diff --git a/dsRagAnything/T2_Query.py b/dsRagAnything/T2_Query.py index 69b7647b..c34a2ce0 100644 --- a/dsRagAnything/T2_Query.py +++ b/dsRagAnything/T2_Query.py @@ -9,7 +9,7 @@ from Util.RagUtil import create_llm_model_func, create_vision_model_func, create async def load_existing_lightrag(): # 索引位置 - WORKING_DIR = "./Topic/DongHua" + WORKING_DIR = "./Topic/Chemistry" # 创建 LLM 模型自定义函数 llm_model_func = create_llm_model_func() @@ -32,12 +32,8 @@ async def load_existing_lightrag(): vision_model_func=vision_model_func, ) # 查询 - #user_prompt = "如果资料中提供了图片,需要把图片也展示出来。有图片路径的,需要转为![]() 这样的markdown格式展示。" - #user_prompt = "如需画图使用mermaid格式,节点名称用英文或拼音,显示名称用中文", result = await rag.aquery( - #user_prompt=user_prompt, - #query="本文档讲述了什么内容?", - query="吉林动画学院招聘岗位有哪些?", + query="氧化铁和硝酸的反应方程式?", mode="hybrid" ) print("查询结果:", result) diff --git a/dsRagAnything/Topic/Chemistry/graph_chunk_entity_relation.graphml b/dsRagAnything/Topic/Chemistry/graph_chunk_entity_relation.graphml index d57b03f3..ab57ed63 100644 --- a/dsRagAnything/Topic/Chemistry/graph_chunk_entity_relation.graphml +++ b/dsRagAnything/Topic/Chemistry/graph_chunk_entity_relation.graphml @@ -69,6 +69,310 @@ 化学方程式_CHEMISTRY_1.docx 1751960218 + + Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + equation + A balanced redox reaction where iron(II) oxide reacts with nitric acid under heat to produce iron(III) nitrate, hydrogen gas, and nitrogen dioxide. It exemplifies acid-base and electron-transfer chemistry, with industrial and environmental relevance. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960408 + + + FeO + category + Iron(II) oxide, a reactant in the chemical reaction, involved in redox processes. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + HNO₃ + category + Nitric acid, a reactant in the chemical reaction, acts as an oxidizing agent.<SEP>Nitric acid, a strong acid reactant that participates in the redox reaction, reducing to nitrogen dioxide. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Fe(NO₃)₃ + category + Iron(III) nitrate, a product of the reaction formed by the oxidation of iron(II) oxide.<SEP>Iron(III) nitrate, a product of the reaction, formed through oxidation of iron. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + H₂ + category + Hydrogen gas, a gaseous product evolved during the reaction. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + NO₂ + category + Nitrogen dioxide gas, a gaseous product and a pollutant, formed through reduction of nitric acid.<SEP>Nitrogen dioxide, a gaseous product and pollutant resulting from the reduction of nitric acid. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Redox Reaction + category + A chemical reaction involving the transfer of electrons between species, exemplified by the oxidation of Fe²⁺ to Fe³⁺ and reduction of HNO₃ to NO₂.<SEP>A type of chemical reaction involving oxidation and reduction processes. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Stoichiometry + category + Stoichiometry refers to the quantitative relationship between reactants and products in a chemical reaction, as demonstrated in the balanced equation.<SEP>The quantitative relationship between reactants and products in a balanced chemical equation.<SEP>The quantitative relationship between reactants and products in a chemical reaction. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-160631ff58dfd24b89716cc26d0a4b6e<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Δ (Heat) + category + Heat applied to drive the chemical reaction, denoted by the delta symbol.<SEP>Thermal energy applied to drive the chemical reaction forward. + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Oxidation + category + The process where Fe²⁺ is oxidized to Fe³⁺ in the reaction. + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Reduction + category + The process where HNO₃ is reduced to NO₂ in the reaction. + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Gas Evolution + category + The production of gaseous products (H₂ and NO₂) during the reaction. + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Acid-Metal Oxide Reaction + category + A type of reaction where an acid reacts with a metal oxide. + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Combustion Reaction + category + A contrasting reaction type mentioned in the context (H₂ + O₂).<SEP>The combustion reaction is a chemical process where hydrogen and oxygen react to form water, releasing energy. + chunk-160631ff58dfd24b89716cc26d0a4b6e<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Laboratory Synthesis + category + Practical application of the reaction in synthesizing iron(III) compounds. + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Industrial Processes + category + Use of the reaction in industrial settings involving nitric acid and metal oxides. + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Environmental Chemistry + category + Relevance of NO₂ as a pollutant in environmental studies. + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Inorganic Chemistry + category + The branch of chemistry dealing with inorganic compounds, including reactions like the one described. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Iron(II) Oxide (FeO) + category + A reactant in the chemical reaction, composed of iron and oxygen in a +2 oxidation state. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Nitric Acid (HNO₃) + category + A strong oxidizing acid that reacts with FeO, producing nitrogen dioxide and iron(III) nitrate. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Iron(III) Nitrate (Fe(NO₃)₃) + category + A product formed by the oxidation of iron(II) oxide in the presence of nitric acid. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Hydrogen Gas (H₂) + category + A gaseous byproduct released during the reaction, indicated by the upward arrow (↑).<SEP>Hydrogen gas (H₂) is a diatomic molecule and a reactant in the combustion reaction, forming water when combined with oxygen. + chunk-160631ff58dfd24b89716cc26d0a4b6e<SEP>chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Nitrogen Dioxide (NO₂) + category + A toxic gas produced from the reduction of nitric acid, contributing to environmental pollution. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Environmental Pollution + category + A broader implication of NO₂ emissions from chemical reactions like this one. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Industrial Synthesis + event + Practical applications of this reaction in producing iron(III) nitrate for industrial use. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Laboratory Demonstration + event + Educational use of this reaction to illustrate redox principles in chemistry labs. + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Hydrogen Combustion Equation (equation) + equation + The equation represents the combustion of hydrogen and oxygen to form water, illustrating stoichiometric balance and energy release. It is foundational in chemistry and energy applications. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960537 + + + Oxygen Gas (O₂) + category + Oxygen gas (O₂) is a diatomic molecule and a reactant in the combustion reaction, combining with hydrogen to form water. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Water (H₂O) + category + Water (H₂O) is the product of the combustion reaction between hydrogen and oxygen, representing a clean energy output. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Redox Chemistry + category + Redox chemistry involves oxidation and reduction reactions, exemplified by the combustion of hydrogen and oxygen. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Hydrogen Fuel Cells + organization + Hydrogen fuel cells utilize the combustion reaction of hydrogen and oxygen to produce clean energy, with water as the only byproduct. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Law of Conservation of Mass + category + A fundamental principle in chemistry stating that matter cannot be created or destroyed in a chemical reaction, only rearranged. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Thermodynamics + category + The branch of physics dealing with heat and energy transfer, particularly relevant in exothermic reactions like hydrogen combustion. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Exothermic Reaction + event + A chemical reaction that releases energy, exemplified by the combustion of hydrogen and oxygen. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Rocket Propulsion + category + An application of the hydrogen-oxygen combustion reaction, used to generate thrust in spacecraft. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Clean Energy Systems + category + Technologies utilizing chemical reactions like hydrogen combustion to produce energy with minimal environmental impact. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Iron Oxide + category + A compound mentioned as part of other chemical reactions in the broader context of the discussion. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Nitric Acid + category + A chemical mentioned as part of other reactions (acid-base) in the broader context of the discussion. + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + 8.0 氧化铁与硝酸发生化学反应,生成新的化合物。 @@ -133,5 +437,597 @@ 化学方程式_CHEMISTRY_1.docx 1751960218 + + Entity FeO belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity HNO₃ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Fe(NO₃)₃ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity H₂ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity NO₂ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Redox Reaction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Stoichiometry belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Δ (Heat) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 30.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Oxidation belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Reduction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Gas Evolution belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Acid-Metal Oxide Reaction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Combustion Reaction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Laboratory Synthesis belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Industrial Processes belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Environmental Chemistry belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Inorganic Chemistry belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Iron(II) Oxide (FeO) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Nitric Acid (HNO₃) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Iron(III) Nitrate (Fe(NO₃)₃) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Hydrogen Gas (H₂) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Nitrogen Dioxide (NO₂) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Environmental Pollution belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Industrial Synthesis belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Laboratory Demonstration belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation) + belongs_to,contained_in,part_of + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 18.0 + FeO reacts with HNO₃ in a redox process to produce Fe(NO₃)₃, H₂, and NO₂.<SEP>FeO reacts with HNO₃ in a redox reaction to produce Fe(NO₃)₃, H₂, and NO₂. + chemical reaction,redox,redox process + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 16.0 + FeO is oxidized to form Fe(NO₃)₃ in the reaction. + oxidation,product formation + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + Heat (Δ) is required to drive the reaction involving FeO. + energy input,reaction condition + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + FeO undergoes oxidation to form Fe(NO₃)₃. + chemical process,electron loss + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 16.0 + HNO₃ is reduced to form NO₂ gas in the reaction.<SEP>HNO₃ is reduced to form NO₂ in the reaction. + gas evolution,pollutant formation,reduction + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + Heat (Δ) is required to drive the reaction involving HNO₃. + energy input,reaction condition + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + HNO₃ undergoes reduction to form NO₂. + chemical process,electron gain + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + Nitric acid is used in industrial processes involving metal oxides. + chemical usage,industrial application + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + The reaction is used in laboratories to synthesize iron(III) nitrate. + chemical synthesis,practical application + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + H₂ is one of the gaseous products evolved in the reaction. + gas release,product formation + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + NO₂ is one of the gaseous products evolved in the reaction. + gas release,product formation + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + NO₂ is a pollutant studied in environmental chemistry. + environmental impact,pollution + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 14.0 + Stoichiometry ensures mass and charge balance in the redox equation.<SEP>Stoichiometry is used to balance the redox reaction and understand the molar ratios. + balancing,conservation laws,quantitative analysis + chunk-1b444c5f7dfe95b7dde27447f21214b5<SEP>chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + The reaction between FeO and HNO₃ is an example of an acid-metal oxide reaction, a subset of redox reactions. + chemical types,reaction classification + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + Combustion reactions are another type of redox reaction, contrasting with the acid-metal oxide reaction. + chemical types,reaction comparison + chunk-d50f1a8dad9b33fc2a6c7c3359220e5a + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 16.0 + Redox reactions are a fundamental concept in inorganic chemistry.<SEP>The redox reaction is a fundamental process studied within inorganic chemistry. + academic discipline,academic study,chemical principles,chemical process + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + Heat is required to drive the redox reaction forward. + energy input,reaction kinetics + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + This reaction is commonly used in labs to teach redox principles. + education,experimental learning + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Stoichiometry belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + Stoichiometry governs the balanced molar ratios of reactants and products in the combustion reaction. + chemical balance,quantitative analysis + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Combustion Reaction belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 10.0 + The combustion reaction produces water as the sole product, highlighting its clean energy potential. + energy production,zero-emission + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 18.0 + The combustion reaction is a classic example of redox chemistry, involving the oxidation of hydrogen and reduction of oxygen.<SEP>The combustion reaction is a redox process where hydrogen is oxidized and oxygen is reduced. + chemical transformation,electron transfer,oxidation-reduction + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 10.0 + Hydrogen fuel cells leverage the combustion reaction to generate clean energy, with water as the only output. + clean technology,sustainable energy + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 9.0 + The combustion reaction adheres to the law of conservation of mass, with atoms being rearranged but not created or destroyed. + atomic balance,chemical principle + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 10.0 + The combustion of hydrogen and oxygen is an exothermic reaction, releasing significant energy. + chemical process,energy release + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 9.0 + Rocket propulsion systems utilize the hydrogen-oxygen combustion reaction for thrust generation. + energy application,space technology + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 9.0 + FeO reacts with HNO₃ under heat to form Fe(NO₃)₃, H₂, and NO₂. + chemical reaction,redox process + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + FeO is oxidized to Fe(NO₃)₃ in the reaction. + oxidation,product formation + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + HNO₃ is reduced to NO₂, releasing toxic gas. + pollutant formation,reduction + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + HNO₃ contributes to the release of H₂ gas during the reaction. + acid reaction,gas evolution + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 7.0 + Fe(NO₃)₃ is industrially synthesized using this reaction. + chemical manufacturing,practical application + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Hydrogen Gas (H₂) belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 9.0 + Hydrogen and oxygen gases react in a 2:1 molar ratio to form water in a combustion reaction. + chemical reaction,stoichiometry + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + NO₂ is a harmful pollutant contributing to air quality degradation. + environmental impact,toxicity + chunk-1b444c5f7dfe95b7dde27447f21214b5 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Oxygen Gas (O₂) belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Water (H₂O) belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Redox Chemistry belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Hydrogen Fuel Cells belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Law of Conservation of Mass belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Thermodynamics belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Exothermic Reaction belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Rocket Propulsion belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Clean Energy Systems belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Iron Oxide belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + Entity Nitric Acid belongs to Hydrogen Combustion Equation (equation) + belongs_to,contained_in,part_of + chunk-160631ff58dfd24b89716cc26d0a4b6e + 20.0 + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 10.0 + Hydrogen fuel cells are a type of clean energy system that uses the hydrogen combustion reaction. + sustainability,zero-emission technology + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 8.0 + The hydrogen combustion reaction is a classic example of thermodynamics in action, releasing heat energy. + energy transfer,heat release + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + + + 6.0 + Mentioned as part of other chemical reactions (acid-base) in contrast to the combustion reaction. + chemical contrast,reaction types + chunk-160631ff58dfd24b89716cc26d0a4b6e + 化学方程式_CHEMISTRY_1.docx + 1751960616 + diff --git a/dsRagAnything/Topic/Chemistry/kv_store_llm_response_cache.json b/dsRagAnything/Topic/Chemistry/kv_store_llm_response_cache.json index 1723fc3a..107249fa 100644 --- a/dsRagAnything/Topic/Chemistry/kv_store_llm_response_cache.json +++ b/dsRagAnything/Topic/Chemistry/kv_store_llm_response_cache.json @@ -19,6 +19,66 @@ "embedding_min": null, "embedding_max": null, "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\n氧化铁和硝酸的反应方程式1\\n\\n氧化铁和硝酸的反应方程式 2\\n\\n氢气与氧气燃烧的方程式\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"氧化铁\\\"<|>\\\"category\\\"<|>\\\"氧化铁是一种化学物质,参与与硝酸的化学反应。\\\")## \\n(\\\"entity\\\"<|>\\\"硝酸\\\"<|>\\\"category\\\"<|>\\\"硝酸是一种强酸,参与与氧化铁的化学反应。\\\")## \\n(\\\"entity\\\"<|>\\\"氢气\\\"<|>\\\"category\\\"<|>\\\"氢气是一种可燃气体,参与与氧气的燃烧反应。\\\")## \\n(\\\"entity\\\"<|>\\\"氧气\\\"<|>\\\"category\\\"<|>\\\"氧气是一种助燃气体,参与与氢气的燃烧反应。\\\")## \\n(\\\"relationship\\\"<|>\\\"氧化铁\\\"<|>\\\"硝酸\\\"<|>\\\"氧化铁与硝酸发生化学反应,生成新的化合物。\\\"<|>\\\"化学反应, 酸碱反应\\\"<|>8)## \\n(\\\"relationship\\\"<|>\\\"氢气\\\"<|>\\\"氧气\\\"<|>\\\"氢气与氧气发生燃烧反应,生成水。\\\"<|>\\\"燃烧反应, 氧化还原\\\"<|>9)## \\n(\\\"content_keywords\\\"<|>\\\"化学反应, 燃烧反应, 氧化还原\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "c6523946541b29d599025737776cfba3": { + "return": "(\"entity\"<|>\"FeO\"<|>\"category\"<|>\"Iron(II) oxide, a reactant in the chemical reaction, involved in redox processes.\")##\n(\"entity\"<|>\"HNO₃\"<|>\"category\"<|>\"Nitric acid, a reactant in the chemical reaction, acts as an oxidizing agent.\")##\n(\"entity\"<|>\"Fe(NO₃)₃\"<|>\"category\"<|>\"Iron(III) nitrate, a product of the reaction, formed through oxidation of iron.\")##\n(\"entity\"<|>\"H₂\"<|>\"category\"<|>\"Hydrogen gas, a gaseous product evolved during the reaction.\")##\n(\"entity\"<|>\"NO₂\"<|>\"category\"<|>\"Nitrogen dioxide gas, a gaseous product and a pollutant, formed through reduction of nitric acid.\")##\n(\"entity\"<|>\"Redox Reaction\"<|>\"category\"<|>\"A type of chemical reaction involving oxidation and reduction processes.\")##\n(\"entity\"<|>\"Stoichiometry\"<|>\"category\"<|>\"The quantitative relationship between reactants and products in a chemical reaction.\")##\n(\"relationship\"<|>\"FeO\"<|>\"HNO₃\"<|>\"FeO reacts with HNO₃ in a redox reaction to produce Fe(NO₃)₃, H₂, and NO₂.\"<|>\"chemical reaction, redox\"<|>9)##\n(\"relationship\"<|>\"FeO\"<|>\"Fe(NO₃)₃\"<|>\"FeO is oxidized to form Fe(NO₃)₃ in the reaction.\"<|>\"oxidation, product formation\"<|>8)##\n(\"relationship\"<|>\"HNO₃\"<|>\"NO₂\"<|>\"HNO₃ is reduced to form NO₂ gas in the reaction.\"<|>\"reduction, gas evolution\"<|>8)##\n(\"relationship\"<|>\"Redox Reaction\"<|>\"Stoichiometry\"<|>\"Stoichiometry is used to balance the redox reaction and understand the molar ratios.\"<|>\"quantitative analysis, balancing\"<|>7)##\n(\"content_keywords\"<|>\"chemical reaction, redox, stoichiometry, gas evolution, oxidation-reduction\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\nMathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } { \\stackrel { \\Delta } { = } } F e \\left( N O _ { 3 } \\right) _ { 3 } + 2 H _ { 2 } \\uparrow + N O _ { 2 } \\uparrow\n$$\nFormat: latex\n\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide gas (NO₂). Here is a detailed analysis:\n\n1. **Mathematical Meaning and Interpretation**: The equation is balanced, showing the stoichiometric relationship between reactants and products. The coefficients indicate the molar ratios: 1 mole of FeO reacts with 4 moles of HNO₃ to produce 1 mole of Fe(NO₃)₃, 2 moles of H₂, and 1 mole of NO₂.\n\n2. **Variables and Definitions**: \n - FeO: Iron(II) oxide, a reactant.\n - HNO₃: Nitric acid, another reactant.\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\n - H₂: Hydrogen gas, a product (indicated by the upward arrow, ↑, denoting gas evolution).\n - NO₂: Nitrogen dioxide gas, another product (also indicated by ↑).\n - Δ: Represents the application of heat to drive the reaction.\n\n3. **Mathematical Operations and Functions**: The equation uses chemical notation to represent reactants and products, with coefficients for balancing. The '↑' symbol denotes gaseous products, and 'Δ' signifies heat as a reaction condition.\n\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry. The surrounding context includes other chemical equations (e.g., hydrogen combustion), suggesting a focus on reaction types (acid-base, redox, combustion).\n\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\n - Oxidation of Fe²⁺ to Fe³⁺.\n - Reduction of HNO₃ to NO₂ (nitrogen changes oxidation state from +5 to +4).\n - Gas evolution (H₂ and NO₂), which is practically observable.\n\n6. **Relationship to Other Concepts**: This is an example of an acid-metal oxide reaction, contrasting with the combustion reaction (H₂ + O₂) mentioned in the context. Both are types of redox reactions but differ in reactants and products.\n\n7. **Practical Applications**: Such reactions are used in:\n - Laboratory synthesis of iron(III) compounds.\n - Industrial processes involving nitric acid and metal oxides.