main
HuangHai 2 weeks ago
parent f5192a0b0d
commit 402c9596e8

@ -0,0 +1,393 @@
<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="d11" for="edge" attr.name="created_at" attr.type="long" />
<key id="d10" for="edge" attr.name="file_path" attr.type="string" />
<key id="d9" for="edge" attr.name="source_id" attr.type="string" />
<key id="d8" for="edge" attr.name="keywords" attr.type="string" />
<key id="d7" for="edge" attr.name="description" attr.type="string" />
<key id="d6" for="edge" attr.name="weight" attr.type="double" />
<key id="d5" for="node" attr.name="created_at" attr.type="long" />
<key id="d4" for="node" attr.name="file_path" attr.type="string" />
<key id="d3" for="node" attr.name="source_id" attr.type="string" />
<key id="d2" for="node" attr.name="description" attr.type="string" />
<key id="d1" for="node" attr.name="entity_type" attr.type="string" />
<key id="d0" for="node" attr.name="entity_id" attr.type="string" />
<graph edgedefault="undirected">
<node id="Triangle ABC">
<data key="d0">Triangle ABC</data>
<data key="d1">category</data>
<data key="d2">Triangle ABC is the primary geometric figure used in the proof of the triangle inequality and angle relationships.</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="Point D">
<data key="d0">Point D</data>
<data key="d1">category</data>
<data key="d2">Point D is constructed by extending line AB and adding segment BD equal to BC, forming an isosceles triangle.</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="Point P">
<data key="d0">Point P</data>
<data key="d1">category</data>
<data key="d2">Point P is an arbitrary interior point of triangle ABC, used to demonstrate angle relationships.</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="Euclid's Fifth Postulate">
<data key="d0">Euclid's Fifth Postulate</data>
<data key="d1">category</data>
<data key="d2">Euclid's Fifth Postulate is referenced to justify angle comparisons in the geometric proof.</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="Proposition 19 of the Elements">
<data key="d0">Proposition 19 of the Elements</data>
<data key="d1">category</data>
<data key="d2">Proposition 19 from Euclid's Elements is cited to establish the relationship between angles and opposite sides in the proof.</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="三角形ABC">
<data key="d0">三角形ABC</data>
<data key="d1">category</data>
<data key="d2">三角形ABC是证明三角形三边关系的核心几何图形用于展示边与角的几何性质。</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="三角不等式">
<data key="d0">三角不等式</data>
<data key="d1">category</data>
<data key="d2">三角不等式是几何学中描述三角形边长关系的基本定理,形式为|AB|+|BC||AC|。</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="欧几里得第五公理">
<data key="d0">欧几里得第五公理</data>
<data key="d1">category</data>
<data key="d2">欧几里得第五公理是几何学基础公理之一,用于证明角的大小关系。</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="几何原本">
<data key="d0">几何原本</data>
<data key="d1">category</data>
<data key="d2">《几何原本》是欧几里得的经典数学著作包含命题19等核心几何定理。</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="命题19">
<data key="d0">命题19</data>
<data key="d1">category</data>
<data key="d2">命题19指出大角对大边是三角形边角关系的关键依据。</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="点D">
<data key="d0">点D</data>
<data key="d1">category</data>
<data key="d2">点D是通过延长AB并添加BD=BC构造的辅助点形成等腰三角形BCD。</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="点P">
<data key="d0">点P</data>
<data key="d1">category</data>
<data key="d2">点P是三角形ABC内部的任意点用于证明角∠BPC与角∠A的关系。</data>
<data key="d3">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="BP">
<data key="d0">BP</data>
<data key="d1">geo</data>
<data key="d2">BP is a geometric line segment intersecting AC at point D.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="AC">
<data key="d0">AC</data>
<data key="d1">geo</data>
