWA9X5+zvPVidLybpIk9VgUUPGTIyTycM6a7Ax27vH14Sb0s4xq7/aB6ucyxXjxB+Hy8HOIEPYCslrkppTq8PrGtuRmut7wkC8E7XfumPW1toDxC7uk8JQEuvAp5+rsx9+Y8yJ0SPWwQY71UTL27pynfPBi4SjzInO68PiykvXCqXL3W0as7kZhiPAI79Lw8z2a89t1qOz+dB73TdO47GqQkvH7VBr2w2Ei86nZOvLavfjvYf0u8qyopvfK+Z71ubSA9IIXtPAhRCDwVFD68xHPYvK9TvzwFjh68u0n4vHNYfLvMnbi9X76QvAitITwIKBg8m0dMuQ8KBb0Yrje9dasmPT1KXbz101c9F8JdPsicbrwmchG92vrBvLiRxTsYuEq9xHPYPKVdhjkTHlG9lbgJva5oibuKtxk8xF8yOz5K3buuaAm92zf+PDScl7zmTbg8axGHPYGXTL0Kefo8Blp3vZ/XMj3rYqi6uIeyvD1Ayrza5ps83hlFPSg+6ju8nCI9FJnHObKGaLx3bey82A8MvVS9oDwx48C8o4XSPCX3mjyXmSw7pOwiPXRE1jy2pes8v2h7PPdEO7w2h828Hj4evaPsoj2xNYa88b8LPf6hHrvXQo89jurCuxfNFLxT0Ua7TkFgOxQKq7yCeRO95k24vNG8uzx1qyY8yfmrPDuSqjtcdp27db/Mu4EnDb2JZO+84NH3PDmmUDwsztA8v2h7vGlEij2BEkM8k/WfvEZ0Pbz81CE7PzY3PJQ8bz0R1wE8yXQivRmakbunr4y88jnevEWSdrzJao88DGVUPcBU1Tpkvja9uX2fPQp6Hj2N/wy8vmj7vGsRhzyBgya75WyVu2z8PDye1zI7MmhKvDdfAb0izoS8axEHPIXA4ryO9FW9socMvb/Py7z1jAg945WFvWNNU7wWzHA83LL0PFRCKrvIfjW9rBaDuwQdOz3FX7K6PH6EPAWEiztQGZS8DFEuvLA/mbra8C48vDXSu6u5xbnNk6U84i61PG3olrs1kgS8hTtZvKlSdTtutG+79WJ0PI1lOTwWew695lfLvIlkb7wgCnc9IfbQPA//TT3F2qi7V/rcu+6f5LwA9KQ84cfkvHWrJr0bZuo8PrGtOTFzAb2BHNa87/yhvGsadrzFSww7n+HFO7kCqTtjQ8A81PAIPDbuHb20aK+8ZL62vHnAFr0ow3M8YBqquySk8LskH2c9eG4Qva/iWzvpD/68qs3rPCivzb2nFTk8knqpPBOuEb25Aqm7T7xWvc4ECbvlYoI9EPW6PMRfsrthGiq9WxoEvZ32DzwaHxu7LjWhOaOF0rslpZQ7D48OvV++ED3V5dG7AzKFvXnUvLxuOfk8fIzvu3jydb0lkMo9LjUhvLC6j7yBJ408X5+zvBkpLj3l5me8Wp+NvELaQ7yij2U8yfmrPLiRxTuyC/I8DMykvP4Hy7z+jNS65WKCPcw2aLt+bra8gvSJvDaHTbwMUa69pzSWO1S9oLzsqXe8Ql/NPDg1bbyPzAm7GRUIvT1U8LyQo5m8Bf+BvEH4fLwDHbu8RvlGvDqxhzxI2428FCjkugMnzrzDh/67AzFhPMu8lb3mvps7Y9JcPLMB3zwPjmq8ZDktvOFNkjyZ1mi8xksMvMw26Dy3IYY9r0msPemBBT3uBjU9ObDjvCgqxDv6eIg9JCqePAdQZDzYid68MlQkPRi4SjoCtuq8HNfNvDABejuD/hw7uQKpvOpsOz2npFW7d3d/PWdiQ7wHtzS9zJ04vLTjpbyvZ2U9tdkSvZAnf7wougS9QV9Nuj1VlLyIjgM8Bf+BvIL0iTyBjTk9ShjKvIGNuTzOBAk9rJuMvI3qwrySE9m7ko5PPLh9n7yimXi8sNhIvOmKdLtoWDA9BkbRPIWsPL0ZKS48q7nFuzJUJL1fLlA8SNsNvLC6j7wTMne9jXnfPNmKAr2hmfg8FQCYOw3CkTxzTmk8E64RvJ/XMrzcLWu9LVNavOxOgjzSnoK7XAW6OVsPTT2/Xwy93gUfvTB88Dt8EXm8mlIDPch+tbwSXIu9bHczPMn5q7xj3G+9fPM/vJ3//jt1MLA7isGsPIP+HLv109c86uexu4TLGb0ppTq5tir1u1hXmrzjn5i8VnXTPIo8I73yOgI7aPwWvIo8I72O9FU8MdmtPLzFErfui768hMp1PdprpbvTI4w93hlFvSm54LxBc3O8uJFFPaKP5bxfJD070NBhPG+1kzyI6fi8IAr3u2eAfL0P/808R9uNO9TwiD3EXzK87gY1vYnf5TsxcwG9OSvaPNKyKL0x2a08PrtAPaGZ+Lw/Njc98smevO4aW7xZ0pA8NodNPC8BejwXwwG9LdhjPB7Dp7w5nD27KSCxPLNywjrRsii8uQIpveXSQb2CEsO7brRvvC7EPb3101e8VgUUPUYDWjzNLFU93C6Pvcch+DzpBeu8ed7Pu/mrC74qkZQ8XzmHvI2DcjxJsh29nly8vMwiQr0lm4G9+DooPLu627wghW28KhYePYCiAz15TzO9hUaQvNTwCD3csnS8O5KqPKtI4rwlIAs9XyQ9vJ71a7x2d386lijJu7KG6LvdI9i8jWW5PKKFUrzGxgI7DwlhvWzyKbz5d2S9Fz3UO7MCAz2yhww9wNqCPV+9bLzEA5m8DFtBPQxRrjyZXBY9m8JCPNDQ4blcgDA9aFgwO//9tzyzfNW7jvTVOy3Y47ymuZ898qrBPPr9ET3fiqi8ff1SPVPHMz1d5wA86DkSvBBmHr2qPs+8WxoEvO8QSLzbN/68/pZnvAMnTr1CX808Pc9mPe2gCDwWzHC8yWqPvF++EL3uGlu8aNMmPT1KXby7Kz+9ijwjPWuV7DtFA1o9daETPNIjjLws4va84b1RvVTHMzva3Ai7c9PyPJajPz1rn/87LsQ9vHyCXDw37p29uyu/vCg+6ryvZ2W81WBIvIUxRjw0nJe9ftWGPaTsIjzJiMg80/l3OYaYlr1si1k9kKMZPVNCqjzYid48+CaCuxdSnjxndmk7FlF6PJlR3zzdns68djAwvL9eaDzjqSu94dF3vL9fjLzMLNU8BtaRO8RfMj3YGR892Q+MPBMpCDw4uxo9X5+zPBdIC70puWA50qiVvBIydzwgAGQ9wUAvPcG7pbzP2vQ8DMwkvSCFbT3egJU8esopPXAvZjxT29m8yBdlPemBBb0/sS29bfKpPOFC27w9z2Y7Y90TvYjpeLp53k87G+vzO4P+nDxT21m8XyQ9vCD20Lt8CIo80NDhOwLAfT2mmkK9U8ezvC0/tDy2Kxm8s3LCPKDDDLzdns47fBF5vUqTwDvq+1e8z9r0uwOYsTwL9PC7ekUgPIRPf7x00/I6PVUUvFyKQ7zIAz86kZkGO82TpT1wq4A8GTPBPEH4/DsXPVQ9ohRvvMgXZTyofAk9EteBPXAl07uKwSw9IV0hPSBnNLzxQ/E85mHePOZDJb3/B0s70by7PEZ0vbtltCM6SyMBvOmK9LyuaIk8KboEvNDRhbyuaAm8R9sNvQdQZDxktKM89mL0vNbRqzzQVo+8N2mUvIUxRjzhTRK9bHezPEJVOjymM3K8MuNAvVLvfz3myC48dhyKPIISwzu1Xpw8FDMbu9BV6zw2fbo7NJtzPBdHZ7xpv4A8gJfMu245+TuJRja8NAzXPAp5eryecQa9SbH5u57r2Dwqmyc9TzdNO/e/sTyrKik9j1ETPNG8uzwpr008SxjKObrE7jxwqly8UA8BPXREVjzLUFY8G0vvu6ufeb1y0mq89RzAvJpXPzwGdYo9IJkEPKtbAD2lJos7vj5ZvYkHvTut+gI9lHJvvNXD0Dyt7lY9DjlyPZYZurue5Wk9NBf8vKdpPL1WZ9s8VscQvLHctrqWdQu98JelvJRyb73LADE9+/nHuwR2UrnEy7u7xHNOvYcQTTzRNSY7QYHmvNdqm7xlJIc8G1M3valgLL1nb4A8iQc9vSYWV73Vw9A7vj7ZvDkRCDuUfpu8MOmGPCi12bySiw+8hsm3OppP97whgOQ8KgQ3PDduIb3g6gm9bpRlPF+TQL0Gxa+8UDJmvfdrHTwkd9S84JYAPM+Wo7zRhcu8erIOPEExQTxUfJc73j/bPFYbmry4YdG7iVdiOyGILD2a/1G9dsgSPC7qTr3xjhU9MDmsPPdvATzkxHW9lhk6PHLaMrwZBFq89HX1vAr77DtUfJc8LJvxPJbJFL39QN0898OKudpZQ7zEy7u8/kglvGUYWz0uOnQ8Zci1vQLfl728n1a8qWCsPKXSAb19UZG8RcczPKufeT1Iapo7FnqTvK2W6bonbkS9X+NlPPcTsDuDeto8/vSbu2PJfTz7Se08uLk+Pf7wNz2khwg96qnFuzcO7Lxfmwg9UIpTvU+fDzyFwW+8i/4sPLqwrrtlcMi7dhDwvM9CmjyIuN88q/fmuUPYC7zLALE85hPTu/laxbsS6AS87UjIu2z9qrxjedi6Ai89PI2hkzxd9D292BYSvO+biTw987u8bkyIvGn+8ryL/qw8je3Uu7yfVrvNo5c8KL2huqPTSTxDeNa71cPQPPkKID0mIoM8xrrjPMKEJjwVHkI8yWGuPFA6rrod+gE93pfIuygNx7z0dfU8ctqyOy6aKT1S3RS99WxlPPHmgj3rsY28fuTnvPm2Fj0IZLI8PetzvVYXNjyncQQ9+0ltPBXOHD3Ywgi7nkkDPCQnr7uYsHS8+6FaPRlkD7zgjji8O1Q5vC5KBDo0b2m92rGwPOhiMD0mbsQ8o4Okuq32Hr03vkY9eGcVvYtOUj1R4kC9xmo+PMA9Eb3Hwis7lMrcvJ+NfDvoslU8q09UPY1NCr0EdtK8VMhYu8TLu7tptpW75NSFPZpXv7yU0iQ9FR5CPChd7Lx4v4I86ArDuyTXibxhOos85Bzju4fAJz2WEfK8pSaLvf6gkjypAPe8elY9PSi12bxZuhy8cJeBO+tZIDzmE1M9tiKEvAZ1Cr3A3ds7sTSkPPV4kbqvmQW91WtjPEysg7zcVJc6fPU/PQpTWjyJD4U7CBSNu3qm4jvNn7O7UjEeO1TIWL1MnPO7KA1HPBdl17zEG2G9HUonvCMfZzugLH+9rZ4xPQpbIjx6Bpg8Q4QCPXgPKDzGuuM8Ut0UvSxLTL3zfT28ITA/PQr7bDwWxlQ8q1sAO3Db+rz96G88y1wCPSSDgDykhwi9DErKuHKCRTzv58q8XZxQuo2hkz2gjDS5ZxcTvMxYHj33EzC9qWQQPIsCEbxBOQk9WmaTPAYdHT0KU1o8vZ9WvUPI+7xOn4+8wtRLvIEzRT1SiQs8ulB5PT/uD7yJYw685CSrPIErfbxjgSC+Unl7u8IkcTz5sjI96gEzPd0ADj2Lroe9JCsTvVLZML1DyHs9ugicvdMkTr2SMyK9rZ6xvO2kmTxulOU7LPNePAyabzsMmm+99wvou6Mrtzyx3Da9mv9RPXYggLwyKFQ9ZRhbPBcNarrLALG8TJzzu0GB5rtUIMa8JNeJvKkAd7v78f88uLm+O3QhyDzCMB29FRZ6PSgVj7v1xNI8P5qGPHA/lD1S0eg8Q4CePSz/Cr2psFG8liGCvHhnFTz1JIi9vFMVPde6QL24CWQ8Xez1vF+TQL0Cf2K9vE8xvEOAHj12cKU8vubrvLYavDyxhEm9q0/UvJhol7y+RiE7oy+bPMCRGrpuRMA8P+4PPNMslrsGFVW817pAPYcQTTyvPTS8CGQyvN7vNbxWv8g8SGY2vMjGjzw/kr48g4IivakQhzyv5UY7TACNPF+L+DtnbwC9wN1bveLdlTw1exW9GVT/PAzyXD6vlaE8/kyJvJqvLL1QPpK7NB/Eu25EwLo9Tw29MDmsvN5Ho7tOQ767X+utPHtOdbvR3bi7/UDdu4/kRD2NRcK8Ix/nOwYVVT3kKA87np2MPBN/v7xBgWY9z+bIvK81bL0AmAK8+VJ9vKDc2Tw2J4w8vkoFPRPbEL2Bj5Y8RRfZPCjBBb2s9+Y8IuAZvVheS73eP1u90Y0TPS/yFjx2aF0961mgPA5BOj28U5W7vu6zvNN8u7wIBP05qbBRvL7uM73EIyk7UjUCPWMh67zPlqO84IZwvHzt9zv5Yg29KAX/vHA7sDtUcOu74N5dPLTXijz+8Le5lMpcPFCK07zJZRK9nkUfvWGC6Dwe6vE8P+LjPJ7tsbyc/ok9aw4DPYcQTbuJr888p2k8PeyYbTyT3xg9Q8j7POtZIDyl0oG898OKvG6U5bxKCZ08f5wKvRE8jjy014q9LEtMvUIpeT1Fv2s99XQtO6tP1LxUGP4892udPFutqLyrp8G8H+2NvP7wt7yzezm9H5E8vTmt7romHp+6E4cHvADop7xQitO6ag6DPIbJN71dTCu95My9PEjCh7w3vsa8UJKbO1iu8Dzouh085CSrvJLT7Dzc+EU95sOtvFQgRj2PNOq8YTLDPPKGTTsCJ3W8r5WhPNVzKz3LUFa94iVzO/PVqryLVpq6+VpFvCR3VD3+oBK7liECvX7k57xiirC8mWBPPVIp1joIaBY9pcLxvJz2wTxDgB687fgivGdnOL3T2Iw8Y4EgvM8+tjwf4WG8+6kivAr7bL1f75E7nuXpPAQmLTwfOU89I8f5PLSDAb3L+Oi7LJvxPAoDNTyYECq9g9oPvJhgzzul0gG9y/joPIEzRb3glgA9r5kFvb7ylz0XcQO9AeBfvLynnrx2cCW9bAGPvBLoBL0Tfz+9nPZBO2KKMD2jgyQ8lNYIPCLgGb3/8De8DjnyvJi4PLyFJQm7CFzqO7oMgLzHcoa63udtOvUkCL396G875NSFPATOPzz3w4q9XUyrPfV4ETzGar685CQrPUpV3rzgjjg9bvSaOyynHTucTi+88TYoPTe+RrrRhUu8BMb3PNdqm7zLqEM7XVCPvFTQoLuJB7279xMwvWGC6DvgNsu7r+VGvbxPsTyYCOK8YoqwPIOCIrsowYW7umAJveCWgL0GxS87jfWcPPtRtbz0dXW9MOG+vJqvrLzRhUs83KyEOnYYOL26DAC9E9uQOygNxzsZDKK7z0IavZ+NfLsu6k49goPqO/XE0jq+SgW9O1idvBUmCr0f7Q09yVlmPPtVGT2YwAQ9G0tvPHQhyLy6sC68NB9EPXyd0jwGdYq7TKQ7Pa9BmD0sq4E8g8r/PMDlIzz5WkU9q68JvGXAbb0Cf+I87UhIPTDZdj2Ucu+6E89kvCSDgL3CfF49aQa7PPv5x7xj2Y28y1wCvTIo1LtpXqg8LurOOoUlCbwWxtQ7wIXuvM1PjrxB2dM8Vhc2PVhey7t/RB29AOgnPbgVEL1Fb8a6r5mFvAZ1iry2cim9ZSQHvVQgxjyBK/26O/zLPLHUbjpSKVa9NG/pOy5CvDy8R+k8G/vJukE5iT0w6Ya8vKeevN4/27wyiIk6kjOivPMl0LztSEi9CLwfvLyf1jy6YIm8ZSAjvdHdOLxyMqA87aSZvb5GoTzoslU97UjIPFJ5+zw3Ztk8no18vcuwCz2+lsY76BKLvCbKlbwu6s46XZxQPKCE7DzXsvi8M9BmPBOHh72Jtxe83kejvNdiUznoWui83u+1vJYhArtiirA8Vhc2PQoHmbxFH6G95NQFPPupIj3Xsvg7o4MkvcA1yT3JuZs8wnxeO1heyzuB4x+8F20fva+ZBT1SgcO8kjcGvRPbkDyJtxe9HznPvMfCq7vEG2G8Sg2BO/GOFb0IBP28wiw5PFutKL20gwE9aWIMPG6UZTyYECq8iwIRPRuviD12dAm8Q9DDO1I1gr3cSOu8D/EUPFgG3jzVG7480eWAu2tN0Lug3Fm8UDquPMZqvjyQPLK86ArDvJoHGr2P5ES9G0tvO5LT7LulGl+9tnYNPUXHsztDhAK9G1ebPNmp6LxFv+u7dmjdPBkMojytlum9tH8dPHoGGLyaV7+8AjcFvdA2brynwam8BiEBvYbJNz0XZVe9R15uuzIoVD3TLBa8NG9pvF+L+DzPmgc9woiKvGylvTxBjRI8q09UPVTUhLyNna883KDYPD2bTjwzNIA8WAbevFI1Ar33w4q74jUDvWV4kL0s+6Y7PevzvFR8lzxMnPM7dCmQOsA9kTqASIG8y7CLvGcPy7urT9S7XkRjO8CNtjyz0yY8qbBRPEPQwztHtls8928BPYMi7blyKti7UjWCO1QgRrvChKY85mP4vF38BT2ghOw8yWEuPAyit71S3RS9X+PlvBlU/7yzezm8oOShvMDlo7xM/Ci9zFgevNjCCDzXsvi8pXoUPf1AXbvCJPG81xKuu9A2bj0M8ty8ulD5vOCOuDtMVJY892udPJhoF7x8RWW9fqWavDKIib2khwg8P5K+uxdlVz28px68vE8xPCR3VLwIvJ88GwMSvccaGb098zu95Bzju+Il87wd+oE7JnYMvPHeOj3mcwg9IYisPA7pzLtu7FK8mqdkuy6aqbyFISW9MNl2PbbKFr2WyRQ9tCuUPOR0ULzt8No86vlqvIHb17xrTVA75MT1u388VT2BOw29kECWuhcN6jxiijA9ywAxPatP1DxbpWC5uqhmPNxQMz1SgcO8oCx/PIv2ZDzghvC8jfmAPR1C3zzqAbO87aQZPDgWNL16TnU90S1ePMfCqzzmwy09Ut0UvTA9ED2SNwa9UjGevIkPBbv+TAm8r43ZPB/hYb2elcQ8PU+NPKkQhzwT25A8DKabuwI3hbwsS0w8ZXgQva1GRLw6uZo9nvGVvQpTWjyJYw69qRCHPDTH1jxUfJc8ZXBIuyHYUb22cik8TPwovT37AzwuOvS7RW/GvHhfzTvP5si8P+JjPFiu8DyAlMI83FQXvaHohbzVa+M8o4OkPDLcEj1rnfU7MtiuuZLbtLxwlwE9i6a/POR0UD0E1gc92mELPcTDc7zEI6m8MD0QPb6WRj2WEXK75HTQOxm0NLwmbsS8O7CKvPMlULt2wEo8G1M3PCpgiLyr/y69F8UMPR+JdDxGdw49Br3nuv2YSr3aCR69UtkwvPcL6DwoDUe6tWphPLoMgD1uREA9kjMiPNEtXrx2aN08lNaIul1MK7uN9Zw8oegFPdUbPruc7nk8eK/yPCq0kTxYBt68ela9PFLR6LsqXCQ9O6wmvGHmgbtfQ5s8wOUjvSV/HL1KCR08nPZBPCEodzyejfw83KigPO/nyjy2Gjy7XztTPWv1Yr0GbcI6ml+HvW6cLTxh2lW8AaZIvO6x4Ds5ggC8PBzTOuBnDjtIzNK7E4m2PKkqrTurvkQ9LVtZPLfrpry+siy9UCG1uwoMpTxZUR29Y5g6u93OcjziDKA8EOSkurXP7bxASYa9qBmzvDhmx7wWLsg8ys6UvV6VBb2Dcpa8feEEO/zeQjxEgi89y98OPZRVBL2mi9Y83t/sPBuJ5bxbc5G87ZorvbEZ4jvkpnK8mdUbPU0F/Lu34Oe8w3kyPdx7Dr3eVhS8/aITvcN5srwWqyq8gkLdvDERZbw6goA8mFi5vIqRhD2l8YO8iYbFvGGNezw0x/C8nyV6PAXZtr3tF468F8LfvCnmgLyPWIq94gwgveNkiLydDsU8KKVNPOZFybyvbhW6GiUHPNbwtzvC/E88YCkdvLMkIT2oGTO9SMzSvC3YOzywAi27r/Gyu4fyrTwQYYe8s7g4PXvWxTy+RsQ6VFpevKT3Pj0jkZ68/xGxOykiMDw5+t460SkyvO2x4DxkqTQ9IbzTvL2yrDseHX28ASnmu7GQibwl6QY9BVzUPMayWzyl/Xk9dP7FurhuxLpijfs79QAIvWFLET3p6lo8+Cg3PfWDpTlLHgA9koZ0PclRMj26eYM8S2BqvBH72bzrDE+81fZyPfzeQjx2JvW8DlbIPE4KAD3Nils9ekjpu2l2db31g6U8gqiKO9GsT7w6iDu9CHgNPPxbJT0jDoG8X1+RO/pQZjwjkZ67ScYXuwNLWjpwSLo78EV4OeU0T73mdYI9mexQvRhKATwlbCS9wiyJPYslHLyVs6c8ymjnPIiAijw+Pse8K8EGvK6kiTxLYOq7R+sRPS3Yu7uCxfo8Lu/wvJFpBD1AT8G7ys4UPZjEITzkZIi7m/3KvO7hGTxfZUw8vbhnvLGc/7qzKlw9lJEzvQAYbL1DBc07avPXvKW7j7yhvpW7KSKwusYvvjykdCE8I95HvBc/Qj2xSZu9MaV8vGySLr32mlo9uTIVvZHsITwxn8G8o5mbPPWJYL01wbU8HhfCPEj8izr/ETG7b7QiPSmfEj1T18A8xh7EvC3SALyORxC9pGnivNYH7bw2hYa8ZCaXvDhmR7zU3729qnEbvYZ1S7yXTXq900smPMlX7TzuKAi9wvzPuykoazwF2ba8t1cPPenq2rxjqTS62qAIPehQiLyQ2ye4OjsSvGpwursvvgA8ipe/POGPPT0paZ47/XJau26jKLzU5fg4IbzTO8jzDjsMt/E8T9SLPKHEUD1uqWO8GAMTPb2457z0BkM7r3TQOyNbKjtC7hc8Z0iLvLbJMr0Q6l89v0ZEvP8G8jthjfu8jxEcvcUYCT2j1cq6ZT3MvLM71jq2TNA72qx+vftKqzx0gWO8VNGFPAFZn7wm+gC9G+8SPc0N+bxmAZ08VOg6PFTu9bwYAxM8BzEfPcSKrDoh/Qa84UKUPCYRNj3Oitu8vFQJPOSgNzzqKw496ng3PU+elzz1AIg92RIsPAh+SLst0gA9lajovGlwujzeXM+5e9bFPPbbjbxYCi88RqreOxwADb2Xyty7cEg6POUuFL2orco8bj37PGOYOj3YxQK9o1ItvXtZY7tIzNI8PbspvkvdTL0aZ3G8CH5IPYuudDxTipc6JGwkPFTd+7y2RpW8K8dBPHrFS708mTW9Vvm0PET/ETvq9Rk9C5qBPA5WyLz0DP679PVIPOp+8rzhQhQ8TOiLvZle9DxnSIs8IlDrvH3nP70zLR668VA3vYDNBL3zcqu86NMlvS+thjw1RNO7EnKBPEtar7yt4Dg8giuou5ocCrybLYS8ILxTPD4+Rz3mP449qnEbvfBFeD3Jw1W9OX38vJHsobwrRCQ9hl6WvEBPQTq4IZu5p4vWOxhKAb2aHAq8FKBrvep+8jwqsAw8sZbEPFasizujYyc8K8GGOrqQOL1RtUw9fgm0vDyw6rxcwDq9px/uu9Xl+LwyHKQ7RIjqvIkUojpAT8E8134UPR8u9zxXvYW8gWGcPR8ovLxEgi89HZrfvBWxZb3S1H6799sNPAGgDb1K3cw84UIUvF2EC71yWbS7FJqwvHYmdTyt4Dg+FeEePR4igbxPEDu9W6mFPEL00jx7U6i85kVJu/ADDrx7WeO8xdGaPPxbpbw9weS77qulO/HNmbwAjxM8F80evaHEUDzg8GY909T+u+00/rx/hhY85bExPb4vjzy7DZu8rvdtvJ4l+jvtoOY7W69APfADDrxuJsY4T42dPLsTVj3e3+w8b7QiPKvVeTzDiqy8o5kbvMvfjjuRb788TfkFPbAI6Dtf6Ok7My2evCE5NrxROOq8jb/uvIXQObyZ21a86BoUPDEi3zzVYtu7Sg2GvCcRtrwBWR88/5TOuVHlBb0HrgE9muYVPXaMIj0rRCQ9zXOmvD7BZD2AzQS9gjwivPJhMb0WOQc8o9XKPNNLpj1AZnY9OPSjPe6xYDsizU29esVLOphN+jyJgIq9jtDoPJDy3DyrQWK9i650vVCkUrzRL+28X18RPPaa2jx71kU9Wz2dvPMlAjz4KDc9YxvYPBWxZTzPyw69b7SiO9JR4boSj3E71N+9vO2aq7yk4Ak7qacPvY7QaLyH8i29D239vAAY7Lwt2Lu8+v0BvGIbWDzUXKC9IbYYvNmPDj2ckWK8lrliPT0tzbsYVvc8gCBpO2ntHLxU10A9mMShvHLc0bx+dRy6RSfBvE+TWDiRaYQ8t/FhPIkUorvXfhQ9NVVNvTO2djzjpnI73VxPPStK37w8Lc0800smPWwPkbzGoWG9Eo/xu4XQOT2Oyq28wF35O+NkCD3uLkO9NUTTPGA6lzwHMR+8JemGvKX9+bw8qq+7SU9wPK+FyjyOyq285j8Ovbp/Pjxskq46OCoYPdAvbbvzqB+9HiKBvHJZtLy46ya8GNNZOgTCATwpaR68y2hnvUnMUj0ERR+9ZrouPLQ1G728JFA9ABjsvISDEDrDebK7hl6WvFzG9TvA1CC7Bp2HvAXZtj2nCDk9GiUHPazmczwBpsg7e5qWvEvuRjwYVnc8TfkFO/bKE7xnZXs9DtnlPDZPErwcBki809T+u+XIZj1o3KK8F9NZvT67qT1BYDu89bkZvfnsBz0qsAy7ydRPPdqgCL1FpCO8paoVvdo0oLwTDNS7ts9tvbbJsjyR7CE6M7b2POgalDzWbZo89x34vPLek73Rvck8DxqZPEako73R7YK8j17FvBpncTz3HXg8gM2EPNVz1bwXvKS81nPVO/eUHzz09Ug81vC3vEe1HbxHu9g8IbYYPacIuTzLYiy9A719vYDNhLwPUI29KKXNuqIFhLxLWi89ebRRPdPOQz3K5Uk81wGyvK6kiTz977w7XMA6PdFA5zyfH788/FslvMjzjrxZmIu7bJhpu5f6lbtM6As9oDA5PclGc7vLYqw8x6wgPeyP7DvEBw87QNJevd2MCDyLrnS8reA4PI5NSzpjFR29iIZFPMQ9A73RvUm93lYUvUrdTLzwvB+99bmZvLp5g71XEGq8Bdk2u+IMIL0cNoG9UDhqPDyqr7tgdkY8UbVMvGQml7yRgDm8gBquOharqjzoUIi85TTPPEQFTThr/pY79QAIPZKAOT0YzR68D9OqvCt6GD1AZvY8/aKTvXlIabydiye8kW8/u6Wqlb2whco6+81IvWU9TDwLI9o7/NiHvC7ptbv7Squ8FV6BvBarqrykelw8Pm4AvRolhz1TSeQ8+8eNOzXHcL2lqhW6Ldg7PQqPQrvtF468RJlkPUSZZL2IhkU8zoQgPM6EID3rDM88k0QKPcxzJjtsmGk7MpkGPI/h4ry7JNC8qnEbvQyxtjpW/+88XVRSvGv+FrsCvf05IT9xO5rmFTwNRU69Y6/vvATIPD3RrM+8JvoAvBKPcTyfolw9uG5EvARFnzwTF5O8iYbFvHT4irvsTQI9S1ovvDo7kjwpaZ48kNsnvL41Sr3OhCC91vbyOroCXD00x3A8s6EDPWEK3jxf4i69pf15PYIrqDye0pU8BwFmvenq2rvWfpQ9F80evbO4OL2kdCG9ihpdvJUwij0u73A92iMmvVxD2LzZlcm7R/yLvLunbbw6jvY8OGZHvR/bkjt2jCI8UTIvvLhuxLk2VU28TP9APK/xsjtxX289bqMovTcZHj2OTUu68t6TPIsrV7uxSRu9lrnivdXwN7v4P+w8dfiKPHIdhb0VXgE8rOZzvQCVzrxFFkc7nPePvbMqXDxT3Xs9ZT3MPNbwt7uTl+67Z05GPewXjr0buZ47o1ItvQs01Dwdml+7BVzUvOWxsbyGpQS8TgoAvcIsCbzU5Xi78mExvT0tTbz5vE683UvVPMYk/7yjWOi8RJOpPHPtSz2k5sS7avPXu/IUCD0xC6o8cQwLPHSxHL0WRf07qa3Kupf6FT1jFR09iDmcPClpnrssi5I8MSLfvJdHPz0bcrC8+8cNvIwr1zuKkYQ9MZ9BOZ7jDzwaeOs8s6GDPCTvwTjsiTG8M6oAPXfTEL0h/Qa9gZ1LvLweFTxNfCM8k0SKvHq/EDwLmoE8PJ/wvE8QOzyNv249QvRSO4kJYzuMK9c87i7DvO2aKz06O5K7h28QPcbiFLzKUbK8H6WevNViW7tnTsa8E4m2PRv1zbv0BsO8Gt4YvHYV+7yf44+9/e+8vO2aq7yxGWK7Jn0ePWdIC73RKbI8d52cPAAjK7ymzAk8hIMQveBtSTzOB767ljbFvHLc0bwppU29tskyPVupBT1EBU0900smPFTXQD1yX++8H+yMO6T3vrxLYGo9yVftvOOgNz1W/+86QvRSPcQNyjzG4pQ8g3IWPVLGxjx5SOk8DcKwvNeEzzszLR484yPVPNZz1bupKi08XMA6vTyf8LzMqRq9xA1KvfaaWrs5iDu8lB+QPJhBBL2G4TM8sqc+PPk/bL036WQ98t6TvZGG9LvSQGc72Y+OPLNrD7ru4Rk9Cx2fPcDUIL0BKWa8jK70u7wkUDtV6Lq81JKUPeKJAr0AGOy842QIvI5HELzeVpQ8W7X7OGKN+ztUWl68mdtWvCWzEr3wwtq8xZsmPXNqLr2+L4+7UsALvNmVSTyQ26c85nUCPc8YuLx2FXu92RKsO0z/QLxwSLo80e2CPLyhMj1AYDs7RtoXPW49ezx4N+88cl/vPL64ZzuTDpa9nJHiu3PtS7xL7kY8Bm3Ou/tKq7zxUDc8MVKYOwM0pTyk5sQ8zoSgvDxdhjwbBki94fulu33nv7wiW6q80KaUPONkiLxGLfw89h14unEMC73YWZq8J44YvRhW97xiBKM7CHiNvLMqXLxkXAu9bzdAPXLnEDwKDKW8HR39vKT9+br+fZk86eraO0SCLz1rh+88R7vYvH3nv7tMBfw8EnIBPe00/rzUXCA97z89O035BT3TgZq84H5Du7ETJz27p209ea4WvW+0Ir0HMR87Vv9vvWU9zLw6iDu7fnvXu4XQOb1ih8A8hU2cvNJktDyoMCs89g8IvfFOt7xPoBm9VycDvVX1Xz051aG7C0KuPPqeNTxvg3S8hVUUO8BZ3bw1djc7APgnvL7HM7u70Cc9FyTWPJzmpDyDWJC8mCmAvej+OL19M428n+CsO6F1Urp2FIK6mPIUvZLJZTxqX6E7FyiCPJi6eTzrkRK9UNEMO2mWDLxIRvc7JTsdvFT427t5PIE8ASkbvZSTKj1IFjS8eaAzvbtrxTz6Nte818AiPAvaT70GhYm8uAoPvXk8Ab2ny8i54gopu35kAD1omYg9WfCXvOU0dL36nrW8xCCmvdofjbodFWq9MRpJvGgtfrw++XS8MbJqvZ9Lh728AZu8O2dLuGGnxLzCWg09gPapvPnYnLxq90I8dt2WPHOvH71QnO05ONidvNBqLDx/kce8o9S8u6ZqEjs4DA09X93/vO2LmjzvgXa8ff8dvTo9ADzYWEQ8XEtWvB8P8jzDI6I887CdvDGCJ715ONU7pNHAPHwyXbyny0g9pmbmvNCem7wRmyA6zaBnPapadj2cFug6iEwgPHwCGjwG6bu7uwSXO+1XK7ynZxY9CXjpPGCqQD3lNPS6HOiiPH8tFT0G6Ts9z9WGvHemq7pauay7WOxru3CD9DxgRg68pGzeux19yDvkO5w8cLiTPdJktLxKEDy8fjARuzo6hDu7OIa8/DQLvc/VBj1hD6M8CEsivalg7rreRlw9PMytvHs1Wbzb5PU8FZKsPLWneDx8mju9qTCrPFX5CzycGhQ8b1atveQ+GD3iPei8NKl2u0HAvTrwuRE8Fo8wvfFOt7ucGhS9BoUJPf39nzzPoZe8ZWuRPINYEL2GGn09z22oPGyNmDxhP+Y8lfgMPBiJOL20ejG9vTIOPe/p1DxUkP28u9CnPfOwHby32Zu9Kyk1PAElbzt5oDM7wV2JvHDo1rtHgQ49ZZ7QvMkUtjt/+aW7pTmfuxuDwDwb6547tRJTPZvpIL0SAAM8pW0OPKdj6jv52By8FMXrPMh/kDwhCfo6sbQYvZuBwjwHfmE9F7/zPASEWTxwULW8it7JvID2qbxr9Ma7h3zjvDv/7LwIe+U811jEvL739rvMp488xR2qvfLjXDsxsuo8ozybO39hhDy7a8U8Kyk1vbjWn7ta7Ru94KhCPHBQNbx9lz+9ejVZPcuqC70w7YG8v8Q3O8pEeTxqj2Q9rcCIO4d8Y73e4Xm9O88pPIWGBz1q98K87IpqPLdxPTzeFhk91P0FvaDgLDwEiAW9utOjPLcM2zw4DI081lvAvCkvLbxjoUy8DtgDvCosMbwrWXg8cFOxvFGW9TyUkyq8ryE/PH0v4bwOPLY8LI6XuzSs8ryh2rS8Mq/uPCfKSjsjPhk8K8WCvNL8VT3SZLS8/pJFvDYShT19l7+8B4KNPIAm7TxUYLq7SqhdvecufLsxtpY9MYInvAizAL0j1jo8dawjPJj1ELxQ1Ag9CHtlPeBDYLxa7Zs8Us6QPbcM27yVkK48OQmRvK8hvzyH5EE8xk3tO0aEiryZt329crKbPPWqJbxs8cq871EzPEiyAbtKqF09YBKfvGmSYL3FURm8F4y0vCU7Hb42pnq9F7z3PJ3mpD0qxNI8Y3GJu+M+GLwB9au9moS+POYx+Dwb6x69wfF+vcMjIr3WW8C87PLIO6c2I7z1EoS8Fo8wvNZbQL1IFjS86Pu8O0HAPb0ka2A9ybCDOmJDEj3AWV294qXGvItz77sIswC9it7JvOmT3rycfsY8nuMovL1i0bzSZ7A8sOsDPQuqjLiplQ09nxBwu0ZQmzzYvSY9Js3GPP0xD72sJ7c7td8Tvf39H73zsJ06C6qMPLtoSb09AJ08s30tPOIKqTxcT4K9s30tvMqpW7103OY8yK9TPY/WhTwjbtw8xbXLOl2wuLwRy+O9THUePK6Jnb2O0lk8ZQavvbUTAz2BI/G8gfOtPIApab1Awzk8UAFQPDR5szyh2jQ9D2n9PHg+TT1omYi8xLjHPBKYpLzfR4y9EwADPQ9p/TyiB/w64EBkPYtz77y5A+e8BFQWPbgKD70qxNI8O2dLPotzbz0Wv/O7X0JivUSKgj3Ww568EpgkPVXFHDyR0A29DtgDvZLJ5by3CV+95gQxPFq5rDsyfys7sbcUvJIxRL05CGE83uF5PVZaQryEhVe8HBjmvAdOnjxy4l489d4UvRmGvDuQ04m8UZZ1PLhuwTyE7bW6OgYVvQTvMzspLy09nhNsOyVsED2vHsM8D9WHPFwej7wjcog94UEUPWYDMz1Z8Jc8MueJPERWE7wM11O8ff+dvAdRmrtrxAO85J/OPFAB0DvvuZE9lo0yuyZplLvXwCK9IHRUPCPWurt5oDO9fjARPZi6eTtlnwA9sLPoPNnq7TvaHw09ZAmru0K9QbmahD69utOjPOuN5rpX7+c8hVUUvNq3Lj37y/y711hEvR8Sbjyib9o8Hw9yvHwyXT29Mo48jm13vM/VBr0plws87+nUvITtNbxQmXE8JdBCOxYn0rznmVa8srDsPP6SxTwfd1A8vABrvbzNqzy3Cd+5xR2qOTcLXb0icdg6GR7ePKoqs7yRNMC7hIVXu/s3h72xGMu8GCUGvISJA72fSIs7s7GcvCLZtrwTMMY7J8rKvIAqGT0BjU28XUwGPaPUPDoXKIK8xR2qPMwLwrwwuRK9WSSHPNi9Jr3SzJK7qiozvLw4hrrxthW7Lb+KPDcLXb0Qnpy6lJMqu7G0GDwUlSi8C6qMPAH1K7yDIPW7/S1jvAbpO7xVXT49zAvCPJmHOr1Tk/m7YKpAvcwOPjyPZ388GSKKudTGGrxpkuC8BFSWPB4WGjyic4Y85HIHvQCQybz0raE5ff+dvLN9LbwJSCY9wr4/veeWWryoyMw7y0H9vB4Wmrw325k7MO0Bu0ZQG7y8NYo93hkVvaiYibw+yTG9FZKsPWI86rzmBDG8RrfJPCM+Gb0XKAI8oEUPvIYa/bquiR09AJBJPa0kOz3oLny8lo2yupsdkLwM19M8KV9wvBeMtDwHTh69fZc/PXDoVj2ib9q7QMO5vKVtjrsnMqk8LrjivDDtAb1/kcc9bYnsvBXGG72P1gU9MRrJvH0zDT0U/YY8gPapPGtcJbzZ6u28fMp+PIp6l7vQaqw85gSxu7UTAzybIIw8d9oau3YRBr2h2jS9I9Y6PT9iAzyGGn29VJB9vPnR9DwgdNQ84g0lPWuQlD3u7FC8X0LivHGA+LlxTTm8S3iavO2/Cb1T/4O8VPyHPLoHkzz13eQ89K2hvPLniL1oLf67pzMnvTOvbjsDitG8SavZPKXRQD1W+Qs92e6Zu+xaJ70e4qq77u9MPU8EzDtauSw9LrvePMkUNjwHhQm8XkkKvQeFCbypLa88fS9hvC4gQTiUx5m77fLIPFT8B7x/LRU9Pvl0PEVP67zV+gm8BlEaveljG7wrXHS8MxTRPE9sqjt41m69ZDZyvaktr7zfq748NHkzvYQg9bxU+Fu9yK/TO/0t4zyLQ6y9/DPbvKjIzDska2A7rFd6PChmmLxjPZo7oXLWvDGCpzuBJm09VsIgvOvFAT0L3Us8YKrAOheMNLziDSU9IkGVPKI/lzwE7Dc9V/LjPBLPj70maZQ9Nwvdu8JW4Ttvg3Q8tKp0PUO6Rb3dTYS7yH+Qu1ZdPjxomYg73kbcvGliHb2Ieee87oTyOQjmP7wtu965oXVSvFkkh7znZhe96mCfPNxQADxEIqQ6aGiVu3JKvTzRz469G4NAPHoFFj2CW4w8C3kZueyN5jxJEzg7HhYaPKZmZjwUyRc8SLKBvQNXEr2WJdQ7VfjbupPG6bpHgQ69NQ7ZvGuMaDwiQZU8XE8CvVxL1ryL20098H76u7wBG7uhQhO90vxVPbsEF7zDu8M8OdUhPFT4W7zDu8O8CnmZvFkkh7vqYJ88Uf5TPRcogjx2EYa918MevImxArwxsmo95p2CvMQjojvV+gk8vGXNvKktrzySNEA818Oeu9TGGr0efUi6ACjrPO7vzLw6OoS9MLVmvbbcF72rv9g8O2dLPUx1nrwHTp45OdWhPIHzrbteFZs8YQ+jPGiV3DwZtv88CeDHvK+6EL2aIIy7XOP3vCF4gDxUyJg8dawjPT7JsbyMqI493k2EvbsEFz2cToO8RR8ovW6G8L1kNvI8BIdVPKrC1Lu2EAe83hkVPLPli7304RC9FidSO7rTI70z5I08V/LjPNtM1Dy23Jc84ENgPMivUz3mBDG8Yz2avO7s0LzT+Vk9SqhdOqIK+Lxvg/S7V/JjvMYdqjotI707vsczvdACTjvMpw+8C6qMvMh/ED1jOe68ZZ8AvXqdNz0xgic9OQVlPB5Kibo7N4g8ONidPH7/HTw1qfa8sYCpO8RQabzuhPI82fGVPWE/5jwwuRK96/VEvHk41by5BmM9EswTvCiahzxiPOo8CH+RPWGnRDhMpWG7fAIaPDvPqbxiQxK9MxTRvLIYSzu9yi+8KGYYPH4wkb11RMU8lo2yPGVrEb0KeZk7CXyVPJ3mpL2FVZQ7PskxPRwYZjwfR428P2HTPBm2/7ukaWI75AetPNi9Jr3RAk680J4bvfo507uk0UC8/DQLPadj6jzSzJI8fmQAvfUSBDxpkuC8VyeDveyK6rx1REU6AfUrvYh5ZzzvUbO8ps7EucxzID2SNEA8QF5XvBuDQL2iPxe9BITZvDCFIz09NIw8T6AZvQhLojzU9l08C3XtPKhkGj04DI07T59pu5GcnrzdSdi8P8Y1PQdOHr2K3sk8X0mKO2xZKT0M2s88KiwxvG5WLTzwfvo7DqQUPfUShLwtixs91foJPOZpEz19L+E8yq0HPd8THTznZpe8THUevb9gBTt9l7+8Ge6avDC5Ej0CIvO8HBhmPArdS72Tlqa8Hn1IPEoQPL3B8f48XLM0O68hPzyfFJw8nOmgPfbbGDxW9d+7rMMEvFTIGL2WjbI89qcpvKebhT3Gggy9Tm8mOwJaDj1BwD28ztiCumr6vjrKEbo8kpkivVxL1rveFpm8ep03vHkIkjzz5Iy8MYInPOM6bDk7Auk8jECwPJSTKj2SyeW7gClpvfWqJT0fR408wiaePHHphj2E7TU91lvAvOWc0jzLeZi6QMM5PTbeFbmws2g8ENFbvP9iArw7A5k67fLIPLQS07xU+Nu7j9aFPGGnxDzbtLK7CUimuuQHrTuSMcQ7MYKnvPyYvbwefUi8FfoKvfyYPTz5pK27SK5VPAD4JzyAjku95J9OvHLmCr0Vxhu9XE+Cu7gKjzxv7s68pW2OvD8ulDzth247JTghvb4vkjxoZRm8oN0wvEFcizznZpc9WlHOO1BprrzTYTg79qepO0Dz/Drvgfa8RlCbPHGAeLvFHao8odq0PLcMW72MqI48v/T6O7IYSzy5Co86THWePNBqLL13piu71MaaPK28XLvaHw09OT2APHXgEr1NUfY8UX+UO9EPYL1rs9u8sUEEuNgLnjseagc9azRxvDw0jTyM+io8IzrSvBEKazxtr488aoHxOqgqprsx0k8981haPVcC37ysEbs8K7elvFQddb0TOAm9tSiZvMMoN7wDVSy8FaLUO4tJVrzQ3fU8Bdjsu+sLRrwecH48k5ZqvbgNAz0jiX09RJoWPEXMAL0T79Q7vCz5vEGct7yMyus8amIFvfQ7mbo0T5k9DCNWvJ34p7x+lBe9pMSmvFxLnbwDpFe7ksYpu3jhDTroVpu8ZkkGPeqKMLyExou9YmScPHOxRL2RE6q8u6k4vRXSE70JPuy8ynOgPDy1IjqdyGi7xlzMvNSlnjykXAa9GbmoPAYK17xOMgq9ly7UPP7sAbxU5ZO9zHVLPIoX7LzzJnA8npAHvYHILL10Mtq8N2xkPIL6Fr1YNEk8QwCMu25JmrzBdbe80pB1vFNLCb1A62I8o5K8u1VNNDxJGza9LZwPPWpihT1YS5M6DKRrvd1zSL1Og2C9a+OavIMsgbmo+uY80A01PairOz11ZEQ97YxbPBvtPbw/aCK8qMKFPeK8hrxB6+I8p6mQvBA6Kj2K3wo9/CANvftWwzxFNCG8kGLVPNYoX734by68ykPhvHZHAz3SQUo84guyPO1vmjzMp7W8/opYPGkA3LtIaLY8ZOdcO9kNyTuIlCs8QRsivcGMAT3fdXO8Ggp/PNxxnblslpq8xz8LPTAfUD3rOwW9xPIAvP4L7jxZ/pI70ViUPOoJG73x7g4919kzvZ9DB7z58MM6xPIAPReeCD3P28q8YIHdu65FUDsU8X89A9SWPOKMRz1kF5y8di6Ou+sLRrxzscQ8BNbBvJGrCT3XcRM9pBNSvCWeJj3qirC8xw9MPZCSlD0Ah4y7Oh/kvGvjGj2+3/g8ha9BvaUVfbyBeYE861rxPIXfAD3p17C7dGIZPPBxRbzoJty8rBE7PJX6PryE/mw7qw8QPU4yiryrrWa8vPQXvIVgFrvUpR49TAAgvceONr0Huyu8j6/VOzc0A7wB8Ve8g0vtO4XfgLxBTQy9rBG7vOM9nLuSFVW8dpauurBH+7zaP7O7Kzg7Pc7yFL1IaDa8ZJgxPWLlsbxqYgW7/CCNvOhWmzw8tSI8yMCgvN8myLzX2bO7W2hevIAVLT3tP9s8Nmq5vF5NSL3mQfI8f+VtuzuDOLyU+BO9KNK7vUtNID1lmlw88HFFvRxu07xUHfU8di6OOrNcJLy+Dzg8NE8ZPDIEurs70uM8gJbCPEue9jwsudA8/QnDO+ckMT2nqRA6cn/aPAq5irnB9CE8dDLaPCxqJb00t7m9YQJzvMMoN7w9Nji9QBsiPI2tKj05tRg9ZcqbOxbUvjtTS4k8+iTZvPm6jbzJkGG8CO2VO5hgPjuNrSo8V4HJOhXriDy7Kk67HnD+PNmMMz1eTci8w6ehukmaoDzTc7S6Umr1vGHjBrwWI2q8oxEnPBDSiT2m9hC916n0u4rIwLwgHQe8wHOMu3MwLzztb5q659UFvS61hLx7f+48CT5sPJ34Jz1FzIA97e4EPc0oyzo3nCO85nPcPLYRzzw95wy+S841ujIbhDxL63Y8DlfrPM1Yijy7qTi9stsOvcPAFr1plpA9tHUZPLsqTr3gCYe9i5IKvLEqOjxr4xq7HVESPEWzCz3PjJ+85D9HOwNVrLy4jhi9gywBPes7Bb05TyM992+uvLWQOT2mR+c7a7PbvMQq4juyeeW8hd8APK2S0Dt2Zm+8TgLLO2Tn3LxYg3S86CbcvPMJr7xxFQ87M4VPPYL6lj2eeb07aTCbOyOJ/Tvx1Rm9LrUEPd6lMj016SO9RcyAvOTwm7ydxj28ofaGvL1e47z5uo29TACgPE6DYDz4oRg8lfq+PCwCBT2ZMP87j/iJvTofZDwBIZe7aUmQOl5NyDmulHu8LQIFPODXHL0I7RW9WLOzPH/jQjzHD0w8WALfOxrrEr3ZjLO8UGafvdkkk7w5aBg8Ps6XvXr8rTug3RE8VR11PEjpS72wKI+8RYPMvG3n8DyWLCm9AaCBPeDZRz53yBg9mH3/vAPti73ijEc9sEd7O/yIrTw6H2S8MgQ6PCHW/bsqNhC9CW6rvBeeiLr7hoI8LOkPvcrE9jyaYum70wuUPIYw1zwaBIi8IjgnPF8wB72jESc91KWeO17+nL3XqXS8ykG2uWyWmj0IPEE7CW6rOyu3Jb2ir/25QwAMvSZuZzxBbPi7QBuivFQd9bwvnjq9uypOPZYsqTw2ajk7IYUnvLMsZTy5xnk74w1dvFTlk7xWsYg7x442uzW5ZDzUpR66LpwPvEIfeL38VsO6N2o5vNJxCb0U8X+7AfHXvOM9HDwQOiq8TU9LPLPdubtolpC8UAR2PJCSlDz/vEK9GYlpvQVXV7ppr4U99u4YPMBDzTvkP0c93IqSPNZYnrxggV08QmYBPXH8mbx9Mu48vxHjvDm1GL3tvkW90/KevNqMM7w8hWO8BKTXukZmizyg3ZE68FSEvOrZWz3g1xw9ji7AvMpzoLxYZAg9t0O5uxWiVDz8iC29amKFPXF9LzwHUwu9K4dmvFXOSTyiYNK8uEXkvBzvaL1ezt28dOMuPI1Fir3+O628ly5UPTsCo7wlbuc89DsZvOqKsDxSMhQ8sPhPu2j+sDzgWLI7PzhjvQHxVz0iCGg8SDh3PKKQETyAlkI8ZhvyPGHKkT0Hi+y8GFd/usRaIT1lmtw8KlX8vKgqpjxcS528l14TvUEbIr1UnN884oqcu8bdYbzlCZE97e6EPAdsgDyvxuW8Wjb0vCii/Lrn9PE8xlzMu+nXsLxhs0c8zvKUPJXKf7zM9uA66YgFPZGUPzyaE748UX8UPe7wr7xZ5Z08oV6nPOSO8rzsjNu8kZQ/veXAXLx/5W29B1MLPWqBcbzf1xw8k0e/vD/pNz104668hC6sOvnTAj0f1FK8/NdYPEZmC73uwPC8YbPHPBk6vjx3mFk9lPiTvPptjb3RpZQ98dWZO8Mot7yPMGs8sPjPOzc6ejvfJki7T+WJPBA6Kr1lmty8WmYzPU7QYLxmG3K8kOG/Pa1DJb1s5UW8epSNOvY9RDvZXPQ6a/yPPIrfijp+40K9AaABPUPnljs1gQM8ATqMPMBaF72pXJC8Yn2Ru8ynNT26p405iBVBvZ+rJz1qsbA8KlV8vU3Q4LqsYOa8hnkLvHaWLr2udY+6c8iOOusLRr2N/FW8AHDCPLRez7zhipy8IjinPHkZb70KBgu8AyPCOqWUZ71yr5k7vFw4uy4dJTxXMp67PTa4vN2jhzzGXMw8HB8oPS2cDzvqIpC8Urf1vHJ/2jxof0Y9FoWTPE6znzwQCus7vFw4Pcg/i7q1D6S8g/xBPezVjzyiYNI6+PDDu2mvhT2kxKa8AO+sPPY9xDpaZjM9uHUjOx/U0jxXAt883j0SvZOWaj10Ypk7KQSmvE7Q4Lzdowe8NLe5PB2gPb17Lhi9R3+AvWJknLwku2c86tnbOxRwar0CI8I8yRH3vJITqruVyv+86CbcPLL6eryjEae8pUW8PB/U0rvfp9072AsevYzK67wMUxU8EQrrPBQhPzzHXve8Z03cPEWzC7wjahG94lrdPBoECLzy10Q8e39uvegm3D25xvm8UDQ1vLaS5LysETs7XWQSvcMot7y2Ec86zgsKvDU4TzylRby8fbHYuwJybb3dJB08wyi3vdzASLy/2QE9CnDWvHEVj7vKcyA903O0vbbCIz3uiA+9ql47vcF1t7zHjjY8n0MHu3ZmbzxOs5+8amKFPCU2Br1MAKC7kZQ/ukAbIjyoyHw8+KEYPJ+rp7tiZJy8keNqPXWUA73wJEW9OJ7OPKJg0rtsFQU9OM4Nvb7AjD2ZMP+7a2QwvL2OorzKC4C8azTxvDJTZT21D6S8f60MvVoXCD2F3wC9K7clvYexbDwQOqq8MQIPPWv8j7ww0KQ8v0EiPdpcdDwxUTo93XNIPQBuF7x0AHC8TwT2PJrj/jz6bY26v9kBvfwgjb0eIVO9WmYzPetacTtb58g8m5RTPE1RdryhXie9+G+uOzDQpDxOMgq9Shu2Oz9qTb26QRi9x153PIdiwbukE9K8v0EiPE/MFDwlnia9fWItPBoK/7yr3aU8I+smPbOrTzw+t829ZLXyPFFoyrv+ilg8UWjKvCUdET3NKMu8JZ4mvAQGAT3OWjW9z9vKvNxxnTxz4QO8xKnMvGs0cT2+33g81Sa0udanyTzuwPA8lcjUPCzpD7sLosA7svr6PI1967sS7Sk83fRdvCZuZ7y8q2M8+PDDvFG3db1zsUQ9aoHxvBg4E7xfF5I9GAhUO2QXHDxnzEa8qi58vEfnoDxZ5Z08XzCHPAvx6zxve4Q7nZb+uzWBAzw0t7k8KgZRveM9nLy3E3q7MQIPPQdsAD0OV+u7YuUxvELOoTwSvWq8zShLPZrhU71R5zS9A6TXvO1vmrz/vMK856XGuxKFibw95wy8+G+uurWQOTuCmG28kZS/PB1Rkrx1lAM72j+zO8WpTD1kMJG8i8hAvfOImTublNO7IghoPf4L7rwj0IY7/VhuvMqMFbxdzLK8budwtz0GeT3KC4A7IzpSujAfUL2SEyq89r7ZvEa1Nr0/OOO8q9/QvNDddb1uGds8KZyFvUPnlrxMACA9TYE1Oy2cjzshh1K9uMROPAPUFr0zNqS7v0EiPRLtKb3aXHQ9F54IPNzASDzFcxY8AIeMPH/lbTzsvJq89r7ZvBQhPz2dxj28u9sivQjtlTww0CQ9scKZOWuzWzyHsWw8LLnQOzc0gzzwc3C8tQ+kPCjSu7mMe8A8ZkmGPb4POD3yJnC9YbPHPF9/sr0bvX47aUmQO0ZNlrx4+gI9VMwevLAoDz1Vzkm9gcgsO2M0Xbz+Oy296dewPLrAAjr+C+679LqDvEwAoDz6JNk8q9/QvLz0l7w8NI087r7FOjIEOrzrirA9NLc5vaMRpzwCU4G78FSEO3H8mbyeSf68MlPlvDm1GL0ku+e4kasJPasPEDzdJB29UDQ1vcMotzwMI9a7P5oMPMCS+DzIwKA8wyi3vFQd9byNe8A9o+HnPK1DpTz5uo09OxuYPf7sATmbRSg9S552PWUZRz1QZh89Qs6hOkxPyzwV0pO9/gvuOgi91jxnfZs7aK8FvRAK67uHYsG85L6xuznt+TwqVXw8QmaBuqpeuzx5lA29/boXPUSalr1Js5U7MgS6Op5JfrvWKN86jUWKvG97BDxxTfC8E+/UvF7+nDy9DQ09tSgZuzlPo7xrs1s92YyzPExPS71IOHe8ztkfvACHjDw954w8P+m3PIR9Vzzl8Js6dZQDPDOFz7pTG0o93IqSvD5oojwt6zo58KMvu9DddTw1gYO8cEvFPBoK/zsHbIA80kHKuxy3h7ywd7q8xD+BPdeKiLnijEc98KOvO4rfij1Vzsm6DNIxPYldhTxIF4S9p1WSvNw4Lrwq1g09rdyMPGxBUz3UyYm7QnizPFtL7Ly+xqQ7X4gWPf/DPLxNz8k8Ct64POlGIz2UazK9DzTYPJxsKbyTOp+8tD9iPEYji7vPW8y8qqsxut51EDzMThY7Xd0GPYBolTtYuDI8B9ECPMNB0LySRqY8bEHTOb7GJD3Tseu8fWjNvJRrMr0/IpS8mUcdPT5frrxnlnu838tnPZxsqbyz6Yq7eLAHvTG/5jto6zO9svWRPITKg7yAH6w743Y/vbvqgT3X7hU84+TsvCU3PTxOJIK8fiszOniMYr32/9+8aa4ZvdkfKbyLCBW986lAvBg1F7sPiRA9Ea6cvCBbUjtarCs8GH6AvWHqPD2ybw498bVHvQuhHr1sQVO93iynuwt9eToaETq9eMn8vPSduTunMe28uq0fvD2cyDzXynC8faVnvRaKhzuc2lY6AVf2O5p4sLvuIg69HciYuxodQTyB4pE8v6J/vNt1yLyXkD69N/33vKu3gLwPZWu7JE8TPXcqPD0gHjg9n1QbPVfQCDw+zds8Yt41vRMQwzwrUAq9EFlkPOibE7yz6Qo9JTe9PJUumDxu+LE8B2T0vBcpSD3qIn690LAEO93X7jwtRIM8eMn8PMB9AzzxI3U9TEn+vH1oTbwXu5q8GDWXO51gIjwhKge96gkJPHftIb2tYpA8yn/hvLTRtDyfMPY76fFqvDt3vDsgsIo9afcCPDQ5K7wxv+Y8QnizPGsQwLqXkD693KbbPHdbz7tlcW88DEBfPLsPxjwBxAQ9jadVPDUtJDwy1wQ82u98PYi/4zuNCfw821CEuzMIGD3Brha9dmdWPIsIFb1jD0k9W2+RO8McjL1KwpM8+22dvG6KhD2t0D09SufXvP3Pw7zDHIw8xooBPUdUHr2Np1W9XKCkO2zTJT1SVnw90B6yuyCwijwGxbO8+IWrOl2UnbxSqzS6Y6EbPaNtoDysn6q8NKfYu4Q4MTxXY/q7ZsanPGFYar2y9ZE8/4aiOjRRAT1XMuc7VOiWvDG/5rygha6875A7vLbdg7yCEyU9u33zvFxjCr223YM8TEn+uAdkdLz1C2e9fTe6OtNPDT2oz4689zDzO7Yz27xDqcY7vyjLPKvcxDudqQs8NKfYvP1hFrywJl08EYr3PCdcybuZtcq8Tc9JPGPqhDxx4KO8SUgXveMIEr3QHrK6ptsVvcivDb1gJ1e9OMDdPKl6njxLtgy9s0tpPEttIz2PagM8goHSO2f3Oj1Gnb+6sw5PPDbMZLxHnQc9+udRPFtLbD0gHjg8+ufRvDghHbyEpl680U/FvWWVFDtYSoU8G3/nvBLfrzxwWtg8EJb+PNSlZLzijpW8ZGQBvdm+ab2NLSG9y9QZvTHw+by3iBM8rdyMPDePSrzbBxs8tHx8PNNDvjyXU6Q62webvJrmXTtdlJ08Ps1bO57/Yr3C36m8mZCGO5T9hDparKs9CnALvRe7GjxMDOS8CCfaPJM6H7vMc9o82VC8uyNDxLw7CQ+8iPz9vABKiLwSTd08faVnPdX6HD3fjs071r0CvZJ3uTxYSoU8qEkLvoYsKrzSgNi7gB+sPJK0UzxMSf48jyGavX83grvV1ve8AvUXPfAWhzsgHji952oAvIXXcTuVLhg9lQpzvCw4tLsHiBk91nSZu33W+jstaUe9geIRPDjA3TxzsPe838vnPDjA3TyekTU8EH0JPTG/Zry46jm86xZ3vaNtID3UyQk8QbVNvPtJ+DyDUAe9MfD5vBJNXb39PXE8Ya2iPEEjez15KoQ9+XmkPLmtH71b3T43g+P4u9/8+jx9aE09qCXmvPwMXjxz1By9iFG2PDmDQ7wFcHu9Jis2vSCMZTz5wo08e7FuPGf3urpdcPg8Ib34O8ha1buIv+O8NfwQvHXIlbs4IR280LAEPRZm4rvlCXm83u+MvWmumTzcpts8j/30O/LBFjt9Bie9iPx9vCBbUr22Dhe8F7uavDFdiL0vXUA9TpIvPMNB0DzDQdC8RNpZuzt3PLw3aoY7ZwMKvMsdAz3JTk4+23VIPTPkcrydC2q9xTVJvOsWdzwxv2Y9r4ecPFXQQDs0gpS8bAQ5vRaKB70n7hu72u/8OxMQQ71tEIg7YCdXvLQ/4jx9+p88mUcdvH69hTwg7SS9IO0kPemPDDxSq7S9gtYKvU3PSbyxV3A9Z7ogO/kkbDyt0D29BXD7vDAgJrw12Gs76xZ3OwbFs7zEBDa8ukxgvUWdPz3OvIs7jKdVu+jAVzwS3y89WLgyPDpGqbw7dzy8Z/c6PL+6Hb3nagA9l5wNu2FY6jsspmG9x5dvvFeHHzxHMHm98wqAvfVgn7wDS2888bXHvOZesTyJgsm4kFKtvEAWDT1YSoW7/WGWvZiEN73G+K68JaXqPE4AXTwkdNc898JFPVdj+jyBHyy9xvguPc02QD0b1B+9SZGAuyX6Ir0LoR67fdb6vAYzYbxGzlI8Yon9vBkdQb2OXrQ8rA3YPG+7F70fmOw8ukzgO2+7F70WBDy8HmdZPDbMZLytkyM9ifD2vJbN2DxnZeg8+M6UvFSfLb13mOk8Bd2JvKfbFTwjHgC9S20jvAC4NT0//m69n8LIO5M6Hz0xv+a8BtG6Oj2cSL2H7w+7ybz7O7mtnzzUN7c8wYrxPBjsLb2wSgI9yFrVPO0KcLzTsWs8+udROiG9+Dw5g0M9Ps1bO0BTJz2Kjpg7UIYovMoRtLwrB6E8HaTzugbFM70XKci93l26O3oSLjvsa6+7ftZ6Pfb/3zva1gc9HvmruzJFsrwCPgG9D7ojPHJ/5Dxxr5C7TDCJPPwMXjtmDxE86CEXu4w5qDyaCgO8JzeFPPcjBbxHMPm8S22jPNzKADsqEyi8RzB5vUOpRr1NYZy8d7yOvfuqNzzYHym98BaHPM6k7bt2+ag8S7aMvFaTprxSGeK8Ceo/vVf1TDr6GOW8B2T0vORqOD1W3A89KlyRPWjrM71dAsu8uLmmPBWWDr2hSBS8jdhounkqhDz0bKY8MFG5PL6JCjy/KEu9fMkMvQYz4TwkdNe8xK99uwFX9j2LdkK9CLksvJ6Rtbyjqro79J05vP9Vjzyt0L08SSRyvSfK9jyLCBU9Gh1BPFnpxTz5SBG7q0pyuzGCzDy3iBM9JTe9OSKA3ryDB5681KVku4CNWb2snyq7gweevF0CS7xB8ue8bEFTuxhaWz3ijpW9Cq0lvZMW+jyGdZO8jszhO1i4MrvXyvC8zAWtvLl8DLoEoKe8vwOHvErn17r/hqI7vvc3vLf2QDyjwhC8BKCnPK3cjDz0bKY7fiuzPNVDhjvzF+486YM9PVXQwDyIUTY8JzeFvLdkbj3Ki2i8fWhNvP7bkj1qHEc9JfoiPehSqjpQSY49l1OkvHqkgLy5WGe82tYHPWpN2rsS3y89ZQNCPfqqN72fwkg9dZeCPGhZ4bwkBiq9yhE0vfpV/zwK3ji8bjXMO8lOTrxGYCU8Z/e6Ort98zmotzi9wOuwvO+QO7wB6Ui8wFlevY3Y6Dsxv+Y7gVC/vHDsqrqzoCG8qj0EPe4iDr35SJG8YLmpO336Hz19+h89IIxlvZvm3TrX7pW89Tz6vBRBVjwqE6i8QZCJPAUCTr3oUqo9NKdYvD/+bjwW+LS843Y/O0iFMb2Ajdm8dkISPAuhnrwYWts8L11AvaI8Db2TOh+9BKCnu6wNWL3TsWu7mMHRPERsLDwosYG8vyhLPdiNVr0nXEk91Dc3vVCGKLxslou8/pKpvHQFMLyRg8A8senCvDCO0zuqPQS90oBYvWTSLrwm1v28nLWSPA2Vlzz5JOy7AqyuvLYOFz0CGty8IB64vMNB0DyJgsm8lNnfvPFHmr3jCJI907HrvEkk8ruQm5Y7VpMmvT5frrwIuSw9KVBCvfu2Bry5ifo82RMivDBRubylz0a8kzqfvANvlDy8QFk8K1AKPUwwCT2Jgkm7io4YPQqtJT3C36k8Y312u7OgIT2XkL67qhnfuxmLbr0KcIu9cR0+vKDOlz276gG8A28UPWQbmLsVlo48NXYNvI3Y6Lw0ghS8RQvtvPtJ+Lys6BO90hIrvPlIkTwASgi74FGzvHgetbyDBx681r0CvC1EAz3jdr+7wk3XO1KrtLvxI/U6faXnvfpV/zu46jk9s+kKPeq00Lyjtgk9XHx/vC51Fr0iErE85Qn5vLMOz7yzoKG63nUQO8/tnryfwkg9FmZiPLh8jLtcP+U75NjlPNNDPjwkBqo7BA5VPenx6jxOJAI8rT5rPLPdO7wHiBm90U/FOzQ5q7xUn629A0vvPIKBUjyo9FI83iynPQbFMz3rg4U9B2T0u/cwc7wfvJE7cx2GOtw4Lj3v/ug8XlcDOyCwCjwgjOU7AhpcO1f1TLwy1wS9ZQPCPMqjhrwAY/276Y+MumAn17wn7ps8GhG6PL1xbD37toa9K3XOvEu2DL0qE6i8952BvQUCTjw75em84kUsvb0DPz2/uh08YRvQvHWXgjulz8a8c0LKPJlHHbo45II99QvnO/VgH73cyoC8gkS4PMU1yTya5l28lNlfPICNWbxyEbc7bTXMOh8qv7rG+C49G0JNu03PybxDqUa9Z5b7O4hRtrzLHQO9R8JLvUm2xLwwICa9iwgVPZecDb2pep48bceePAHEBLtIhbE8zE4WvR+8ETxrfu28NszkO3KjCTx6Ei69PqgXPXb5KLwgsAo82GiSOxTTqDqZI/g8N2oGPFBJDr1HMPk8HvkrvfMKAL0STd087GsvPU4AXTxbGlm8LpraPJUK87yrtwA9WenFvNm+6TuN2Gi8FqP8PNpEtT0zCBg95PyKvAHpSDzs/YG9OrRWPJWcRbkumtq5mIQ3PGMPSbxWk6Y8VA3bvLgn1LwEoKc7+STsu0apDj0gW1I6O3c8O6J5p7z5wg28Ea6cPIFcDr1nlns7S6o9uT13BD0xFJ87nakLPYaa17xYJmA8ppKsvPfCRbykDOG6iRQcvREcyjkwUbm9JmhQuumPjDz2/189AXubvNm+abyaeLA8E37wPCU3PTz5eaQ78zuTPD0uG710c128V/VMPQdk9Lt9pec8SbbEO2Ktoj2HXT08QJwQPC3XdD0Bexs9WEqFPOUtHj154Zo84+RsvYsIlTzuX6g8goHSvP/DPL3HKUK8n1QbvXvVEztqHEc9JfoiPVI9B7us6BM8MCCmvO0ulbtoWWG92R+pO4cgozzd1+67elsXPA802Lz3VBi8MFG5OwvqBzvqtFA9xynCuo9qgzzSWxS9F5d1PWN99jw4UjC9xccbPZm1yrwsOLQ7KwchvQQOVT0RHEo9fHTUvDDjCz1Qz5G8h+8PPR5CFb08a7U8XA5SvFfQiDpYuLI8f1zGvHU2wzy+9zc8OMBdOvqqtzx37aG7xAQ2Oz0K9jzVaEo7bccePcN+6jwe+Ss9V5MmvO7/Aj1J/+M8E7M1vV8nJbzlTJq8LVFMPDEIVrzp4Xc8JBmHPUVjwbs1ykW9vdCyvDCU97s0KgI8WX14vO8yLT3X4ic9yoxXvO/ZtTtm2o28mFAqvbmNh7vdmTG8o749PMkYeb15Rne87zKtvG1yD71JzLk7ARo6O0RIWrxfdba8UUUzPaJK3zwndPW8qM4+u2oJl731XRU87YukvMAliTz/V0o8IjFKvYWcRz3XdQ69Q9T7vAQP1Lzh3Nw71qHzvP8koL2qIxU7L4cavOtwvbzl34A9Ej9XvV2AHL3u/wI9+Pk3vEbXnzukMpy9Js1svP9XSr1q40m8p/QLvUm4l725jQc97EpwvOPEmbx1HjO7Ssw5uh/PljzG8DS9YmrQPJXnMb0Bpls84XYIvQnsqryFz3G8kn65PFYiir3PnFg81FNivPgsYj3SBdE8b/NKO5wf97wwlHc8bJEXPEYKyjwS2QK8okrfvGW4Yb1zXEM82IkwPYv62bxGMBe90mUNvSP+n7hwZ6m8eUb3PK8zFj2jSl88AvRsPZ46Xjy4TNO8G7hQvHhzib0Qvhs9swmoO5rRZT1l+ZU8byb1O5c1Qz1gT2k7OGboO1ISibuMlAW89QQeOjGigbvELkW9DEEBvGKderwqA7s79ek2PZi2/rszfDQ8PBCVPN9boTrmhom8RG6nuqRlxjzXdQ68laZ9u5zszLz602q8z/VPvLyPfj0B54+7KEiQu9LSJr3NGx29q5CuPZPMSrtpb2s8zKc+uyweIj0Kxl29quklPYajDLxQ0dQ8JAt9PG8m9TzICxw9mp67PA2Pkj3DjoE7oCKbPOwXRr20CSg8zRsdOnHNfTyxIeu8tVe5OwptZjwzIz29IrAOPXfMgLwvusQ6uH/9PEYKSr0B5w+9Wz/oPBXOHL2ftYG9S6bsvJc8CLymE5Q86lwbO5Kx4zs0KoK6gqctvfCAPjwOcAq99LYMPQ2PEryznI476QdFvGIjBLx0qlS8I2T0OlDR1DtygpC8tgWHvP6wQTwJJpo8/16POxccrrwZRPK8qdUDvdIF0TuujI28VGCaO0DSBL3TDBY8ujQQvdgcF701/W88YcNHvWOrhDwAzCg9gnSDvEW8uLykxQK9G/kEPZ+1gT0WqM+8VDpNOzIPmzyftYG8mvcyPQBzsbxqsJ87CpMzuverpjxfAdg8I9jSPL9Rbrx3n+68whNevBXbebwwLqO8P8T6vJOZoDz/MX09MJR3u7nz2zzvpgu9t6XKvNNGhTzpB0U8FI3oPMiegrwN/Cu9MC6jPUYKyjxFY8E8wCUJvXCaU71ikB29mirduzvCg73jV4C9PEO/Oy2SgLkauFA9Est4PF2zxjtytbq7YxHZvMV81juanju8LxqBPMeXvbxTk0S91FNiuYX8Az0zVmc6t3IgvaocUD3whwM9/op0vArsKjyJKw26EfgKPXm6VT2049q8bMuGPH4jzrxPUBk7ZSxAPYEzz7y3yxc9inmePLelSjwUjWi8DjabPL/rmbxGCsq8coIQvXChmDu1V7m8cuhkPD4d8jyftYE92tfBu2k8wbwyr968pGXGPFfJEr4ZRHK9OACUu2GQnTxtco+83PKoO92ZsbwWqM+6svUFvWagnjyvMxa9lzVDvRu/lbxxQdy8DqM0vS341DyU0w88UTGRvKO+vbwH2Ii8RZbru9iJsLx+ZAK8r6AvvYDlvbzO/BS9x5e9u9duSbyQClu90N2MPCHjuL3KJgM7ufNbPDmnnLxzYwi9DqM0vIp5HrvA+PY7aLsFvUexUjw1PiQ9V4hePZXnsbxj3i49sEc4vPmgQL3wh4O8VQcjPMQuRb2Plvw7vCmqvLgZqbsgPLA8mp67vPUEHr21V7k8rl97vGagHr1Gluu84XYIPXx8xTtq40m9YE9pPIEzTzyDTra87BfGuhoYjbgwwYk7D0o9PGI3JrwSZSS8xhaCPJZobTwGXWU9JfM5vWVf6jxPg8O820sgPTVxzjxaF6S9ruUEvfS2DD2+d7u8SqZsPaEv+Ly9Y5m89ZcEPDmBT70ONhs9LhM8Pi34VDy90DI9rDc3vRnenT1SEgm7cujkPOF2iDzWzoW86K7NO1Rt97smmkI8xvC0PH3wI7pxzf28r9NZPKcTlLuio9Y8Ok4lPQ0v1rw5DfG8LmwzvCR/WzyuX3s8QscevR+VJ70c0ze8dKrUPAL07DyjcCy88fScPLzodTy7giE9BwRuvIYQJjwONpu8MQhWvLQ8Ur3BOSs8LcWqu5y5IruNSGu8LFgRuyoKAL13n+48zVUMvX6XrLwNyYE8ufNbPOxK8LvYiTC7wWzVvPCAvrxA3+G8gBhoPCQL/bwBQIc8AzUhPTMjvTwLBxI8vWMZPRHxxby1JI89whPeuSvd7by6DkO9Yp16vIYQJjwrd5k9LxoBPbh/fT2mgK288xzhvDr1LTsf+/s8NhjXvDT977qn9As95P6IvYp5nr0gPDC8cKEYvXkTTTy8tcs82WNjPI7v8zuu5YS7lHPTPBoYDT2OiR+8XY35vFFFM70kf1u8wJKiu/N1WL3XofM77YskvQAlILxX/Dy9PbcdvLM8UjsONhs8xGHvPFwMPr2n9Au85UVVvbnzWzt9KpM72Eh8vBZ1JT01pHg6/rcGPYJ0AzwED1Q8LxoBPYEApTy8tcu8hMIUvELHHr2lDE87bdhjvOACKj1khTc9+7snPZvRZTx8g4o8j2NSPCweIj054Qu9idIVPVuYXzye8xG9MyM9vRlxBDwf+3s9Ke8YvW2lOT3RhJU8Tty6POACqjycH/c8YcNHvdiJMD0vukS9QvrIvHBnqbse7h49h7cuvYtT0bta8dY8/1dKvaaz1zw/mJW7KEgQvby8kDxLTfU731shPFQ6zbyjvr28i1qWOoI6lL0Xw7Y8rd6/vAs6vDvPNgS9XAy+PFGeKjx71bw8agkXPVDR1Lx1HjM8Xs6tu81Ox7zInoI9D31nPbhM0zx3bES74AKqPGzLBrvSBVE9w44BvdwlUzyn9Is8SFjbPDraxrxSEgm61vpqvEOh0bxkhbc9u7VLO753O70txao9hWkdvXr7Cb0WdaU8h+pYvCi1qbznLZK8x5e9Onm6Vb1qsB89gxuMPRM/17vIngI9OaccO9ux9LvzQi4891KvO3VR3bzdmTG9svUFPd2ZMbx4E829Q6FRPLRDF70lwI+8NcpFPQFABz3KjNc8/n2XvFjW7zpGlms8oFXFORSN6LxLege9WC9nOt2ZMT1BIJY8J6GHua6FSL2AjMa7onAsvVyzxjwQvhu96K7Nu9GElTsSP1c9Ok4lPbsViDykixM9l9zLPNAQNz3+4+u7/zH9PN4abbv77lE9gjqUvB6BBby0Q5e7z5zYPA6jNDwotSk76sm0uti82jwjVxc8XmGUPMXcErw2GFe85NH2vMsz4DzsSnC8QVPAvMZJrDsFUAi9OaccvFRt97y3rI+8MC6jvWNxFTysBA29bP6wumHDxzy90DK9iQwFvcWiozxLpuy8GJAMPYiR4bzSBVG8T4qIOp/h5jwLB5K883XYvI3ilro6KNi7z5zYvIVpHT1tco+81jsfO7fLF71zXEM7cujkPK+gL73jV4A9NJcbPBygjTxezq29SnPCPOdnAb1J/2M9QseeuvUEHr0UJxS9royNva1qYbzcfsq8oCIbPXhzib3XFVK8UrmRPKwEjbzcJVO9OihYO4e3Ljzwh4M9w46BvKpPej2p1YO9WvHWPPIB+rzHyuc8AU3kuzPwkjx1HjO9+7unPFl9+LvwTRQ86DpvPDAuI72X3Ms8lEApPWi7hTzAJQk8VJqJusza6LtgHD88mYoZvcHMEb3s5Bs9inmePPXptrpbmN+8wMVMPZzszLzUU+I8D0q9O753O70UYYM8twUHO14npbxS7Lu8Pl6mPPyVWrxg6RS9lzVDvL6q5Tze50I9hpzHvNux9DxIWNs7vWMZvWYG8zzIC5w8x70KPcDFTL1XiF49yJ6CPT/EerzXFVI8NCoCvYT1vrweVPO7fpesOpvRZTsnoYe6AzUhO9uFD70b+QS9mYoZvFFFs7ySfjm8T1AZPTU+pLyHt646pIsTvDZ4E7yk8ec8Zq17PRJlJLxIuJc7PUoEPZy5IrwWdSU8lHPTvIROtr3FoqO7/uNrvHKCEDwaRHK89Om2PITClLy3cqA7UNFUuXD6j72fe5K8KtAQPWKQHT2Vpv28sG2FPOIdkTyT/3S9/Qm5O8QuRb2PMKg8xfuavOnhdztxQdw7uH/9PNN5L738YrC8GhgNOb2diDyceG68EfHFO44chj0t+NQ8z5zYOpcCGTx67X88BwTuPPxiMLzNp767rauVvAhFIj1rVyg8pmyLO1hwm7wndPU8SPKGPHQKkTju/4I8lzXDPKXZJLyGoww9hPU+Pfp68zw25Sw83CVTPQW23LsZRPI8Ha1qva+gLzwYnWm7hhCmuy2f3Tto7q+7ZTOFvH0qE7xLGss7ZqAePQ27d7uPlvw88pslPcX7mjuXaO084h0RPdzMW7vgNVS8pMUCu9n9jrzkpRE9SPKGuj7qR7pEbqe8eRoSvXx8RTzpB0W86K7NPJc8iD0LQQG9vZ0IvcITXjwahaY81xVSvXNjiL3vpgu9MC4jvSM4jzxwoRi81jufPNux9Dvu/4K8a1eoOyTfF7242PS6FI3ovMsANr09t5076SIsvTSXmzt7ohI9ZqAePWh6UbxZUZM84h2RPPMPhDw8dum8QseePQeeGb377tE7cGepvPCAvjtv88o82BwXPdI4+zxeYZQ8WX14O7aK47zTRoU8E7M1PBwGYjyXNcM8G/kEPFC2bTx8g4q85KWRvOe5M73Dhzy8CEWivFq+LDye1Im8fHzFPMITXryTmSC9nZNVPDpOJb1vwCA8WRckOztpjDw+Xqa8wCUJPa6FSD1NaFy9quklOylcMj0Kk7M8lsFkPKf0iz1ngRa8HiiOO3MpmTyMxy88eGxEPB/PFjoe7h48HoGFvZmKmbwgb1q8Y6uEPPUEHj0W23m9iQyFPJiDVDxfQgw89ZcEvcCSIjxI8ga83hptvYp5Hj0rd5m8gVkcPd7nQj0Z3p09JN+XPP9Xyjy0sDA8hc/xPCyqQzwHBG48roXIvElYW73NdJQ7G78VPegOCjq6Qe28GWq/PC1RzLyXPAg8eEb3O/rTajzq7wE9HAbiPLF64rxLeoc9e6KSvRXOHD0pXDK92f0OPJ97kjv6R0m9QvpIPCOlKL1VByO8Ak1kPClcMj1SuZG8r/mmvGUswD3IngK8yozXvKO+vTxDodG7EfHFPD7xjDzsF0Y8LmwzPaXZJDwC9Oy7Ph3yPOjUmjxbZTU88xxhPMHMETsh4zg8czb2PCXAj7wzD5s9lo66PDg6A70WqE88YE/pvC2SAL0gb9o6hWmdO3TQITwfyFE8Wr6sPOKD5bxv4WA9g3qJPYQTJ71GUxq9LuUxO2yzfLuWAJc8JZ23vFjCtTwU/wS9eHgYvUNdATzk5hG9bcruvJKkTrul7jk906D9PFYpmDy7amA81c7hvCBUirzyMTC90IU0Pa+qobxCAAa9VzdWPPkmljs+pL28cQ9FvIstPb1D7eq8IORzvOJyJDz64Aw8nb0xvbiVILyC5cI7x9IAvGhckbxOBk49pe65vMUBGL2LwgM9EugSu096O7xoJEa9LkItPJWMKb1AGKs86em1vMfgPr1cwQK8yFSsPe547Lxsxpe8VE97vCWdN71pOzi7+qjBvJ7UI701lI68DJYxPSjiDb1N71u9yFQsPAEgU7zPAwk88jGwPINZsLzDm+i6zUBeO4stPT3OtEs8JCnKvBxVvbzk03a8PGibPBjGBrokG4y9IIf4PAeA8rwyunE9QNKhvKZiJ7yD/DS8NnO1vOBEQLwSLpw9BvCIvC0Gi7tKZHy9Kc/yvLuw6TyQduq8X9xLvU5jSb10sRa9hHCiPPZ2Bj3D4fG7T3o7O06blD05/pQ8ICr9u9S37zx1yAi9ntQjPfPrJr2BztA6+3mqPPqowTxWN9Y8ASDTO6RsDjza5CA7A6syPCNv07zOEUc7Mrrxu3VrjTzoZ4q85HZ7PCBUij1cOvq8ihbLO1qTHryWoxu8JIbFvBcMELxss/y6pqiwvNaI2DwjzM68CDrpPO0uDL3Ssxi9nWA2udfXFT2S6lc7/dr8vE74D7zydzm8kgFKPWSVD73v7Fk9C7eKvPNIIjwjzE68m+xIvHkbHTyvqqE8U3mIPNQUa7rXn8o9GoRUvYOIR72Q0+W8254XPcvM8LyAt947YCsJvXEBhzwq5uQ7omNavOnpNTzu1Wc8ObiLOxJTTD0o4o28ZTxrvQXCJDyyC/Q74nKkPLTzzrzl6ug7ILGFPI+88zxtym48y291PLd+rrydYLY8EMjsvNhLgzzpL7+8nneoPDmOfjz2Y+u7JePAPMHdmrzH0gA9Xq5nPAvcuryPzw48tsS3PNgTOD248ps7iVxUO5I5FT3iFSm9j88OvUPt6rxaNiO80rMYvfg01Lxf3Eu8E0WOvHQ9Kb2EcCK9dcgIPZuBDz0KaE289e/9vPZ2hjwP2wc8CVHbu553qDwpnIQ7QNIhvSrm5DzzSKK8sa54PefznLxVfd+8oDX2vHdYcjy3OCW9h4trvT4BubyBK8y6AAlhPOqjrLyT84u8uvZyPQoixLzjzx88QS+dvALxOz2oMxA9PjmEPOH+NjwKxUi9QBirvADDVzyx2IU8zUBePMOXETx9P5o5lkagvRJTTLz6Yji9R+w3vDhEHr2uk688ekkBPSQpSj3W5dM7Jb4QvBLokjxIA6q8TvgPvbr2cjztvvU6pYMAvZp4WzydYDY9F5z5vAwUBrzzSKI8FMc5PVMcDb0lQDy9yoIQO6vx3bsV3is8yQ4jvSQpyrw96ka9YPM9PEvBdz2Q0+W8LkItOiX6srygpQy7xaScPAbGezzX/EW8X39QvaNVHL2T84s7if9Yuw0KH7t5ncg8xLJaPcixpzx5nUi8irlPveG4rbw45yK+8DuXvQ9+DLyyNQE93ggevJQYPDx/oOy8S8H3u86Pm7xLwfc8J8sbvCSGRb3CJ3u9LLdNvW8wHj3rXaM8j8+OPE/AxLws75g8SmT8vM5X0LvwA8y7frOHOpR1N73Gu449fon6vEm9oLz81qU88KZQvLUKQb06SPW87njsvAtxATxmgnQ8ASDTPH7mdbyswsY8IlhhPNtYDj0uQi09z2AEPf9O6jx3b2Q6JCnKPJAC/bySORU9yt+LPO54bD08GV68SmR8PHLJOzyDeom8i3NGPP3tlznl/QO9WjajvDtf57tMkmC88Ro+PJAZbzyD/DQ8Nxa6vAt/P70yunG8aFyRPBaYIr2zf+G8WMI1vDVcwzwfPRi9Fd6rPP+r5Ttsxhc8OKEZPSFBb72qN+e6DQofvDarADwz0eO7GRBnvQeA8jxlT4Y8BpMNPMeatbtT8n+9RbAVPTEAez1XTki97tXnOirmZD764Ay9Q+3qPKaoMLxtyu48Kubku7Pc3Dxv4eA6hc0dvdf8RbuVjCk8h4trvWAriTwRPFo7LEwUvVO/ET1v4WA7ZawBPS/8oz2SR1O9DiGRu+H+trxU1oM8NEXRu6CScb31pZ29A6syPGiBQTuSORU8GRDnO7msEr0cVT08488fPARlqbzh/ja9rdk4vCX6Mjs0RVG9JZ23PAXZlrx51RM9fol6u/bTAb1cOvo8NOhVPO1herxfOUc93G+Au5uBDz0kGww6I8zOPO0ujL0yunG8IQ4BO30sf7tfFJc8GzCNu+0ujD3XWcG8mKdyPSISWLwKoBi8YCsJvPjJmjzn8xy8+e7KPEw15btp3jy9UA+CPJ/rFbzfLc48YiGivJp427sJC9I8k7tAPZvHGD0OIZG7D2txPToVh70+pD29FTunPCPMTr3LzPC8w+Fxu5oyUjyC5cI8U78RPeE2Aj1Xq8M8ILEFvZXppLzuMuO8bCMTOe54bDzPyz29xz26PN4WXL2gNXa8PY3LvLPc3DzX/EW7OVsQvXCNGbzxr4S8hBOnvPscL72WABc8RKfhu2iBwToTar680fkhPDEqiDz4yZo7j4kFu/OOKz0uiDY9DzgDOy5CrTzEPm28fSz/PNP9eDoPsfo7y2/1PBkQZz22xLe7h9H0OxHfXrrtG3E9jOczvTCj/zzCJ3u7a68lvSrmZLzxvUI9z6YNPdP9+Lus+hE9HPjBPPiRz7uOchM9zrTLvIhF4rxqUqq851AYvalKgrzChPY8kgHKPdJWnb3MKWy8M4cDvAlR27xhCjA93x8QPKJjWr3cRfM82EsDPVhlOryvqiG9nneovEIABjyL0EG9jEQvu4znMzxQ1zY9JrSpu0lgpTyBK0y8AGZcu+547DztG/G8mySUuwBmXDzz66a8QtZ4PGM4lD2KCA09WPqAvM9ghLwTDcM8h4trvEYywToYVnA7x+C+O9JWHT0roFs8NH2cvMVs0bzT/Xi8hLYrPTctLDySOZW8p7+iPRKLF73H0oC8zo8bPfnuyrxwjRm9vbkdvR/gHDzFycy8VimYPAiX5Dwi+2U8OOeivAbwCL1bTRW9ETxaPMJRCDsNraO7rdk4uyug27z6mgO9QHUmvVQJ8jwNUCi93eh3PNjuB7xfIlU92HCzPUySYL2z3Fw9lBi8PPrgDL0v/CO9flaMPUKjir1t3Yk9HQ80PSMEGjt5Mg+94NkGujpygrsVO6e9rvAqvb7ngTvPA4k8KIUSPVCRrTyCiMc8yFSsu0NKZj3mpN88MHCRvIC3Xj3T/fg7W93+PIRwIrwTixe8zp1ZPHfM37u2ITM9XJd1OyWdt7zxGr47pMmJPHpJATyyNYG8JOPAu7ZnPL2T84s6N9AwvLyBUj2yC/Q7SWAluyPMzrzvSdW8AMNXO0/AxL1UZm273y1OvF8UF71/oGy8W6qQvYiiXb2uNrS7ntSju4eLa7wydGi82/sSPNkqqrx9nBU9pDTDvHJeAj2Lc0Y8j8+Ou/QCGbwMlrE8gc5QPI+JhTyh7+y8e8ssPRKLlzzbi/y5PHbZPGGttDoL3Dq7hoeUvE74Dz3w3hu97AT/PNUr3TuKCA07AikHvMOb6LyrTlk8iggNvJQYPD2mYie9zClsvKwI0LtH7De9cVVOvb9prTyyIuY8zlfQu7SIlbz92nw8SWAlvIvQQTzZzS68W6qQOlo2o7yVLy48hSoZPNKzmLzctYk8g1mwu+9J1buX7fu7nWC2vC3AATwpz3I8yWseO+R2+7p8hSO8aCRGvFCRLb3Isac4erQ6PT+7L7zp6TW8p7+iu+u6Hj35S8a8CloPPdhwMz2J8Rq9kY1cPLYhM7sg5PO76ek1vXYS6Ty1n4e8LkKtvDctLDsXP/68/DMhvQ84Az1pcwM9w+HxO57Uo7tlrIE9ihbLuk4GTj1Z2ae8cQ/FPEvB9zwst026mHSEvUPt6rwFHyC9HOoDvNKzmDzPYAQ9dQ4SPQLMC7vw3hs7rGXLvD9eNLo6pfC8PNNUPG3Kbrp1DhK98jGwvNCFtDwsTBS9cQ9FPNJWnTwTsMe7/jf4PHyFo7yWRqA8jf4lvaJjWr0YVvC9gcASPRb1nbx1yAg8sAedvGCIBD3AgB+8n0gRPI3+JTyM5zO9mWHpPOChOz3ctYk8HFW9ucAjJD34NNQ8aXODvCVAPDkaJ9m80fmhvKACCDzOEUe8k/OLOwLMCz1CAIY8omNaPJJHU7zGg0M9vlK7vF7F2TzgREA9+DTUuRonWbuVjKk8h/uBvPZ2Bj2X7fu89RmLO0PtarwyF+26Am+QPC7lsTsbMI28nDuGPEt7brxVfV+8a2kcvILlQrzWcWa86em1OcAjJDzTJwa9UxyNvK+qIT1cOnq8xhgKvAlDHb2e1KO8VjdWvT+7r7yh72y8Rb5TPVo2o7ydYDa9U/L/vL6KBj3jzx89MKP/uyrmZDtYwjW8AAlhPA2toz36PQg9wCMkPE74j7zvSdU8e26xPO2+9TogVIo93f/pvKuU4rxYnQU8dhJpvAG1GT1K1JI9sdiFvKIGX72QAn08VMPou1V937xTeQi9x5o1vRnKXb0c6oO8+MkavCNvU7xqUio8WdknPOBEwLo+ATm9BMKkvNqHpbyS3Bk8QemTuqkg9bxxRxA9YQowPdAouTwbdpY8TdhpPFGon7xR7ig8mEp3vF1R7DtsgA69u2pgu0w1ZbtFvlM8Ca5WPantBrz3HeI708qKPIHO0DnfH5C8xQGYPDihmbqCHQ49HckqPbb8gj0Lf7+8d8xfPJB2ar2cScQ7Sb2gvJymvzyI6OY81kJPveTT9jwIOum7g5+5vGdqTzy+9T+8ifEaPJvHmDzAgB+9R0mzPCIS2LyyNQE7i4o4vZ1gNrvJDiM9qX3wO6lKAry+mMQ8GidZvM+mjbpjOBQ9Qnl9uyL75bwClMA8JHgHPRLoEr3ueGy6B91tPIM0gDzydzm8cVVOvfA7F7y93s26JfoyPWVPBrycmIE8ldIyO0ckg7ucmAE94TaCO0gDKjyyaO88MKN/PdxF87tWlFE8bIAOPeR2ez0roNs80/34PP2nDrycpj+9Po1LvJft+zwg9w69AX1Ovdi2vDzbnpe9xoNDPDU3Ez3tG/E7C7eKuGtpHD0c+EG9nncoPCv9Vr2GdHk8Te9bvaNVnLsebC+8NxY6vMvM8Do3iqe8AGZcvWEKsLwebC88q/HdO6ntBryHnoY9BR8gPTZzNb17y6w9nRqtvDzTVD2PLIq8WjajPEYNkTtN4Z06NNoXvUrUEj0Aw9c8i4o4PTargLwPDva8Nxa6vEckgz018Qm7QBgrPQHaSTt+5nU7gStMPJDmgLwwtho9uU+XPGTyCr3xGr48OKEZPD2NSz2dGq06R/SLPNJJ4TyoQc68v9GBvdDfmLz7VaY8jKJaPZn64Lv5aJg8UB42vBXkAL3t6q08cYJ6O9HKzTwJCTW8NWzQuxerKj3BPaO8ZNsVPVanGrx9lEO98uEMPLaZVL3Q8DG9I86MvLSbrbu2T+U8QnzAPNX6gjum+Te7p4u9uwq/Rbzsa5o7qjqGvCXfJT1Ojgm9VAnrO1S/+7zOKQi971ZPPe6x17yODny80YI3PPl7ijwzE6E64MfLvPG9gbxwlWy9sdQDvVILRD02IuG6Xa8SPcTe6Dw0SEU8KSVjvSe5wTwmgsS8+Z+VPAtRy7x8OTu9U0BovGpRCDw0f0K9wyoxvSWoKLzeySQ6X605ug5uDj0N9Ok6JM4MvIp+zzxC/Sy8+daSveHY5LxGZ3W9mXtNOgpkPbwZctS8ewK+vH+29TrUpGm8+Q0QPZloWzxsYqG9GIVGvbcFdjux1AO5l2o0PXBebz3EO0q78NXiu+7ESTxhvlI8DGLkufkNkLoLLUC9fhH+vIhcHbuZMV47VqcaPWNO/zxUv3s9mCDFPGyZnjwIiqG7mUTQu2pRCD0L49A8mKExPG7hNLsXdK08cEt9PbaZ1LwkYBK8el8fvHooIr1/W+27si+Mu3iFA7z/g4I8T8WGPYhcHT0pJWM9w4W5vH0TV7yK/7s7tJstPHpMrTq2mVS9TzMBPRc9sLyO1/48mFdCu1CwOz0/bYA744mGvBw0Dz1SC0Q9+XuKPH0T17y2B888sQuBPG2GLLzDFz+90d2/PEGipL0ATQW7RI1ZuhfPNTup91684jPtPFEvT7w32HE8XZygPfBU9jyLkcG8zzqhPFRAaD2jaYs8nAt6O7QawbwPW5w8fQDlPPjpBL154As9SBgXPQ6lCz3UbWw9B3mIvFCMsL3D4ME8p6/IO1FCQbwNK2e9Jd+lPGLP6zwbKGU9/i1pvJiySjj46YQ8R8L9vLRRvjtFDG08KAFYvET7Uz0NT/I7a9AbPXxK1Dor+o88nAv6usLzs7twqN68i37PO9yUgDzAUJW7+h4pu4Bnl7tS+FG9p/m3PO39n7yrXhG9bqq3vLdgfjwm3yW87jLEvG0FwDynHUO9NcdYO8Zwbj3g61a8xl38PGwYsrunClG8PzYDPcWD4DrEg+A8mlVpvG0FwLzj9wA9Nv7VOcO8NrviV/i8TsUGPEQORj0OE4Y8Bh6AO7+ahL2ZaFu8xINgvPl7Cr3c7wi9lzM3PdMS5DuqqIC8xN7ovODrVrzPzCa8t/RcPE+fIjxyoRY84lf4PDPcI70PWxw9slOXPIpH0jxCEB+7QWunO0Qf3zhVloG5J7nBvUP707v9rlU8YD8/vYdvD7vgNcY88qqPPLP4Djxd0508bWIhPFzCBL16TK280AMkPM7yCrqLfs87LFWYPBd0LT2KSas8GqlRPOEiVD1z2BO8GrrqvFQJa7v5n5W8pPsQPaqoAL3R3b87lRGFObZ1yTz5RI0930g4vdUxADxwzGm98VT2O2EszbyAnpQ8KmiKvLaGYr1/SHu8CojIuxnN3LtBoqQ8RyuJPXhOhj0aO9c7Kg2CvTO4mDxSZky7wT0jvrRAJbvrR488GgRaPcY0AjwmzLM8fF1Gvdy4C71QjDC9ftxZPXBeb73HJn+9F3QtvdMS5Lt7KKI7K+cdPTU10zpeUrE8Ui/PvONSCbs0Wze8lUiCu/zlUjuan9i8+zEbPRXkgDsLUcu7fAK+ukToYb2cdIW8Xi6mvcSpRD37jCO7uAX2vNUjfbtrrBC8zxYWvPtmP7pT0m28mtbVPCOqgT1AtZY9AV4evMezFT3GlPm8VEBovVz5ATwcogk7LPoPvd7JJD3sWKg7bao3PDgz+rzk94C8cJVsvYojRzwcOf48wQamuzQArztG+Xo8VbqMvdyBjr38ikq7Y7z5vAlTpLxs9Ka8icoXvLkkkrttvam7+CCCvTWSNDw4/Pw7UPqqPGyZHj0NT/K8NjXTO0Ogy7z7Cze9iCWgPOrshr0q2/M81YwIPZhXQroOc/26QeyTvCxVmLyzZLA8UYwwvI8tGD39U00+m8NjPReHnzyJNjm9YphuPVJ5PrziM+08SOGZu30TVzynnFY771bPOk7FhryyZok8YGNKPP6bY71gGVs941IJvas6BjxGZ/U8ekwtvc9ghTxd+YG9jg78O9ADpLvSt9u9B0ILvdBLuryPvx09B+cCPYnKlzyJEi69s64fO6qoADuItyW9si8MPGKrYLxQsDu8RgxtvV3THT1S5V888GfoutzvCLveJC294FnRvKjAYTtUd+W8slMXux3ZhjvusVc7mg1TucO8NjwmOi69/C9CvPIFGDj8wUe9wPUMPOB93LztWCi80aZCvBfiJzwLrFM8Gl9iu24pSzzDBM27/S1pvQysU70Y88A8rJUOPLkkEj0X4ie84o71PEb5ejziD2K9+Q0QPaZUQD1PDZ28cCdyPbRApTy3hmK8mHtNvVAxKL0djxe9Y4ANvaRWGT1SZsw5Q2nOPPGGBLyV2oc9NdpKu31dxrxdChu9jNlXPe0hqzu2Psy60rdbvVxUijxjTn85ikfSO17ktryk6J47DCvnu7eqbTyBMBo9OKF0vU7FBjyl1Sy973rau/51f7qA1ZG8OmWIvDQ3LL2HOJI8COWpPI0h7jt+pdw8UdTGPGG+Ur1wufc84OtWvMh8GL0JHKe8CvbCPF2vkjzuxMk8Jie8vKguXL2IXB09mlVpPN+2MjqVSII8ttDRPOD+yLycqwK97h9SPMBQFT1Ojom8NWxQPTOBmzzE4MG6uHPwuwl3L7t5chG9OuSbPAyZYTre7S+8+SACvJfYrrxPDR29qNPTvIjuIj1IYga9eE4GPIojR7xEMtG8N5DbPEiqnDsZF8y8o9cFvfmyB72cC3q8xExjvfkNkD2Yjj+9nEL3PCjdTLx68SQ9+sMgvTb+1bw1SMU4MXACve6xV7xwuXe7jerwu2xPLzwYvMM8RVZcPSaCxDwLiMi8/K5VPap28rsOpQu9in5PPfLhjDsnk1081TEAvSnu5TtUCWu9Kv9+vLg88zypwOG8GrrqvPBD3T2Motq8iUkruEeZAztQaKW8xjQCPVCMMD3g69Y8GSo+vAuZ4TvxHXk7qtF6vO5pwTwcEIS8wL4PvdMl1jzCzyg8swmoPEEQH71tYiE8Gpbfu23htL00tr+8M26pvFUoB7xDRcO8lpCYPP5A27sAqI26MXACuMXeaDt+bl+9NhHIO1CwOzwb8We9bIYsPSimz7sr1oS8/S1pvXEn8rlHvQ69jpuSPM/MJr1xWYA8UuVfPUMOxjzB4po80u5YO1LBVLyeYZO8pmcyvBZjlDzj9wC7wk68PEDIiLtHTxS9X8ArvSlJ7jvGNII87tc7PSVNoDyKkUE9zxaWvCgUyjyZjj+844mGvHDf27x9E9e6XdOdPDS2v7tTrmI9h6aMvKteEb1ImQO9xfFavf+sfDzWsBO9x8aHu3C5d73krZE8DgCUPM7yCr05Lou873raPHBLfTsK0rc8GnJUvab5t7ubw2O8p1RAvNO32zvetrI8fgDlu9/+SDzFlPm6cn2Lu3iFAz04xf88shyavEf0Cz1EMlG80qbCvCVxKz00tj+8ODP6O5AtmLyHb489GSo+vBhOybyZIEW8s2QwPPt5Mb0AOpO8T/wDPX/oA7xANgM8pLEhvDlSFr16KCK9/OXSPJf+kr0Y88A7mKExu7gFdjzDKjG8DPTpPDPLir1F6GE8Cgm1vDICCLxVKIe7ec2ZPAyqerwq1gQ8GYVGPEFrpzs0E6E73IEOvENFwzwz3KM81gscvBkXTLtgvlI6/4OCvGHiXT3VwwW9U4pXvM+omz22Pkw70bm0vEH/hb0404I9VYj+u0iqnDxUCes7ssGRvVBoJb3PzKY87LOwvDTJsbxVKIc9i2tdu+77Rr0mgsQ7CNSQPERFwzoa8ec8tK6fPNUj/TzSEuS8AHEQPRgGMzy5JBK8PzaDvaaLPT1EH188HKd4vAuZYbwKCTW9p2VZurTjQz3BBiY7jY/oPAus07vTEmS8UDGovJh9JjzwDGA4fLjOPGDRRDz6VSY3JPKXvLS/ODwI+Ju8JswzvAkJNbzxi3M8G7rqu+77RjyXajS9cLn3PFxUijxTruK8HDn+veBGX7rjIHs7AaiNPBxHATyYe008iUkrvVOKV7xh4t08GYXGvBxHAbxhLM08M9yjPNXsf7wYq6o6/Ga/PPLOGrvHxge9M4Ebu3Co3jynwro8rLkZvPG9gbxeUrE8+OmEu1/AK73uMkS9FQgMPfuMI7xCaye94No9PUEQn7yxC4E8J145PZdGKT21GsE73u0vPGJh8TtWcB28M5QNvTMToTy2K9o8cEv9vEZn9TxwcWE8ZNuVPYdLhLmMRXm8yHwYPZnFvDwa3vU7xRXmO1BVszz5DZA95K2RvHxdRj2cQve8Y+6Hvf5A27vTEuQ7Unm+vHzesjwOEwa8fpJqvbMcmjsOE4Y73381vSvWhLwy7xW9ABYIvUUMbbzSpkI9itswPPtCtLwmlba8/IpKPI8tGD0NGPW7iTY5PPxmv7wrnwe8UJ8iu4nuIrziM209jBBVPXpMLbwXPbC8Y7eKueBGXznyPJW9QLUWvVBopbxtBUC9QjSqPF3TnTv9U028tdDRuXsCvry1GsE7jDRgvZwGi7t8OTu9Qw5GPGEZWzsXPTC9x1iNvAyZ4TyZIEU9bk1WPbeG4rymnq893F0DvCc4VbyN6vA8X9FEvbPSKryzrp+77SGrO7N3Ij2YIMU8wQamPPDV4juO0g89ULC7vKTonjxfP7+8jBDVPJ3zGD1Vgw880YI3vEDskzpQVbO9GxVzu4aCAT2X2C688uEMPabVrLvrNB084FnRvDTtPL1Pe5c8weIavWAsTT1jXII6kGSVPEDsE7xGQ+o738dLO8fqkrsbTHC7OA/vO8SWUj3SXNM8RkNqPeT3ADxBEJ883QCivDQAL7tx8HS7tnVJvBso5TozNyw8epYcvaMOg7zgkM671R4OvKoI+LvSSeE8NRHIPAjBnjsz3KM8Ne08O/xmv7w5wBC941d4PaNFgDvvVk89wmEuPQFenj2z0iq8wyoxPKn33jy4BXa85T+XOlS/e7zvVk88G7pqvTYi4Tmmr8g8l/6SPHBLfbscp/g7OPx8vNEnrzwYYTs8v5oEPY9klTuX/Lm8uM74u3BxYTvyPBW9cHFhvEPGLzz/43m8qqiAu5Wjir1SZsy77Q65ulHDLb0bumo9KMravCc4VTy1iDu85PeAPdZ5Fj0k8pe9Km15PNJJ4bz9rtU7DCtnvLaZVD0oJWM8C6xTvA4ThryYMze8/OXSPERFw7vqtQk9/IpKPPrDIDzGAnS6JnEruxsVczyWWZu7pWcyPcTNTzyK/zs8SRiXu4iAqDt9kuo7/4OCPOBZ0bptBUA9KttzOga/kT1NM9S8ax2jvQvSz7wiGKC8Tgl+PAVT5jwkRQo9mY+XPFoxp7rbPwe9X/q6vCBiSjv7dpQ7WO9RvEB5A71Zxfs8TTPUvDluGj1+QXI8JSvevKuG/Dt4x8k8z1HeO4mOML3HOwy9ry88vc928zymY5Q9A22SPII03Dt47F69zsqfPJZSg7tYgJI8r3nmOje9Bb0nl4m8LQEIvcs+ID0kRQq9rwonPJp1az0Ia+W8RR0COoXl8Lxf0GS8JSvevCkjCTzqnwO9woIivGPo4zqGJ8Y80oOJvJ8+/ztptrg8KvkyvTpUbr17BF69nkgBvKZOqbyqiz09A3j7vJTWrbx+QfK7raM8PYPahzw+JwS7fKqJvP7YPb3fQhs8Yw35PLtNY7u2X7q70pOzvGm2uLyMGrC87BYYvRrDjLy/inc7ZOjjvKD0VLydbZY7/o4TPI2Bmr0ONPk7RggXvfEEQT29Azm7v2XiOlMWlLwGv5E7qdVnPJZSg7xlmfi8JgZJvdLd3TzYXEe8AsfmPBCb4ztCX9c89eeAPWjbTbxO6ak8T8SUO1+wEL18BN48tc75vAX5kTyiYIC8hMUcPRerDT3Z6Ma7T8SUPJzc1byOMi87no1qvZfuLL10+fS8SuaVu6ZufT35NL+7z1afPW9V9rxMwYA8KkNdPPxMPjwURKO82r7wvCLJtDxODr+8KW2zO2imDryRmZm7v2ojvcQzt7z0i/+7JTAfPRK4I72aUNa8k29DPB+HX73mvEM8+S/+vBuJjD3vaJe9OQ8FPXJNoTtHuas814HcPJWxGLy65vg8ozYqvIdM2zmdggE9jPBZOnALTDxJNQE8syImvNNEyDugzz+9p0noO8uIyrzdtpu7ei40PDF4nDwaDbc8pb1oPRB2TrwbdKG8g1nxPHPuC73KjQu9/siTPJl6rDxWGSg9ErijPUr2vzu7cvg7GuNgvMa6dTukJgC7owxUvfqwFL3dtpu82O2HPHjHSTxvVfY8OtWEPOXmGT0fh1+9Y8gPPOHjBTwgLQs7gjkdPDluGr1duGU7ll3svKsXvbupi7282O0HPMHMzLuoSWi5rp57vQPse7zJ0vQ7oaoqvTEZh7yQ0xk9wEBNuwn8pTxeaXq5AqeSvPX3Kjs7CsS8VS6TPEhaFrz154A8iNhavPyWaLxqHSO9ciPLPE7+FL1SJr48e+SJuwtjEL0xGQe8X0TlPK5+p7xLG9W70t3dvOxlAz3ufQK9wRb3uloHUTzyBME8lNHsuw0P5Dy/aqM8FR+Ou+qfAzz7wL48H4ygPGo99zrFmiG8Y8gPPA40eTtwl8s8LKpHvaJgAL22znk8q4b8vHZAi7qXYq08c0jgu9Ld3TwDbZI7amfNu7ZfOrw9R1i9zmsKvUE6wjy6UqS7H7G1PHzfSD3xTms8JMTzO39GMz1EVwI98rqWu6HK/jzQ9wm80SxJvORVWT3xCYI8nkPAPKjvEzyLP8W8IC2LPUCuwrxL0ao8tqnkvJTGA7w4qBq8jKavPP+zqDzWhp28y150PE0zVDtj7SS9mZ/BvNwqHLj0IYE9g1nxuz1sbb2GTFs9lNFsvF1eEb6HAjG90Qc0PBkyzDwrhTI831cGPanVZ738Jym9K/RxveKphT3o/pi7T8SUvcKCIjuI2No8kAjZPBBRuTviyVm8laxXPMgh4LtSFpS7umcPvaMRlTwkRQo5Va18vM5riryOV0Q9ols/Pd3bMD1xcra8knQEvfaYlbxck9C8gc1xu36QXTvlC6+8x5XgOwa/kbwXy2G9dwYLvaqLPb2ueeY7wGXiPTvAGT3xTmu8nrfAvGZPzrwZ/Qw9LREyPY4yr7zCfWG8eViKuterMjzpHm28bzBhvZTWLb356pQ8yz4gu+0WGDxkDXm8ydL0PDEZh7yveWa8Mt8GPNp5B73Whh29ATtnvCvP3Dzd27C8Q8sCvXS0i70weBw9DurOOaGaALxXGag8BFinvHp4XrsBO+e8WixmvOdIwzt9kN29pZ0UPJCuBDo5L9k8TII/urnGpLuGTFu9DsD4PJpQ1rwsOwi7HvtfPp8Z6jyvCie9mxsXvRimTDyNfNm8PSLDPHy18rz10hW92nkHveQwxDx2hfQ8XiQRvfgklbu2hE+9rZOSPB+HX7vRvYk6+eqUPUxyFb3gPVo7ARZSvcaVYD2YAxi8k/tCvUiUFr2RdAQ81PodPaTCKbxb4rs8VS4TvFCKFDpebrs6kwAEvVu9prn9Iui8jBqwvFWI5zwblHW8P9PXPHjxHz1OCX48U9fSPMWaoblotji9S/a/vFRokz3keu47JlDzPIGoXDvbdEY96RMEvI5XRDwW9Te88pDAvMWvDL2g1AC95gbuu5P7QrzfQpu8G3ShvKsXvTsxUwe8SFoWu6aY07x8tXK8RKEsPVYZKD0sW1w8uNsPvGyEjT1HtOo802ndO1yT0DxH3sA8oxEVvL3ZYjwRJ+M7G5R1vK2e+7sbmba8A328u3md87rR4p46YKtPPZJKrryp+ny9qnuTPSR6ST3qnwO87dwXvXmiNDwfoYu8RuMBPTxhBLyQLW49eX2fPHV6C710tAu9KW2zvLrGpLzPVh+9c9mgvLWuJbxqPXc9IKGLvS+dMb1Ye9E81quyPGvzzLtC8Je90ALzPCzPXD26cvi8CGvlOliAErhokSM8nmhVPJSxmDxc4js8Tv4Uu0/k6LtPxBQ7/tg9Pc5rijvOe7Q8+uVTPDyGGbw1QbC7S9Equ3JIYLu9uQ69p0lovcgBjLxFnOs8lj2YPOM1BT3jWpo8CEuRvHCXS7wQLKQ87fGCvElFq7xUjSg9cJyMvNLdXbzJxws8yo0LPe9DgrwFBPs8WixmPR4AIT3PVh89jjIvvHcGC71lmfi812EIvTlZL7xldOO7eOzevBimzLzh8688Gr7LvGjbTbyrPNK8ECykPIMPx72TRW09ErgjuyUwn7yAqNw5LREyvYfyBjsND2Q9047yPHcRdDt1irW9PHEuvYGICD2zIia9eJKKu87qc7sG3+U8+eXTvNem8TzCfWE8WgySvTGY8LznSMM8Y+2kPPAuF73y//89L52xvCr5sruptZM7dP41vMDxYT2A90e8V+/RvOdIQ7mVjAO8EHbOPF/VpTx/QfI8owxUvCeSyLydkqu8B4WRPUlFqzzA9iK9qxc9vVB1qby1rqW9pCaAOwE7Z7uOMi+7cJfLPKNbP7sBO+c7syKmvHNI4LsQLKS8z1afvClts7xXFGe7iY4wvcNYTLx0tAu8qxe9vOJ/L71g9fm700mJPL+Kd70kekm8jKavOxRpOD3+Iug63babumGB+Ty0HWW9X0RlvLmcTj19a8g8iLNFPUvM6TyE2oc9usakvL25Dj1CX1c94e5uPfaoPz05D4W8xA6iPKgpFDuqYWe8raO8PK6jPDz9Img8OwpEvGpCuLummNO8DrWPPfO6FjyL9Rq97n0CvUV8lzrPVp88UHWpvNkycbwy2sW8mnVrvB4g9bxlmfg8k/tCu1h70TxIakA90m4eveUgmrxdSaY8ZJ65vJpQVr3ekQY8Gr7LO/Rrq7yRdIS8pk6pvGoYYjxiXGQ9A3h7PPw8lL0OwHi8QNPXu4pkWrzZMvE8bjUivUEqmLweACG9ECwkPXALTLwe24s8idhaOtdhiDwqQ1288d+rO0vRKrtyYgy9nrfAvKJgALtSASm9O8AZPPNGFj3M7zS9i2RavQhLETvPdvO80m4ePDxhhLwK92S9bjUiO6D0VLy9/ve8FD9iPFYZKLuRuW28ZJ45O93LBr0V9bc8ax2jvAhr5bybG5c8gK2dO6TCKTyXONe8LTbHu7p3ubwZMky8DKh5vA4UpbzJ17U7WUYSPVcUZ7y0wxC9SvuAPe99grwTuKM82cOxu7apZLxDywK91yeIPYI5nTtQdSk994OqO5y8gTyIuIa8xr82vMQOIr2VrNc7iWmbuwUzkj0vwkY900RIvTrVhDwsYJ0730KbPIGo3LwQQQ89U9wTPQlGUDq4EM87jkcauxeBN7wFLlE8OtWEPFUuEzydt0C9UnBovMmyoDsn4TM82sOxPC0RMr35Cum8O8CZvIZRHL1eafq7uBDPOm/mtrxFLSw8qP89Pf7YPTzPMYo9aLF3vW2k4TxqQri7z1FePEPLAr5mJXi6a/NMO4I5HTznOBm9/sgTPABlPb11ijW90rjIuu9TLL0Us+K8uub4PLqczjxX79G8U9fSO6jaqDvvUyy9UkvTPIVmB7pokSM9EQePuY3wWbzbdEY8smzQvII0XLvgYu+6DDm6O0cD1rsuDHG7SNn/uwBAKLzQLEm9VWPSvGTDTj09TJk7s3ERPK3yJ7xL0ao81fVcPWypojwxeJw8ccGhPD0SmTvBp7c8FWm4OkCJLT3ttwK9F4G3vM3FXrzib4U937HauVWt/Dx8tXK8eXjePJTGgzzOawo8mnXru3yqibzqn4M71PqdvE2n1Dy2TxC6sbs7vZp167oS3Tg8/65nPaH01Dx1ijU8lNatvAyoeby467m8qrDSPHaFdDwF5Ca9nmjVOxarjTvCXY09idjaO5TWrbzLGQu8iLNFvWr4jbyiYIC8c0jgu9+Rhj0q1B27dWUgvC+dsTzARY69I6QfveT7BLybBiy7GQh2vD+eGLtz/rW91zcyPS1b3Dz4L/67fWvIvNaGnb2fDgE9y170PAeVOzsYpkw816syPK5ZkjzrUBi8CJB6PJDjwzyYA5i8DQ/ku15uuzyjDFS9vN4ju8myoLwJ/KU8VxRnPOw7LTvLUws83E8xvBkIdjxNXao812EIPFcU57wokki8eZ3zOqTCKTxZxXs9WaUnPVosZrwDolE8TumpvSBnCz2hmoA8jMvEPDioGj3R3d27mZ9BPTfI7ry1+M+8YPV5PL0DubyZxNY6P/2tOuBCm7o//a08aJEjPaNbvzw61YS8h0xbPMQu9juN0AU9Q8ZBvNXQRz3a6Ea9C4glvNXQxzsBO2c8eViKvJTWLbxaUXu8OKNZvZWsVzvDWMy7bcl2OjOw7zpeH1C8Xvo6Oy11CD2COZ08zcXePN6MRTzG5Eu8MHNbPJsrwT15ojQ8jZYFPPX3Kj17CZ89xC72vDEpsbs9IkM9z1afPSeXCb2TIFg9hKAHPDe9BbujNio8ZA35O5v2Ab3zRpa8ulKkPKph5zz7u328pOe+POqfA734L368RZzrOgYJvLxwvGC834xFvehIQ7yIuIY74vMvPNHinrvE6Qw8K4UyvKMMVLymc747W916PMhGdTx9cIm8wcxMvX82iT0kVbQ86dRCvO59Ar0zsG88NkEwOj4nhDylwik9BFinPE1dqrz4XhU9FRpNvO027DxtqSI8W9IRPc7q8zn5Cum8WgdRPBroIbtNp1Q91quyPOc4GbpDEGw7xzuMO3FyNjzvU6w8rc2SvD/4bD1HA9a8SI9VPLbO+boSKsE8hdr3vJ4abr0Vfb+8V74lvC9vtTsnojg9dSqau4JgeT3cutW8lOnxvHxFlzwz6TM9rK+EvJ9XbTxRB6g8K842PbdrgLyIonY9qNZpvEiIq7ym52q8FVa/vIRglDuoJOq86CjRvAXYE727reI8rrRnPMZp3jxcnCM8+MJKvch/3TyutGe8DjvCvFVaprzydRs8vcNhvZT6Db2X6Qw89xBLvcqVXL3u3848ErXAvNMUWbvWA1i7hZ2TPHFR/7z1Icy8zPlbuzX/srse/Ls8pJSHOzPegb3cCFa9w6HfO5cmcb0W/Qy9MiyCvfInG7u/TuG7RZmsPGgKn7v0SEy5nVIKO0f9Kz1Lnio8a9KdPPJOm7zUFFm8ZRuguvOWTD2pmQW92ctWPI/OD72bK+88lhANPNTt2LyaUm+9vIZivLDbgryngwa9CprDvHPtmjsdSry8NrGyPG7oHL1BRi49w1NfvBgePjv46Uq8o9FrPEoTKzyFjHc8EQPBvXv3e70LwUO8ueVjPI2ndLtqbh68jYB0PFEuqD1FmSw9CQ/EPDcVsjs6BDG9DbDCPJCAj7udtu48IeAIvCUXuTxC+K08A6ZGPQjHEj2MzvQ7CgQSvAfSRL08tjA9LrIDve9DTjz5Tco8xkLeO66N5zxf2aK8KxGFvA/twTyibWw8871Mu5YQjbuXwgw9JPaHvOmMUDyF65O87XtPPMLI37zGad48U5InvOx7zzzxnJu8oQntvGTeoLxRfCi8g/wUvJ1B7rwKmsM8DP5Cvf55SLwB05U8tqjkO2JTIT3Sidk7y0fcPMkx3TwF48U8LTI2PQOmxjzjcdM7+huYPCychDy2BwE8BkdFvOAN1Lz1IUw9OVKxOz8wLz2Le5G7BdiTPIvJkT3ndtG8T/EovRkTjDw12LI8rOxovZBZjzxKxSo9UXyoPLFV5jxoWB88eLp8vLGNgrwoIga9T8ooPSMBurwXk768n4+JO4FKlbwks7m8sAIDPJex8Dz100s9bTadvJsr77x1A5o89IuauktQqjy3M+S8Bm7FPGdYH70RRo88IbmIO5zuCjtzxho90rDZPIE5eb0rzra8NzEAu6LzCDqW2PC53vdUPUrsKr0fygk9c8YaPHZW/Tsu5DU9NMIzPKUO67wffAk7Eo5AvDjusTzDod+80SVavb8A4bqpmQW9BFhGPXDG/7sjATq83vdUvVn7JD3ps9A8qA6GvKo66bwWCL886/BPO/RIzLtwxv+8HiO8PDgKgLwXur485p1RPcE9YDzpKNE6qcAFu5MQ8jygGgm8nVKKOwWVRTtmzZ88dy/9PIllEr2gCW29PGiwvJ1o7rvA2WC9ThipPAvBwzwTNY48fb/6PIkXkjwLTEM9jbgQvQY8E73M+ds7/wRIPTVNszrPNtu79e+ZvDX/srsyN7S8rSnoPKRcazxp4x69pOIHPHuTlzyP9Q+8VPYmuoh7dj2YdAw8kdPyOxg6DD36/0m9DlcQPa6NZzylRoc8EQPBvCyANj0oSYY75WBSvZnYC72rxWi8wRbgvGJ6IT2GPvc8JTOHPajW6Tuffu28Kmo3PYsc9bt+qRa+HiM8vCnftzyYPPA70SXaPFMdJz0FsZO9etD7vC9vNb22koA9LQs2vXZ9fb0UDg695K7SvKSD6zrOq1s8l7Fwuk4/qTwC9Ea9pW0HvB3mvLux8WY82n1WPQfSRL2SrHI902JZvCdUuDwhxLq62BlXvaNXiDyEEpS8A3QUvQ47Qrv79Bc81XjYu7REZTuIARO9lYUNPTc8srxmQqA8+huYPEoTqz2gGgk9+thJPYrwkbu8OGK8lOlxOk/KKDyvGGe9si7mPDF6gr39Chc8lJvxvHw0e72gQQm9/DEXPBqeCz0qX4U7tQcBvS6WNT0FvMW8/DEXva7Fgzv1Fho8dxkZu5T6jbuqOmk6Kmq3u7Qd5bxh7yG93h5VPR7VOzzhmFO8Z1gfO5K9DrwaWz08ro3nvHmkGDzgDdQ7mytvvVqGpDxtq508/e7IPFYMpjytYQS9gtUUveVgUjrndtG8JLO5PAdHRT5nWB89JVoHvXwNe70vSLW7LtkDPKUO6zz7zRe9eLr8u5sEb7wArBU8MYW0PBhFPjzKvNy7SP2ruxy/PD0KtpG8a9IdPJ1Bbj2z4OU7d2eZOx1KPL1nWB89EzUOvM2EW733EEu8ltjwvPwxFz00dDO8KjgFvDcVMr1Eqi08vBFiPIXa97wRA0E8h8l2vW0PnbwFvMW8ImsIPaY16zvnT1E9Yu8hvCSzOT0uvbW8EG2PvJ9+7bx9mPq7X4siOhHcQL1m9B+8iT6SPNBz2rzzlsy7Ot0wvOvwz7mdxwq9IGC7vAC3R7uPvXO8dqR9vJHTcrs+zC+8BeNFPZHT8rsdcTy9Khy3vKpLhTzG3l49FA4OPQaKk7wyyII9Z1ifOzwasLt4yxg9Ct0RPW9MnDwSqg49X7KiO9TtWDx5pJg7AV6VvF+yorwulrU7kG9zOxfhPjyLHHW9jbgQvVs4pD33oZk9hcQTvIrJkbwoezg8VaimPLr7YjsEWMa8tc9kPCSoB7zGG968s5JlvfXTy7sqX4W7rp4DOiYXOTpENa28PfOvPCynNr3XtVe9dJ8aPXdAmbwvbzW8D+3BvK0TBD0jHQg9BeNFvfcQy7o9zC89pFxrPDLIgj1shJ28mf8LPaY1azwQbY+7YcihPBhFPj3oKNG8jPV0uyzONjyPzo+8ayCevJQhDj0YRT48qyQFvf7HSL2Tbw67Ux0nPUFGrrwc2wo9STqrvB98CT3xgE288wAbvQ47Qr0yrLQ8LuS1vCVlubovi4M8g3b4OSdwhr3eHtW8/yAWPdnL1juXsXA9PGgwPSv1Nr2tAmi8paprPOWH0jtRfCi9cCUcvVK5Jzw1QgG9iMn2PLPg5byQ5HM8GLq+urDKZj17kxe9cCWcPObr0TtIr6u8509RvAigEr1KxSq9/yAWPIZPkzxtNp08mcdvvIFg+by2koA8VYEmvXuTl7yZFXA8tHyBPIJxlbyQlvO6rWGEOy9ItbzJCl05abwePRp3Cz3zlky9iHv2PZSb8btaraS8MPq0PI0GETzu3848lMLxPGHIobzgNNS88PXNPJEyDzz8WJe7N3+APNzhVbyLVJG8/H8XvYllkjuBh3k7IFWJvAZHRToWLz+8cgN/vSNECDwQUcG8IRK7OjM3NLwxegK7AhAVO/3jFr0e8Ym8MO+CO/uKybyRMg+9g4eUvPUhTL2EYBQ7A5uUvA5iwry24AC9n35turut4rwgOTu9U0QnvcYbXrvHQl49eJP8OxzbiryTrPK8+XTKvFF8qLzjcVM9IC4JOinfNz0vZAM9cP4bPS7ZA7zONtu8YqEhPeG/Uz2hu+w7YnqhPBg6jD2GF/e65uvRPIWz97scv7w8UKMoO8a33rzDod88FPI/PdeOVz1BRi48HXE8vVn7JL2K8BE9cYkbvGgKH724l2O80ddZvQ/GQTt0eBo7/yAWPbw44rwQeME8rrTnvPx/l7rsok88CujDPJYQjbyH2hK6W18kPWvSnbzuBk+8gsT4vDAWg7yE2ne9l9hwvNbc1zw3Y7K8K/W2vAqaw7v+Uki9fzQWPPPZmruo1uk7TAKqvH2/ej1oCh+8/yAWO0XArLz1b8y7nWhuvXcI/by1LoG9GGy+ujAWAzyc7oo7/DzJvHse/DtUzyY95jnSvYCYFTw3FTI9yH9dPGHvoTzvQ049JVqHvav9BD2Arvm8JIw5vZHT8rwsdQS753bRvCyntjt9mHq9AN7HOnovGL2Qb/O8VjMmO/RITDy3DGS86YxQvHIUG7xY5SW8YyyhPf3uSL0H7pK9+82XPG02HT0M/sK8koVyvRBRwT2wyuY7cmKbPEL4rbuFnZO8Fi8/vVhwJT30i5q8A+mUuj3MLz1Gcqy8509RvQCQRzvfgtQ7AWlHPHxsF7yPzg88twzkPDGFNL0u2YM8H647PbiXYzwH+US8eqQYPTrdMD23awA9tGvlu3Sfmr098y+94ZjTPPXvGT04Y7I6i3uRvJPkDrwGbkU8nMcKPO9DTjz2yJm86bNQvLcz5LzH9F29JRe5PJn/i7zlElK9sj+CPJeK8DwIhES8ALfHPFWoJr1Bba67U0QnPc6rWzsVfb+9MXoCuwXYEzvCyN+8GGy+vCdwhruxKQO92BnXvG6anDtDXC29BeNFvZ7z7TwOicI8OaCxvH33ljyWXg28h2V3vLIYAj2VrI08GGGMu5b/8DuJZZI8BmMTPQ8JkDyasYs8DPMQvVjlJb19Hhe8aZUevYZ2k70YbD49xSxfPIYXdzxwTJy7pFzrOyfJuLwtC7a8eGeZOigGuDyfV+07LU4EPNiO1zw9GrA8ARtHPC6WNTxtNp08bQ+dvPfImbo0dLO849XSPP3HyLyCxHg8rSloPJ7dCT3iStO79nqZPHjymL2RMo+8/byWuwaKE73JWF08CHmSvGJ6Ib2p/Wm8ivCRPMWQ3jzqZdA86j5QPZMQ8jxnph+8SWGrvAcgRT1jBaG88YDNvC9ItbzR/lk70rBZPfasSzupmQW9dED+u3oefL1F56w8QtEtvVhJJT13L308RcCsuzd/ALwHIEU9ER8PvRNnwLwagr28DNfCOqbA6rxZ1CQ9yQrdvKLMCDwTXA490HPau/pCmLsviwO9dqT9vE/xqLxyFJu8iIySPRg6DL2EAfi7q/2EPKHMiLyX6Qw9Q1ytOYu49Twp3zc7hnYTvZp5bz2XsfC8mf+LOwjHEj1lG6A89EjMPHovmDynS2q8oeLsPH5K+jwStUC8evd7vKmZhTxQoyi8q9aEPeA01Dzxw5u7STorPEk6q730ZBo9IbkIu4E5ebxENS09BbETvWSQoDxS4Ce9WtSkvIE5+TqEORS831vUPL7D4bzh5lM9X4siPFeXJT13fX08J3AGvSHrujso+4U8Kd+3vIQ5lDmCI5U9sAKDvZ+PCT0Sqg69OGOyui7Zg7yIVHa8fB4XvRyYPL0zN7S63AjWvFqGJD0mvoa7C4+RvKFBCTyTN/K8AYUVPWpHnjw7j7A85utRvXQZfrvaVlY9GdC9PDDvgjw1TbM8YywhPTX0gLzr8M88jhwQPegoUT0JNsS8y27cPJV08bxC+K28GIgMPSSMOT0ZHj48ctx+O4wGkTwp37e81MbYu+GYUzsxeoI8jPV0vCA5uzyJFxK9iQZ2PaKliLuj+Os7Maw0vQZuxbxUz6a8mMIMvFe+JT0X4b68M5szPRpbPT2qwAU9opRsPKbRBr33Uxk93tBUPDjHsbsCzca7hYx3PIqR9budoAo9+ybKPK0C6DwtCza8WHClPCJ2OrzmnVE9fFv7vDObM7y/AOE8me5vvdeOV7wRH488STqrPO9DTjxK7Co8b3McvIN2+Du2gWQ8JYEHPdVRWL2doIo8eUV8vZlNDDxh76G8hrusPDawyLy2Kyu9kXTnvEvzjLyX4pK86+tsPPmV27yjh009YWq2O8SzKrwt1R682bKQPaOpPLw4Aha8jTITvDsZQD1TL9C83fRkO+HMZDtwHeA7GqBJO0pUpr3ZQ4g8vaKRvXGzizwjJZ88eDMtPRVZwby2mrM8zx/MPM7b7bwSivw8fRRovRU30rsjv9G86pUYvbbFXTzQcRm90AIRPHjEpLy76va8Aj2gPDuISL1lQja7QRzqvMDCdjsgEvy8+dk5vBpc67wa7eK6AkZbvMbjCD3iEMM7aHKUPGy5HDzEAES96iYQvU1Olb2VsjS94czkvLxyszw71eE6V/4UPeak5Dtb+IM9YSZYPKOpPDytWby8RvTpOx94ybyjyys90CSAvSqcBT0sZha90hk7Pb8fiT26thG9ZtxovEkyNz2jDwo83YVcvXrN37xccEe6l1EbvS7jDT0jR469b4OtOzruFb1P6Me8Tnk/PLM697vFb0w8xJG7PDvMpr39IEK9tisrPSBW2rykGEU7+ibTu5Cviry23hE9eOYTvJUhPb0pbCc8V7o2vRS/jj2a+bw642KQPFcH0Dv4+6g8fXo1PdLuED1TJpU8guOsu30LrbsYiR+9kVL4vAJG27zngnW8o+0aPAbIhjuIfAI7UgQmvYJ93zunxZq9Hpq4PI2+1jxOV9A8OxlAPd4biLwzTAW7RvTpvJ6Eo7vcY+28DBjKvPLqD7zEiIA7GIkfvEH6+rt/8vi8fek9veVOkLyHVV+8YD+MPbGgRL1Kf9C7xd5UPLsM5rpOE/I8CPzrvPUBOj3JrZk8GImfPOFdXLuHCMY8B69SugugBruHxGe9sZcJPa3zbrzTf4i93UF+PL/bqrxXmMc8+B2YvKc0Iz1QOhU95xNtveboQruQ2jQ8dco1vMm21LxwYb6787SgPOvJ/TwS0449nhWbOvQBurvx6g+9+GoxvbbnTDvOsEO81xOqPIdVX7wN1Gs8IBL8vNzJOj1BHOo8ZUI2Pe92UzxzDhS7dmkcPJtoxTwQNCg9lbI0vZZDrDwGN4+8qBtvvH16Nb0/pCY8Z9zoPNcTKj3YYMO8XQr6vIYqtTxmS/G8lSG9uqP2VTy23hG9KFNzO5IsAr2PQIK7KQbaPHiARr0pU/O814KyPA37Dj31Uwe8B9r8PFfcJb1cTli85zXcvHMOFD1sbAM93YXcvNxasjvlCjI9xABEvNACEbw/gre8PLPyPMGXzLtfMZ27PxOvvJ5itDyLcT28STI3vDanDT12+pM7RqwEu/orhzvO2+083KfLvMHpmbupgTy7Zo/Pu42cZzwDJOy8B9HBvPiuDzuuPIG8E0KXvbJ+VTway/M7faXfPOXfhzyQ/KM5YkhHvE29nTyFEwu9bEoUPbtQRD0QgUE8IwOwPD+kJju76na9EIFBPfUs5DwLOjm75b2YO7EPzbyxwrM842IQPEp/UDzO2+08OHEePXjEJL28xAA8z9IyvHhVHD3xewe8Aqwouak93rwsiAU9AtfSu3Ofi71c38+8IyUfPMZ0gDzvKTq9ZrG+vItPTj0ItIa8sxSBvTs7Lz1rkvm8rHsrvqg93jtKXWE7/fUXPZmsIz2/26o84qr1uzs7rzsXGhe9rHsrPW+Drbvi7lO9FXuwvLaasztFhWE8QDWeuxASubxL0Z04zTiAvMYrbrvsowc6AwL9OstMgD2buhK982cHPDU4hT15ET49zo7UPMa8Zb10qEY8a5L5vDhxHr0loha6YUjHPFjl4DzcfCE9cw6UO9ynSz0ssy88bxSluzwi+zs/xhU+ya2ZPAwYSjxXdtg8lkznvElUpjqoNKO82M9LvJ5itDyLkyy871RkvKP21bseCcG9zyQAvVkyejvEkTs9xZr2u2xsA70Sinw9T6RpvT+kpruNvtY81EkZPcsqETvAubu8ukcJPTHPDb0ZUzC9LLOvvGYgxzxL84w8ntE8PHAd4DuxoES9iySkPNJdmbx2aZw8OHGePOLuU73gVCE7bNsLum8UpbsCPaA8guznufJ7h72I5ta6DPZavISkgj1JO3I+MkdRu5n5vLzrwEK9Tnm/O/lRfTkg7IW8iMTnvOabKbzcDRm9LU1ivPTfyrsVv468YK4UvYJ0JL0RozA9I79RvBDOWjskneI8cKWcvDwi+zuI6wo9EkIXPc1jqrwRinw7fb4TvQS6Fz2pivc8vyjEvPi3SjwGyIa8gn1fvB6aODzdhVy9jL5WvCcfDr3wMnW89jEYvTs7Lz1l0608ZheMPDE+lrpz7CS9vOp2PHUcg7uIxOe83afLO8kcIr3r6+y6kSdOPLJcZj2ioAE9MT4Wvd75mDutN028gbiCvAJGW72kZd68b/K1u32+k7ysLhI9t8VdO7HCMzz90yi67Fp1vVwsaby7v8w8P1cNPcTVmbs7Ztm8x3SAPUvRnTxEfKa8LGYWPZ/85jzXpKG7GsvzPM1jqrvSGTu9P+iEvAJGW7zvVOS8g+znO8UJ/zxxRIM7a7RovZ6EI70fb449ToL6PEp/UDzcnhC8Nx9RPBLTDj11HIM8o+0aPDfb8rypgby7i+DFvC4r87y7UEQ83FqyvKRDb72Qrwq9GQaXO2r4Rrx9erW775hCO+Jd3DyfQEU80n8IvUkQSLxhc/E8pBhFPShsJ73JR0w91LPtPK5i97ypgTw8SVQmuy0r8zogEnw8zfQhvckcIj1lZCU9eRG+vIGWk7yt8+67RDhIvSDFYrsMfhc9mtfNvAIbMb1ewpS9pGXePJEekz3PbOU8o+2aPLjKETt96b08Ou4VvZXdXj3PuX68mFGbvCxmljv9Fwe9ZJqUPJZMZ7w2QUC9BjcPvVNaejwIQEo8FzwGPR6auDy6lCK9xStuvR6auLzTqrK8urYRvf5LbDvl34e79QG6vA1D9DxzW628lir4up4eVry62IA9sSgBvR68Jz19pV88+YwgvDtm2bz1TtO8VA3hvFPARzySChM8oI3ePJ9r7zsDJOy8fb4TvZCNmzz6Kwc9Sap6PNTakDv1Uwc8AqyoO9lDCD1Job88/dzjuzgCFj1TL1A82MaQvSyzrz2sDCO94hl+PHkRPjz030q8h+ZWPeoEIb0VN9I7/rr0vHGRHDuWQyw8+PsoPIJ0JL3qL8u6dmkcvaC0gbs6EIW7UnOuvOIZ/jwC+cG8RMAEPcy7iL3YEyo805F+u9wNmbrgBwg8XN/PPBCBwbtvP8+8LZFAvNT3S7z1ATo8OyJ7vba8ory9EZq8a4ADvP4Xh7qZrKM8BvMwO2jhnLpb1hS8+D8HvSm5wLxE6648ucoRPax7K71sShQ71JF+vLLkorzJtlS7o4fNOwI9ID3SO6o9NhaWPIeieDzTqjK9DfZau/1CMT15zV87WlkdPKzqMz1TL9A8eO/OvIfm1rzrt4e8JcQFuv3TKLwRrGu867eHPJC4xTtqqy09QD5ZvMolXbuRUvi8P+gEPTYWlrsCaEq7KEq4vOUKsr3eipA6kEk9vYgzcDzGvGW8Gu3iutJ/iLx9Cy2875hCPeboQjtharY758uHvBDO2rt0F888AmhKvFybcTxP6Me8OzuvvKOpPDxBHGo8Aj2gu0ld4TxFp1A89E5TvTGLLz07Inu7b2p5O0GtYb0je3M9PKo3vCO/0TxwYb48o9RmPLudXb0Ha3S8DLL8uxcal7zJHKK8hv8KvYnrCjzYz0s9ldQjPXFEA70tvGq8fek9PYdVXzy+M4k8LW9RPGD7Lb29ERo9QiGevGrvi73z1o+7mayjO/DlW7tsknm7eqvwvNzJOjvlebq86nMpvFky+rnhzOS79N9KvCzVHr2DUrU8hRMLvFDLDD0fo3M62MaQvYwCtTx9FOg8eOYTu8UJ/zvXV4g9UlG/vKxZPD1Kf1C8+eL0O+HM5Lx4VRw98Cm6vClT87vLTIC5xdWZutRriLwyJeI7+YygvE414TuRUni87BIQPXle17zUZtS8o0Nvux7n0bw6fw086nOpPPDcID0tTWI9HiuwvMQisz1Qy4y9g1K1vKM6NDznOhA9FFAGO1cHUDwk6vs8KJfRu7GXCTyLJCQ96uKxvIiZvbwgVtq8YIwlvRmXDrt7Y4u7I7YWvYiZvbwkcjg71/E6PcQAxDxvrle97v4PvSO2FrzX8To8IDTrvapkgTyRUng8Hpo4vYvgxbzP0jI8OhCFvWs8pbwumnu868BCvbbFXb0tRCc9M5kevGZL8bxX3KU83EF+PWqrLbwCk3Q8Feo4vB9vDry2Evc7/WQgPO7+Dz1SSAS8s8vuOywiuLxOV9A8YbdPvag0o7z1U4c8qBI0u4DMgr33wo88xlKRPGpeFD2iD4o9mc6SPEnuWLt6zd88VKOMPCSdYjypgbw8Nv1hO302VzsIIw+65qTku79sIrvGUhG7QGDIu5tGVj07iEg8iyQkPXGzC71h2T47ZhcMPQHwBr35jCC9NacNPLsDqzz0m2y8oNr3vILjLLyHM3C7r4kavZ4VGzxX3KU86+tsOzMl4rw/xpU8G8tzvaRco7yAOws8XAE/vCxmFr0L7Z87EBK5PB5NHz0f59G6kpsKvBrkp7yjXCO9twm8POfx/TtANR49v/0ZPfS0IDyyMTw8J46WOwIC/by258y7lW5Wu4h3TryneAG7VwdQPKmK97ysWTw9Z7r5uCrpnryFgpO6fRRovVwsaTrXgjI9/rr0vPS9Wz1lqIO8hIITPTvVYTtht0+8/W3bPCh14rxSBKa8LIiFPLvhu7y250y6gsG9vALOlzx+ejW8FfPzPCURHzwj2IU9lfYSvNxj7TwjUEk5fZykvC1EJzy3Cby88OXbPDEcJz0Hr9I8hkwkvd30ZD3OQTu9wZfMPAJG2zu8e+48tW+JPSXEBTy76vY8O4hIveF/y7wfb449nmK0vGCulDvERKK8rFCBPHR9nDwi2AU7EtOOvM4Wkbz52bm6xd7UvNzS9bxG+R29Ou6VOm/QRr3zRZg7ZUK2vJXUo7xv0EY8/W1bPLYrq7yf/Ga9wQuJu1vWFL3SqrI7YwkdPSSUJ7wHYrm7BsgGvc9sZTw8qjc8eDMtPRCBQbwuK/M8miRnPabZGj12+pM7MdhIPO+6MT2a1027o1wjPYvgxTwQgUE9aqutuxkoBj0lEZ88zfShvC7e2TyEghM9jVQCvc8fzDxsuZy7PdqVvKPLq7lq74s5u1BEPB6auDqLtZs8zkp2vM6FGTmyqX+7ld1ePHXT8Dpq+Ea9SJiEvNfxOj2fa+87eMSku2cDDDz5lds8fxkcPad4Abu/bCK99E5TPaSHTTotAMk6iHfOvAgjjzziMrK83Mk6Pd04QzvFCX88YPutvCiwhTtq+Ma8RMCEPChKuDvqUbo80ojDPLLtXb3ETV293ThDvItGkzzso4c85NEYPazqMz3vdtM7GqDJPCkG2jzXEyq92Pr1PFR8aTxhjCW8fQutPLWHiTxPmZ68VPIwvVurybxt7Ji86l7gvMA/eTuysfe8D5v2PJoD4zzknlM6EKleveUvhj3KdOg5GdBlvEnghbwsQTg9XiCsvLiGYDwwqDK8CdvpuiCeWjwx7ZG9gPw7PBnJcb1RhMI8FwgGPK9Y5Tx6IN+8km2OPDq63TyTZhq8HFMwPUCrlr1w5Hs7mTuDvIJxHr1/CiQ8BZA/vTrIxTz7YUS83PoWvYoV2zzXao29v2kxPA7MIr2pkWQ8DsUuvRZ+x7sCG108lFG+vKRGOrzvXQE9KszVOroeBz0mbE88+m8svcsTA71/SI+9ON2hvD+yCr2omFi8/0sJvEk6dz2TX6Y8L7aaPR7PhjxeJyC89YVnvFXkyDubZBK6v7UEPfSoK73vsP48R7CCvcK02zxQp4Y9NW8zvR2RG7zs9gY9ZTMAPRIXTb3rUHi7wsm3vHAATL2lkg098Tq9vfhNkTxsmdG8yJ4gvYFBGzy4qaS77PYGPFieijzlkGu9FwiGvW4qhDxAgd68aE6nPMU+GjzgN9k79KE3PRbKGjzt2ja91iUuPDe0Er0bWqQ99YVnvHJgUjwqHx08TEcAPSWIHz1oRzO86l7gPDMPLbxl4Dg6vE4KvZDxt7y1GHK80cybPM7U7jzGBnq7p7SoO+6+5ryP/588Ves8vVdnkzzXAmo95JBrPJaxRD0g+JW7z0LdO7UtzryDaio87tNCvcsTA70FiUu8JIgfvLU0Qjy1LU68tSbaO1dnE73t2ra8mSYnvNmMqD2omNi81wLqu1XkyDv47OE6W7K9PBrC/bxuKgQ9ScS1PG4VqLq2H+Y6NOV0PMHQK7w0VIy8V1krvaLDbz1rtaG8ihVbvbiGYDwLbBy9Ylb6PAtlKLxAnS49HTfgPNYQUr25jVS7hrXUPLz7wry/tQS9PT0ovfA6PTybZBI9i5+ZPWXS0Lpclu28srH3vLsJK70SLKk6GAGSvFXI+Dxhhya87eGqup1/Ob3X+/U806LjPFCZHj0fuiq7WwWFuWySXTy1gBU9tEIqPV01CL2jvHs8SeAFvZRKyrwnXme9mwpXuu+wfjyETlo9d7nkvFTyML0CFOk8eEMjvdUzljvyf5w8o02uvAxQzLtbq8m8OshFOlrHmTz3Fhq9hKgVvT02tDxOdwM9C1dAO9MKBz1MqOW8lJ0Rvf7IPr0f/wk9OeQVPZNmGr02Wte6r1hlPWunubyexBi85/BxvLHplzz85A68XKRVvGYsjLtrwwk93cnqukCkIrutdLU6bioEPJ9qXbyQ8bc74TBlPTZov7yeY2k74FMpvGNk4ry6Cas8EhfNvPWTz7wp4bE7QxkFvXKzmb1U5Mi6aUC/vF4gLD00VIw8HZEbPGT8CDsgl+Y8oNhLvcYpPj2Ip2w9Zr10PM5sFTzHDW46nJsJvZ2GLT3kpcc8MYxiPA8Rgrzoj4y8ScQ1PLHbr7uysXc8scbTPDxSBD0I8EW98Y0EPWGVDr0jBdU8xhvWO0CPxjyKFdu8l7i4PO3F2ru9hQG9Gcnxu4eu4Dvk/wK7DdMWvXRS6rw+goc9COnRvErSnb0ISgE9NE0YO9LFJ74CFGm7y/6mvEsJFT2+fg09BwWiO7tHFjwyfnq6lDVuvO4fFj0N2gq83clqvQWXs7wgpc48+W8sPGzzjLxt7Bi9JmxPPACmery/aTG8HFMwu3YaFLy95mY96nowvRnJ8Tw3u4Y9htEkPY7WkDwnZdu8VTeQPKmD/Lwawn05PYIHvP7Wpjwlj5M8G0XIPHp6mjvWEFI9GlokvHkuR7w3Wlc4gn8GPjHtkTuopkA8YYemPABMCb1eGbg8sduvvEToWLzEMDI8r8AIvbKx9zoSCeU8Dsyivc7Nery1NEI87sxOPbz7wrxv6++8W51hPeCYiL3a0Yc7bxWoPMU3Jj0KV8C6RNrwvO3hKjzkl984miYnvZ9c9bwARRU9J2XbPOOzLzxfZQs8pCpqveEifTyB4Gs7bJLdO79NYbxJOne9UZKqOza0EjxV5Ei7g0fmPPOaQ7yqYIK9Ag11PI//nzwqvm09S6hlPrLUO7vZd8y8Eh5BvXJg0jxuDjQ86nowvCxWFL3dwva7YIcmvbnug7zWF8a7fwqkvB+zNr0WYve8K7f5PIbKMLzwVo08osPvPAE3rbyQ1ec7O0ScPFvApTxskl28QZa6vMieIL2f7Sc9B/4tPcillLyQPYs8LTPQvDHmnby3t4y8xDAyvUnghbxApCK9FZMjvDNbAL2RzvM8tDu2PAhKgTuMpo07lwuAvecFzjw9PSg8SdkRvaa7nDq3t4y8WZeWu+YhnrrCyTc9457TPDIWIb3tzE489X7zuRWTo7zjnlO9HTBsvGmThjxSdtq8sdsvPX2OTTy5lMg8ddyouxXYgr1E/bS8S6/ZPIXfDD3L97I4D7fGu1IOgT2x2688/qzuvNYsojwsT6A8eTW7PAlDDT2TXyY8GN7NvNcC6rs9L8C8Vd3UvNtp5Du1Lc48jwaUPB/BHr3fWp28mTSPPfO9Bz0BG907E6GLvJ7SgDyiw+88vNj+O0Zrozp8nDW9Vs/sOyGQ8rxAgV68EiypuzrPOb0yFqG9JmxPvWT1lDvETAK7SKmOuzGMYrzL8L48D6JqPPhUBb0w9IW8n+0nPNwBizx8nLW8zc36PNYlLj22Jtq8IJByOu9dgTwPvro75JBrPCNmBL09NjQ9RtP8PINVzrz2DyY86mzIvMz+Jr1XYJ+7yJcsPZ2NobyokeS83sJ2vS6vJj2Oz5w9HZgPPYFBmztGZK87h7zIOwcMFr2myQQ9v2K9uwp6hLy3orA83SoavGhVmzwVkyO9oeYzveSlx7w6rHU8ThbUPLe+AD2e0oA8OshFvd3eRr0sSKy8cXyivEq9wbyuWOU6lwSMu+Oe07w6z7k8kPgrvDdF+ztfZQu8J15nPaoGR73qejA9WwUFPeu/j7zKBRu8o2KKvNSbb7w3aL86VAAZOgcMFj3+G4Y7ExDZvDIWIb1V5Eg8ZeesPC2NCzxF0/y7g68JPCothTrFfIU96mXUO93lOry6Hgc9qSmLu9YQUr0Wfsc9BeMGvWGVDjxLtk07AhtdvASlGz1ia9a81JT7O4sA/7ydhi04YoCyO4cPkLuKdgq9Nm+zOuPxGr3uHxY7Ynk+O8cU4rzxhpA6w7vPuze0Ej1ixZG9uO4DPOfpfbw3aD88zl4tO3JZ3ruCcZ67wtArvccUYr0Vd1O85wxCPFieir07RJy8QXrqvFCgkrwnvxa5lgsAPC+2mjxApCI6457TuwxJWL1xdS685wxCPSNmBD0RQYW8ThbUOyMMSTvPZaG7HsEePOpsyDyTX6Y8iTGrPaHD7ztYRE89jd2EvGkd+zqUUT4906LjPDZvszsSCeU8NnYnPcLXn7zL8L67Nmi/vGbE6LpRhMI7YY6avIyYJT1Od4O7bIR1Pe4mCr3/rG68hE5avY//nzwKc5A847Mvu753mbxvB8C9weUHOvIl4bxZKP+5+1rQvKifTDxBc3a8hE7au1gvcz0jBVW5QOmBvEddu7zpiJg7y/C+PDdF+7tiZGI7UYs2vYSoFbwes7Y6k6QFPJe/LLtOaZs8tTs2vAcFIr2DTto84TdZvIDuU7vxQTG9YIemPZDqQ7xU1uA8TJr9POfpfTyKAH+9y/cyvFXW4LoQMx26aSRvOwOzA70tM9C7SeCFPHBTEz2+fg29tRhyvH2VwTxuKoQ8YmtWPNQ6ijsdN+C8DdMWPaNbFr1ly1y9vOZmvM3bYjyKb5a6DcyivNmFNLx5Nbs8tFCSvCnhsTtAqxa8L5pKugcFIruHvEi9jW7tO/OaQ7yJKrc8nPX6vGT8iL2JPxM8BwUiPXJ1Lrrk+A49pSN2PSxPIL3xjQQ9GsL9vNYeOjqVlh29od8/PYDuUzqEVc47AKZ6PFIOAbw+E/C8d7LwPNZxAb0VcF+8jIq9vI3PHDxrpzm8r7mUvHzhlDyJMau8srF3PJoD4zzlLwY9RO9MPVIOgbxt7Jg9QXN2vSZzQ7zaypM7OsHRPMmXrDre0N48r1jlPJND1ryQPQu82YyoPKzq9ruueym90tMPvW8VKL2Mpg28Th1IvDMWobzrv4+7JFicO76uED2yIA890TR1vVu5sbxApCK8ZPwIO4U5/r1l5yw8UX1OO04B+Lys/9K8xw1uPM3Ubr13svC8p5hYuDTzXL0meje9KP0BPQOzA70qzFW86YiYu7InAz13snC8eIgCPcLXnztl0lC7Z2MDu5Dxtzy2GPI8gE8DvRjeTby3t4y7678PvZNYsrw6yMW8+2HEO5ej3DzJ3Iu9jK2BPL5byTxG0/w8I/B4Pd0xDjwwob47beyYPMp73Dupg3w8ihXbPHhRizoLZSi8xm4duR+swryHDxA69ggyOS0e9LzU/B49gnGePJoDYz3QSVG9ytWXPJaxRD3LDI889nf/vCj9gTxSfU48cYMWPLxOCr3nXwm99KirvGXZRL0eyBI8rnspPf+lersDFGm8zl4tPEnZkb2e0oC7lr+sPLYmWrzPXi29vE6KPIbKsDtNMiQ9r2bNu9SU+zv3D6a8DFDMvLz0zjw9NjS78YYQPSrM1TzIkDi7bw60u904AjwhkPK8hw+QvCClzrus8eq7qgbHukbTfDw4TO+8cllePQnb6TwsSCw67cVaPOtQ+LwmbE885iEePU+ZnryLAP88fegIvZHO8zygAoQ6JFgcvPOhtzwbRci8+2g4vYbKsDvc+pa8h6D4umvDibxti2k7stS7uMz+Jj1k7qA7N7uGPWhHs7yOZ/k8iTgfO6vq9ryA7tM7I2aEu+cMQj16J1M9cXwiPSMMSb0qvm09vd9yvfSoKz2Daqo7OsHRPHhDIz3vsP47QKsWPUT9NL1YS8O8bJJdPXDyYznpiJi7X+//uf9LiTtSb+Y88DNJPKU/Rrwmc0O8DdqKu7ebPL17Eve8pTjSvLLNRzuh3z+9nX+5Oy0l6Dxf9nO8ltSIPD4M/Ly7Arc7W/6QvdcC6jtRhMK7W7I9O2GHpjygAoS7hsO8u3hDo7zkifc8rZCFu8Z8BT22H+a6kdXnPLa3DD0gnto7tR9mPFgvczyKdgo9sFHxvAbVHj2HFgQ9OrNpPRtTMDw53SE930y1PNrKk7uiyuM80woHPd0xDr0g+BW7wcJDu7eisLzM2+I5EhBZu9dqjTs9L0A5yJC4PBcIBrz+z7K8+mFEu6tZjruf9Bu8mhHLvLK4a7whISU9BeMGO2LFkbyETlq7IJ7aPHXOQDw+goe8Od0hvVu5MT3L9zI8nJQVvDhM77ymyYQ8L70OveSlRz1Rkiq8ATetPPtouLzyrx+8BZczu/3kDj3TvrO8/tYmPdO3PzyDaiq91hBSvYytAb0p2r07SKmOPAE+IT1OdwM90sWnPByfAz2ysXc9rYkRvUyoZTwsSCw9DhECvLO/3zya9Dc97j0AvbKljb0ic7y83rjMvO8Tqbw0zpg81rPpvG31Qj31Nns8WoqJu3X6pbxNBIE985ROO/6Czzs0zhi9srlXPT7GvrzR4S08niRHOhuOiztYI+Y8VKLAvZqjITw58Wq9dnUTPL/kpDu/NTs9qVm5uw5ZGTxupCy81BG9vCgUFDyXH2S9kuUvPJ/G87wjzne9lc5NPLdQir1DjtU5pnpAux0mE7xV3ww9PjcHvRnW0TvaNye9+Lq4PPM5E731Nvu8ysgAvHfwgLyYXDC7JMRSPRivkjySQOs8u2BnPNDhLb2yude8RI5VvYQYNr2LMeO8chstPGyHEjyufyM9/oLPO//zlz0LKQo9fBNTvPCrsLyVh1w80Jq8vBrCBz0VsOe8oA1lvHIRiL2GVYI8nsmLPTR6ar2LMWO8zOUaPY5uLz3g/z29VjCjvNVs+DvaLYK9ZpUkPcTWkr0hLEu73rhMuzFqDb1UEwm8PdBjvC1hvTxzlho6vMeKvRtkNL1ONeU89OXkvMbpBzvX+lq8mbfrOvn3BD1YvoW8l1wwvVJ7gbtv6x29519cPYLbaTzErLs81rPpO4HoJj2aT/M8tY6rPJ5OnjxYGUG8QKW3vC1r4ryD22m9PFgOvd3C8TmZt+s8kkBrPI2/xbuzAMm8ItEPPebnBr3F1pI89nNHPQfj7TxnLSw9scP8uv4nlDwta+K8+5kxvCQLxLwOl7q8ff+IPB+e6LvtzLe8trgCvX6EG7yeLuy8t9/Bu74/YLxaYLI97h3OvKMMkDoLWm48BOaFvI3J6jrq7T699QWXPPv0bDtTmJu7dnWTOsWsO7w3CM06iyc+vDGRzLy1cZE8UMNHvZm3a70zKVS7eTRavAOpuTx6IBC8Vd8MPa6JyDyGX6e7538OPHFFhDxc+Dm95myZOh5X9zvR61I871oaPQlnqz3NXXC8sNA5ve2Fxrz0iim9HSaTPKljXrySnr48lYfcvOY4nTzMFv+8InO8PIChtTyK6vE81mz4vPqt+7u7gJk8lwsaPYchBj2XZtW82rIUPGbmOr2clmS8CxN9vUudXbwYr5I8EC/CPcIe2bz+gs+8nYIau95dEb0y2D27Hld3PZLbCrzRPOm87sw3u8p+dzzijSA9uW2kvdALBb2rTxQ9y5QEPdLXiDsiczw9WA+cvJSnjry3JjO9+5mxPE/N7DxgHiS9WmCyu1E0kD32IjG7g9HEvJhcMLyAY5Q8B8+jvAQEdTxNK8C6c5YaPMS24Lyk4rg8+OSPO676EDwoj4G8FUuHPAta7jxApbe8LYuUu3EvdzzjOfK8tXERPcqUhLwYNKW8+BV0O/l8F713DZu9YhHnPJbEqDqR+fk8oLzOO1gZQTwiLMu8zQK1PApnK714Pv88Pg0wPYqZ2zwyfQK7IO/+OzKRTL2wcuY86zQwPd+uJ7uClPi7zLGevIZfpzvAfCy84TyKPKFe+zwQJR09DEYkvVLMFzxpxTO84PUYPT7GvrxC7Kg8S5M4PDwuN7wW99i7HKsluyvJNTykkSK8/Tteu4o+IL0VsOe8eLyEPe9aGrxitiu9kUMDPPcYDL25bSS+Q47Vu7HDfLv/bgU9NsHbPAMEdbtpiGe88vzGOmy4djv1BZc8j7Wgu7cmM72jDBC877/6O0581jwpjGm8u2BnPKfL1jumUwG9mk/zvATwqrwomaa5OpYvPatPFL3hPAo8m4y/PRg0JT0+Nwc9A/rPOml+QjyFXye6mqOhvJuMv7n1gIQ8S70PPC0GgjyZrcY7mbfrPMjm77yctha9jmSKuz1rAz5bAl87m5bkPKGyKT3NLAy9hlWCvDLiYrzcIEU7zwsFPFz4ubzt9o68f1AfPPC1Vb2dLmy8KI+BPAARMj3RMsS803m1vPuZsTx0qY+9/niqO5yWZDzvWho9zQK1u9o3pzuXhoc81/raus5Ty7xydui8GxOePNjmED2KuY07zGAIu/fkD72PYfI8tFHfuw2h37tcSdA5fWRpvYVfpzz+gk+8x5/+O6jBMTyhqIS8hEKNvc4/AbxTzBc9irmNPf/TZT7uPQC8fTMFvex7Ib1+UJ8804Nau1fygTwomSa9wIZRvd3C8byjkaK87j2APOgEoby230G977/6vFSYGz3dZ7a7iyc+vAFsbT0sybW8BZJXO5IPh7zhPAo8CcLmu1XpsbwMUEm9goAuPUbLoT3ijSC96j7VPAQaArxiZRW9A9MQu6kIo7wbZDS83M8uvfL8xrzUG+K8E19RPXqFcD2hsqk7NHrqvGHK9bw2wds8b5dvPJHIlbx38IA8i9anvNEon7tupCy8+AtPPUbLoTznX9y8yIGPui1rYrubZYC8qrR0vQv/Mr3mOB279YqpvCwazDwx7x874+hbvHDeYDutLo29zsSTuiiZJj359wQ9e8zhvLOvsrxsh5I9WqcjPdRvkDyhA8A8y5QEPXcNGz3JgQ89QRaAPBMOu7ypY946uHfJvLuAGb2G2pQ7MUA2PEH2TTzOpOG8hlWCvMIeWT0kC0Q9AWJIPIPRRDzcz648ushfPDj+Jzx9M4U8IOVZvZ9ruDwctUo7FRcLvYsxY7zRjf+8UTSQvbhQCr3eKZU8W1aNOT+IHbybMQQ7SGOpPE0EAT3lgOO88KuwvD4X1TyKj7Y8XPi5vKUpKjwQJR088fIhuhp4/rzQkJc7N3mVPGl+QjzJLeG87dZcPdTU8DsJkQK99izWusH3mbw+Ifq8pnpAO85dcD3YQcy8UmX0vM27Q72bZQA9irmNPQbZyLsFklc9Pg2wul7h1zzI5u+8KTEuPVOiwLrYnx+97j0APR9DrbygDeW8srnXvDqWr7uyXhy9bzy0PCwazDyfxnM8eNkeOQayCb35XGW9fWTpvIhIRbyncBu9C/8yu+GNoLtcSdC8WqejPOM58jsjIiY9KoJEPFJldD3qPlW9C/+yPGrvCj17zGG5cN7gOrHZib1SW8+8Go4LvPuj1jwjaRc9V/KBPAz1jbxt9cK8Gnj+PHX6pTyidAg8JkgQO4LbaTsQ1AY8PryZPU6cCLzwtdW8Mtg9PdfTG7xEjlW9NXDFPfKhC72+5CQ7xf3RPFtWjbw90GM9jYL5Orbp5rqgYZO7T83su5HIFbtL8Qu7NM4YvQh7dboIIDq99dGavG/rnTxW3HS8tgmZvE8hG7wH4+08AlgjvX6Emzwfvhq81VguPPdporsXj2A8cHmAOjGRTLz/bgW9qBxtvGmI5zwCs169oA1lvSqCxLzFB3e7TQSBu4vgTLv4FXQ8gKG1O9nwtbu9p1i8BeYFvNsq6jwg2zQ9OzjcvKjrCLxau+08LqguvLMK7rsaJ+g8bf9nuzrnxT0BbO08MZtxPX0T07zOU8u82ZJiPRftszxzlpq8qOsIPZn+3DsPCAO9IDmIuxacnTljYn07xLbgurWi9bw5oFQ8QAOLPCJ9YT08dSi9q0+UvMsZl72wDYY8Xuv8PM5TS7yl2JO8dQTLvYmZW7uk7N28f1Afuyf04TpjMRk87h1OO7ByZjsVpkI9FdAZvdE8aby8+wa9vLH9PMoZFzzuHU68QVShuyqCRLw/aOu77SdzPHNsQ7lvMo88tj2VPP/zF72Nv0W9eLwEPY/8kbyy2Qm8RtXGvFgjZj16NFo7SvGLPFNHhTz9O965PwOLvWSp7rzKyAC8JgEfvHMRiDsMUEm8niTHPJHIFT0FnHw9m+oSvc74j7x4nFI8sEECPWAepDz35I+8tXGRvEzu87ucjD+80Fwbvfz0bDw3/qc8TdqpPIVfJ7sSvSS8gENivCTkBDyIIYY7bK7ROHSztLsiczy7jB0ZvcrSpTz5KwE8PvCVPGbcFbw+IXq9r38jPGNY2DxLVmy80evSPCknCT3ldr684ZfFPCLRD71v6x09I2kXvXJ26Dye0zC8LSRxPMdEwzxFyyG81BtivBkn6LokC8S8AWxtvM0CNTyw0Lk8TOTOu0bLobyJPqC73CBFvESuhzxNVRc9E19RPeV2vjyr8cC8NXDFPVm+Bb2qg5C7io+2POoXFj0KZyu516lEu0yTOLn/0+U6Qz2/vCdSNTwx7x+7OEUZvUBeRr05oFS97K8dvP4nFL0Zexa9p4TlO3jtaDymesA8Me8fPX3/iL03WeO84aFqvPJN3bsi0Q++ofmaPPVMCLyblmS9kZ4+vaEtlztwg6W9XyjJvE9yMbwxStu8Cl2GvcArFj1XdxS8cf6SvP3gIjz94CI90Jq8vD3Gvjuxw/w7EC9CPL/uSTxD4oO7MocnPQFs7bw+vBm80etSvLaidbyGC/k68dUHvdCavDzIizQ9ZZ9JvaBrODyjSjE9zwuFO3CDJT2gDeU7YwdCu2xnYDwQdjM8V/IBPLAXqzzNu0O8TO5zO/gVdDzFHYS8sl4cu5r0Nzq8xwq9KTEuPZ4aoruwFys99YqpvCDlWTzseyE9+8MIvTatkbz12z880TxpPBrMLDzA1+e8bqQsvfcisbzl0fm8Vd8Mvbh3ST1daQK9qHAbPEuTuDwLrpy9XPi5vBJsDr1MBAG75r0vveezCjrTebU8SGOpPAE7ibyFGLa5NmYgvSmsm71QaAw9fv+Iu7h3STweBmG74ujbvAERMjxx/hI6z/V3vFNRqryedd2892kivOtI+jpDM5q8qbcMve+/ej3osPI8e4VwvGSp7rt8Hfi8vZ2zPFSYGz0H4228n5UPPSoxrrwUsGe75C9NO7oPUby/P+A8rTgyvU/NbLwJkQI9J0gQvB9DrbyWP5a7acWzPJ5OHrweoQA980O4O8p0Uj0dqyW9Vd8MPR6hgDwdJhO9BBqCO5s7KTy1jqs8Nrc2PUPigzymekC9GCqAPSDv/rzvjhY9J/ThPHUESzxAr9w8JgGfuwME9TzmGOu8e+yTO5cVPz00M/k7+QvPO1JRKjsES+Y89QWXuTUVCrxdSVC7+q37O08hm7tG1ca85dH5vI+1oLzHbpo60Jq8vPOUzjzldr48ZvDfvM+k4TuZ/ly8V9LPu0hZBL1pfkI8lDZGvZn+XLwOl7o81MCmOyu/ELxm8N87QK9cPBM4EruJ7Qk9PzeHPOpeBzxgHiQ9J/ThOp+VDzwlui27RN9rOqxM/Lt+UJ88Ot2gPBM4kj26vjq7KTEuPfkLzzwqgsS8d5ItPZWHXD39MTm8dfqlPNwgxTzvjpa8F+OOu6jBMTzItQs8YwfCO+V2vjy9k468u7QVvK4ujbwustM7zMXovGT9nLx+UB+9q6CqPGyuUTyGVQK9yJ/+ulY6SD2IUuo8SCWIvB0mE725vjo9NwjNPE7QhDybjD+9c92LvJCo47nuPQA9CHt1uvOUzjwxkcy8yDqeuxftMzwlXNo8uNUcuidIkDyyrzI9Me8fvXUES73CzcK8LSRxvKDcADz5fBc9q7R0PLAXqzzwqzA9ui8DPcjm77yXC5o8PHUoPWAoSbx9Ca48i7ElvePy/jrkCFi9h+yQvNaNqbybAKY7E+B/PZhunTySYCM9wk2kPLeXSL0QXbQ8+EhdPeCivzxP8ZU8VaATPQGDiT1KX8u8ACSNPVFQkrwkVBa9Zk6QPIeqR7xftSm8/U87vUV9gztkkBe99YOKPBe0UTwgVNQ44tVLPXUoO70FvbG7YF3JvLKJED1Ityu7orZ9vFZIs7ycqEW9rYIyPXUoO7xAARI7ZoHaPIaU7rvcCZs6IoAGvSL1GbyPjNG8BnQOvYhSZ70meOU8jxc+vFs5uDzo8gK9s7WAvON2EbsyS/S8Zz9TvBn9tr2yKpQ7f+Vwu6YrFbvqt1W7Qzs6PGaXs7w6EEs9iX6ZOsqkwTz4QYO8j1kHPD5DGTx+IB49S3WkPHhxoDt/yL28OPrxu9KcJDuJqom8iFLnvEuSV7vvSaC764SLvU6SGTuB+0m6VP/NvNKjfjxxNza9HwQVPc2VxjqHwKC8w9gQPJuSbDzpJQ89qhwau4oQ4LwucEi7SdTevHsZAr32FVE8ISEKvAL/OLz2FVE83bG6u0TyFrsn5p68r5/lvJZ9GDz/gke8OhDLu+++szpOZqk8K44APXAhXT3rX/U8NHcmvEABEjt/yD29+gbWvM4gs7wMiWI8Xfewu8WWiT0tIIk8fSf4O3/l8DxUQRe9a6XrO1tPkTwwjXu8IvUZPdXsYzwXgYe8lmeBvQsjDD2dvh69oPEqvGaXs7zz8QE8Z3oAvaagKL1A1SG9WSPfvFtPkTtpawW9lmcBPXadkL1Okpk8pVcFvSCsNDzQyNK6YhvCPCDCjTsZj/08dsmAuzQCkzy5ylS8ghEjvDCGoT3rX/U7hPuLO/M6pbwtss871LlXvEFn6LzQ3is8piuVutuUhztb8JQ9QyXhvALp37wknTk9ZfbtPNXsY73sWBu871D6PEpfyzzCTSQ92vNBvKKvIzwSMYa8/ZEEPZMIwzsgrDQ8aedyPYYCKDxjw2E8V16MO7FWBD1jOPU8Njz5vJTGOzv2Vxq98iRMPat7ljyre5Y8JnELvGBdyTsfIci6SwfrvAVP+LuQNHE7k33WOwiYXTwY51288kF/PD80XLw9AVC8/QYYvW7u0DunSMi8EsPMvHgZwLwFT3g8yAP8vCdxi7w/ohU7QNz7PAQyxbzKwXS87OrhPOKigb2DnI87JVsyPKDxqj0opBe9vmN5u8Nq17ybtwI8i85YPHtiJbzHVAK7H5bbPFWn7ToOvO67M6OWPFRBFz1DJWG6OJSbPCSzEj2i25O7q3uWPASnWDoCtpU6Br2xvEJgDj3Q3is9MPs0vHf8jDz+91q9GXLKvDQCEz3tFpS8HNEIvR4L7zwQcw09vTDtPP+YoDwkuuy6/g20vF61qbzK5gq9+fB8PJu3gjx6uoU8GbQTPebcqTyuOY+8Z60MPPConDy12U+9KBkrPV0UZDvYSyI9gqNpPCP1mbvVd9A81h9wPeNguLxh/g49vJ6mvL/uZT0He6q8VzIcvLBAK7yk/2I9eVuJO5ks1L2pka28U3ThvDu4arsq3v27vmP5O4YfWz3YNUk7HnmovEFn6Dy+0bK8ua0hvsqHDr2ISw09yrqaPLEqFD31bTE8xj4pvaCD8Tp/5fC7nKhFPWhVLL3ymV+91gK9vK33xbuGNTQ9b6zJun490bxExiY7xrM8vGZ6ALuhr6O8zj1mPGBAljqE+wu7oduTPC0nYz3+xBA8cBqDPIzOWL3nUT05bUaxvPKvODyLm0y7FpceOziUG7sSrfO772bTvDtZsD1PHYY70N4rPDGGobvzOqU9auCYPA7hBD0Wlx47pqAoPJ2+njz2oD09QfJUvTfdPjzZ3ei6MBhovD1viTzaaFW9pysVvX4gHrwCVxk9llEoPCdxC73Kh448OfMXvciOaL2FWoi7UkHVPDGGIbwdY8+8/MTOPANBgryAcN28voiPvJf5RzyjV8M8s8P2usAEP7uYhLS8TB1EPQ687rvwfCw8PqlvvEmhlL0AK+e8IyimPPnw/DubAKa7lCV2vCSdub2GH9s8O7EQO6T/4jwTa2w+mtTzPJlCrbz1+B29tKbDu15sBr0ejwE9paAoO4u4/7wL/nW8CsSPvMdxtTqGuQQ8Fz++O7C1vrzrQsK7Gf22vI76Cj0PFJE96CxpuSYSjzpwrMm8CZGDPeG/8rxarsu8iaoJvUih0jq/5ws9vUZGPFfTHz2USow77TNHvIYfWzyxXV69uLT7O49ZB72Jqgm9WAYsPH9Tqjzi8n48nKjFPCVF2Ts33T48xrO8u8JU/rw3wIu8YOg1O1cyHL2pvR08JbOSPIV3uzxGi/m87TNHPP+CR7zgF9O8FinlvMc+KbrxJEy8tu8ou7qIzbzn+dw8Cjkju/1sbjzFgDC7UkHVvDdS0ry6VUE8lLDiPGetDD3URMQ8/ZGEPSv0Vjzhv/K8xDcNPQgjyjw2UlI8hGFiPaEkNz1NxeO8yAN8vPaKZDuv9we8ecFfvPwyCLoQR507k31Wvbz2hr1jXQs99qA9PbprGrwCdMy8lB6cPMfQ7zwq3v08o+KvvF8qPTxjw2G8wRoYvY5vHr2yBf68hS4Yu4H7Sb1U/828FcMOPA5H27tkTk68/WUUvYXsTj39ZRQ8I525PM2VxrxMOvc8s4kQvD/OBTutgjI8TcXjPIvdlbwuyCg9MBhoOyUSD70u9Bg7RW7GvPDUDD3UREQ9qGX7O0pfSzz+xBC9Snz+uyyc9rvLTOE8MYYhvHCsSbwjumy9oQ7ePD0BUD0DiqU8K9ejPK9smzvG0G89p71bu5EXgDw+Q5m8yObIO81/bbwAK+e8NaqyOwMVkrojumy84/L+vCMopjtkTs67amuFPHazJz2VO0+9VadtvMsZFz26cvS8ERutvHovmTzR+148u/1gvIRhYjzWAj290fvevGBzIr3XNck9K44AvbkMnjwS4H88K9ejvdijgrxEsM28KBkrvQW9sTviuBg9WHu/PKEO3rwEp1i9A0ECvf4NtLxOUFC7Ze8TPYeqRzxQDkm6sGwbPTUuA72bACa7xrM8vJZngT02H8a6GeCDvdZEhj3ejGa8yHG1u/YVUblkZKe8GzBDPTZhjzzxBxm8iWhAvfGoHL0x5R09YQXpu7xVgzsxhiG860JCvGiBHDytOQ+8qGX7vOWwd7sm7Xg6+EGDvJHy6byazRk8E2tsPNub4TzfAXo63m8zPPKShbwjumy9XRTkunP1rjvUuVe74tVLvXHJ/Lw4aKu9dp2Qu8mHDrpdifc7/sSQOe6hgLt40By8WSPfvGg/07weeSg8VaftPOtCwryi2xM89hVRvRBzjbzSyJS7g9Z1PPcrKj3704s9qqcGPX5/Gj2/eVK9DIniu4loQD2IwCA9sGybOTdS0jwMgog9HLsvvIxZRbyOAeW8zXiTPIERo7wKVta8OyYkPS9wyLza1o494krfN5u3Arwtsk88ei+ZPOaTBj2BGP27kWf9vIhS57yUsGK90lOBPIH7STxHhB86LZUcPYa5BL07sRA7f+VwPao5zTyZ+Yk8GXJKvIT7izz1//e7iyY5vRKt87y6cnS8QpMaPOaThjwDQQI9w9gQvZFn/Tp/yD073ceTvQgjyrwJrja642C4PHnQHL0DtpU9MYahvIBTqjuHwCC81exjvNXs47xjw+G8ccl8vJhunby4l8i8Y6YuvXmkLL2RF4C8MXAKPQP/uL3mCJq8SdTePEnU3jyw0vG7KBkrPIV3u7xrpes8QC2CPFrwFDw43b68e/TrPMqkwTvYUvw8/vdavaocmryIwKC9iB8dum4EKr0pA5Q8DIniuxB6Z7w1qjK84UpfvMQ3DT14cSC9/U87vdMROD37kUI9O7hqu1G26LzeWVo9RrAPPIqbzDzzr7i8BDLFvKEkN70Mggg9YRtCvQJ0TLxA3Ps7nR3ZPL1Vg71+PdG8tDEwvTot/jxNMx29z1O/O3x/2DwepRi80y5rPChFGz1ogZw8nYuSvLmtoTyhDl49oAcEvYfd0zwdRpy9xmoZvcsvLjzWAj09gpyPvNRExDu0MbA7qiP0vFT/TTx8TA49gWkDvcwK2jynSMi8zpVGvdnzwTeHwCC8Zyn6vJlCrbsRBdQ8ClbWPCEhCj2Mzli9SdRevFfwUjyRSko8qPDnvXdxoDy+eVI81EREvemaIr06EMs7EuB/vKEkN70RkMA7IKw0vaB8l73/n/o8a6VrPfletryyczc9XQ0KPeDkCLwCdMw8i0PsO15shjzVYXe6gi7WO3VF7jxxGgO9F4GHvPoGVr1jpi69Lj08vEBKtbzTLmu9bbtEPGs/Fb1veT08nCwWPUt1JLy9MG08Id/AuzCykbtPfAI9Poy8vBhc8Tw95Bw9+XQPvcsvrjzh1Uu816rcu/IkzDsaPwC8pYpPuaM6ED3j8v47W1ZrPCKABjzFC508yxmXPBciCz1EsM275TtkvDWqsrsrjgC9E9klvabMmLxA1SG9bgQqvf+YoDxi/o48uDgOvVW9RjyPjNE77LcXvZrqzLylV4U9oSS3uoDeFr30JI48nlDlO5bjbj0ImN070xE4vXdxoLylik+74tXLu/TFEb2Zt0A9e46VvLgitTyYt8C7EjEGPTFwir33Kyo7eaSsvCDJ57raaFW7CjkjPUAtAryQv9085ggaPVvEJD24IjW9Kt59vfConDxl9u27ze0mvZJgoz3BrF69IN/APM14E71nP1M8kwhDPdSGDb0rjgC9V9p5PBEFVL0II8o8k0qMugVPeLxEsE09Zdk6vArL6TzCN0s842A4ur5jeTsc0Qg9vTDtvPvTCz27/WC84+ukupFn/TyWCAU9I505u1xsRDyIwKC9z8hSPAHMLL08EI088GbTPSx/w7xA3Ps8jm8evY08krwM95s8525wvM7Xj7yIUue8GMqqPFfwUjwej4E8y0UHu01fjTuTCMM7HjCFPFmRGDupXiE6sEArPb5Gxrwojr68n9vROy2yzzu6VUE9FYHFOVOKurzuM0e94S2sPEp8/rv34gY9oGa+PKK2/bzblAc9kLgDvZC/3TsA+Jw8J9AHPfIkTL0Vlx69m3U5PKzaEj0jKCY8EaYZOmcpej2fZj68MkQaPSiOPj2wtT46Eq3zvKagKLyXFnu60lOBvZi3QDwTBZY8EF20vNPIlDy+0bI7/sQQvTtD17yYt8A8LH/DOV8qPTseeSi8esFfvcQS9zsk0MW8yRnVPGLD4TovcEi9vBO6Otg1ybwvcEg8D+igPIoQ4LzD2BA9yRlVPbnK1Lvg5Ii9AulfPeKiAb2Qoqq7OGirvB9jET1ASjW8/MROPIxZxTwhlh09RrCPvKM6EDxl75M8r5/lPPAO8zsMbK88+EhdPd8mEL3mxtC8C+HCPMsZlzy8u1k8+emivPocrzsIMge82cA1PChFmzyCEaO7sEArPdzzg7xvj5Y8NaoyvZdHJL2ehz28Or6mvSVyNL18nci8n74oPCtEdz1A5aS7xBG/PLtKtDxwT0y9JFmZO2ooTj3034k7fPKDPI1JLj1cgBg9+xA7vDNHoj0lHfm8VvX2vP6wRzzLiMO7KBLBuSpix7wWk5O7hIKjOjvXwTydzZA8soMpPHjGUD0h0qe8Y7FJPApFl7zTNrM8XFPgOzPyZry7gR+9LSAkvVFpBz00ppC8nADMu6FUAj2ipAg7+1aOuecyH70d+6+87lTovEH+P7zFKlq8oqQIPcIHDL38R6Y921j8vKi8Hr26aIS8OBnlvHjG0Lty1r29oXwFPZzi+7vfkxe86wkXPMexS71YRf27/ZcsPQXx4Lyme4A83f29vE6cQjwO1js9lMAyPfUHDTzXDas7PLnxvCdtfzpzHJE8pK67u0nygr08VIA8F+OZux+RCb2Ot4Q7nDc3vD6VHr1hpxY9kAcLvbIubjx7uxg9ei/yvFhF/Tr2Alg8NvYWPfoGCLx2dsq8sUw+unu7GL1A5SS3IrRXPDcASjwF8eC76tKrPAKIPzxkH6A8htKpvGZRVrzl8QA9ccwKvF3fBjvq0qu8T7XdPENOxjwMlR09Bwr8PECQ6bxxMXw8gRkCveZBh7tAkGk7V5CFPCaLTzyJkIY97nK4uvouC7zUpAk9HKspvFIefzy9fGq8ogn6OStEd7xNkg89TxkBO+WNXb2/ISw93hZZvWPoNDpcHHU8x3rgu+p98Lx35CC9LSCkO0iTFL0wzxg8irgJvaFUgj3Hz5u9soMpPBBdLb0vUto8S95lu9lsGTwMhjU8r6f8ujmlizx5kxW85VZyPJYuCb0vG289HOKUO5gpVDwXnca8UEEEvADK4ruZlyq8Qf6/PNkIdrw6zY68gvuxPXG9ojqh8N6841snPVOMVTxwzIq9Yt4Bvb186jwGfYc8yQFSPVYTR7ym4HE8gI1bvJWi4jzucrg7J6RqvB7dXz09J8g8tpEMu+q0WzyUUtw78TCVO4L7Mb08Dq28dT9fvfYvkD3MavM8WOALPdRtnjzSyFy7S/y1vI6Pgb0RP107iGiDPJbZzbz16Ty8ATg5vTxUgLynF126W48AvJh+D709fIM8J8I6vaN3ULzadky8HKupPC0gJL279fg7UWkHPAHj/TpNkg+9h+vEu9qUnDyCpna95qZ4u8P4ozwssk09XFPgvFTDwLtpuve845ISO/gb8zxEnsw7SzOhvGDz7Dw0ppA8j0T5vIvCPD3Hscs7fmoNPDqg1jxDlJk8jUmuPA7WOzwcqym8fQZqPMZhRTq8Rf88ro7hPLtKtLxhf5M8KVgUvSq3Ar1WE0c9lWt3vM3YSb0QXa087CKyO3lrkjyV9508hPb8vC45v7xiQ3O82EQWvQpFFzxFgHy6kAeLPK5X9jxWE8c8PPBcPErFSjs+lR49O/WRvHvKgDwfaQa8GO3MPKF8BT1niEG8f5IQPS9wKj2AuhM7G5IOPbjhkryPRPk8UM54vGLegTxNLuy8K0R3PSQE3junbJi9XIAYvQt8Ar0FDzE8v4AavETzhzwU/Tk9CxjfPKEnyrx8nUg9pjUtOiWpH77VT069tWmJPEun+jzWaOk82ESWPEdcKb2ELeg7mvYYvUveZT0VaxC7J8I6vZh+j7ykrju8OH2IPCvfBTsXuxa81p9UPIjNdDvNoV68FP05vVOqpbyV9x28USO0u1Fanzx7Goc9XgeKPFeQhbr8Kda8iR37vCBk0bz2VxM9EvOGO9XMDDzd3208fH/4Oz0nyLx4Q489lFLcOsEc9zvCBww9cBhhPXydSD3CwTg9oA6vvFy3AzzRr8E86PZ+PQo2r7zTNjO8WwPavMnKZjuvxcw8ATg5vZNwLL1ewbY6nABMPRMbCj3Mzha9HQoYu7UjtryYYD+9rbsZPEclPrwXZls7z32LvBi2YTtXLOI7FU3AvM3YSb2TOcE7Bn2HPCvfBb2kx1a8pK67PD+uOT10RBS9mXlaPMQRP71XY8291G0evVJzujy5+q27JbgHvXnf67xpHpu9zL+uPGhqcTyXR6Q8FN9pPsMvDz2foNi7Xmz7vHkWV7jo9n69pK47Oqvu1DuUUty8/XncuomQBjura5O80h0YvODyBTwCiD+7rld2OnzUs7xbOkU9YnpePZ1uojtPtd07sGoOvf2mFD3IHyK99Jk2vU6cwrtPtV28o0DlPJwAzDwitFe72aMEuwr/wzuFmz46pK47vbe5Dz1hYcO8XxE9vGLegbtgYUM7JuCKO4bSqTxIdUQ8mXnauzDPmLuxTL68mvYYuwnI2DyYQm+9/gUDPa8aCD135CC8MlaKvezN9jvIH6K8cE9MvMy/Lr1BRJO8QJDpOZ19irxyn1K8nADMPIHExjpfEb08B0HnPLMZA7zgnUq9ET9dPGsKfjzKiEM8NwDKOxdmWz3WvSQ9mvYYva6O4TygDi89l0ckuq+nfD1kLgg9noc9vXWUmryV9528RyU+vG98hLwn+aW5EXbIPKi8nr03AEq9/aYUPQYoTD0gLWa8IQkTvGFhQz3sIrI8S6f6vNVPTjzPKFA8zrr5vC45P70nCA69VfqrvLBqjry0tV+9ZTg7vRt0vrzgncq81p9UvQvh87wvUlo8hZu+unAY4Tz88uo68RJFPNtY/DyiCXq7YGFDvA4NJz0BOLm60sjcPPd/ljwkWZm84kKMvG2vv7yZphI9LOm4PGXj/7wZQog8wagdvdPhd7sggqE8mZcqPW98BDzkdMK8wt+IvRpqizwy2Us92pQcPVnRozz6Lgs71BhjPbPTLzyG4ZE7xfPuvI4rXrynlJu8HjKbO6i8Hj2k5SY8yAHSOzh9iLy4w8I7wbcFvehLujyHtFk9IC1mvdH1lDxNLuy6YEiovNRtHr1XuAg8uhNJO0Ubi7w88Fw9BfHgvBKts7xgVxC9QzB2PVPhkLw8Dq08J6RqO1TDQL10CHS8zkagvETzB734tgE9PXwDPfEwlTmoMPi8nOL7vOb7M7p9Cx+9F/KBPCUdeTwjIq48RyW+vNGvQT0GX7e8mXlaPOhLOrw2LQI95HTCu77qwL39QnE9eEOPvA4Np7zucri7jo8BvGkPszzILoq7E8bOO0szIb3okY287riLPFtYlTsVa5A8xmHFvPYCWDx4Gww9XagbPOWNXbyrPlu80uasPLjhErsUNCW9pjWtPHnfazsaWyO8fiS6vDmlCzyu8gS9U4xVvXzUM7yjlaA7K5myPKFFGr1JrK+8Uh5/vWBIqLxPtd27kNCfvNLmrLx9Bmq8jPmnPHKf0rwJHRS9an2JPCbgCj2IaAM8e394PGTK5LwJke07JFkZPRkkuDxv4fU8JR35PKmezjyLpGw9zlUIvewxmrzDo2g9bh0WPYcxmDzXHJM7PkBjPexohTxiQ3O6L3CqvPgbczwyEDe8uMPCO8PaUz06oNa8mEJvPQ/vVjszKVI8vdElvFmzUzzEVxI9IgkTOiEJE70f9vq8V7gIvdaf1DxQ7Mi75gqcPFEFZDxkHyC9UnO6O7N+9DwWhKs89stsO5X3nbxpHhu889AhvNjv2ryFZFO9Lxtvu23mKrx7nUg8Gc/8PBCjAL0mVOQ8oB2XvK+nfL0+lR68BfFgOg9sFTyqDCW9OG6gPfKAG71Y4As6YWHDvKFFGr1C4O+8ulkcvdtYfLyg10O7PpUePA/vVr20td+8zM4WvbuQBz2PYsm9EVh4O5++qD3PfQs8IQkTvAzMCDstICS96rTbuMXz7jxwpIc7NZLzu66OYTyES7i7Ru5SPPx+Eb3h1DW8qLyeveCdyjtdqBu9KqgaPR3ERLyU3gK9z30LvVEFZLxIdUQ9mEJvvTK7+7yAjds7JwgOPRpqC7pkLgi99ER7PXkWVzzZXTE8eP27OyWpn7wfaQa9YEiouv6wR7yb57C6v8xwvC9wKjy7gZ+9awr+u61Xdr3d/T09MfcbvYSCI7thYcM81vSPvLtKtDyxTL48+vefuqHw3rz6Bgg9aihOPQttGr14xlA9M/Jmve6pI70w3gA7Bl+3PDUtAryM+Sc7qDB4vPhS3rzcxtI8hEs4PcnKZr0FuvU87qkjOh9LNr23Vew6Fi/wO5SiYr1Zs1M7Y+i0PFl86Locqyk97rgLvWuWpLkXZts8QhfbPD93zr36Lgs9XvghvO2QCL300CG9w/gjuifCOrlLMyG9uIzXPIZ9br2v/De9j5k0Om2Rbz1q8WK89Jk2PS5/Ej3okQ29WJq4PN9m3zz2Alg98KRuumsKfrunTsg8lxC5vKPMi7tVpfC6E8bOvDvXQbwE2MW8EcuDvbdV7Dw2sEO9K9AdvD4J+DyipAi9e7uYu/FnAL3HBoc8L3AqPdafVDyiQGU8H2kGPccGh7waW6M8CM0NvPJJsDyqt2m8M34NvKgweLxgSCg9lQaGPLoxGTx2dso82WwZPZB75DzlVnI9wHEyvNlsmbwxBoS8smXZutl7gbwELQG9IzEWvWxBab19Cx+8vjCUPOM9V71BRBM8zPaZO1TDQL32L5A8tlqhPSyU/buZzpW9Glsju44rXjpHaxE9uIxXvPY5w7wrRHe8x7HLvPNiy7rX1r+8gt1hPVTDQLvJVo27OBnlvF5s+zqVa3e9Bbp1vJhCb7ukrru8Ooc7Ozpp67ri7dA7JYGcO8y/Lj3jag89n6DYvFIe/7zfZt88lcCyPCdt/7zx21k9daOCvbRBhjzsaAW96BTPPFIe/zz4toG8QJBpvFBBBD0vUlq95astPVZZmjvxZwC9qhsNPRkkuDzdQxE9dCbEO9kI9juehz08VaVwPS9S2rx1lBo9fOMbvUveZTw8HRU9vEV/PFdjzbwQXa282Ah2vUszITztO828yOg2PGBXkD1LM6G8ZW8mPQnI2LyiCfq5qZ7OO8zOFru5+i26gHTAvGe/rDxTqqW8G5IOPSJ97Dp0JsQ89Jk2PLv1+LkHCvy7gjIdPEc+WT3kdEK9Mrt7vGP3nLtB/j88zfFkPHWjgrzRr8E8+7v/uxE/Xbul/kE71cyMu6dOyLuAdMC8A84SPLmlcrxebHu8U6qlPHpNQjx1lBq9sN7nvADK4jyVwLI8UOxIPEtCCT0ODSc91Ia5u4SCIz1pVYY9H5EJPSjb1bs8uXE89N+JvONbp73Cwbg800WbPLLiF70ODae8CxjfO/rZz7xewba8Bbr1PIyk7Dzbrbc7Q8uEvQKmD71WE0c8u0o0vKZOSDy94I08ZQHQvDwnSLzdNCm84bZlPGoozjz2y+y89NAhPR37Lz2LCBC9sN7nvHAY4TyTcCy9QBwQvduPZ7ya9pg8daMCvF6j5jxPtV09JYtPPYcisLxpVQY9iXK2PGJ63jxDlJk83BsOu0msrzwqK9w67M32vBVNQDyu45w8i8I8PERnYbx5Fte6e8oAvSgSwbqXEDk78AiSO2rx4jxRWp87EKMAPbuQB71o5vy8D/UFO6XBqL0UWx69OyuvvOc5yjv9ByI94bEpvMv+DD1+Iag8J6uevYa6zDtT/AI9nE7duzmc0zydPVk9p5EYPd1tmbwy0549LVLLvF2c9LyrUwA9YKknvd61ejwWKw47P72GPGX+O7ybG9E8+MMRPORijTyEmEQ9LW2GvHSM1Dv9Pv+85QY+PRyzrjxeGsy7ZWsPvWwENL35Z0I8c3tQu+FVWrsYAks9y/4MvYhJqDykXgy936ClusNKLb3bXJW8Qc4KvYWpyDy9Vbm84kCFPeCgpbyP0Ui7mjaMOwrhhbyxeAS8yI69vb+ZSTx63Rc8OyuvvPr6brxaMou8VyXYvDtNNz1b1ju8/95ePPoLc7zQlLU8898hPRyiKj3N3wA8+qSFvNI0Fb3F7t26dYiDO1c23DsJ4QU8enBEO1Cuu7u6tVm9mhtRO7ozMbyknyC9u+EYPYjtWL20q5A8DDrrPHoUdbxehx88dIxUO/46Lj0TORa8eV/AvFVwozvtig292969vCZu2zyf7rw7d5mHPLfvoDzumxG8rbYcvDVpRzzFW7G6iWswPV9XDzz46Wo8Kg47uzK4Yz074GM8jJ48PSKGGj1WA9C8gfhkO3fQZL0Gskq8Z42XO4UWnDyjjhw8AyNvPdC2PTxdZRc8AtsNPcvtCLxDMac84ETWOw82mrtaxTc8da7cPB2DHjxSvz+9EWkmPYFlOL3COSk7V1GXO9ABiTx77pu89IPSvBiVd7zzAaq8xe5dOxYrDr1+xVg9NnpLvTkJJz3+KSq9OjwzPCzUc7zB1ow8rdikO3C1lzt7gUg8fiEoO+BE1jznZYm8YkmHPYBDMDywC7E7HDXXvNX6zboH7428Eg3XvED+Gj2gW5C8an+POiS5pj1Hlz882969vDuYAj0+E3A8fRAkvRw117yeSgw9tyb+PE8fYD3eEcq8Bh+evKbjMDqbiCQ9bXGHPFc2XLzdPYk9jcBEOp+BabyFukw8CWOuPG6TjztsYAO9/95evE/5Br18Nn09vgpuPHYbMD0HUio88KwVOfvlGbxnTAO9rWvRvEkVlzzP8AS9ptKsPERkM70v4aY8CeEFvIY4JL0mbtu8ccabPLi/kLziQIW8qGEIvUMxJzzRx8G8PE03PLALsbshGcc8w0qtvF1lFzw76po8Sl14vUm5Rzy9+Wk7CynnPF2c9LyRYKQ8EwkGvSZIAj02hAI9D233vAp0sjlwpBM8RMCCPChZBr2BZTg9JkgCPUTAgrxWkis9qydBPKbjMDy71+E8/imqvBfPPjyufFW8BjAiPTK44zy9Vbm8cNvwOxBYIr1YR2C9cMYbPUAk9Lz8GCa9L6ASPPUSrjyYe3E8NEe/PAaySrznlZm8QUb8O7IcNb0kuSY9ZJFoPHvumzz6+u48XjUHPc6DsTtTTps7qQW5PN/G/ry4rgw8mIx1vBu3fzycFwA8dyy0vJ0oBD3QpTk9sHiEvCPO+zy0T0G9tE9BPbGv4bys3PU8fK0HverIJT3BFyG8KOyyvRCP/7ydzDS9QDX4O7kRKbzgoKU8gQlpPTVYQzx2LDS90cfBPEA1eLtq4iu+Fb66vP/olTzqbFY9eOHoPIhJqDziQAW91wcBPJSkNLyt7Xk9BQ6au3lOPL26xl27Qc6KvCRWCj1Bzoq896EJPDIUMzwsQUe7WmnovP7XEb1vSMS8Wta7vMmwRbx5Tjw80RKNPeJABT0AXbY7hJhEvZ7dOLwHAJK8j3X5PJFxqDqFJ6A8t4JNPGFeXLwZHQa9Z40XPSJFhjvDCZk8Jl3XPL3CjD3QAYk8D357PBfPvjsl3/+3p1AEPAaySj2/Cu68O77bOz4TcDv+vFa80SMRPQShRr0KIhq9XXabu/lnQj3AtIQ8iukHvfbiHTp2GzC91WehvTf4IrwgdRY8sAuxPBw117xms/A83RuBPKKj8bzqV4G9QP4aPPSlWjvfjyG9cDfAvK11iDz0ASo9nnDlvNYcVjyEBZi8wKrNvf9LMr19ISg8AgHnPHlOPL2dehy9zFClvb93wTzr2Sk9n4FpPN6kdj4Xz748Tx/gvIwx6bw2lQY8WbQzvaXSLDvqyKW8roYMvZuqLLxZtDO9CoU2vP0pqrutthw8QvCSvFvWOzx2GzC9n+48PRqAIj332Ga8WKMvPLVgRbwxFDM9lSKMvPwYJr3jUYm80JS1vBM5Fj3UVp07WSGHPHYbMLtoMUg7JWcOO1aSK7274Rg8wcUIvd61+rzQOOa8mXegOsLMVbz8tQk9xhBmPB9CijrHfTk7r+kovBW+urzOci08UmNwvbVPwTzRx8E8rMvxPDq+W70pew48ViVYvPiyjbplomy9I6iivGwENDxoU1C8cnvQuiTf/zybqiw84sItvCzUczxmfBO72KsxvT+AQzy9VTk8GYCiOi+FVzz+q1I9ZQ9APSMqy7wEocY8x+oMPXDGG7zL/gw9Ng34PFijL72AVLS83iyFvCsww7uMHJS8Ifc+vLCe3TxnIES9Kh8/vdpgZjylbxA95QY+O8s/IbxQSx89kYZ9PG4VOLuC9BO69X+BPDKBhrwY4MK8kIb9vORiDb2m47C8sa9hvdccVr0n7LK6YoqbvERTL72SFVm9xhDmPDy6Cr3CzFU85PU5vJmd+TuJGZg8Ir13Owj2WrykMk09jVPxvFYvDz2qlBQ8r5cQvZOktLzVeCW8lLU4PRok0zy5Eam8nFgUPQShRr052Ra8MqffPNT6TT16gUi7m4gkvIHSi71aaeg7IHlnPV1lFzwwwho9EPzSuzq+Wz3Ijj27l+jEPCQ7T7zXiam8rLacvGFoEzzwUEY9idgDO8mwRbyDmMS80LY9PAS8Ab3DOak8rdgkPYfLUL1pZFQ7F/HGPCmh57zjUQm90AEJPNq8NTzUfHa8kgRVPDRHv7zS84C8TnsvvPFhSj1oXYe6QDV4PG0EtDzefh29B+XWvNiarbwcoiq99JTWPIQFGD1lD0C8ebuPvY/iTL2tdYi87rDmvAbeCT2m0qw8godAvEC9BrxerXg98o0JPEAkdDyScai8HVffPGKKG7wSKJK9bGCDPSbbrrxQQei6tOJtPFVwo7mW18A8L+Gmuv0Hojxjmx+94XAVO0z91zwGMCI8PW+/PMb/4bzhVdo8nTkIPHKFh7wQBgq9C/KJOiDmujsENHO8ERcOvZh78TyR89A8LK4aPGWi7LxlD8C7hzikvGuGXL3nOcq8zjGZOpoKTT2wjVm9DDrrvMj7kL3gXxE8L3TTvMX/4Tvzno07XfjDu4WpSLwS+IE8C5a6vN/GfrznVAU9TWorvOuYlTw8uoq8MZbbO0z91zwYbx48DrjCPMTu3TwJdLI8MQMvPbikVb1eGky9iO1YPTo8Mz11G7C7ts2YPNcHgT1Rrjs8towEvR/muryzPr08ylR2u/yJyryICBQ92joNvXnybD3sn+I7hTz1OuUXQrvL/gy7OisvPQXDzjtM/de8sz49vZRSHL2RHxA9h0mouyCK6zy4pFU8f9ZcvGWi7LyMHBQ9koKsPCM7zzrbceq8ptKsPFQNB7sHQaY7DsnGvH/F2DmXam27nJmoPEnlBj2fSoy8t4LNPI2vwLwxFLO9/T7/uxEXDrzlmWo8PE03vEommz3XSJW8J1kGPE57r7zlcxG91GehvDq+27x6cMS7pj+AvFK/PzqAQzC938Z+vO4uPr0coio9cg59vTf4ojxDMSc9SdQCO81hKbxQMGQ6BbLKvMeOPTyCh8A8Z8R0PFThx7vzr5E85YSVPGnAozx5Tjy9HCCCvDuphr01acc8zFAlva/pqDwexLI7GiTTvE6Ms7x1yZc8if5cPSlqCr2kMk294VVaPOxohTwjRYY8uo+AvXjhaD136x88TWorvDZ6S7wE/RW8IHlnvc8nYrx7nIO8F+BCPI4tmDrL/ow8zQVavZQm3bzIIWq9FEBjPY91+bu5tVm6cMpsPCxcArx3LLQ8F4TzPP/olbtHKuy8tnHJO9YLUj0pagq9yVT2PGPcM72duzC9BLwBPKdQhDwHQSY4bAQ0PKvL8Tigku28jELtPNuC7jyarn29IHnnOy/hJr1vpBO9fuATvBhzb7xM7FO99uIdvALskTwHQaY7VyXYPNdIFb35Vj68Xq14OwYwIjyCGu29kzfhPLZgxbwDfz69AQFnvfOejboKIpo6gefgvFUeizy/mUm9v6OAvZM3YTydTl09hstQvH0QJD3aOo08ybBFvZyqrDxwN0A9iEkoPZyZqDudPVk72k/iPEkVl7z8ms67t4JNvAdBJr2SBNW8e+6bvISpSL1DUy881Hx2vdrePbwONho9GaZ7vF2cdDwKIpq8YE1YPP/N2jxSUuy7tmBFPdV4JT2lsCS9VZZ8PO6bEb26jwA9NWlHu/G9mTxBICO7CPZaPOjd+jvQAQk9rnxVvEz91zyz0Wk8sYmIPb3CDLyMHJS8wk5+uxAXjjyCh0C9PLqKvJuqLL2BwYe9RdGGO4U89Twkuaa9e4HIPDIlNzzhVdq8XjWHuzFwgj0G3gk7Q9VXvfvlmbm6M7E8X6mnPO7B6rszo468ZyDEvN6kdryFuky8urXZvHS4Ez0bNVe7++WZPGuGXLyitHU8vxtyvVWFeLyUUhy8IRlHvENTrzv+q9K8BDTzu0fzDrx3mQc9shw1Pa/6rLzPg7G8eKoLPWZ8Ezto1Xi8zQVaPfbRmb3aKQk9XfjDvLcV+jxk/rs8IRlHvAFdtrw2pgo9TowzvSdu2zscsy46D233vNABCT33oQk97sHqPGHLrzxHBJO8eKoLvOJ3Yj3aOg29+xx3POdDgbxjb+A70LY9PbozsbtoXQe9Y0kHu7YVer3s6q07ZqJsvNWefjum0qw9P4DDuua78jyAVDS9GW+evLV7ADyICJQ7RRIbu8CZybwqw+88aF2HOtV4JT1cVJM8Nx78POhKzrv+zVq89BKuu658Vbs7K688mBQEvRZi67xeNQc9OdmWuyB55zymgJQ7y3Z+PIhaLLx2658620sRvKmYZTz9KSo8VPLLvOfMdjxjm5+8KqFnvL756TyhbBQ9GOBCvdVnIb3efp07FRoKPXeZhzzNIJU856YdPY3AxLzVnn48X0aLPfhFujxKN5+8ZXwTPWA8VDx265+9cNvwPNrNOTxj3LO8f/EXvbxENTzzno28PdwSvXL9+DzKLp081AQFPFnFN73GfTm9F3PvOwT9FTuAE6A8Oa1XPMQJGb2yLbm7Am66vOm3oTyyHLU8HcQyve2fYj3wP0I9d5kHvSqy67xehx89JKgivUMxJ70oWQa94ETWPIUWHL17JXk8khVZPeypmTzTVh26IJtvvMs/oTzRWm482c25PAfvDTwOuMI8An++vIprsLxr8688j9HIO2J5lzyWam08SzcfPDLJZ7voZQk8KrLrPDYN+DuHy1A9Tf3XuuVzkTzGbLW8DBhUPAYvyDy3r4+9c8QtvQrohrxUJOI8AMNrPRQOzzwHshi8RfPcPDqIhb0pqzA76JQdPW56grzA8Wc8flE2PF5s2zzoTw69flE2PQwY1LsoBYK92zJGPZl2BL1K3Gi8u03ru1kNbjwwXBy5U5pDPEBP4DzQZ3y7VuzBPNrtNr2zUKI8heaRvBZgzTxKuYo827UWvGPLSL3FleS87O3pPMNDZrwuT6079npyPDxzw7za7TY9yGqzu3NB3bvoEc28ddEcuynwv7uubmQ88G4IvSK1tT0gqEY8T76mvLaGEL3c+qU7t3HOvEJcz70txQ49KAUCvTO16Lvxsxe92DoZvZckBr1B2f48jy4LvFkGoLtIyCu98llGO4WhAj1a6o89Ki4BvdM8yzv8ob+8HbCZOaqSx7w+A4O7bG2TumaglzzTPMs8ENESvU2xt7zI7QO82owXvcxogT33/cK7jT2sO9HqzDzi4zG8nbPAPH7O5bzR6kw9dU5MOw+Mg7zy3Ja71Qv5vF5sW71Fdi07nz3fvOvtaTxGPg08JKYUPEPm7btcnS264WBhvKf7OT1DaT4858y9u6OcTLu+Ijo9Qt+fPIR/UT1cWJ4894ATvXcd+jw76aS9fMF2vMbaczxZBqC8GhkMPEtfOT28FUs8oRKuvIfzADr7Hu+8fs5lPaOczLzESQe97j9ou8s/Aj0jfZU6RXYtvL4iujwcSVm8qk24vCt6Xj2IOJA8e3znvHdbO7zhPYO8Vm8SvWqJI7z7Hu+8d1s7PWIJir0sv208/CQQvcfgFDzV6Jq87A8bO5thQrijnEy8LP0uPMCs2Ls6ZtQ8KOPQPNcY6Dz/u528mdejO/hCUjuBZfM8q9fWvA+MA73sK6s7UKIWuwMV6rvler89mhyzPPGzl7wXpVw9QqHePMSVZLzCIAi9B/cnPRoZDD3eTCQ9VEYTvG1YUTzBNve8EkbvPGfs9DtszjK8ELWCPZxusTuurCU8K3rePPq2gT2EOsI78uNkvYWhAr3/AC29kNQ5PfUulTwXx408pGSsO/HW9buxxoO8FJEfvXDMADzYOhm74uOxvB69iDyn+zm9wbnHPKe9+LrolJ29SA07uzIryjzxsxe9KOPQPAVECr1wzAC9mMo0vRXWrryUsNa8Bqz3PEeDnLycKaK894CTPcVyhrsWYM07/zhNuQtQdD2giI+8mMq0OulW3Lxxtz4766jaPKpNuLzscLq8tNrAO60pVTxIrBu9SGcMPWtL4juS4ai7+rYBPZre8Tx0y/u7FdauPLwVy7xwzIC888AGvSI4hjymVYs8ONw1vH4TdTz9aR+9iustvW/ibzzhniK9qpLHvLHGA7zksl87hozAPKmniTyCsCO8y8N/vKa2KjtbEw+96qEMPBH6EToC0No8JUxDPJKj5zzyWcY86VbcPIutbD3zIaa8v+oZPM7WjzyVOvU6pe7KPO21ybzLAUE8WpA+PYfRz7yBZfM86mNLvJ42ETy49J47Bqz3PDgUVrzdP7U8/7udOxcorb3Ugdq7IlQWvTJpizuFxOA7QE9gPDT69zyaHLM8bM6yvB8eKD16dZm5StUavpKjZ7ySxRg98dZ1PYiZrzwiOAY9mIzzu3yCCDtcPA47ftSGPdSBWrx2tQy9ufvsO2rBQ7ylqTs92UcIPN9Tcjw4FNY6jdwMPMKBp7znhy69/QiAvMATGb35jQI7bnqCuxQwgD1mYlY71/UJPUMkL7wQMjK9ukYdvZ74TzxUAYS6usNMO1WnMjvJ9FE97n0pvbZk3zz3gJO7+amSuSL6RD3MRlA9xbcVPOwy+Tz1c6S8oIgPPdljmDwOJUM9otRsvf0rXrtJz3k8M3BZu0V2LT1wqs+8ZqCXvN7J07xpGxU9iJkvPXtZib3ZJVe7ss1RvXhoqr2kZKy6EDIyvIiZr7x68si89AUWPayftjxeJ0y8YfwavXSMjTzwipi8za0QvT24UrxS0mM8bnoCvD39Yb2Mdcy86mNLvNjgx71zf5680Gf8OpqfAz0itTW9WAD/u9Aibb2yzdE7YiUaPfXw0zxdpHs+0CJtPaLU7LshcKa8eCObPELfH71iSHi8joI7vDlfBr3KOeG5jwxavTnctbwP7SK8ayiEPFe0Ib0Ti/67lr3FvDvpJD1YAP88RwBMPIiZrzy49J68mMo0PaESLrzSL1y9a0vivBH6Eb3TPMs6ZuWmPBI/oTzRbR28+tnfvIVHMbyUsNa8qH6KPcVdRL3/AC2919PYvKmnibzArFg7wv7WPOAbUjxYu+87cC0gPXegSrzdAXQ78RS3PMbac71k2Dc8EiMRPOV6Pz2iGXy9RXYtvDJpCz1wzAC9VUaTvCArF72CsCM8DX8UvLLN0buXhaW7r/G0PHFyr7vsMvk7TbE3vNQEq7yHFt88j4+qPGagl7wZNZy8JUxDPYcW3zzUBCu8jgUMPUhnDD1kk6i8lDMnPUJczzwzcNm8HbCZvJKACb1aS688jdyMvLj0nry1XRE9cC0gvfnM8LzWERo9T74mPQxWFTj9aR87a0tiPfkKsju6w8y8PoCyvCJUljvp2Sy8rkuGvK6sJb1ONIi82mrmvO3zir03Upe9DeCzPPHWdToPjIO9/zhNvXDv3jxdX2w81xhovOqhjDyCLdO7AvILPcXTJTwMOgU7QyQvPWanZb2sPpc7O6vjPPPABr2lqTu8cREQvTJpizwz86k8KAUCveeHLj3VC/m8yCzyPODWQjz4h2E9DiVDPLPvAr2LrWy93PqlumhvRT3bMkY9Cf71PDme9LtszjI8cMwAO7PvgjxlW4i8xl1EvPHW9byePV88/zhNPRmyS7xFFQ49qg93vJ9fkDzVSTq8x8SEPHb6GzzNrZC8+hehvCpt7zv4ZIO8XeK8vBWY7TvYmzi7nfGBPA2bJDxRjdQ7kRlJPEEXwLxfjow9iJkvO80OsDxakD48bVjRvDfPxrx7/7e7wXQ4vKv5hz2Ta0c9WuoPvRxJWb3YHom9bp3gO/jFIrujnMy5XJ2tOssBQbxq/4S6awbTPDqkFTtC3x88PdqDvP8ArTznzL28IQ8HvbNQoj0ztei8HGuKvIJrFDuIma+6Vm8SPdhd97sh7VU8tmTfvDQ4Obz4xaK8CxEGPf0IgDyvs3M8vZibOgd01zx3oEo9ZZp2PM2L3zvQIu08Km3vOx5WSL2p7Jg7BBsLPArGVTzl/Q+9rBxmPJqZ4ryJ3j69GhkMvBH6kbtSECU94BtSvR9jN71HAEy9pGQsvc7Wj7y5++y78twWvH3HF7wjP9Q8wbnHPJdplby93Sq6GfdaPIz4HL0BRjy870WJvPXwU7vYmzg8Vm+SPLjYDj1UYiO8BUSKvOAbUj0z8ym9+GSDvah+ij1NbKg8vFMMvGyQcbx5rTk9rGF1PElSyrvUvxu9NPr3PC4XDbxkkyi9PoAyPQj3pzvryos9jgWMO/92jrxErk28LIdNvMXTJT0n3II8UhAlve8HSL0gJfa8c3+ePCeeQb3QpT08Ykh4vNEojrxKGqq9NimYPHWTWzz6lNC8jf9qveYE3jwTTJA8CYFGPY09LL043DU8W50tPP8ALT3gG9I5c0HdvMzD/zzluAC9xFBVvQEI+zvO1g+9F8cNPRp6q7z7XDA9qg/3vHWTWzyTqQi9TztWvNcYaDpcWJ68pEicuSM/VLyameI77wdIvSdZsjxNsTc8jPgcPXFyr725fr28g/WyPcDOiTsSAeC7rJ+2POE9g7xv6JA8M/MpPR8eqDxmp+W7Uq8FPa90hbsCDpy7p/u5vFgA/7z/do69pOFbPAYvSL3t84q8ZDKJPC5PrbzAzgm7b+gQPLuLLD0bBMq8GjzqvE9dh7ykZKy8I2EFPW6dYL2gzZ49857VuXhoKrtMpEg94/CgPP1Nj7wBi0s8DZukvCy/7TxTF3M8ICV2vNjgR7wnG3G7wjyYvCpt77utKdU7IrU1PVADtjwid/S7Ma6avKDH/btA0jA7Qn6AvDAeW7upCCk8KShgu5BR6bvXVqm8iFvuvGID6TxNCwk9RfNcvCdZMrzXVik8UhClvJocszxNC4k7Bi/IvPsebzxQxfS8vuT4vDQ4ubzzntW458w9vX3HFzyF5hG8GjxqOkjIqzyYD8S8Zyo2vMxogTyjHx09dx36vZKjZzwe2Zi8PgMDvfSrRL20GII7K1cAvXb6m7xCXM8872EZvU+AZb1pfDQ9qcrnPEjIq7uuSwY9Mqh5Pb7k+Lyfgu4858y9uyL6RD0rNU+8+U9Bvfa4Mz3/tXw7Rn37vPhC0rzCPJg75NQQvSYUo7yvNkS9pAMNPCI4hr2DeIO8ONw1PEtfubyyiMI87hwKPF2ke7wNXWM86mPLPNFtHT1E7A49oAU/vIP1Mj0jfZU7zEbQPHE0bruWvcU8BN1JulmDzzyyiMK7dZNbPeW4AL12tQy8zxufPAd01zufgm68YPb5vHkq6TuK6608Lu4NvHjlWbz5CrK8R4pqva3kxTyWAlU8g7dxvbWioLvX09i8NcLXO3+WRbuJ3r48YgNpOo8ui71/lkU7ZqdlPIcWX7xkMgm9Mqj5vNFtHb1gtwu9qpJHPNqv9bzRKI48dIZsPBxrijwuEWy9QE/gO71a2rwxhZu86+abvJeFJbwFpam7x+AUveKl8LxiSPg8XmxbPPf9wjxYAP+8nfEBveAUBD0V1i48Noq3u5zrYD1K1Rq9tyw/Pc3Q7rx+UbY71syKPLScfzt8wfY5Gr+6O5SwVrw8c0M8gSaFPE55F7oaXps83LxkPIHow7volB09sJ2EvD5C8bzvYRk99S6Vu3o3WDpmoBe9JhQjvfKXBz1uegI80zxLvfjFojtNbKi9iDiQPKpNuLt+zuU8BSJZPQNTq7xXtCE8TOlXvStXgLzler88N89GvIXE4LqsPpe8fauHO3mtuTwW4x089leUPF4nTDxwqs+7PbhSvDQ4ubs7LrS807n6Oyy/7bwG6ri8U5rDuhfqa70qLgE9U5pDPJwpIjsKxtW6AKANPI8M2rvB94g7+/sQPKtaJ7uGTn88Mea6utM8S7yc62A9FZjtOwWlqbwC8ou8Gr86PR5WyDveBxU8kya4PCVMQz1dX+y7K7gfPMPGNj0FRAo9CgtlurMSYT1mYtY8Q+ZtvVd2YD1bUv08D+2ivPAUt7vI52I8YHlKvdu1ljZVpzI9nA0SPaDH/Thf05s8Ph8TvU72Rj0Iuea7LIfNPGetBj30KHS8EiMRPGyQ8bxw7148ddGcPArGVb2EOsI8O6tju5Sw1ry0V3C89/1CPUMkL73j8CC9YeAKvX2JVrvoTw69AvKLPN7rhD0VmG09yfTRuyTCJD2sIoc7Hr0IPPtcsDuXhaW7CugGPEEXQL1yOo+8/KG/O7NQIryV9eU8w4h1PGFBKj3SL9w7LEK+OmZi1jwsQr682oyXPcRQVbw6ZlQ8G0KLOzEPRzqmVh09aZtUvdfvdL2F4qi8SxHTPAP8ST07CSU6aZvUvFBdwzxgA3S9fCv4u3Y6XT1ewMa8SetaPDgA4jzJyPY8AcyYvGy3kz0Mddq7tRuevQmLZz1Q8Yy9wdfbvGM+A7wOuqI8tpCXO9uMgTwwrcm7TWkXvPHzGzwD/Mm87SZePJpT/Lz7iWE8Ck9iuxU/Bzzytxa959wIvYy2jjwjK/a8RuSyO/GuU7rb+De9reU6PcHXW7z+MKc8AFefvPV5djnG58Y7qV1FPBfuarwOHKA9I6xDuyNwvrwwLPy8t/IUO7Zey7x9cMC9MMr+PDDK/rzu6ti8dPevvD+3kryWrlG8Iw5BPSth2by9AgC9QXsNvRx/o7x/0r08G9hdPWrBzLxd/Ms6uAURvWaULDyo3hK8OiZavEBTerwPfp08e0pIPZ2f7LwRwcq8yfCJvKmPkbxKkiA90OGkvOwA5jujr9c8UKKLu+oCAT2dPwq9jisIPQeNgruy9SW8TbiYu54gOr3Jq0G9NHjsOsdJRLxghEE8yGb5PAJ7/Lozeoe8XlQQO117frsxjnk9YGVxPMxQ7LkAahs7royAPYF36DxZdNY8jDXBPJhVF71Qoos76u+EvVB6+Dn0LBA8QvAGO9/DWjwFhD89ReSyPIDbgLx6Ghe86gKBvPehiT1aah295baQvDJnC7ub3Qw9mNTJPAShdLznK4o8m3n0vLUbHr1e3fs8WrmePMvROTsfJM67sDErvPWYxrxvyPQ8hwghvRK3ET1NyxS9F9E1PEy4mLyIzBs7EV9NvGCEQbyVzaG7TplIvAFqGzzKDT865A/LPGFIvDvpWzs9Qr66vLiEwzxXk6Y8+QHsPLTWVbwVPwe94mqgPJpTfLsu6c68ZDKvPeaXwDwD/Em9O4hXPa1k7TxQjw+9iZAWvfcDhzzcWjU9KR4sPXd/pbspHqw8C5QqvXNZLTxAaJE7gRXrOxIGkz0R3v87dNjfO7zvgzzN9zE9DrqiPLS5IL1t50S9EP1PvXXYXz01eGw8ZLFhPGF6iLtP+8W8BQWNvES0gb2LD8k7/hFXvCRTibzu6lg8Iw5BvZRrJDxTeQI6eKWdvVQLMbxLEdM8mAYWvb+x4zzdO+W8I3C+vDXvgL1iqjm7MmcLvQ9+HT0fB5m89lxBvBR7DD0N19e85I79u0H6vzy3wEg9JLWGvJHjrrvlBZK830SoOiDLkzzy1Eu92rPvvNXek7nz1Ms8W8wavUxzUD2ibCo8JI3zu0MDAz3J8Ak9aH4fPDNS9DxWz6u81vEPPJ6f7Ls5Rao8wRwkPDvNn7z3Ugg936YlvW5md7yIap48DFglvco/i7zJ8Am8qN6SvGHcBT0uzJk8Njznu54gOry90DO8f9K9vJNi4TvXDsW8vO8DPVMCbrlPeni858kMO++I2zxuGRE99j3xvCU0ubtEgrU82RVtuzOXPDy7ZfO8jz4EPfLzGz0ytgy9UPEMPSDLk7w346w8Qfq/O+l48DyrZgg7aH4fPb+x4zzjS9C9uAWROyvD1ryePe+7CtCvPI6NhTwSBhM9/GwsPCmAKbysBAs9AThPPLS5IL5u50S8uwy5PCr/2zwUyPI8DdfXPPGkGr36xeY6BVSOOumggz3JKvS8WhscvY20czwPHKC7aBwiPT9VlTtzsue7oGNnO2OL6bvZeQW9iH0avVyazrxvqz+87OOwvEgnYLtVbS49bo6KvISAqzwyZwu9L5CUu6YHHL2RgbE8OIEvvEDUxztG5LI79JhGPYhLzrzCOdk8OSbaOi2HUTwaWSs9M1J0PU0HGrw2H7I8IQX+um5mdzxRg7s8yg0/PQfmPL0ktYa8LRsbPEgnYLsijw49B+Y8vSEtkbybmMS7yozxPFzfFj2fY2e94AgjPXADBL0fuJe9jSuIO18Yi7udUoa6fVMLvVgxqTyWzSE81Gd/vLKwXb3wTFY7ryjovFKg8LwTyo289HuRPHMU5btbap07kmLhvCBplrx0duK9lxDPuxrYXTwjDsE8AppMvU7LFLwFA3K9VorjO7ZeyzxwDb08YAN0Pqi2fz32XME8mhkSvPFyzjvPnNy8kIGxu4WmI73J8Im8sM+tulbPK73tpyu9kmJhPOna7TsdQx69XlSQPN2Arbz0mEY96NyIPRsdpjxL9B0936YlvbygAj2nGpi7ZO1mvdy8srxQIT68baL8O92d4jwzeoc8lxDPvHRZrbwPfh29haYjvYI74zwyNT+9+eQ2vCXIgrxNuBi8Fm84uz9yyjx/FwY7DzlVO/lj6TxyM7U7rqm1O+rvhDyPPoS9RII1PO5rprpRBAk9dLuqvXxAj7wsJdQ8B6o3vSXSO71Mc1C9BysFPbffGDwAdFQ7CCuFPAfcAz2R466874jbu9JgV7ubtfm81BoZPMqhCDyrZoi8UPGMvFbsYD19j5C8AhsavUSCNT1QIb48Z1gnvAxYJT1nWKc8/jCnvGb2qbxewEa88XJOPMObVrwiQI28djpdPcjdDb1IJ+C8tl5LPUI/CD19ooy8bED/uoryEz2i61w2dR0ovVvMmryfgre7qftHvBWrvbucoQe9/5KkvA/9z7ynGpi9royAvVt9mTsnFem7p8sWvSqAKb27PgU9QFP6Oy7pzrzq7wQ9QXsNujIYCj1DAwM9JWYFPKLOpzzl00W95skMPbfAyDyQvTa7VAsxvNoVbb0pgKk8bklCPaDF5LzntPU8L61JvX4EijzVSso8zMeAPQrt5DvcWrW8ICROvUG1d7phqjk9cA09PZGBsTwVjog6tNbVu1BTirsT58I7FN2JvCNwPjxPeni8e6zFO90eMD3B19u8+CC8PKzlurx8rMU8zJW0vBbwhTxEZYA8rALwvOynKzro+T085K3NvAB0VLxyM7U6ylKHuwfJhzs1PgI9XsBGPEtWmzugY2e8CzKtPTiBL7yuRzg8OmsiOnfhIr2pGH28ExmPuwL8SbuDO2M9GvctPWtVFr0GSDq9GlkrvSg74bsbHaa67ADmOxTnQjyn1c86gRVru0IsjDzOu6w8//QhvLYuGrwbu6g8ESPIvByc2LzVSso93Z1iu9IkUrw6CSU7hsNYOn+1CD1/tYg82ASMPPIQ0bwrRCQ7Ne8AvQZlbzxP3HU7KFoxvGtAfzzZFwi48rcWPTXvgDyUa6S8GNE1PW+MbzwA1tG8MQWOvPnFZjxSoPA7CzItvZWIWTxd8pK8Ahl/vX1Ti7tSAm48FwMCPYSdYL2L8hO8grwwvU0alrw5pye8hUQmPFiw27v2XEG8bEB/PQZnirxSoHC7ApCTO+g+Bj3RYFe8A915vG4sjbtTF4U6cjO1PNZAkTyAljg9ZbHhOxWrPbxxZYE9svUlvYxnjb0EIkI9HH8jPbO5oLx1nFq8kgBkPfa+Pjy0ONO7f1HwvNDhpDzv6ti6ICROvW/wBz28UYE8ExmPPUbkMjuA+DW8avMYvVxeybsiSkY9pmmZPLZBFr1/0j29bmZ3vI01QTwfBxm9ztjhOx1gUzxOmci8li+fvWGNBD0JPgE9Qd2KvLnJC72mBxw9eFYcPNaPEj3k8hW9Nfm5OzliXzpVqTM9tkGWu2LvAb0sCB89C0/ivB2cWL3oFvO65K1NvQTAxDwZFOM7cVBqPRyc2Lw4AOI7kYGxvI/vgjy1fZs5ARn/vCmAKTsaWSu8JI1zPKNNWr0KMi28EcFKvEwHGj1SoPC9o03au/SYxj2xTuA8KLyuvKi2/zxde/67+wqvPKygcjw1vbQ8uaF4vKDF5DzztxY7PzZFPBFfTbwEofS8UQSJvU+PD7unN0291vEPvREjyDx/s+28NHhsugPdeTxB3Qo9FzMzvVWps7xewEa8+cVmvKyDPTycXD+98reWPWmb1DzCOdm8NCsGPSBpljsxD0e9uCLGPMcE/LsaWas7BFSOPMtSB7yf5DS9kkUsO2DJCTxN1U08gHmDu4ZEpjzlUng8rBcHvMyVNLzcO+W7asFMPFyQFbxSFwU95hiOPGVPZLzlcUi6pBHVvMYZE73Uhs88n0YyPQrQr7wspqG7k8RePNy8srwK0C+8KHfmO3ChhjueILo8DboivWi6JL12Hai8ffGNOpnxfr1hSLw8N+OsvJfzmTw7zR89zBYCvXxKyDswD0e8Qr46PAN7/L2hbCo936alvGYT37xi7wG9kB+0O5MmXLwbHSa8Qhd1uivDVr0AdFS9UHr4PJSnKTp4pR275K3NPLfdfT2izie8TWkXPVlXITyhbCo9faIMvPJyzrztp6s8QGiRvI+9tryF4ii85vD6vCvDVrptew69DBNdvf4wJzywzy29WDGpvIzweDvK0bm8EqQVPfNVGTxibrS8Iyv2PMz3sTz4ZYQ8FHsMPSi8Lrz1jg09GvctO2SxYbvojQe7HwcZPT5VFbu4Ika7v7Fju+RBFz1ix+68sOxiPIVh2zz22/M8iZAWvaAn4rzBHCS98kIdPWJutLzZ0j+9baL8vJ4Wgb0jDsE8fN4RPSqdXr3UGhm8cA29vMmrwTshBf47hkSmPDFBE7wirEO9bKSXPNTLlzy6Zw68w5vWvEGYwrwxccS8ksTevNXekzzxpBq9RZ/qPMK6JjwRwUo8UCE+vRCRmTy2Xku9cpUyvCcVabw86lS899vzu42Xvrz1mEa8OIGvPKQR1Ty6Kwk9rUe4vMlvvLxqwcw85hiOPANeR7yotv88MCx8vVyQlT10Wa28MtPBO7/2qzsspqE82VFyOxRm9buegre8NI2Du6pTDDwdYFO89frDPMo/izx5JNA7oMXkPE6ZyLwk0ru8bedEPbtlc7wWUgO7VuxgvaQwJb11HSg9CzKtPIAV67xZdNY7PZGaveuBszzm8Pq7W8yaPGFlcT1+BIq8WVchPLkYjb2OW7m7tFejPEI/CL3Kbzw7wjlZvDzNH7ztp6s8BnoGPdFDojwG5jw8biwNvXDRt7ouS8w789RLvOAII7xsQP+8+yfkvEKOCTwGega9CKq3PArQrztIziU8li8fPDEFjjyUJtw7QHuNPBRm9bvXog48+CC8PL3Qs7pEILg7QbX3PM8dKrrPOt+8a0B/vAcrBT1D2288tppQPNcORTwPm1I98XJOvFKg8DyDO2M9chRlPegW87shfBI9vpQuPN5hXb0FhD89ugN2PBKklbzas++7u2VzPEDUR70fBxm7Yu8BPRRmdT3sAGa8QRd1vC0bG72A2wA9xKSZPHmGTT3JoQg9u3oKvGZ13LvLA4a8n0ayPArQrzxujoq9HeEgPe7qWLtDoYW8/pIku6tmCD0SI0i9rguzvBx/I71V7GC6TjfLvLzchzxsaBI9YUg8PYCzbTvTJFI9s/UlOwP8STlCvjq8uaF4PP6SpDudPwq98gYYOTsJJbxeIkS8Txj7PLgixjxwjO88fCv4O3xADzpfofY8LMPWu8RfUT2V6la86p5oO6a4GrsLh2q8F1kAPJMx1r3TCCa9d/IzvOje5DvTFGg9TeXgOlJWcDw3DyI8mpxEvcKvB7zoVz49xSyou2E0+Tvag2w8qfWxPH3sdLwlupk9End0veVXjbw+fBs9IkEPvQ11BzwvLWW8BRJFvMWrormaHUo9N5KyPB5JCjyCzgA8NBWSvVNSWjyXmoi7yyr/PMwiUzvMHr28/iE7ve/Obr3i4A0878pYvCg3OrsoOUU97EcXvQx/vrwpsBO93HMUOb4+Kb3aAmc7WjYivSa2g7yTM+E8NwmBPf2q7LzVBBC89jndPMWzTr3ae8A7QnKVvVPTXztCcIo6MKAdPAz4l7xin4W88EdIPIzK/TzFMsm7jbSEPIXOsbx3f/s61IUVPa9mwTybFZ47PYxzvO/Obr0Ck5m82vxFPF6rlrvCLoK9Wcd/PGiZRrwS+Pm8ooKXO3AM4byF0Ly8/hkPPYtH7bxUTkQ9Gls8PQx3Er3iY5680I+bu/a4Vz3Mnbe80IsFvWGpvLzMJN67vr2jvAyF37uXmog8BJnrO0LxDz37pBq6sFyKPCm0qbqo+9K8YSzNPHfuHbze6Ag8GtxBvEvnaz1FcDs9LaSCPKj3PD1MXjo74uQjPQUU0LxMXrq8FOKAvNKX+Dy30zo9Ru+1PL48njuF0Dy80xDSPFJW8DzEOOo796oKPfa417rl1gc4DHuoui8x+zwFix69dntlPcyjWL3oW1Q8noqSPAWNKbvLpeO8/hmPvO9P9DxaOji96Fe+vDSSgb3vR0g9XqeAvWmVsDx+4j29IdLsPHCFOjyhD1+7ftqRPDQVkjy+v6479DEAPIw/QbxhKsK8DIPUPNr+0DtF8cA6d/CovOHszzrbf9a7TVaOuw30AT3bdZ+88EGnPEzZnj3qzIG8PY5+vLfTujwwH5g8sN2PvULvhDubkAI9RW6wPKlsgD1aOri89jdSvDeUvbtF5wk8/qLAPGgYwby/wbk74uSju1DPmDwTbb28r2xiPPS0EDw++5U8aB5ivbDlu7zqzIE9d+wSPJSkDj2QK4S8YSg3PCk1r7zLJum7Cf6HvHD+E7teq5a8F1kAPUxaJL3Mo1i8t1TAukxgRbw++Yq9YTDjPJcbjjy233w7r2bBvFPLs7twAiq9fuZTPFNMuTzMmyw8aJc7uhtTED32uFe79DEAvX5fLbxTzb68KD9mPX5jw7wMAES8BY0pOyg5RTxwg688/p6qOz0N+bwvL3A58D8cvBDukTtaOK08oYrDOxNrsrvhbdU8oY7ZPG8K1rv2OV07t80ZPET34TtE+ey68LoAPNvwg7yEWW67KL5gPC+u6rxF8UC9kC0PPeNjHrwwnAe9E+w3PZMvyztawd48jD22OwUMpLs+gjy8mhepvPY987y222Y80A4WPQwAxDwovmA9hVXYPCHUdzvMqXm8pXgRPUleCTsJgRg8r2zivEzbqTwb1BW82vgvvVNQTz39J1w8Sd0DOymyHj07AQa9jEFMPYXKG71hNPk8E29IvMwkXj195tO8oQ1UvWIkIb2hikO8U8koO8UsKLyi/4Y84W9gPcIwjTw+fqa7G1OQPMWxw7twfxm+fW36vMul47yognk9yRwBPdt/Vrz2N1K9kzPhvEXrH733KYU9r/H9vOHoOb3pUyi9fmE4Owp/DT1T1/W80wgmu8UwPjzp0qK7aCDtvLBiK70a2Cu9/iG7PAz+ODw+Abc8EO6RPQWRPzwhxqq8/SVRvBriYry+RMq7t82ZPDYbZDt3dcQ8KTOku8Kvh7y+PB47KD1bPX7cnLtonVy6fuCyPLDjsD0a2Cs9sOElPYk/kLzxwqw7aZUwu3fwKD3LJmm8aKFyu/c987souD88oQtJO75CP71T01+9DIHJPOHouTtinwU9LaYNvLDlu7xZxfS8UEwIvQyBSb2ofNi8UE6TPGgYQbwMeyg8TNmeOxri4rxMZFu9DPoivFREDT2F2Oi7vr0jvK9oTLyEV+M8Ka6IvfczvDtMXK+8NxO4vSmuCL3Tj0y8jEftuqV6HL29x9q8PYZSvb3Fzzs9htI8iUEbPK/tZz7hZzQ7e2EHvZOwUL3h6Lk8PgNCvXdpgjwoNzo7xLlvvdOHIL0hR7C6/hkPulpAWbzLKPQ6IcaqueFnND0wHQ28xbFDPcupeT3p0qK8hcwmvGmRGr1N26k9bw7svCjAa71oFja8RWoau3fwKD3CsRK9N5KyPBdbi7t37p08mpq5OzYbZL2LSfg8KD3bvJqcRLw3DZc7fl2iPL67GDvTjUE8TFokPCmuiLoaVya7vsPEvBPyWLzh8GU9BZXVvHvijDsaXcc8UlbwOv2qbL3a+K88yyp/vEvn67xUxRK9PYZSvAx7qLwLBuW6cIW6vE3VCD138Ci7Wru9OxPqrLtpk6U8/iE7vUXrHz0Tb0g7PY5+PH5ZjDyLxmc9zJ03PMwcMrxXPJK86dIiPQx7KLx3b6M9KbSpPGgi+LwoO9C7dnnavPa+eLwoQ/y6QnKVPMso9DypciG9mpYjvaGMTj1aPMM8TOPVvOxHlzxTRhg9KTMku2KjmzveZ4M8/poUvbtAA7vaAFy9IVNyvSktg7tbNBe88EMyvbDlO73aANw6S2r8PG8GQL12+t+8NxGtPOlRHb3wQzI9KLzVvAwGZbwc0oo8zByyPL65jbyifgE9TONVvDCgnTyF0se70wqxOwp/DTwFFFC7cHsDPRVlEbzo2MO80AoAPb3J5bxz9hi8TVYOu0VuMD2hlPo7cHuDvJGulL0Meyg8rOeVPeHqRDxthQk98LoAvaV2Bj39LX25N46cui8pz7vTENK8hkWAu8ydtzv3tEE9KTOkPEVyxruTKaq8U1BPPJO0Zryi/4Y6cAQ1PerMgbwwoig8i0l4PKGO2bs+fBu96OJ6vDYXzjs3ES29DHcSPRNnHLuMvLA8PvkKvdAKAD2F0Ly8Yak8Pb69ozyofuO8sOW7O1NKLr2+t4K8KjEZPfe0QT0a4Ne6/h8wu2wGj700koE6KT/mu3TyAj3FMkk8BJv2OyFN0bwouD89lCOJvDeKBr2vbu2897I2PXdpAjywYqu9U0y5PQyFXzwEGOa8hFfjPFPJqLyigpe7+6IPPIy4Gj37pJq8PYhdPMWzzrt97v+7r+3nPNr6Or3pTYe8WjitPLdQqjx74AG9W7UcvCwnEzrTCrG8mpguvRNzXj1TRpi8VMUSO2UYkLvFq6I7BBz8vMalAb1whTq7cIOvO+JlqbtFeGe823OUvNmFd72+PB49/abWvIXIEL07AxG9sOOwu8wgSDuLSXi8KDe6vLTTiTyFTSw9miPrOS8pTzubFR668cIsPHACqjw9C+48/hkPPTuAgD2Tqi89/pyfPYw3lbyMReK7FOaWPLZcbD1hqbw8U89JPOLimDx3bZi8d2mCO2ij/bzLp248YTDjuwUOL7wh0mw8LaSCu0tqfD0UY4Y8dnvlOCHGqrx+3By8i0XiPKV2Br3TFOi8BQwkuyHINb2StvE8S2ZmPMWxw7zQjxs8vkA0vfcxMTul+ZY8tt3xu5sVnry2Xve897I2PKl0rLw2H/q8S2r8vKnvkLzMoU28d2mCPIk9hT3hbdW8+6QaPZMx1rxwgy+9aJtRu/uijzspP2Y7xDZfvYy4Gj33qoq8xauivItHbbxiJKG8/hcEvFrBXr3af9a84uIYveJjnjx3b6M8kys1vb5EyrxaQmQ9dvhUvRTigLsaWbE8E/DNO5qWoztF7aq8TOVgvb4+qTsMfbM8RemUvHdzObwXXZY8aRpMPAl9grt36oe8jD9Bur69o7195tO8hUuhu7fZWzwa4mK8703pvHP2mLyaHUq87cQGPZqi5bwtJYi9zKVjPPDAIT1QzY08RfVWvckeDD0MfTM8YbPzPOlVM71+a++8LSWIvLfdcbwaX9K8o/8GPJuUGLxM2Z46/hkPvSFJu7wFlVW9IUk7PQz+uLwMg1Q74uQjPYVNLL1awd48MKIoPJ6IBzxM2R689jvoPPa8bT2VooO93msZPQUSRb2NtAS9oQ/fO1REDbraebU8VE7EvGEmrLxeLBy9O4KLOxL4eT2jAZK9cH8ZPDAlObzUAoW92gLnO2+PcTtom1G9dHOIOz58mzwCEpS8XqcAPT6Ex7zUiSu8qXQsPMkcAb3h7tq90xDSPC+uarxT0dQ76VMovb48nryt5Yo7DIVfvS+u6jwFEDq9mp7PumC1/js9iF09YiQhvGGxaD0ovuA7AhAJvSi81Tv0soU8bxB3PfgvJjwMBuU78NB5uya2g7z9plY79zExvHCBpDl29sk8Pn6mvJArhL0Q7hE92neqvFNII7zvR8g8IdJsu2+JUDxE9+G8dntlu6h4QjwaY+g8ngeCOykvDj0Mg1Q7e+KMOyU3Cb1TTDk94W9gvO/GwrzpTQe9VMcdPYVLoTwFjSk8SeGZvKX3iz2TsNA8aKFyPTae9Lx0dRO9FOaWOwuHarzENl+9SV4JvRln/rxEenK92oNsOzSWFz137h29/hcEPdMGmzwCkxm9Npzpu7DbhD07gos8V7uMvTsBBjymeBE8aJlGPan1sTsvJ0Q7tNOJvCg5xbxSWHu82vivvKIRaj0FCA68t9M6vFLV6rtwAB8571F/vVNMubzMo9i8cIMvvIXQvDsKfw08r2rXvAUQOj1M1xM8sGQ2Pe9Rf7xhKDe90wgmPT6ExzzMoU29BY80PRpdR737I5U7RHbcuT0L7jx2+t88PQfYvIxFYryF0Lw8aY8PvbbX0DwFjSk7vkI/vMmdhjze6hM9Wr9TPfczPD1ipaa8jD02PRP04zwwJTm9sWAgPQl/jbrqzIE8zCJTPS0lCD0+Bc28Yaexu1o4Lb29zXs9zZeWvFu1nDy+w0Q9Cwr7u4LQCz2+wbm8U9f1vLfJg7yUslu82v7QOq/v8rwFlVU94XHrvIy8sDxmFgU8t1K1PET7dzx/XaI7N5IyPPDEN7x0dRM9miFgve9J0zsQ7hG6fl+tPIRb+TzFqyI7E/DNPExapLx7Y5K8vjwevFPHHTwJgRg8Ic7WvDcRrTvTEFK8VzwSvRph3Txbs5G84fLwvK9s4rxLaPE8KEP8PFRCgjwT8lg970U9PER23LtTUlo8KS2DPVsyDD3TEFI8dndPPUzl4DyMPTa9t1CqPOnODD3+mhS9tFQPvfe0wTxJ3w674W1VPJqcRD2Gypu7Gl3HPH3mU72+uxi9DH2zO5oXKb0+/ys86NxZvC+oybxwAJ+8KbKevPa+eDy3Sok7yyr/vHAENT29RlU9jEVivHCBJL0Lh2o9uFTAu9oE8rz2umK7aBhBPQkAE7qMvrs84XHrPMwevTxXOge96dStu28Q9zri5CM8U8/Juhrk7Ty9TPY8v8G5uyyoGL2FxoU8VMUSPTYf+rxawd67BQqZPMwWEb10dZM8XiiGPBNpJ7wEm/Y8LaYNvSJDGj0EGvG8WFjHO0yuCzzjfEW9myRMvQ5fizv6ttE8zogzPcJIsDwlqAe9jYDuPC2Zfr170ta7+cVBPURVxbyO87g8BRU1vAt02TxlPYK8paCPPUK0Ar0p8569nz12PVxxcb29Lwa9IGhru5mDCTzDnZq6lpjXPIVOmjuJdjQ7b4NjvIVOmr2Uxac8cHRzvETIDz13RuK6qqrJu9wdIb0/Swu9hdtPPNn1Br3Wyfc7UBcDPQ4tHr1vN4s8XxvGvBdFhzzcqta8OZwZPMmY5LxVYpq83vBQPNEyiD1aj1G8KI/EPEOlkjxN63O8ejGUu8cGkr36KRw8HbMbvQzYMzyUBgW9Zu00PB4IBjzBVyA9/WCmvIFA67tROgC9JVi6vOo/xDyTYU09/yTmvO9J/rvf4WC97tqovAPAyrrpXSS8uD+3vF1IFjy3j4Q8z2rTvNIjmLtMfJ68B9l0vMTAFz0tDEm83KpWPJEb0zy/j+s7jmaDPMI5QL3RMgg9TK6LvKOMgrxJ0sm5mc/hupQGhb3ii7W8ZfwkvAzYszxEVcU8JtZ/vAoFhDy2bIc8j1cTvJNwPT1VEs085rPPvJUpAryhBas9cjwoPdAPC7v6KRw9hjC6vPCtWD37TBm9YH8gvVjLEbwwxY27EVW4PKYPZTz8/Ms89LsHvdvINrpwdHO7WTrnPL39GDwLdNm88CCjvJh69zpDZDU9lUNtvBX/DD0V/wy9FX3SvOldJD2puTk8iXa0vPztW7v2zxQ8Rij1vLmUobxNn5u9i7wuPdn1hr17RSE6QQ9LvW+D4zwXRQe8GQlHu/UqXbvyZp07UYbYu4VOmjx6bnw8LnCjPHc3cjxMfJ68WbwhOzh5nDs3FUI8RbkfvTwf/LxhYcA7agbfOstRKTxt8ZA96IZ/OyVnqrzOyRA9zSTZOyR2Gr1GKHW8R4zPOw8PPj05q4k9Xio2u4DCpTx5fey8HEBRPOrMeTwCH4i6dADoPPd/R7wPD748mO1BPACJQD3DG2A8Iq7lu0FfmL3iGOu8kSpDPckLLzqLOnQ866OevDRr7TohzMW7nMkDvX4JYbw492G8JPRfvBFVOD0onjS99SrdPDcVwruPSKO9zEK5vE1tLj3mJhq7vf0YPYQrHb3flYi8+0yZvU9AXrz7Giy9rPDDPPUqXTszel07WwIcPbrGDjwKBQS9pg/luXmMXD2cFdy8DDwOvCKf9bvTku08gpVVPC0MybwNVvm8T7MoveqyjrzDnZq8DqvjPOeV7zx6Y4G8rncbPdSD/TzSVQW9fZqLPDq/ljpUMK27xf3/ucpviTvguIW7F0WHPBxPQTyoyCm9T/QFvQdbrzw5qwm91VqivOazzzx08Xc8R33fPKdkzzs3iAw85rPPvMXjlLvbyLa8cOe9PKv/szw+2MA8n/EdPZsV3DsW4Sy8a90DPBFkKD0WX3K8ghcQOxufDrzWSzI8HE9Bu0nSSb06TMw8GDaXPH69CL2ncz89hdvPvKL2Oj1yum28e1SRPF4qtjxma/o82gkUPPbPlL05aqy8se+CPHx3Dr0Ylvw8iBLaPHOgAj2AXsu88CCjvP5CxjzbOwG6BCQlvmPol7sOHq67+ws8PRfDzDxbNIk7Ch/vvEcxh7t3N3I8f66YPcXyBL2fsEC9SrTpOoDRlTsyiU09tAgtvRbhLLomSUq632MbvLCLKL0AmLC8viAWvZf8sbqYYIy8aLF0PP7EgD1sPWk84ZqlPGD95by0F507E6oivYrajjyx+v250M6tPGP3h7zaGAQ9y5IGOj7YwDzfuAU8nkxmvEyuCz3hmqU99o63u87JEDz0SL07pg/lPLU6mjyClVU9x8U0vV+o+7tX9Ow8ZXpqPERGVTxFuR+9V2e3vHTxd7yBMXs6lpjXPD+64LynZE+7lFJdvS/feL0SRsi8HaSrvKUtxTuhRgi9BaLqPJ+wwLtv9i29/s97vQ3Jw7tv9q27kLf4vJ5bVrzRTPM7lpjXuzlbPL3z1fK8T+WVN6qb2b02JLK5qqpJvLzLKzxqeSm9T0DeO7y8O71UMC26lqdHPd9UKzwhToA+tKTSPBbhLL0sKim9g4blPGv37rzpjxE9O+KTvPsaLL2A0RW99/IRvVqP0btnQh873B2hPJpCLL39UTY9vq3LvM2XIz0B/Io9G5+OvE2fmzxxyV29f+CFPXI8qLvmpF+9/6agvDgG0rscQNE87Mabuzei9zv1nae7eX1svKx9+bzecou99d4EPTwffL1R+SK9qCwEvDE0Yzvro548WbwhOznocTxM+mM8wPNFPYKVVTuA0RW7tCaNPXy0drw2JLI8rVSeOgoFhD20Jo29dzfyPCMSwDzDKlC96yHkvEfwKb3PecO7Wp5BPHl97LsW4aw8Lv3YO4Ex+7zvSf68LY6DOYXM3ztN6/M8h6MEPJ/xHbolWDo7MactPVNODbr0iRq8AmvgOrkh1zwCXPC8DOcjPWD9ZTzbuca7JWeqvLHgkruYYAy5aoiZu7NA+LuxbUg9uhJnu6aCL70492E9hdvPPNMUKL3+z3s6ksAKPe/LuLzSoV27+0yZvFm8obx70lY88Z7ovJumBr3ro547r5qYvKxjjr1aK3e9GKXsPAof7zzgRTu9p3M/vZskzDxvNwu68+RiPNBb4zsPD768nBXcPAAW9jxP5RU4tYZyPCcrar3ii7W6hU6au5anx7tERtU7md5RvBM3WDyaQiw8mnQZvGM08DwnOlq8u+mLPKaCrzxxyV09/kJGvACJwLySwIq9ilhUuRptoT0M5yM9pH0SPcZh2rwpAg+8kRvTu78RJjzJC688OauJvHZVUryhRgi8zLUDPWAMVryx+n082II8vYXbTzyLrT68agZfvH/ghTy8DAm8fr2IvGkVzzywCW684Zqlu92M9rzxEbO7UBeDvJ+/MD0lWLo8GCcnPOReZbx++nA9R4zPvNwdIT1c5Ds6c5ESvcR/urtjNHC8tUmKPOPvjz2ONJY9GCcnvYKkxbzVWqK9yUwMPMr8PjwNycM7d7msPBil7LtKd4G7wqwKPK5FLrvFcEq87NWLvI5xfj2iaQW8z+yNuzIl8z0mSUq7J62kvGiXiTyXiee89hvtPNnmljt++vA8P8nQvIjGAT2rDiS9F9K8OzXPR7ueTOa7V2c3vCAckzxZOmc9EABOvNAPC7zF4xQ9ppEfuxlZFL1WA907zgZ5vE1ePjwdpKu8aogZPJPjh7y26ky9hr1vvOC4hbviizW8AlzwvNwdobvnlW+9BCSlPIn0ebzSoV06i62+vG6hQ7tvg2M9KYDUu8GJjTypLIQ8UisQPRxPQb0lZyq8YsWaPCs5mTzyAsM8wqwKPcy1gz0v3/g8Z1GPN+mPkT0nK+q8psMMvQIQGD2aQiw9z3nDOxgnp7xi1Ao9mO1BvI1DBjv9UTa9Jtb/PAb3VDudaka9CpK5OjP8lzyNgG49HyuDujG2nbwTN9i8kHqQvNMUqDxvg2O8/rUQvSetpLzrox69OkxMPBmLAbwpgFS8rGOOu/ICw7zVWqK9tZViPAi/ibqCldW8CyiBvR4IhjyrjOm7/PzLPCpx5LzWPMK78maduzKJTT2SwAo9F9I8vVdnNz2d3ZC8aRVPvWCxDTnGFQK9pR7VPPERM7wu/Vg9EZYVvQ1W+buTYU28uZShvKL2OjzdTw69NjMivFnuDr3PalM7TsIYusuSBr1Fqi+8QR47Pa5Frr1qeam8yBofPatAET01QhK9hj8qvADZDb1BHjs8usaOOoP5Lzs0a+28HEDRPPYBAjxCc6U7xXBKu+3pmLzIGp+9GCenvC/u6Lxrq5a8CeIGPJ33e7wlZ6o8mGCMvOjq2Tu3j4S5+n4GvV1IlrsL9hO5yBofPYgSWr3B5FU9REbVuxDxXTwmSUq8RTflO/ICw7ylHtU8i62+vBtesTzjfMU8XHFxvCcrarvQW2O7H4bLO8DzxTvcHaE8kMZoPbOzwjxixRq9GQlHvIBPW7wb6+Y7Ib3VuxGWlTzCOUA8g4blvC2Z/rvqzHk7aDOvvE2fmzzJifQ755Xvuxp8Eb1ZOuc8XCWZvFvzq7uhkmA8XHFxvJ7OoDx8tPa8bT1pvfQ5zbwwQ9O8h6MEvWoGXzsfd1u7qw6kOzj34TyRnQ292temu+yFvrw1z0e855XvvX2aCz3A88W7Dw++O8kLL71QpLi7a2o5vCfuAb0/uuC7paAPvS9hs7zaCRQ9B5yMPP2SE7yiaQU9gTH7PJVDbbwvohA9e9LWupU0fT1aEQw8+5jxu4au/zyt4dO8V2c3vS0bubytVB485lgHvMMq0LsIvwm9vp7bOxmLAb0d5Qi9QR67O8I5QDzJmGQ9GZb8O5VD7bx7VJE6xAxwPaqb2TwusYA8tQitt+cIujzdT468uhJnPPdwV7ywvRU8Y0NgvO5Y7jz0SL08F9I8PWD9Zb1QpLg8gE/bPN2b5jzMM0m9dABovYFAa7oCEJg82mTcvGGiHb2Ed3W8XxtGvUFfGD0RlhU9izr0vNWMDzzgNks7JeXvOyFZ+7w7Pdw8rH35urHvgr3HtsQ8O/EDPR3lCDlBD0u7fGievF8bxrwZGLe8r5oYPOjqWbzbRvw8Wp5BO642vjvyAkO9+luJPNyqVr1vNwu9JtZ/vCQDUDpMCdQ7ovY6vflSd71LpXk9VWKaPEIA2zyAwqW8JytqverMeT1R+aI8seCSvLB8uDyGcZe86zBUPRYiirxMCVQ85rNPO42PXrzRTHM78CAjOt+ViLwNVnm6vo9rPMYVAjxEVUU7o9jaPNT2xzsTN1g9aRVPvJKOHTsLKAE84ZqlvOEJezygodC84Sdbvc4GeT2RG9M8j9VYvVdnNzy5o5G9arqGPa8nTrzVWiI9iWdEPW6hw7xERtU82hiEvQ08Dr30SL08XUgWvXf6ibpowOQ6SUWUPHn/pjtcVwY977zIPF+dALxx2E08tTqavPERMz2hRoi8o1oVvafmCb3+xAC705LtOtce4ryjjAI9j1eTPEcxB7znF6o8uaORupYakrsbnw484dsCPIwgibwRZKg86j9EvB2kq7ypuTk9YlJQvHSCorytVJ67LKhuPQkuXzyRKkM8CaEpPX58qzx5jNy7TAlUO5yIJj1m3kQ9Tk9OPCc6Wj0LdFk9KfOevG+DYz0rxs48WTrnu/GeaLwb6+Y7y1GpvJyIpjyVNH09o4yCPA6rYzzYgrw8Uz8dvbAY3jz1nae8cFoIPCXlbzwnraS8zM9uvJanx7xr9248mcDxOqqqybxCAFs9Y7YqvCs5mbsFomq8pLp6PfJ1jbyrjOm8aHQMvbQXnTz8/Mu8SFSEPB4IBj168LY8PtjAOzIl8zx3uSy81HiCPBYiCrsdpKs8OVs8PF5rk7zSVYU7DOcjvCc6WjymkZ+6qUbvPBLIgjwZGLe87gyWPBgnpzwUGXi8TtGIPVaFF71EVUU8crrtvBKjJzy5dyo8VcsnvZazMbyY86e8ByLwvCVVBD0BAbU8kEIWPWuO/DoMcgK92PusPPHerjzOOv87AcG+PESJzTlWeyA9phVVO1Krej08aLm8ybmEvIOxdLuw9qS8wogGPIZhH736r5Q84pwtPCyGKT2FEea7RYkmvPjfx7ssBha9ZA3QOoZxML0RI2K8M8e4vJVTZ7xT60m8AGF0vbDmE7wLorW8ZI28vCKlWTxeTAa9TfqaPKc10Lz7f4i7VvsMvbb35Lw1twC9XiwLuhGD0zzQOlg9C6IOvXsQdLvqHQw9EoOsvZfjFr0Rw0m9vvjWvH3Q1rxsrlA9jZLEvG3OJD3a65u8G8QUPbdXLzzYu908ds+WvEXJHLsrhtC8HESBPTSHm7yf9Jk8oMQNvY2y5jzGmX46wDimvCHF+7xDSde7ZM1ZvFsMXr3qrYm7Zs0LvDuItLzqjQ48hfFqvcEYhDym1Te815tiuDMH1jyPspg8z9pmO744TbyFMbq9VausvKAUlTwjpbI70YoRvRtEKL1tbjO8hHF+PRVjCrx8MO+8bW6zPH4QJr0zh8K8wTimOpVz4rp/8AM7XowjPTxIvjxMClM9hJH5OzYHCDyxtoc7ImU8vaiFibzCKBW9EePrO7+4YLw+yIM9C4ITPeJ8CzzRaha8TConvV98kjylVXI8fND9O9FqFj19EM26j9KTvDkIb73pXdA8XryIvDKHaTstFoC8BEGEun9gBr3pXVC90fq6vJ4UY7xlbUE8I4U3vbAWID1USzu9AeG5vGcNArxrrne8CiJJPU36mrzhHME84RxBPa7W0DwzB1a6qPWyPAIhsLyPYhE9VUu7vMcZ6zuOEti7VKtTvX5QnDwSIzu4dG9zOvMeJbzHOb882Js7Pac1UL1DCTq8Taq6PL8YUrud9Oe8826FPNvbijwUEwM9AoEhPUXZBrzJeY47V4uKvHcPjbx0b3M8fRBNOwEBXDy/2Ns8XAxeuwNxEL3aGyg9Zj0OPZ30Zzy1F2A84zyVvGRtaDwphnc8vxjSPL94Q72oRRM8rvZyO2Y9jru415u8M8e4PFarBT2212k9AyEJvXWPRzyvFse8kGKRvDTnDLwkxQY9yIkfvJ5Usrw0J6q8rhZuPAMhCbzjzBK8c49uu1tsdj3J+SE7MkfzPDMnUTzXG3a9RdkGvK5WZL38D4Y9Qwm6PExKyTtMSqI7l9OsPOj9Xjz530c7JCUfvL1YbzzAWMg70XonvPHeLrr6X7Q82Ju7O5gznjzX+3o9JaWLvFXrorskZZW8d08Dvdl7Gb1bDF48ltPTu/NOCjt9kGA7iCECvBxUkrwiJUY94LxPOwAhfr2x1gI9KgbkPDNnxzydlHY9DHICPF6MI7wrpqS8CoI6vEb5gbugdC09n5SoPDPHuDydVFm82tuKvQHhOTxzj+48D2P/u580tzvh/MW8VausPAhiZrxbjEo7vXhqPdE6MT0RI2K8GUR2O55UsrqXEyM9KubBvKd1n7u/mD48wkiQPOk9rrwcRIG9IcV7vF2sRb3Iuas8VusivKb12TtKCno9Qol0PJjzJ737Xw09njS3vH7QL74Sg6y83vzsum6uKTzaSw09/4BvPOkds7yf9Bk9kFIAvY+CDD1V2xG9EkM2vYbRyLzaa4i7uEcePUXJHDxOah27l+MWvHzweDyopQS82ZuUuyMFyzzfHGg9GUT2vPif0TxLaus88h6lvMnpkDzhXDe9yLlSO15MBjtlTUa9GuQ2vHZ/Dz1277g7NKc9PFeLijyndUY9mDMevH7AHruVE8q8lrPYPUqqYTyV83U94Zwtu7c3W7oQA2e8pjVQvJ9kHLxsrlA9oLSjPCRFmrt0z+S7wVghvZdzO7086KW6+d/HPFtsTzt1z728ZK23PAjC/rzB+C+8vzjNu1ML7Dw76Ey7CgKnvJaT3TzrXQI86V1QPFVrtrwyx1884gwJPXRvTLxTS2I8CsKwvMj5yDxDKVy89594PG8OmztCadK8PCgcPE8KBTwk5YG7uccKPG0uvbyXUxm9pTV3O0HJarxWeyA93txxPmZ9BLuYo6C8C6IOvWxuWrwRQ928PJgePGRtaLvw/lC9C+IrvSQFJDvz/gK7iFEOvEUptbwthgK7prU8PblXCL3A6J47htFIPdA6sbvpvcE6+N9HvPLumD3H2U28DAIAvOEcQb09OIY7CuKrPDvozLyl9Vk8x/lIvaY10LsJQus8Zs0Lve9e6bynNVC9EyMUvZdTwLyOsj89TApTO3+QEj2w9iS8AKFqvIdxibmPkp26LIYpvcm5hDzy/im9+m+evF5MrbwQg/o8l1MZPKhFk7wZJHu7fXA+u/N+Fr2/uOC82VueuWRNRjttDkK9KYb3O5Bikbu++P08RUkJvRPTDL25V4i8fZDgPJXzdbyxVpY8ybmEvCrmaD3JCYw78d4uu3i/hTzIWTo9CkLEPEMp3Dy5B4E9NIebOXSvaTzHOb+8KYb3vKBkHDmtdl+8fvCqu5hjg73qHYy9TnqHPay2/Dy+eGq8pTV3OyLlzzxcDDc9xxlrPFYbiLpczEC9wWgLPG/+Cb1U60m9Y+3UOphjg7yIoZW8vjj0vI8CoDwsVp08Zs2Lu34wIb2XA5I8BEEEvOi9aLzIWbq4ppXoPCRllTx2r8K7RdmGPNfbWD26Nw29bk44PfH+qbx37xE9f8CePMkZnbuUs/88lxMjPSumpLxUK0C7JVWEvNKaIr3jPJW82msIPUNJ17zSGo+8jyKbvPpfNDzHWWE9pXVtvPGeOD1s7sa8lRPKPOndvLwiBcu7iOELvDSHGzzzjoC6wXicOqd1Rjy654W8GmRKva72cr1+MMi7DAIAPetNGD0yx988jTJTvac1qbz6b547GmRKvOm9Qb2o9bI8824FvD0YCztJCno88V5CuwPBlzzIudK7A0GEPbZXVru29+S7lLN/vLl3Kr0bpJm711tsvbAGD70yR8w70JpJPRxEgTz5Hz67X0yGvNEqIL2H0aE8r7YuOxGD0zy6dwM9PKivOyJFwTwDYaa6nrRKvOkdM7xkjWM9E7MRPOGMHL0aBNk9hyECvSHldrywVj094pytvAIhsDyopYQ8GUTPOyy2Dr1MSqI8hZHSunTvX7ywVhY7yckVvahFE70BATW9IoVevJx0ezrT6oK8EuNEvdDav7lFKQ69hfHqPLHGGLwkxQY9ESPiuzXHET35v0y8jFL1u2bNsjvG2fS6LWaHvNhbRb3AGCu9ZK1evTV3Cj2A0Ag8wPgvu6CUAbynVaQ6Zj0OvVzMQL3IiR+9z7pEvFbLgD22N9u8bQ5CPCJFwbznXXe80No/vGvubbwbJC08nzS3PQtSBz0shik9fhAmvd+8drz530c9kKIHPVML7Dvo/V48ljNFPXbvuLyYY4M8U0vivH5QHL0ZZPG7Zq0Qvbk3jbsjxS09dU9RPW6uKTsaBNk7xtl0vVyMyjxjLfI8KkbavJhjA73BqIG8sPYkvdmbO7vBaIs8I2W8vG3OJD0RQ928KiZfPCTlKD0LYhi9lXPivNd757ws5ho9nhTju4eRK710L1a87978u8C4ObyW80486J3tPMmZMDu+GNK6fND9O2xuWr3774o66n2kPIbxnDszx7i86v0QPd+cVLwk5QG7KQbkuyJl47wz5zO9xzk/vendPL0KIsk7ISXtOjMHL72eNLc8fBB0Pd/8bD1DaVK90vqTPOrdFT3yHiU91xt2PAyCEzxKquG8fjAhPbf3PbwKYj+9NOeMvDLHXzsk9ZI7XOziPAoiIr1OKoC7lpPdO2MNd73HGUS8HKQZvMb577yetEq9NbcAPSvGxjzY+yw9qGWOvLdXr73Reic9VvsMPQJhJjyGkSu7Zx0TPdH6ujyY86c9sPakvFtM+7xEaau8LLYOPTsIyLxOmoK8S0rwPBTDojyopQS9+X+vO35Qw7uIgRo8PUgXvH/wgz0sRrM8dQ80vY6yPzzovUE8xdn0O9lbHr3a2wo9h+GLPQviK73YG089lLN/vb/4Vr3inC28MmduPTuoVrwR48S70TqxPEoq9buhBIQ8LLYOPX1QQ73ifLK8Zq0QvPK+M72OMiy8+J/4vCMFJL00Z6C8mKOgPPpvnjxlzbI8Zs2LvUJJ/rycdHs6ZI08vMKoAb7Y29i7fwCVPJbTU70aZEq9hTFhvCX1Er0IYma8JNUXvaYVVb0CYSa8cy99PeHcyjy39z28TIq/PJgznjz0jgC8qTWCPPEezDvynpE8VGu2uyPlqDwzBy89mGODPAMBDjz6/xu9nnRUPNE6sbzBaAu9f9AvPBGjzrtdLDK9M2fHPGSNYzxV6yI9GeRdPEXZBrwyh+m8h1G1O/LOHbxD6eU8+t8gPRlE9rsK4tI8nLRxvLlHnjzX+3o7sHaRu22O1bzJ+SE8mCONvJjzpzy/eEM96T0uPUOpSLxVm5s7bA5pvUJpUry4lyU72PusvC32BL1OCgW9ds8Wve/+d706iNs7oAQEPCyGqbwbNJc8z7rrPKj1Mr3a+wW9S2pEPc+6a7uG0ci8SQp6vJdTQD3QWqw7FMOiPIzSYTtsDum8ZC3LvBwkhrvovei8CwInPSXlATxdbCg8LGYuOxkEWT0bpEC9KqZLPKCUgbwSgyy8llNAvNibO7xm7Qa8uBeSPcGIhrmNMlM8ImXju570QL1Wy4A8E5MWPfkfPr2lNXc9VMtOvfDe1Tz/QHm7EUPdu0RpKz3H+Ui9rpZavLlXiLt2fw+9EuPEPMpJAr0cRIE8XIzKuwsiojxlTUY9Yw13PeK8Ab0DcZA81tt/PDYHCL0Sgyw9GuQ2PHYfnrzfnPs8MqdkPe9eaTvrXYI811tsvW6+Ez0ppvK8v9jbPKDEDT01p5a8NAevPFabm7y4F7m8h3EJPegd2rxurim8xrn5vN8caD1XGwi8Zx2Tu8j5obtNyg480DrYOtBaLDy3Vy+9RKmhvLD2JD3aiwO9ZA3QPN4c6LwbxDs9RukXPTKHaTzf3HE82tuKvRwEi7tm7Qa9PEiXPJ10+zxnXYm8fRDNOzOnPb0z57M84lwQPRTDojwD0QG9GUTPvI3yXDzw3tU8VIuxOoSR+bxrznI9bk64vCMFJD3pvUE9VWs2Pd/8bDplLSQ8FMMivH4wIb0ZZMo8oBQVPZ3U7Lx88Pg8PAhIPKd1RrwRo048yXkOPPr/wjz5H748VWu2PF2sRb3AOKY7M2fHvEzqsDwRQ129PaiIvTPnM73inK08G8Q7vHwwb7yOsr88GaRnPfK+DD2XU8A8+V9bvSJlYz3IWbo7j7IYPMGoATt2P5k8yHk1uxykGbw6SGU7NaeWPCIlRr2HAQc8JOWou3Rv8zzh/B69Sip1PDpIZT3T6oK98P5QvR3kDzy/GFI8dx+eOxkkezyO0jq8j4KMPNI6ij1NWgw8du84vX4wSD25Vwi9C6KOO9H6urwC1TA9vGuDPKJ/FL2x0sC8BZ4QvIzfvbyS+6c8jk4hPem4Ez3lNMk5VNCuvFg4IDy+SDg9sJQdu3l+nDxgp5S8ODBHPdNdUjwAIbg81cy1u7ubMb2vHkg8wvU+vYIWTbzy71W9BImpPMKwqTyrttY8g4wiPJt/A7xD8sW86Zw6vRV0dbxFfQK9+YEVPDOfGb1sCKW83pUmvGMOdL3zqkA857+FvNI0ljuyAwE9uCzOvBI9xDytJbq8F7ocujAbT7yIvOG8BzYwvdwmw7wnihA935UmPWAV5jsf+NA8kEevPAeXnr0vU4G9V0x1vTqfqrx0YjK9zUFoPQ2XL71F61M9C56hvMu+rzz2ErI8Evguu5d4AL1kVJu7NQb5vEPyRT1/JDG9VQ7SPIgyN7x9K6M8DwYTvETCF704YQe88yCWPFWgADypAl69KA1JvdPn/LtbtGa9ysUhPTT5Fb3Ncig92Ej8vCN8Gzu+Tyo8VVNnuWYIFDxooLO69OhjvdzhLbvKgIw862yMvJWorrzQgB29ZjHQOz1MMT3U7wC8W7RmvHMx8jy6Jdy8uCzOO5d4gDxkwmy89hKyPKq9SD2A9AI9ITb0PAPOvrxPN/27d954PNRWYL2M3z29MoqyvNVCCzx/JLE8nB4VPZSvID3eZGa8feaNO4xVk71Fpr48vLCYPNEfr7p+QAo9mRCgO823vbsLsva8gtE3PEkOMDp95o28/ieqPJmayjxyrrm8PWgKvZjm0bxrygG9T4SWPApt4bzjxeU8mRAgvWq1mrxm7Lq8+r+4vGenJT1TYcu8miWHPKlH8zwss908pBc0uynBQTxOby+7cfPOPKfgE72ZEKA7R59MPG5GSL2zEGQ7W0aVOuU0ybw7ImM7qDqQO+ofcz0die28RCOGvHIkDz0w1jm8wswCvCk3lzzDM+I8SQ4wPaJjOz1iDnS7pKFeuwmlE72Id0y8LqzrvNWHoDrLH548cq65O4QP2zzKxaG661AzPTkp1Tx+QIo8J4oQuwz4Hb1iDvS6qQLePOIRbTwR/yC9DpevO0hTRbk8U6O7K+uPvFaEJ7wyijI9cThkPfw1Dr0AIbg7yMyTvCSRgr1V5RU8l2MZPcXnWjyqeLO8tAnyvDRahDyyVXm87MYIvQJLBr1j+p49vU+qPAKQG7weMAM9MooyvcctArz0Lfm8y41vPe+4JDw0Pqu8kQ99uYpwWj2VMtk74kItPIX7hbtxfXk8J4OevPTo47rYeTy8rCwsPPUZpLwkkQI97GWaPbFc67z+4hS7dharOwDcorzJT0y9rCwsvD8AKrzJT8y7SG8ePPDNC7wDnX67plXXPAkvvrvYSHy9KzAlPBsiDj0w1rk7NVMSPQDcIjyZywq9+YEVvOULjbwjG628CXRTPKDLmzwv3as8qAlQvAY9Ir0hNvQ8q3FBPVNhy7zYA+c86eHPu30rIzvIVj68QbQiuz2RRj2h4AI9MJEkvApt4boHwFo7X00YPfLv1bwdie28oh6mO1TQLjyH9BO96hKQvT2RRrw9TDG9bJLPPLGpBL2WHgS8xudaPUPyxbtvhGu9lHfuPDOfGb2XXCe+73MPvPac3Du1Vgs8YFr7PODTyTyzhrk7rCysPFl2w7uDjCI9zdMWvZjfX71S16C8TNcPvK9jXT0Yupw6RuRhvBPA/LsFnhA8JlJevEdatzv/PJE8R1o3PdnvEb3m7zM8WDggPe9zjzu8Hmo9bdDyvIi8YbzSNJa8VEaEvfxC8bp0fgs8Znblu/QteT0CkBu8tjqyPFGm4LqDjCK85++zun9pxj0BpPA7CQYCPRe6nDxWybw869pdulCt0rxTMR29wjrUPNEfrzyq7oi8sVxru8uNb72L5i+98WydvI5OIbv9O/87BIkpve+4JD1x80698DvdvKBqrTzjV5Q8OOsxvUiY2rwv3as8Qm+NvGR917uuas+6W29RPF1o3zvk9iU88EJPPJwelbyzQSQ5IWc0vH8ksbuvY907TABMvf726bp+8/C7982cu2Z25TsDpQI8BVH3vDDyEjxmdmU8zi0TPftCcT7L2og8DOO2vIX7Bb2yjSs8FmCgvGWulztmCJS8FDZSvfZXR72WvZU58fZHvFWYfLx9P3i84ofCvK/1izyifxS9ZfOsOpzRez37/Vu8wsyCuwishbxxfXk9iivFO+W+87tFYSm9NnzOPF1o3zw5KdW8iAF3PEEVEb3UEcu8ZjFQOs/14Lxgp5Q72L5Rve1JQb2M37285TTJPNToDj344gO7V8k8vDsi47wyz8c8VoQnO4gB97trygE9L90rvSyzXbpKkWg6jWJ2PWxpk7qWMlm8rx7IPKv767xDrbC7fvPwvHiS8bsUrKc8GlI8vZ0CPLpXmY47UzEdPJdcJ701Piu9aRaJOjqfKj3LHx47kvsnPHuLf7yCoHc9ZjFQuxncZrxb5aY869rdPDTIVTzg08k8q3FBPS6s67usLCw6J4MevZyM5ry7EQc8W7RmvLYKBDwNl6+8/I+KvWXzrD0WpTU9EM7gO0datzoHl548Ef8gPcL1PjybTkM8CuoovWlbnjscwR+8IxstvckKt7yBHb+8oK9CvaruCL3LA0U8pFzJPGLJXryY39+8yZThPHHKEj3qH3O870LPukfQDD2gai08ZzHQOnA/Vj3PJiE9Lj4avffa/7u1sAc4igKJPOULDT0jG6280qJnPCbkDD1wtau8/emGu+HM17zHcpe8nQI8u/NlqzwOGmi8ARrGvCcNSbyUr6C7OW5qPTd13LowYOQ8L92rvPdXR7vYSPy8jxbvPD1MsbxMReE7Kv9kPGsc+ryt9Pk8p0ECvIzfPTz44oO9wXIGO5XtQz3Fvp48cq45PHnfCr19cDi9NPmVPMKwKbyMmii9NbQAPbPLzrw2fE48p+CTPFXllTxG5GE8zi2TvE12oT1vFpq8O5i4Ou4ZE7w2rQ69G5Dfuxh1h70LnqG7bcOPPNMYPT2rccG5on+UvNacB729Tyq9RxUiPVLXoDshNvQ8uec4PL6NzTwGPSI8TLu2PH+ahryhJZi83P2GPTRaBDw5uwO869rdPXy8P73RZES8V5kOPQ+QPbyc0fs8i1yFO6h/JTsdGxy9zjr2vEvCKDzPJqG6bE06vLczQDx+rtu8X64GvcD8sDv9sVQ8bdByvGM/tLwYFBm5NINAvSjdGjz06OO6ciQPPQpt4br/Zc088WwdvKPZkLxq3lY8/bFUOxFEtrymVVe9oGotvT0bcb1ROA88zfxSPH8ksTzs02s7C1mMOhSsp7wnyLO8T4SWvDLPxzlsTTo93OEtvZ29prxvFpq6Ms/HvILRt7wq8gE81/YDParuiD3kOzu6kvsnPbGpBL2FTf670alZPdeArjyhOe06F2AgvPjiAz2KcNq8kBZvPHC1K7073U288EJPO7e9ar2+jU07QM9pPGR9Vz2wT4i7Ej1EOlAjKL1uAbO73an7PJt/g7zb6B+9JOP6vHbe+LyVMtm8iO0huyOl17xbtOY8TXYhO08qmryOTqE8oqhQvaPm87z/PJG8B8BaPRwGNTyTfuA7JRQ7vGxNujpBFRE7CrJ2Pfv9Wzx/JLG7hpqXPCryATyP0Vm9riW6O3E4ZDjbo4o8D0sova6bjzwyFF28PZFGPXu8v7r4J5m6Zuy6vIbDU70467G8XlSKvPBCz7tiyV69rCwsPYlOkD1o5Ug9t6kVvVm7WLx7dyo9w3j3PIOgd7rzqkA8ACG4vAFf2zz6BM67EIlLvayiAbzvcw89FPG8O/Mglrra/HS9dNiHO5d4gDyiHia9LiJBvP+q4ry/y/A7BEQUvffNHD0sbsi8HdYGPVWggDtS63W9sJQdPdXMtTwSFAg8lK+guyxuSD1yrjk85PalPRjj2Lx7vL+8JOP6vDU+Kz2C0Te96F4XunlN3Dww1jk8FDbSvGq1mjz9O/+7jk4huwkvPjwhrMk989uAPAREFL38jwq99uHxO0UclDzJzBO8bAglPdwmQz3ncuy8ApAbPVkxLr1l8yy9dharOxDOYD1YOKC8jJqovL8DIz2PjMS6wX9pu136DT17OQe9miWHu4hOELwdie28PZHGvBvVdLzpVyW9wcR+vHl+nDzXgK48fLw/Pfw1jr3Ahlu82e8RvN2pezuIThC+mN/fu+tsDD3DOlS9PZFGvXkIR7wk43q9WQDuvPXUDr1qcIW8tEEkvR51mD0znxk8oGotvErW/TsFnhA9jJooO1/XwjwNDQW9JJ5lPFsBgDp/aca7Dl99PabLLDxb5SY6A84+vZXtwzy6twq8EGAPvTxTozye0g06VEaEvZwelTtapwM9A1jpPFsqPD3vc488FmCgvCgG1zxNdqG70IAdPRh1Bz3U6I47Jc+lPCc+CTsqRHq71Jv1uRvV9LvcsO27JlJePcL1vrz5jng9dTKEPGpUrLqnQYI6VoQnvYJbYrxmduW7T7REPFvlprzvuKS8Zuy6vC5n1rn96Ya9mtjtPGsPFzxkOMK8FPE8vNGpWTx02Ae9vGsDvXnfCj1XB+C6FyjuvKKo0DxhRiY9BM4+PNRWYDxRpuA7r6jyvBkh/Lzg00m81cy1vJ0CvDybk9g8eU1cPBhZLry4LM48WH01va4lujtZkpy85u8zvE12obxqI+y7yZRhvd7auz2+SLi8W0YVPLwe6rpbAYC9on8UPZyMZj2S+ye9uuBGPRpSPL1IU8U8bxYauxjj2LzBcoY8YAgDvSc+CbpKkei8D0uovLRBJDzQgJ28TtAdPTi68buZECA8tX/HOWQPhj0yirK8nkBfPF8c2LtXB+C88fbHPI9jCLz99um8XvMbPXE4ZD1dmR+9UCMoPc2Ogb0467E8Vj+SvPSjzjz44gM8O91NvCZSXjyCFk29se6ZvDpalT0s+HK9Vj+SvGxNOrx0YrI8OeQ/PNzhrbuZVTU8oTntuqwsLLviQq08k/S1vDJFHb2C7ZA88fbHvJBHrzuPjES8iyRTu9Nd0jxiRiY8NIPAvMaiRb1vhOs7gu0QvQYF8DvwgPI8FqW1uzgwRzxXyTy8EGAPPPKqQD0vrGs8A86+vEafzLyNHWE9FDZSPLxjf7r32n+8LuSdPfEniLwXKO48oGotPWGLOz2Y5lG8UWi9PLolXDzHJf68EIlLPdf2gz028iO9n7Y0PT1MsTyXoby89OhjPI1idjwW6so8oGotOzY3OT0nDcm8ScmaPHBwlryDjKI8UtcgvWVpAr1yaSS9csoSPJZwfLxK3gG9glviu/YSMj0MZu87tjoyPOIRbb3X9oM9l1ynO0Q3WzwXGwu961AzPLywmDxcoBG8JRQ7PID0Aj1dI8q89lfHPA+Qvby2T5k8OKacvEC7FD3hzFc9Qm+NvdJkRL3+Jyo8xO5MPLxj/zsp8oE7pRe0OUgqCbwv3Ss98oEEPIorRb24A5I9inBavH1wuDo9G/G7c/CbuUupz7haqqK96TzXvCv7FLx/k2y9VkgyvJT4kjx2zQA9QbZZPPsYLDxoUxy9RcBwPUki4TzAdEU8PwScOgYScz2mVxC8DKP4PN90CLy6Oxm8IolkOhZrH71QOtW7D6uEvIVPmTx0dae7QLbZPIsyT7y0Urq88KhePND4QLzPdZg8atbEvOUJfDxssca8tzECvdTXiLvntWi9ETCQPCga6jtgj7u8N8NjPZPyab0DM4O8oHCUvbuRj7yEHiG9jWWqvGLCFjwWax+9GUahPKKfKT2s5jK6hB6hPEIOszxDup+9gsZHvQS4jr2dPbm8mjOivGA7KDxg55S8VfBYPYIa2zzHCRE9kcNUPPMvzToO+1G8P4fEvAQMIj1W9B49rRXIvP7QEjy6Zui8gBSKPPzzrTyxSga9JGisvIir4LuFJPK5gu8LvKDGCrto+0K9oByBvTolVLqbCl69Qg6zPNOBEr3oZRu98KhevLL64Dk8rEI82udwu1UbAL0Wax+9781cu+AkY7zGBcu7snkbPTBdBTtfYok9PodEu/KDYLz/pes75mHVvEtR9jxTaWq9K6HYOnBnSjtYplw9JT9oPbdc0bx4f747PzMxu55szjyqtx29/iJDvUSVobtJImE96LsRPVHmQT2Snta69YcmPUXEtjxA3506d1ApvBdCWz0/BBw5Io0qPR+uYjxIdvQ8cZZfvQAtWj3cmQa95rXou324ajwMzLw8PVivvIuKKL25tKo8jLX3vOrDxbwdqBG8RsYZPexG7juXVNo79g4VvYQeoTyIgBE9DMy8vBdtgjxwZ8q7yhOoO/WydboV5hM9ETCQvf7OrzyMub06v0eTPMpnO70vhvG8VvSeuy9borwzESY9sEijvPg/DTuWAEc9OHMWvSOPjTuxH988CZlhu0h2dL3wqF67GEYhPU8LQD2aM6I9kW9BuwWPyrzD/Za8CvMduwnt9LwYcfC8bAkgu19iibtQY5k8qgsxvV8MEzyBmRU8NuwnPdD4QLxrgrG8hB4hvPa2uzwZHV09191ZvPDRojrWCAG9CBa5vOmUML34lYO8fF4GvdKmED39IkO8qDAvvfyfGjySRv28h/9zvHZQKbvyg2C7K6UevUZyBjsnbv08jA3RvCAGvLqG+4U8atbEPKOfKbwtgKA80qr+O/B9D72C74u62+0ZvUQYSj2fGDs9gJNsvJqJmLyuFUg9NkKeOpq2yjy32Si8DlMrvFKUETxn9/w7ZiBBO1O9/Txt4Nu7rGlbPEefuLtIS6W8jA3RvPZkizxqWW08azABva1p2zzokGq6FOSwvCRorDszucy8GnU2vRU8ij2/RxO9Xzdive55yTyUohy8AlzvPHuyGTx/vpO6M2ccPJ/A4Tuvwxe9I2TmO+L/ZD2qjtk8XmAmPYFDn7us6JW8kkZ9PKdVLT1GcCO5f2TXOwHZxrwyOAe8iluTPHJCzLwjuPk8mNtIPYN0F7uh8zw9IIMTvdwazDzDqQO9rJKfPNm427zyL009syUIvZOe1rxISyU8aKevu4na9TuIgJG8REGOvHktjj3vzdy57HGVvdzGOLyFTTY88NEivl+0ubxno2m8pP3TPCfvGj33kb28Py/ru+GlADs1Ewm8GUgEPa7BtLwHaky9DXoMvQLZxrvfTSc8LNQzvUVsXb0O+9E8Br7fPMOpg7z3kT07Ok6YO7Qp9rovsZi99413PBaWbj1LKAo9Uz4bvN949rskk3s8jzzmu34QxDwS4Gq8GyMGO26MSLxnIMG7SXZ0vE/cqjyEyg09zEI9OrT+pjwdqJE9N2/QvOqWEz2Sc4e8hU8ZvJHsmDyfbE685zaGu+UJfDvYZEg8VRsAvDfD4zzA92295d4svZdUWjy2hRU9F8GVPGXzDr2s5jK7QbZZvRlIBL2a34487ko0OnrXlzodqJG8WqqivKgykjzhpQC8F20CvUDfnTxDup89b7tdvMZdpDvyL029op8pPZXRMbwEuA47TwtAvWvair1nJIe7ZySHO8g4prxDZgy9INkJvZhYIL3VWrE8rD4MPXiogjyMtXc+i4ooPW3g2ztwE7e98NEiPHktDr2UJUU6+BRmvT6wCL1Y9oG9eKgCPI1lqrxvODW9jpS/uofUpDyUJcU82j/KvJzl3zvi/2Q9v50JvWGTgbkhXhW9WSWXPV83Yjye6wi9l1TavJdU2jx6Bq08m2I3vXzhrrmAFIq7l1TaPC182rwrpR69LqtvvBykS73FLg+9AKyUvBW7bDyn2NU8dnv4O9o/SjyGpY+8+kN7PETrl7wOp768alltPYzigbuSSsM7FDjEPHoGrTuNYWS8YDuou5DDVDqIV826ZXRUvXKaJbz4Pw28ti28PLFzcr2F9Vw9wCCyO1BjGT1u5CG8Tgf6OjrRwLsVPAo90tNCPJkEjTy6jyw93XIlPRXksDs3Gz29E2GIPFWcxTyGKLg8NDz1PE0wPj2V0TE85Ql8PFBjmbzZvKG8DE9lvD4va7qQmAU9ezF8veaKGb08KZo9WM8gOgfpBjxpqZK84E8KPVZKlTwnQy68r5jwu3C/o7wVu+w8HPykvDNlObw0QDu8p4TCvDfDY72XVNq8n+sIPFXw2DzAdMW8YsIWvK4VSD02Gz25NpgUvH++E73ecqU8rL3uvNF76TyxSoY6toFPPPubVLz4aPk8e4MEPTZv0DpcMZE7QrqfPMUuDz3x0aI8k/JpvMP7MzxwZ8q8PgQcvVnPILzcwnI8Nu6KPI48ZrwTYQi9lCXFPIoHgD1ttYw8/UsHPfeRvbxQD4Y8QuVuvLEfX7xqLh47M2U5PAzMPLuUohy8F20Cu+6ijbtCkdu7iFfNvKw+DDtBDjM9uo+sPCKJZDw4nmW9IzkXOilJf7thPQu9PNUGvb1skbw59r68Pi/rvEbzSzt+ZFc69uXQPCW8P7uNYWQ8IbIovS1RCz0hBrw8mC/cvD8zsTygxKe85zaGvGIWKrqIgJG84wOrvPZiqLxIdvS8D9bTvIIa2zubYrc82RKYPEr94jy/nQm9EbHVuqR6Kz0ocsO8onblvAp0Yz0NJJY7EuDqvNCkrT2+RbC8k55WvAwgUD2g7/a6PoP+O8SCorsE49277UbuvPICm7ytlAI8rJKfvA+nPjxWSDK9ewgQvU7cKrwqTcU8qFt+vOJXvrw6JdS8Kk1FPLkMhL1Qjug8xCrJvDYbvTtbLUu8/EsHvAhuEryzpk29GUahvHETtzvu+AM7zO4pvfyfmjuUedi8q+LsPChywzy+8Ry8qwsxPNMrHLvJY/W8XDGRvJgv3Lx945E8Dv8XPaYsaTxvjMg8EgkvPCAvADtqWe089ra7PLo7mTzl3qw94oACPVagiz1ElSG9Vx/uOvICGz3LvxQ96ZSwO3j8FbylqcA8moe1vHdSDL14Kys87yU2vGIWKjr03Zy8RMDwPG/mBLzyrCQ9ubaNvFWcxTzBzgG9trDkOppecTyiduW8qrcdvXVMY73D0u+88liRO6+Y8LtNML68TwvAPH/n/7xD5e47TrPmPPEAuLxDEJa8K6UevTE2JD36cIU8ud95vGNB+bx9uGq9nQ6kPLNO9Lv8R0E9Wc+gu5PyaTxaqqK8QGJGvRhGIb1JdvQ7ROuXPBvND705zXo9KcZWvKGb4zyBbm475dpmui4DSb2ZWoO9ENoZvDE2pDy32ws9oMYKvcJ4C7yi94K8oEdQPemUML3KD2I8AS1aPJZ9Hj1agV68VvSevI6UP7z8Swc80VCavBNhCL2Qb8G8pNIEPYFDHzwL8bq8qmOKvN6hujzX4R+9kcNUvFqqorwXF4w8UDpVOoirYL2qY4o8feORvDO5zDwTC5K9KSCTvYmvJj3EKkk9R0ffPCr5MTyr4uw7kkrDuxmcFz2Iq2C9Bj0avSZDLr0TjNe7bbHGO+joQzrOcdI8ei2OO5EbLr0kk/s8DMw8vZqHtTxOs+a8WlaPPC3WlrsFDgW8REEOPYNJ8DygR9A8ovM8uz6wCD1Aiwo98CcZvWpZbT3qF1m9FOQwvYmvJrvkrxc8rphwPBv4XjvPyw48i4oova2Ugry4tCo9OPJ4vVO9fTohtAu9J+tUvcu7zrzoEQi8/iLDvIAUijynLOk8vZV9PLqPrDyyIyW96paTvB2okTsGPRq92r4EvnUhlDsQVQ68X7S5PKL3Ar2cZJo8TFW8vOZh1bx/vDA80M/8vPzzLbz8R0E9yeDMPMjgTDp4J+U6cOpyO870+rzS08I8mwrePHDq8jwHO7c7WqoiPf/9RDxrgrG83MLyu/eRPbzTKxy9jpB5O/a6Ab3WNbO8lqhtPbFKBr1u5CG86uyJPHh/vjzwfQ890PjAvPyfGruvGY68VZxFPC3WFj1vD/E8B+mGPAOHlrzp6EM8TwvAu6/wybpKJqe8Id33vJCYBT0pypw8xgVLPeoX2bw1F3c9nj05PCQQUz2oMpK81VqxvKDEp7wS4Go8+5vUvEBixrwijSq9TTA+va6YcDyiyvg8Hy2dvJu2Sj3T08K6cu44vUpR9juvb4Q94PkTOzI4h71+vDA9oMQnPCGyKD33jXc8rLkAPEEKbTvU14i87J7HvAYS87vErXE9+Gh5vCjG1jxBDjM8Os36vBvND71IS6W8iKvgvIC+kzszZxw8eH++O4syz7wuLI09xlnePNm8oTw06OE8EQXpvIcqmzxR5kE99rY7vb3CBz0iCoK96kCdPCI1UTw27Cc93JkGPVG5j7xwu129c0JMvP56HL0QgkA8tzECvcWtcbwOU6u8+hoPPSEGPD346RY9JOUDvVJp6juUopw8q7kAvVqB3jwmFJm7zcVlPTXoYT0Q2pk9k/LpvCn1azuNuT29C3TjPFWcRby/nYk7ei0OvOYNwrwuA8k8Dv8XvdkSGL3Is5o8DypnvM2aFjvfePa7jIwLPf0e/bysuQC8yY6cPLRSujxknZg89YemPNJ/rzsq9eu8/iJDPcoTqL3jq9E7xrG3PEhLJT2oiIg86uyJvJZ/AT2gm2O9WCWXu57ppTyfGLs61VyUO+JXvryIA7o8qDKSvOKr0Tw6pA491FoxOyn1a7z5bL+8ty08PApFTjsef008oyJSPWpZbT1KqU+8aKcvPf1Lhz1hPYs9regVPDIN4Dy6j6y8KfVrvI48Zjyskh89zskrvfYOFb2Sxxo8SiYnvTO5TLxy7jg93knhvHioAjxftDk8hB6hvK2UgrwiNVG9eCsrvG/kIb3UWjE74Hy8vGhTnDyYBA27xK3xPG+QDjyYWCA97yW2O0l29Lu5to295d4sPTrN+jt/k+y8lM3rvGIWqjx945G8bAXaPCogE7tgjzs91jUzvavi7LsdqJE7DMw8PYfQ3juGfEs94SgpPWr/iLwd/ge9/s4vO+noQzu/yFg8uAi+O00wvrxBCm28++/nPEp8HT1Cup+8TdhkPVusBbxGxhk7feGuPKhsBj02xCk8W0gHvSq7LL2Q2YO8q24XvezvNTowjMA8YOYMPf381LrR2Rm8tvfjvLAMHT1+ZNY77YkZvLlgyrv9Yyo9EQ0+PFiskj1s7wm8TAkyvWVQSzydFue8dI8gvZ5Krrxqh/s7YH+3O3Nb2TsGOAi8TNXqvHSPoLu0KRq80qfjOzou6Lzviyo8eKwdPJAMkrxUXIe8ENl2vWjsvzwFN8+83n3SvHnG0Dt+MUi93K8IPb/LQb3LOxS7Ttf7vODl/7ziTY46fmTWvH+YnTw+/iM9//7lu3FaAbvZRiI8cVqBvf2WuL1wDIe9oLLbuwptJ70vcg09lUNCvWohXz0tiq+8zdbPPIFmZzxyjY+7h57QvLxi27x8YsU8vC9NPQHNkLy3kUc9KYflvPX2IT2be6s8GuEbvZisKL1R2sW8H0wTPP/LV70RDT69LYovvaifFL1BzSY8CLmQve+LKj0Kbv+8dd2au2MbLDyHhB28h4QdvIcFJrwQ2fa8OWAevfVcPr3gzIW8MFkyPOlTwbp/MoG8Ga1UPdthDjzfsZm8ufn0PD2Xzry09VI9c1vZu6++orwl6hg6lRA0PTVd1DyNcB28aSAHPJpH5Lwi5048mHkavRTcQLzETxS8N5LzPAHNELtJOi89VUMsPZ9lmjwfTJM6915PvPPBAj3YxZk85BwRPH4XFT2o7NU8mBLFPCwjWr3HHhc9hwUmvdWp9LxAzG08407mPCjsqTvZRqK8idNvuiyjCr0wjMA7orTsOz2XTj23K6u8nWOJvMgFPLzLO5S6atQdPUg5drsDz6E8fMmaPI5x9TtigUi8/ZY4Pe28J70KO/E8qrqAvNx7wTwLVYW70aYLvf8x9LvYrL68QDNDPUNoYrwDArC8ZLWPPZer77zg5f+8JINDPf1jqjq6lBG9uvqtuwAzLbtWXhg9f5gdPSoHFrymhCg8vPy+vNA/trx0j6C82pScvMc4Sj34xaQ8bSNwOyq7rLxzW1k8yroLPctuojzmHek70dkZvXXdGry6+i081kQRPaaEqLx8/Ci8zdZPvCKBMr0nhdS88lqtvCe4Yjz/y9c8NRATvStVkLx5YLS7HOOsvfr6Qzy//s882XmwOw+lEL1c/J283Rb9PH7kBr3rCJG8TG/OvFngeD1uVzc6Q7UEPfjFJDw1w3C9O5U9vCGAebxrIpg9MsFfPVR2Or0Wq8M8Ak4ZPcAyFzjbe0E71t27vAi5EDvEHAY8CogTvZ8YeLvsIkQ8M/UmOjX3tzxGBFc8zaPBvKPneryS2ls8U48VPHj5XrwOpNc8CoiTOyHNG73nhD489vd5vDJ0Hr1PC8M8hQOVvCwjWr0YYBM8e8hhPCLohzw4rAc9qOxVPG7xmrym6sS83K+IvFn6DL3oUTA87VYLPYdrwrkJOhm9E3VrvIpuDD23xY48R9IBu9J01bsRQEy5mxUPvNaqrbuTDqO8h2tCPbSPNj3m6lq8wQDhPBl6xrzqhwi7/K8TvekGAD0Losa7wprEPIEz2bydSXW9zQlePLmT2Lw4k6y8jz5nOTphdrwhTWs9ENl2vIGzib04xjo9AmjMu7crK75Gayy7uROJvMsIBrxJOq8809uqutKnY7xktuc7JIPDuhfeUT1q1B07nRZnvUDmAb0BzRA8OJOsPNKnYzpMPMC8ZR09PCQ2gjuX+BG8Vd2PO7deObxuvow8DSSIvTX3Nz1z2wk95moLPDP1Jj1BALW8o+gzPG69U7wIBlK8+vpDvNA/tronhVQ6Ik4kPIYE7bulUOE8LYovvPTCWjw4LNc88FicPTL07bv4Xwg9zaPBvHhf+zzKuos8l959O4cFJr14+IY8kQ3qO3WqjLwkg0M8t/icvWDmDL1+F5U8Swj5PB+yrzxMCTK9XheKPQUEwbwu8QS951GwO9jFGbzsiOC88o07vWqhj7tIUwo9FXf8ulIODb2wDB08scCzPBngYrz9/FQ8tncUvLzii7oYYBM9a7vCO1JA4rxAM0O97/HGPGuItDxJOi+7S1WbOtziFr23Kyu9ym1pvDbEqTtbSAc92kd6Pk4+0TxDAsY8/C9jvUeEB7wknB46px6MPDgsV72gTD+87744vSS2UTsYE/G8/K+TO2jsP7wTqPm7LyVrPB9/obx2XiM91cOIPaWDbztcSd88S1UbvdClUj2T25Q7RmssvQZrFr1XRb08QQA1PHMoyzq6+XQ8hQMVvZ6WF7y5Rhe9rIkDvZ9lmjthGvO85BwRvTqumLySdL889Vy+O1t7lTzx81c7O8hLvBN16zwtVyE8c/W8vPBYHD3W3Tu8rvGwu+++uLwlt4o8FqvDvH6XZLwhGt083K+IvHPCLr39Y6q8c47nPNngBT1Mb069co0PPWu7QjxZelw9Rp46vYOCDL2vWAa9y24iPTVdVLy3Xjk8jAnIO5LaWz2RjZq8PcpcvbHzwTvjTmY7/C/jPOkGAD0quyw99UKLvDHAB7oL1dS8hzi0vFYQHjzBM2+8eZNCPeS1u7xjtQ+9VFyHPbmT2DxlHb078sDJu3KNjzzNiY48cFnIvARphTtIOfa84LLxPErUEr30j8y88vSQvPotUrwN12W9VhF2vW2KRbpAM8M8ePlevUYE17zK1D49hJy/O0k6r7y3xY682Hh3PAKb2rqphrk8E0JdPXKNDz2eF6C8FKmyPNZEET2kT4k8NV1UPGS257y29+M8jdY5PZ4XoLwbL5a64UzVvHaRsbyCZ6C7FHakPGiGozxlHb28NsQpvB19EDwlHSc9H+U9PZpH5DydFmc84xtYvBvi87yyWpe8MnSevHAmujyzKGE7ijrFPMLNUjy+l3q8OWAevDiTLL0WeDU8aSAHPTz8kjwT9Zs8/JV/vTKO0bqHntA7QOYBvTtir7yriMo87FVSvKDlaTvpOQ49fzIBPXv77zyjgd47ZYNZPdJ01byP2Mo7NPb+u9vhXb3Kuos8YxssvQ6k17ujTtC8HrF2PKu7WLygf828HxhMvFNCc72Q2YM8Nd0EOzLB3zwZLYU7JOlfu60irru8Yls9wme2vGKBSLxz2wk9br1TvL/LwbsCAfc9Rmusuyohybzy9BA9uvqtvFx87Txl6q47Dj47POogs7wIoLW8UKb+OwBmu7xohqM895HdvDMotbwvWPm8hlEPvAsI47uXeGG80nRVPDmTLDzhGce8+cZ8u5sVj7yuJD88ufn0vIVpMTz/S4i8hdCGvf/LVzob4nM8oeaiO7MoYb0RpyE7XEnfvHvI4Twk6d87GRSqPLHzwTvvi6q74H/jvC4kE70Qc9q7Bp4kPcZqAD1bSIe6ggGEukaEBzsFnWs8FhFgO2fSDD2dsEo94k0OPfb3+TvNCV49qGwGvMMBmrzHa1g9e/tvPaXQkbymtza8ROiSPVFz8LxdsDQ7ZrcgvXQphDvV9pY82BLbvA7YHj2TqIY8G69lPQ9yAjq+l/q57/HGvPUo97uN1jk9MltDPDffFb1IUwq9aIajvL0wBrrhs6q8BWpdvYrUKD0vv86895HdvPFZdD2Ha8K8vZYivauISrtE6JI92y4APX6XZDxJbT29Mg4CvUGaGD14LO084k0OPSwj2rxl6q47x2vYvDAmJL3Y30y9PTB5vE/YNDwvpZu8Q5twPQfsnryd49g8wDKXO2qhjztH0gG9a4g0vbxiW7yK1Kg8u8h3PAY4iL15LSa6ADOtO+q6Fj0IBlK9HLCeu67xMD3tvCc9dFwSvMk5gzzkHJG8WhRAPctuIry8/L68c9sJvTn6gTyoH2Q87YmZvKgf5LxCzn48Tr6BvFjfILwZLQW9MCYkvMoHTTwZrVS9LfDLuvPBAjzn65M8Vt5nvSVQNb2hsxQ8ZwUbPbxi2zxn0ow8lfYAPSGAeTxSQOI8xTa5u2VQS70RDT69QEwePTuVvbxZelw6Uqc3PX0vNzqY3za9nxh4PRGnobxRDdS8wU0DvYQCXD2tIi48IRpdvOq6FrxoH848oeaiPHSOZ7yxJlA9zgqXPCQc7rwQpug8neNYvc0J3rxdfSY87yRVPTn5yLw4xrq8K4iePMZqAL0Czui81xGDPOSCrbtNcIe87r1/vcee5ry19ou8ucbmuyIblr2//s88s1vvvBZeAj2phjk9Ttd7vdAMKDxuvVO8TXAHu209BL6onxQ8sIzsu/pg4DpWKwq9yqB3uxffCr3qhwi9YrTWvHPbibzPWBG8bT2EPRlHuDsy9O27dV3qu88+/TxeFwq93BUlPWK01jwtowo6f8urvPVCi7wKbSc9f2WPvI1wnbrNo0G8esZQvXtIkjuPPue8Myi1vMptaT1OcV+92RMUO21wEjyRjRo8ey7+PBZE7rsk6V+8bYrFPAs8Kj3TDjk9bvEaPai5RzyHODQ7Gy8WO84Kl7shGt28Jx84POToSbx2Klw8/XyFPJf4kT2kT4k7xE8UPRkUKrs9Sg09fmTWu0GaGLxHOB69ufn0Omi5Mb2uV029f/65vJDZg73yWi09dCkEPY2jq7zKbek6ECaZu0EANb2ENiM86VNBPSpUVzuEnD+9WfoMPbAMHT3jzhY9tsRVvCTpX7zAZSW8Vt7nPNziljuCAQS9nX08PS1XobmCmi490trxvIdrwjw6Lmi9XMmPOyAZBb3YElu8j9jKvM49pTxNcIe8ADOtPZPblDw4k6w8dV3qPHHzq7yJIJI8eS0mPcs7lDjNVgA9OWCevY+lvDz7lKe8NV1UPBkUqjzRpVK8N98Vvd1jn7ys75+7M/UmPGB/N7wOPju8J7jiPDBZsjsFHRw9FNxAPZpH5LxSQGI8Edqvu1Cm/rwlt4o8upPYOw3XZbs+/iM9Wq6jPYScP7zVdQ48jXCdvZuuOT3FAyu9PjGyu3Dycrw2xCm9G/wHPfL0kL3hGce8Cm0nPWpugbwBzRC81nefu/r6wzuPpbw8O64YPAIbizyKB7c7AGY7vJpHZDwCGwu9lKlevJzigDx1kPi8Xxjiu7C/+jsZrdS7p4QoPaPOgLzeSsQ8jG9kvYQCXDuDaHi7ey5+vL6xjry7yHc7ZLbnPAs8qrymHVM9UdpFPOnsa7rKugu9Yxssvd59UjvLOlu7CW0nPGlTlTsAM609oH/NvIUDFT1LVZs9q26XPe+LKrxQchg9aVOVuxvi87tMCTI9TnFfPdisPr14+V68XElfPHz8KL01XVS4sSbQO9l5sLtOpO07yjrbPOFM1bzxJma7x57mvAKb2jw3kvO8ey7+OBCm6LwXRae3fzIBPCQcbrsq7jq9GuEbPW2907y9MAa8EKbovGJOOj1arqO8fPyovHBZSLvviyo80icUvQg5YDtq7tC7YEwpPem53bxq7tA8LIl2PGVQyzym6sS8HHxXPSjsqTyw2Q69KIYNvUbRSLznUTA70D+2POwixDt4RgG7KIYNPDtiLz11XWo9R9IBvc49JT0Czmg8AgF3u4bR3rk="}
\ No newline at end of file
diff --git a/dsLightRag/Topic/JiHe/vdb_relationships.json b/dsLightRag/Topic/JiHe/vdb_relationships.json
new file mode 100644
index 00000000..b5e63919
--- /dev/null
+++ b/dsLightRag/Topic/JiHe/vdb_relationships.json
@@ -0,0 +1 @@
+{"embedding_dim": 1024, "data": [{"__id__": "rel-bcfe4067a78db61c5e344a3c6067e9c1", "__created_at__": 1752211508, "src_id": "Point D", "tgt_id": "Triangle ABC", "content": "Point D\tTriangle ABC\ngeometric construction,triangle extension\nPoint D is constructed from triangle ABC by extending AB and adding segment BD equal to BC.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-34f26cf67f89c41e368f995769f3bee1", "__created_at__": 1752211508, "src_id": "Euclid's Fifth Postulate", "tgt_id": "Point D", "content": "Euclid's Fifth Postulate\tPoint D\nangle comparison,geometric proof\nEuclid's Fifth Postulate is used to compare angles in triangle ACD, which includes point D.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-469520e112344d64d841d843cec91e06", "__created_at__": 1752211508, "src_id": "Proposition 19 of the Elements", "tgt_id": "Triangle ABC", "content": "Proposition 19 of the Elements\tTriangle ABC\nangle-side relationship,geometric theorem\nProposition 19 is applied to triangle ABC to justify the relationship between angles and sides.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-5b3cdf18806473ee2a2fc55a7b0fd944", "__created_at__": 1752211508, "src_id": "Point P", "tgt_id": "Triangle ABC", "content": "Point P\tTriangle ABC\nangle proof,interior point\nPoint P is an interior point of triangle ABC, used to demonstrate angle relationships within the triangle.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-e3c9f606eb2d48c5e37f2c2d8bff69ed", "__created_at__": 1752211508, "src_id": "三角不等式", "tgt_id": "三角形ABC", "content": "三角不等式\t三角形ABC\n几何定理,边角关系\n三角不等式直接应用于三角形ABC的三边关系证明。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-f7bcf1a714c6122abc696165fc098924", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "欧几里得第五公理", "content": "三角形ABC\t欧几里得第五公理\n公理应用,角度推导\n第五公理用于比较三角形ACD中的角度,与三角形ABC的构造相关。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-6e53094235679e936c94ad45593f0f62", "__created_at__": 1752211508, "src_id": "几何原本", "tgt_id": "命题19", "content": "几何原本\t命题19\n定理引用,数学经典\n命题19源自《几何原本》,是证明边角关系的理论来源。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-37c38a5bb6bf0a593501536eddae56c6", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "命题19", "content": "三角形ABC\t命题19\n几何推理,边角逻辑\n命题19被用于证明三角形ABC中边AD与边AC的关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-37e6f8ce2b52adfdbedbf5458829145f", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "点D", "content": "三角形ABC\t点D\n几何扩展,辅助构造\n点D是三角形ABC的延伸构造,用于辅助证明边角不等式。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-6144c8f85132b7365b9799eef55d09c1", "__created_at__": 1752211508, "src_id": "三角形ABC", "tgt_id": "点P", "content": "三角形ABC\t点P\n内部角度,几何性质\n点P的存在证明了三角形内部点的角与顶角的关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "rel-c1933338c2519d138024b54332ba34fa", "__created_at__": 1752211508, "src_id": "AC", "tgt_id": "BP", "content": "AC\tBP\ngeometric construction,intersection\nBP intersects AC at point D, forming geometric relationships.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-a0120be6d72710158ad1d7314522045b", "__created_at__": 1752211508, "src_id": "∠BPC", "tgt_id": "∠PCD", "content": "∠BPC\t∠PCD\nangle sum,exterior angle theorem\n∠BPC is the sum of ∠PCD and ∠PDC, showing an exterior angle relationship.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-cf5059a963107eb6a8e684ceb0f895f6", "__created_at__": 1752211508, "src_id": "∠DBA", "tgt_id": "∠PDC", "content": "∠DBA\t∠PDC\nangle sum,exterior angle theorem\n∠PDC is the sum of ∠DBA and ∠A, demonstrating an exterior angle relationship.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-cb833d7578b22e93fa2c5679a1be4194", "__created_at__": 1752211508, "src_id": "∠A", "tgt_id": "∠BPC", "content": "∠A\t∠BPC\nangle comparison,inequality\n∠BPC is greater than ∠A due to the sum of angles in the geometric proof.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-ba10b682d306f5429797a188080b170e", "__created_at__": 1752211508, "src_id": "∠BPC", "tgt_id": "△PCD", "content": "∠BPC\t△PCD\nangle sum,exterior angle theorem\n∠BPC is an exterior angle of △PCD, equal to the sum of its non-adjacent interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-8e0777902c21563fb266cf02dc90d159", "__created_at__": 1752211508, "src_id": "∠PDC", "tgt_id": "△BAD", "content": "∠PDC\t△BAD\nangle sum,exterior angle theorem\n∠PDC is an exterior angle of △BAD, equal to the sum of its non-adjacent interior angles.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-f159e3b5b75d56b92e5123cc548f8e96", "__created_at__": 1752211508, "src_id": "BP", "tgt_id": "P", "content": "BP\tP\nangle formation,point-line connection\nP is the endpoint of BP where ∠BPC is formed.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-a74bd30e168067c7a057365f82d805f4", "__created_at__": 1752211508, "src_id": "B", "tgt_id": "BP", "content": "B\tBP\nline origin,point-line connection\nB is the endpoint of BP where it originates.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-c4fd1ef4041f00039def6df0331841de", "__created_at__": 1752211508, "src_id": "AC", "tgt_id": "C", "content": "AC\tC\nline termination,point-line connection\nC is the endpoint of AC where it terminates.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-6409dac0c80c79ddf61858be7f2c699b", "__created_at__": 1752211508, "src_id": "A", "tgt_id": "AC", "content": "A\tAC\nline origin,point-line connection\nA is the endpoint of AC where it originates.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}, {"__id__": "rel-2298d7114aac2b273f06e6e633aed694", "__created_at__": 1752211508, "src_id": "△BAD", "tgt_id": "△PCD", "content": "△BAD\t△PCD\ngeometric proof,shared vertex\nBoth triangles share point D and are part of the geometric proof involving angle relationships.", "source_id": "chunk-e2c7bd24a26246e194d4d56ab2ed22f1", "file_path": "unknown_source"}], "matrix": "wd87PYpKDTwcjje9nQYAvd2elbxScUe8MVj6PB5F+zwuT088KesRulF27LwIyxy9EoKlPNj2QDvE48G8iqOcvFJxxzxJCQS7eJxqPUW4uzu+fQG9/8WyPMqNGb30YBG8EofKvNnxm7yGWXy8XM9APWl+Aj3h9gU6gEMgvZL9D7178te7v9u1O7N0ET2yftu87hJrvFh5U7vyYzO9bN45PU3J8ryeGfU7bTAhPQnNH73Sl6g8RlwKvQnSRDw4W+G805IDPdqo37ziAtO8NQDPPPGzFz1+pHa8A4F8O064AD3USUe9xTpOvYdZfL08Aza8HDIGvdGhcjxIBwG7HjSJPNHzWbyUX0o8GzzQPB7pyTmavmK8EoIlvNDqrjwHKVE8q3GqvBWGK7zXmAy91+2VvI2ln7xefDq8OK1IvIBDID0FICa9xTrOvEK0tTxTbKK8KJ7PvDxaQrwAaoG9IOQkPUK0tTwv8x08QKuKvNj2wLtLxWw9/XhwO2/bl7zGMIS9HeCeOytLSb1vizM8CCnRO2XWLT2kyvQ8JUM9vEjB5jv+IWQ7v4lOvUK52jzQ6i68NVdbPcvrzbsUi1A9hqK4PHnpLDoxqmE9v4lOPIH1PrzqV6G8z5OivDwDNr3R54w8IeECPS9KKr1TbKI9WHSuvFR1zTySslA8EtkxPERreTtVaQC9NwTVPHubSzwciZI7phc3vOf+ETtefDq9qs1bvC/zHbxXa4M8KJICvdX3X7yTBLg825ySvY9XvrxDWAS9xTUpPTBFhb2Jpr481UQivI9XvjxhIgy7OgjbvA8nkzzeoBg9yOKivI6zbz3OmMe89guIvP9upjxZdC69/njwPNz1obydtJg8VBcZvdGQgDz7dOo8K5YIvTL8yDyMqkQ9YXkYvcU1qbyragI9e5vLvItMEL3g+Sc7RlwKPP9uJj1qjFI9sx2FvEVm1DsX2pW7snIOPIZGh7pheZi88FqIPBSLULwRKRY9oAqGvHQ1Cz26zgQ9coiRPH/xOL3Q6i68BCpwPbklEbx44oQ5SxdUvf4h5DpRcUe9OKijvHGPubvwWgi9BdPju9fvGD1SE5O9Pgzhu2jaszwd7m69hUusvOJPFT0VL588zOaovEtpO72fZje92lb4O0sSr7zElv+7DXycvPgZWD0ZijE84k0SvBjmYr2zdJE89gsIvbZ4Fz34DQu8s3SRvFdrgzz7ugQ8ENCGO+673ryQqSW8e+aKPBveG73TpXi8zD01PM1G4Dw3TZG6mAUcPQwosjx8RD+8MfxIPV4cAzvEhQ09Hpdiuz5j7TzkUZg73/mnvH/sEz3YnzS9WxqAvY4AsrzB2JO8oLievF/TRj3DMSO8sifPPC+hNjxvizM730sPvaUQD72ZWYa8/spXPdaWiTz/bqY8W33ZPDNJCz1CYk48JZUkPdLzWT2EVfa8gfpjPYGo/LtLCwe992KUPGPSJ7qiEzE91KBTPJFUnLswAW49y5RBvU7ETTt+n1G9y0JaPIsBUbzep8A892KUvC/zHb2vetU8UyPmOORRmLzL8HK9CNdpPEFncz0tVPS80+60vEazFj116ku8WB0iviXxVby/LR084/0tPbHJGj16PZc8qRu9vL0357z7xtG8siIqPa9wC71njXG9gu4WvdCTIj0UkHU9O6ypO64jSbx9Teo86lchvc3hA71who67KEzovF6B3zyvHqS7DiWQO7Ebgj19Pxo9sCx0PFcn7Du7iu279Bp3vSmUhTy9gCO6KJKCvE7Jcryyfls8uYFCvGqRd7zY9sC8Wcs6vWg25TsTfQA+OPgHPUK52jwBfXa8dZO/OsSFDbxIato8XM9AvTJHCDx1jpo7DyeTO/wYOb1JYJC9W9RlvUdeDbxEWIS8yJVgvFO+iTx/QyA8IeGCvB6X4rs/sK+8xD/zvNj2wLvXUnI7JDyVPNVEIrvprq28czgtvTj4Bz2lwKo81pYJvXKIkbyockm967IzPH+fUbwIKdG7DojpOsI2yL0Ie7i8lgg+uxyJkjux0EI8i1jdvNLzWb0Sh0o95PiIuu5YhT1k21I+DTHdOy/zHb3AhCm8Cc2fu91VWbzeoBg8z+MGu/IMJ73EhQ29vTdnvO9fLTzcR4m7AH32OvRsXrz3YpQ8zD01u9JAHD1+pHY9W3EMvTb7qTylbkO97VaCPUtpO7wAagG9y0LavFrU5Tp9Teo8BHxXPItYXT0L1ko5Zn+hvLwuvLzxur+8y0LaPEtpu7xLEi+6u4ptPDtTmjyvelU97FsnPYlKjTzutjm7orwkvEpik7xdHAO93qdAPRiPVjzwv+Q6FJB1OnmSoD1zOC28GYMJvDJOsLwu/We81EnHvMB/BL01qUK8P7CvPMvfAD3hsOs6AG8mOwx6mTw+unm8cTEFvZu5Pb1+kwQ9zOYoPXjiBD2guB48uXydPXec6jz9E5S8vzJCvSjwtjweRfs7HouVPXU8szwDboe8PwKXvNTrkrzc9SE7k2Rvul0hqLu1fTw9LEvJvEW9YL0Ui1A9CIBdPSudsLrTkgO9d+5RPCXxVTyncsm8uNhOvKjJ1Tv3ZBe8n7gevVEau7wJzR+8EYxvva96Vb3nuHe9qhaYvDxVHT2eCIO9mAUcvbonlLpDWAQ9GzzQPC6ajrzoBbq60ErmPHGUXrz8aiA8bzQnulETE7z+HL+82KRZPDX0gbzkr8y71ElHvIX5xDwwSqo8NqSdvPa5IDyRpIC8TLuiu3xEv7xzOC28/3PLO5QN47wtVPS8ajrrvC5UdD30Xg487AnAPNDlibtvi7O7y5lmvbHQQjwn5ws8cC8CvUAQZzto2rM8DdElvVUeQbsij5s8ZdtSO50GgLx46aw8WxoAPYmmvjwSgqU7ct8dvT+pB7ySstC7As/du1XM2Tz0w+q7p3LJvAiAXT1/6pC8uNjOO/ZnOb1dHIM9+MLLvfCxlDwoTOg8cC8CvVJxRzwM1kq9x+zsOn+aLD0JzR89O1OaPI+pJb0aQXW95wpfPKHG7ruw1ec7XhyDvKVpHrwrS0m9derLPLjMgTu4gUK9veX/vGAgCT271y87bIctvWmDpz125Sa8nxTQu+VTmzwYMyW8u9xUPRw3q7ykDoy7XipTvMGSeTzf/kw9RL1gPLozYT3F40G9KECbvKxxKjt8liY9Kqd6PKEYVr1LF1Q8PwAUvJleq710mGQ89L7FvD4AlLp8liY8sx0FvWuAhby/2zW9Jj4YvWLSp7wW2BK9M0mLul4q07zZmo+8PKcEPOmurbzS89m6C9ZKvK8eJLz7ugQ9Zn8hvanEsLrsYMy6iPilPO9fLbzOOpO7Pbp5u8UuAb2LWF25rMg2PWTgdz1+pHY9W3i0PG/dGj3YpNm7HImSPAEaHT2LAVE8Io8bPM7jBr25fB09xIWNPERm1LyXrg86IeECPdKXKDws75e8Qa2NPbN0EbsBGp09R16Nu9hNTb3OnWw8ZdvSvDhWPD3T7jS9z+/TvAEmarvpri08C4RjO0JWgTkGyZm80Ph+PEELQjxUFxm9ZX8hPOUG2TxUwAy9tR+IvJ4ZdTxCuVo8RGt5vA+DxLxxlN68Q10pO9VEojzpAJU8TnLmvGyCCDsiPzc7DdElva8epDss9Ly7R2//u9yeFb2hxm49uIHCvLcjjjq9jvM7CdJEPNKczTuBUXC81ElHvGTPBb2SW0S8TxGQPKvBjjxEWoe73/5MPY/7jL2MpR+9yZA7vO5YBb1rh608yTKHvCJEXL115aY3z0G7vCM/N73H7Gw85qqnuzcE1TxAWaM8kgQ4uxzgHj3EkVq8nbQYvYGXijwvoTa8e6Dwu7+JTrxegV86wd87vQt/vrvkWEC8ZyoYvUcTzjvhWV88riNJPNDqLr1BYk49UhUWu3GPuTzKR/+8krLQvBqFDL2CTEs9lGTvu4OZDTybFe880ecMO1C/qLwl8VU8Prp5vRHe1jw3sm06/hUXPdxHiTws7xe97lgFvGuHrbwpQp48HDADveWvzDxPFjU9+BQzvOVd5TvrZfG8SMHmumg25Tyrzds7qyRoPDsDtrzVm6670ErmvMTcGT04/688kQldvESxE7yVtta8TnJmvcfnx7uMpR+8I5EevfJjMzs29gQ9Xnw6PERmVD3KQlq9Xh4GPd+nQDwBz108fqT2vReU+zyF+cS8aozSPDusKb3ipqG8E32AveECU72fD6s8RBRtvIZGB713RV48eZdFPeUG2bw5Vrw7f5osOwHDEL31tx09+HDkvLFyjj0xnhQ7D9UrvS5Pzzwbh487SMHmO9KXqLy2eJc7NvupvJwLpTuZWYa9tSYwPN1VWb3OnWy8m2dWPc2PnLn7xlE99gsIu77UjbyaspU9hUssO+oCmDuea9w8WcYVu/4cvzz4DYs8pMr0PNT337xigMA77lgFvT8HvD2OXGO7+8bRPDhb4bz5uAE9lLZWPOoCmDs0opq72/9rvQ/a0LxEWIS8G463vFxzD72eGfW81+8YveP9LT0CxRM9BsmZuuCim7qmaZ68Ku0UvacUlbySstA8sx0FvVtxDL3yDKc8HIePuILwGT1/n1G7g0emvIadk7yoyVW92JgMPOgKXzvIiRM92KRZPekAlbtLF9S4X3eVOzj/L70Qfh+9GDMlvFO+ibzzDCe7cC+CvDNOML0HLnY9SAeBPM/vUzyJ8wA7wzGjvfW3nT3IMgc9jKUfPHtEPz15QLm89RVSvI9SGbpDXak8hESEPCTx1bwWhqu8rtFhO2LSJ70ilsM73VVZPOiz0jyzdJE83PpGPTFT1Tzc9SE9ZSaSPHLhID2guJ48bufkvH/xuDudBgC9P1kjPN/+TD3rt9g8W3g0vRWGK7yF+US8Z+R9PacgYjzN4YM59rkgPNRJx7xSwy494gLTvOD0grw1qUI7rtHhvP/AjbsWgQa90ErmujJOsDy2IQs92lb4PJ0LJT0U1o+8FDnpuzVXWzyHAnC7NqSdPesOZb2GRoe747RxPCzvl7x+9t08tSvVunM4rbvQ6q696rfYu05tQby1K1U8cC8CPThbYbvLQto89MPquz9ZozoHdJC8+HBkvImmvjvYpFk8KeuRPb+EqTwCcyw9e+2yPDUATz1Aq4q8RWGvPHXlJj1egd88SGpavBgzJT3HiZM7s3QRvSKRnjzZQ4M8QrlavZkHHzzbo7o7RxNOPBHeVjyTVh+7t93zvFF2bDwBIcW8UL+ovLUmsLxkzwW9kGDpPKYXNz3wsZS77mn3OgbOvjuI+KW8BneyvC7xGr1dIai6Zi06PNKczbv7wSy9sdVnPRHe1ruycg68hafdPIhICj1r3rk7OVGXPI9XvjwLIYo6JJrJO7/WkDxqfoI8nhn1PIXynLwVNMQ8kaaDu9GQAL2UDWO7uSURPL+EKT2mEpK7uYFCPDj/Lzx7SeS83kmMPO673jyTqAY8MaphPNmfNLx4Rd48tiGLPBLp6rn9WwO8ey1QvXGqvLzO+bq7hvYLu9I8pDzuFx08jGJhPYKzIjxDPx29lRRfvVZlWTwqeKM8XMsWveAuTLzsxV46n8bcO6uDAj0Ire28QeSHvSzTODyTL0q9k40ePXZgZ71rU1S9V5RDvWDflTyzhe08+ukvPcmKpjxmEyq9CsQrPAiYgDzqO9+8fLqOu3y3T73otJ48PEYJvRLgEz2fJLG5/VsDvdNoTz3AqT69Pjc0vHRjJr2vz8K7OryJvFsGl7zmKp+7i6n3u9CypLz1d1w9EFYUvXWPUbyexlw8gSbkvB6A/TtJzsa9BPfCvKnT77w/ksm8CZVBvTLPC71h0MC7cUzoPDW0oDpSIvC8wKZ/vHVXkDt4dGY8Tz3bO2qCPjkk2iQ9PtlfvWCkFb0YFKg8O4GJutcJDb1UOa48s+NBvGidqTxvxac8S/rxO0TJnLxyqjw9B6QWvXaP0TsEyFg962pJOZL3CL0KIoC74YCKPeJad7xmE6q6A/dCvHowj7zsgQe98NAGPXcZ0TyfggU8hmlNPQ16VrwE98K75vh1PKLRBL3i5zU9E3apPF9GQT2xiCy8j0q1PKNnGj02PqA8OvTKPBTRPrzPg7q8rtIBvHEdfjy6reu7g+KMvL3wVD2iq3E81CE5PaMsGrzCYqi8o2caPUOmSLvKttE7y+J8uyiQTzzGRP48hTrjPGXkPzxA8B08mrJdvJw83ToVW7677cXeO9SXubwvuE29+I6aPXy3T72fJDG8W3lYvc+ypD3ILNK8fLoOPXNjJjxRJS884onhummRk7xi/6o8VTkuO3oBJTvLFKY8iza2POyBB71I3Zs8Nw82PLqt6zwfphC9BCatu+4XHb0Zb708BwvCPEM/nbzfuwo8GOJ+PXJDkbyuRUO9SnDyPFZlWbymHUW9zAgQOz03tLvxZhw98+1cPd2kTLzMbzs9Jtdlvc6SDznaMnm8moayPKZMr7xZ71g7Bd8WvKdMLztAHEm9CWZXPLbI1jyDgXm9Z8yTvN5GeD0VACk98ZWGu0X4hrzfjKA7FooovWAOAL0cVxG9B9zXvGSJqrwt/+M7CGmWvWmRE73qDHW8Ix78vJ+OG7v9LBk90Q06vefjCDyAbXq5ApwtvDMqIT17LVC9+t0ZPNSXuTxGgoY8gcvOvIiAC7z/hO+7CvBWPB1U0jyMZSA9t1UVO1QNg7x6MA+7b8UnPDAWIjt/zg0834wgu+X7NDx2u3w87fTIOhgUKD0VAKm7snyWPOSgHz0W9JK762pJPPLBsbzOKCW9735IPU6E8bu1nKs8oUcFvRUAKb3L4vw8r6BYvEzlhL1L8Zq8goQ4uzDkeL126uY8OAz3vAfTgDxxfhG8ZYbrvCdYjjwe3lG8IGuQO4vPijx94/q7FNG+O9pYDD2hDAU8od2aO1wD2Dwe3lE9rkXDvOBdtjzGRH481CE5PAx9FT1Jc7E8q11vPTT4dzuv/iy8W6hCPYqsNr2hUNy7LNO4u09vhDzKtlG8lXIzPIVsDDw7IPa8in1MPCwxjTy8lT+9jVkKPJiVhzxXXII9aiRqvNTGI711j1G8Zz/VPJQXHr6PG0u9kgDgvGjJVD2MYuE8lnKzPLs36zoCbUO9CvDWvPpHBD14dGa9/vpvvbmta7vNbHy7hTrjPBN2KTz21bC8Xusru1FUGTwBEi692pBNOmcQa737REU8j+xgut8uzLy6C8A8/+WCPGr1/7yYzcg6OcgfvCGXO73Apv876Q80u8DYqDzepMy8tyaruMq20bwaEWm8FvSSvLUPbbzbkE09+F+wPdqQTby2kBU9xXanvM75Or2GOuO7KetkPSgy+7yr6i085lbKu1fyFzviRYq8tW3BvBkRab3I/ec8Hq/nO5qDczzILFI8g99NO9x4IbzKFCa9hvYLPeSgH71Dboe8J785vUUB3rwesqa8+YvbO/1bg71C1TI8DalAPcPspzy398A8NFbMvAEPbz23yFa6WUruPH/OjbydBJy9GZ6nvOqZs7psruk5f3C5PGsk6rwuiWO9Nw+2vG0J/7t34Q89DalAPh0l6DwokM+8TuJFvYp9TLufGBs8HVTSvOZWyrw83B68AKuCvMPspzt0Mf073wKhvGGhVjsHpBa91k1kPPf4hLzCMz49c6d9PScyezuR1LS8otEEvdk1OD01qIo8nGvHvBG9v7z5usU7xwAnPcS6/jwiug+8ckORPPdfsDw+Zh49jTN3O75OqTwzHos89XfcugSZbrztUh08NuDLPN1JNz1bBpe7pZPFu88cj7yel/K8n70FvRGOVbx7iyS6ThGwvPf4BDyfJLE80msOvLMSLDpXXAK9J2Skumv1f7vmKh+9db67POD2Cj0+Zp48/iADPccAp7wD+gE9h5X4vACrAry0NYC9OcgfPW3dUz14SDs95HG1PLxm1T2535Q8owlGvUv9MLpHi108VmVZvSGUfDz07dw8uy6UvSc1Or2UuUm8AQ9vvKKiGjwBEi4827x4PZVDSbzFRz28hcchPVCbLz0OM0C7xy8RvRb0kjyZH4c89gQbO6qPmLwxcbe8X0mAPKYdxbyN75+7NeMKvWknqbwzzEy95lmJvVkeQ7zB1ek8p3uZvfA3Mjv20vE8vbiTuwxOKz25gUC98ZUGPe9+yDsmzo67UY8ZPR6Afbx0khC8I3+PvChhZbwQG5S7PghKO5ADHz1b+gA9D2IqPZXoM71cy5Y8ZeQ/vK4WWT3Om2a8E6JUPXv1Dj3Q9vu86m2IvdcJDTteVRY9BYSBvNce+jzlzMo8QPAdvSwxjTz8/a48oSHyuw7MFL01sWE6RV8yvBb9aTxMh7A85lbKPNmTDL3NbPw8YHWrvE4RMD1aeVi8FNG+vPE087uBVU69qdPvuMYAJ7wN2Cq8mxAyO+yBh72AbXo9r/4sveKJ4TtRjxm9YBdXPcYAp70RjlU8lqEdu98CITxHRwY8fhLlvCp4o7tAwbM9XxfXPPtzLz3CYqg8dJKQvNAl5jtUDQO8875yuujjiLzX2qI81boNPYXHoTz/hG87nxibvCeTjrwZnic9WR5DvLaZbL0s07g9Yv+qO6zn7rw83B48oK4wvF8alj21nKu8HPb9vG1n07w/NPW7LKTOPOkPNL07Uh89VKxvvBlvvTzTaM87IZc7PWuCvrxSx1q9SywbPUZc8zzcSbe9I1AlPI3Atbxulr07L7jNPFghgjuFxyG9TIewvL9L6rxfGhY8OsVgu7UP7bxrU1S70ID7PN2kTDyi0QQ8GkBTvcqHZ72LNja8jGUgvUTJHDzqMoi8dGMmPSBrED27LhQ9a3//O41ZCjsnk447cJN+Ozc74Tyx8pY8HIO8PG70ETyPG8s6FNE+vAekFjsqbI07E3YpPXyI5TzApn+7wNVpPJUXnjzE6eg7prYZPOSgn7uP7GA8ThGwvBFf6zzbvPi7V/KXu98CobqGac28NbQgvYup97z6cy88XDJCvUN33rwyz4u9O35KvMvlu7uChLi8vR8/vYa7izze07Y7Kbz6Oz2qdby88xM81x76u31EDroH3Nc7GAgSvK0WWTwvuM286gx1vPoMBD2xWUI9E3NqvCBrkLxPm688aPg+PIUxjL2VF568ApwtvBVbPrwXfpK94ICKPHFDEb1GgoY7cCC9OQMmrbwybvi7ybkQvTvcnrwW9JK8kAOfO+mx37uOvfY8eoukugsfwTw5lna9qlQYu2r1/zwj8tC6x3PovNTD5Dwj8lC9SdEFuwMmrTyIUSE9g+IMPY699jyx+208875yOuXMSjwZzRG9AXACvUC+dLypAlq7TzQEPSdkJDz2d1y5xeARvJ74BbxWNu88VmXZvGP8a70Wiqg89gQbPEpbhbxXZVm7kfeIPeIWILz9/a46/VsDvZeeXrzA1Wm8ithhPPUzBbsBEq48tDUAO2iRE7v0Pxu9hA44vWj4Prw144o9bTjpPFXSAj2PeR88kAMfvQYOgT1qG5M8BJAXPaWTRb3SaE88P2NfPThqS71A7d66j0o1vdphY7wabH49BUkBPQESrrx2j9G82+vivLiBQLxm5L86HIO8PHFDEb2J2yC8+YKEuuFFCr3yY9248TRzvEvxmjzdpEw8YOhsPT6VCL1mEyo93qTMvPoMBD1SUdq7w729vJIA4L3/5QI8ubAqPMyepTzHolK9RoIGu/GVhr1wuRG9oX/GPAmVQb2JCgu8JgZQPcxA0TyfGJu8LxYiPHIIET3PHI+9lIGIPDvcnryfvQU9Kutku6HdGr1ktVU7U1HavKTCr7yxWcK8MQoMvUqWhbwt/+O7kXZgvdy8+DzE6Wi9rqDYvNu/Nz2VQ8k8p0lwOk0RMLzrlvQ87IEHPSMe/DudMwa9suaAPPRI8rvfAiE9muQGPWbkvzw0Vsy8ph3FPLcmq7xvk349JQkPO0mimzty2Sa9/ylaPV6EAD0qeKM8HuGQO/YB3Dv1d9y7JNokuzX49zzWUKO8igdMvaF/RjzwoZw6+ukvPeD2Cr3huMs8YHWrPCt1ZL2535S70IB7PQT3wrzw2d28oIIFPZnwnLz9n1o9WMBuvIfE4jmwXIG8M8xMvbNwADs3asu8h8TivANVlz34MEa868idvNmoebtI3Ru92JOMvV28wbyB+ri8BCYtPLQ+1zynexm9oQwFPQxOKz0PkZQ7iR/4unoBpbwrRno8USUvO1jv2Lzy8Ju7nvVGvYHLzjwabz09HMpSPcJiKLnMbzs8xXanvF2/gDztUp28WR7DPDWFtrsvgAw9R0cGvIl9TD2Abfo8qoMCPNKvZTzIWzw9tAYWPcZE/rxM5YQ8O9yePKF/xjyFx6G71X8NucZEfr2Fx6G8Tw5xvAxLbLsPBFa6Lf9jOqBHBTx9RA69HCgnPYs2trwO1Wu9Mp3iPGLQQL0VACk8fVn7O87KUDxUDQO8E3YpPSwCoz0/kkm8HPb9vBZ+ErtokRO8dxlRvLUPbT2NwDW9MBPjvCykTrqKrLY73/9hPbO0V7s2PiA8fRWkvElzMbyb4Ue9rd6XvPVuhTwo7iO9l2/0u4fzTLxKZ5u5kAOfO3imjzxsrmm6a+CSvR4NPDuRpUq8HFeRPELVMj0NqcA8r6BYvC5a+TwfPCY9J785PUyHsDz4jho9juMJvV0yQrzO+bo7LNO4PP3OxLqi0YQ7RV+yPPhccTysu8M7goQ4PZdaB72n1q48RlxzvbLjQbsb+by81lCjvLGILD2GmLe7QL70PNwaTTwKIgC9R92bOluowrxV0gK9CfMVPLtplLtSx1q8ltAHvTutND31Pxs8QkszvB7e0by398A8kAOfPFFUGTwXQ5I9/SwZPaOWBLuJfUy6ujqqPOptCD1JRMc8fQkOPZXoMzupYK48p0nwvA9iqrsN2Co9/GcZPSbOjryRduC8OoEJvA2pQL0KlcG7GW+9PDwgdrz73Rm9bTjpPND2+7vxoqE7QaCUPLV5/bxqm1S9EZMAvR0Gkrw1LQM96JhlPHOYmju1uks8UPGhvDXSyLvDogO8ZikVuxzSubybAyM98skDPY5cubtbMFs9QzBMvGfXRL2pBuy6HfkbvWY2i7wYpvk8szeKu27YFr3KUQU9f/E/PBQJzLoAmfS7HDGAuxD397xXK328R815PECGKL1U3BM8k0crvGzcIr08z448REq4vMsqI71kLaE8G5HrvJW99jv/KxO9ur+pvPUL97zhHby7JI6xPOiL77lmo+w8zbpaPbWg37wQUjK9L7N+vOWtc72am3I7FjCuva4LSrx6xf+8GRugvDx01LyvZoS9aMpOvHdCPrma9qy7zECDPLrZlbxzcbi5A/0YPWK4ejyR7HC93J4GvNB+6ryGhtU8e/nXvK3+U7g45By9zggfPSuCjbwobK272W66PBnNW72Zm3I86xoCvZ/hnrzabjo97bevPHstMLwNqA694vbZPOJeCj0Apmo8BgYDPcUyu7xS7RW9NgKVvFEYhD2ZOwc9IcohPVfLETxu5Yw8K4+DuxPV8zke7CW8un5bPemy0TxQ/pc9qiBYvEZ6hDyS7PA8r2YEPTi9OrxoCx080syuvHf0eTwffF08j3YlvJHscDzKKqM7kxPTPLmYRz3LKiO99lk7vPQy2TvcnoY8a3TyuvgDX70Y9D08fTaautWDSLxcV727XH4fPYuYKb0XUwS92W66PNZ2Uj1kEzU7VIFZvSlSQTx3DmY81WncPOUznL1k+Ug9rv5TvSNA7brKEDe87Vx1PAEBJb0MTVS78C37vBzFQz3jRB48jihhvO3RmzyFHYC9vU9hPfGVq7zU1Rg9zgifPMr2Sj0Lxga8RFeuvMwzDT2uJba8kd/6u8odrT0U71+8XzU5vc6tZDwoX7c8OPGSvC9TE73CeyG8E3UIPbulPTzE5Pa7qlQwvL63kbsAzcw8ZOzSOz4e+DyiSvQ6BwaDO91ZrDyuP6K67Vz1uzFCET3OIou7STWqO8ZMJ73kQJK7f/G/PAWE5ru9yBO8ADmJOhc5GL3ZLWy8sx0evBFfKL2pINi8ttQ3PcoQN7wkTeO8xHeVPLcIkL29aU08TNLXPFOBWbzOIos8i5ipOzAOubwv59Y5enIKvbbhrbxIAdK8BeyWvERXLj08mza78doFvblkb7wxQhG8rzIsPXiQAr2bKoW9Y8Vwve7eETwIb9g8ltdiveXhy7yI4Y88xiVFPMXx7LwAmXS7UvoLvW7ljDz5a488FVeQPG+6HjsDKAc9Y+xSupsQmTzKKiO8O2fePDzPjrydGYM8j4Obu48b67wH6Iq9SNrvO0ja77u5mEe9w6IDPJMtPzy+qps8toZzPLat1bz1WTs9g/YdvAS4vrqTe4M9sc/Zu1sj5TyLfr07cz1gPE0gHL0fAoY8IuSNPVDxoboEntK8zq1kPOgeDryu1/G70XH0u/3Hbj2S7PC7dwFwO2+6nj00+Sq91NUYvG+6Hr0e7KU8tZNpPL1PYT1YxwW9qlQwvSwJW7ueujw7clfMvOEQxjz46XI8f8pdPTiwxLww51a9CVXsu63X8TrJSBu+kX+PvQHA1jx0soY9taDfPMUlxTw17LS8sTsWvSSOsTxI2m89PagsvQGZdL04sES9dYeYPDtN8jtjICu8S+zDvNlH2DzGPzG9AM3MvCcrXzuZLpG9MU+HPRyE9Tv94do8YtLmvPKVK7xAoJS6NAYhvC1xC73ZOmK97HZhPZIGXbsD/Ri9ilfbPJrptjvKNxk8WpwXPaaDqjrdP8A81YNIPesagj3OrWS8LHWXu/VmMb3Nulq94GIWvPVmsTx+UIa9ydzePPZZO7wc0jk8d080vfVzp7yCLoK9H/WPO87uMjyBIQw8eIMMPbLP2Tx/Mg67KF+3vVd5wTuxwmO93QtovPUyWb2X8c48GxeUPDejzjx6f4C9RUq4OiRAbTs8dFQ8DCbyPA21BLzsXPU83nOYu0BsvLmd/5Y8zvuovQCZ9DydGQM84M/3O0LvfTzaYcS8LX6BvbkEBD0bF5S8LPxkPRzFQz7Vg0g9ntSoPAm9HL1msGI9un7bvEvfzTu2hvO7ntSovIvMgby1rVW93nOYvIulH7ylQtw5VsuRvPBHZzxrwja91sQWPW+gMj2+g7m63T9AuwHA1rw45Bw9S1gAPHDHFL3GP7G75jwGvSPTCz1eehM91ZA+PLvzAb2az0q6rfHdPMxAA7wfAgY9mvasOxy4zTuI4Q+97dGbPZRhFz3FGE893T9APJdMibxLWAC8YxO1vN0/wLwnOFW7XFc9Ov0iqTqD9h08jlw5PXxhCL1i39y6VM8dvV81ubwD/Zg8LRbRvOI3qDySBl08ey2wPCGjPzwI9YA8Rw7IPAfoCjy5ceW7l/5EvfZMxTzwLfs8daUQPe3RmzpH9Fs9esX/PJclJ7394Vo8/eHaPLfuIzxYUl89tu6jPNWDSLwdE4i9m8LUu+nzn7xLxeG8fqP7vMTkdjtbcSm7XH6fOuYvED0MWko9Wz3RO3YBcL1CjxI9nro8PBVXkDxPsFO9sah3uj8r7jropVu8qaaAvAli4jtjBj+90gAHvfjp8rxpJYm8LFcfO3Yo0rz0q4u8D4oWvMN7obzHPzE7ms/Kumf+Jj1zfq67wnuhu6aDKj1Uwqc7/O5QvdjACj2vZgS9NSANvcjCcrw/X8a78GHTOxUWQj1fT6W9hOknvOnZszteh4k84G8MvVD+Fz1MOog63hhevPGVq7yqINg6hOknPe7rBzzQZP67reTnOugRmL35RK28GTUMO6oTYjwvzeo7cz1gPChsrTxME6Y7hOmnPJ/7irw4HIE54vZZO49CTb38TRc6nwgBPbulPbzBLV08a9wiPJMtv7ya9iy9+1oNPVTCpznabjq97ao5PYagQb1aqY08QF9GvaO/mj2ii0K9S55/u0o+FD0NgSy9M6tmvMJUP7n9CD28/e7QPB7sJT3K9ko9jhtrPNkg9rwkm6e8Xuf0O/QYbbxvrSi8rsr7vByE9TwoUsE8qvl1PAXfoLvZYcQ6OMqwO7K1bbyqVLC85QiuPdjNALyvWQ68QDhkPELv/TuCgXc9DU3UO8OVDT08jsC7DE1UvP0vHz0nK1+8V9iHPHWlELws4vg6CZa6PHNxuLwzPoW86aXbvKaQID3Mk3i8O+CQvWP5yLoNjiI9SGmCu9Gywrmmgyo993wRvU4PmrzF/uK8XX6fPCeXG71IaQK9ezqmu+m/R7yuGMC8m7VePNZ20rxRGAS9AIz+uylFSzwd7CU7cNQKveoAljzSi+A8ur8pPZF/Dzvl1FW93IQavc2T+DydDA086KVbPcnc3jwlqJ07OOScvDFCEb0rjwM8hmzpPKKlLrzJz2i8HuwlvEMwTD2xVYK8Z+S6PHDhAD11pRA9VLUxvFR047x/JZg8rhjAvG5fZD0g9Y88qlQwvV9CL72Zm/K80ZhWPUwGsLsYpvm8in69vT9S0DtDPcI8YyArvX5QBr2OAf+7CW9YvG+tKDwXOZi6LCNHPZsDI72R33q8sgMyPaZCXDtYxwU7p6qMvPaaCbyuJTa8myoFOyekkTsg9Q88eyA6PYuLszyKPW+9h8ejPU0gHLx7LTC8ztRGPJwdjz3ZR9i8DWdAO7fUt7p+UAY7h9SZu/0iKb3OFZW8AJn0vMULWbx4aaC8U7WxvDS4XL1/19O7C7mQvQ1nwDwj0ws7GQ4qu56GZLvhN6g7wUdJvVO1sTwsVx88V2xLPNaqqrvaiCa8DHQ2vFswWzx0mBo8CtcIPXc1SL2Hed+8t+4jvBE4xrxDMEy89KuLvGfXRL0YATQ8OkD8PIagQTuXTAm9xQtZPXstMLx6xf+7NN8+vY2uiT00+Sq8ECtQvNTijrtMuGu8f/E/vWAbTbyLpZ+7BvkMPGzpmDy2x0G7DE1UvbrMn7pL7EO8Q5yIPURxmrzRvzg71EJ6PLMDsrw74BA9S9/Nu90L6Lu+dkO96xoCPY92JTyf4R68T6PdvAu5kL2ntwK8iTD5PEMj1jzl1NW7fUMQPMYyO7tUwie7uswfPTcPC7yXTAk88aIhPIu/i72u5Ge92XuwOzjkHL0lgTu7IcqhPLjqlzwjQG26dvR5PdGlTL2+dkM9V1/VO7qys7sT4um9q3sSPcY/sbyXMp27OMqwO18bzTtrgWi9vreRu8pRhTy2+xm9Aec4PTccgTzopVs9hqBBPK4lNj3ppds83RjevAmjsDs2AhW9WKCjPXdcKjwrCdu8oUr0O0QW4DlQCw47P1LQvHhCPr2KPW+8egZOvCeXG72AC6w8O+AQvQdI9rxcixU9ezomPe7ekTwdEwg8TLhrPNbegjwSbB47f/41PBJfKDx3TzS9M6vmPBEr0DxzZEI8wogXvTABw7wEd/C8AQElPY+DmzxAhqg7u+aLPMtRhT3dWSy7svY7u3cB8Lu0DJy7Sj4UvTQGobxyFn68CIlEPN3+8TvZYUS9isMXPKaQoDw17LS8UNc1vJqO/LswDjm9shCoOxX81TwIfM68Pr4MvWMTNTz0JeO8Wwl5vHwtsLrIVRG9ecX/umQgq7yfk1q87sQlvLbuozzdP0A9DHQ2u6HdEr08gco66JjlvBVKmr2pjJS8tZNpvF56E71Ahqi8VIFZux3frzzCeyE9kt/6PB35mztzfi69kyBJPCWoHbyHui091YPIPGO4+rwIljo99KuLPItK5Tz87lA9B0j2OpMgybyex7K8Aee4O84vAT1Wvhu9c2TCO+B8grzWxJY9UBgEPO2QzTs/Rdo6ykQPvJrPSj0SX6i8ESvQPGqO3jssVx89ANpCPfJ7Pz2APwS96BEYvRD397y6zJ87PI5AOzAOubzGP7E8IJbJvNuiEj0IiUS9FleQugQXBbxDMEy95jwGPU/Kv7s4sMS8g5vjPM26Wj139Hk8Zpb2PGRHDb1atoM7IaM/PPp4Bb35UaM9yjcZvQNq+junnZY6yUgbvAHawjsXRo48e0ecu0goNL0bhHW7P19GOzyOQLxanBc9i8wBvYMDlDz0npU8XKWBPCw9szzxlas8i369vAWeUr21k2k9Ac3MO4Z5Xz1YecE9T7DTPIVS/bydee485brpPF9CLz2LizM9MAHDPHr5Vzz9CD29Z5Z2usUYzzsYwGW8S9LXuwm9nDxn/qY8Z/Gwu+l++Tsj0ws93TLKu1TCp7wlwom7ziKLuzrTmrxNIJw8ZPnIPIuLs7te2v47Bd8gvUu467udGYO7noZkvVxKxzzppds8IFV7u+xc9bxgDlc9MUKROUKPEr3GGM88DGdAPO2dwzzBLV08URiEPQfoijw8qKw7s/a7OgHnOLwdBhI9NgIVvESLBj2TR6s6D4qWPFL6izxUwie9mx0PuyexB705/gg9KEVLO48o4TpHYBi9CaMwPDyByrumNeY7N3zsPN5mIj231Le6M6q8PBlaJTx1x4W9kXgbvKPtRbwz8DK80PspPV/+ljwTrdU8kPnoupbkO72cCua6eDsZPdkRbrzJlNA8RmAWPdIxOj27D0A7MfV5PQiU5bxlqDq9v0AJPYUm77vkSBK6QvHJvBD7PryzUoe920oqPRSoDjzweV48gy5ivHoQK73un4U8UjOQPGG4oLz8jQe9QH22PNe7Dr3ciC295CJrPHNrTr3SMTq9Mi42PLtNw7zHIL26/QZivLSoZjxY1cC8rQa2u/RpeLsJ+A+8TzjXPNccjTy2oPO8XgNevfH4kDxMzDa9DIR/vPzIXr1ib/48oXG/vMsLkDyE6Ou85eRnvA9/ODooHbk8OHoHPG1FpDyhcb+8eJwXOxuQtTzJdAE9DAh5vf1EZTuQ+Wi920oqPfNsJLztgdE7syxgvcLvczywuMy8aFrRuyHUk7zYWhA8y2wOO3Zj27vwPge9JCrzPDhUYDwMSSi8IDrZvDfgTLxRtF09wbScPHa/kr3I2ka9T7zQvIWidTumI9a8apONvHqR+Dx0KIQ9zAhkPJ0FH7pA+by87kNOvX98yzw1ZMY81SQAPUfcnLynf408b8GqPN86RD10iYI96NctPWnW17vDrKm8+hEBPdfbXb2siq87wNeXO78djrszqjy8kDdsvPlUy7zydBc8444IPVL1DLz0qie87YFRvDUmQ7zh9M27IXsIvP0GYjubbhC9r/7CuZMqMjx+AMU8SBf0vNWlzbpq0RA9hWTyvLmTubyJV7i8/j+ePKUmgrxgOW67T0DKOyC5i7mu/sK7/sOXuiSpJTwV5hE9eBgePY67ZTw4uIo7P322O3bf4TxOfs26OpUPPQ2Hq7w5VOC8H/xVPKWHAD3+Px49ZqBHvRONBj3oHaQ9T/rTvJTsLr059g09YHfxPEb/l72evyg8Hz0FPZKrfzzoW6c84nDUu9aghrsvfB+8OJ2CvBZiGD1tRSQ8jkILuwg+BrvakCC7abYIvVG03Ty2ox89dt/hPF5BYbzzqie9GRQvPYnTPr1EiwQ9fMo0vcMtdzx8yjS9mXYDuxIRgLzVpU28Jx05PEbhYz3kKl693cawvMsuCziZFQW8uNkvO2ibgD1tRSS90L2mPJrMYruy8Qi9mhLZPEqOMzzazqO8UDhXPPoRAbvevj09Q+wCvV+9Z73Eqf07XvvqvGlVCj3MRue8sLjMvOH0TbwlYy88gNiCPUyGQL1YG7e8+VRLPGvsGLzjrle8ZqDHvD6FqTtAdcO8V2EtPE1IPT1mJME8TUi9PKYj1rvS87Y8IBqKPMLv87o9hSm9AHYuu1Vm9DxY1cC8UbRdvSKxmLwxM/26RCqGvd6+PT3K0lO51gEFPY1HUjy9wdY88i4hPbB6Sb1QOwO9C48evBhaJT1oOgI8CvCcO1G03TuazOK8FKgOPK/APz23H6Y8ngUfvYQOEzsvfB88ZiTBvMB+DLromao9+w5Vus5BoLzZlWc9IHsIvV2HVzwRtUi8/I2HPHJzQTwsS9Y8aZsAu43GhL1+AMW8kDqYvLSo5rwA93s91iHUPPsOVT3LTto63gQ0O7Qk7TzM6BS88i4hvldhrbsLC6U8ONhZPbgXMz2Sq/88k218vYvLS71LjjO9IbZfPVNOmL0OQTW9H/8BvVzrgbyEqmg7LcdcPGtNlzvXHA07Xl+VvQifBLyHna47cDU+vbSoZj0vfB+8lp5FPSQq8zs4mta7TzjXvKsL/bu15uk6X73nvDpPmbuQ+Wi7uw9APL/3Zjz9BuI8Y+4wvaeiiD1Ofs28zYTqPNHzNj1Ofk094HjHPBVnXz0kpvm83zrEvPMuIbzdQrc8/3p1vShbvDxlqDq9X/6WPJC2Hr2PfeK8UNqEvYA2VbyX3Eg9RkWOPL6D07y23vY7SVijvPuNh71sKpy8LmEXvFUgfjwTLAg8b8EqPAvNoTwrrwC9ZSRBvCUlLD1jsC28k66ruyTnqLtsKpy6LUPjPKcej7xXYS08HkLMO6YjVr2+/9k7zUmTuyQqczwOvTu8gDkBvbNSh72+3wo9Qi/NvDD4JT2uwD8+tx8mPXZb6Lw7Dmq9IViNO77/WbpMSD28446IvKNpzLzOQaC8Jt+1vJiW0jyysFk7gPhRvAfdh7wxuqI8KNfCvAqyGT3z7XE9zOiUPB+egzxdZ4i8z7p6Pc5BoLzcR369JC2fvCrPz7zE6iw9kDqYPA2HqzyD6xe9tMYaPWlVCj1AdUO8PwEwPZlQ3LwnHTm9mVDcvHmUJD1Ei4Q8NlxTPRlapTy7D0A95tx0vIYe/LwX3p68nkMiu1dZOrxXnzC9MbqiPL7/WT1VIyq9+tBRu4nTvrzolv47oTO8vObfIL0MCyU8txz6uSFzlTzAmRQ8DIerO9A5rTzMCGS8OpUPvX7Cwbx8jLE85CLrPDkW3TysBra8PYWpPapUHz0bkDW8sLjMPC3HXD2evyg7BShFPeae8TybkYu8qbWdOarQJb3jrle9UvJgPLebrLx6z/s7ArQxvUB9Nr2ZUFw9hWeePQK0sTx1Zge9PUT6PELxyTx6ECu9EjFPvNgZ4btyc0G9GdYrvZSmOL3kLYq7sdYAvF2li7yzzo28x17AO7MMEbw+PzO9zIcWvVF2Wjw7TG286lM0vFblJjyjacw8BGbIPMRms7yj7cU8BWZIPQoQbLs9wyw9hIqZvGccTjyW5Ls8kPyUPIidrjzu/dc8+pJOvZYiv7thuKC81SFUu65EObxHXWo9eJyXOgbizrwU61i88lGcvMjaRj3i74Y7U3ETPV6CEL0IGN88PAmjvCXnqLyOHxC9Xl+VPKwGtrxfvWc8GFd5vDOqPLx6ECu9qVQfPOzHxzqtgrw6ojM8PeyJxDyx1gC9l55FPN++PTz32MQ8VacjvY67ZbxdRA08gtAPvbYEHj1PQEq9JWMvPT0JI721iJc92bMbvQD6p7xfnRi8abYIvSGWkLuQ/JS8LEtWvYbg+DyZllI9yo+JO8tO2rrQtbO8MTYpPKXFA73C8p+8UbTdORSoDr27TUO8kPyUOxPuhLo9Bne8heB4vKpR8zzuQ848SdSpvdqQoD2ugjy8lp7FvHwIOD3omSq8YjQnPSgduboKTm88q815uzdc0zyZUFw85t+gvCH0Yj1w9zq9Hr5SPGxKa7ry8B088nQXPFD6U73hMlE8NOi/u4FUib1u/608/j+evFzF2jzNA528n7z8O/C6Db0evlK9lKY4PMUosDy05mm8SJYmveNrjbybrJO8w6wpPHpOrrvomSq9qZIivbSIFzt5U/W7haL1ufKvbr24XSm8QfFJPaceD7zwNhQ8XMgGvZgazLycZp28WhNEPae9kDzcCfs8dx1lPI2F1Twja6K8T5wBvA2E/zwZFK87nCgaPFwpBT0AOKs92NaWPN0END1wPbE8MrIvPZHZGTvv3Qi9j/noPPRsJD23HHo9XYfXO2ZixLy4myy9UjMQPe79VzxJGiC8UtKRvJqRC70Iugy8ONsFPQec2LqPvhG88tWVPGfeyrwTjQa9vQfNPNd9Cz1nHM688fgQvOH0TT3DrCm9fYQ+PDjbBb06Dmq8cD0xvXjX7rw6lQ89epSkPLUnGT0Adq65yZRQvStOgrs34Ew85KkQPaeiiDpNSD09sbOFvIyIgbwRd8W8fj5Iu/Mr9bzUZ0q9aFpRvV7jDry+oQc9AzA4OoHw3ryFZ568v1uRPPdcvr0HnwQ9W49KPR/chjy/QAk9StH9PPqSTr3E6qw8AfI0PH4AxbztBUu7R2CWvF1/ZDxyc8E8L/3svAmU5TnLsoS98lGcvC6/absTb9K7fz7IvLRi8LyCVIk6K04CPYToaz1om4C8hiGovfVksTwX2/I8BuLOu09AyryEqug9nCiaPKj7E7w/fTY8qw4pvAE4K70guYs80PupvOEy0bwWYhg8EywIvfyNB73UZ8q75KZkvFFWCz2qC328UbcJvSGWkDwHPga98i4hPcLvc7xcioM8R11qOxMp3DyRs3I9pYeAvD6FqbtugHu9BuLOvKVh2Tz9BuI8/30hPKlUH7uycta7s6uSvOiWfjywesk8LiOUvP99obzvfIq8cnNBvYVkcjxfnRg7XAtRvbjZLz3yE5k8/ILovH98yzwup428cfe6O2I0Jz1/Psg7adbXvWvsmDzbDCe8nArmvL8CBr1Hnpm8bcZxvB781bxtgyc9ROlWve8AhDxCs8Y83Ef+O5F177u3HPo87ztbPLNSB72q0CU9sdaAPK6CPD1tBHU5jEfSOh3GRTsg/4E8R11qPNUkAL3yr+68Pj8zvIA21bzEKLC9DsUuPOtLwbz32MQ7wrHwOwrVlLybbpA7xpxDvBuQtbuA+FE8f3xLu0MvTTp1Jdg8IfcOOxccIjwzbLk8wy13PL/35jws7QO8HEq/vFXlpjrdiK28heD4O7WIF70m3zU9VuUmPEeb7bvB8p+9ZGo3vXA1vrx60ie9qlHzvCC5i7w8CaO82FdkvTj+gLzQvaY878IAvcTqLD1tB6G78DYUvRed77oTjYY9JGj2vEg9m7zOPvS7+rCCO1zIBj09w6y8+8jevGkXh7ychmy9v9+KO26A+zsVpWI9hSmbO2D2IztW5aa7n7+oPI/8FL1PQEq99Gl4vcsLkLujK8m8UTMQPDE2qTugeTI9lp7FPOZgbjwK1RQ8Fxl2vOB4Rzt3HeW8AzA4vWhaUT2O4Qy9mBrMPONzADv3XL68nUB2PF6CELzZs5u8UbcJPKeX6buz7lw9JSUsvUqOMzxQO4M8QDdAPXmUJD0VX2w8vqGHPLOrkjzn3PQ8j12TvO79VzyYWE+8JCrzvEZFjj1h83c7E2/SvGnWV7xFJ1q9gm8RPaB5sjz5VMs7qo92PZ4FH720qOY8UNoEveTnk7zx+JC7/7uku7C4zDymI1a9KlPJPNPrQzysyLI8mzCNPGC1dDz+Ypm8ATgrOyahMr2mI1a80PupPTh6h7305X48puALvF88mjxgPJo5RyITPfSqJ7xfPBq9rjxGu/ceO73S8za6eJlrPCXk/Lz/P567Xl+VvKYbYzypkiI9jsNYPKWnz7wXne+6PQb3POOu1zzweV49UDhXPF7jjrwY1qu8PYUpPS8+nDx/+NE8dWYHPUkaoDxLCrq8qpKivMl0AT1TcRM9F53vvJ0FH7xS9Qw8vt8KvfRpeDzKjF07vz1dPNNvPTy3m6y8LUPjvHbiDT2LjUg8U3ETPZKrfzxGYBa9OhGWvJl2g7uYGsw8jj9fvAlZDrxOvFA91iHUPEsKujxtRSQ7bUWkPM+6+rll5j27RCfaOupTtDzHID07tIiXPGFyKj2ZU4g8bIhuvCZjLzuX3Ei8KlPJPHmUJL0k56i7j74RPLbhoryj7cW8OP6APP0kljwrz087LEvWPFLy4LoKUZs7HvzVvBMsCD1aE0S9R13qu+5DTr0hlhA9G5A1vGEYIz2G8yA9baRCvTb2Db0VH6683/ctPW6m0Txo4EE9hrryO15aT7vbNTy94v1aPI4+1jyDtlS8LLblPNVMBz2fC+A8HOnbvNgtgDx4qS28pAgPvfhIG7uTgU88svKQvM6nDbouOXw7NDpJuqzQrTyXwrk86MPqu6Kmjjz+1fy8182OPEQFRDy8Hj88fkwYvWplZ7x5LMS8+suxvDH77Tz6yaK8GsAJvNj4bz3KZqO7z3BuvDD53rwP3kO8r5AQva5V07q2WK87wCZ7Otj4b7v9Co09Vw2LvKtPpr3EoBO74zaJvFLOr7sqske9JfDVvGN4FL1AQ9I4Vg8avYMQGb0n9HO8B1rgPKeNtLvIJ8g7XrQTu5wFM73aMZ48QMTZPHLnO73rXhm9jTo4vY69TryQQvS8UhT6vGpjWLzKLfU8bf4GvV8zjDwz/Xw8VNJNvAGW37y/3qE71G2dO5U9lDxg29Y72rAWvaytCL0odfs8Uk0oPRV7gbyqTRe9upsovfWIOL3OKBW7Us4vPXiIFz3D6Gw9/omFPT6bBz2uV+I6hXIZvFyc+7wPOAg9ZdiFOyIw8zyA9GK61W0dPbqZmTwLdpY8EWPpPIu3obxc0xo88MIovc1sULvdOdq6y+eqPDQVFT3Wc0o8i7ODPanKAL243VS8fnFMvFJLGTwUnia8Kg4bvQmXLDzdN8u8+07IPFlxmrwaZsU7l8I5uhV9ELz6TLk7V9ZrPR6nLzwjaaE6/tPtPOQ4GDzq2wI9B9lYvdy40jxlWQ2978IovKPNUTvVbR09gjM+vCZx3bsVoLW8jZiaPFMskj1Hwxc9jLmwPIIzPrzvwig7BddJvMnjDLwY4R+9mENBPRem4jynDjy9PLqOPCeqi7xGimk9We6DPWzo/bzTaw69pmgAPbCSHz2G8yC9uNtFvZggnDvaMy09ZaHmPJ8LYLy2WK88ZPmbvP7T7bv0AxO8dMQWPLUd8jwD0Rw9lsCqvJnI5rpDgB68SEYuOviO5TyPd4S9rlXTvAJOhrtYlD89rtZaPFiSML1t/ga7klqMvEH/lrvzyuQ6+cmiO4qzgztqY9i8LDXeu0UJYrtDAaY8KYsEven+J7zjOBg9wF8pvYB3+ToBksG8P8A7uS1wGz1p4tA76ETyO1zVKb3O72a8JW/OPJzijTss75O8Scc1ve5BoTtIjPg8shfFvAIXZ73gU4G9o81RO6ANb7u0mtu8nglRvcUhGz3jNgk9D108vUfFpjqVvhs8ttenu3xtrjzbsiU9vtoDPXGq7zwXJ2q82o+APWej9bspLzE9hjt6vM/xdTu8ehI8Z12rvGjgwb2wkJC8O/7JO3PElrzFoqI8daUPPfDGRjzp/Ji8CFpgOpaH/LvFoiK9+ckive5BobyrTya9y2gyuxvlPTwP3LS74dSIPEHEWTxEgq08l8K5PNGIBrwy+208v9ySO79dmjz6qAy91/RRux2lIDx2px679AexPfvNQL1JSD06tVYgvSRrMDw/Q1K8RgvxPLZaPjsZ4y69NLeyvKFGHbypygC9HSQZPTl9Qj1KSD09ScnEPHmrPLzFIRs9FqTTPABvHL7lmAm6hnQouEtO6jxDAaa6fW89PXJmtL3+iYW8eCxEvfcN3jzX9FG8ICpGvYf3PrtSzKA7v6XzPMcluTulCA+73z34PC7zsTt97KY6apyGvH3utbxuplE925EPvW3+Bj2Pv128LG6MPADsBTzHqE+8Z9wjPLHwgb0Hkw49c+UsPFxUIr2yc5g8diaXue5BobxfWEC9U8ygPCszzzs9BHc9+6qbPYu3ITvf9y070SwzO1ES67zuPQM9Y5s5PUvPcb0XpFO7RGEXvdZzyjsY4R+9grI2vSRrML1ouw085r9MPC50OTuqTRc85Tw2PYEvoDtrZ3a9R8MXvEJH8Lys0ry8fO41urUdcrvEIZu6EpoIPL+lc71EBcQ8kHeEO+W5Hzyoj0M8dwWBvMFhOLz/64W9UywSvLNSgrzSipW9WfCSPIl4RjwJl6y6mf+Fuzt/UbxFiFq89AcxO6rOnryhyTM9ISxVPmOdSD3+jSO8WJIwvaPPYDyql/870zDRPHmrPDu2WK87iHa3O4IzPr2xcQm9/okFvCRtvzwXJVu9R0QfPP6JhbzasBY9g7TFPADshTvygos8TucJvaVQaDwrM888Y5mqvQ0e4byc4g29t7aRPSVKmjtPDs07grI2vSw13rsLmTu83TfLPB4mqDwgrVy74XrEu00KL72khwc9LTdtO4p+87qI9S88FiXbPFLOrzuJfGS8BlhRPEYL8Tu1nvk6RojaPPspFLx2Jpc8kv44vY+/3TtUrZk8Yd1lvc5u37yOvc686f6nOxJh2rxY7gM9lQRmu2VZDbwqM089QUfwOo+/Xb0ncV29/NHeu52IST2/pXM9qZHSPHiIlz0pL7E8nAUzvVjuAz0j6ig9YnYFva1TRDwoc+y8GCfqvMBfKb2F8ZG8R8WmPOrbAr1CR/C85hkRPEhGrjypS4i8eKs8PdsQCD0ZPwK9SCOJuaWJFjxiYPy7PbwdPduyJb1Q6Zg8qswPPTS3MrxuABa9Ofy6PFxUIr0fhIq8RojavFxUorycYQY9m8p1vdOx2Do8g+88OwJovKSHhztLhYm8FaLEO0wGEbvFoqK8bB+dPLIXxTy+odW87z8SPbjd1DzDvxo8r1lxu93xgLtNiSc84nxTPV60k7wvTwW8yCtmPHYoJj03wX27pVL3O1YPGjvQqyu9tzWKvS50OTzwoZK6NDg6u3VsYT12bnA8PIV+PHZucLwghhm9KHX7vIExrztXEak81nE7OyXstzyn6xY8/omFPAMXZznCPhM9x4MbvHxtrjx4LES6DBxSu1LOrzxLy1M8LfEiu6zQLb0E0yu9+suxvO+Jer1loeY8uxohvRUfrjxAwsq8D108PdoxnryVPZS8FSNMvJB5E70M1oc7rK0Ive5BIb0EVDM9RojaPN1yiD07OQe9rVNEvSTJkjyFcAq9V46SvG6is7z1hik86MFbu9gtgDy/Wws75hcCvds1vLzuh+s8xiOqvIVymbx1atI9ZJ/XvGhfurwVokS9K7JHPLoaobtn3KM8xyW5PJHDe70zEwY9q08mPW6m0TzHgQw9Tgw+vGOdSLxFQAE9nAfCPDS3sjximSq9jDo4PME8hDwghpm99WOEvJUE5rz7Tsi8ngnRvAPPDbzBvQs9HqcvvceoT71JpJA8RUABvdkxHrxuorM6DZ/ovCXst7znQmO8VYwDvWygpLsQtwC8NvaNu/2LFLxODD67SMOXvJHD+zyycxg961wKPHJBgLwDmn07l8AqOyy4dD2u1lo8Uk2ou6NOWTyCL6A8aeDBvD28nbnvn4M93vEAPbIXRTxsISw7URR6Pddxu7zpfaA7Cd12O0sEgj1hlQw6CFzvPDnZFT1iGjK9X1xePaPN0TxTT7e8OPqrvCy4dL0lb848NDi6vF3XuDpmIm68rlVTPCy4dDwt7QQ8wOCwvC92SLxuptG8z6eNvCw1Xr2bA6Q870GhugUxDr2I9z68B1rgvN03yzxmJP28ttenu+cZEbkstmU9J6oLPVnwEr0qDhs8svIQvOvdEb0PuQ89QUVhPLoaIboCzw29o0zKPbMZ1Ly4Xlw82xAIvec+RbuNuz+9sJSuvJpLfbyhRh28jTzHPJbAKr1z5Sy8f3NbvXpngbygRp29T2iRPAPPDTzrXAo8kdkEPBbdgT3HgYy9ud9jPUyHGL0N2Ba9kHuiuxJhWrx7s3i8bgCWPDS3Mrwk6ig8692RvFRT1bwTHR+75ruuvMlklDyMOKk8gjO+vA2h97vwRT89uN/jvDj4HLtIx7U82xAIvQqZu7yQeZO9jTzHPWvofbxbmmy81/LCO7bXJ71IjPi8tZ55PZuCHL0l8FW8xSEbPCCrTbwK9Q69GsKYu1MskrydYxU9TYmnPBgn6jywEyc98iKaPBzpWz0PuQ891m+sPE2LNr2NPMc8MrUjOwybSjxjHEG9WBO4vdTupLxPEFw95r09PBakUzywE6e8oMeku0tO6rxbUpO8vqHVvJ+MZ7zPqRy888zzvBgn6jqbA6Q8ZtoUvbkWA72oj0O8Twy+unUkCL1UrRk9bf6Gu3cqNT16MGI8Y51IO4W4472QeyI8FydqPBTm/zw0Nqu8v6XzPFWMg7zXzY68KTHAPOF4Nb2BMS+9XrIEPJHD+zzyIpq8RYZLPTsCaDsJFiW8ABPJOiTqqDyP+Is85ReCO3Tr2Tzp+ok9amPYOs7vZjx+8tO7iNQZvXFgBzz9UFe8CRalvSqyRz3E6Ow6T41FOw/ctD117eg8ZtoUPb4iXbwV/pe8gTEvvEVAgbwNofc8QMLKPJD4i7pAReE8grK2PBxs8juVvhu97IG+vN/3rTynjTS8qywBvLY1Cry8+5m8yeUbPUH9hzzp+ok9RsGIvaXR77xlWQ28NDarvF9cXr09vJ08hLhjvIdRA72Sf8A8tNOJPPSGqbyCsrY8t1zNvGHfdDzq24K7grI2PbtiejrheDW9VFHGvBrlvby/3BI9nYjJvFxUIrrxxsa870MwvJIASDzevn8813XZPBak0zzVbR296EJjvXepLTtJSsy7B1xvvf6JBb3zhBq9o0xKvcYClDzOJga90YiGPDsA2Tx/ccy7+05IO2whLL30hqk8moKcvOcZkTwSYdo8XFQivZSDXj10o4C7lz8jPIs2GjwmKQQ9TYs2PNZzyrx4qzy9kHsiPTjB/bxd17i7zyqkPJUEZj20nGo81k6Wu0IBJj2+odW8nGEGPcrlm7zgeLW727KlvJyGujyLfnM9yKrePBrCmLzwxkY7TYs2vQKY7jsJGLQ83/WevMYjqjwEUBW9kX0xPKYMLb1II4m8JikEPAle/rwsNV49XlpPuyRrMLz8Tki89E37O8emwDxEhku8capvvBUjzLtMh5g8C5vKvG0fnT2mi6W8bSM7POdA1Ly1VqC8upkZvKrMD73GApS6x6hPvds1PLzTMmA8OX3CPFsb9LsyfPW8t9m2PJyGurv9UFe8kX2xPBV7gTxXV/O85z5FvREZgT2BsKc8irODPFiUvzzVTIc9OHuzup4J0TzD6Gw9fcsQPZnI5juDtlQ8yCtmO3eprb3g1Ai62jGePH9zW7zp/ie96MPqO5yGurz5xxO5ZtoUPe2+Cj2G86C5PbydO97zDzpBxug73vGAvXoycTx6ZwE7Y53IuwnddruPd4S96MNqvPFJXbpx4Q68c2hDPazSPDy7eIM7sJCQvLLykD3B4j88x6ZAvXPEFj2/JOy8e2sfPEdEn7xIIwk9ChrDPM5uX7yNOrg8gi+gvNy40jylCh69oA3vPBSeprxGB9M633YmPEVAAbzAJvs8cuOdO6vQLTttIzs853kCvPDEN7ufC+A825GPPEgjCT1AfAA9jbs/PSh1e7wj5QE92UqAPPGlDb2kaSu74uKpu4MIoTy2kKu7Bv+buXTMlz1SaQ48V3ZfvX/tGr0ISDK8WFaEvB34i7xdel09E/niPEmqqLwcDxQ9CiP1vG/IGb3/yI+8hqoBvfZpyDyA9m29bviovBGwTDzh+bE7tH74PF0DNzxs3SI85cuhvGIePT3j4ik9KTIWO1waPzz3UkC9RO9Au40QHb06Jwg9hNiROtGt9Lxq/X09li8hvYhsPbzz7iO9K8TCu4jM27yV7928Q6YqPPkkMDqNEJ28MIh9PeOCi714Fy29V3bfPF9zCb3AWOS8hjqvvXoApbxGge28JneuvLz0x7yCv4q9G9+EvO/TnTtmIru81H/kvMPhvbvY2q274vmxvJVdsTzBaBi9ouDRPH3rG71b6LC8KAnbvJ58tbyWRim927XwPMUTzLz8n1Q8f005PbWnszuhQPC8wuE9PCFle7wG/5s878VoPECLpLw70Dy9ip5LPSG8Rj0mafm8eHfLvC1Wb7wUOaa8YJXjvBv2DD2mUiM9KZI0PT80WT3QxPw7ztIxPDy5NDoe4YO9jD4tPQkxKjzyl1g9VVQFPLjZwTwPPvs8ibVTPGE1xTwlIOO7YIwQvJwzn7yOuVE8ztKxvNbxNbzVCD48QJR3PATNjT1L3Da78QWsPLgZBT1yyhi7bG/POyxt97z5hE48QJR3O5kh7Lqc3NO8JDdru37Uk7xl+f88ywBCO4bakDs+oiy9iAwfve26lj3xTkI81b8nPSJcKL1AiyQ9AOIWveBZ0DyPyYU8+s1kO9usnbqz1cO8X0zNPDQKAz06h6Y9t5l+PJ9OpTxS0n+9I07zO9Jdijw/NFk8PkIOvddRVD2M9xW9RzEDvP3o6jzKtyu9ztKxPFFyYT1DBsm8le/dvLPVwzw6h6a7Y6cWvfu23LwH/5u7yOW7PDDfSD2XLyG7r1ofPJZGKb1TEsM8gL2LOwwDmjxuf4M8XMPzO97eq7z3m9a7wqF6vO4zPDt8MrM8soytvESPIr0mafk8ip5LPZc4dDvGRVq7H/qKOzuHJr0FH/e877yVvBrdhTxdA7e8av19vMl3aL1erGu8bvioPNBkXr2o9AO8j1kzPSbARLyozce722zavJBCKzyT5As9kUIrva9aH7y4gna8ap3fvLzdPzzMcBQ7jCclvKjNR7zA+EU8bSY5PcX8w7q5Iti8KjtpvcRzajwe4YM8IBOSvBrm2Lvj1PQ7Dz77PLgZhbzHbBY9nNOAvIzQWbxaqG09ql90PE+Xnrt/DXY77bqWvMkuUj2M3g68rJ+3PLZHFby5eSO9Ta4mu10av7zcVVK9RKYqvckXSjutcSe8CKhQPdZfibpK3DY8hbFVu6/6AL08EIC7gr+KvIX667u3kCs9RyFPux2hwDuJVTW8NjwRvQraXjh2zpY8BO1oPesBrruVBmY5KQKHPH1kQTze3is9OkfjvIfMWzz1kIS88QUsvHoApT2L3o68ncVLPJghbLy/xjc7lF0xvISoAj3mnRG9LU2cvHGK1bobz9A88WXKuzZ18zx8MjM9/BZ7PUNm57sUOaa8yIUdvNxV0jxxyhi+5/0vvWBcgbxCvTI9bN0iOzn+zDz+P7a8S4VrPKWyQb2R+5M8hqoBu2JegL01U5m823wOvSt7rDy+Zhm7kKLJueBw2DyMMPi8/PafvHfOFjxOria97TM8PPZSQLzfJ8K7oQcOvYaqAT03FdW75/0vvbtLE7oOlUa9INPOPCw0lTtdA7e832eFvAUWpLu1p7O7wK+vvNWoH72HzNs7oB4WPRmGuj2aqsW8IbxGPT25tLxnwhy9xGoXvIG9Cz3CQdy8BwjvO5IrIzuNcDs8EsCAuxmGOr09Aku99MlmPD802bzfl5S7ugtQPH5kQT21vrs84ZmTvbc5YDzLAEK8yc6zvPwNqLwA4pY8JwCIvHXu8TwiXCi9PSmHuxg9pDwoCdu8s9VDPc4yUL2sn7c8e0m7vPTg7jiV7108EGe2vVA3ALhl8Cw6a30Eulbksjy+HQO9NONGvbhJlDuohLG8yhdKPckuUj5b6LA8B186PQUWJL1RaY49vGQavGjL7zuJ3A88e0m7vLFMajupPZq8oE4lO/fyIbzQBEC8DtUJvd+XlLsFdsK77PN4PK7RRT3OG0i8GxhnvPepi7rNQIU8qQ2LPG2vEr20Htq8BRYkvWd5Bj0IuAQ862FMvIT6azykskG7Urv3PIY6rzzmXc487PN4vGTwLDv1CSq80l0KOoF/RzxYFsE8kYtBvFBA07nmnRG95CvAPP0/NrzxBay8gd/lO/P3drwSwAA8Z3kGPNXI+ryxozW7j8kFvRr2jLvkmxK7XNr7vLki2DxDBkk7IbxGPGuUDDzKYGC8Ee6QPc5CBDtFONe8FDmmvbZHFT1GSIs8gX9HPTVTGT1jZ1M9O5B5PPepC7yX2FW8DazOPPdSwLzQZN47SEqKPBQ5pr3vHLS9cYECvCK8xrzxTkI83D5KvOlvAT2RK6O8Yl6AvY+50TznRkY99tmaPI/JBb1B1Lq8pvKEO7mCdjvyTkK91b+nPDk+kDzrGDa7zjJQvewBLryigDO8kx1uvH+khL3SjRm92cOlPPepi71dA7c6Qi0FPT9bFbzZzPg8O3nxO4pVNT0KGqK8dPymu2nEmzv3m1a8qC3musFomDvEIYG80KQhvCgACDx+BCM9fDIzPT6iLD3wjAa96oiIPO2TWrtg1SY9o8nJvAvD1jzrGLY8EH4+vTQKg70wfyo8mHi3PMwAwrwk7lQ9gyh8OxPwj7z2st67m1N6u9tsWr2zdSU8uSLYvGnEG7xcw3M89OBuPSAqGrly0+u8az3BPIG9C71TpG88RiHPPBOZRL06hyY7IeOCPJlhrzuVBua8dfwmu/UJKrzCoXq9C7qDPWd5Br0e4QM9v8Y3vUYhTz3Z2i29ChoiPX7E3zxT+zq8+Pv0O3oJeDukssG7abRnPVRShj07QA89V82qvKHgUTvky6E7PVmWPH+t17xXv3W74vkxPe/TnTtLTAm8TWWQO6Cuw7yQ4oy8xCpUPfSAULuu0cW8bSa5PWpUybzD4b28GeZYvPGlDTuK9Ra6Gt2FPH4Eo7yb6gi9Ywc1PKjNRz1Dpio7hKgCPZuTPTzPixo850bGvAo6/Tzjgou8/f9yvbUHUj0SwIA8z3vmvWeSDbzSjRm6QIukuvKOBT1a6DA8xSOAPFe2Ir2K9Za8yXfoPGr9fbzXOky9VYSUvLpr7jp+1BM8lAZmPDNabb2qFl674fkxvKE3nbygTiW70USDvEyF67tCLQU9Yr4ePYK/Cj07cB48fRsrPCdp+TtTu3c9JS6YuurY8jpXdt86Dx4gPb00i7y1R5U7vN0/PDTjRj3Yg2I8QdS6vMygo7jNiZs8jIfDO7Rn8DuzRRY9/J/UO+lvgTv1CSo9Yl4AvYbaEDsnwMQ84LnuvIhsPbxIehm9SWORPD802bwI8Wa8SZMgvVFyYbx3ngc8LK06vMCvL73exyO7+pQCvShJHjwpkjS8cio3Pa0xZLsaL2+8K4R/usWzrbs7kHk7AcuOvGWQDr1u+Cg9oTcdu0NdFLv3UkC9evJvPM975jwWazS9/ohMPfrNZDx82+e7Yr6evcJBXD0CWzy9Z4LZPJwzn7w558Q7iVU1vGOwab2Ri0G8CEgyvNZIAT3TNk69qba/u0ItBb1URFG8TlfbvcLhPbv5q4o7ZAc1PXhgw7zLoKM8A+SVvViGEz31gFC9LK26u/1WvjySdLk7+w0ovImsgDxVa406XNEoOVroMLwAckS9VJucvC0N2TqIFXI8DazOuo7gDb1erGs8TcWuPAm4BL0N9eS8x6X4PERfkzzv0x27WIYTvRXyjj2lm7m73tB2vKxI7LyBf8e8avSqvAnx5jz6zeS7+Du4u97eKz1TpO+7LWQkvfJOwrwMA5o7X+wuPJ4laju8VGY9dMyXPKX717wGH3c9de7xPFLJrDwEzY294+IpPUU4Vz1+DfY8irXTO5h4N71euqC8rxpcO72UqblDdpu8rxpcu+6KB7y5Moy8OedEPAJEtLuIIye9+JIDPOu4l7tlmeG8UIlpPFWEFL2IbD28RO9AvOdGRj2l8gS9MmiiPPg7uLsdQaI8LCThO62Ir7wOlca9RE/fO7R++LsZhro8QHQcvanNxzyWL6G8eWDDu16sazx8klG9jhnwvKVb9jySywQ9+Tu4vOyqYjxq/X07ZjlDvXmghjwFtoW8sEzqPEtMiby8VOa8f63XPFrosDtxmom8WBbBvAJbPDuXeDc7pGmrvBP5Yr1AdJw90jZOvDtAD7xjZ1M909YvPNJdCj0UOaa8fKKFO6eEsTvtuhY9kEKrO5TNAz2xQxe8SArHPEmToDwpkjQ9saO1vFDgtLzQBEA7h+NjPUUvBD35JLA7tvDJuxg9JD1VVIW8LjYUPfwNKL3VqJ+8GD2kPMq3KzwQZzY8MIh9PGDe+byWjz+7+60JPTuHJj0r28q83JWVPIgMHz3W8TU8KyRhPFqIEj1PZw+8I0Wgu3eFADxJqii9V20MPefv+ru/xre8pguMvK+6Pb283b88aasUvVedGztUW1k9eGDDvFzRKL3azPg62XoPO9usnb0rhH+9IwXdvFZUBb1mOcM8laZHvWs9wTs2zL48SKqoOzIhC7z8xhC9ljh0PM7SsbwWtEq8IwVduX7UE70tDdk8mhoYPYMIoTy9Pd67le/dPDCIfTs0CgO8NoMovWHeeT08EIC75rSZOwHLjrucMx884vmxPLxU5jyohLE8UmkOPN+XFD3IjvC849T0u5phLzsCRDQ8jD6tPGF1iDxEr/286xi2vC1kJL1LTIm827VwvGrEG73F/MM7y6CjvGqUDD2aYa+8pAkNva9an7tfrOu8z4uaO7xU5jz6zeS7P+vCOYMofD1tr5I9ZeL3vPPXG70MAxo99cATO0ZIizsPHqA9TpeevKWbObuT5As83LVwO6PwBT1fjBC7yM4zPMk+hr0nwMS6ZJlhvKQJjTyaCuQ6a32Evc9bizwaJhw8v8a3OsypdjqRi8E8+23GvJc4dL3VyHo9Oj4QvMjluzwmdy49rEhsPbN1pTu0fvg8MmgiPc2Sbj1Riem7CiP1PAUWJL2IDJ+9t5ArvYY6rzzVyPq7UoIVvRYLljw0OhI9LU0cvctg4DxOt/k7zem5OxQ5JryB1pK8CiN1PAQtrL1aqG09LpYyvKoW3jv38qG7MrE4ve/ccDvUf2S96W+BvCcJWzzKtys9Wugwu69j8ryYz4I9BR/3vD6iLL08Ymm8mlN6vPk7uDynLeY8xRPMPG4B/DyJFfI8/J9UPGdrUTzbrB09zElYOzYVVT3/0WI7NAqDPGaplTwpSR46+NsZPUhKijwHX7q80jbOuxZrNL3lhAq9kx3uPGIevTjyTsI6DUwwPGzGmj38Dai8Lk2uPD6mSD14Se281Ud+vZSg0ryQT8a7c8BEPQYAhjv9Nrk8dDD9vC0KbL0vewc9ivcUvVS25DyFRzg8pqznPKFwxDzpEbQ7MdbWPIqYRLxYQw690+wuvRnQfTyik/e8S5ntuyUbzrr/lYk8cwMHvQQ7QDvKgjK9zaVlvCr8obz4MjI8rmNpvKXBUDuA2p28MHBhvBO7Drx/AO+8VyeAPRaKF7042l29EqnDPA9Dzry+/0U8/m7VvL6rGzyR34298tqAvIBDMTybHzi9JpasPIetrT2RF6q8xEYPvfodybwzGRm9+JGCPPwThryfHBq9QU8AvRPM9jzlMGC9TUIlvVTygbufaZ87SWHRPFvFET2N/jm8l1NNu4VHOLul+ew8WfYIvRYy7Lzsr8W8u2G0PLRylrx4jK+8CbolvIV/VDy0qjK9XiuHPZ5C67whRaC8LZqzOr7/xbwqND68qJd+PeXjWjw5AZK8TFcOvVv9LbxllQO6ES5lOrpaD70/1CG9XisHvWyEoTywyV49laBSPC5NLj3rd6k91lKkPIUPnDuFf1Q8JhvOvNWfqTzRvlU8lWg2u5KSiLoT15w8CAcrPYIZXzzyEh27AdXKOk1CJbwYDJu8gL6POyp3AL2tnwY9Lr1mPJo0ITzfvKA9deN3vfsvlDqzVgi9WUozO58cGr0BUCm9HiywPHGS67yNeRg91YpAO54xAz3u3Z68MbMjvRb6zzyiI7883O2XPL/q3LzVUqQ5V1R2PMqCsjxXVHa9wcSLPNh1V72QT0a7C1GSPDRRNTs3osG8GhPAOdOYhLysu5Q8F63KPXMDB7slq5W8bqfUun48DD1D7ZG8x6FePMEYtrzDyzA9ngpPPFMOEL3yLis9+eWsPNOYBDz4kYI9YnwTvSFFoL3bHg89x6yEu7oNCjwJuiW93P7/PEyPqjyytHW7h60tvNSDmzwk4zE82SjSu63zsLyXG7E8gfYrPI9krzxNN3+6HiywvGE5UTwS4V888i4rPewf/jtb/a28b284vbenlDy/eiQ9QNQhvInlybqU7Vc6U8tNO43GnbyxRD29LfmDvFtt5rwuAKk87K/FvO1iQLx32TS9U0asO/gyMj132TQ91ddFu4021jx2hQq7tvQZPZHfDbrKgjK8pFEYuxYhBL26YTQ9c4ioO+yvxTwKYno8wdXzvOLVkLvoETQ8fjwMvSGSpb1ziKi84tWQu1Dgtry/6ly82LgZPFHgNj3xs8y8m8uNveDfU7zAskA9+JECPcv9kDr7mCe8ivcUvaiXfr3Of5Q8E1y+PGvRpjvxEp28WQdxPbthtLyuY2m8SDN4vep3qbxshCG8CYIJPJQwGryCcYo9ziBEPCaWrDwB1co8G8Y6vDVjAL3BxAu8x4x1vBLh37y1lUk8E1w+PQQ7wDz98/a8kL/+PMHEiz0rd4C9Ehl8vHzdOzyyo428NTzMO68WZLtCHgm8IQ0EvS5NrrvvhXM97CokvUF89jte01u9kq6WPJcbMbzsr8U8BV5zvRjQfb1MOwC93yzZuxmY4bzPMg88mxgTPW15ez2VoFK8lGg2vVqpg7zwyLW8vccpvs4gRL1TDpA475CZPVHgNjyoSnk8QYecvTxuLL3Ddwa9ZFJBPV1HFb0qbFq9HUEZvQ0EDbyvFuQ8QUTaPOmMEjxmBby7TXOcvO2aXLyTOl08YTlRvAEN5zz+IVC9adtpPcNQ0rwcNnO8vUxLPFTygbz7S6K7vJnQvLZBH7wu+YO7tl2tu51+CD2JmEQ5LgCpO3Wr27uZgaY8vccpPShJJz0/yXs9Zf4WPNE5ND3ALR+9xxUYvAsq3jtoZAw8OdCavIv3lD3IHD284pLOvHLARLx/CxU8GAwbvSZ6HjxW5L07G8Y6PGFghbvOkPy7NMwTvWTiiL1ghla8nY/wvNh117zRvlW9AlApvO84brzmq748eQcOvc5jBj1kGiU7XdNbPPEnhjwEO0C9gfYrvLCRwrwxZp47R8M/vABabL2pVR89itDgO5uk2bszGRk8w1BSvS4AqTy6HvI8mHqBvDQ8TDzAnVc+LRUSPaqNOzzjiAu9LQpsPXP44LxJYdE8/rGXvLRylrxrVsi7vJnQPAnPDr0+3mS7COucu82lZbxiEwA9Pd5kvNmjMD2su5Q9lBQMvYd1kbpr0Sa9vNFsPDEjXDw/nIW9lthuvYUPnDvi8R48jf65O2702TwU1xy9lWi2PK8W5Dzx9o68ziBEvBYy7Lsjfbw8GNB9vXVe1jy+/0W8+mCLPMFlu7yV4xS9ixMjPX5N9DvPmyK99+9vPCHKwTwTlNo8XhYevHHVLT03Mgm949UQvUJyMztD4mu9TrLdPFAYUzqhqOA8aPBSvdnwNT1Nx8a8ZJ/Gu3XSj7sCA6Q8ax4svSZCAr0d6W08KOATvL5CCD09bqy8ZOIIPXaFijsrV3G82HXXPP3zdj2ohpa8Sik1PRs2cz3tmty8fKWfvf02ObzZ8DW9N6LBvIr3FDz3+pW8s/c3PfIuKz2h6yI9N6LBPMbZ+rz+sRe9pIk0PNbC3Lwx6z88zBmfvDCofboBnS69QURavM6QfLyKCH28igh9vA8LsryVoFI8TUKlvGE5UbwSJKK86L2JOo+cSzwWIYS88LNMuir8obyseNI81YrAvOOIi7w7eG89ZZUDPZCH4rk5jdg8mGWYvGY9WDzRcdA6Y59Gu3o/Kjztmlw9gxnfvDgS+rx6uog7CAcrPbyZ0Lywyd483dGJvIuD27xBhxy8u2E0PCBPYz07eO880Ia5PKiX/roLpby8VPmmvKvsizuv3kc8pu+pvPmtkLuKYKi6sJHCPANzXD30GUK9jG7yvBpL3DqzVog76XCEu9nwNbzsKiS9mAZIPXsqQTx143e8MWYevRpykLuF8w28iWAovctKFj2poiS7O4MVPQ97arupHQM9GaOHvAP4/bz+blU8Xgv4vPrlLLypEl287WJAvQsV9TyYsh09Owg3PYALFb0r5zi8m6RZPEIvcTxFgP27pA7WOzHW1rw8uzE9DguyO73HKT360EO9ntKyvDKeOj05tIw7hUc4vQL4/T0+BRm9DKU8vFdUdjwbxjq9xtn6u1HgNj3mJp08kE9GvItLvzyi1jk9x9l6OqxANrzpgey8NydjvB6LgD1/AO+7mEmKvFs1yryqHQO7njEDvaKTd7265lU8Y0scvISUvTxPnXS8q/1zPYd1ET3jfeW8Be66PBmjhzyZuUK9KMSFvE6y3TyjZoG9efxnPfOe4zpziKi8MWYevWITgDskaFO9u2G0vAylPL10H5U8VH5IPeuvRT23gOA7xbZHvD+4k7z2t1M99OGlPCps2jsrV/E79rfTPOwOljz4MjK80E4dvXo/Kjyp2kC8HosAPcEYtjxaSjM8wHokvGWVAz01mxw9X066vJXYbru9x6m8PyEnO689mLw7Z4c9mHoBPBmY4bzsDha9669FvZ2P8Dyd0rK9iR1mPIetLbxTfsg7GdsjPOKSTr0x1ta8h1mDugiMzLvfZPW7fk30vK2KHbyJYKi8Q+Lrus9jBrs/ISc9ixMjPCEpkjwJuqU8A+cVPJg+5LoPvqw8VcEKvM/TPrwUDzk7DQSNvCRoUz0W+k88ZA//uws1hLu3i4Y9k+3XvCp3gDvpxK67W/0tPOPAJ72CcQq99iuNPOzyB7wxLgI9mxgTO15OOrzmq768iB3mvAk/R73uFTs9FA85PNvbzLxuG468gL4PPRA5C72CcQo6BgAGvDNRtTuseNK8RhDFPL03YjzB1XO8xAPNPA/2SLv+blU8TQoJPIrQ4DwKr/87tkGfOk1CJTuinp28s1YIPEI6Fz38gz69N1//O3iMrz05Vbw7tOJOvI9kL73Ie4099gTZvM5jBj3OzBk9qaIkvd70vLxFXUo8u8CEvLYQKL3Rhjk9h1mDuxkoKb2r/XO8rz2YO8PLMDs1fw49uh5yPAEN5zzjfeW8q/1zPWoeLLo6xfQ8c8BEvT+4kzzEKgE9RNEDPQSreL1yDUq9ieXJvDtA0zuhW9s8ttgLul1Y/TzwQ5S8oajgOsxtSbxZB/G8OB2guzR06DwZmOE7U1sVvPcrDb0x1ta8E9ecvOlwhLvb20y6CZ4XPPiRAj2bHzi9gEMxPaXB0LxFJS481TYWvjL9ijx4EVG87hU7PChJpzrUJMs8uubVvDLWVjyhW9s8uTNbvYVHODyACxU9CXdjPW15ezu2QR88VuS9PKY8r7vg31M8FoqXvF76D71xWs88vRSvu/a3Uz39xgA9f8jSPF3oxLxcIGG9EuHfPPd/t7xWdAW77k3XPP7pM70hkqU7I+10PZQl9DxrtRi7P9ShvPGzTDlC99S7q/3zvPJmRzwF2dE8tpXJvLVBnzz/SAQ9DFi3PGe4NrxhrYq8JwZlPOAGiLxW5L08tSURvJ/15buqxVc9Z3X0vI6xNDvcxuO7+JGCvMcxprz3ouq8eEntvEPtkTwtFRK8JeOxvQQ7QDukDlY8qR2DO29vuLoD+H28BLYevVHgtrsLKl49fN07O0w7AL15VBO93QkmPIsTIz0JP0c7a9EmPZNFA72kDla82x4PPY4hbbzuFTs9RZVmPUxMaLwFfgK9RoD9PHWr27tM/2K9EqlDvSyas7xxWk+9VyeAurk+Abw+kV87tl2tO6zzMLxTtuQ6GhNAvWRnKryPnMu8eIwvPVahezr2BFm9+uUsuwcRbj0IjEw9S9wvPScG5TtLiAW8AsuHvJllmDvudIs846QZvefuADzA9YI8qaIkPWvRJj2ZgSY9PqbIO0lh0TthtK87fPKkvDFb+Dwj3Iy8HP7WPNnwtTzzGcI8AFpsvOT4QzxGSGG9/EsiPMGd1zv4kQK8fpC2PKwIGr24w6I8/m7VvM8WAbxFoAw91FznvO+QGT3x62g7/eKOvKdfYjqkRvI7v29+vJo0IbzhWrK7vNySPJyaFjzDdwa9uT6BPfd/t7w0iVE4nFfUPDzzzbsQOYu8kJzLO5mBJjwuTS69SWHRvEzcLzu0Guu7N06XPCFFoLw60Bo7+VVlPKGo4DyeCs87ISkSvfsIYDr4kYK87hU7PXq6iDwdsdE8iSgMPQ7Ibz2HWQO8KblfPM4gxDqHwhY92HVXPPThpTzqdyk8wC0fvajaQLuYBsg8+nyZvIV/VLvc7Zc874VzvaKCjzyAQ7E8Ig2EPJG/frzIHD08rEC2vBVHVTz2fze9awnDO0K/OL1CL/G8fImRO4dqa73VD+K8WkqzvFywKL1q2+k8sQyhOYuOATzb20y86lubPVqpAz0FaRm9ah4sPF4rB71NN388DG2gvNUPYj0NWDc8pcFQvGG0L700PEy5wZ3XPOZeubuyfFm8Ehn8Okiu1rzF+Qk9yj/wO61SAT2Ygaa7gS7IO16bP7qik3c65pbVPMvy6jv4kYK8EuyFOi84xbrPFoE9M1G1uxFvpjxpXnc8tjMLvRvNrr0GNyy92DC1PCHpqzxj5J+6jQZmPJWK/Dsk8sq8EW8mvN+0S7vWYII8gtiqvKIFojwn++k8EQcNvCf76Txg24C8OPEGvTqSDL3Jti+9O3+FvPRnFLvWYIK89rJnO2he9zzj9tY8+F0svRaBZD1FwMe8FbGxuaavxrtomAM97CUyvSwFgDuoIZ+8LVBTva3VAj0YxI+8VkSMvEO3KD2yFu68+IzZPPKpyLx1oLC7ogUive2Xirzjl1w987OHvAuCVjzMJ2g9bkvHOqe5Bb1DPAg8DxqUvTmlEzyeWl29Nd4ovYr9xrywDU+63eSYvNXuKb08Yj88+3AKPdEKeTviTAk8yKzwvBbgXry7dPY8sQQHPHbPXb0aW9a70qt+vZXDaLslWmS8u90vvdA6RjzmxwA9m99lvNOr/ju0koU7YxNNvaTVVL1Y0oq7HqcgvWR7Zj1hQxo9uxacORksKb1zl5E8VQugPCUrN7v0efu7ExAsvXtUlL1gcke7rXaIPWyqQT3UHVc9P9N3Pb3mzjyapvk8YhNNvBuUwrtvHBo98JZqPAzYCD3hTIm8ExAsPXniOz17g0G8rJwWPQPimbzf7Te8bEIovXu8Lbs6iE28w9MePYqVLT1Arok8sEY7PUutF734lpi7QKRKuxqxCDw0DVa8j6frvDt/BTxYTSu8p1BMPcPTnrvZmE49ExCsvIeMDr1mXxc8yeXcPKpHBDx4/wG9+F0sPKd/+TzGTpY8YqF0vYeMDj38B1G9cL0fu7tFyTtgOVs8+5X4vNb3SL0+a968Jvvpu+Xahz1oxzA8OCC0PDhZILzfvgo9P9N3vDt/BT0h3+y8fFN0O++W6jr0GyG9vvANPVEVCLxZhpc8koucPSbMvLwJ/pa9rTPdPFIxLjzYJnY70RQ4vWqhojxzlxE9bHFVPWjHMLwrduG71XMJPFUB4Tkp1du70HOyPABK3DwYEAM9hkCbPC0hJrxTtg08+F2sPOy8+DybsLi8ExCsvAefxTpEKYE9qiB/vAQtbTzX90g8/nkpvZLXj7wWGcu7twM+vJs1mLwCeoC7ZNEYvTvw5rwo1ds8EQeNvGSFJTxuEls9ojTPPEQpAT3e43g8Lei5O8wn6Dy4+f68+v6xvFpWyrxtexS8ipWtPJ4PijzzEeK8YNuAu9xywDvMyQ09tjOLPK7UYr14Z5u9UjEuPLk8qrv1oAC9Tra2O+vsxTxxVOY76C8avZCxqrzhjj08uTwqPJ4hcT20kgW8SwtyPGf2XTySixy9uwzdPIIRlzy2Yrg8zCfougNdujz82KM8v4fUvPOzh71gAG+8l2TuvBbg3ru1WPk7lLGBPCFRRT0UP1k8hdgBvLxPiDzoHJO8nIBrvFodXj0pnG88rj2cPLViOLxlHOw8Yx2MOdEUuDwY6X09W77jvGmX47zmCbU76XrtvCGwv7szBLe88xFiOyVkI7wQNrq7VTrNPWZVWL2C2Ko8qvHRvFpzkLzl/3W8QRYjPRE2Or2OlQS9kOBXvS2mhTzZmM68iFxBOcm2Lz1VOk097y5RO+RecL3vOJA7JzTWuzOJFr7hjr28NdRpu0qjWD3Bfow8IbA/PcSjUb1texS9lFvPvEp0Kz1Rv1W8pN+TvQEkzrwLgta89iRAPGNCerxx7My8VzEFPVyPNr2k35O8hRo2uuP2VrzrG/M8VvgYvYeMDj0azS68iiz0PDTeKDuLB4a7p22SvGJ8Br2F64g94b3qu+loBr1kvhE8jLuSO0k7P7ylzAw8DIwVvH6MYDxiqzM9wh+SPWPkn7vsJTI9JPyJvHh6Ir1EH8I8u361PK0z3byv3qE8Wyedu007Fjkd8xO7NJt9u+EmJL1P76I8NWOIPEWRGrzDMXk8Ep7TPKe5Bb2Q4Ne9FXhFvNZWw7yK/ca8A126vNgwNbrI5Vy6jj/Suykrjr02FxU9SB8ZPBe6UDqfKzA8pNVUvZTD6Lvmcc68U9KzvFz3TzxsQqi9tFkZPSjVWzuOeL48QKTKu55a3bwm6QK9vR87u2f2XbwbzS49pq9GPq0EMD2I9Ce83ULzvPQboT1QKA+9MWMxO+Grg7o2rtu8zPi6vPKpyLxRFYi8GSypvEnTJTlnvfG85DkCPJYGlLyI9Cc9Bp9FPTt/Bb1r//w8DepvvYnE2jwK4dA8hLKcvf5varyn3vO8qQ4YPWmhIryad8y78QjDvJ8rMDzSTaS7oJPJuwtJ6rvM7nu7uxYcPa52CL0WUrc8twM+PBz82zz9Nn68koscvFesJTxyXiU59bLnvDq3ejwigHI8hKjdON3a2TtUo4Y9SQwSvUM8CDzq7EW6XqIUvFC/1TyEebC8pNXUPJdk7rvJtq+7ls2nvJxuhDy5pEO7KKYuPQbO8ryu1GK9wWuFPHz1mTyEEPc8fv44O9Tkaj29tyE9C0nqvM1qkzrl2gc98dkVvIdAGz0UsbE7qvuQvAhdkb1xVGa8XPdPvd57X73Zoo088CWJPI54Pjw9yti7pT1uPQlKCjtmVdi8bEIovYxlYD0KN4M6SJq5O652CL3jL8O8CjeDPFyFd7xxXiW8VTpNvCMPEb2DQMS8G1IOvUbKBr3NapO7CF0Rvc/SrLyTxAg9v4fUvHjGlTwsBYC8Wb+DPAmyIzwy1Qm97FTfu/zYI7vWyJu8/nkpPXhBtjt/zwu7e7wtvINARD0ppi68TH1KPV7RQb0HB9+7xALMPIs2Mz1nvfG5MtWJPM4BWjzyQS+8P9P3vJ1RPrsGn0U93UwyPNXuKT1bvuO6K0c0vHtUFLzhveq8yxWBvLqkQ7olWmS85DmCOwcRnrxQV7y8FuodvRIQLLxbJ508Z47EvNjH+zxzjVI8JPJKvd+FHj0qGIe7OE9hvISyHL2UW8+8VFeTvPtmS73Eo1E9ovKavL/dhjyPNgq8z1eMPSXpgrzftEu8jLsSPXtUlLztlwo8ZHtmvHcISrwEjOc8hRo2Pa0zXT1gOds7aS9Kvdi1FD0nBSm8ye+bvNPk6jsq3xq8h+pouw+VtLrr7EU9VFcTvRwGG73CmjI9uwxdvK0z3bx3CMo9VaLmukX5M7u3Az681mCCvHPGPjxpOQk91lbDPFsnHbzhVdE80dvLPGBDmrtDt6g753uNvDQN1rzWYII8eeI7PEoMErxu2e68eP8BPfAIQzwBvLS97ZeKvHbZnLxOh4m8Hg+6vDi4mjvCkHO8pA5BvUb5M736Zks8vbchvS7Cq7wjW4Q6n5NJvcoeyToHEZ68C+sPvc/SLL06wTm82GmhvM4BWrytBLC8kBlEPPQbIT3pElQ9HDXIOyO5XrzhXxC8Q05vPB9IpjwelJk8vuZOu06HiTymdlo9tfDfvI0/UrywdWg8FuBePLbnlzwrRzS8SJq5PEeaObzjaC89UL/VPPWy5zzZog28EGXnPMMx+TznQqG82Md7PfFw3LqPNgq99BFivV7uh7zYx/s8I7levZvpJLywDU+9bEKoPNurLDzqvZi8L8KruzFjsTvq7EU8OBZ1vLjUEL3sJTI9HPxbvDd/Lr0XI4o8o207PbvdrzvsjUu8y7/OOxbqHTzBKNo7wWHGPBjp/bz/shU7uMGJup8rML2CQMQ9qQ6YPIj0J7yN17g7Orf6PU07Fr0JSgq8GPM8vABK3LpEKQG9RB9CvXJepTzmoHu8QzyIPBiLI7yn6LK8bDhpvWAKLrt+lp+9DFOpPCwFgLv+eam8rDPduuy8eDs5WaC9fsXMPEp0q7w4uJq7jZWEvIZTojz+/og7Y+QfvOP2VjubGNI7BJamvOdCITypibi6nG6EvFyPtryDQMS8o5zovC2Jv7ofPmc9c5cRve84ELwpd4E9IVFFu5gF9Lxg24C97v+jPX7FzLxgcse8AErcu2DbAL0KsqO9RFguPAAbL7zWjy+8PgPFPFm/g7zCYUa9QNP3OxjzPLyXbi08ovKaPDr6pTx0/yo9ybavu1h8WD0OLZs7V9tSvM1gVL3k7Q49U2DbPOy8eDy2Kcy7gDelvTggtLzUHdc87vXkO4IRFzwHB986u341vJKLnLt5Eek8cuMEvJk+4Lx861o8p97zvD/Td7z169M7vbchvdcm9ryinGi8G5TCPPhT7btQv9U8C4JWvZidWj3a0bo5T039usuG4r0+DYQ8Qa1pvNaPLz1ApMo7gM7rPL0DFb1JOz+55NDIPPCW6ry3Az68mA+zPCHpKz3jXvA7zO57OyXpgjwY8zw7dXGDO8EoWjy5wYk8xXQkPJ2517yF6wg9VQsgPD91HTtWoua8e+tavf02/jyv3iG5K956vQZmWT3e0RG98AhDPLg8qj14eiI9unUWuwAbL7wVsbE8jGVgPHC9nzsT1z+87v8jPX6WH7wDU/s8SwvyPK2JDz0opi69OPEGvVsnHbyCXQo9GltWPM7IbTsuWpK8r94hPRSn8jqJXME8Wx1evOG96rsKsiO9I4qxux3WzbyAZtK7Zu0+vF1Ngr0Up3I8xq2QPHKqmLyNBmY7r9RiO7G4E710lnG8YdrgPPnPBLzAKNq8jzYKvODtt7y5PCo9yk12vM0xpzqcR/+8Bf6/vAX+vzuJi+68vbchPdUnljxcvmO907W9vNyrLD1zvP+85f91ve1enrymr0a7Cxo9vapHhLyhigG9/UC9vCB30zwjDxE85qD7OxG7Gb1pl2M83HLAu7Yziz1khSU8ZbRSvTA0hDzo4yY9zGDUPEYo4TysnBa8NNTpPCB307wLEP68Qq3pPE6HCb1Brek7BP4/PWeORD36Zks8U9IzPbjBCTklWmQ8iS2UPHqybrw0do+7xGrlvKU97jweBfs8t5ukO1OZR7068GY8ELuZvbebpDm5wYk88qnIvJxRvrpT0rO8VQugPF+PDb3a0bo7MGOxPHagsLxFWC49ZIUlO3T/qrzd2lk8gZ8+PWw4aTtWRIw8S60XvS1QU7y5PCo8dWfEu1RXkz14qU+9ChD+O1hDbDyEqF08RsoGvNBpc7wxy0q8uTyqvIZJ47yCB9g76rPZu8h9Q7tSAgG9v4dUPANdOrxJDBI9JPwJPZc1QTxE8BS8ALy0vHobqD1PHlC7KKYuPQ9mhz3coW09GSypvJWKfDxP5WM8o5zoPFOjBjzjaK87UZAovEgCU70jud47JPwJPUeaOTzghH68lGWOPFyPNjvtlwq8zGBUPHKqmDz+/oi8ABuvu/VKzrsmwv07y79OvTvw5rqCEZe7xGrlvMoeSTt22Ry9fuKSPPnFRb3dQvO8HdbNPCt2YTxHfhO8gC1mvP1vaj0BvLQ7iCNVvc/SrDx5Zxu9JSu3PKEFIjxF73Q9jT/SPAH1IDz9Nn683eSYvM/SLD3Y7oC8CHk3Pc9p8zt3cGM8CBGeu161G726dZY8Em+muy9HCz3jL0M8wpDzvHwkx7wo1ds88cYOvHagsDw+A8U8izazPWsmAjzYvj09Veiuu5UGVr3KkQG9mLNzvLCDJjwW5zQ9aEA2PT1JyTzDvgC8g7gevVfe3ryISI877chKu3zqBbxA+866uMoEPXM0srzqGy09qDfgOzQpaL2zOhQ6AASlPBqPajui3SS9bqmpvJmglrxB3qE8K/apPVUFXDxpMf48FQlKvQkfHj0dRtg8wtstvFi8ybyFjLm85m4PvQ3Mu7xR8xg9NQy7vDBy+juJNG89clsvvQO7krwA9ey83iexvAzH07x/I0Y8gAExPMg60btL/gK9ShHgPPB/uLzEKA69JKX7upbukL3oQiq9WMExvdfgUrzyzBi90zM1PSHz9bxX2fa8JmuhvG8dBz1g/j+8cXP0uuZpp7motQ29+MaWPLCIDj2h9em8iTRvu31Uk7zajXC87qa1vNqN8Lwjr8u8PGveO9D1DL24yoQ8Xxvtu9fg0jyST2i9vimoO0i2irydQ2Q8nUNkPAHObzx1A2W9i/qUOwoL/jwA/zy8TrAIvQWUFb00ESO97GiNO9t1KzsTOhc8N+U9PfjGlj34vEY8pKfvPA1FgTwMZxa9qEEwPQLdp7yRXiA9fiiuvDi+QDz5n5k87NcCO9oQBj2RXqC8d+HPubbnsbxZmjS8szUsveWQJDz9R0893cKLvPFdoz10qI+9v3YIPISkfjyYs/M7S/kavOZpp7w6jfM8FQTivO2+ejzhdJG8jxsQvN1JxrxyTPe7A7HCPFjGGT2257G8bO3TvLB+vjwi0WC9bO3TOeLZNr3XWZg9Dq+OvY3JRzyDuJ68Bm0YPZJZuDyMaYq7ot0kPGD5V7rPhhc9JnCJPZt5GTxi10I8FQTiOz4xBLxbbk88ot2kvVfeXrxYt+G7EIMpvBB+QTwtz6w7CR8ePZfacD3Up5K8VKoGvZbpKD032228qEEwvWOwxbyFkaE8+aQBPdQWiD2dwZG7fVQTPWhKBrsg+F081v1/PMB2CL1PodC8gAuBPPboq7uQe008OL7AuwOncjwTNa87l9pwvZULvrryzJg7sk1xO51SHLzlizy9L55fPMWSm7xUqoa7KSKPuyHlALzXXgA7XUdSPGLXQr0+LBy9bcs+PBUTGr1SXSa8pYVaPf8g0rxr/As8pKdvu0LZuTtVFBQ9X56CvGV/eDyOrBq9ODcGPTfb7TuL9aw7VQ8svRWCjzygBKK8W27PPKkfG7uX39g6EldEvQkkBj2maK28DqqmOpbpqLz7eBw98HrQvBM1L71t0CY9TOriPKi1DbqM5vQ8pCqFPKSsVzzvfzg8P5sROzjDqDwH3I27vGjqPHMvSjyMxF86OL5APS+jR735pIG9kIWduwzu0LweKas74k0UPQ1AmTxr8rs8Ys1yuyZrIbzkJpc8Mz0IvcLbrbx+KK48D6W+um8dhzug+tE85mknPNtwQzy7d6I7EH5BPfFdozxTNik8IAKuuz4ntLyRXiA9kV6gu6djxTtQhKO7YP4/vCv2qT3dwou8a/wLPIOztrptRIS6PGb2vH8eXjxB9mY9ElwsvGD5Vzx5M5g84AqEvU1Bk7xFi7+7bcFuPV1RojzSWjK9g65OPeQml7zCTwu+WLfhvPM7jjzNwPE8Hx/bPHFgFz3ZoZC9zcDxvN4xgb0g/UU9qR+bvDFkhb1sZpm8nj78PNfb6rt4yYq66SCVO+obrTzA/cK8DUAZvGvoa7zH2pM8vimovOLUTr1h4RI8LMB0PPQnbj3whCA9hZGhvJi9Q7yFjDm9DqomPEqPjTutzDi8q+7NvGfbkLxvpMG8MlVNvbfY+bzoQiq9iEOnOxUJyj0PoNY8dKiPPEi2Cr2A/Ei9OpwrPYQnFD3qDPW8r6BTO4hID70IPMu8ZKvdvH8jRr2VCz69EWGUPG6pKbzbcMO7pm2VvGJQCD0X2Hy8tuwZvftzNDxzNLK83GvbvED7TrwfJEM7wtZFvD0/+bsoSYy9eaINPRWCj7kABCW9W2R/vN4nMb24wLQ78H84vft4nLxUqoa8QtTRvULP6TuEpH48TrAIPe+c5TxzORq9Uk5uvUg9xTw9ROG8JmshPV8gVT5i0lo9e3YovSLWSL0lARQ9vUu9OohDpzxItoq8ZYnIvKzk/bx1gZK87dIaPTFy+rz7fQQ8DqBWvAWUlTycZfm5+LfePAD/PD0wi4K88zE+u1HzGL3uprU8yR2kOw3Ca73qGy29Oo3zOsvxPj232Pm7AtPXO2WE4LwUGAI74s/mu4WCabzX4FK8VQXcvG+kQbzX4NI6Wov8utdZmDwA/7w8DUUBPMznbj2vHoE8WLxJvaUDCL0C3Sc9wtbFO1mfHD39Qme8hCeUPTflPbwnuAG8dusfvAUDC71ZpAS9T5zovPqQ4To9TjG8/FYHPSWSnrzuq527nUjMO6zWiLwmfv688lNTvQOxQjvFg2M9yQ5sPQqOkzwNQJk9XGT/PMO5mLwIQTO8Hx/bPBtyvbwRYZQ8HG1Vu3CCLL1weNy8z4aXu4+d4jtUJ3E7XiqlPKZtFT2PnWK8e3aovLbsmT3CzHU9DqqmvCB2C70fnQg59Q+pvK+g0zyalsa8rcdQPV1H0jwV/3k7ZY6wvJJZuLzXWRi7EtAJvQg3Y70ouAG90IEvPQxnlr2X5MC8ot0kO+3NMjx/nAs9d+FPvakkgzxIPUU9MIYavYkXQjwC01e8gst7OhqU0jvQ9Qw9vVClu1i8ybx4vzo8SRZIPA1FgT2s6eW8/i8KO53BET2AAbE8J1xpvAqOE7y+LpC6nU00vT8YfL1Opri8upk3PB+diDu6in89qEGwPNi51btB3iG8EzoXO2v3I73Efnu7d8kKPPt4nDsHY8i8CEEzPL8kwDu257G8rx4BPZmMdjyoS4A9rx4BPRMwxzj1CkG6lKuAu5bukLzGcIY81+U6vCLWSLxoQDa9ks0VPUAAN7xL78q81REgvSZrIT33XIm9weAVPAWA9bvCTwu90WSCPPFYO73KkYG8kV6gPSv2qTzdTq48EHlZvfFYO70qDm899uirvP1Mt7vbdas6ZKb1PGH0b73upjU7LqgvPO6whb2fF/+847I5PZCFnTswfEq9APrUPRfiTLyW2nC86LaHO7jANDwxZIU97rAFvChEpLxNzTU7mox2Oy+jRz0aj+o8vUs9PSk17LyGb4y8Q7K8OxjFnz2JNO87zqgsvAxnlrwEp/K7upTPvVJT1jtUJ/G8uaOHvMZrnryqFcu8aEC2O/F1aL16naW8IAeWvFfZ9rzjsrm8ao2WO2c2Zryn3Iq8w6V4vF1H0rvX5Tq9OMMovF+eAryqC3u85mmnvAzu0Ds35b081Qw4u3miDbvc6Qi6UlPWvNFy97zGZjY9ZnGDPGg25jxoQLY8LdQUPXqdJb1lbBs8DUWBPRbnND2lhdo8nj58vBfd5DwL87g7a+hrPAZtGD1yWy89vikoPAWF3Tsumfc8Kh2nvMD4Wj0Q94Y7xYhLvZqbrrxtwe48aTF+POD7S70dRti8ElysvPJO67s1B1M6LqgvPGSrXbzfHeE7sIiOPF8lPb2KF8K8RmkqPc3UETzSVUq9dRKdu/3AlLovHI28JmY5veqPiryotQ08fGfwPJQt0zwAeIK9vxrwuzxYgbySWbi8o7G/PCzPLLzZtG265QQCvS3PrD15M5i8ShuwuXUDZbss5/E7NYUAvSVmObqPneK8lChruzCBsjvC1kU7Ul0mu71QJbyC2rM80zM1vZCKBb2KElq8p17dvGQpizulhVo9y/uOvT+bET20qQm9ncERvVWDiTwklwa8FuwcvcZrnjw86Qu90zgdPBCIkbzEjTO8R1ryPD8izLtuqak875f9vOg9Qrz6Do88kV6gPOg9wrwW57S86SCVuaWF2jxsawE8czmavYB1jj0r9qm8otg8u5I3o7wW57S8EzWvvCkijz0FlBW8a/K7O5UGVry4xZy7/iU6vAD17DuX39i88Vi7POda7zu1Exc8KEQkPd1OrryKElo6W32HPJMyuzxt0Ka8b6TBO4ocKj1ljjA8BmgwvIhID727dyK85KjpPILaMzxAADc8q/2FvOhCKrwHXuC8+ov5u3t2KDxr8ru80lqyvFoOkrwFikW8m3kZPBfY/LuNxN+8bdUOPdqXQD31CkG77chKPc3PKb0dVRA9Y7oVPOobLTwkquO9EzoXugg8SzvVDLg84tk2vfQnbjyNxN+8gd8bvVQn8Tw0ESO9BnKAvXLPDD24xRw9G3K9vCWSHj3Dr8i7ihfCvOqPCjwZNJW6sH6+PBt8jTwqHSe8u3ciPb8fWLxweFw8J1zpvD4xBLw9Scm8NYUAOpFjCL0H3A09qhozvQ3MO7x6k1U9jOb0u3M0sjvH2hO8uLvMu+WG1DxA+846duufO9flujzBTws8/5kXPSk17Dz4vEY9NuolvWv3I7xpHiG8XUJqPSO5m7uklJI70HzHvDzpizsW7Jy7gPzIPBjKB73gBZy8cs+MvKLYvDu9S708mDYJu5WEA72t0aA7bO1TPG3VDj2jsb88W32HPGZxgzvPnly9rqojvSv7kTvkrdG82MiNvbt3IruVBlY7bUSEPUxokLxSWL68W2T/u3fX/7yL+hS8tvGBvAoLfrxalUw9ObTwvBoSgLyHYFQ9bcZWvTMuUL0c64I7vVClvAhGm7t0qI87N16DvfqVyTsmZjk96EKqvDxmdrt5M5i9GLvPOwxnFj17dqg8qhqzPCg/PLwyUOU8uMUcPCWSnjyqEGM8nGphvKO2pzwkquM74AoEvT8iTDzZtG28cIIsPY+dYj16mL08tCb0PPB/OLpkpvU6epi9PJg2CT1bfQe9hZGhvPt4nDyOp7I8RCuCPXUITT0yWjW9zc+pOxxtVb1IPcU8gAuBPNt1qzz1CkE8wsz1vFqVTD3kqOm8xY0zvVMxwTsn2pa8BY8tPOWLPLqzOpQ6YtJau4WMuTxVDyw9yhi8vDqN8zu0K9w7nUPku0AFn7wGcoA9Hi4TvXbmN7wbfI083/tLvFCEo7wljTa7cy/KPAfcDb3L9ia7XyBVvISpZrxFi7+8R2TCvF1MOjuvpTs8cH3EPD1TGT0vHI083x1hvMoYvDvX22o90lVKPIB1Dj04yJA9CEGzPRUJSr1r8rs8ybMWPWSmdT2i3SS8vUu9PFtuTzqRcX28kzK7PL1QJTyKDXK8Co6TvAkfnjzL+468+MGuvJ1NtDw6EIm7GMA3vBxtVTzdTq68RYFvPJqRXr1BdJQ8JmY5PXg4gDtoQDY8jxsQu94nsbwKEOa8NCnou/i33ryyV8E79RSRvGJQCL1pI4k9bx0HPQ3Ro7z6mrE8j53iu0HeIbqHYNQ7+3gcPQLdpzzW6iK899nzPLQJR7xPoVA95KjpuiACLjxB3iE7NREju1t9hzwkqmO8BYpFPW+kQbzW/X87JmY5vEdfWjtg/r87DUUBPb3EArzaEAY9HUHwvCACLj3/mRc5J51MPWkzBrxH6hS98XTKvAtqYbymzwI98RUgPTegVDx/7h89s3mju9RB37x4V+Q5UteWPGSbFL1DrfY8LZMyPcbX/jz/eym8tfPgPCc+orzzMLO8g0eHvPhKkLwhRGW7HynSvIhewzvpoSW9yPboPAE6fjztOs08XYUOPPSuR73WAR89ZJhzOxWZjjxY6vu8BTQ7PGdUXL1Wz+i8Jz4iPdKFdr3G1368Ob8+Pe94Ib2kMoS8Or6IvFMyajrizgC9PhgmvNEmTDuXRjg8uJDfPAGbEz1M4bC8SYRyvZOtkDwOw0i9M8nYvLY1DL0a8yu70UkNvccZqjyrRWm7QhD4OskV07zT5gs9KxWeuxkzbDzysh699E8dvZWKzzzWAZ88vmdbvZufn7x8D/a80qTgPJbII70UOxq9rOUIvYFJ8zv94oG871gBvccZqrzsnBi8UZlCvD53ULzx0/S8ScYdPXWenDxv58C8yTS9vOdEZzy+BFo9iVrsO3e6Zb1psRq92loGvYmcFzw25Gs7/mCWu3GEPz0u0YY9epU4PUJSozyqSIq7+uTtvIncVz0jY8+7f+4fPWwr2Ls4oFQ9cAYrPaxk0zxpchA9zQ+QO+iCO7xQOhi9YKAhPXW+vLykka47M2ouPYDqSDy+BNo8E1xwvKD4hrt2PFE8onLEOxg2jbw5YJS8RczguvbsG73wl4s8yTQ9vLZxdTxTtNW7djxRuzt7J7wuj1s9R+dzvIIJM7pW0ok8v4Juu5KOpju96Ua9lCulPFLXlr2h9C+8gYuePLXUdjxgoKG8WSynPOVnKDxvSYw7fDI3PWlv7zxEzOC71cKUu5nA9TwUO5o6TlvuO3GEP73cVi+9GNTBPO9V4Lz2rRE9TltuvdfeXT1qL689TOEwvQpL97wfyic8lYrPPCpVXr1SmIy88nDzPISGET3Ug4o9jjQJvBdWLbupqOq8+0WDvBhWrTwCGSi8ZNqevNgcsjxsrcO8Q612vO94IT16tCI84K+WPKcL7LwJbji9M2ouPXLCE7yg2Rw6+oVDvCPhYzy1dUw7hYPwOoGLnrqvPya9eDj6POZHCDzjCmq9XKZkvDs5fDwMiBW9uA50OhP9RT0/tSQ7rn9mPBtO/7zddZm80qeBPFXyKTtLY5y6W8klPBg2jbuZwPU8QLUkvfqFQ73gkKy8hKaxvOxdDj2Sb7y7QJWEvM0PkL3wFaA8GlLWPDPJ2LsRwhK96vz4PNBJDbu5UJ+8v4JuvG9JjLxLwsa8erQiPTWkKz1iPaA7m9/fPOy7ArweiPw8HE5/PO644Tso2yC8o1PaO548njzgkKy8P3aavYGLnjyVJ84729iavNKF9jv0Tx089G4HPfQQEz29SPE80ibMPHEC1LyHIO+8mMTMuzhgFDwK7Ey8PPk7PO42djsbMYC7PZqRu+CQrDwBWWi7XWYkvUEzOTwMSQu7fi7gOxUYWbwjY089bmksOBBB3bshJXs98JcLvaVxDj2lcY68ZVgzPArszLuwntA8z4nNvMiXPr2QMeg4ylOnvC3y3Lv2S0Y9xvo/PXpydz3Q6xg97lm3vOofOj1ywpO7DCohviZ+YrsqORU9CQ8OPbXXFzzhrxY9GZSBvfaq8LyNt6q9/74KPfjoRL0a0Gq9xNtVvEC1pLyQ0j08IuU6PKNyxLoKjSI98rIevV5iTTudvok7Cgs3vGTaHj1szK28FrmuPPziAby097c7Cc3iu6wFKb1WcD488jCzug+k3ryNtyo6wj7XOwiueDs4Hum7KfoKveOIfrnhDsG8ylOnPKesQT1iPaA9lak5OKYuLT2mLi29SSXIurNW4rrnRGc8QJUEvUTryjw6nH285Ui+PD3W+rq6TEi9P5Y6vYi97TtWEZQ9O/0SvKF2Gztfwfc81mDJvAyJy7015Gs8D8NIu7C9ujywH4Y8BhF6vKloKjytg72879dLvZlhyzxkmxS82ByyPBkz7DxOvIO8xF1BPDxYZr3Tw8q8WYvRO2dUXL2T7Jo8X4G3vLtrsjyfGV26GZQBvcm2KL1goCE9adAEvWgUnDwc71Q+4ut/PTakK7yBix69wCPEOt7zLTw0qAI9J7w2PK8fBjp9Epe7hIPwvLjSijtexJi8/UGsuzRm17yTboY8DMefvKFXsTzIlz49vicbvQusjLvLsRu81MNKPZNMe7xexJi9HHAKvAjQg7xQOhg9En+xPCyTMrwdLSm96CORPNZgyTsTe9q7gGy0PNREAL0ovLa8zk6avJDSvTwp+oo6M8nYPDXnjDt9Ehc8yPbovOkAULwIT868AllouqUPwzpTtNW8ivtBPH4xAT2oqGq9f6+VPKPwWLvxNIo5I+FjvK7BEb0WuS48reLnOUTPATz7pK28QVIjPKloKj3suwK8Opz9vCvTcjofSDw81GQgPccZKj2WyCO8Y1yKPRfYGD2UKyW7TQAbPVfuUj2PNIk6yPboPMDEmTymzwK9VhGUvEnGHb3i63+9q0VpvOlferu77Z08qahqOztcvbwPJZQ98NaVPWX5iLydfN67Wqo7PbxrsjnX3l08KJn1vBg2jTxQOhi90oV2vAwqIb3mY9G7fc81vGW3XbovrsW8B674vOLOAD2wH4a9b2VVvVO01TysBSm9+oXDOxkz7Dzy8l468TQKPcj2aLxbKFC8LnBxPZCyHb0q10k9OB5pPBa5rjvf79Y7I+SEPMZ41Dx3/JA88nOUvMh0fbwsdMg8/74KvZUnTr3H1/66qkgKPC8QEb1IBl69aRDFvKloKj0Ibji8UPhsPdf9x7wd6308besXPCgbYb0a8yu9I+SEPBxt6bwWlm08URfXPBQcMLx3Oxu9fqz0u+jkBj0s1pM8RmlfPVzojz01hUG8V2znui5w8Txx5go8f6x0vZ48nrxUMuq7besXvcm2KD0Y9wK9nvryPK8/Jr3vVWA9voZFvdVB37voYhu8venGvKwFKbtjGl+8c0CoOkJSozyfmhI92VqGPRJfkbp0n9K7w98sPW7IVrvuNva8/CGMPPdKELwr9jO8Ckv3PJhlIr2OlGm8HIzTvOblPD3G1348tpOAvftFAz6jExq80AqDvGQ5yTxgXvY7//2UPG0rWD37hI08NyJAveycmDyR8ae8hcWbu1+BNz1ISAm9t7OgvFE2wbwMKqE87BtjO2MaX707/RI8B9G5OnkXpL1AtSS80QfivOy7gryHgQS9Hg2JvFQ1i7xKJBK8erSiPMg4lDy2Esu8OB7pvJkCITwgxlC9PNpRuxhWLb14eqW9vUjxvCicFrrCPte8qcfUvKVxDr20dUy8D+IyPUglyDwTXxG8Oj3TvC/RBr3HGaq8Cc1iPS1wcTwt8ty6XKZkPN9xQj3aWga9Jz4ivZel4jwr0/I8f6+VPJ0dtDyQr3w9rz8muprDljyC6ZI7D+KyPLxLkjyATJS8npvIPNw2Dz1psZo9MkvEPBYY2bzbtdm8y9G7PDxbBzxEbba8gqoIu1FZAr0AfKk5MuwZugYUGz3D36y8P3YaPVymZDuYxMy8XYWOvCSCuTzPKiO99snavI0WVT0oOsu8Lw1wuziBarxyo6m8S+EwvFwnmrwmHzg9uq4TvL+lrzw1pKu80ibMu9z3BL17cne8PZoRPGSblLxrDG49svsOvdDrmDuVCOS8GXWXPMj2aL2nC+y8SeUHvTxbh7zLEfw7vugQO2I9IL0zSo683DNuO0JSo71dxc48lAy7PH1Roby95W88SSVIPXqVuL31LFw8GvMrvf5/gL0JzeK8PHunvNGIl7skgjk8EQGdvDNH7bywHGW9Pfm7vIg/2Tv2yVq8r/36Otw2D72VSo+8cyG+OzNqrj0S3lu9DqRevUxA2zz8gWw8UtcWvQvrlr0MKqE9Wof6O9PDyjwOJko8cyG+vJ5bCL0Nxx89wiIOOujh5bydvgk9qkiKvAtq4bwcDr+7HE5/vC3yXDylcQ68rz+mOix0SD15FyS8Yj0gPYhewzxhnEq7FL2FvGEetjx5FyQ97BtjPOOrv7sNxx+9srljvQwqoTsAfKk7jJhAO8d41DpN3Vm86h86O3j4OTxhv4u7PvgFvaA4R7xD76G8KNsgvTj/fjya4oC60qcBvcyxmzwpWTU9ATr+vIXkBTzpX3q8zwu5O0eIST1MQFu82fnwvTAs2jsGss87UVmCvLzK3LxqTpk8m99fvBX57rve8608sJ5QvZRr5bwQQV07oVexPIeBhLyEprE8kFBSvH1RobxRWYI7QLUkPdW/czy2lDY8GLXXPOiCuzzSp4E8S8LGPLAcZb2Fg3C9iR6DPNtWr7xzIT69yVMnPW/Ef7rNbro7HE7/Ow4mSjwpeJ88aBScvCwVHjv0j109DYgVuwusjDssdMg81ESAPBwOPzxl+Qg8iF7DPFRR1Doa8yu5RQq1PBJ/sTsPJZS87JyYO3hXZLr/3io9NwNWPAnNYjwcjFO9ps+CvcDjA7xfXva8hSTGvOVnqLsJD467GzGAvU1fxTxoc8Y7Yh0AvLaTAD3x03S8adAEvE/8Q7wH0Tk98pM0PBS9BbzlSL46rsERvY0WVT151Xi8ZDlJvZFQ0jviLSu98w3yO5Spubz46EQ9lUqPO64/JrymrMG8I8L5PInc17wvEBG9bG2DvGGAgTiWiZm89q0RPWxtA714WoU7NActPaSRrjwZlIG8195dvfHyXrw+1vq8jbcqvPRPnTyNt6q8pwvsPMPfrDt1m3u8am/vOxL9xTpaCWY8/eKBvENOTL2EpjE97jb2vC2TMjtsrUM9d/wQPSi8Nj3K0Ts9z4lNPNVB37s82Rs96z4kvSx0yLoB29M740wVO12Fjj2aYUs9GJQBvJlFgjxjXIq913+zPCDpETvjTBW7gqoIPRZahLxJxp08ZfkIvd7TjbxWTX07fu6fvD35uzwRwhK8ylOnPPbJWrwCeNI8BZPlPPyBbDudHbS8bshWPODv1rqyvAS8dL68PT35O704v7489wsGvY41vzwtcPG7/MOXvJDSPTz4B6+83vMtvYWi2ruqSAo9pg6NvJFPHL2QUFI8P/XkvCDG0DstkzI9zwoDPLjSCr0ENLu8XkNjPWSblDzAI8Q83vMtPcHjgz2j0W68GvMrPSx0SD015Gs8waFYPFgNvTxAtaQ8/UEsvb0IMTzL0bs8BTQ7vNgcsryUK6W8pg4NvS/RBjxUNQs9WOp7PGlv77xnlgc8p00XvcGhWD2GQzC9afFau3a6Zbwj4eO8jtaUuyJEZbwquN86Td3ZvHGEvzvq/Pg8ZNqePISmMTwcbWm87LuCPdGotztBM7m8ukzIvOEOwbzzEck83vOtPKYODT2kMgQ9k24GvaKVBbwoOsu8URdXPbxrMr1YDb07WOr7Os+JTb0lgYM7IuU6PIi97TxHKR87+iYZPf+76TwyS8S85mNRvBsxAD0qeB+9k60QO1KVa7ysZFM9s5iNu/ZYUj3yVvG6kJvHvKISjrhxDhS9vOqqvF1jJzvyVnG7Z05FPVLWjzvmYvw7umk6vQ6Ohj29We27o4qnvHT+xrsWq+k8ufGgvB3h8LpkAAw8W0kUO7QzszzMkza9g+vFvP4Gc70u4B27DGucPBxyLj2jzpq8khy4vNmyejwm5TK94MYJPYyiPb10SxE9u3IRvfZYUr3//o07AMxWveTqYj1aJqq84rY8vRhwTTzXbRi9//6NvI0JG723eYe8rEGfvGQADLzitry8N1MivB7zHjxxbJo8osVDu+A1zDw++Os8m36AvZ1UIL1alWy933k/veNySb32WNI85C7WvCNb6zzGXa+6BYpEPdFIzTzcgDW8hWPfvOO/E7zt7iQ8o4HQPB3ZC71xwUk87xEPvdqqlTx2Mu08ks/tvHNCOjzlN608lVm1vIllQL0l3Ns8Crd0ue9Vgr16eME8EYeQvbQzs7oQMe+81IXKvIipMzt6I5K8C6+PPIvmsDxo+RW98CsivT2A0jyTlNG8Uiu/PCBrOLxwSTA8ZV4SPS2KfLx+Ldi8htt4PB0uO70zUUE9sfa1u8jeHz2ngzE8pr5NPRhwTTz2WNI8dP7GPFXX/rpQZtu7CwS/vJ0H1ry/2t28uxQLvOE+Iz3Jmqw7LpNTPXBSB7wmVPW7UjQWvemf+TyWFUI9HCXkuwKaET1WLSA8A1YePMTlFb3B7As8Y5kuvI2rFL0ZeSS88xtVPDZBdLv926O8AMxWvPiMeL3WsYu72nfevCLsqD2p+8q8372yvAAZoTw/RbY7kmmCvIFZmbzgJJA8nVSgO1J4CT3WsYu7JpjovD7467sMySK8uDUUvYVstjydVCC9+B02vb8nKDsdnf2882gfPQe2Bb0CmhE9XdLpPDcGWL2A8js8gGH+PGy/6LtlGh+8nP7+u6T5aTyfO/w8+xbAPSujoLxzQjq8mQ7MvKW19rxpEym8EcsDvIG3Hz32WFK7TLHEPBxyLr1yyiA957gdPb/aXT3nuB07MYzdvDC/FD0CTUc8LF8tPQrzAr08VQM8W1H5vMTcPjuCJmK9ZwH7OxdfETyt/Ss9iVQEvZ8zF73zrBI9EH65vNw8wrsJP9s8qsCuvI4jLrwIeve8guJuvOAkED1RbzK9ohKOvLd5hzwuT2A9sm5PvB7qxzyZn4m9n4hGO1W1Br1eyoQ9jyyFPNLA5rzau1E85OriPMSYS7xYYcY7N/WbvGW8GD1foCQ8JdxbOUbq/7wXAQu8O7vuuxO7tjxsv2g4ygGKO69+nDuCJmI87yLLPJBX1LvRSM07pPlpPOzUkbyDL7k8q+v9vISWlr1499A7XtvAOw6Ohr0x2ac8iWXAugYC3jwCCVQ8iVSEuWbWq7xLQoK82fbtvHj30Dwgazg9bL9ou00pXrz7Ywo9V/IDvcFS9zwtinw9uOhJu7iTmjwapHO8ZRqfPA79SDtnkri8j5LwPEtCAj0b+hS9eLPdPLZn2bt2Mm09xNw+vS7gHTyDfAO87qoxPMFbzrwEgW29YRi+vJvTr7y86qo8gVkZvfRPe7y6HHA9DHxYvOZifL1m1is9ICfFvOe4Hb5d0mk8qftKvKISDj3Dj3Q8hheHPNa58Lz7Y4o8+eIZveK2vDx4s1289ZNuvWrPNTtSK788oz3dPBe0QDyE9By9YFyxPAe+6rxmiWG83DNrPCkisLzIkVU9O/9hvAjHQTybQnI99eA4PX82Lz0l3Fu8J13MO3BJsLy984G8RvPWuX56ojxe20A8U6NYPaUCQbvFQ5w8JqG/vJ1UIL2UUF48QosKPgL4F7tIa3A8qD8+PJYeGTr+QgG8yVa5O3eIDr1foCQ89ZxFvK8glrsuk1O8xUOcvW/8Zb1SNJY6Ee37PNZTBb0e8568k+EbPQmMJb0txgq9HHIuPMoSxrla4ja72ZACvBDCrDwgHm45nzOXvGqC67w5dgw9Y5muPKG87DyiePk8NkF0vfmVzzy/axu9zgvQPNFIzTygRFO9nhCtO7lgYzwLUYm8LYr8PJLHiLwXZ3a9bAPcPJOUUbtS50s9giZiPuwpwTzJVjm8RS7zvIcxmrurOMi5jywFPTjCZLxEttm7HqZUvZrK2Lymelq7lcj3vAJNR72ltfa87eVNPNINMbxyyiA8z9CzPMjeH70ksQy7iKDcPAU1FT2qc+S8x9VIvUrs4Lx4s908lJ0oPXEOFLz9SuY8NtsIvRHLA7vndCq7j4oLvZBXVLzCZCW88Csiva9+nLwanI496DA3Pa9+nDx/6eQ7jJGBvenswzwUKnm8INr6vCLsqDyX2iW8dbpTOroc8DoroyA9kFdUPHT+Rrz3YSk7BTUVPB3h8LsYcE29H2Lhu3UHnjq58aC8mEEDPDDH+TshMBw9NkH0uzQWpb0x2ae84vovPQ+oGT2+J6g7hhcHu9fCxz3Z9m09dn83vLzhUzxOofc8bci/u6AAYD0in946Gj6IvaFWAb3au1G9k4MVvYsqJLupt9c8qD++PNfLnrwNQTy9yqODPfsWQD0jZMI8H2LhuxejBD3Almo9b/zlu0hjC722Z1m9GvE9PMVDHL3lpm+8ZolhPHKGLb2Kbpe9sbJCvciAmbqitIc7LF8tvCKf3jseN5I882gfPYBh/rsRy4O80UhNPCqJDT2GuQC9Kc0APH+l8TyNXsq8Tt2FuWrYDDuGF4e8trSjPBR3w7ttDLM84MYJPNp33rxOofe8mhcjvd95P71Ndii9zeCAO8+D6ToA1S29DMmivR6m1DwT/6k9+xbAPDBhjjsnXcy8YA/nPMyTNr0wA4g8o84avKXxBLxnTsU8fnoivBejBLy9pre8L6UBvW23g7wkIE889CQsPbppujzUhco8e4EYvRR3Q720PAq8GCxau0bz1rsW+DM7vlGIvHor97wgHm49YA/nu6OKp7sI0Ji8pr5NPZUM67wXAQs91EFXPAAZIbs9gFK7XdLpvFqVbLxUrC+8UW8yPEtCAj1e28A6fWAPvTP8kbzOC9A8JpADPJBGGDy+UYi84fHYuPgmDT0YLNo8GvG9vDbbiLsNhS89PwFDu+3lTb1MscQ9QAoavHz5MTzvGfQ8tiPmvKkEIj1xDhS8obxsOzyzCbzjYQ28DUG8PBi9F7xArBM7yJHVu1riNr3fvbK7JLGMPEP6zLyKEJG8E7s2vFhhRj37FsC9q8mFPDl2jLz012G7oU0qvAIAfbzaqpW8eAAovLN3przmWpe8i91ZvATOt7sd4fC8CNAYvYhc6TxcFl08yZosvFIrvztVJEm8W42Hu2kTKb2YlrK8anqGPF6GET3PFCe9BgLePOZal7zDywK8AZG6vKISjjyNXko9kKSePSbuiTwjZMI7FqtpvSpN/zxikNc80lGkPEf8LTwROkY87yJLPZt+AL14ACi8HurHvGaJ4TtJHxi8hJaWvMPTZzzjYY2777MIPaCRnbzUQde67BgFve+zCLuhCTe8DfRxuxUzULwCAH29oQm3O9vEKL2mC5g8+MgGuxMIgTu58aC8GL2XPASB7TyQpB6899DrvJhJaL2Bt588IB5uPKBEU7snTJA81rGLvE/3mDvvs4g8ePfQPK8xUroqTf88PwFDPNq7Ub1sv+g88N7XPO3uJLttyD+91rlwPRrggbxnTsU8uWDjPE+qzjxJdMe8XR+0u2/85TtRGgO8qy9xvO2hWr3pOQ45fKSCO8VUWD1te3W9B77qvFhhRj1DR5c8uOjJPILi7rz1T3u9OX7xPCHSFb35hJO9Wiaqu7H/jLz+oAc8sm7PvJfaJTy84VO6j9+6vHSpl7zSUSQ8nP7+vMzXKbwwFES9+CaNPCzOb7ojZMI886wSu74e0bxfl009M0AFPUNHl7snqha8Ip9ePSXcW7z3Yak8DfRxvDqQH7yArki9pQJBPU4ytbyzKtw7d4iOPA+5VbsunKq8NX0CPOKtZbzJCW+7zvoTvLjXDT0g2no7TFyVvI2rFLgKt3S8m34Au6vJhTvNT0M9A1YePZBX1LzKAYo9/gZzvZ4Qrbrad967mQ7MPKxBnzyOI668sfY1unykArwNOOU7R6/jPPpRXLweptS8wyCyvMmarLy+HlE8l9olvS+lAb2p+0q8g9qJPMGfQT0kD5M9JlR1vS5PYLwnXcw7W57DusFS970tJJE8k5RRvPsWwLxkogW8eACoPBQqeb3c7/e7X1Pauxv6FL2pBCK9J11MPNfLnjsro6C8mQ5Mu5w6DT0royC9qOoOvKLFwzx4RJs8ZAhxPJzchjvl87k8T/cYvKOKp7kQwqy8E25su/qeJr2GdY076200PFqVbLygRFO97qoxPOwpQT04Dy89OMJkPR7qRzyT2MS5atiMPOb8kDwuk1M5V6W5PEf8LTs8ERA8b42jPNwrhjup+8q8FSIUvHm8tLzjYY09uaRWPIPaCT1S50u9/ZcwPTQWpTyYBXW8Bk+ovDADiLwYLFo8E7u2u1RXgL0oZqO8TSlevKJ4+bx+eqI89ljSPICuSDwh0hW8ZAjxPCF0j71qzzW7iyokvMCW6rojW+s7im6XO9RBV7sqiQ09tN4DvHOPhLyBalU7Ak1HvW7RFjyOZyE8lQzrPB17BT2mx6S8r34cPCAebjsWq+k5MwT3vPdhKTzl87m8wyAyu8yKX7o1fQK9+Ix4PclWuTyKIU27ZRqfPHSxfL1kVTs9lQzrPJrK2Lzc7/c8syrcu5PhGz0RKYq8KGYjPJKLejzYhyu907gBvf3bo7yMTY68NkF0vButyjugkZ08yQnvuNFITT19tT48n3eKPc3gALyl8QQ97TKYPDpD1byieHm8RLZZvGUaHz1nTsU8cWyaPAjHwbxNKV49htt4vbQ8Cj2uubg8G7ahPKFWgT0A1a28PMTFPOqoUL1OMjW6vlGIPek5jrz7Ywo8ltHOvFvrjTyUnai7UniJPONyybwDVh49Ee17vL9rG73y8AW94yX/vNn2bT22Z1m91w+SPPpR3Dvo4+y7tavMuxL2Ujwt18a8eiOSvXm8tDkkIE+9rrm4OwWKRD3vZj68EcsDPUV7Pb0NMIA8QouKurH2tTw8d3s8pzZnu9RBVz2APwY9wVvOPK8gFrsCAP08djLtO593Cj3LG508NMlaPYUfbDztMhg9E7u2ums2Ezwx2ac8Bwu1PApIMr1Ndqi8T+7BOm+NIzxWLSA9wZ/BuqBEU7sdLru77yLLu3UHHjzEKQk7nEtJvQAZoTyaFyM7nhmEvNA/drtfoCQ9RAOkvGtHz7wIevc6UufLPASB7TtlGh+8X1NavXSxfD33FN+8wI6FvF3SabxhGL68xOWVvGLdIT1JJ/07MMf5PP1K5rwHC7W5I1OGvCSxjDxkAIy8NMlaPRJDHT1+HBy9+GqAvR2d/bxBxiY8EcuDPICdDD2Qm0c9Qi0EvaxBn7p1B548T5kSvaCRHTxlzVQ9BT36OytW1jxnXUy9maIrO8HLkb2Akha9wcsRvc1bczyrPC89V3EpOwp7Hj1D3548Qf+CvYUD1zzU2f08m8R0PESAtbsAOnA9JCxKPTWMGb3o3zQ9Xu+zvJ8Lc7oF7aE88BMZOasXersmHNi8FjA1vMiohbwCT7M7rnM7PBrOIz2BZWg9pFdCvJ+PET3KmJO83nkVPBBohDzoun+8WpPyvP8HNb3rAf48JG53O7wYYLysbmo8D7KqvDUtMLwhTK68LwaWvDOcC72VRmq9+GT1vFuotTyKkdO8JhxYPYcIKL3qaOC8tliou76MjLxOA5E8LuHgvfsvkjxvT4M8s1PXuvb4hbuX9Mq8fcf5vFgfij0nMZs75u+mPJ2CR7y5enE8T3f5PL4tIz3YSoI8mEu7vDFVDb0Sksa8grxYPN3DuzrOcLa8ci+fvL01HL2QPIy9tGiaOh1skrzMwlW9LL8XPTztZ7s4Dcw8oN4IvMKm3DuOyN+87W0xPEL3CT3+SWK8jsjfvPFNTTyrF/q8WKNkvI/lGz2uXvg8B92vvNB9gLvCZK87eU7Au3awUbyMgWG8gMzKPIhnkbz8F6c8/8WHO6rlvjwpusY8BVSEPb8dsTzGYQe9qifsOuZWibw7VMq7tb+KPNcg/DwlORQ8bttWPR7gejxak3I7o2c0PdLp77xHYFG8dwfCOi0WiLxWGjk7YuSSPBsdGzsznIu9avu6PAiTCb0YuWA8xURLPCcM5jtYJ4O6Sul8vc7XGL2HCCi9vBjgOc6y47yoN149roOtvRsdGzuoN169Vho5vM2AqLwnkAQ9PpvIPIUDVzyUcxg9ADpwPAaGPzx812u8759sPWQWzjzaQgm88U1Nve+PejzkQcY7I/IVvd/19jyPhjK8CxQ8vKj1sD3BDb87GwBfu8kk5zyP3aK8+hJWvDJNlLyhd6Y81F2cPI/dIj2Fwam7f9w8PNEWHrzavmo9aAstvBDk5TtntDw9CGbbO8dZDjw+WRu8X9/BPAq9yzx1dp0787kAu4hnEb1cQVM9wLbOPNxsSzxf38E8xastvA+yKrzDlmq8VIkUvNnOXDwK//i7CHbNPCU5FDyVndq5AF+lvDdf67wHH928mEu7PPjok7x5TsC7OcsePGe0PDzplQ476DYlu3rn3btBe+Q8/s0AvfRSnjvdw7s88HKCvW0AjDwlxWc8qqORPQLoUL1SFei8rzkHvZwbZTyc6Sk73SqeO9H54Ttd2vA8TaygPGDPz7xIHiQ9In5pOtakGjw7VMo8A/UaPKZsBT3M54o6aE3auk/7F71EgLW8jXFvPI7I3zyXsp07mjtJPL4Ibr20qke9ik+mPJJmTrplbT69l1stu7MRqjxK6fw8JUGNPGlqlrwLFDw7kDwMvF5OnbydnwM92YwvvMQSkDx9Llw8d16yPNF1h7wMrdk8OGQ8PNcDBL28PRU9zc8fPNolTTyErOa7GXczvB9cID3Z65g7ETvWO+WYNj2vtWi8H55NPffwDL0tmuK5aWKdvIehRT2M/Qa9Z3qIvUE5N7z8AuS8emODvDN/TzxgNjK8dm4kPaQAUrxfpQ29EWALPalMobzFqy2+V7NWvcabOz0WMLU8dknvPKlMoTwKJC69pRUVPP12kLyoN149RIC1vEAkdL2fjxG8X4hRvIYYmjq2M/O7quU+vJO9vjsFL088NtsQPGRY+7zcrvg6BzyZvK85Bz1zhg89mQEVPfDmajzW3k48PGkNvYK8WDvSQOC8L3p+PL1vULu6TYe8OabpPPI9WzyU73m7CJOJPfOUy7sx0e4887mAPFFClj1mxC489UIsPQr/eLzDux88qqMRPdxsSz3+bpe9PAIrPD6byLxaD5i8PpvIPA+yKr2gIDa9armNvHi1Ij0CKn48TodrvPOUyzygILa8tQE4vbMRqrypTKG7q/oBvdln+rzWpBo9T/uXvLrBb7z7q/O8bnR0PDcdvjwXhyW8jP2GO3v8IDywDFk9KYCSvJUEPT1+hUy7ik+mvUUZU7xPNcw7NoSgPEYuljwlQY28fOyuvfC0rzyjxh07pADSPHZJbz4LVuk8i+hDvfvQKL1q+zq8hGo5vbn2Fj2GGBo8TBODvDgyAbzl/5i8l7oWPYihxbwOW7o7lgS9vLso0jtQjDy9YiZAPb/bgz15FIw7Za/rvHeg37zSUFI9f9y8vEh9Db2rF/q8EEvIPIRqOT11WeE8kYOKPOBM5zs9RFg85AcSPTLmMb20mlU8C1bpvBUwNb1q+zq8YuwLPTztZzyiUvE84Tz1O32qAbz70Cg7ZFj7vNolzbwyTZS7q/qBvekR8DzIi8k8ghNJPBSfEL07cQY8EaK4vGUjGLxmxK68dklvu6UVlTyFwSm8kc2wvHNp0zrmTpA7yEkcPdT+srnXnCG7TJddvM8uiTwxVQ09HHwEPbCldjxME4M9yhR1PZ/Jxbyl8F89DxGUPBJYErtBoBk915whPbPs9LtudPS8CGZbvESAtbvonQe9T5wuvC5IQzwOGQ29GqluvRNQmTy1vwo9reqPPDH2o7wgjts8f5qPPEgepDzA+Hs8Xu+zPLpNB70VG3K9EvkovcENP70+WZu7b8vkvO8bkjtC0tQ7zYCovJdbLbwE/RO9l7qWPOlo4Lv/4v88+OgTvd+zyTwF7SG8qqORPOk2JT2SZs48EvmovHZJbzx9ogg8/IYCvV7vM7t1FzS7yhR1un0u3DrbFVs8oGLjPMOWar0405e7UeOsOya19TzrAX68cT+RvJB2QL3wtC89i+hDPRYwNTyNlqQ76o0VPM6yYzxn9uk837NJPIZ3g7t1WeE6nOmpvOgh4rwJixA8xFS9PI/lmzx8lT68fUsYPIhnkbyIocU7kiQhPVoXEb1WXGY87xOZugzSDrx6pTC9fh7qur7GQDyHStW8fJU+O1Uaub1/3Ly8oyUHvbGAhT2Xuha8PO3nPKXw3zzckYC99YTZvKAgtrzSDiW9HFdPO33HeT1aqLU7twYJvXG78rz8AuS8v1/evL7GwLvQYMQ8pwWju5O9Pj1c/yU9KYASvUrMBDzeGiy8zy6JPQLo0Lut6o+9u+akPXaw0bzRt7S8okJ/vF8h77kQaAQ92kKJu2WvazycK1e9y++DPA5bOj370Ki8mAmOPKPGnbxT07q3iF8YPYHhjbxHCWG9n8nFvHyVvrzkg3O8hcEpvasX+jsKg5c8sxGqvJadWrxNrCC87FjuvJRWXL3CP/o5QXtku00w+zsifmm9e1sKvYXBKb1jO4O8aeZ3vDhkvLvoIeI7JIO6u2/L5LxC9wm7uk0HvaizA72KphY9H45buxL5qDx6Y4O9jmH9OxrOI7wzf887/+L/PO4GzzzUl9A8cEeKPNjzkb0rx5A8KGNWPXUXND3m7ya8+9CoPPjokz2uHMu7nnLVvIITyTsXhyU8K8cQPBzw7Lqsk588CxQ8vcB0IT3sfSM8ADpwuzCfs7x11Ya8t0i2PBUbcjv9dpC8QCR0vAc8Gb2GdwM9Lg4Pu2gLLTw3X+u7NsZNu4UD1ztOh2s9P7CLPHTAwzw3Hb67d6Dfu9g1Pzww/hw7/m4XvXcHwjvTZZW8dwdCPVdM9DzM5wq9iqYWvAe4+jrqjZW9chJjvJ+PEbyl8N87h0rVvLbxRT2q5b677496PPvQqLxc2nC8y+8DvHeg37wXYnC8IgIIvQM/wbyOL0K9d16yu8niuby7KNI5aWKdvYw/NDzuSHw8DMoVPR4FMLsSkkY88LQvvR836zo1LbA7S8SLPA6dZ7yb1GY8BXH8u02soDsZdzO93JEAvJf0Sr3go1c84Tx1vDWMmTykvqS8ik8mvThP+bzmMVS7+y8SPco5Krx9x/m8vDWcPasXejwraCe8xFS9vDB6fj01b9280H0APCRJBjtlr2u5679QvTdfazw2hCC94Aq6PNEWHjvaQok8QaCZvbRD5bwDP0G9nzCoPZc2eLwJi5A8nEgTPcdRlbwaLQ08ifg1PZQUr7uM/Ya8CYuQPGRY+zzf9Xa8JCzKPO2vXr2xpfa8wLZOPLa3kTxOA5G8A6ajuyFMrjvR+eE7eZBtPD5ZmzzSUFK9RnDDPFpRRbxKvBK9t6cfvPwfIL1Pd/m8SXUUvPcyOj2vOYc8iypxPAe4er3oun885KioO0fHszxiaO296XjSPG0AjDx2sNG8B7j6vNG3tDqaWAW85IPzvESANTwK4oC9T/uXvfFqCT0nkIQ98PZcvBFYEj2Wwo88OrssvbAM2TyAzEo8A4HuPLn2FjxyEuM5/IYCPO4jC703HT68jsjfvJGDCr34PwS9CHZNvLjhU72l8N88cY4IvbIRKryGWkc9fOyuux+ezTzG8iu8olLxPE3uTT3rv1A6pkdQvMvvAz0NIYa9KIiLOz/yOLxT0zo8cOCnvJf0yrz8wLa8mvkbPUNGATzsFsE8Y32wPN5c2Ty8GOA7MDjRPOmVDrz2+IW8eDn9OwriAL35u2W9CiSuuw6dZ7yy/Oa8NBjtPMO7Hz0S+Si90GBEPB+7iTyvtWi8UjqdvFz/pT1It0E8ETvWvIAOeLqHStW8DcKcPSdzSLxq+zq90lBSvEKQp7y2t5G8/0nivHuA+zxEgLW6Xsr+Or4IbryGCCg8XyFvvdOnQrtbBx88e1uKvDIo37vFaYA7kYuDvLrRYbz9fok8UjodPbzWMr1gNjK9p57APAgP67umbAW8lFZcPbbxRb3NW/M8cyemvUMpxTwZdzM9NQj7up/mgbykme88fqKIvPvQKD1aD5i8rhzLu2gLLT1PNUw8MY/Bu2TUoDv+sEQ7EEtIvM8uCT1UiZS89pkcPf/i/7rfcRw9utHhPFhht7z8wLa8Pt31vK85h70Rori8Dp3nvFI6HTvsFsE9f9w8u3Np0zyz7PS8vZQFPOvkBTw/NGa9PKu6u1z/pbv/Zp48Xu8zPIUDVz0E9Ro6G76xO4dK1Ts1b9087iuEPCPylbyAih09VCqrux2uP71xN5g6HsOCvBBLyDy3px868U3Nu12Yw7z2+IU6zYAovA5bOrzJ4jk9wLbOvDIo3zxTmYa80RaeO66DLT0hTC48dXYdvQrigL17/CA9eZBtPacFozx5kG07JcVnPVI6HT0EVAQ82xVbPQ4ZDT0c8Oy7JCzKOxCiOLxfIW+9zc8fvK5zuzxvy2S8K88JvQMFjTvDGom8tMeDvOeIRD1YJ4O6XjFhPKQdDrzHWQ69K2gnvLlqf72gYuM8JG53vNEWnrwPsqo6HzfrvKF3pjydQJo7ADpwvP9J4jyxY0k94cCTvFjImb2DVXY9Z11MvZxIk7uugy29LEPyPPzAtrzZjK884Ao6Pe1tMT0Ghr85ZDMKPKOpYTpoC608PzRmO081TDyvOQc9gnorvaB/H70aZ8E84w8LPWuU2DyU0oG7bpkpPM2AqLxVBfa76RHwOsI/+jtnXcy6SFBfPK+16LtkFk69w45pvL82vjwtuJ698K8QvfQHPL0xTqI8RyYiPd8kMzzpRTE9XAkrPD6Jc71kVJ48qpGNPKMcpTtWx5G7BSJyPSO2DD3OmVW9MRBKPV3ASbu2FcC8QWjYPDJDGbwo70s6wtdKvFloHrw0c347sNOmu938bDx9rr48iLkqPZCnWbwwG9M8fPefvD7HSzzj+A499+agvDFOIr2Qp1m9WYcKPZvwHTzcopK8+wt9O3P1Db3vfME8EwE6vLm2zLyw8hK9PRAtvaOg9LxY9/a4es9ZvGq1oz2jHKW8XvMYvCqb4bzdl4m8cuEqvLl49L0W/wo9NLFWuku8JTz4nT+9jBHWvGT32bwK4Ds9+PoDPUg6hTzLNqG89wUNPZ8K8Ty+QUc9RTy0O/9QgLyE5U69qGlHvN5tFDtV0po89Ae8PBXrp7zReDq9tO15vcDt3Lzdl4m8fuGNvYRCEz3HYkW8H5D1PDFOojob+nE8FMNhvCAVgLt89x89m3RtvBqVDr0/GYc74DgWvfFmL7wyQxk9e0ABPbcKt7shFQA84sU/PDrzb7wZTlw8whWjvH5l3TzIJO26SBuZPMdixTtsnxE9Z5hmPFX8jz3zbwk9vza+vJdamjo4hbK8X6q3Ovz16jxQCcg8EgzDO7FM7TxyH4M8DMqpPDsmvzxp/oS7Y34TO6QwCDz9KLq7SdK3uxjKjDyR+RQ8LjFlvQRgyjyrZxi9ubZMPI696zzPjsw8Uf4+u/j6A71QFNG8h8QzvR3kX7zYr0q8RyYiPXA1lb025CU8yzYhvXtAAb0SF8y8RyYiPauGhDwW/4o7RKQBPTEQSjxMsZw8XrVAPD0QLT0+x8s8Lbieu1Rh87zy3/U8Zh8gPNniGb1zmEk9ZWiBvHdsJbyavc49NuSlPH0Lg7zcrRs9oJqEvAwIAjweDKa8QpunPOl4gDxqRPw8LEd3vDWmzTlpRPy6QWhYPVd+MDx8uce8yBlkPW5LJ7xtGFg7rqtguzeQuzzhDqE8djnWu8i0gLxLvCW9iNgWPXSNQDtDFO48OKSePFFbg7xUn0u8vJWxuiHriryPsmI7aznzuxTD4TyrzPu7+dCOu01ou7wD54O9dI1Au1ns7Tz4qEi8okYaPNwH9jrWA7W8ArQ0PBPOajm4Hpq8F/QBPXJl+rzVa4I7arUjPTWmTb3lZsw8BVVBuxZvdz3nUDq99vGpvF/oD71NphM95xJiPLVeIbzqL587vwPvPE1zxDyR2ii9S7wlPXTqhDtT6Kw43IMmPfjbFzw9TgU9nrAWO4h70rt8Fgy9TDXsvHOYSTxIn+g8btp/PDJOIjwuMWW9RjGrvd7xYztdwMm5EGAtveqzbryF2sU8edpiPLn0pDyWZSO8ic2NOrjBVTwSaQe9n0jJPO7FojpKBYc8MRBKO9wH9jzXutO7zeI2PQRgyjxhGPW8oxylPGQ1sjy/kwK8y7rwvF9s37yu6Tg9MRBKPPIdTjumvTE9Th/avDM4ED3Yr0q96fxPPQ2ByLyeFfo8dYI3vXe1hr1Fegw7aMs1vSO2jLyF2sW7T5ABPLkTET2WJ0u8KC0kvaXIOj3jfN684BkqvnD3vLzBICw9vZUxPQVVwTz28ak8hKd2vLp4dDyx5wk817pTPU2mk7yqFV29RjErvFzLUjpnMwM8e0ABvOzbtDyoK+87BGtTPBIXzLn1/LK80yRQvMYv9rxoCY48gQbqPErHLj1cCSs8AvKMPKhpx7wdF6+7VkvhvH6jNbyrSKw6RTy0vOO6tjxnMwM8bwLGvFmHCj3bjq+8fPcfPVxHAz1Wx5E9M/o3O8T/ED1Fegy9/Si6PNd8+zzg21E9sP2bvfJbpjz1vtq7HiuSvGyfET1KS/68IcwevbxX2bwzOBA9TXNEPLLcAL1J0rc8b18KvfZ1eb3PzKS8edrivPyQB7221+e8mNNgPH7hjTx1gje8GU5cvV0dDj1jQDu60Xi6vA9rNrundNA7pQYTPXpLCr1FPDQ9sJXOO+Svrb37C/28Iq2yurVeIT3nUDo8w47pvHPWob1GbwM8vamUPP8SqDw2XWw+2AwPPZq9Tr2n0RS9dMsYPKuGBL2Hhls8bVawOfcFDb2af/a7hCMnvWn+BD3LNqG8kASeO8oD0rxb4WS7VVZqvWJLRD3YcfI8hiwBvFhAWLxBxRy8Om8gPaM7Ebw5PFG9vakUvUeqcTxgYdY8QxTuPOzbtDz7fKS79vEpPCqbYTyZJRy91HYLPdTb7ryY02C9P37qvFTdIzwwWSs8BogQPaQRHDy5eHQ7isKEPBW42LzmuAe9YbMRvOXthb2dXts8gayPPD/6Gj0Yygy9VVbquslrH7ya+6Y7c1rxvPUHPLwlEOc8xi92vHLhqrzjfF47/h2xPPGkhzx38PS7Th9avM/MpLyBgho98HG4PDeQuzxbUgw8rMFyPTfOkz3gnfm7/jwdPSSMlzyfSMm7WHOnPO3QKz0Ylz28Oya/vEU8tLwkWci7dcAPvdXQ5busPSM97sUivFOqVL1cCas8WJITPTB4Fz0ib1q8/lsJPaqRDTyI2JY86UWxPJ9IyTxryYa8Bz8vvQNrU72AjSO9OXqpvJmK/7xoCY680INDO6QRHLwirTK9MgVBvTabxDw4R9q8xMG4PBCeBb0huDs89rPRu5kGMDyWZSM9My0HPR8BHb0PqQ4804EUPKPeTL0aQ9O7two3u7g9BjwU9jC8scidu6fRFD0nOC295rgHvPsLfTyXHEI9xi92vHaWmrw2+Ai9aI3dPI77Qz2SU288yJUUPZynPDvQg0O7fmXduAd9hzyekSq8DIzROjJOIryrZxg89+YgPQ52vzz2EJY83IMmO7ZyBDxqtSO8+ZK2PDO8Xzw+x8u8b1+KPFvWWztLvCW8qZwWvdrXEDwVChQ806CAvOakJLwWb3e9vkFHvN6MAL0irTI9w47pu2uqGj0V6yc9QpsnvQ9DcLx2lpq8lxxCvQK0tDyMEVY9ESLVvBIMQ73ih2e943zevC08brwXb3c8pNNDPOwZDbzmW8M8tX0NPe1Ue7wr7Zy62xJ/vGxhOT1VVmq8cmV6vVd+sD1nmOa85HHVvBQ0iTw+EC08O+jmPA9rNrzgOBY9EXQQve5J8jtU3SM9OIUyvI3IdDym3J28bg1PPISn9jz+PJ28Z9Y+vSc4rbzwcbi8wGmNvOm+d72DLrA8k0hmPOCdebxXvAi9uP+tvNf4q7zpvne92O0iOXXLGLoMl1o8bZSIvcE/GL3TYii9/1CAu1j39rzzbwk7ArQ0uy16Rrs83V29f9YEPUBz4byzsgu9MBvTPLbX57tNc0Q8WuFkvaB7GDt3bKW8WJITPKLp1Tzqs+44T9Z4PNgMDzsA1U+9K+0cvHwWjD1x7DM9AJd3vOeOkjzqL5897z7pu0u8JbygSEm8ZexQPMLXSjzp/M+8NHP+PDoxyLzy33U9u6C6PJkGsLwMjNG83ySzvJbp8jx7Aik8RjGru1xHA7189x+9keUxPXBUgbx+o7U8y/jIug845zvN4ja9+dAOPQYX6Tyc5RQ8cewzvJCn2TwXosY8VfwPPSSrA734nT88jWMRvI1jkT0INKY8fXDmvIxuGjxDrwq8ymCWva7pOLizdLO7BJ4iO24NT7yn8AA9Ez8SvGN+kzxQy++89nV5vMArNTxBxZy8E85qu7YVQL2d2ou8Rf5bvd9iCz0/fmq8DJdaOxlOXL1m4Uc8MWKFPPwzQz3DzEE8Iq2yPHaWGr17QAE8C9WyO6jGCzxJlF+8XMtSPCvOMDpQRyC8bGE5vclrH7xdwEm9kZzQPGp3S7xQCUg84/iOvOlFMb3ixb+8OEfaOzFihT2+A+86Dna/vDsmPz0irbI7xm3OO2Q1Mr3HoJ09ArS0vDQOmzrxZi873+baO8kOW703zhM8BC37vB0iOD16S4o8mhqTOwZKOL0Tzuq8W9ZbvciVlD0DqSu8/t/YPOYd6zxkVJ68zplVu4GCGj07ZBe8hKd2vKsK1Lm7YuI84BmqvAaIkDtb1lu9xTr/vAZKuDzQg8M8nwrxvLQr0rz1Bzw8RAnlu8I0jzy1XqG8g/BXvTfOEzyaGhO9K86wvKvM+7vkzhm9TDVsvQc/LzwvJtw8qKcfO3WCtzuavU69qV6+PARgSjww3fo8b8TtvcArNTx9cGa89rNRvHsCKb3LNiG8SdI3vA2/oLxOH9o8o6B0vd5tlL3bEv88scgdPTSx1rv96uE8u6A6PHIfg72VcKw8B14bPNUOvjw0c/478h1OvPBxuDze8WO8NHN+vOEOobzNSgS8BL0OvVloHrxpglS9YbMRPcLXSr1QFFG8BGBKPe7kjrvih2c82aRBvIGhhjyVrgQ960OCPHmACDyOWAg9FDSJvbJ/vDucp7w7DnY/OwcM4LxR/r67oicuvBIMQz2VMtQ7AMpGPecSYjsZgSs8zlt9ugoeFDya+yY8N5C7vKM7kTtBpjA68ShXvUGmMDwdIji8K84wvYxPrjzAKzU9IIVsvXvE0DxKx6464iKEupuyxbu3SI89K5DYPLN0s7xzmEk8arWjvLjBVT0Ml1q8teLwvINsiLw6joy8fHvvvPbxKb35VF48Tl0yPBLkfDwyBcG8QaawPMgZZL0yQ5m8WxQ0urp4dLx7hni8nZwzvbUgybzPFQa8x2LFO+GS8Dz7fKS8IIXsvFWUwjxKS/67PRCtPA84Zz2qFV29iTLxPOQzfb2/+OU8R+hJPbqrQzzsGQ29ArS0PCKiqbkz+rc8hpFkvBBgrbt5VhM9Lq0VPRiMtDsyQ5k8edpivADKxrzvfME8bVawvE9SKTzlKPQ7a8kGPSsBAD1Fegy9HisSvfazUbza15C9kpHHvFp8Ab2F2sW7fHtvPb3IgLzt75c8hEITvUDvETyF2sU6/DNDvQUi8jvkzhk7YkvEPOSvrTxed2g9s5OfPKbcHTsGiBC8u2LiPLN0M7uQBJ68H85NPS08brvEwTi9TWi7PF3ASb3/Eig9wSCsPFH+Pjy14nC8ic0NugPnA70jZNG860MCPQaIkLz1Ogs97dCruS6ijDxT6Cw9vza+Orj/Lb2Cd5G9uIP9PLCVTj3snVw8KpvhOoBPSz2AEfM8pYriu4QjJz20K9I8zK/nusIVIz29TNA5CuA7vSzXijwadiI9NviIvKMcJb1z1qE8weLTvCkXkrxDkB49yYqLupsPCjwZoJc7TDXsvGnArLuttmm9BJ4iPbOyi7yh9F68xfQHu89Q9LwaQ9M8PN3dO9lm6bxcjfo8f9YEPWWu+Lyi6VW9EZ6FPWAjfr0YWWW8UyYFvXA1FTwvZDS9xi/2PIxuGj2Dsv883ngdu/0oOrz0EsW6sr2UO1SfSzyFnO06HTabPNBFa72LHN+8f9YEPU+QAT0vZDQ9CDSmPALyDD342xc7X6q3u6+g1zycp7y7IMPEO6z/SjyRXvi8uqvDvE/Nk7zTcIM8huDcvMqEaL2CJdu84FwKPB/NDD2vD5w8X2mvPNdXJTx+2Ae9wocAPCtWUj0PEKo8ZKglvQ/DQjyTA/E8KU7pusGgyjwCJKM71yCYu5bUzDwgVPG8tOtQvArRs7wrCes7t7ysvO5/njwrxIA8uirHOwtrgjxlkku82UFLPcdjtbx/zRq9rosnveWQk7zNP+q8Xn8JvbFGKTvQ+ms8tji4u72YYbyvwrS4sxcFPNe9Vru4CZS6oe/3vNhXpb3eM1q8rKRxPZIvJb0Whq09msZbvERaFL1OKNi8ZLOSvDNmpLyfG6y9+fIdvNXpCrvuJ8q7ioKUvKAF0rwZjha8q21kPV4yIroto7m7JfaovAGgrrzi1RE9xEXyPFPKjzxVnlu8Zt8yvZLivbxRiJW6S23WvHNPrrzwleQ7uxRtvAE9bb0iJc08N6UavA8Qqr0KhEw9bFW2vLbV9jhJ6WG767mvu4noRTwDweE7/PqGPEXeiDzBOpm7jie8u+KIqrwUTyC9gtUDPYwJ+bv6Kau7ZFu+O4O/KT1Kur27715XvKHsh7zK0c88+7iMPNNlFj1QBKE8dexsPZ7OxDynpIU9Bt+kPF3PYLzLu3U8N24NvUZlbTxq0UE9rFQaPbFGqTyN8C49XeU6PfWdTbyxRqm8Ft4BvXxUkzzojQ+8mjSKvHcgijw0UMo7ijUtu2qEWr1Dc947gASovJ409rtI/7s7LxHUPAAG4Dz8YDi9yx63u7NnXL2JSwc9zT/qvJX1kz1OKFi9WPOrPBYjbL2GhRi8Bi98u4AEKLw5j0A8WFldvDyXKTy95cg83aGIPMnnqbqUA3E9Ji22vGNxGD3HyeY8N2OgvAtu8jzLHre8bozDOwC2CL0SIwA91LVtPQNmHb1PEv68SjbJPGY3h7yg7Ae9xiyovMfJZjv2Nxw9sjBPPefHoDuDckI9ByEfvTiwhzxu2aq8Ri7gPFWe2zxt74Q8+AvovLci3jz5P4U8zxBGPWqEWjyl6QO6a7tnvS6NXz0pm9A8febkPD4mC736KSu9Ln+CvIxW4LzuDoC8KrkTPJSdPzx+HXI7TUkfvfNmwLz1nc0703CDvd3mcrz9PAE9loflvKScHLzkqd07TaRjuTNxkTz7E1E79Oq0Oxne7Touf4K8715XvI5/kLmSfIy9VUMXPNcgmDyaxls9gTs1vCC3MrxqaxC9nGCqPHGUrDuWeYi851YCPBD6Tz1NPjI9DOQJvQ8bFz1yGCG8WUCTO5aH5TwsVlI8YDqLPa7CNDvMVUS95xQIPQNmHb3MCF06EtYYPRGfC72PwQo9CLAAvarbEr1kqCU9vZjhu52XN703YyC9x7uJPFu5Gj1TUXQ8mty1vE3xyrzvwRi9PK0DPHdw4bvjFwy9huBcPEE80buKNa28e8Uxu1oquTw1NwA8pZEvvUj/uzxCJvc5m8bbuhGUnrwIs3C8ne+LPe4OAD1gtpa8R8iuPCAEGrw16hg91ZwjvFu5Grx7Ehm9z3Z3PbCs2ryYsJW8oe93vN3jgrwEkj28YnwFPB6LkrmZQmc9BZI9uwSzBL18/L486x/hu8HtMb7y4ku9c0+uPNSnkDsAtgg7HFQFPZchNL22OLg89FDmu3S1Xz39PAG9fxqCvQWSvTySL6W8LUD4O70ysDx20yK91E+8vIqClLvnZN+6tjg4vWytijzwXte8niaZvJ9zAD2KH1M8btmqu3LhEz01nTG997sQvH4d8rw+a/U8JhdcvC09iLu0ASs7atHBPIIl2zzI/QM968ScvGBT1TxHFZY8+AtoPZ2XNzxXIlA8leqmPNIxeTsNog89RUS6PPmPXL0J5w28xAAIvUPAxbxBnxI8HjM+vCrSXb0Rnwu7ztk4PdgKPjyi4Rq99jccPWSzkruMVuC8SY4dPAmaprtt8nS9ijWtvObSDbww+3m8otYtvG3y9Lxm37I71tOwPGHtIz1kDtc8aPIIOnMYIT0F6pE8g3JCPcnnqbziiCq9fZn9PDytgzwBPW28OFgzPe8R8Ls3cX29KwlrPGBTVbvS4SE9qelvPucXeD1AUqu8dTnUvONy0LxGLuC7pA07PXinbrtqhNq8gLdAvasSoLwwlUg8HYAlvNC1gbyE9ja8J8cEvJchNL2fUrk88TqgPZMD8TzjXHa8iAkNvV3lOj3C19c7+dxDvUq6Pb1uJhK888mBPY4nvDzwA5M8qUwxvSQMgzsh7r88FLXRvLS0QzuG4Ny8ix/TvJZ5CDx1OdQ8SelhPEnp4TxnbhQ8L147vZ6B3TvXcO+7chghPCC3srwegCW9cZ8ZPdXpijyHZFE7nUrQvD8FRLyt8dg7UjBBvW/DUL28BhC9RZEhPeX2xLqi1i07QiZ3PCKIjjwegCU9zozROGSoJb3VnCO8G3g8Om7Zqjw7eWY9nOQePeqCoj2a3DU9etuLvWOzEj3ERfI8KYV2vK8aiT3oCZs6DaKPvKSq+bs55xS9f1EPPFFGG73Z9GM8qxKgOmq757l20yK9ALl4PW4mEj1ujMO8e3hKvfxguDzPaBo6SY6dvBBdkTtx7IA8KYX2vKfIPL0M5Am9w8F9vNNllrvfzai8qjZXO+mNDzv8/Xa8+T+FvNsSp7y6Ksc8MLaPPPMDfzylkS+8FLXRPBhaeTzEqLM8PGCcPCFGFDxbxIe7cEfFPME6GT25QCE9HjO+unBHxbzB11c87fC8PN3jgjw2LBM9mY9OvSlAjDuUAIG78Ks+PKj/yTsi2OW8uKZSvdF+YDzYVyU9T6zMu4SpT7xegnk8uxRtPKnp77xGe0e85i1SvS8R1Dw/a3W8SoMwOkLWnzwVn3e7+xNRO9lBy7wZmQM8fjPMPMseNzz4pbY8FjlGvQseG7xE99K6HUmYuxLkdbwu2sa8arvnOeu5r7w+gc88171WvdBdLbu0DJg5dALHPVCsTLtzy7m7T6xMvG/DUL2BoWY7WxRfu2iz/rw5Qtk8zoxRPQbJyrzF38C8hKnPvBJ+xLydlze8LX8CPK7YDjwUWg29oTxfPQX47jwzGb28P10YOlFGG7w9ohY9LaO5vNyv5bxlfPE9J2TDvH8aAr2faBM7we2xPMC2pDwA+AI8GEEvPZvG27p4CrA81oZJPeC3zjsgt7I8jic8PBZwUzwAU0c8TaTjvOmbbLpmY6e9Ji02O/hYz7upTDG96s8JvC4yG7u6zwI8btkquyixqrwN8ua7H8KfvOO/t7wpQIy8wKBKvLci3rzfzSi9gtWDvE/CJju8rru7pemDPJRQWDum3ha807XtvCnot7yFk3U8mKWovJ5okz0Whi28VAwKuwN0er3d2BW8qGKLu7ROEj2l92A9jEgDPc/D3rsuMhu9HmpLvTMZvbqh7/c8VZ7bPASSPbwRRzc8BLOEPbROErwBoC48Y3EYvWBT1byFk3U8lANxvBGfCz0tJy68oAXSOwu72Twgt7K7u3cuvfADE70AU0e78AOTO1vH97yOJzy9+UJ1O93mcjx9Saa8TosZvc8Qxrn975m7SFeQvDytgz10Wps7CtGzPBdw0zyLuSE9BZI9ur7P7jx0Ake9zoxRPMRFcrziiKo9+KU2PYcX6jt1OVS8kS+lu4rSa73BRQa8X2kvvE+sTDxTUXS7/K0fPUYu4LxHyC49oi6CvOWQE73uf56876s+vcFFBr2mLu473oDBO8rRT7zgUZ08Wiq5u62hATyme9W9En5EPAiwgDtYDPY89yHCuwIvED1BnxK9CU2/PExUjLtInPo8nP1ou6X34DvW3p28EZ+Lu0fIrryHx5I7HjO+vCMBFrzVnKM7Z26UvOGTl7vB7TG91E88vBvFozy169A8cPrdvNcgGL1hPXs9fZn9PKrbEr3VOWK9gFR/PTdx/bsM8uY8jo3tPNj047x6K+O8DGAVPevEHL3y4ss8fZn9PGX1jDwEWzC92itxujYsE73zvpQ92fRjOvgL6DwRnws9LPsNvWnyiDyxRik94FGdPDPMVbyle1U8voqEPBe9OryRlVa8HtB8vSsfxbyt23493aEIPabeFr02vmS8oZ8gPerPCTrJTVu7T82TPPu4jLtODw46ZXzxuvxgOLwJ6v07D3ZbvRyvSb0CJKO7mtw1PTCrIj3vwRg9+KU2vZilKDx+M8y8ww7lvAyl/70UTyA8bfL0PEcVFr2yfTa9BxYyvbMa9bxdS+y8vn+XvDyilr1i10m9zoxRPWXqnzzFeQ+8M2YkPLim0jzuEXC8iZtePPWdzTrHYzU80jF5OvTqNDzi1RG9/3OOu03xyjq8rru8r8K0vIC3QL2pTDG9NiyTu/ncwzyoV5683GJ+u3/Nmjx624s8gtUDPexW7rr7E9G7Hs2MPUfILrt4Vxc84J4EPSj+Eb3Dvo08IwGWPEGfkrvrua+7wnyTvN4zWr1+2Ac9uKbSvKcVpDwrH8U8a2uQO6SniTzMVcQ7FLXRvNsSp7zhO8M6NTpwPEyWhr3rEQS96ehTO8cAdLxk+Pw8EK3oPAD4gr1KgzC9ex0GuyAEmjrgngS8WUCTPQ8blzxTyo+832pnvLgJlDr4C2g9QFIrupX1kzsyf+46pi7uO94z2rznFAi9LScuvMRbzDzBOhm8XhzIvBRaDT3egEG99UKJvGopFrs8lym8LPuNvFyY0zzXcO86vAaQuwnq/TtiJLE8DFWovAzkib2gBdI7C2uCPAopiDsbxSM9bO+EvY4nPD26gpu9UePZu28QuDyWNw67Ps42uz+4XLtujMO84r83PWXqH72kREi8KZtQPeu5Lz1Szf86Q6rrO51K0DwYCiK8niYZPcyiK7xJTKM8hi3EvANxijupTDE9xxbOu19pr7tnFkC8ftiHvUiyVDx+iyC8Bfhuuy3axj0S4YW8ajdzPGwITzqYpai7LT0IPexWbr0/uFy75Xq5OhuvyTxAuNw6JfYoPXe9SDzaKAE94O7bOobg3Lub/Wi8wtfXvHQCRz3jclC8SjZJveSpXTxN8Uq9atHBvFvHdztPrMw79AP/vCIlTbyZ8g+7WAmGvNbeHTzzGVm8iLE4PNt4WDy+f5e7PK0DPMu4hbs+NGi94ZMXvS4yGz01h1c9eEE9PNbTML2Hx5I9T6xMvEXeCD1BPFE9aADmPL8G/DxdPQ+9ZfUMvYGInLy/ab08Bi/8PG0/3Lw58gG9SoMwO8xVRLwbxSO7dezsOaLWrTy/HFa5NFBKuxcjbLxPdb86RntHveQMnzy0Aau84FEdPKjpb7zJmsK8pxWkOjdx/byUUFi928W/PKX3YDz/Gzo7wiQ/vWduFD1uJhK9K2ysu8KHgLxF3gg8/GC4u2izfjwrVlI95fZEPS8R1DuvGok8ytFPPN7YFT0aK1W9qFcePcNxJj08/dq8PGCcvBZw0zsKN+U77driPG/D0LyqIP284ZMXvSWTZ7tomjS8EjHdvONc9jwxOoQ7BfhuvP+4+Lxp2029snT+Oxk/e72Db+q8U6wBvSzu2TzZNww9pGc1PKguND3jSt08q/BMvfOO4zzwPAk9eh9UPLCIFryNLz89b24xPRL4Dr1U1S496N3AvPT5u7x3WNU8wr1qO8BhRLtPraO8PJ04vBfouryuTHM7U6ebO0WMQj1LEHQ90eKPu13EuDyYUKC8gg5eOwkFQTyMycy8PjsKvT5uA71EJtA8UROWOVqbCzxsRQQ8sIOwvJQjL7xzJv68kGGWvBBkCb08N0a97AoyvcL/lTz6F/u8jMlMPVvz7bxPsom81y5ivKE6xLtBxcM7QMqpvVzOBD3g+II8vdcKPLcRrrudCO28rVHZvNczSD3Lh4s7bJ1mPA6TvrzoGgY7WCzvPMTGFD2wgzA8u8n6vAhwGb3LEme8IZ7DO8t9P7xBX9G86tP0vKGgtrzkRXe9zkmku+gaBrxtnWa9HQb6POxCkbzbyxE9mkFuu/fAujvfHey8YuL3OxlJRz3spD87ntk3vbHpojwusHI7K/M/vCmNzTwmNg08+4LTu3fIk7taaJI8OXBHOz2Y0ry/YUS8QV/RPM1zc7wWv408RfI0O8JliDzRSAI9cMVxPYmlBT0IDw29an6FPJjgYbzCZYi8+iHHO7Pf1jw8oh674lQpPcWE6Tu3d6C7+/IRPXIwyrx0/K68tEVJuzd1rbwpJ9u7kPuju1zEuDuGNmm9uj4fPRyABL3LF008feFsPPDH5Dsio6m8aX6FvbarO72cDVO9nBK5uzRIPL30jmM9qopaveJUKTzXniC9P5yWuznbn7x2yBM9EysIPSzu2Ts4dS09c4zwPKrMBTxkI4G80wZXPXzwHjwtkZE8R1gnvSmI5zyaHAW7Uai9vDZMAD1JtE28kygVuyfLtD1aYyw7if1nvOupJTxjuCg8jpWxvBQmoruS+gE9JGXCPEm0TT34wDo7VWVwOuykv7wpJ1s9RSqUuu5wpDuInFs9qL51uuZ8NDwe4RC8CWbNPIEYqjytt8s7adtNvNVi/bzxNyM9/VMePYmlhTwJZk08IqMpu61R2bvOSaS8XM4EvF6VgzyIB7S7cW0PPFr40zuP9r079fTVvJ8/Kr1wDAO9nxGXPPIyvbxQQsu7A901O5qnYDyq+pi8ksIivK8iJDzCKMM7M9j9vH63HbwaROE8N3oTvc+vlrv19NU8S7iRPRMmIr34tu688jK9vJhQoLsfQp076z7NO6otkjsvsPI8kPsjPN5fl7zMfT89M91jObrdEjwk+mk8GqVtPKkk6Lkh2wg7OWthO35MxbyOzZC8MlKIPFcx1TzuqIO898Wgt8fqW71NHgS9+SatPDoOmbvAzBy9uG3UO6xWvzz6Icc8r61/O0sawLzEiU+8wv+VvCZg3LxRDjA9kpSPvEm0TTwxvgI9rvSQPB/NeLz/RGw8jzODO9pgubzeJ7g81zguPN5flzwmyzS7cyZ+vBPALz2y7gg8WQIgOlr4Uz0MzD+8k708PWwNJb1RDjC4zOiXvKhmkz1YnK28D4lyvYRFm7z1Xy68DMy/vOKMCDyJAs67ksIiPes+TbwUsf28MIG9PHxWkbxWbhq+lyKNvRD0Sj2xiJY8MRH/PJ8/qjwTtmO98i3Xul26bLt/Qnk9bQi/vDG+gr2kZ7W8M02ivHLTAT2y7oi8KY3NvEZYpzpH6Og7154gPN4sHr1+vAM89Pm7vB52OD1jTdA8O3QLPQakNDy3Ea66LJERvZRbDryebt+8AueBPNCqMLkMwnO6lX/VPFKe8Tpzzpu7DzGQPfZfLjtW0Mg8P/leOx9CnT2yeeQ7HnY4PXX3SLwCcl08q2ALPUi+GT2e3p29UUaPu5rpC706QZK8l++TPKKlHL1eKiu9PpPsuy1UTD3tCrI81NyHvKfIwTxLgDK9FBxWvWSuXLzTBte7DdADvVNvPLxYoRM9jMnMvJmDmbxkSOq8nXNFPJYUfTxxxfG6LFmyO6uFdLxEJlA9XbpsvD2injz1Xy48riKkvQQVlbvFhGm7+4yfPJV/VTzTbEm8wy2pvV8gXzz5kQW8EVq9PItedD6skwQ9VNUuvUbyNL0PMZC8HAvgvJqxLD3LHDM8YPEpu9OpDrzcmBi9F+i6PEHA3bsnaYY8GbkFvfXvb7vpe5K8a6JMPVgCoD3LgiW8GYYMvel7Er0bTYs9EF+jvBUhvLzd/oq8LO7ZPFgCID3J84U8GueYPNplHzxvacs7eVwZPS33g70EQ6g70hAjvXVdO71kI4E8eC6GPKzrZrt6H9Q8RlinPFy/UjyhpZw74POcvOs557uxE/K6EPRKvXZiIT3Z0Rk9CwkFPEzmJL1+TEU8ElDxu0tXBb2oLrS8d75HvMZfgDvLEue7NUPWvJqsxjsjDgI8iJxbPfDHZLuilmq82f+svMDMnLv93vk8hEUbPZhLujwATpY9pGJPPaE6xLwZSUc9R+joPF6QHbw/ZLc8hqFBPV+QnbzEic+8n0SQvJocBbyESoG8+PgZvEHFQzw7zO28V9SMvXi+xzye3h09j4vlu3Viobz6h7k8P2kdPNU9FD2/nok8BNjPPF0vEb0gR4O9zuMxvVNvvLzrPs06w5gBvdplH7uiluo8hasNvP8fA7zfxYm8aHD1PBje7joGpDQ9mFUGvbcRrjyqitq7k7jWPCteGD3jups8qZSmvG5usTxLgDI85oEavfDRsLt95tK8tUBjuwth5zuSV8o78W8CPdiUVL0utVi8UUaPO53jAz0hPTe8sLuPvL+eib2RYRY9uKoZPVU7oTvdJ7i7Bp/OOwCwxDwSVdc86q6LPCbVgLtQqD07psPbvK63y7w0rq48ksIiPY+QyztfIF+8M91jPOgahrxp2807LJERPdIB8bzLEmc8KsoSu138l7xmD+m8JsFoPAG0CDyl9/a8h94GumJStr1+TMW785gvvSBHgz2cDVO8umjuPBUhvDz+hpe9GbSfvO6og7yYSzq9LrByOwXTaT3aYDm8E8AvvfVfLr3n54y87mbYvHSMcDtYAiA9XFlgvDcPuzxrpzI9mOVHvT4DqzwaGhK8EcWVPQAR0bgTJqK91jiuPZO9vLxEjMK8xu9BvIRANTouJRc9DMw/vJx9kTz3Wki9EF+jPBqvOT0gqI+8Lbq+u39C+bwVHFY8yxfNPDw3RryD2kK9mOVHvBpE4bycDdO8/7QqvabNJzxQPWU8sX5Kunkkurskogc8d8MtvETJh71hges7v2FEvFxUejtKr2e91A8BvbC7D714vse8uKoZvYIOXrxrPFo6GxWsu3DF8bz2Xy67vS/tvAlmzbw5a+E8klJkvHuAYDw1qUi9ZnpBPHKborsuur483iwePc9EPj04rQw9Wf25PCCoj71F/AA9akFAPTCGIz09k2y8y30/PKgutD17iiy7uHcgvUofpjpuacs8js2QOk5Ml7tBX9E8oTXevEORKD3CvWo7lYkhvOCD3rs/aZ277mZYPB12OLy0sKG8h94GvfZkFL0D3bU8VWXwOggFwbuAqGu6yiEZvD2YUrzYmTo9HmzsPF8lRT15ueG7EF+jvNtguTtnD+k7OXBHvT9pHbyrW6W7QGkdPXX8Lj2sWyW9dV07vHSR1rpJSXW99DaBvCki9bv9Trg8LJERvfPQDj36jJ+7c5a8PE+tI7yjBqm8pl1puwzC87z/tCq985ivvIltprwnxk69akHAvDMfj7ySvby6L4uJvXkpoDu/ALg7RfcaPcHMHLw+/sQ8p2aTvMLHtjypilo8qSRoPMmxWrwgzXg76UOzvCQEtjvIUM68BakavLSwob1qQcA8xe/Bu/HCfjxTBOS79DYBve51irwnyzS884n9PLah77yNLz+9OOCFPUbytDzCvWq8rVHZvKzrZj2LxOa8IqOpPFmNezsr87+7EyYivZhLujyHpie9Rl2NPNczSLyGpic8g29qvSRlwrxIU0G9opvQPU9/kLy8Obk7zH0/Pb2QebxndVs8twxIPVXLYjzsQhG8jMTmO03hPj1ZAqC8hEoBPfSJfb1ocPW86djaPDUZBz08MuC8ZPAHvLlyurpcxLi7nXPFO/DHZDygz2u96+EEPaRnNbxOTBe9mFAgvKXNJ70kZcK8Sh8mvFOsAT2brMY8tUDjPDJ3cb1G9xo7psjBO4vJTDyBDt69O3QLPZjgYTz3wLq7VtBIvfItV7ts35E88sL+vEtXBT1eumy9ZVGUvfvyET2kYk89x42TvPMDCD0UjBQ9Lro+vU9/kDywiBY8qvDMPM9EPjza/6w7V5wtPGD2D71fhtG6sBPyvDd1rbxnddu8eLlhvLIhgr3xbwI9M+JJvOHznLuIAs48grGVvC61WD30MRu81dK7PLAYWD36HOE7goOCvA0tzDwR6n69V5ytOl+G0bzwzMo7JGoou61R2bwaP/u8WmiSPKKW6jrIwIw84VkPO3I1sDyE2kI80gHxPFZumrwUjJS8psNbPLNKL70tT2a91A+BO9JDnLxgKQm9/+wJPUi+GT3xbwK9Zw/pO6MGKTzVPRS8ITPrvJbqrT3dt/k7mbYSvSgsQTwvWBC86eKmPZHs8TpLhRi9w5iBO400pbxXNru8Lbo+vGRIajxfJUW8jipZuQthZ7wICic8/0RsvT47CrxeG/m6KY1NvB/cKrzo3cA8Iw6CvCbLtLv+SVI8udisPGd1W72SwiK9LO7ZPJhLujtsRQS7jiVzPbLuCL1Z/bk8OAVvvUHAXTwGpDQ9NEg8vPkmrbwLYec8LfcDve6oAz0VF/C8Ba6Au/HMSj36hzk8CqMSOzNIPDk44IU80gu9u/IyvTs6Dpm8twxIPa68Mbyx6aI8PDfGPPuMn7pSDrC8WJytvLzXir37JYu8Do7YvJHHiDzv+/89dvJivIXQ9jw1Q9a83Se4u8FcXjxcVHq9DzEQOzCGI7wwG8s86BqGPF4qKz2rhXS8ZLNCu98iUjyESoE8hNpCPBhOrbwmAxQ9E/iOvH8dEL2YIg08GIaMu7ndkjyrYIs8dpoAO+4AZrzyLVc8dAGVOybBaDy9BR49lcEAvTpm+zw9LXq8oaUcur0FHj0ZScc7EyYivbTacL0plxk9kfFXPUUqlDyYgxk8O8xtPWkYkzxGXQ08iQJOPfMo8TwJAFu89u9vPAY0drz87Su9pJ8UPFMJSjwhM+u8EvgOvdIQIzu3fAa9snnkvMhQTj2EQDU8E16BOwRDqLtlHhu91T2UO9r1YL2dsAo9P2kdvN/4Ar3a+kY6cF//vD9kNzy9L2085hbCvIec2zy52Cw9aHD1vGDDlr0R6n49jMlMvRPAr7y3ES69Zn8nPRUhvLziVKk8kvoBPQs3GD2Q+yO7cyvkPLcMSLlBNQI95EV3PCE4UTwAThY9OdY5vW/UI70YTq08S4AyPeVTBzuSwiK82/B6PKRiz7zQP9g7xfmNuvA8ibs3TIA61NchOyDSXrskBDa9XtUMvS/MfDwwXni90NY2vatywrwoZ9M8XY+9PG1X8TuCOQE9o+vAPIouh72smNg7ZPRmu8gpH7u/IQ48A3FjPQb9AT1Umje9zbZ9PWcUoLzaSA69S4E6PXihE7yTEII8o6EzvCZF+7lc1yu8s9drPBWj3brZWxk9JkV7PSCShrkn1/Y8+p/UvG3nzbs6KSo9Qoy0vPGI9rxlGN68eA+YPGTO0Drr1yC62ROrPAO5Ub2aGrI8RK4MvaJ/27sOcxe9gBepvBXJ87y20Q66Or3EvKN7nT0MjH+83+j3O15nCLxUUsm7FjEbPMjfkb2AP948OU9APFW+rrpcJfe8FsfUvEqF+LxLgTo9xiu+Ol2NHjxcJXe8yE0WPKN7HT0UW289FsfUO3npAb0m+229vu5JvJvQJLxDZp48KSyTPIr3BL1mqLq8Fg9DvaPHybsCBf67W9tpvW8tHT0xfrG8Q2aePJpkPzxUCLw89F6ivIrTjbttVVI9nPSbul5WHL0FSa48Dj40u1PkxLtCjtM8ZD50PCBwrjyKiYA7mR7wudEvkbx4oZM8S/Fdu4joNz0FbSW7qwbdPKM1zjrrjzI9h1p6PARLTT1nEgE9oYH6vMcrvjzH3xG8rOJlvPt5vjya+ng8iveEufQUFT0Du3A86SPNuuuNEz2/fqY7KQicu7VlqTis4mW814NOvFMKWzt4ahE9iFhbvUOKFT1/ieu8gGG2PBYxGzxkPnQ8/J21u6MPOL2qvu68eTMPvRidgLwwyl29zrRePVW+Lr2iEVc8KYcMvRfprDqclwO9Z28ZPaLHyTxsoX47TMkoPWfuCT0nZbQ8vrOJvFVQKj1VYZY7VAg8PA6qGb30XiI9KRsnvNpIDr0DuVE9ZsyxvOFU3ToNGr09v3yHPKN9PLz944Q8nBiTOt9WfLyrBL68IMkIPaIR1zwElVo9b78YvPvBLLsNiEG8yMyGPeEsqDxvC8W6MYBQPbzMcbzqxJW8DIrgOf1RCT03U/47qpp3vM9Eu7yix8m8Mg4OPeHC4TxTdkA9mGh9O3dsMLz7Czq8DtCvvIAXqbzzFrQ8XNvpvF210zykD7i8iOpWPOuxCr3PsKC9VYWNvLSN3jxlYuu8pTEQPJApajsdmOO7Z7cHvH/3bzm+WBC8mhoyPK4AAL3jYQs8ia8WPURACL1/QX05dibhO215ST2SJay8pJ8UO4cQbby9ylI82ROrPIowprzf6Hc76+iMOzIyhTwgJiG9kuyKPc9oMjxsM3o64pgNPR1Q9btVzxo84gaSO5C75buBlpm8OuG7vCdD3DytujA8rN6nupusrbzZyR29VjuAvTGkxzyj6aG7D/IHvSAmIThuVdI8vlxOPGVgTDyarsy8igoQu14MD7o7lQ+9f/VQPWQ81TqtcCM82KWmPAWTuzy/14C88T7pPNGKijwhJAK9Ot+cOzB+MboggRo8/RqHvJmK1bzhnMs8TKUxPJkcUbsfvFo9Q2Yevc/Wtjxd/UG9XWknPaPrwLxC+jg9nOGQvIdaer1MWYW86pHRvBewC704CXE8FzEbO5u9GT3genO8bKF+vSirgzxMpTG8Xh8avq1wI71DsCs9mdTiPEvx3TwGfpE89MwmvfMBCjy/7Co76G95PSBKGLxl9Ga96JPwu4daersFbSU9HnLNvAVtJTxlqDo7rkoNPKPrQLwY1AK9DIx/vHgiI70MjP88kAXzOymrAz28guQ8xVFUOiljFb0g3JO7ZBr9vK2WuTtvLR07vlzOO8bjzzxA/va6qwbduwxkyjzXz3q6rHThPDAUazyKMKY9qpp3vCCSBj2sKLW8dpTlPGe3hzwF3Ug9eVeGvbaJoDyjf9s6FoyUvK0mljxKg9m8OL/jvMVT87kxEC099IKZPKSwAL3jKok88hpyvSgsk71k0O+7DYjBvIlUHbzyiHa8N+X5PJn6eLuBqaS8vKh6vRewizySI425QSDPvDh3dbzYkhs8H0w3PVN2wLxBalw8DuGbPH89v70ddGy8eNq0O02QBz2BYTY7q5r3vA2Gor1e+yI8bKH+PNk5wTvWz3o+4FTdPG4LRb3OImO9kLvlu+t6CL2Rlc88QUTGu3gzD7x/rWK8rhOLvR4q3ztC/Fe8q7zPPJElLL0fKMA7tPlDvZquTD1nbxk9yJejvNjvM7xeMIa8OkuCPUpdw7vO2NW8SxM2vFWpBDw449o8ojVOPLwUYDz9vw08DTwVPLZBsjzfenO9rCi1OiDcE70wyl29kUvCvJElrLvYhe28WyNYPatQ6jy+pLw8KImrPCdFe7swoqi8ZV6tO5nUYr3ot2c9zmzwPLyC5DwwEky9STtrPPNgwbusKLW8itMNvW/Bt7yZZt472VuZvJs+Kbx2bk888fZ6PKsEvjxeZwg7A0vNu99WfLySlU88MsafPCgdxjxSen48kxCCPTmbbD1LOUy86Ws7PUKMtDzG48+8+g/4u/M8Sj1E5Q699