\n - Environmental chemistry (NO₂ is a pollutant).\n\n8. **Broader Discussion**: The equation fits into a framework of classifying and balancing chemical reactions, highlighting stoichiometry, gas laws, and redox chemistry.\n######################\nOutput:" + }, + "5947ac2da4dc1c6ef37ac381a59bea69": { + "return": "(\"entity\"<|>\"FeO\"<|>\"category\"<|>\"Iron(II) oxide, a reactant in the chemical reaction, involved in redox processes.\")## \n(\"entity\"<|>\"HNO₃\"<|>\"category\"<|>\"Nitric acid, a reactant in the chemical reaction, acts as an oxidizing agent.\")## \n(\"entity\"<|>\"Fe(NO₃)₃\"<|>\"category\"<|>\"Iron(III) nitrate, a product of the reaction, formed through oxidation of iron.\")## \n(\"entity\"<|>\"H₂\"<|>\"category\"<|>\"Hydrogen gas, a gaseous product evolved during the reaction.\")## \n(\"entity\"<|>\"NO₂\"<|>\"category\"<|>\"Nitrogen dioxide gas, a gaseous product and a pollutant, formed through reduction of nitric acid.\")## \n(\"entity\"<|>\"Δ (Heat)\"<|>\"category\"<|>\"Heat applied to drive the chemical reaction, denoted by the delta symbol.\")## \n(\"entity\"<|>\"Redox Reaction\"<|>\"category\"<|>\"A type of chemical reaction involving oxidation and reduction processes.\")## \n(\"entity\"<|>\"Stoichiometry\"<|>\"category\"<|>\"The quantitative relationship between reactants and products in a chemical reaction.\")## \n(\"entity\"<|>\"Oxidation\"<|>\"category\"<|>\"The process where Fe²⁺ is oxidized to Fe³⁺ in the reaction.\")## \n(\"entity\"<|>\"Reduction\"<|>\"category\"<|>\"The process where HNO₃ is reduced to NO₂ in the reaction.\")## \n(\"entity\"<|>\"Gas Evolution\"<|>\"category\"<|>\"The production of gaseous products (H₂ and NO₂) during the reaction.\")## \n(\"entity\"<|>\"Acid-Metal Oxide Reaction\"<|>\"category\"<|>\"A type of reaction where an acid reacts with a metal oxide.\")## \n(\"entity\"<|>\"Combustion Reaction\"<|>\"category\"<|>\"A contrasting reaction type mentioned in the context (H₂ + O₂).\")## \n(\"entity\"<|>\"Laboratory Synthesis\"<|>\"category\"<|>\"Practical application of the reaction in synthesizing iron(III) compounds.\")## \n(\"entity\"<|>\"Industrial Processes\"<|>\"category\"<|>\"Use of the reaction in industrial settings involving nitric acid and metal oxides.\")## \n(\"entity\"<|>\"Environmental Chemistry\"<|>\"category\"<|>\"Relevance of NO₂ as a pollutant in environmental studies.\")## \n(\"relationship\"<|>\"FeO\"<|>\"HNO₃\"<|>\"FeO reacts with HNO₃ in a redox reaction to produce Fe(NO₃)₃, H₂, and NO₂.\"<|>\"chemical reaction, redox\"<|>9)## \n(\"relationship\"<|>\"FeO\"<|>\"Fe(NO₃)₃\"<|>\"FeO is oxidized to form Fe(NO₃)₃ in the reaction.\"<|>\"oxidation, product formation\"<|>8)## \n(\"relationship\"<|>\"HNO₃\"<|>\"NO₂\"<|>\"HNO₃ is reduced to form NO₂ gas in the reaction.\"<|>\"reduction, gas evolution\"<|>8)## \n(\"relationship\"<|>\"FeO\"<|>\"Δ (Heat)\"<|>\"Heat (Δ) is required to drive the reaction involving FeO.\"<|>\"reaction condition, energy input\"<|>7)## \n(\"relationship\"<|>\"HNO₃\"<|>\"Δ (Heat)\"<|>\"Heat (Δ) is required to drive the reaction involving HNO₃.\"<|>\"reaction condition, energy input\"<|>7)## \n(\"relationship\"<|>\"Redox Reaction\"<|>\"Stoichiometry\"<|>\"Stoichiometry is used to balance the redox reaction and understand the molar ratios.\"<|>\"quantitative analysis, balancing\"<|>7)## \n(\"relationship\"<|>\"Oxidation\"<|>\"FeO\"<|>\"FeO undergoes oxidation to form Fe(NO₃)₃.\"<|>\"chemical process, electron loss\"<|>8)## \n(\"relationship\"<|>\"Reduction\"<|>\"HNO₃\"<|>\"HNO₃ undergoes reduction to form NO₂.\"<|>\"chemical process, electron gain\"<|>8)## \n(\"relationship\"<|>\"Gas Evolution\"<|>\"H₂\"<|>\"H₂ is one of the gaseous products evolved in the reaction.\"<|>\"product formation, gas release\"<|>7)## \n(\"relationship\"<|>\"Gas Evolution\"<|>\"NO₂\"<|>\"NO₂ is one of the gaseous products evolved in the reaction.\"<|>\"product formation, gas release\"<|>7)## \n(\"relationship\"<|>\"Acid-Metal Oxide Reaction\"<|>\"Redox Reaction\"<|>\"The reaction between FeO and HNO₃ is an example of an acid-metal oxide reaction, a subset of redox reactions.\"<|>\"reaction classification, chemical types\"<|>8)## \n(\"relationship\"<|>\"Combustion Reaction\"<|>\"Redox Reaction\"<|>\"Combustion reactions are another type of redox reaction, contrasting with the acid-metal oxide reaction.\"<|>\"reaction comparison, chemical types\"<|>7)## \n(\"relationship\"<|>\"Laboratory Synthesis\"<|>\"Fe(NO₃)₃\"<|>\"The reaction is used in laboratories to synthesize iron(III) nitrate.\"<|>\"practical application, chemical synthesis\"<|>7)## \n(\"relationship\"<|>\"Industrial Processes\"<|>\"HNO₃\"<|>\"Nitric acid is used in industrial processes involving metal oxides.\"<|>\"industrial application, chemical usage\"<|>7)## \n(\"relationship\"<|>\"Environmental Chemistry\"<|>\"NO₂\"<|>\"NO₂ is a pollutant studied in environmental chemistry.\"<|>\"environmental impact, pollution\"<|>8)## \n(\"content_keywords\"<|>\"chemical reaction, redox, stoichiometry, gas evolution, oxidation-reduction, acid-metal oxide, laboratory synthesis, industrial processes, environmental chemistry\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\nMathematical Equation Analysis:\\nEquation: $$\\nF e O + 4 H N O _ { 3 } { \\\\stackrel { \\\\Delta } { = } } F e \\\\left( N O _ { 3 } \\\\right) _ { 3 } + 2 H _ { 2 } \\\\uparrow + N O _ { 2 } \\\\uparrow\\n$$\\nFormat: latex\\n\\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide gas (NO₂). Here is a detailed analysis:\\n\\n1. **Mathematical Meaning and Interpretation**: The equation is balanced, showing the stoichiometric relationship between reactants and products. The coefficients indicate the molar ratios: 1 mole of FeO reacts with 4 moles of HNO₃ to produce 1 mole of Fe(NO₃)₃, 2 moles of H₂, and 1 mole of NO₂.\\n\\n2. **Variables and Definitions**: \\n - FeO: Iron(II) oxide, a reactant.\\n - HNO₃: Nitric acid, another reactant.\\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\\n - H₂: Hydrogen gas, a product (indicated by the upward arrow, ↑, denoting gas evolution).\\n - NO₂: Nitrogen dioxide gas, another product (also indicated by ↑).\\n - Δ: Represents the application of heat to drive the reaction.\\n\\n3. **Mathematical Operations and Functions**: The equation uses chemical notation to represent reactants and products, with coefficients for balancing. The '↑' symbol denotes gaseous products, and 'Δ' signifies heat as a reaction condition.\\n\\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry. The surrounding context includes other chemical equations (e.g., hydrogen combustion), suggesting a focus on reaction types (acid-base, redox, combustion).\\n\\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\\n - Oxidation of Fe²⁺ to Fe³⁺.\\n - Reduction of HNO₃ to NO₂ (nitrogen changes oxidation state from +5 to +4).\\n - Gas evolution (H₂ and NO₂), which is practically observable.\\n\\n6. **Relationship to Other Concepts**: This is an example of an acid-metal oxide reaction, contrasting with the combustion reaction (H₂ + O₂) mentioned in the context. Both are types of redox reactions but differ in reactants and products.\\n\\n7. **Practical Applications**: Such reactions are used in:\\n - Laboratory synthesis of iron(III) compounds.\\n - Industrial processes involving nitric acid and metal oxides.\\n - Environmental chemistry (NO₂ is a pollutant).\\n\\n8. **Broader Discussion**: The equation fits into a framework of classifying and balancing chemical reactions, highlighting stoichiometry, gas laws, and redox chemistry.\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"FeO\\\"<|>\\\"category\\\"<|>\\\"Iron(II) oxide, a reactant in the chemical reaction, involved in redox processes.\\\")##\\n(\\\"entity\\\"<|>\\\"HNO₃\\\"<|>\\\"category\\\"<|>\\\"Nitric acid, a reactant in the chemical reaction, acts as an oxidizing agent.\\\")##\\n(\\\"entity\\\"<|>\\\"Fe(NO₃)₃\\\"<|>\\\"category\\\"<|>\\\"Iron(III) nitrate, a product of the reaction, formed through oxidation of iron.\\\")##\\n(\\\"entity\\\"<|>\\\"H₂\\\"<|>\\\"category\\\"<|>\\\"Hydrogen gas, a gaseous product evolved during the reaction.\\\")##\\n(\\\"entity\\\"<|>\\\"NO₂\\\"<|>\\\"category\\\"<|>\\\"Nitrogen dioxide gas, a gaseous product and a pollutant, formed through reduction of nitric acid.\\\")##\\n(\\\"entity\\\"<|>\\\"Redox Reaction\\\"<|>\\\"category\\\"<|>\\\"A type of chemical reaction involving oxidation and reduction processes.\\\")##\\n(\\\"entity\\\"<|>\\\"Stoichiometry\\\"<|>\\\"category\\\"<|>\\\"The quantitative relationship between reactants and products in a chemical reaction.\\\")##\\n(\\\"relationship\\\"<|>\\\"FeO\\\"<|>\\\"HNO₃\\\"<|>\\\"FeO reacts with HNO₃ in a redox reaction to produce Fe(NO₃)₃, H₂, and NO₂.\\\"<|>\\\"chemical reaction, redox\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"FeO\\\"<|>\\\"Fe(NO₃)₃\\\"<|>\\\"FeO is oxidized to form Fe(NO₃)₃ in the reaction.\\\"<|>\\\"oxidation, product formation\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"HNO₃\\\"<|>\\\"NO₂\\\"<|>\\\"HNO₃ is reduced to form NO₂ gas in the reaction.\\\"<|>\\\"reduction, gas evolution\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Redox Reaction\\\"<|>\\\"Stoichiometry\\\"<|>\\\"Stoichiometry is used to balance the redox reaction and understand the molar ratios.\\\"<|>\\\"quantitative analysis, balancing\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"chemical reaction, redox, stoichiometry, gas evolution, oxidation-reduction\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "683e08e887c8d500b9f69a23099246cf": { + "return": "(\"entity\"<|>\"FeO\"<|>\"category\"<|>\"Iron(II) oxide, a reactant in the chemical reaction, involved in redox processes.\")##\n(\"entity\"<|>\"HNO₃\"<|>\"category\"<|>\"Nitric acid, a strong acid reactant that participates in the redox reaction, reducing to nitrogen dioxide.\")##\n(\"entity\"<|>\"Fe(NO₃)₃\"<|>\"category\"<|>\"Iron(III) nitrate, a product of the reaction formed by the oxidation of iron(II) oxide.\")##\n(\"entity\"<|>\"H₂\"<|>\"category\"<|>\"Hydrogen gas, a gaseous product evolved during the reaction.\")##\n(\"entity\"<|>\"NO₂\"<|>\"category\"<|>\"Nitrogen dioxide, a gaseous product and pollutant resulting from the reduction of nitric acid.\")##\n(\"entity\"<|>\"Redox Reaction\"<|>\"event\"<|>\"A chemical reaction involving the transfer of electrons between species, exemplified by the oxidation of Fe²⁺ to Fe³⁺ and reduction of HNO₃ to NO₂.\")##\n(\"entity\"<|>\"Inorganic Chemistry\"<|>\"category\"<|>\"The branch of chemistry dealing with inorganic compounds, including reactions like the one described.\")##\n(\"relationship\"<|>\"FeO\"<|>\"HNO₃\"<|>\"FeO reacts with HNO₃ in a redox process to produce Fe(NO₃)₃, H₂, and NO₂.\"<|>\"chemical reaction, redox process\"<|>9)##\n(\"relationship\"<|>\"FeO\"<|>\"Fe(NO₃)₃\"<|>\"FeO is oxidized to form Fe(NO₃)₃ in the reaction.\"<|>\"oxidation, product formation\"<|>8)##\n(\"relationship\"<|>\"HNO₃\"<|>\"NO₂\"<|>\"HNO₃ is reduced to form NO₂ in the reaction.\"<|>\"reduction, pollutant formation\"<|>8)##\n(\"relationship\"<|>\"Redox Reaction\"<|>\"Inorganic Chemistry\"<|>\"The redox reaction is a fundamental process studied within inorganic chemistry.\"<|>\"chemical process, academic discipline\"<|>7)##\n(\"content_keywords\"<|>\"chemical reaction, redox, inorganic chemistry, gas evolution, industrial synthesis\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\nMathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } \\underline { { \\Delta } } F e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } \\uparrow + N O _ { 2 }\n$$\nFormat: latex\n\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide (NO₂). Here is a detailed analysis:\n\n1. **Mathematical Meaning and Interpretation**: The equation is a balanced chemical reaction where reactants (FeO and HNO₃) transform into products (Fe(NO₃)₃, H₂, and NO₂). The coefficients (1, 4, 1, 2, 1) ensure mass and charge conservation.\n\n2. **Variables and Definitions**: \n - FeO: Iron(II) oxide, a reactant.