<data key="d2">AC is a geometric line segment intersected by BP at point D.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="D">
<data key="d0">D</data>
<data key="d1">geo</data>
<data key="d2">D is the intersection point of BP and AC.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="∠BPC">
<data key="d0">∠BPC</data>
<data key="d1">category</data>
<data key="d2">∠BPC is an angle formed at point P, exterior to triangle PCD.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="∠PCD">
<data key="d0">∠PCD</data>
<data key="d1">category</data>
<data key="d2">∠PCD is an angle within triangle PCD.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="∠PDC">
<data key="d0">∠PDC</data>
<data key="d1">category</data>
<data key="d2">∠PDC is an angle within triangle PCD and exterior to triangle BAD.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="∠DBA">
<data key="d0">∠DBA</data>
<data key="d1">category</data>
<data key="d2">∠DBA is an angle within triangle BAD.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="∠A">
<data key="d0">∠A</data>
<data key="d1">category</data>
<data key="d2">∠A is an angle within triangle BAD.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="△PCD">
<data key="d0">△PCD</data>
<data key="d1">category</data>
<data key="d2">△PCD is a triangle formed by points P, C, and D, with ∠PCD and ∠PDC as its interior angles.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="△BAD">
<data key="d0">△BAD</data>
<data key="d1">category</data>
<data key="d2">△BAD is a triangle formed by points B, A, and D, with ∠DBA and ∠A as its interior angles.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="P">
<data key="d0">P</data>
<data key="d1">geo</data>
<data key="d2">P is a geometric point where BP originates and ∠BPC is formed.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="B">
<data key="d0">B</data>
<data key="d1">geo</data>
<data key="d2">B is a geometric point where BP originates and ∠DBA is formed.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="C">
<data key="d0">C</data>
<data key="d1">geo</data>
<data key="d2">C is a geometric point where AC terminates and ∠PCD is formed.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<node id="A">
<data key="d0">A</data>
<data key="d1">geo</data>
<data key="d2">A is a geometric point where AC originates and ∠A is formed.</data>
<data key="d3">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d4">unknown_source</data>
<data key="d5">1752211508</data>
</node>
<edge source="Triangle ABC" target="Point D">
<data key="d6">8.0</data>
<data key="d7">Point D is constructed from triangle ABC by extending AB and adding segment BD equal to BC.</data>
<data key="d8">geometric construction,triangle extension</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="Triangle ABC" target="Proposition 19 of the Elements">
<data key="d6">9.0</data>
<data key="d7">Proposition 19 is applied to triangle ABC to justify the relationship between angles and sides.</data>
<data key="d8">angle-side relationship,geometric theorem</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="Triangle ABC" target="Point P">
<data key="d6">8.0</data>
<data key="d7">Point P is an interior point of triangle ABC, used to demonstrate angle relationships within the triangle.</data>
<data key="d8">angle proof,interior point</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="Point D" target="Euclid's Fifth Postulate">
<data key="d6">7.0</data>
<data key="d7">Euclid's Fifth Postulate is used to compare angles in triangle ACD, which includes point D.</data>
<data key="d8">angle comparison,geometric proof</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="三角形ABC" target="三角不等式">
<data key="d6">9.0</data>
<data key="d7">三角不等式直接应用于三角形ABC的三边关系证明。</data>