MoHvXiQp7vZyZ28q07LvPMBCrzheNQ8b8G3vM+QZ721H9o7OZvsPCnRGTw6cze8BqIIPQ6XDryR39w8tRscPA+EAz1Baty8DwUTveuPMr0yxp+8iBDtOlJ6/rxvC8W8h8j+PB/eMryRTeG8BW0lvdjLvDxDHjC9oe/+PEP6uLzZowe7iQ5OO8+yvzz8Vcc8v48SPTLGH71/0dk84iyou0rvPr1dj728OAdSu6MR1zsOrDg8rm6Eu24LRT3zYEG90WaTO+rZvzy9ylI9mmQ/vAMpdbyHyH69HwTJPPOoLz0XVZI8f4nrPCZpcruIxt+62DeiPPPOxTwFWho8vu7JupG3p7zh5tg767MpPUNmHj2kVyY7ZfTmuuhJYzwNQNO8vuwqPLb3JDwd4vC8DT60PA5zl7u9EsG8A9/nvMYHxzz7waw7ZTq2vDAQrbsfW4S9k8iTOYjq1rwy6hY9x081O+Ew5jxVdKE8BEtNvWbyx7yiEVe86tk/vZKTsDzhMGY9gCgVvZAFc73O/mu9gfGSvNbPerzqxJU8vRTgPMcrPrxVF4k7eLQePZho/bxnt4c8tuSZvM60Xj0elkS860Wlvelruz0DKfW8/C+xvJtzDDxMpbG6rgAAPbSzdLxc/+A8MsYfva3eJz2/RQU942GLvNiFbTx/ieu8yCcAPemRUTzXg0682M1bvUuD2bvPRLu8f9HZvDi/Y70xpMc8iuaYPDHsNbwDS828rUysujFYm7yrmFi9XWtGu/vlI7nabAU9cAeHvWUWP7wxWBu9o+khvIgyRb3xZH+78T5puuvXILv7VUe9vMzxPDlRX7wEAUC9pWgSPVXPmrwLHns8HZjjvPzlozw4K8m7XmknPAxC8jz94wQ9+3vdPNDWNjx5V4a9FucNvJEDVD1uUzM96iNNvG17aDyk68A9Hro7u7ZBMr3IzAY8nJeDPJN+hjy8Fv+7kjaYPAWRnLz0Ois9DdRtPOprO7x4IqO86+iMvFsj2Dw5d3W68RpyvA0+NL1ngAW9v48SPdrtlLtLOUw8thscO76kvDpl9Ga9kQG1PDDstTyIxt88UlTovPp9/Lo6Kao79JMFPXn8DL3Yyzw8QY7TO6zgRj0xpEc9/fYPvaUeBbtd6Je8KRmIvbyo+rsNhiK86kfEPIlUHbykDRk91mF2vG9RFDybYqC831b8vL/XgDs449q8DELyvKOj0ryljAm8s0VwvceVBLwUW++8MsQAvFXiJb29pts8d0i5OqT6DT0yMgW7bKH+PDlNIbz9rII8vyGOPFsj2Du+DgO8mRxRu4gyRby9gEU7887FvEs1jrybYqC9GAsFPUpdw7zQwQw8k+yKuyBuD70p4gW89N2SPJKTMD3rIa6886pOvZPIEz2BYbY7tPviPEJERr0XnYA9z0j5vJqsrbuTSSM8vxCiOygdRr1A/vY7d9q0vIowJj2cT5U4tWdIPMhxDb2RJ8u8BkcPvW0x2z1V4qW767EKPPp9/DwF26m8v3yHPEG06TxUdsA7ZNDvvA0avbt4tB492V24vAOV2jz03RK982DBvCAmoTwxNKQ8DYrgvBTtarzpI006VFLJu+tFJTxTClu6RAmGvXVwbjyj7d+8BZEcvSkbJ7xCIm692ckdvetDBrzhdrU89BSVPKQNmTyiyWi9rZa5uhbH1DvQHiU84MLhvSBbBD36fXy8o308u64AgL0VyXO6QiLuPF1FsLxlzlA8OkuCvbNFcL3iviM9h8j+PHfYFbxvwbc8ZD70PG+Zgr3Fv1g8v48SPbVnyDzP+i08vTa4OzgtaDxmXq28OVHfvCaxYLxkqlm8BZEcvW4vvLuzRXC9diTCPAYjGL2tcCO8krnGPMcnADs6uyU9mkBIvHi2vTzGUdQ8U3jfPC9e+DurTss8OvCIvRVZUDxC2OC8mR7wO7bTLbwpUIq5bVdxvAXslTp32jQ831b8PPFk/7wfbo88DTyVOwyKYD1LX+K80RwGvdbPejx5IAS8xQlmvUFqXDx1uvu8eLY9vaos8zyZ+Fk9Bd1Ivb7XAD0dUPU6kOH7ugQD37y/j5I96m3aPDs6Fr21HTs8VArbOxXJcz2s4uW7FsfUvEunULtlPNW8bz6JvPM8SryBOyA7MsYfu4lliTzjvIS8DhgePDpLgr04dda8isCCuoFfl7y0aWe8rZQavVNUaLzR1Je8SqdQPFXzkTwpqwO98T7pvCf5zjzZNyI7bTHbO4HzMT0xEC29iVQdPdAgRL0y1ws9ZqYbPQ1m6bp3JuG8IFsEPQyu17wYQoc8MuqWvM7a9LmZHvA8SqdQPaTpoTzQjCk8Mey1O6JbZLwEA988tIu/vG1X8Txbkdw7ZWJrPN968zxtDWS8tmMKvQUlt7xS5mO9+ulhvEP6OLzoSWM8+8PLPUylMby39QU97NUBvaq+brwn1dc86JNwvfp9fDzOkOe7rqUGPSb77TvO2nQ9fmX0ObWLvzp3lOW6TMmoO/KGVzyqmne8Ok2hPLUbnLwWfUe9ZPRmPG6dQLw7FAA98xa0PPFiYDxC2OA64QgxOzqXLrr0yge8XvsiPUEgz7wPzhA9rV0YvIgML7tdRTA9gD0/ujlPQL13JmG9v0UFPQ4aPT3z8B08d5AnPG4LRT0hJAK7KdEZvF1pJz2clwM9gYUtvJu9GT0NZMo7rJY5vV4fmjwoias8XvuivFWphL2Z+Fk8dgLqvNkkF73Fv1g92Mu8O2fuCTyC3oc7s7P0vEtf4rvyzkW9Z5MQPfRLl7tvvxi94ggxumQa/byJrxY8U+REPEoXdLziCDE9BZO7PGaoOr3pkVG96+iMPQ3STr2/oh29/FMovb2AxTxewoG9406APPRcAz3R+I48v3wHPA345DuTSaO7BAHAPKRVhzzZXTg66kfEPFW+Lr3zhLi8vabbPCBwLj3Y8VI86kfEPL98hzy29yS8xb9YPMeVBDytlrk7xykfPHcAS7vXX9e8m2IgvWTIsTwfXfk7JwgivW7L/LqSPOq8FD6mvJH21TzJVEk9LsxaPTz8KbsJGpa8WclwPGlbXD2P79M8xbqcPKlT/Ds/V0Q9LYsDvbi02Txkz7M7GdHQu/0YkDzk6f+7ZxzKvJwKnb06xJm8VUIFPetjGj0E1ka8G92PvDm2FT0vyhW9L9PcO2Szq7yx8CA8UgW4vCcWprzhdxq8BhxbvZvZDj2m6Bi8a2AZvT9exjtstnY8S2QJPB9r/bxrZxu89EGWvKGWRbwsf0S9o5QAutigoDxOv6M76lWWvLiPCr0cB5w8F3a2vSuGxrz1Vhy99qx5vKSpBrxnHEo9/1AgO/4tFjyn/Z68ymlPPXeSrTyG7Ag9wW0GvcXkKDwYtci5oHO7PaPH07y2ik08bIzqvLm7Wzym2hQ9pg3ovPNYYbx+HJG8t5hRvBZ9uLxBcQe84E0OPJvgEL2zNrU71VOKusyFVz21bsW7VUKFvLmICDwH24M8xMiguLns6TscJWm9XzwJvQXkyjwRx4O7sgwpuxDHA70Beyy8i3EvPQt+dzyfULG8ylTJvNnKLL3YpyI7JdCRvNnKrDs+SUC632TZPIfzCj2c/Bg9HCzrPKYUajzLZ4q8AG2ovPMXCr0oJKq6VVCJvIcIkbyOvkU9HACaPC6w0jzKd9O6Qo0PvWJ0mTy5wBg9f3JuvLi0WT2UUfC6nPwYvDiajb07yxs92KAgvIpAITzDnhS7k2b2PHeLq7xWddi8Zeu7vMXIoLw9JjY8VmwRvQhNaTxDsJm997r9vJDYCD2HAY+8jqI9PN9GDLzLWQY93Ak/PcSelDpnI0w87XggOycIorzeHIA8uyt8vO2UKDyLca+8Jd6VuggTFDwUTCq8y1kGPSgBoLzYpyI9WMlwPSuNSL1DohW9aWJePOkyjLz0QZa8tEs7PS/o4jfdJcc8k1FwPXL/grzJRkW8T8Ylvbm7W7zEsxo89DOSvAkvHD1oDAE9LKJOPEUbfb0BdCo9TrEfPaOdRzwu4WA8jsVHvVafZDx+SOI8RLcbPVjC7rwIKJo7zJPbO6YbbDsF1sY6e+3HOQBYIj0dT3U9siGvuOtxHjujogQ8TqqdPLd6BL2mIm48ZMEvvN8xBrwS/xO9AWamvGtw4jzIP8O8zLZlu/Rt5zyb4BC7GsiJPBMwojxDopW9fSVYvGy29rwdT3U9y3dTvP0YEL1tqHK7Uf61PABKHjyRBFq8MARrvEtdhzy2fEm8uexpvJ9eNTquowo8xgCxPABtqDwnFiY9EeOLvLHUmDpClla8GcPMu1aY4ry4tFk8cvgAvGlNWDzWWgw8dVodvS7hYLycCp07UzZGOjeFB71F8XA9F4S6PEPO5jyJQCE94oWePGXdN7zKRAC9HPKVvEGd2Dw4oQ89JuWXPCXJj7uSIGI8d2+jvND197t9F1Q9PAquu5vgED0a7Vi7xxU3PZz8mDsWdjY8pvhhPXeLKz1YyXA7nQMbPfIgUTtMVoU9FWiyvIybuzvNipS8t6bVPC+8Ebz1Vpy9HCzrvJDhT72wv5K7tUu7vApi77uTWHI9AG2ovDvnI73rahw9UhO8vCgkKr5BpNq8KDIuPbRgQTxNjhU9pdxZPG2vdL0VRSi8GeZWvfWQ8Tyb5xK9Uho+vUFcAbxigp0863EevLnlZzzEyCC8siEvO46iPbsYrkY89G1nuwYV2TseDh49YXubvBRTrLvWb5I8aUbWPLaDyzwoMq68BMHAOzvgobyAefC8TGsLvF4nA7xgX5M8H135OxaLPLxDjY89syixPPaCbTvZvCg83UHPPdq1pjwxJ/U8dEUXvUCIUrzHFbe8QpbWPM2YGL09/Kk8Cnd1PLEFJ72hej28GcPMvN1BT73GBzO8KCQqPQKetrvXkpy83BBBO6X/47tl6zu9qEX4u5DaTTsJGha7y4zZO+K4cTw9GDK8zGeKu7RgQb0Q1Yc8alIVPfI8WTwIOOM8CFttvX5r7DxE1ei7oGw5PO/MODub2Q694oUevXm8uTx1YR+8nfWWPO2bqry512O9479zOWyo8ry57Gk9RfFwPtVFBjyk3Nm8Fos8vTEndTwWfbi8pQbmO+1/ojxgSg29bsv8vNmuJLwWfbg8tW5FvCgrLLxtxHo7KAEgPI/vU720Pbc72uY0PbiIiDx8LNo7jtPLvLDbmj3HB7O8FEwqvfELS710RZc7HAlhO8pEAL3MfJC88ifTvGx1n7uNhrU8t6bVvD9lSLyzRDm9ROruvD40ujt3b6M9Gt/UO7neZTx7+8s7aS+LPDD96DwHP2W9Zc8zvBDcCT1jsyu9amlguz38KbwcOu8831bVuteEGDw9Jra8/O6Du2BRj7xoGgW92rWmvDD96DswBGu96AgAPW2o8jtTL0Q8eKAxvOPNd70EwUC7H135POx/Ij2Q2Ag9HBfluxwlaT1oP1S5GcpOuvRYYT0CibA87ZSoPCcIIj2NqT899ErdvFVJB7xjniW9BxXZvFDiLTzKYs086R2Gu34qlbyTQ2y9zKFfPfz1hT06vZc8CXDzvItqrTzw9kQ9uLRZPBmsAb1Dx+S8jbfDu1itaL1DwGK9cw0Hu8t+1bwm85u7fmtsvLL3ojxnB8Q8o6KEuxr73LwVRag8fmtsPPVm5bpSKMK8N3cDPZrLCj2c/Bg7M0P9O6BlNz2fQi28oHM7Pc7n87zpHYa8tFK9PM8DfLwjn4M8RM5mPJRYcjvga1u8XieDuwhGZ73uxTa9njQpPd06zbyHAQ+9EykgvLHwoDyw1Bg9eLw5PD0fND389QW9bL14O6Tx37xYtGq8xLMavY6ivbrLmt28aUbWvPESzbzYoKA8nSYlvboIcjvfMQa9VVeLu4bXAj3pMgw9YV+TvbsB8LvhYhS8Zvk/vNrYML05vZe6tFI9vFVQCTxQ1Ck9jI03vcOelDtLXQe980pdPTmoETrEyKA72cMqPBw677yjm4I7qDByvXzrAr1SGj48MSBzPPESzTvLd9O71T4EvfNR37x9FY88zIxZvKSwCD27+u08exBSvLDpHj1oKk68zuDxvHwX1LunRXg9F3a2PGuhcL0E1sY92wI9vRaLvLvshiQ9BeRKvI/o0Tx/cu47KCQqvFVCBb0+ScC75Nv7PIbehLwcLOs7uJ0OvKKyzbw+O7w6CFvtPHZoobzw/cY7shqtvLsPdLyw6Z69HkHxPEOyXrwWdjY8ykbFPPMlDj2nG+y8h/oMOnsQ0jyksIi8h/oMvLIMKb3a37K8fjrevAlNabtWpuY877AwvCXXk7xD3Oq72KAgvRQ+pjs3cIG98gtLvBnmVj3bAj29qD52PGkhB70slMq8K3jCvKg+9jttqHI84IdjPYpOpTwoHag8d4QpvTNKf7uoWn498P1GPPMnUzx3fac8zHyQPSpcurzho+s5aksTvRMworxqRJG7ZeQ5vR0l6Tq2fMk8o85VPZ9JrzxmAMK81T4EvZHtjjwUPqY8Yp6lO47MSb23cwK94HLdvCgdKDvut7I8T9srvKTc2TwHB9W87IYku4Gj/DyID5M7PBEwvQTWxrz9GJC6lFjyu7m7W71P26u8iQ+TukUbfbwqVTg9tGDBPI2GNTyyEyu8VnXYPCXelb2yE6s8AokwPK2VBj0bCeG8p/0ePZV7fLxVg1w8CFRru/ee9TvWWoy8K3hCvTdwAb2TZva849R5vI2wQb0EyMI8ZeQ5PbdzAj30M5K98i5VOylONj3LZwo9LZIFPYpHIzu4lgy9RQ35PIt/s7xBpFq94XcavctwUbwpHSi8KDKuvJ9CLb3uvjS8JuwZvc3Sbb30dGm7Yp4lvGgaBb3w2jy9fAJOPBzWDTwreEI9h/MKvAb5UL08ETA9TrghPVD3s7rLYIi8d5kvPaYpcDxBc0w9ik6lvHws2rxpW1y9tDa1POBiFL1zIo27ZKypO9h2lDwkrQe9LKJOPbemVbzNnxo9XicDvECBUD2G5QY915Icvcpw0Tv/SZ47oqRJvGTIsbx+Xeg8VGBSPUGd2LyjooQ9EeqNve/TOr3qVRY8Y54lPf0KjLyfXrW8jbBBPCgdKDou4eA8GbXIPKg+9rzGADE89ZBxPDiaDb3/SR67lF/0vCXQEb2eLSc8iBYVPRrf1DxOqh09WLtsvWgaBb3YoKA8UPCxuS/25r13fac8EccDPLwW9rzpMoy87ZSouz5CPr3IFTc8kyUfveGx77xGIv86r7iQPCgkKjvKYk28jJQ5PQ/AgTyPwwK8P2xKvBLji7u5j4o8/jQYPI/oUTuG3gQ9m9IMPC2bTDufSa+8HAlhuwlib7169Mm74sb1vJRf9Lw5qJG8LbBSPHeEKbr0OhQ9evTJO7MvMzspTra7qD52vO+wsDzCdAi8EgYWPaSwiLzVPoQ8PS24vLDinLvLml28TYeTvKb4YbxUOwM9KCssvD0mNj3hsW89dnYlO2gjzLp0KQ+9et9DvetcGLygZbc8y0sCvQOluLyKR6O8Coz7u6lT/LzLjNk88e/CPAhN6boXkr48L8qVurIaLb1DqRe9magAPQTdyDsZs4O84YdjvLnlZ7za2DA99XvruwBYorxoOFK8ht6EvU6xnzxCjQ+8siGvPH0z3DwqcUA7QXPMPO2iLD2kztW8GK7Gu7rVnrwoDyS7r7gQvItxLzx4vLm7xc+iPSt/RDqfSa+78gvLvNADfL1Nh5M82wK9PFWKXr0CrDo9AokwvKXMkDwIIZi7QHNMu6TcWT0ZrAG9Zc8zvEPj7Lza2DC9ueVnPMlNx7xXZY87kgIVvLmkELtl6zs9tFI9PNZvkjx1Wp28shotPUObk7xClBE9/O6DvCgBIDwSFBo9pNzZPC/DE7xhe5u7bJruveGH4zsm7Jm8o5uCPGpLkz3cCT+9zqacPGtZl7wG60w8Uv41PRrf1LwCibC8O+4lvQuTfT1Wn2S8CFTrO0FcgbyNt0M8L7wRu4kynTy5shS8F304vHdvIz0u4eC8F5I+PLoPdL24rVc7MQvtPMgxvzxQ9zO9YpejvRnDTDwEz0S9VW7WOycIIj1smu68zpiYPLIhL70DwcA8fioVPaOiBDoR4wu9QWODvFDiLT3pCIA93iOCPGTWNb0WfTg9sgypO59JLz3Nr2M8EykgPfICBLy3egQ8VDsDvVafZLzYoCA8LrdUPQF0Kr3dLMk8YpChPOpVlrzVPoS6ymnPPHsQ0jwG6Yc8aSgJvEFzzLx3kq08MO/kvH+A8jxRBTi9k1hyvc2KFL387gM9/RGOPJ9QMbuKR6M8r8YUPUGWVj3oFoQ8HUFxvVi7bD3dEMG8oZbFPJHYiLzyCQY6dEWXvBrt2Dzv07o8o6KEPBMpIL1eJwM980PbOlrz/Dy4lgw8FoS6u30AiT1sqHK93SVHvdQwAD0tt9Q8Y5ChO0/GpblSGj49n0KtvLqrkjyzL7O7HDrvvNv0uDtSKMK8UNQpPAKJMLsAvAI9Ul2uO3g7Fb1SXS68x//EvJbDFL2Rlog6mFhiPQQqGz31m1S6184XvYThjDzhbe08ng6pOXc087qpcxQ6J54aPVaKOrw+rS69hCbKOv/17Dx82zU856GbvKoyiDtEJpq9RjUevHQSOj2DG/c7wUl+vCo6ijzVgjg6J56avLg3lDxy/wQ7vSfFvFDQQr3Y3Ru6X9l/O0yuCb3oqX08OxXwu5T1nLwtWBI9VgzTPNaG6TxuXPO8q4KYO+BeabuTqb281HdlvZeRDLmmWb08qwAAPYrckLxWCKK8XcKZPNcT1b2wr6S8WznfukPaOr13NPM67+wvPXIDtrtQ0EI7xvTxvMBFTT0a6R49cDGNPG3WKb3iM4O8W7fGvGgrNj1SYV+9bmOVu7G+qDt/+b084aYXPeN4QL0XUWA8GN7LOysIgjraq5O81gRRvYDDhDzUczS9c5ChOWei+7u/uOE87mP1vGN8ETweU4a8NSEOvIGGqTsCFHU8dzBCvY7+yboQER89zKo4PBrpnjy2KBC9TTTTupGe6jze0f265IMTvdcPJLy4fNG8MsYqPZ6UcrwdiT88C2arPIjNDD0TbAI9Ok6aPMUtnDtv5S087t2rvMThvLyQj+a8TsXvu7kFDL2Ixuo7CRabO6O9zTyRmjm8oWkMPX93pb2NuYy7abH/PDLGqrz7Wf086KXMvEvgkTs492e9xfBAPNRztLt95gi8cgfnPJGe6jz+c9S8TsE+vG5jFbwkR+g71Pn9PAnVDr1tWMI8XpARvURnJrzRWd08XEABPHg7FTwvqCK85AUsPfUdbT2Rmjk9jG2tOv1k0DyWx0W831q4vKaWGLw/uIE8kBH/vIGK2rynIwQ8jOsUvPYoQDw37wW9ClvYPPlCFz1fV+e8A50vvX/5vTy13LC8PrHfuzdxnjxoK7a7gYYpPYUxnT394rc6EI+GvG9nRr1t2lq9kyvWvGDgIbz5AQu73LoXPLj+6TzPxA+91HM0POVRizwX0/g89ijAPKoyCL1Rmom75IdEPRx+7DwMsoq9HQtYvIxxXjx6Tkq77ymLvGaaGbwXUWA9Z6J7PYQiGTyJDpk7J+PXPB8WKzyTre67D4jkO2xNb7y2aZy80FUsvflGSLyZXwQ9gYYpvRIkVL2NuQw9Pq0uPAWsMz3S2/U7DoQzvcBBnLuhLLG8etDiPPQZPLzu3Su90ubIu3pOSj0uWBK8BviSvKwPBL3WBNE8E+6avM03pDr5Qhe9v7SwvLYokDticb48lsv2PO5jdbz5xK880JIHveSDkztOxW+9kuaYu0HLNr0sihq5PNuFvInRvbzXzhe8Iav4O4GKWrwQl2i9t21NPcNfpDyZX4S8YOChPEkWSzzfWri8JdCivJpnZrzQ0xM4+UbIu9hbgzsgYoo7cgfnvMNfJL0N85Y8wg8UPV6QETxrxyU9W7MVO/RWlzyZY7U8dSG+PMd9LD1yB2c7yps0vD+4gbnf3NA65hhhPf4ulzyMcd68ApLcu9DTEz1zTxW9qwCAvflGSLyWwxS98wo4O9OwD70sDLO8BawzPdWCOL1Gdiq9KjqKPAUuTLwVPiu+DvdHPAhIIz25Rpg82JwPPawPBD0KW1i9LBDkuyyKGr2mlhg6hOGMvH93Jb1g5FK7oB2tOfH3Ar1wMY27SyXPu3D0sTqsUBC9KXR0u68m6jvHgd07VXs2PZGear3JkOG8mV8EPJyBPT3nI7Q8ZhyyvFDQwjwzTPS80VldvUDAYzoVewa9LAwzPVV3hT1brHM6rRM1PYnRvTyobPI7pMggPCXQoj3JEnq7U/J7ux6Ukry8HHK8uHigvInVbju9qV29uxjBPPSXozyPCZ28/u2KvHnB3rxSYV+9EJO3vEujNj3NO9U5dSG+PHNPFT3EY9W6qwjivDcwkjwUtfA7MHYavfnErzth7yU9JdAivfZlm7x13AC8dR2NPIXwEDxHAxY91YI4PTB2mr0orZ48RvjCOwMfSLwf1Z48Ud9GvV1EsjvSaGE7V1QBvfxgHzuhrsk752CPvbYoEDyzzay8TO+VPSGreD4+ra48XUQyvXD0Mb2/tLA8TsXvvEnRDb2hLLG8E7G/vMBBHL0YmY48bVjCu04/JjonXY68BbDkO/YkDz3ziB+9g5levISoYj2uoKA8U2wyvIjNDL2wMT09ai9nPCgrhrzj+ti8VgzTPNotrLwejfC88wq4PAvow7zx+zO9orL6O5v00TtU+Z28q0GMvFHfxjt6zDG95VGLPaddbjzziB84nhLau+zS2LoOgAI9Lh/ovBjaGjwYXLM8TK6JvNW/kzz3dB88sLNVPRMvJzyMba05+DdEuney2rzhaby8kRxSvR0LWLzIjDA8QlgivKjq2Tx0Fus6PNuFPNpqh7ya6f68Y/4pPEkSmjxg5FI9dusEPZ7NHDrVfgc9wtbpu1Py+7pmWY09Ct3wPDE98DloaBE9lLjBPE7F77xMMKK7J2E/vR6N8LxE5Q09zfYXvJ0DVry8mlm7OQK7vEgLeD3NO1U9Y4BCPeaWyLymFAA8VgxTPVmkkTwISKM8LRu3vFT5nTt4OxW9zKq4vMiMMDxgYrq8wx4YvXIDNryBCMI84GWLPGZZjTy13DC9riK5uwMbFz1zTxW84Wm8u/rIYD0DoWA8dJTSvHQWaz3kxB89sDE9vLAxvTyRmjm8z8zxPJ4OKT2VvHK9Ctk/O5Q2KT3i9ie6yAoYveq/o7t1IT69zjekuzqPJj1yQJG8W7MVvRlgZLtt1qk76r+jPEA+SzxquCE8hCr7vI36mLznIzS9NeCBPHXcADzXE1W8coVOvH/5vbx//e67PKJbPfDwYLxtVJG79Jeju1BS2zz712Q8ypcDPbh4IL1hLAG9VgiivP3maLwAAUC97EwPvDyi27zHgV08iM2MPVgb17w+M/g884zQvHi9LT249gc7lbzyOZJkADzezcw6GJkOPJfSmL2p9ay8mul+vBHfFrw+ra68+9MzvYLSiLugo/a8jv7JPGgnhbuFMZ081Pn9O+SDkzxFa9c8TkPXO9icj7xGetu76W+TPQUuzDwSoru8x32sPWtJPr0Gt4Y8kZYIPeFt7bwNdS89OxG/O9y6lzssDDO9o7kcPJqvFD0iNDM88oH9u/H3Arwishq735cTvF3K+zt60OI7S6dnvJ6UcrzNuTy7lLSQvVaKOjsQl2g8J56auzboYz0iMII6fN/mOwAFcbyZX4Q8lLhBvNmkcbwBDJO9kRihvAQj+TsnHIK8+xAPPVCLhTwHPdC7c5Chu+8pC73WBFE7F00vvdkeqLxKGnw94rUbvbVeSby3cX48PCDDvC2ZHrw37wU83L5IPEb8cz0/uAE7hrfmPLRT9rwab2i8XLv3PB+c9DrU9Uw7kielOwhIIz25BYy8M8pbPJtyOTzmFLC6uotVu5EYIb1x+GK8HpSSO0qfBT0FrDM5phSAvNUAoLxYFya6f3clPOFpPDpE5Q29DXUvvbuWqLpf2f+82SJZPPSXo7vFLZw7iuDBOxjeyzuN83Y8I7r8vIa35rw+sV+8+cSvu91HAzxbt0a8GN7LPMrYj7wABfG7B79oPZLmmDzrQbw8j4eEOzcwEj3EY1W94Wm8POcjtDzunB881QAgvUkSGj1KnwU8dSE+Pfi1qzuQj2Y8ssJZvIf/lL2lzNG82aTxvF3CGbxjfBG9nDyAPTPKWz2uIrk8CMYKveSHxLoSJFQ9wL8DPLXcsDxmGAE8X1fnvKO5HDuhrsm8jv5JvUb0EbsOwY48arghPLG+qLwoKwa9c5Chuw8KfTukeBC9qOaouzUhDr3ONyS8dBI6vWeeyjvK2A87UFJbPPvI4Du5Rhi9yhkcPX3qOTytmf68VggiOz6xXz113AA7cHKZPVBOKr1jOwW9eL2tvAMfSD3XE9W8wcfluteRvDtdRDI8xeyPvJOpPT05Bmw8A6FgPTyeqrpGels98fcCPWBiOr2PDc68dZ8lvFLjdzp3LBG99ihAPWk2iT2PhwS9QU1PPTNMdL2VvPK8nQNWPE4/Jj0492e8ghOVPJ7NHD3Vgrg89iQPPal3RT1KGny7kytWPAb4Ej3vKQu9kiclvBpnBr1mHDK9WJk+vKCj9jwl0CI7cHZKPYQmSr0tWBK9DoACO0yuiTyo6tm9BS7MPGBeCT1OwT69YvPWvKbXpLsaZ4a9dR0NvNT5fb1yQJG8SAfHu8odzTxg4CG8CAcXvKaWGLzrRW084aYXPNmgQDzjfHG8fWihvDbksjyEJsq7ypeDPdw8sDuJ0T28xW4ovJqvFDyClS29H5x0vI36mDwDH0i8Gu1PvQb4ErzE4Tw98wo4PXH4Yj3YWwM9TbZrvLbrNDyHvgg8U2iBOwWsszyCE5W8LJJ8uxCTN7xbcom7qXdFPOTEn7x6zLE8RKQBPdDTk7yHQKE90FUsPTmE07rjfHE8zbWLvasEsb0dB6e7Y4BCPYrgwbzZoEC96r+ju+YUMLquHgi9UmFfPSwMMzx2JW88TK6JO6N4kLvWhmm9pEYIvX5s0jwrg/i87l/EO05D17zAAJC8V1QBPd2ID7ytmX68dzDCvLPR3b2hLDE8a8elPIjGajxE5Y0884xQO/5z1LsQkzc8Y3VvvNUAoLx4vS287I2bvJMr1ryfm5Q7h0AhvWP+qT1BQvy8rl8UvCI45Ls824W94evUOnUhvjy9pSy9f/1uPEJYortD2ro8N/O2uhNsArwIPVA8QUkeO1iZPry7lii9aKkdvTsV8DzIDkm8L6xTPC2ZnrxEZyY7iMZqO9aGabsvJgo8dR0NvMVuKDzWhmm8R8IJPf3maL026OM7KfLbPMTlbTyJ0T289izxPNotrL2UuME7BCP5PD0rljyMbS097RoHvbJAQbutEzW8EBGfPMb0cT1cQAG9QMDjurqHJL1Wijo8xXLZu70rdjvAQRw6s9FdvMqfZTvnH4O7TsVvO9mgQL1ByzY9vvELvWHvpTwYmY69qjIIvftZ/TygHa0739ifvbNLlL05hNM7nIE9vVmkEbzFLZw9LReGvMUtnLyZY7W8qXdFuyp/xzwc/NO79ZvUvCAlrzxCWKI9xOVtPU7FbzpF6T693EBhPRfTeLzJkGE9EBVQPGYYgT15wd65sLPVPGZZjbykSjm8YW0NPek2aT2oI4S9g6AAPXIH5zuOAvu8jnwxvG/lLTwGu7c8qwjiu9sx3TzOg4O7ZALbPOk26Twqf0c8DfMWvYAEEb26De68wEGcPAlXpzsrg/i8cgO2PJ+QQTw2avw8h74IvLoJPb3ceQs9gYYpu/IGhzyUuEG9LyYKvEA+yzzCUKA8BawzPSGr+DonHAK9MkQSPb7xC72OgOI87l/Eu6yRnDp1o1Y8rRfmvOaWSL3YWwM9fF3OPPRWFzuARZ286n4XPabXJL0Gu7c89ZtUvIzrFLz2ZRu8RKSBO1gXJj2X0pi8qgabPBlFlTwPGoa9AY01vAMxDr0hiFa9UOqevCx9Zz1neBk9wGqwPNyZcbr3Dzq9cYc6PQ2etDwWT1C8O2obPNRwQD0Vn1694eGivHDztjt90BU9OKpUO/ktBr0Wn947q/oBvfUb07xnGpQ7Zv6lO1ohx7zBhh484BVDPHJfM7xo5BU9qyKJu8Gwg7xGUxO9QYP3u+kW7Tr3AyG9W2W8POkyWzwOTia9F0M3PaWwcrzeSeM7ODI/vQkG9budr8i8LZnVvHnYcjyUbAe9t58EPN8h3Dw7eBK9eJT9vC/7ljyTQqK99JPovANnDL2fl5a8n2EYPJKSMLuQPmY7AbW8u1rRuDxyUxo9hj08PfRr4Txiju28LhUnvX9yED2owEc9DqCSvfiXJDxwk1O9fiCkPI+OdD2pICu9Wo3DO7WRDbtzv5Y7JRIfvGXit7xBq/68IdhkvYnHBL2Dpfy8BJ0KPbJJXL3qkr68fiCkvCMsr7zTpOC667pFPHHzNr1QLDa9aTYCPE8QSLw3jmY915wDPQRnDDw3jmY9yJPhPA/WEL0PapQ5nJPavBlFlT3LOZi908znPASrATxmkik9U0oCPbwW5rxQcKs8605JPLNZsbxP6EC8hmXDvKkEPT0OTiY9DTI4PKgsRDllnsK8lIYXPad80jwOyJm8k9YlvSXCkD2TGpu8QltwPW7veryTTrs81yIQve2GJT1cFwy9Fk/QuySYKzy9Cs08aJSHvGg2Ar3t5og86e5lOwOBnLzuiAO87TYXPPZ7NjyfR4g8DD5RPH20pzylRHa7JJirvHMdHD0Prok8ONLbPEc5g7v2Uy89qEgyvWZOtLxM2Gu7QRf7PFEgnb1zRwG8D6ASPE3Y67wa9YY99qM9vTAXBbv3Kyg9C47fvHN7obxu7/o81zCHvNzBeLwPoJI89RvTPC61Qz3Jo7Y9UCAdPLafhLxMlPa8GecPvVzTlrz4fRS9DboivHBDRbwu+Tg9CS58vQ/kB7yJF5M8AmUuPVzhDTo75I683VV8uzugGT2gs4Q9Ut4Fvb+upbyUUJm8LtExvCRUNr0hROG8x5/6u+AVQz3idwQ9ccsvvbNZMT2UKBI8c7+WOzDTD70Wn968EBoGO0ZTE7wL+tu79fPLPHqk0ryzqT85iauWvJ71GzzT6FU9tseLOzg+WLxiSni7s1mxvPnBCT17EM87k+QcvXKjqLuJFxM9mydevG2D/rskmCu9pdh5u82LBDzqTkk7GP/Bu9jsETxaSc47CQb1PFdV57xOOE+8Z9Yeu5TKjLxaZbw7ie8LvSGw3Tyck9q8niuavBkbsLokjBK96QpUvZIKxrjs1jO94e8ZvWUKvzxlWs284BVDPJwbRTvqCtQ8I1S2PPML/rqpICu96pK+PCTcID3BvBw8lPKTu6swALzXnAO8GpcBPTUG/DxTSgI9kVrUvCs5cjxxhzo87IalPDfS2zclEh89Ui6UPN6137tkPl89iSWKvA9cHT3hWxY8DO5CPGZqIr2K/YI9f3IQvXKjKLy/TkI803xZPLMVPL1w/8+8wGqwvIQtZz1PmDK9UWSSvVKAgDzgxTQ9GfMovjkyvzxCT9c8GIesPJAW3zyySVy7yw8zvZ0bxbyo3DW9UQYNPVEGjbz3AyG9eWDdvE9UvTy7Pu28Ov4evSIc2ry9gmI9Fp/euwPRqrsY/8E8Q+NavJQoEjwOyJm9RcuoOzhm3zw4Zl89Gx0OvAzuQjzfZVE9ZFpNvVvFHz0wq4i8fdwuvccz/jxC7/O7lSiSvHHzNj0jLC894TGxPFsVLj2eDyw9UlYbvQ6SGzzJNzq91HzZvOHhojtoDJ06AtEqvfXXXbzvUoW77IalvE1g1jrJ19a8O6AZvQO3mrsv7Z89C47fPL3u3ju31QK6GP/BvBj/wbxPLDY8aV6JvHls9rzUwE47Fe9svHJTGjzBHIC8UQYNvfiLCz2wfXw99ofPPDci6jxwa8y9j470PIiBsTx8wEC8ABHkvHqIZL06Ti084QkqPAPFEb1OfES8JfgOvXr0YL0aHQ4932VRvA8ahj1i3ns+zPcAPQQ/hbwMnrS9IhzaPP98YLwv+xa9kIJbvSaoALyGZUO9cmERvGV2OzvIk+G8zB+Iu7QJIz0K3u08cg8lvZv/VjtEhzM96D70O320p7su0TG9lQCLPQpK6jzLey+9A8WRvDdK8TwUP3s8PJQAvb+SNzxcxR+7RF+suw9QhLyP+vC8QgtivDBNg7w3FlG81HBAvYftLT1QLLY8QsfsO97RTTzMswu7CyLjPBnnj72Rnsm8clOaPLzS8DzVZKc519CjPNhmhTzdLXU8cPO2OwDpXDz/OGu89fNLvQJLnrxD/0i8F3fXPDCrCL34s5I9eqRSPIRV7jzBvBy8FTPiO7+upTtk0uI7kIJbPVAgnTwDZww9wCgZPTjGQrs2jua8s1kxPQP7jzwYGzA8/6TnPImRBj2SdkK7vO5ePJtrU72Ixaa8aGwAPPiXpDympNk8wbADvUNrRblPwDk99JNoPLPRRj1NROi8yCflPAtm2Dzpnte87bAKvLFV9bxc7aY86Gb7vMiTYbx6HOg7+EeWvAQJB72FVW659svEPFKAADtPEEi8C7bmvCR+Gz2FmWM7Lz2uO3xIK73hdSY9lOQcvJA+Zrqp3LU8waIMPLafBL1bFS497Go3PNX4Kjhk7tA7iu+LvA/kBzyrWIc8Ks11vGeuF73Xjoy5p8xgvYdZqryc1089wRwAPEy8/bx8BLa8Qu/zPJJOOz2SkjA9O1ALPbcLAb0Amc68FYPwvNWMrryH7S28nTezu4ftLby/TkI8OD7YvBtTjDwEZwy8tp8EPdYUmbtw10g8IyyvPIdZqjzM94C9DgyPvAwyOL0hiNa8XD8TvRjXOr0JBnW8nqMvvCPoOT2gswS9enzLPPVD2rtG55Y7OmqbvHPbhDy0naY84O27O0Lv8zxZLeC8GQ8XvVIUBL30J2y9kiY0vf+k57yFmeO8/2DyvGheiTtz24Q8qpoePIUhzjqU8hO9XD+TvJLiPj06/p68yLtovH/sAz3VtDU8DxoGvWZqoj0DxZG8QBf7OmeuFz21uRS7QTNpPIiBsbzuiAO7PK4QvSXCEDzrJkI9e8BAO8FEB7inzGC9yE/svDjS2zxRtKA8H5RvvNX4qrxeJQO8XIGqPKmYwL1n1p48vTLUvDsmprw2cvg8cTesvFd9bjvAQim9GW0cvci76LuSurc8+mOEvcsPszy+/jM9yYdIuxaf3jyTkjC8Lz0uPPi/K7uGcVy9GpcBPfbnMr1cFww7pRzvPBdDtzxR3Cc8K6Xuu+tOSTxnkqm7V6V1PABV2TxYEXI9ng+sO8nzRD32Uy+9tZENveyUnDwWW2k87BqpuxhrvruSTjs9Zv6lvCth+bwCSUA8GRswPVqpMTy1Fxq9nzmRPJKSMLt6HOg8LtGxvGUKv7zd3Wa8D4YCvCMQwTuq3pO8IADsvNaAlb2K/QI9iJ2fPDu8h7y1TZi8XBcMO+qSvrySkjA7cNfIPCt95zrX+gi9Ra86vWOq2zxvu9o7AC1SOfaHzzuPSn+9qSArPOg+dDuJW4g8s+20PI+2+zuq3pO8144MvUwA87x/qI481HDAPE/owLpatUo90qTgPGhQEj1v4+E59JPoPG7j4byhfYa9+CuovPkRmLqFtdE8JRKfvGWeQj05Mr+7DrqiPMsPM73topM8FidJPaDpAj2xVfU7sd1fvJ/bizwfUHo81/oIvTqSIr2U8hO819IBPYf5xjyzWTG91zygPH4UCzyHFTW9GNc6vKv6gTx/7IM8XT+TOoeNSr0Xk8U6ICjzuw+8ADtzEQO9te8SvRZb6Ty8jvs8ltgDPNSYRzy9Cs08j/pwvOxqtzxDJ9C8OyYmvU2I3bxYEfI7niuaPCU8hLsKcnE8sd1fvAHdw7zSOGQ9s/nNvDYGfD1xN6y8MCOeu8k3ujqFtVG7+OkQPfVD2jtEGzc8lQ4CvPXXXTyoSLI8IdjkvHqIZD21JZG9FcflvOgWbTwuFac8Vs18PLTFLTw7hok7RfOvvMgbzDsh2OQ8lQ6CvDlaRrxxo6i8cnshvVnd0bzsAJm8D1AEvb2C4jx0b4g8TCh6u4cVNT1YVee7tp8EvUUPHjxSLhQ8ve7evZ2vyDzUVNK81Ug5PYkXk7zKv6Q8v5I3vX3crrtYOfk74VsWvcwfCDzBHIA8NnJ4u11bgTunzOA7OGZfvCwt2byS4r48CQb1PMgbzDw7eJI7h2VDPEWjoTx+0JW8WQXZO/aHTzwkVhS9/szuvGWeQrwLjt+89ctEPXKJGL2m9Ge8qfijPKjozjyELWc9evTgu4aNSrxyDyW94eEiPW7v+rppNoI8De7CuomDD70BjbW71t6au7Q9Qzz2N8G8qyKJu9UExDslEp87wbCDPX4GlDojLC89343YPFv5vzwZ86i9j7Z7vBhrPj3LpRS6bsdzvWcMnbtmdru77Go3vDvyBT3ByhM9v64lPIY9PD0sfee8LUlHvSFgTzyFwWo9ZmqivPbnMr3e3eY8v2owvSIQQT2dr8i8hS3nvMczfjr5wYm9yUNTu+JBhjstcU49tv2JugP7DzsKSmq8GsshvV1NirsONBa9Y9LivNXcPLw54jC8I+g5PLFVdbx5AHo9OeKwu0SHszsZ5w89cP/PvN9lUbx7mDk8IdhkvMEcAD1/7AO96NL3PDjuyTyo6M48IfTSPNMQ3TvIJ2W9LKXuvL7ixbwvZbU8y7+ku5EKxry1W4+8n6UNPU1E6DydN7O89RvTu6XYebySkrA7vv6zvIZJ1TtMlPa8DxqGPTsmJj1c+x09vYLivAsWyjpxy6+9cssvPNTo1Tyc/1a8RBs3PJwbRb0uqSo8JXKCvMLYirwA6dw8c/UUPG93ZTzuUgW9RiuMPNf6iLyZW3479dddOvYPujo8vIc7Zv4lOzHhhjzBDgm9qownPaqMp70xg4E8ehxovNWMrry0qb88LQVSvN0t9btSFIS9XBUuu6jAR7wvI568T8A5PfVfyLx9mhe6GGu+vC7RsTxRjJk893s2uwDp3LtaIcc8qraMPA+GgjzTYOs8Z3gZvHGjKD1lnsK8evRgPexqNz3AAJI97NazPPbLxDz3pRu9JWQLPQnCfzx9wh49qNw1vWjKhb28Fua7OpIivcFel7wDtxo9qOjOvOrizLqD6fE8ft6MPH3CHjpeJYM72JwDO2UKv7ziQYa66BZtvMGwgztc4Q09k2qpPP9gcjwxZ5M896WbO+PjALwY1zq9LqmqPLSdJjy2aQa8AbU8vI9Kfzzetd+8nP9WPWRmZjySurc8Q/9IvbTFLbzslBy8yzkYPddYjjsjOEg7AHFHvKv6gbw5xsK8UUikPNPM5zsvPS46fhSLOcEcAD3e+dS8qAS9OnzoRz2oVMu8LY08PIeBsTl+Lps8UsIXPVJu1TxhJsc69IF8vaJN6rvF5zK9bYnmvHZBrbxXNXE92nsdPQI6bjxgu46835cLveMCbzyu2hg8G9XpvCHGlLvTZhU9m5SavFHgczwO5Og7OtPZPDJFIjuhsAg8B2uOvGxeI715Voq8StLRPPUPXrxaGCW8tnYcvC5+Bjz31k68FFUpPVG1sLozRaK8ngZkvN1JHzpNtYU749crva4+6zzRStK7Pm8yvQHz5zw7L5K8yLwaPXDsL73V7RA8BtbGvN2CLr0xhRc7G9VpvB//ozsKqy49yLyavOYQ5rzlSXU8mcaYval3T726Pbi8Xm0ivJuUmrs30648sSEfvN/09zmRXL68v5I1PaCURT0SR7I8RhIcvZZGA717z7k8ZXtEPbBaLr3Ng7Y8Ngw+vTgoAT0SOWY9HapRvXkWlbwDD6u88LpgNxaA7LyTMSa9EbnQvHlPJL1WfMy8NtoUvZMxJj1QvBa9u3ZHO4oHwbyLQNC8cF7OOzj+cToRuVC93q3xvDuayrudhk48XYpuPdSRWDxWCi46FI44PRjH8jxebSK9V0M9uxQjAL11SJM9ty9BvVWKmDucW4s79kjtPHv6/DzpepW8bhfIPE6nOTvUkVi8/8eku3Ts2jtoV5I88t0JO0Z9VLwvBYI8LqnJO0Eo1zy4L8E8ynU/vdmtRryVsTs99F0fvAzyND1vl107TjwBPe3zRL1CRBo94JAlvQDPirzKZ3M8mI0JPZRqNbq/2ZC8ozcEPO2sabs8KCy8kU5yvCpwDz1gmGW8aglRvF7RdDxpUKw8anvvO0VERbwcKjw9RMsVPfXrAD1apga80FgePS1+hrzqc6+8VkO9OsbZ5jyQTnK9KI3bu1AnzzuJed+8GQ55PTJFIr3LQ5Y7DatZPfy5rbwRRzK9pelCPe9zWrw0jCi86jqgPOXlorudGxY9rnd6PdwCGbwlWwe8a8L1vGAmR73KCge72kIOvXP6pjx3bPA73YIuPNXmKr0YVVS8MGLuPCYbEj38wBM8Zm14vAarAzsmGxI9IX85PUVERb3HLrm81MrnOrHoD70jxj+9e50QvUUZgjzlV0E9kngBPf5y0ryfP/M808rnvD1Tbzx+5Ja8EtWTvFsKWbx7CMm8KzcAPC9wujyFhwC9AU8gvUT9vjkum307IU2QPQcP1jverfG8kziMvNID97tpiTs99quLPJubgL1jptw78YHRPNQmoLtcw328wSAXvQTIzzudFDA7LwUCvXJsxbwCc3283wLEPOrlzTzTA/e8/znDvKdpWDvKdb+8BkjlO61MN71Op7k8I/9OvROcBL3FWdG82y3cvL+ggb25vaK8oFs2vSubUr3vlgM9yefdu51NP7v1JBA8WRilPBCODTx1ery8ntsgvd2CLryAltU8NfD6OxAHkruqd0+8e5aqvFc18TzAYIw87Lo1Pd27Pbzvc1o8dYiIPH6kITwEJIg7i5UiPYlVgjyR8YW8Mqn0PIEWa7xGC7Y8R5mXO2QClTwhTRC9+as2PTKp9LwOObu8+zmYPGEmR7u+UpW91RHuvA5Hh7w+GmA9ct5jvUqnjr2JThw9gSS3PHDsL76C3ds8qIyBPNUR7jy3dhw91J8kvFsKWb0bY8u8XC0CvX3kFj0acZc8/GRbvVf84bzXLbE8VVEJvbY9jbwbY0u8iVUCPSaijbwlRlU7G6qmPLHoD7yl6cI8949zvUpEcDzVEe48YCZHPSgpCTzjZQ07H/8jPYmHK73pugo7tnYcvJ7bIL0EVjE9oCKnOznhJbyHMlk9MP6bPGYQDD3+Rw89uj04PZZqYLxQ7r8738k0vRs4CLwm1LY7MMWMPEZ9VL3KPLA84R6HuTJMCLwfODO8vIQ+vT5vMr2NHJ46itWXPcj1KTxAKFc7MbdAPTnhJbxsJRS9J+KCPPsrzLzMvMW8AwHfvE51EDy2rys8fk/PvLNoJb2pTIw8Aw8rPVTuajwBulg91GaVvbITUzyhhvk8XRjQOh3j4LxepjG93GbrPNyJlDwcKry8pbCzulkYJb0F5JK9AfNnPJzNKbzW7ZA96kGGPsPZOzymPpU7BeSSvUYSnDwojVu8uwQpvUBhZr1Uwyc5z5gTvU7gSDzpuoo7VMMnPB6q0byBFus8ewjJPAzAC71+pKE7Ve5qPX9rEj3uOss5P5p1vRVHXT1H0iY8zLxFvW7Q7Lzt5Xg87IiMuoiHK7pbnyA9NP5GvLKoGr2C6ye8MbfAuZ7iBjwrNwA7Nbdruz52GL3aOyg91a2bO+uecjz4HVU8ZjTpu9f7Bz24vSK9vRmGvDfTrjwHyHo8Djm7vGY06buqsN48At2BO1xR3zuXauA6hfkevPWPSL17+vy8DCvEPA45OzzOPNu8btBsPS1+hjyyoTQ9kzgMvVGDh7xYisO82jsoPNufejxIYIg8CGQoPDPMHT3i1yu8DB34vMFL2jytTDc8ymfzO5BcPj0Yx/I8vksvvYWHgDt2bHC96uXNvOCQpTzXn0+5iYerPMegV7y5hJO8qgwXPZS/Bz2ovio9MbfAvEc2eTxiptw84tcrvESSBjwQjg29ywOhO3BeTr0HyHq8GPGBO5i/MryjaS290wP3vNOmijxRtTA7XqYxvd10Yr37ORg9vYQ+ujlTxDvTZhW9ewhJPTF+MbwTx0e8eVaKPS/+Gz0HqwO8dUgTPbY9DTw6RXg7EMccPLcvQb2oIv08NVMZPfIBZ7ux6A+9xCDCOwGBSb2yqBq8Eg4jPYLrpzz+Rw+96DMPvPadvzwiqvw8f5ZVPSgpCT1AvZ689h0qvZLqH70d8ay8U6dkvKjFELzsujW8oqK8PL0Zhrz9gB49zq55vNCD4TzCoCw8KemTPOtzrzrTyuc8gqRMvUYSHLwrYsO86FfsvJAjL72S6p+8n6IRvOo6IDwgjYU9N5ofupxbCz0psIS7wGCMPKki/bt9T0+7pzBJPBM55ruthcY8dexavf5Hj7xSp2S9vJIKvcY8Bb0guEi9yDWfvE3gSL3E7pg6FUddO5/N1Dp/CHS8PzajvHiIszr6cic9Y/suu98CRLxZGCU9HSo8O78E1LwYjuM9UO6/vFyK7rsrNwA9mb8yvcjDAD2jMB47fGQBu7MvFr14Voo5RMsVPdwCmbtapoY7RIsgvS0ptLwwKd87KI1bvGkeg7yskxK8cmxFPB3xLDzCp5K9xhL2O613+jl6eme8FuMKPcp1P7y8vU27gCQ3vaRprbxOdRC8IDizPFfRnr3DLo48RbbjPHvBbbsM+Zo8btDsu31PT7iSeAG8tJNovQzytDyy2kO9YnuZPMp1Pz0InTe8GzgIvEA2IzxvCXw8LzcrOwpyHz2qPkA9KeItPUILC7uR3FM9YbQovNctMb1z+iY9W9HJPAqd4rsVHJo7kFw+Pa4TqLwTANe7GqomPGLf6zxQJ085MGLuvJOjxDySFWM75eUiPfIPs7trZQm9IU2QvOxl47sLAAE9jM6xPP/HJL0gjYW9W9HJPDZ+XDzhScq8CuQ9vQs5kDxwbBq8CVbcu0G2OD0C3QE8a54YvWeXh7x4jxk9GPGBPCgpiTvLPDA8fIhevSFGqjzS2LM8lz+dPPdkMDw7L5K72R/luzFMCL1kiRC9IkaqOk48gTyf26C7V5iPPWeXBzxBfSk94qUCu2zQwTzZ5tW8PfaCvdZ0jLxZH4s8UYOHPG9sGr3j1ys9xVnRPGUmcjxJ5wO97cEbPJm/Mj0om6c8HfEsPOXlIjw94VC80RHDPJlNlLyTOIy86uXNvCHGlDz2SO08XqYxvYwjhDzOPNs74jv+uxVVKTyBFuu7UYOHu3mIM7yblBq9PGG7u8W1CT1ebaK76jogvTSTDr1lJnI8fk/PPDzvHDwRudA8PzYjPVrflbsC3QE94klKvDlFeL1YisO82nQ3PazTh7sbY0u8sFouPW3lHrxMUue8nRuWPai+qrxzbEU9HePgvBjH8jyVsbs8RIsgvN/0dzwcvwM8BkjlOofOBr03mp88T9L8PFbYBL21Wlk9I9SLvcCE6bs56Is8Z/tZPd1JH7yszCE8L3egPFYKLryAK5083ImUPPYPXjpImZe8ZrTTvP5yUr1iply8EjnmvPkdVb1V7uo8krEQvPiPc7pl7WI9jeMOvUM2Trymadi7CCsZPYqy7r2WauA88t2Ju0nngzwEj8C8F8dyOl6tF73mnse8EI6NvAIWkbyJh6s8XCYcPbKoGjtv0Ow6rL5VvKGG+Tsdfw69xa4jPbV9Aj18JAy8ztiIu5ej77wSOWY9Z5eHvPp5jTvOrvm58LpgvcNug7wBSDq8eI+ZvOOeHD3QWB69ORq1u/XrAD0UXI88LfAkPQzAC7xyQYK8DYAWu5vUjz2whXE86boKPQmyFLyOQPu86FdsvGYJpjwF5BK7BIH0uh//ozu1fQK8gzKuPBzxrD0306480IPhPIZHCzzREcM7oqI8vQQkiLuzzHc8eYgzvD1Tb726dse84JcLO1rfFb3GPIU9TYv2PMCStbrFWdE83VAFvUhgiL089gI8xy45PUUZgrs7LxK9VVGJuz1T77zTnyQ9sCgFvTsM6bwG1ka8v5I1vaFbNjxANiO6o2ktPV9f1rpGfdQ8qgwXvRhjoLtNJ6S8cboGvW2J5ryCeYm89h2qvJv47DybMXy8ORq1PYekd7xjptw7Wt8VPfSB/LxtUFe7gusnuyFGKjvVWMk8cnoRvYOkTDzq5U27CnmFPMrn3TwhxhQ8vIQ+vfarC7xFtmO8fk9PPJSVeDpnCSa8Ze1iPGlC4DsKeQU92nQ3vP/OCjqiTWq8DytvuzNForyZ6nU8CquuvMyKHD2Z6vU8irLuPGwllLo3mh88BUjlvfp5DT0Bulg8dMEXvLf9Fzxjply91VjJPOPXK71H0iY7ct7jPIjAujywWi67G6qmvK4FXDy49rG5kdzTPMeg1ztJfX+80tizOz22jbxH0ia8sa+Au7m9ojzFIEK93YKuPFwtAr388jy9x6BXPWJ7mbybFAW86jqgvf4OALx+5Ja8rYXGvIcHFj1yOpy7tnYcvDbaFL018Po8kFw+PEJ9qbxe0XS8YbSoOzrTWTzRHw88wb14PNkfZbw4jFM9/wA0vUVERT3d9Ew9Tm6qPTghGzw601k9lCPavBjHcjw5GjU9p2lYPTBibr2WeCy9jFwTuTFMCL16CEm8wqeSPF0YULwrYkO7A50MPUVSEbyqBTE6AhaRPDxhOzxg+wO96XqVvOy6tbx3M2G8d6X/PM1KJ7ubBjm8ePrROnrWnztExK+8S2CzvNo7KD3REUO8gRbruz22jbx+FsC7UYMHvSRUIT1EiyA9n2mCPF3fQL0xfjG5xeeyObySCj3LLuS5Zm14u2Km3LzD2bu7uL0ivbehX7sVI4A8LGJDPBKAQbzoZTg9gzmUvD9hZjsF5BI9lL+HvFbYBDy/PeM8IcYUPXGzIDuQTN86T6fLPBlYh71wZ0m9ej9kvLQXjjwazzM9RbEOPXKbOzzfs0872/3/vKBCLr2QTF89CKXyOyt/aTxdwrK8ZSfKO/+y3rxZs9g8zumguhH3GL2j13w8WUBVu7BL7jtSD7A8R1gEvI7k+rwazzM9GJvBO+uASzz8Axe8FHJuvMnATT12HRm8dpAcvHPPrbz5mzK854vquwf+/LxieII7lY8rvaDPqrzAzjk9NF6Mve51LLxxgcK8qL0VvaZrAb2A0Ju8fMHBO0/XlLwGtxm8zSiyPfI+7byacuW82A+nOz73Fb1ewjK8fw+tvaycpryhdiA8kGZYOuzKDb2snCa8TgDWu8WECT14awS9bD52PBDDJr2ZJHo8wEE9PcVQF7wfhYO8KZGQuxrPM72/5Am8z0r9vFsxjTt/KSa9qI3MPKuCrbymzF07s3CYPFpazryxDF29yz6CPCIAWb1zQjE9aaknPRKEFbydZ0a90d6BvI3+cz1c2AI86z0RvD1QILzyEYO9pH5yvA4CuDz8qoy82PWtPLlXezw0Xoy8VquGPNpDGb21jjq8ljYhPUSXlTwkC4o8n/TCu1dLdD3mtwo9efgAPOojGD0v2AW8FHLuO++pHr2Yl328v5rHu38ppjwEwrg9Dei+u9WNST1tcui8immlvANlhTwX9Eu87nUsvFjy6bv2wEq8G5Ciu/iXCbyv6pE78FCUvEyFAL0R3R+8xfcMPOBaRTyvBIu8s81LvOKoMD0Fgye9tY46PG24gb1bvok9KthzvciMW7w6/gu94edBPVsbvTuJS4M8SqqYurUbtzyAtiI9GJtBO3sA07wQNiq8XEuGPNqKfLwtF5c8xsvsvL49FL1Fm748rzH1O9j1rTykUQi9SHYmPTWlbz3n0YO87c42vTfz2jxhXgk83yZTvRDDJr3Wjck8ZuQPPSrYcz1zzy27HTcYPb3z0bzXaDE8NTLsvDsCNbyvvvG8SR0cvM+QlrzR3gE9QHLrOggy7zwkaD09Hph0vVGCM72jxIs9s/2UvEpkf7yXUBq9BiqdvDT+eb3lgxi7XoMhvfDDl7zmKg68GLGRPWe0xry9TNy8DCfQO5hqE71c2AI881jmPBnlA70ZWAc9wP4CvZInR72iAx06qHNTvFgm3LxUXZs7Zs6/PBoovjz2M867BRAkPMAnxLrmKg69qTRCPbwy47xRJQC9b6ZaveUQFT0hc9w8VaT+vH2nSLz8kBM9RrU3PdDX+bwvG0A8jl6Gu8IcpbzIGdg8uPYePBixEbvRfu88zumgvPWMWD1RgrO7JZyvOxibwTuBpPs7FTPdPNyRBL0IMm+9Wc3RO6y2nzzijje9q36EPIxXfjzOzyc9J9AhPacA0LuuQ5w8AM3XvBDDprwkJQM9bbgBPS6+jDxymzs9qWQLPUgDo7zPHRM7Sn54PTUybDvtzjY8IY3VvFWkfrw+95W8u14DPKhKEj3AWzY8Pt0cPPIRgz1ARQG9fX4HPeKON7ySJ8c8xREGvGkcKz0j20C8m4zevKdz07z/JWK8ukQKvWd1NbtGQrQ8sX9gPebKe7ymWdq8JkMlPQDnUDyvBAu+NNEPvYb9l7yLgx49QwoZPduk9TtlDVG992dAOwTcsbzv6C89JAuKvcimVL3tzja9uIObPM52nTz39Dy767CUvNPMWjzV5lO8iTUzvQ6lhLw2v+i8ItcXPWv3krtGQjQ9djcSPbrk97sdxJQ8Fabgu/wdEDyNcXe8nZcPPT73Fbxx9EW8s/0Uu8BBvTx8wcG8WzENvIHqFL37Qii92bacPBpcsD2DHoe85T1/Op5nxrzmtwq9ZuQPPfIK+zwH/ny8JJgGPQM1vLwGt5m7gRf/vDZM5bzP6aC91qfCPL/KkLqIAcE7EfcYvGUnyjxRmAO9Do+0vBdnzzymWVq8ZrTGu9xL67y+Dcs8UYKzvGcYgjq6/nC9nrEIPOuwlDyymdm8+lyhvDypKr20AT49lY8rvZPkjDzwNhu9zgOavR3ElDz+mOW8lHEJPCa2KDsmtqi8BrcZO8DOOT249p480aoPPQpmYT6uF/w89YxYvXDaTL1TQyI9mCT6vPKx8Dwqf2m79sDKvLpECr3udSy876kePYwQm7wAWtQ6GMsKPF3CMj1KUQ69XoOhPNsEiD2Ijj27WUBVvEPA1rwjZJQ9+3YavbKz0rw0/vm8+A62u/rPpD2+Dcs8wFs2PCI0S70N/o48Z1u8OXmYbrxH6Sk9FHJuObfcJb3LgTy8I/EQPESBRT3d8mA9wEG9PCOnTr1OjdK8v5rHvPrPJL1k89c8hpncvENN07wURYQ8E1h1PRlYB70TERI8mISMOl3cq7xhcXo8Y9levU4A1jzQxAg9I9tAPD8+eTwMtEw8T9eUPH5OPrzTzNq8LVrRvL/KEDxU0B49UNs9PWLRjLvysfA97bQ9PbteA72FmVw8j79iPdsEiLyvkQc9HB0fuyQLirx927q8oekjvV6Dobt5+AC84P2RPJappDzcHgG9C4DavPUZ1T2Zl309zJs1PERNU7zAWzY9yU3KvBUZ5LyCdxG8GMsKuob9F71FPgu9VNCevAgFBb0Sng47ib6GvSplcL1lJ8q7s0DPvMWX+rzg/RG9v+QJOs52HT1bjsA8WrPYu54OvDxFywc9lqmkvJ+buDwnXZ67i4OevJSLgry1Gzc8G5AiPcIcpbyMV348r+qRu9+zzztWHoq9tjWwvKPEi7zrmkQ9UPGNuuK+gDtvGd47k7TDvFWRDb2fywG8O3U4PaFcpzxadMe78ByiuxT/ajz6z6S8v4BOvBnlAz3HWGk6+ZsyvOwnQbwiGlI97OQGvTsCtTvb6g69fMHBPFUEET0bdqk8VNCePMKPKLumsuS6Swv1OuIbtLxtcmg8cfTFu1ZLdDpd3Cu9cps7PQ51u7zcS+s8Hwv4vDBPMj2VHKi8Mp2dPGWazTzpMuC7ATETPBRy7ryacmU8XyqXPUWbPj1/nCm8TnNZvC+oPL15+AA8GnKAOjt1OD37Qqi8IhpSvIM4gDzhzUg8Wxu9vOxBurxFDsK8h+fHPHO1tDxwZ0m9903HPeadkbxQ2728MNwuPJdQmjv5DjY9qw8qvIwqFDxlV5O8lqmkO3u9GDx81xE8ecxgPYWZXL2pZIu8EyuLPDNxfTxQC4e8at2ZvQkyb7yt0Ji8zSiyvWa0Rrr5KC+9BreZvOD9Eb2/Vw29YjJpvWmpp7z/P9u79vATvO+pnruys9K8n7WxvH6CML12ZPw78d0QvcOpIb2ay++8uPaeu5mx9ro1BYI7QHLrvLImVjzrPRE92tCVOy4xkDzPSv280KqPvOhEh7uymdk8mPePPIfnRz1sy/I86kxZPJiXfbyzQE885sr7PJR1Mj0ygyQ9t0+pO+3OtjyOXoa8hpncPPrPJDxFDkI8beXrPDwcrrzudSw9ljahvOpmUj2CF388tsIsu4BDn7wmKSw8PcMjPMURBr0L8928c0IxvLKzUjq5V3s86tnVO0vxe7ltuAE9gEMfvJyMXjzBAiw9R+kpO8TdE7xe9qS8+IG5PFDxjbywZec8vydEvL/KEL2/sBe9tAE+PdiCqjwIMm+7wzYePfpcIbwn6pq8IhrSu1dLdLsOArg6rhf8vJP+hT0C2Ii83gzau6PXfLy058S8Df6OvMMcJb39fuy7ksqTvLdPqTz813Y8C4BavNfbNLx31/88g2VqvddoMTzLsQW7PmqZvH1+hzx4suc7fX6HvawpIzuw2Oq7IgDZvCmRkDw0i3a8NBjzPHAz1zyL9qG8G+ksPHvmWbx8NMW8ik+sPCrFgruojUy8hxcRPLBLbjz6z6Q8GwOmPGf+CL0R9xi9PsOjur3Z2Dxk2V48Vh4Kve/orz0Sno68i4OePDKDJLx7Gky8xp4Cuyyz27v/C2m86kxZvHI+CD32Tcc6DYuLvHvm2byFf2O8HB2fPQDN17zcvu48Zs4/PaF2IL2n5tY8f/WzOr4NyzvnnRG7U7YlPEQkkjwdNxi98+XiO/yqDL05VxY8IXNcPTUFAjzAW7a8bVhvvIJ3ETz98W+9u4ttuz8RjzxbWk68KmVwvITy5rzd8mC9wFu2O5InR7xIkB+9SyXuPCI0Sz2r9TA7UAuHPVBOQb0n0CE9LnRKO+q/3LzhpAe+7bQ9O8PDmjvVGsY5krRDvZ8+Bb1mzr+7ror/vG6MYTyDMXi9AhvDuqIDnTyJNTM9aRyrOwNPNTzKZ8O8cGdJvYDQGzw2pW88bMtyPc7PpzwI64u7CIt5PNkPJzzO6SA84qgwvanxh7xa50q9alCdvDDcrrvNKLI8RGdMveIbtLy0pIo80d4BPZgk+jy/mse8n/TCuxlYBz3KTco6zVwku5PkDDwvqLy86iOYPNIlZTufJIw9O6UBvGe0xrzb6g694HAVPQ3ORbwlnK+76TLgvGHrhT1uuAG8bVhvuzoYBbwMJ1C9oemjuzeAVzt4awS9I8FHvHxkjjsUjGe8ZkHDPFnN0TxysYu9rJwmPI8y5rsZgci8Cdnku6mnRT3iGzQ4ZVcTvdE3DLzBAqy7xSR3PRyQIrxhcfq8WnTHu69L7rwIGPa8MyoaO9PMWjx3UQs9VNAevBdnT7r4DrY7GA7FvEWxjr0pS/c7u6VmvEa1t7yHpA08FP9qvNTmUz0wZYI8yw45PJToNTua5Wi9LM3UPHsazDy7i+27PveVPKay5LwE9qo68MOXvIuDHjyTzrw8rJymvMF1L7xhi3O8r+qRvEiQnzzDw5q7Ht6NPLhpIj0QNqo9h6QNu3pZXT3sQTq8P4QSPbY1sDw1BQK9iOfHuSQLirwZtbo8bbiBPZ3ayTz/st68qRrJvNQwFr3mV3g9KHcXPWzL8jtcNTY9jBAbvanBvjzFPnC9h1pLvb1mVTtCjGS9NP75uwa3mbyK3Cg7sX9gOq5DnDwe3g09IgDZuv8l4jvY9a28E+VxuzIQIb1IkJ89YRjwvN9AzLwTERI8O6WBPH5OPryCd5E7BreZPLJ/4DqZKwK9pMQLvNFRhb2QZtg8ZkHDvKJcpzvb6o68Dc7Fu8dy4jyVAq+3wQIsu7nK/rzDNh49lHWyO371szwTuIc9ksoTPW4Z3rw+95U8zgMaPdHegTyfywE9gbYiPADnUDv39Ly82IIqPBA2qjzrsJS8YXF6vOfkdDwMQUm6eT9kPUkdHD0EaS47B9GSOnUDIL22NTC81mSIPHYdGb20ipE8Ed0fPNY0Pzw9wyO7v5rHvFnN0bx+gjC9fds6vSrFAj01GHM75DWtOx3xfr0vNTk9BMI4PIWz1bxB5W683ybTPKwpI7s3gFc8oEIuPewNyDxk89e6hX9jvDvOwjq0dEE9mYQMvapOuzwjp848U0OivM8dkzuU6DU8SvH7PJBm2DvX2zS9AVpUvFGYA7zfQMy7GJvBO+3Otryj8fU7I9vAu+X2mzzJwM06"}
\ No newline at end of file
diff --git a/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png b/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png
new file mode 100644
index 00000000..1a5bb1c1
Binary files /dev/null and b/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png differ
diff --git a/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png b/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png
new file mode 100644
index 00000000..6f6fb143
Binary files /dev/null and b/dsLightRag/static/Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png differ
diff --git a/dsLightRag/static/Txt/JiHe.docx b/dsLightRag/static/Txt/JiHe.docx
index 515b511b..1cf3d6fb 100644
Binary files a/dsLightRag/static/Txt/JiHe.docx and b/dsLightRag/static/Txt/JiHe.docx differ
diff --git a/dsLightRag/static/ai.html b/dsLightRag/static/ai.html
index e3c42a19..49a96963 100644
--- a/dsLightRag/static/ai.html
+++ b/dsLightRag/static/ai.html
@@ -199,6 +199,9 @@
三角形中两边之和大于第三边的证明?
+
+ 求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC > ∠A。
+
苏轼的好朋友都有谁?
苏轼的家人都有谁?
苏轼有哪些有名的诗句?
diff --git a/dsLightRag/static/markdown/JiHe.md b/dsLightRag/static/markdown/JiHe.md
index 523f830e..ba4c25e1 100644
--- a/dsLightRag/static/markdown/JiHe.md
+++ b/dsLightRag/static/markdown/JiHe.md
@@ -1,8 +1,16 @@
三角形三边关系的证明
证明方法如下:
作下图所示的三角形ABC。在三角形ABC中,[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为\|AB\|+\|BC\|>\|AC\|。
-
+
height="1.91044072615923in"}\
①延长直线AB至点D,并使\|BD\|=\|BC\|,连接\|DC\|,那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。
②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity),∠ACD大于角∠ADC(α)。
③由于∠ACD的对边为AD,∠ADC(α)的对边为AC,所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到\|AB\|+\|BC\|=\|AB\|+\|BD\|=\|AD\|>\|AC\|。
+求证:在三角形ABC中,P为其内部任意一点。请证明:∠BPC \> ∠A。
+证明过程:
+
+延长BP交AC于D
+∵∠BPC是△PCD的一个外角,∠PDC是△BAD的一个外角
+∴∠BPC=∠PCD+∠PDC,∠PDC=∠DBA+∠A
+∴∠BPC=∠PCD+∠DBA+∠A
+∴∠BPC>∠A