\n - HNO₃: Nitric acid, another reactant.\n - Δ: Represents heat applied to the reaction.\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\n - H₂↑: Hydrogen gas, a gaseous product (indicated by ↑).\n - NO₂: Nitrogen dioxide, another gaseous product.\n\n3. **Mathematical Operations and Functions**: The equation uses stoichiometric coefficients to balance atoms and charges. The arrow (→) denotes the direction of the reaction, and Δ signifies thermal energy input.\n\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry, specifically involving the oxidation of Fe²⁺ to Fe³⁺ and the reduction of HNO₃ to NO₂.\n\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\n - Acid-base chemistry (HNO₃ as a strong acid).\n - Redox processes (electron transfer between Fe and N).\n - Gas evolution (H₂ and NO₂ as products).\n\n6. **Relationship to Other Concepts**: In the surrounding context, this equation is part of a series of chemical reactions (e.g., hydrogen combustion: 2H₂ + O₂ → 2H₂O). It highlights diverse reaction types (redox, acid-base, combustion).\n\n7. **Practical Applications**:\n - Industrial synthesis of iron(III) nitrate.\n - Laboratory demonstrations of redox reactions.\n - Environmental implications (NO₂ is a pollutant).\n\n8. **Broader Discussion**: This equation fits into a framework of chemical reactivity, illustrating how different compounds interact under specific conditions (e.g., heat, acid concentration).\n######################\nOutput:" + }, + "71d9c816d13fa9fd5ba2c44a03b336e9": { + "return": "(\"entity\"<|>\"Iron(II) Oxide (FeO)\"<|>\"category\"<|>\"A reactant in the chemical reaction, composed of iron and oxygen in a +2 oxidation state.\")## \n(\"entity\"<|>\"Nitric Acid (HNO₃)\"<|>\"category\"<|>\"A strong oxidizing acid that reacts with FeO, producing nitrogen dioxide and iron(III) nitrate.\")## \n(\"entity\"<|>\"Iron(III) Nitrate (Fe(NO₃)₃)\"<|>\"category\"<|>\"A product formed by the oxidation of iron(II) oxide in the presence of nitric acid.\")## \n(\"entity\"<|>\"Hydrogen Gas (H₂)\"<|>\"category\"<|>\"A gaseous byproduct released during the reaction, indicated by the upward arrow (↑).\")## \n(\"entity\"<|>\"Nitrogen Dioxide (NO₂)\"<|>\"category\"<|>\"A toxic gas produced from the reduction of nitric acid, contributing to environmental pollution.\")## \n(\"entity\"<|>\"Δ (Heat)\"<|>\"category\"<|>\"Thermal energy applied to drive the chemical reaction forward.\")## \n(\"entity\"<|>\"Redox Reaction\"<|>\"event\"<|>\"A simultaneous oxidation and reduction process where Fe²⁺ is oxidized to Fe³⁺ and HNO₃ is reduced to NO₂.\")## \n(\"entity\"<|>\"Stoichiometry\"<|>\"category\"<|>\"The quantitative relationship between reactants and products in a balanced chemical equation.\")## \n(\"entity\"<|>\"Inorganic Chemistry\"<|>\"category\"<|>\"The branch of chemistry studying inorganic compounds and their reactions, including acid-base and redox processes.\")## \n(\"entity\"<|>\"Environmental Pollution\"<|>\"category\"<|>\"A broader implication of NO₂ emissions from chemical reactions like this one.\")## \n(\"entity\"<|>\"Industrial Synthesis\"<|>\"event\"<|>\"Practical applications of this reaction in producing iron(III) nitrate for industrial use.\")## \n(\"entity\"<|>\"Laboratory Demonstration\"<|>\"event\"<|>\"Educational use of this reaction to illustrate redox principles in chemistry labs.\")## \n(\"relationship\"<|>\"Iron(II) Oxide (FeO)\"<|>\"Nitric Acid (HNO₃)\"<|>\"FeO reacts with HNO₃ under heat to form Fe(NO₃)₃, H₂, and NO₂.\"<|>\"chemical reaction, redox process\"<|>9)## \n(\"relationship\"<|>\"Iron(II) Oxide (FeO)\"<|>\"Iron(III) Nitrate (Fe(NO₃)₃)\"<|>\"FeO is oxidized to Fe(NO₃)₃ in the reaction.\"<|>\"oxidation, product formation\"<|>8)## \n(\"relationship\"<|>\"Nitric Acid (HNO₃)\"<|>\"Nitrogen Dioxide (NO₂)\"<|>\"HNO₃ is reduced to NO₂, releasing toxic gas.\"<|>\"reduction, pollutant formation\"<|>8)## \n(\"relationship\"<|>\"Nitric Acid (HNO₃)\"<|>\"Hydrogen Gas (H₂)\"<|>\"HNO₃ contributes to the release of H₂ gas during the reaction.\"<|>\"gas evolution, acid reaction\"<|>7)## \n(\"relationship\"<|>\"Δ (Heat)\"<|>\"Redox Reaction\"<|>\"Heat is required to drive the redox reaction forward.\"<|>\"energy input, reaction kinetics\"<|>8)## \n(\"relationship\"<|>\"Stoichiometry\"<|>\"Redox Reaction\"<|>\"Stoichiometry ensures mass and charge balance in the redox equation.\"<|>\"quantitative analysis, conservation laws\"<|>7)## \n(\"relationship\"<|>\"Inorganic Chemistry\"<|>\"Redox Reaction\"<|>\"Redox reactions are a fundamental concept in inorganic chemistry.\"<|>\"chemical principles, academic study\"<|>9)## \n(\"relationship\"<|>\"Nitrogen Dioxide (NO₂)\"<|>\"Environmental Pollution\"<|>\"NO₂ is a harmful pollutant contributing to air quality degradation.\"<|>\"environmental impact, toxicity\"<|>8)## \n(\"relationship\"<|>\"Iron(III) Nitrate (Fe(NO₃)₃)\"<|>\"Industrial Synthesis\"<|>\"Fe(NO₃)₃ is industrially synthesized using this reaction.\"<|>\"chemical manufacturing, practical application\"<|>7)## \n(\"relationship\"<|>\"Redox Reaction\"<|>\"Laboratory Demonstration\"<|>\"This reaction is commonly used in labs to teach redox principles.\"<|>\"education, experimental learning\"<|>7)## \n(\"content_keywords\"<|>\"chemical reaction, redox processes, inorganic chemistry, environmental impact, industrial applications\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\nMathematical Equation Analysis:\\nEquation: $$\\nF e O + 4 H N O _ { 3 } \\\\underline { { \\\\Delta } } F e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } \\\\uparrow + N O _ { 2 }\\n$$\\nFormat: latex\\n\\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide (NO₂). Here is a detailed analysis:\\n\\n1. **Mathematical Meaning and Interpretation**: The equation is a balanced chemical reaction where reactants (FeO and HNO₃) transform into products (Fe(NO₃)₃, H₂, and NO₂). The coefficients (1, 4, 1, 2, 1) ensure mass and charge conservation.\\n\\n2. **Variables and Definitions**: \\n - FeO: Iron(II) oxide, a reactant.\\n - HNO₃: Nitric acid, another reactant.\\n - Δ: Represents heat applied to the reaction.\\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\\n - H₂↑: Hydrogen gas, a gaseous product (indicated by ↑).\\n - NO₂: Nitrogen dioxide, another gaseous product.\\n\\n3. **Mathematical Operations and Functions**: The equation uses stoichiometric coefficients to balance atoms and charges. The arrow (→) denotes the direction of the reaction, and Δ signifies thermal energy input.\\n\\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry, specifically involving the oxidation of Fe²⁺ to Fe³⁺ and the reduction of HNO₃ to NO₂.\\n\\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\\n - Acid-base chemistry (HNO₃ as a strong acid).\\n - Redox processes (electron transfer between Fe and N).\\n - Gas evolution (H₂ and NO₂ as products).\\n\\n6. **Relationship to Other Concepts**: In the surrounding context, this equation is part of a series of chemical reactions (e.g., hydrogen combustion: 2H₂ + O₂ → 2H₂O). It highlights diverse reaction types (redox, acid-base, combustion).\\n\\n7. **Practical Applications**:\\n - Industrial synthesis of iron(III) nitrate.\\n - Laboratory demonstrations of redox reactions.\\n - Environmental implications (NO₂ is a pollutant).\\n\\n8. **Broader Discussion**: This equation fits into a framework of chemical reactivity, illustrating how different compounds interact under specific conditions (e.g., heat, acid concentration).\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"FeO\\\"<|>\\\"category\\\"<|>\\\"Iron(II) oxide, a reactant in the chemical reaction, involved in redox processes.\\\")##\\n(\\\"entity\\\"<|>\\\"HNO₃\\\"<|>\\\"category\\\"<|>\\\"Nitric acid, a strong acid reactant that participates in the redox reaction, reducing to nitrogen dioxide.\\\")##\\n(\\\"entity\\\"<|>\\\"Fe(NO₃)₃\\\"<|>\\\"category\\\"<|>\\\"Iron(III) nitrate, a product of the reaction formed by the oxidation of iron(II) oxide.\\\")##\\n(\\\"entity\\\"<|>\\\"H₂\\\"<|>\\\"category\\\"<|>\\\"Hydrogen gas, a gaseous product evolved during the reaction.\\\")##\\n(\\\"entity\\\"<|>\\\"NO₂\\\"<|>\\\"category\\\"<|>\\\"Nitrogen dioxide, a gaseous product and pollutant resulting from the reduction of nitric acid.\\\")##\\n(\\\"entity\\\"<|>\\\"Redox Reaction\\\"<|>\\\"event\\\"<|>\\\"A chemical reaction involving the transfer of electrons between species, exemplified by the oxidation of Fe²⁺ to Fe³⁺ and reduction of HNO₃ to NO₂.\\\")##\\n(\\\"entity\\\"<|>\\\"Inorganic Chemistry\\\"<|>\\\"category\\\"<|>\\\"The branch of chemistry dealing with inorganic compounds, including reactions like the one described.\\\")##\\n(\\\"relationship\\\"<|>\\\"FeO\\\"<|>\\\"HNO₃\\\"<|>\\\"FeO reacts with HNO₃ in a redox process to produce Fe(NO₃)₃, H₂, and NO₂.\\\"<|>\\\"chemical reaction, redox process\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"FeO\\\"<|>\\\"Fe(NO₃)₃\\\"<|>\\\"FeO is oxidized to form Fe(NO₃)₃ in the reaction.\\\"<|>\\\"oxidation, product formation\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"HNO₃\\\"<|>\\\"NO₂\\\"<|>\\\"HNO₃ is reduced to form NO₂ in the reaction.\\\"<|>\\\"reduction, pollutant formation\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Redox Reaction\\\"<|>\\\"Inorganic Chemistry\\\"<|>\\\"The redox reaction is a fundamental process studied within inorganic chemistry.\\\"<|>\\\"chemical process, academic discipline\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"chemical reaction, redox, inorganic chemistry, gas evolution, industrial synthesis\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" + }, + "0cbd68307977f0d69faea257c3213962": { + "return": "(\"entity\"<|>\"Hydrogen Gas (H₂)\"<|>\"category\"<|>\"Hydrogen gas (H₂) is a diatomic molecule and a reactant in the combustion reaction, forming water when combined with oxygen.\")##\n(\"entity\"<|>\"Oxygen Gas (O₂)\"<|>\"category\"<|>\"Oxygen gas (O₂) is a diatomic molecule and a reactant in the combustion reaction, combining with hydrogen to form water.\")##\n(\"entity\"<|>\"Water (H₂O)\"<|>\"category\"<|>\"Water (H₂O) is the product of the combustion reaction between hydrogen and oxygen, representing a clean energy output.\")##\n(\"entity\"<|>\"Combustion Reaction\"<|>\"event\"<|>\"The combustion reaction is a chemical process where hydrogen and oxygen react to form water, releasing energy.\")##\n(\"entity\"<|>\"Stoichiometry\"<|>\"category\"<|>\"Stoichiometry refers to the quantitative relationship between reactants and products in a chemical reaction, as demonstrated in the balanced equation.\")##\n(\"entity\"<|>\"Redox Chemistry\"<|>\"category\"<|>\"Redox chemistry involves oxidation and reduction reactions, exemplified by the combustion of hydrogen and oxygen.\")##\n(\"entity\"<|>\"Hydrogen Fuel Cells\"<|>\"organization\"<|>\"Hydrogen fuel cells utilize the combustion reaction of hydrogen and oxygen to produce clean energy, with water as the only byproduct.\")##\n(\"relationship\"<|>\"Hydrogen Gas (H₂)\"<|>\"Oxygen Gas (O₂)\"<|>\"Hydrogen and oxygen gases react in a 2:1 molar ratio to form water in a combustion reaction.\"<|>\"chemical reaction, stoichiometry\"<|>9)##\n(\"relationship\"<|>\"Combustion Reaction\"<|>\"Water (H₂O)\"<|>\"The combustion reaction produces water as the sole product, highlighting its clean energy potential.\"<|>\"energy production, zero-emission\"<|>10)##\n(\"relationship\"<|>\"Stoichiometry\"<|>\"Combustion Reaction\"<|>\"Stoichiometry governs the balanced molar ratios of reactants and products in the combustion reaction.\"<|>\"quantitative analysis, chemical balance\"<|>8)##\n(\"relationship\"<|>\"Redox Chemistry\"<|>\"Combustion Reaction\"<|>\"The combustion reaction is a classic example of redox chemistry, involving the oxidation of hydrogen and reduction of oxygen.\"<|>\"oxidation-reduction, chemical transformation\"<|>9)##\n(\"relationship\"<|>\"Hydrogen Fuel Cells\"<|>\"Combustion Reaction\"<|>\"Hydrogen fuel cells leverage the combustion reaction to generate clean energy, with water as the only output.