<data key="d8">几何定理,边角关系</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="三角形ABC" target="欧几里得第五公理">
<data key="d6">8.0</data>
<data key="d7">第五公理用于比较三角形ACD中的角度与三角形ABC的构造相关。</data>
<data key="d8">公理应用,角度推导</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="三角形ABC" target="命题19">
<data key="d6">9.0</data>
<data key="d7">命题19被用于证明三角形ABC中边AD与边AC的关系。</data>
<data key="d8">几何推理,边角逻辑</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="三角形ABC" target="点D">
<data key="d6">7.0</data>
<data key="d7">点D是三角形ABC的延伸构造用于辅助证明边角不等式。</data>
<data key="d8">几何扩展,辅助构造</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="三角形ABC" target="点P">
<data key="d6">8.0</data>
<data key="d7">点P的存在证明了三角形内部点的角与顶角的关系。</data>
<data key="d8">内部角度,几何性质</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="几何原本" target="命题19">
<data key="d6">10.0</data>
<data key="d7">命题19源自《几何原本》是证明边角关系的理论来源。</data>
<data key="d8">定理引用,数学经典</data>
<data key="d9">chunk-75b23a7e22383153b011bd3d121184f0</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="BP" target="AC">
<data key="d6">8.0</data>
<data key="d7">BP intersects AC at point D, forming geometric relationships.</data>
<data key="d8">geometric construction,intersection</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="BP" target="P">
<data key="d6">7.0</data>
<data key="d7">P is the endpoint of BP where ∠BPC is formed.</data>
<data key="d8">angle formation,point-line connection</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="BP" target="B">
<data key="d6">8.0</data>
<data key="d7">B is the endpoint of BP where it originates.</data>
<data key="d8">line origin,point-line connection</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="AC" target="C">
<data key="d6">8.0</data>
<data key="d7">C is the endpoint of AC where it terminates.</data>
<data key="d8">line termination,point-line connection</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="AC" target="A">
<data key="d6">8.0</data>
<data key="d7">A is the endpoint of AC where it originates.</data>
<data key="d8">line origin,point-line connection</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="∠BPC" target="∠PCD">
<data key="d6">9.0</data>
<data key="d7">∠BPC is the sum of ∠PCD and ∠PDC, showing an exterior angle relationship.</data>
<data key="d8">angle sum,exterior angle theorem</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="∠BPC" target="∠A">
<data key="d6">7.0</data>
<data key="d7">∠BPC is greater than ∠A due to the sum of angles in the geometric proof.</data>
<data key="d8">angle comparison,inequality</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="∠BPC" target="△PCD">
<data key="d6">9.0</data>
<data key="d7">∠BPC is an exterior angle of △PCD, equal to the sum of its non-adjacent interior angles.</data>
<data key="d8">angle sum,exterior angle theorem</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="∠PDC" target="∠DBA">
<data key="d6">9.0</data>
<data key="d7">∠PDC is the sum of ∠DBA and ∠A, demonstrating an exterior angle relationship.</data>
<data key="d8">angle sum,exterior angle theorem</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="∠PDC" target="△BAD">
<data key="d6">9.0</data>
<data key="d7">∠PDC is an exterior angle of △BAD, equal to the sum of its non-adjacent interior angles.</data>
<data key="d8">angle sum,exterior angle theorem</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
<edge source="△PCD" target="△BAD">
<data key="d6">7.0</data>
<data key="d7">Both triangles share point D and are part of the geometric proof involving angle relationships.</data>
<data key="d8">geometric proof,shared vertex</data>
<data key="d9">chunk-e2c7bd24a26246e194d4d56ab2ed22f1</data>
<data key="d10">unknown_source</data>
<data key="d11">1752211508</data>
</edge>
</graph>
</graphml>