\"<|>\"sustainable energy, clean technology\"<|>10)##\n(\"content_keywords\"<|>\"chemical reaction, stoichiometry, redox chemistry, clean energy, combustion science\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "---Goal---\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\nUse English as output language.\n\n---Steps---\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n######################\n---Examples---\n######################\nExample 1:\n\nEntity_types: [person, technology, mission, organization, location]\nText:\n```\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\n\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \"If this tech can be understood...\" Taylor said, their voice quieter, \"It could change the game for us. For all of us.\"\n\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\n\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\n```\n\nOutput:\n(\"entity\"<|>\"Alex\"<|>\"person\"<|>\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\")##\n(\"entity\"<|>\"Taylor\"<|>\"person\"<|>\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\")##\n(\"entity\"<|>\"Jordan\"<|>\"person\"<|>\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\")##\n(\"entity\"<|>\"Cruz\"<|>\"person\"<|>\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\")##\n(\"entity\"<|>\"The Device\"<|>\"technology\"<|>\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\")##\n(\"relationship\"<|>\"Alex\"<|>\"Taylor\"<|>\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\"<|>\"power dynamics, perspective shift\"<|>7)##\n(\"relationship\"<|>\"Alex\"<|>\"Jordan\"<|>\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\"<|>\"shared goals, rebellion\"<|>6)##\n(\"relationship\"<|>\"Taylor\"<|>\"Jordan\"<|>\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\"<|>\"conflict resolution, mutual respect\"<|>8)##\n(\"relationship\"<|>\"Jordan\"<|>\"Cruz\"<|>\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\"<|>\"ideological conflict, rebellion\"<|>5)##\n(\"relationship\"<|>\"Taylor\"<|>\"The Device\"<|>\"Taylor shows reverence towards the device, indicating its importance and potential impact.\"<|>\"reverence, technological significance\"<|>9)##\n(\"content_keywords\"<|>\"power dynamics, ideological conflict, discovery, rebellion\")<|COMPLETE|>\n#############################\nExample 2:\n\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\nText:\n```\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\n\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\n\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\n\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\n```\n\nOutput:\n(\"entity\"<|>\"Global Tech Index\"<|>\"index\"<|>\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\")##\n(\"entity\"<|>\"Nexon Technologies\"<|>\"company\"<|>\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\")##\n(\"entity\"<|>\"Omega Energy\"<|>\"company\"<|>\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\")##\n(\"entity\"<|>\"Gold Futures\"<|>\"commodity\"<|>\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\")##\n(\"entity\"<|>\"Crude Oil\"<|>\"commodity\"<|>\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\")##\n(\"entity\"<|>\"Market Selloff\"<|>\"market_trend\"<|>\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\")##\n(\"entity\"<|>\"Federal Reserve Policy Announcement\"<|>\"economic_policy\"<|>\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\")##\n(\"relationship\"<|>\"Global Tech Index\"<|>\"Market Selloff\"<|>\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\"<|>\"market performance, investor sentiment\"<|>9)##\n(\"relationship\"<|>\"Nexon Technologies\"<|>\"Global Tech Index\"<|>\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\"<|>\"company impact, index movement\"<|>8)##\n(\"relationship\"<|>\"Gold Futures\"<|>\"Market Selloff\"<|>\"Gold prices rose as investors sought safe-haven assets during the market selloff.\"<|>\"market reaction, safe-haven investment\"<|>10)##\n(\"relationship\"<|>\"Federal Reserve Policy Announcement\"<|>\"Market Selloff\"<|>\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\"<|>\"interest rate impact, financial regulation\"<|>7)##\n(\"content_keywords\"<|>\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\")<|COMPLETE|>\n#############################\nExample 3:\n\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\nText:\n```\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\n```\n\nOutput:\n(\"entity\"<|>\"World Athletics Championship\"<|>\"event\"<|>\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\")##\n(\"entity\"<|>\"Tokyo\"<|>\"location\"<|>\"Tokyo is the host city of the World Athletics Championship.\")##\n(\"entity\"<|>\"Noah Carter\"<|>\"athlete\"<|>\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\")##\n(\"entity\"<|>\"100m Sprint Record\"<|>\"record\"<|>\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\")##\n(\"entity\"<|>\"Carbon-Fiber Spikes\"<|>\"equipment\"<|>\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\")##\n(\"entity\"<|>\"World Athletics Federation\"<|>\"organization\"<|>\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\")##\n(\"relationship\"<|>\"World Athletics Championship\"<|>\"Tokyo\"<|>\"The World Athletics Championship is being hosted in Tokyo.\"<|>\"event location, international competition\"<|>8)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"100m Sprint Record\"<|>\"Noah Carter set a new 100m sprint record at the championship.\"<|>\"athlete achievement, record-breaking\"<|>10)##\n(\"relationship\"<|>\"Noah Carter\"<|>\"Carbon-Fiber Spikes\"<|>\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\"<|>\"athletic equipment, performance boost\"<|>7)##\n(\"relationship\"<|>\"World Athletics Federation\"<|>\"100m Sprint Record\"<|>\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\"<|>\"sports regulation, record certification\"<|>9)##\n(\"content_keywords\"<|>\"athletics, sprinting, record-breaking, sports technology, competition\")<|COMPLETE|>\n#############################\n\n#############################\n---Real Data---\n######################\nEntity_types: [organization,person,geo,event,category]\nText:\nMathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .\n$$\nFormat: latex\n\nMathematical Analysis: The equation $$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O$$ represents the balanced chemical reaction for the combustion of hydrogen gas (H₂) with oxygen gas (O₂) to form water (H₂O). Here is a detailed analysis:\n\n- **Mathematical Meaning and Interpretation**: This is a stoichiometric equation where the coefficients (2, 1, 2) indicate the molar ratios of reactants and products. It obeys the law of conservation of mass, as the number of atoms for each element is balanced on both sides.\n\n- **Variables and Definitions**: \n - H₂: Diatomic hydrogen gas (reactant).\n - O₂: Diatomic oxygen gas (reactant).\n - H₂O: Water (product).\n\n- **Mathematical Operations**: The equation uses integer coefficients to balance the reaction, ensuring atomic conservation. It is a linear combination of molecular species.\n\n- **Application Domain**: This reaction is fundamental in chemistry, particularly in thermodynamics, combustion science, and energy production (e.g., hydrogen fuel cells).\n\n- **Physical/Theoretical Significance**: The reaction is highly exothermic, releasing energy, and is a classic example of redox (reduction-oxidation) chemistry, where hydrogen is oxidized and oxygen is reduced.\n\n- **Relationship to Other Concepts**: In the given context, this equation is part of a series of chemical reactions (alongside iron oxide and nitric acid reactions), illustrating different types of chemical transformations (combustion vs. acid-base reactions).\n\n- **Practical Applications**: Used in rocket propulsion, energy storage, and as a model for clean energy systems due to its zero-emission product (water).\n\n- **Broader Discussion**: This equation fits into discussions about reaction stoichiometry, energy changes in reactions, and sustainable energy technologies.\n######################\nOutput:" + }, + "1fa9ab225d7e6fa576ce186cc2f19556": { + "return": "(\"entity\"<|>\"Law of Conservation of Mass\"<|>\"category\"<|>\"A fundamental principle in chemistry stating that matter cannot be created or destroyed in a chemical reaction, only rearranged.\")##\n(\"entity\"<|>\"Thermodynamics\"<|>\"category\"<|>\"The branch of physics dealing with heat and energy transfer, particularly relevant in exothermic reactions like hydrogen combustion.\")##\n(\"entity\"<|>\"Exothermic Reaction\"<|>\"event\"<|>\"A chemical reaction that releases energy, exemplified by the combustion of hydrogen and oxygen.\")##\n(\"entity\"<|>\"Rocket Propulsion\"<|>\"category\"<|>\"An application of the hydrogen-oxygen combustion reaction, used to generate thrust in spacecraft.\")##\n(\"entity\"<|>\"Clean Energy Systems\"<|>\"category\"<|>\"Technologies utilizing chemical reactions like hydrogen combustion to produce energy with minimal environmental impact.\")##\n(\"entity\"<|>\"Iron Oxide\"<|>\"category\"<|>\"A compound mentioned as part of other chemical reactions in the broader context of the discussion.\")##\n(\"entity\"<|>\"Nitric Acid\"<|>\"category\"<|>\"A chemical mentioned as part of other reactions (acid-base) in the broader context of the discussion.\")##\n(\"relationship\"<|>\"Law of Conservation of Mass\"<|>\"Combustion Reaction\"<|>\"The combustion reaction adheres to the law of conservation of mass, with atoms being rearranged but not created or destroyed.\"<|>\"chemical principle, atomic balance\"<|>9)##\n(\"relationship\"<|>\"Thermodynamics\"<|>\"Exothermic Reaction\"<|>\"The hydrogen combustion reaction is a classic example of thermodynamics in action, releasing heat energy.\"<|>\"energy transfer, heat release\"<|>8)##\n(\"relationship\"<|>\"Exothermic Reaction\"<|>\"Combustion Reaction\"<|>\"The combustion of hydrogen and oxygen is an exothermic reaction, releasing significant energy.\"<|>\"energy release, chemical process\"<|>10)##\n(\"relationship\"<|>\"Rocket Propulsion\"<|>\"Combustion Reaction\"<|>\"Rocket propulsion systems utilize the hydrogen-oxygen combustion reaction for thrust generation.\"<|>\"space technology, energy application\"<|>9)##\n(\"relationship\"<|>\"Clean Energy Systems\"<|>\"Hydrogen Fuel Cells\"<|>\"Hydrogen fuel cells are a type of clean energy system that uses the hydrogen combustion reaction.\"<|>\"sustainability, zero-emission technology\"<|>10)##\n(\"relationship\"<|>\"Iron Oxide\"<|>\"Nitric Acid\"<|>\"Mentioned as part of other chemical reactions (acid-base) in contrast to the combustion reaction.\"<|>\"chemical contrast, reaction types\"<|>6)##\n(\"relationship\"<|>\"Combustion Reaction\"<|>\"Redox Chemistry\"<|>\"The combustion reaction is a redox process where hydrogen is oxidized and oxygen is reduced.\"<|>\"electron transfer, chemical transformation\"<|>9)##\n(\"content_keywords\"<|>\"chemical reactions, energy production, stoichiometry, thermodynamics, sustainability\")<|COMPLETE|>", + "cache_type": "extract", + "chunk_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", + "embedding": null, + "embedding_shape": null, + "embedding_min": null, + "embedding_max": null, + "original_prompt": "[{\"role\": \"user\", \"content\": \"---Goal---\\nGiven a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.\\nUse English as output language.\\n\\n---Steps---\\n1. Identify all entities. For each identified entity, extract the following information:\\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\\n- entity_type: One of the following types: [organization,person,geo,event,category]\\n- entity_description: Comprehensive description of the entity's attributes and activities\\nFormat each entity as (\\\"entity\\\"<|><|><|>)\\n\\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\\nFor each pair of related entities, extract the following information:\\n- source_entity: name of the source entity, as identified in step 1\\n- target_entity: name of the target entity, as identified in step 1\\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\\nFormat each relationship as (\\\"relationship\\\"<|><|><|><|><|>)\\n\\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\\nFormat the content-level key words as (\\\"content_keywords\\\"<|>)\\n\\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\\n\\n5. When finished, output <|COMPLETE|>\\n\\n######################\\n---Examples---\\n######################\\nExample 1:\\n\\nEntity_types: [person, technology, mission, organization, location]\\nText:\\n```\\nwhile Alex clenched his jaw, the buzz of frustration dull against the backdrop of Taylor's authoritarian certainty. It was this competitive undercurrent that kept him alert, the sense that his and Jordan's shared commitment to discovery was an unspoken rebellion against Cruz's narrowing vision of control and order.\\n\\nThen Taylor did something unexpected. They paused beside Jordan and, for a moment, observed the device with something akin to reverence. \\\"If this tech can be understood...\\\" Taylor said, their voice quieter, \\\"It could change the game for us. For all of us.\\\"\\n\\nThe underlying dismissal earlier seemed to falter, replaced by a glimpse of reluctant respect for the gravity of what lay in their hands. Jordan looked up, and for a fleeting heartbeat, their eyes locked with Taylor's, a wordless clash of wills softening into an uneasy truce.\\n\\nIt was a small transformation, barely perceptible, but one that Alex noted with an inward nod. They had all been brought here by different paths\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Alex\\\"<|>\\\"person\\\"<|>\\\"Alex is a character who experiences frustration and is observant of the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"Taylor\\\"<|>\\\"person\\\"<|>\\\"Taylor is portrayed with authoritarian certainty and shows a moment of reverence towards a device, indicating a change in perspective.\\\")##\\n(\\\"entity\\\"<|>\\\"Jordan\\\"<|>\\\"person\\\"<|>\\\"Jordan shares a commitment to discovery and has a significant interaction with Taylor regarding a device.\\\")##\\n(\\\"entity\\\"<|>\\\"Cruz\\\"<|>\\\"person\\\"<|>\\\"Cruz is associated with a vision of control and order, influencing the dynamics among other characters.\\\")##\\n(\\\"entity\\\"<|>\\\"The Device\\\"<|>\\\"technology\\\"<|>\\\"The Device is central to the story, with potential game-changing implications, and is revered by Taylor.\\\")##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Taylor\\\"<|>\\\"Alex is affected by Taylor's authoritarian certainty and observes changes in Taylor's attitude towards the device.\\\"<|>\\\"power dynamics, perspective shift\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"Alex\\\"<|>\\\"Jordan\\\"<|>\\\"Alex and Jordan share a commitment to discovery, which contrasts with Cruz's vision.\\\"<|>\\\"shared goals, rebellion\\\"<|>6)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"Jordan\\\"<|>\\\"Taylor and Jordan interact directly regarding the device, leading to a moment of mutual respect and an uneasy truce.\\\"<|>\\\"conflict resolution, mutual respect\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Jordan\\\"<|>\\\"Cruz\\\"<|>\\\"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order.\\\"<|>\\\"ideological conflict, rebellion\\\"<|>5)##\\n(\\\"relationship\\\"<|>\\\"Taylor\\\"<|>\\\"The Device\\\"<|>\\\"Taylor shows reverence towards the device, indicating its importance and potential impact.\\\"<|>\\\"reverence, technological significance\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"power dynamics, ideological conflict, discovery, rebellion\\\")<|COMPLETE|>\\n#############################\\nExample 2:\\n\\nEntity_types: [company, index, commodity, market_trend, economic_policy, biological]\\nText:\\n```\\nStock markets faced a sharp downturn today as tech giants saw significant declines, with the Global Tech Index dropping by 3.4% in midday trading. Analysts attribute the selloff to investor concerns over rising interest rates and regulatory uncertainty.\\n\\nAmong the hardest hit, Nexon Technologies saw its stock plummet by 7.8% after reporting lower-than-expected quarterly earnings. In contrast, Omega Energy posted a modest 2.1% gain, driven by rising oil prices.\\n\\nMeanwhile, commodity markets reflected a mixed sentiment. Gold futures rose by 1.5%, reaching $2,080 per ounce, as investors sought safe-haven assets. Crude oil prices continued their rally, climbing to $87.60 per barrel, supported by supply constraints and strong demand.\\n\\nFinancial experts are closely watching the Federal Reserve's next move, as speculation grows over potential rate hikes. The upcoming policy announcement is expected to influence investor confidence and overall market stability.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"Global Tech Index\\\"<|>\\\"index\\\"<|>\\\"The Global Tech Index tracks the performance of major technology stocks and experienced a 3.4% decline today.\\\")##\\n(\\\"entity\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"company\\\"<|>\\\"Nexon Technologies is a tech company that saw its stock decline by 7.8% after disappointing earnings.\\\")##\\n(\\\"entity\\\"<|>\\\"Omega Energy\\\"<|>\\\"company\\\"<|>\\\"Omega Energy is an energy company that gained 2.1% in stock value due to rising oil prices.\\\")##\\n(\\\"entity\\\"<|>\\\"Gold Futures\\\"<|>\\\"commodity\\\"<|>\\\"Gold futures rose by 1.5%, indicating increased investor interest in safe-haven assets.\\\")##\\n(\\\"entity\\\"<|>\\\"Crude Oil\\\"<|>\\\"commodity\\\"<|>\\\"Crude oil prices rose to $87.60 per barrel due to supply constraints and strong demand.\\\")##\\n(\\\"entity\\\"<|>\\\"Market Selloff\\\"<|>\\\"market_trend\\\"<|>\\\"Market selloff refers to the significant decline in stock values due to investor concerns over interest rates and regulations.\\\")##\\n(\\\"entity\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"economic_policy\\\"<|>\\\"The Federal Reserve's upcoming policy announcement is expected to impact investor confidence and market stability.\\\")##\\n(\\\"relationship\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Market Selloff\\\"<|>\\\"The decline in the Global Tech Index is part of the broader market selloff driven by investor concerns.\\\"<|>\\\"market performance, investor sentiment\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Nexon Technologies\\\"<|>\\\"Global Tech Index\\\"<|>\\\"Nexon Technologies' stock decline contributed to the overall drop in the Global Tech Index.\\\"<|>\\\"company impact, index movement\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Gold Futures\\\"<|>\\\"Market Selloff\\\"<|>\\\"Gold prices rose as investors sought safe-haven assets during the market selloff.\\\"<|>\\\"market reaction, safe-haven investment\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Federal Reserve Policy Announcement\\\"<|>\\\"Market Selloff\\\"<|>\\\"Speculation over Federal Reserve policy changes contributed to market volatility and investor selloff.\\\"<|>\\\"interest rate impact, financial regulation\\\"<|>7)##\\n(\\\"content_keywords\\\"<|>\\\"market downturn, investor sentiment, commodities, Federal Reserve, stock performance\\\")<|COMPLETE|>\\n#############################\\nExample 3:\\n\\nEntity_types: [economic_policy, athlete, event, location, record, organization, equipment]\\nText:\\n```\\nAt the World Athletics Championship in Tokyo, Noah Carter broke the 100m sprint record using cutting-edge carbon-fiber spikes.\\n```\\n\\nOutput:\\n(\\\"entity\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"event\\\"<|>\\\"The World Athletics Championship is a global sports competition featuring top athletes in track and field.\\\")##\\n(\\\"entity\\\"<|>\\\"Tokyo\\\"<|>\\\"location\\\"<|>\\\"Tokyo is the host city of the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"Noah Carter\\\"<|>\\\"athlete\\\"<|>\\\"Noah Carter is a sprinter who set a new record in the 100m sprint at the World Athletics Championship.\\\")##\\n(\\\"entity\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"record\\\"<|>\\\"The 100m sprint record is a benchmark in athletics, recently broken by Noah Carter.\\\")##\\n(\\\"entity\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"equipment\\\"<|>\\\"Carbon-fiber spikes are advanced sprinting shoes that provide enhanced speed and traction.\\\")##\\n(\\\"entity\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"organization\\\"<|>\\\"The World Athletics Federation is the governing body overseeing the World Athletics Championship and record validations.\\\")##\\n(\\\"relationship\\\"<|>\\\"World Athletics Championship\\\"<|>\\\"Tokyo\\\"<|>\\\"The World Athletics Championship is being hosted in Tokyo.\\\"<|>\\\"event location, international competition\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"Noah Carter set a new 100m sprint record at the championship.\\\"<|>\\\"athlete achievement, record-breaking\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Noah Carter\\\"<|>\\\"Carbon-Fiber Spikes\\\"<|>\\\"Noah Carter used carbon-fiber spikes to enhance performance during the race.\\\"<|>\\\"athletic equipment, performance boost\\\"<|>7)##\\n(\\\"relationship\\\"<|>\\\"World Athletics Federation\\\"<|>\\\"100m Sprint Record\\\"<|>\\\"The World Athletics Federation is responsible for validating and recognizing new sprint records.\\\"<|>\\\"sports regulation, record certification\\\"<|>9)##\\n(\\\"content_keywords\\\"<|>\\\"athletics, sprinting, record-breaking, sports technology, competition\\\")<|COMPLETE|>\\n#############################\\n\\n#############################\\n---Real Data---\\n######################\\nEntity_types: [organization,person,geo,event,category]\\nText:\\nMathematical Equation Analysis:\\nEquation: $$\\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .\\n$$\\nFormat: latex\\n\\nMathematical Analysis: The equation $$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O$$ represents the balanced chemical reaction for the combustion of hydrogen gas (H₂) with oxygen gas (O₂) to form water (H₂O). Here is a detailed analysis:\\n\\n- **Mathematical Meaning and Interpretation**: This is a stoichiometric equation where the coefficients (2, 1, 2) indicate the molar ratios of reactants and products. It obeys the law of conservation of mass, as the number of atoms for each element is balanced on both sides.\\n\\n- **Variables and Definitions**: \\n - H₂: Diatomic hydrogen gas (reactant).\\n - O₂: Diatomic oxygen gas (reactant).\\n - H₂O: Water (product).\\n\\n- **Mathematical Operations**: The equation uses integer coefficients to balance the reaction, ensuring atomic conservation. It is a linear combination of molecular species.\\n\\n- **Application Domain**: This reaction is fundamental in chemistry, particularly in thermodynamics, combustion science, and energy production (e.g., hydrogen fuel cells).\\n\\n- **Physical/Theoretical Significance**: The reaction is highly exothermic, releasing energy, and is a classic example of redox (reduction-oxidation) chemistry, where hydrogen is oxidized and oxygen is reduced.\\n\\n- **Relationship to Other Concepts**: In the given context, this equation is part of a series of chemical reactions (alongside iron oxide and nitric acid reactions), illustrating different types of chemical transformations (combustion vs. acid-base reactions).\\n\\n- **Practical Applications**: Used in rocket propulsion, energy storage, and as a model for clean energy systems due to its zero-emission product (water).\\n\\n- **Broader Discussion**: This equation fits into discussions about reaction stoichiometry, energy changes in reactions, and sustainable energy technologies.\\n######################\\nOutput:\"}, {\"role\": \"assistant\", \"content\": \"(\\\"entity\\\"<|>\\\"Hydrogen Gas (H₂)\\\"<|>\\\"category\\\"<|>\\\"Hydrogen gas (H₂) is a diatomic molecule and a reactant in the combustion reaction, forming water when combined with oxygen.