@ -1,12 +1,12 @@
{
"doc-8fa97201fba58acd19b922cb8b994666": {
"status": "processing",
"chunks_count": 1,
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/778094016d3642f2bc43eeaf1074cc38/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。",
"doc-744d2f4e81528499ae55a82849ed415b": {
"status": "processed",
"chunks_count": 2,
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。\n求证在三角形ABC中P为其内部任意一点。请证明∠BPC > ∠A。\n证明过程\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC∠A",
"content_summary": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9z...",
"content_length": 1770,
"created_at": "2025-07-11T05:18:03.554273+00:00",
"updated_at": "2025-07-11T05:18:03.557544+00:00",
"content_length": 1975,
"created_at": "2025-07-11T05:24:21.601678+00:00",
"updated_at": "2025-07-11T05:25:09.796687+00:00",
"file_path": "unknown_source"
}
}

@ -0,0 +1,5 @@
{
"doc-744d2f4e81528499ae55a82849ed415b": {
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。\n求证在三角形ABC中P为其内部任意一点。请证明∠BPC > ∠A。\n证明过程\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC∠A"
}
}

File diff suppressed because one or more lines are too long

@ -0,0 +1,16 @@
{
"chunk-75b23a7e22383153b011bd3d121184f0": {
"tokens": 1200,
"content": "三角形三边关系的证明\n证明方法如下\n作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为|AB|+|BC||AC|。\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)\nheight=\"1.91044072615923in\"}\n①延长直线AB至点D并使|BD|=|BC|,连接|DC|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。\n②记它们均为α根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。\n③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到|AB|+|BC|=|AB|+|BD|=|AD||AC|。\n求证在三角形ABC中P为其内部任意一点。请证明∠BPC > ∠A。\n证明过程\n![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA",
"chunk_order_index": 0,
"full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b",
"file_path": "unknown_source"
},
"chunk-e2c7bd24a26246e194d4d56ab2ed22f1": {
"tokens": 115,
"content": "2d6b6c62c9b4c41/media/image2.png)\n延长BP交AC于D\n∵∠BPC是△PCD的一个外角∠PDC是△BAD的一个外角\n∴∠BPC=∠PCD+∠PDC∠PDC=∠DBA+∠A\n∴∠BPC=∠PCD+∠DBA+∠A\n∴∠BPC∠A",
"chunk_order_index": 1,
"full_doc_id": "doc-744d2f4e81528499ae55a82849ed415b",
"file_path": "unknown_source"
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

@ -199,6 +199,9 @@
<div class="example-item" onclick="fillExample('三角形中两边之和大于第三边的证明')">
三角形中两边之和大于第三边的证明?
</div>
<div class="example-item" onclick="fillExample('求证在三角形ABC中P为其内部任意一点。请证明∠BPC > ∠A。')">
求证在三角形ABC中P为其内部任意一点。请证明∠BPC > ∠A。
</div>
<div class="example-item" onclick="fillExample('苏轼的好朋友都有谁?')">苏轼的好朋友都有谁?</div>
<div class="example-item" onclick="fillExample('苏轼的家人都有谁?')">苏轼的家人都有谁?</div>
<div class="example-item" onclick="fillExample('苏轼有哪些有名的诗句?')">苏轼有哪些有名的诗句?</div>

@ -1,8 +1,16 @@
三角形三边关系的证明
证明方法如下:
作下图所示的三角形ABC。在三角形ABC中[三角不等式](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLkuInop5LkuI3nrYnlvI8iLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.rH6r8SvGmu-I9piEsmZfg2HjbXzUduYclZ2jfA3jZRs&zhida_source=entity)可以表示为\|AB\|+\|BC\|\|AC\|。
![](./Images/778094016d3642f2bc43eeaf1074cc38/media/image1.png)
![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image1.png)
height="1.91044072615923in"}\
①延长直线AB至点D并使\|BD\|=\|BC\|,连接\|DC\|那么三角形BCD为等腰三角形。所以∠BDC=∠BCD。
②记它们均为α,根据[欧几里得第五公理](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%AC%AC%E4%BA%94%E5%85%AC%E7%90%86&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLmrKflh6Dph4zlvpfnrKzkupTlhaznkIYiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.ltcWsMYJv-ZzcuBaSjYN69JC8hnIyPMFsfhIlum4yqc&zhida_source=entity)∠ACD大于角∠ADC(α)。
③由于∠ACD的对边为AD∠ADC(α)的对边为AC所以根据大角对大边([几何原本](https://zhida.zhihu.com/search?content_id=248217850&content_type=Article&match_order=1&q=%E5%87%A0%E4%BD%95%E5%8E%9F%E6%9C%AC&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTIzNzg0NDAsInEiOiLlh6DkvZXljp_mnKwiLCJ6aGlkYV9zb3VyY2UiOiJlbnRpdHkiLCJjb250ZW50X2lkIjoyNDgyMTc4NTAsImNvbnRlbnRfdHlwZSI6IkFydGljbGUiLCJtYXRjaF9vcmRlciI6MSwiemRfdG9rZW4iOm51bGx9.Q1rCY0S2bj5Dwp3Fg7xb_VSFESz2_pCUETDybnHANvo&zhida_source=entity)中的命题19)就可以得到\|AB\|+\|BC\|=\|AB\|+\|BD\|=\|AD\|\|AC\|。
求证在三角形ABC中P为其内部任意一点。请证明∠BPC \> ∠A。
证明过程:
![](./Images/868c80b8ff2547adb2d6b6c62c9b4c41/media/image2.png)
延长BP交AC于D
∵∠BPC是△PCD的一个外角∠PDC是△BAD的一个外角
∴∠BPC=∠PCD+∠PDC∠PDC=∠DBA+∠A
∴∠BPC=∠PCD+∠DBA+∠A
∴∠BPC∠A

Loading…
Cancel
Save