\\\")##\\n(\\\"entity\\\"<|>\\\"Oxygen Gas (O₂)\\\"<|>\\\"category\\\"<|>\\\"Oxygen gas (O₂) is a diatomic molecule and a reactant in the combustion reaction, combining with hydrogen to form water.\\\")##\\n(\\\"entity\\\"<|>\\\"Water (H₂O)\\\"<|>\\\"category\\\"<|>\\\"Water (H₂O) is the product of the combustion reaction between hydrogen and oxygen, representing a clean energy output.\\\")##\\n(\\\"entity\\\"<|>\\\"Combustion Reaction\\\"<|>\\\"event\\\"<|>\\\"The combustion reaction is a chemical process where hydrogen and oxygen react to form water, releasing energy.\\\")##\\n(\\\"entity\\\"<|>\\\"Stoichiometry\\\"<|>\\\"category\\\"<|>\\\"Stoichiometry refers to the quantitative relationship between reactants and products in a chemical reaction, as demonstrated in the balanced equation.\\\")##\\n(\\\"entity\\\"<|>\\\"Redox Chemistry\\\"<|>\\\"category\\\"<|>\\\"Redox chemistry involves oxidation and reduction reactions, exemplified by the combustion of hydrogen and oxygen.\\\")##\\n(\\\"entity\\\"<|>\\\"Hydrogen Fuel Cells\\\"<|>\\\"organization\\\"<|>\\\"Hydrogen fuel cells utilize the combustion reaction of hydrogen and oxygen to produce clean energy, with water as the only byproduct.\\\")##\\n(\\\"relationship\\\"<|>\\\"Hydrogen Gas (H₂)\\\"<|>\\\"Oxygen Gas (O₂)\\\"<|>\\\"Hydrogen and oxygen gases react in a 2:1 molar ratio to form water in a combustion reaction.\\\"<|>\\\"chemical reaction, stoichiometry\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Combustion Reaction\\\"<|>\\\"Water (H₂O)\\\"<|>\\\"The combustion reaction produces water as the sole product, highlighting its clean energy potential.\\\"<|>\\\"energy production, zero-emission\\\"<|>10)##\\n(\\\"relationship\\\"<|>\\\"Stoichiometry\\\"<|>\\\"Combustion Reaction\\\"<|>\\\"Stoichiometry governs the balanced molar ratios of reactants and products in the combustion reaction.\\\"<|>\\\"quantitative analysis, chemical balance\\\"<|>8)##\\n(\\\"relationship\\\"<|>\\\"Redox Chemistry\\\"<|>\\\"Combustion Reaction\\\"<|>\\\"The combustion reaction is a classic example of redox chemistry, involving the oxidation of hydrogen and reduction of oxygen.\\\"<|>\\\"oxidation-reduction, chemical transformation\\\"<|>9)##\\n(\\\"relationship\\\"<|>\\\"Hydrogen Fuel Cells\\\"<|>\\\"Combustion Reaction\\\"<|>\\\"Hydrogen fuel cells leverage the combustion reaction to generate clean energy, with water as the only output.\\\"<|>\\\"sustainable energy, clean technology\\\"<|>10)##\\n(\\\"content_keywords\\\"<|>\\\"chemical reaction, stoichiometry, redox chemistry, clean energy, combustion science\\\")<|COMPLETE|>\"}]\nMANY entities and relationships were missed in the last extraction.\n\n---Remember Steps---\n\n1. Identify all entities. For each identified entity, extract the following information:\n- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.\n- entity_type: One of the following types: [organization,person,geo,event,category]\n- entity_description: Comprehensive description of the entity's attributes and activities\nFormat each entity as (\"entity\"<|><|><|>)\n\n2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.\nFor each pair of related entities, extract the following information:\n- source_entity: name of the source entity, as identified in step 1\n- target_entity: name of the target entity, as identified in step 1\n- relationship_description: explanation as to why you think the source entity and the target entity are related to each other\n- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity\n- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details\nFormat each relationship as (\"relationship\"<|><|><|><|><|>)\n\n3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.\nFormat the content-level key words as (\"content_keywords\"<|>)\n\n4. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **##** as the list delimiter.\n\n5. When finished, output <|COMPLETE|>\n\n---Output---\n\nAdd them below using the same format:" } } } \ No newline at end of file diff --git a/dsRagAnything/Topic/Chemistry/kv_store_text_chunks.json b/dsRagAnything/Topic/Chemistry/kv_store_text_chunks.json index b3d02dba..d83905ec 100644 --- a/dsRagAnything/Topic/Chemistry/kv_store_text_chunks.json +++ b/dsRagAnything/Topic/Chemistry/kv_store_text_chunks.json @@ -5,5 +5,26 @@ "chunk_order_index": 0, "full_doc_id": "doc-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx" + }, + "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a": { + "tokens": 661, + "content": "Mathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } { \\stackrel { \\Delta } { = } } F e \\left( N O _ { 3 } \\right) _ { 3 } + 2 H _ { 2 } \\uparrow + N O _ { 2 } \\uparrow\n$$\nFormat: latex\n\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide gas (NO₂). Here is a detailed analysis:\n\n1. **Mathematical Meaning and Interpretation**: The equation is balanced, showing the stoichiometric relationship between reactants and products. The coefficients indicate the molar ratios: 1 mole of FeO reacts with 4 moles of HNO₃ to produce 1 mole of Fe(NO₃)₃, 2 moles of H₂, and 1 mole of NO₂.\n\n2. **Variables and Definitions**: \n - FeO: Iron(II) oxide, a reactant.\n - HNO₃: Nitric acid, another reactant.\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\n - H₂: Hydrogen gas, a product (indicated by the upward arrow, ↑, denoting gas evolution).\n - NO₂: Nitrogen dioxide gas, another product (also indicated by ↑).\n - Δ: Represents the application of heat to drive the reaction.\n\n3. **Mathematical Operations and Functions**: The equation uses chemical notation to represent reactants and products, with coefficients for balancing. The '↑' symbol denotes gaseous products, and 'Δ' signifies heat as a reaction condition.\n\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry. The surrounding context includes other chemical equations (e.g., hydrogen combustion), suggesting a focus on reaction types (acid-base, redox, combustion).\n\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\n - Oxidation of Fe²⁺ to Fe³⁺.\n - Reduction of HNO₃ to NO₂ (nitrogen changes oxidation state from +5 to +4).\n - Gas evolution (H₂ and NO₂), which is practically observable.\n\n6. **Relationship to Other Concepts**: This is an example of an acid-metal oxide reaction, contrasting with the combustion reaction (H₂ + O₂) mentioned in the context. Both are types of redox reactions but differ in reactants and products.\n\n7. **Practical Applications**: Such reactions are used in:\n - Laboratory synthesis of iron(III) compounds.\n - Industrial processes involving nitric acid and metal oxides.\n - Environmental chemistry (NO₂ is a pollutant).\n\n8. **Broader Discussion**: The equation fits into a framework of classifying and balancing chemical reactions, highlighting stoichiometry, gas laws, and redox chemistry.", + "chunk_order_index": 0, + "full_doc_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", + "file_path": "化学方程式_CHEMISTRY_1.docx" + }, + "chunk-1b444c5f7dfe95b7dde27447f21214b5": { + "tokens": 599, + "content": "Mathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } \\underline { { \\Delta } } F e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } \\uparrow + N O _ { 2 }\n$$\nFormat: latex\n\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide (NO₂). Here is a detailed analysis:\n\n1. **Mathematical Meaning and Interpretation**: The equation is a balanced chemical reaction where reactants (FeO and HNO₃) transform into products (Fe(NO₃)₃, H₂, and NO₂). The coefficients (1, 4, 1, 2, 1) ensure mass and charge conservation.\n\n2. **Variables and Definitions**: \n - FeO: Iron(II) oxide, a reactant.\n - HNO₃: Nitric acid, another reactant.\n - Δ: Represents heat applied to the reaction.\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\n - H₂↑: Hydrogen gas, a gaseous product (indicated by ↑).\n - NO₂: Nitrogen dioxide, another gaseous product.\n\n3. **Mathematical Operations and Functions**: The equation uses stoichiometric coefficients to balance atoms and charges. The arrow (→) denotes the direction of the reaction, and Δ signifies thermal energy input.\n\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry, specifically involving the oxidation of Fe²⁺ to Fe³⁺ and the reduction of HNO₃ to NO₂.\n\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\n - Acid-base chemistry (HNO₃ as a strong acid).\n - Redox processes (electron transfer between Fe and N).\n - Gas evolution (H₂ and NO₂ as products).\n\n6. **Relationship to Other Concepts**: In the surrounding context, this equation is part of a series of chemical reactions (e.g., hydrogen combustion: 2H₂ + O₂ → 2H₂O). It highlights diverse reaction types (redox, acid-base, combustion).\n\n7. **Practical Applications**:\n - Industrial synthesis of iron(III) nitrate.\n - Laboratory demonstrations of redox reactions.\n - Environmental implications (NO₂ is a pollutant).\n\n8. **Broader Discussion**: This equation fits into a framework of chemical reactivity, illustrating how different compounds interact under specific conditions (e.g., heat, acid concentration).", + "chunk_order_index": 0, + "full_doc_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", + "file_path": "化学方程式_CHEMISTRY_1.docx" + }, + "chunk-160631ff58dfd24b89716cc26d0a4b6e": { + "tokens": 438, + "content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .\n$$\nFormat: latex\n\nMathematical Analysis: The equation $$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O$$ represents the balanced chemical reaction for the combustion of hydrogen gas (H₂) with oxygen gas (O₂) to form water (H₂O). Here is a detailed analysis:\n\n- **Mathematical Meaning and Interpretation**: This is a stoichiometric equation where the coefficients (2, 1, 2) indicate the molar ratios of reactants and products. It obeys the law of conservation of mass, as the number of atoms for each element is balanced on both sides.\n\n- **Variables and Definitions**: \n - H₂: Diatomic hydrogen gas (reactant).\n - O₂: Diatomic oxygen gas (reactant).\n - H₂O: Water (product).\n\n- **Mathematical Operations**: The equation uses integer coefficients to balance the reaction, ensuring atomic conservation. It is a linear combination of molecular species.\n\n- **Application Domain**: This reaction is fundamental in chemistry, particularly in thermodynamics, combustion science, and energy production (e.g., hydrogen fuel cells).\n\n- **Physical/Theoretical Significance**: The reaction is highly exothermic, releasing energy, and is a classic example of redox (reduction-oxidation) chemistry, where hydrogen is oxidized and oxygen is reduced.\n\n- **Relationship to Other Concepts**: In the given context, this equation is part of a series of chemical reactions (alongside iron oxide and nitric acid reactions), illustrating different types of chemical transformations (combustion vs. acid-base reactions).\n\n- **Practical Applications**: Used in rocket propulsion, energy storage, and as a model for clean energy systems due to its zero-emission product (water).\n\n- **Broader Discussion**: This equation fits into discussions about reaction stoichiometry, energy changes in reactions, and sustainable energy technologies.", + "chunk_order_index": 0, + "full_doc_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", + "file_path": "化学方程式_CHEMISTRY_1.docx" } } \ No newline at end of file diff --git a/dsRagAnything/Topic/Chemistry/vdb_chunks.json b/dsRagAnything/Topic/Chemistry/vdb_chunks.json index 3c2a430a..00bdc106 100644 --- a/dsRagAnything/Topic/Chemistry/vdb_chunks.json +++ b/dsRagAnything/Topic/Chemistry/vdb_chunks.json @@ -1 +1 @@ -{"embedding_dim": 1024, "data": [{"__id__": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "__created_at__": 1751960158, "content": "氧化铁和硝酸的反应方程式1\n\n氧化铁和硝酸的反应方程式 2\n\n氢气与氧气燃烧的方程式", "full_doc_id": "doc-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}], "matrix": "p2ZPPTLULj3KAi29OJ8AvI5eW7zsORC9IPwGPVMLkjxZOSQ9A/H7vHQI9ryT2l69ZkfXPOW8rztliw+6tHVfPN4+crxrEcy8GMy6vBvjw7vX+5A8VzfqPO6yfDtL0Yw7PiYaPImVQ7w/f6G8s60kvQ+HHz14bs25cT/eO+HoAb1p+5+9XmZZvcV7Ez2985w8117RO8r3lr22xC29gJ4ZPH0uCT1dUYq96XsOPTizcrz+YAa4mEGTPDq1LL2AAdq8ViKbPHpwh7yPX7i7esmOvOKlJj2lRQ290X8NvaYCsjzU5Ie9tsStvDEioL0VZuO8ntLlu/biyDzDhG+8ZpYlvVjVhrwrpT895FgSPRQDozzjuvW8MIXgvCrzsLwsTRU9CFgwvcec1bzhVfu6PnQLvN4/zzwmKpm8TTaHvB9e6jynZs+7Z5eCPKgYXryhOL07rkbwu/N88TxXLg482BDgPGmtrrwjYQG9S9GMuzaTjTouC5e8ZZXIuwSPGDiwSKq8mworvTCFYD3346U8yveWvLkqhTyXjwS97wFLuvN88bxjfxy9Wp1BvXhuzbt6Ibm7hn1dPJEn87y9Vt08H/spPGXkFj2YQRM9Sim3ORfL3byH4Xq8Z6t0vJfyxDt4bk28DHAWPSCtuLz+dHg9yU9BOnrJDrvEyQS9xXsTPN81FrxO6BW97U7fvO5PvLx2u+G8CbIUvS+9JTxtbA08ijIDOluenrtCPoA9x+pGPXzVgb1CSLk8E1A3Pfytmj1+nF+8tsWKPHlvqr2Wo3Y8NpMNvGXjuTy2xK08MG80vO9QmbzbxKg7Nk9VPfV+K70M01Y9A4SCvDdQsrvCvRG9zhm2vBuAg7x0CPa8K6W/O6NO6bx0CHY8y2VtvUHkm7zPy0Q9PS92vToY7bzpew49sqzHuourb7yXjwS99eHrvK/5Wzznb5s9ZdkAPWx1aTz+J2S8vk2BvCmPE732f4g8IsNkvRE6iz2pDwI95tH+vFo6Abwy1K670MwhPb6lq7wz1Qu9+fnROxxIPj3hVfs8+ZaRvdSLgDy9pM68f5ODu1g4RzxTC5K8OQOeO6hnLLx9OEK89+MlOkcSLj3/EpU7mEETvSymnLxZ6tW8Ra2zOr8JSb1PpTq9KUGiPIkxJrxdZXw9dU0LPewAbr30fc48jaITvS+9pbrcd5Q828QovDtoGD1E+6Q9oHuYvdx3FDwgrTg9uNrZOzgCwTy1Ep+8eSE5PeHogT3jpgO97JxQPOZuPr1KeIW7KN0EPSMTkDtuKNW8LAldPFJZA703AeQ8VRcFPZ29Fr1FVYk91IsAPSqk4jxrBxO9/nR4vdQ9Dz1N8fG7p7TAvFnq1Tyknbc95AnEvI5e27saf6a7iuQRvZaOJ724d5k7edJqPfxezLz0zBw9cdwdvDXrt7vnISq8esmOPPBl6Ltx8ew8Cr2qOF4DmbtBR1w75P8KukHkG7xYOMc6JSm8vDHT0TyaV7896Tb5PDaTjT2mZXI7IPyGPBwyErxM3CI89jC6vfQajr0OIwK9r5W+u4tHUj2GzKu8kymtvPJnIj2DZtQ7m7vcvB/7qTxeqpE5pZ4UvkzcIr1kMas8F2gdPVUXhbyMq+889uJIPLL7Fb3usvy5B6ahvLgpKL1VIb68p7RAvFg4R7yCAxQ9wr2RPMtlbbstCjo9oi6EPBri5ru9Vl28eCBcvKDUHz2/poi73o1AvFuenjyvlb47+/quPPv6LrwGmwu90tiUvTx957t3soU5XFCtvFNkGTuvPZQ8WIeVvCymHDwm20o8Vzfqu8K9kT2wlps9gAHavHpwhzyy+xW8wAomPbFd+Twm28o8346dvAi7cLztTl+6ViIbvDAXCr334yU9FmdAvdgQYDz+w8Y7yE5kPNza1Dv5R0M86XsOPR2WL72JRnW8Wp3BuxvjQzztTl88dwqwPOs4M7vmZAU9glEFvTsZSjxhGiI9IhIzPWj6wjwkxZ68lD58PX7rLb3DIS+8BpsLPL//j73e27G8mv8UvFaFWzwuso887OCIvPmWkTzBZIq6zxoTvZTbOzscR2E+uIxoPPytGju/WJe8W56ePIYv7LzcHg08uYMMPb66+rxorFG8/hE4vek31rvlCiE7PH1nOwmyFDyszQM9xXsTPAHbTzxzpNg8M+l9vKlnrDp3vL46Fg+WPFc36roLIUi9Gn8mO5y8Ob2dvRY9gQI3PDBvNL0ePoU66YVHPL66erxJKFq7vVZdPJpXvzz4lbQ7YswwvQwXjz1SCjW9KOiaPC0KOryGfV29wr2RvLTC8zsCjV48rOH1vK5GcDqiORo9rpThvAvSebwGpcS7D4cfPAXztbwd+e+7PBonvAm8TbwqpGK7mJoavXGOLD2/pgi9LgsXu6ZQIz0ubte7a2AavfACqDqulGE8kmwIvcjrIz2otR09FQSAPMwXfD242tm8rTEhPaDUHz2+CGw7feAXPZ/Twjz+dPi8lT9ZPGaWJb0YL3u83NrUvG53IzwPLpg8fepQPMPSYDxEX0K83NrUvEDkmz02k428c6TYPEVViTxzpNi8tiduvIK0RTwusg86I7oIvUKWKr05Ax49H0kbPSPEwTtwKg+7dU2LvODxXT1iL/G7xYYpPKCFUbsTAka66XsOu+8BS723KEs8u46ivCTFnryehHQ8WerVPMnsgLzF1Jq6CFiwvJu7XD21Ep+8ehcAPL66erzJT8E6rz0UPb5NAb3+uY27Z5eCPHX0gzxYOMc8f05uvKZl8rx71CS9yOujPEJIOT2AT0s8DiOCPYBPy7tGEVE8XbUnvFaFW73eKgA8TkGdvPbiyLwE8tg8E/iMPI9fOLyoZyw8DtWQvHOk2DzuRQM8ML4CvY9fOD3nISq95P8KPW53o7t+nTy8oNQfO/eU17zxA4U7jPq9PD4wUz3FexO9reMvPZQ+fDznIM278GVoPfFcjD3W+jM9Z0i0vL4I7LyTKa28TNwivTlnuzybCis8plAjPRh97Lw3nqO8l4+Eu/Jnoj0f+6k8DYZCPMG8NLxj4lw9NwHkPBgv+zxdtEq8KOiavAabCz0dSL68hhqdO6NO6T0UtNS8BPJYvG7aYz3MZsq80X+NPYBFkjyrzCY9ZDGru3a7YT0f+6k81IsAPS+9JT22J269+6IEvSiOtryH4le9JttKu9p12rj2f4g6C74Hvc58dr1K2mg5RmAfvTAhw7xNQEA9OPiHPIz7GrwAxgC8mle/PGis0bw5tM88p6oHuxdoHb3LZe08+UfDuFG75ry+TYG9x+rGvNdUGLzpIge8zAOKPNb6szrcxQU84lZYPf/EozyJRvU8c+gQPNde0bxKeAU8oZt9PB+s2zxzpNg8G+NDuzcB5Dx3CjC99HMVPHyGszyqGhg8cfHsu16qkbzlCiE9TNyiO11RCj3zy7+7g2bUuqVFjToXGqw8b9vAu0Kreb16cIe8+6IEPSD8Bjyhm3281UilvdkHhLrpIoc5Nes3u6YCsrvohOq86oYkPKDUHzyBAre8lNs7vQq9Kjxpra67EeyZvIRnMbyeIbS87ABuvU1AwDzzGTE9kGCVPAKOO7w5A548bncjOv/EIz0a4uY79+OlOqHp7jrVXfS8HJXSu/8nZD1NQMA8Qj6Au/wQWzx1CdM84ECsPBQYcrzcdxS8YzBOvTMuk7xUvSC9ZTIIvUPwjryv+H67BqXEPAEfiLrMZkq9yUWIvK+LBb2FaI68+qtgO33glzyqy8m6vrr6PCwKuro+MNM8afsfvSwJ3bzWSQK9U25SvWXjuTwGQgS9bncjPMnsgDyg1J+8uNpZvQLcrLx/Tu676XuOvJkIcbvdKaO8sJYbPEFHXL3qhqQ8zcrnvH+dPD1FX0K9LKacvCymnL09fsQ9afufvJPaXj3nISo84lbYvF1RijzJT8G8JR+DPA4jAj1Clqq7l/LEvEJJljv9Xym9T1ZsvVrrMjzwZeg7FmdAPS4LFz0f+6k8gQI3vNweDbzXVBi9iDDJvOYf8DzYXy68bBIpPJyyAD2W8ee8O7YJvQ/qXz1OpF08CVkNvKvMJr0NIiU9tna8u46tqbyeITS8CQAGPOk2+bzVSCW9TfFxvO5PvDxfy1M8l48EvcG8tLz4RuY8kMNVPByV0jwwheC8DYXlOoXLzrzh6IE6kSfzvZDD1buT2t6823a3OzWc6TuSKNA84VX7vGAZRTz55AK9OQMevVUXBT2GL+y8UbvmPAm8zbz3MZc7LKYcOxKeKLz/EpU8tifuPLGr6rvrm3M7co+JvJ7SZbz8ENu7IsPkO15mWTxkRnq85P8KveBALDzQL+I8+w/+PC6yj7umZXI75m4+Pa+VvjzGm3g9kWyIu50gV7yM+r276TZ5PKCF0Ty2xK276NO4OhnNF7wDhAI9/mAGvS68SL2VP1m98LS2vMXUGryFy867r/h+vE3xcTzegwc9VoXbO7MQ5Tuhm329qFwWvQSPmLwQ67w7VL2gvT3MtTyoGN68yOujvEGLFDqTHpc8mJqaORoxtTw5Zt48vVZdvdGTf7ypGTs9RVUJvMhOZDwZMFi74ECsvNasQjymZXK7t9l8vPFmRbwwIcO6udu2PPTMHLwD8fs8MtSuOz8xML3BH/W87eueOjq1rLv22I87G4ADvbQRQr0lKTy9gEWSPEgnfbytf5I8i/ngPItH0jx4C4264wjnvPhGZjyWjqe87rPZu6wwxLsvIOa89X4rPWjwCT0LZQC8Q5eHPdwoxrxm5Ja8M+pavDCF4LwLvgc8AR8IvUvbRbtpXuA7plCjvIkxJjzcKEY6G4ADvWmtrrzus1m7CbxNvLmDDD1SCjU7CgscPZQ+fLvjV7W8EOGDPGjwCbxdAjy9vVZdvJTbuzywSKq8WDhHuzI377x71KQ8n3CCveySl7ybWBw8rdgZO3Kj+zuuRvC8ferQPIs9mbs3niO8W+yPO/ytGjyNrMy7c6RYvLV13zvdKaO7PH1nPbNfM73rODM9g7UivUVVib3cxQW9hMpxO3QIdjsC3Ky8maWwvOCj7Ds27BS8rTGhPGSU67x08yY9qmgJvG4oVbvh8ro8MCHDPCrzsLsfrFu9IsNkPd7bsTw8Gic99n+Iu1xQrTzg8V083j5yPOfSWz3OGbY8K6W/u57SZbzGm3g9btrjO9t2Nzv9wuk8EZMSu0ko2rvhpEm7OWe7vG53ozrYEGA9WuuyPGF9Yjwb2Yq87xd3OkKWKj1HEq69H/spPUl3qLzX+5A7XQI8vClBor32k/o8aq4LvaNO6bxIdss82nVaO3GPCbyt2Jk8GMw6vFWEfryLliC9asL9PNlgC722xYo9jq0pvQKN3jw27JQ8al89vJePBDwm0RE9BI8YvTDSdL3pIgc9vrr6O6WelDyPrga90+OqvN81ljwxN++6ViKbPHzp8zyjTmm9CgucPCxNFTxFEHS6tcNQPHGOLD14bs08r5U+uw=="} \ No newline at end of file +{"embedding_dim": 1024, "data": [{"__id__": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "__created_at__": 1751960158, "content": "氧化铁和硝酸的反应方程式1\n\n氧化铁和硝酸的反应方程式 2\n\n氢气与氧气燃烧的方程式", "full_doc_id": "doc-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "__created_at__": 1751960258, "content": "Mathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } { \\stackrel { \\Delta } { = } } F e \\left( N O _ { 3 } \\right) _ { 3 } + 2 H _ { 2 } \\uparrow + N O _ { 2 } \\uparrow\n$$\nFormat: latex\n\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide gas (NO₂). Here is a detailed analysis:\n\n1. **Mathematical Meaning and Interpretation**: The equation is balanced, showing the stoichiometric relationship between reactants and products. The coefficients indicate the molar ratios: 1 mole of FeO reacts with 4 moles of HNO₃ to produce 1 mole of Fe(NO₃)₃, 2 moles of H₂, and 1 mole of NO₂.\n\n2. **Variables and Definitions**: \n - FeO: Iron(II) oxide, a reactant.\n - HNO₃: Nitric acid, another reactant.\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\n - H₂: Hydrogen gas, a product (indicated by the upward arrow, ↑, denoting gas evolution).\n - NO₂: Nitrogen dioxide gas, another product (also indicated by ↑).\n - Δ: Represents the application of heat to drive the reaction.\n\n3. **Mathematical Operations and Functions**: The equation uses chemical notation to represent reactants and products, with coefficients for balancing. The '↑' symbol denotes gaseous products, and 'Δ' signifies heat as a reaction condition.\n\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry. The surrounding context includes other chemical equations (e.g., hydrogen combustion), suggesting a focus on reaction types (acid-base, redox, combustion).\n\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\n - Oxidation of Fe²⁺ to Fe³⁺.\n - Reduction of HNO₃ to NO₂ (nitrogen changes oxidation state from +5 to +4).\n - Gas evolution (H₂ and NO₂), which is practically observable.\n\n6. **Relationship to Other Concepts**: This is an example of an acid-metal oxide reaction, contrasting with the combustion reaction (H₂ + O₂) mentioned in the context. Both are types of redox reactions but differ in reactants and products.\n\n7. **Practical Applications**: Such reactions are used in:\n - Laboratory synthesis of iron(III) compounds.\n - Industrial processes involving nitric acid and metal oxides.\n - Environmental chemistry (NO₂ is a pollutant).\n\n8. **Broader Discussion**: The equation fits into a framework of classifying and balancing chemical reactions, highlighting stoichiometry, gas laws, and redox chemistry.", "full_doc_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "__created_at__": 1751960408, "content": "Mathematical Equation Analysis:\nEquation: $$\nF e O + 4 H N O _ { 3 } \\underline { { \\Delta } } F e ( N O _ { 3 } ) _ { 3 } + 2 H _ { 2 } \\uparrow + N O _ { 2 }\n$$\nFormat: latex\n\nMathematical Analysis: The given equation represents a chemical reaction between iron(II) oxide (FeO) and nitric acid (HNO₃), producing iron(III) nitrate (Fe(NO₃)₃), hydrogen gas (H₂), and nitrogen dioxide (NO₂). Here is a detailed analysis:\n\n1. **Mathematical Meaning and Interpretation**: The equation is a balanced chemical reaction where reactants (FeO and HNO₃) transform into products (Fe(NO₃)₃, H₂, and NO₂). The coefficients (1, 4, 1, 2, 1) ensure mass and charge conservation.\n\n2. **Variables and Definitions**: \n - FeO: Iron(II) oxide, a reactant.\n - HNO₃: Nitric acid, another reactant.\n - Δ: Represents heat applied to the reaction.\n - Fe(NO₃)₃: Iron(III) nitrate, a product.\n - H₂↑: Hydrogen gas, a gaseous product (indicated by ↑).\n - NO₂: Nitrogen dioxide, another gaseous product.\n\n3. **Mathematical Operations and Functions**: The equation uses stoichiometric coefficients to balance atoms and charges. The arrow (→) denotes the direction of the reaction, and Δ signifies thermal energy input.\n\n4. **Application Domain and Context**: This is a redox (reduction-oxidation) reaction in inorganic chemistry, specifically involving the oxidation of Fe²⁺ to Fe³⁺ and the reduction of HNO₃ to NO₂.\n\n5. **Physical or Theoretical Significance**: The reaction demonstrates:\n - Acid-base chemistry (HNO₃ as a strong acid).\n - Redox processes (electron transfer between Fe and N).\n - Gas evolution (H₂ and NO₂ as products).\n\n6. **Relationship to Other Concepts**: In the surrounding context, this equation is part of a series of chemical reactions (e.g., hydrogen combustion: 2H₂ + O₂ → 2H₂O). It highlights diverse reaction types (redox, acid-base, combustion).\n\n7. **Practical Applications**:\n - Industrial synthesis of iron(III) nitrate.\n - Laboratory demonstrations of redox reactions.\n - Environmental implications (NO₂ is a pollutant).\n\n8. **Broader Discussion**: This equation fits into a framework of chemical reactivity, illustrating how different compounds interact under specific conditions (e.g., heat, acid concentration).", "full_doc_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "__created_at__": 1751960538, "content": "Mathematical Equation Analysis:\nEquation: $$\n2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O .\n$$\nFormat: latex\n\nMathematical Analysis: The equation $$2 H _ { 2 } + O _ { 2 } = 2 H _ { 2 } O$$ represents the balanced chemical reaction for the combustion of hydrogen gas (H₂) with oxygen gas (O₂) to form water (H₂O). Here is a detailed analysis:\n\n- **Mathematical Meaning and Interpretation**: This is a stoichiometric equation where the coefficients (2, 1, 2) indicate the molar ratios of reactants and products. It obeys the law of conservation of mass, as the number of atoms for each element is balanced on both sides.\n\n- **Variables and Definitions**: \n - H₂: Diatomic hydrogen gas (reactant).\n - O₂: Diatomic oxygen gas (reactant).\n - H₂O: Water (product).\n\n- **Mathematical Operations**: The equation uses integer coefficients to balance the reaction, ensuring atomic conservation. It is a linear combination of molecular species.\n\n- **Application Domain**: This reaction is fundamental in chemistry, particularly in thermodynamics, combustion science, and energy production (e.g., hydrogen fuel cells).\n\n- **Physical/Theoretical Significance**: The reaction is highly exothermic, releasing energy, and is a classic example of redox (reduction-oxidation) chemistry, where hydrogen is oxidized and oxygen is reduced.\n\n- **Relationship to Other Concepts**: In the given context, this equation is part of a series of chemical reactions (alongside iron oxide and nitric acid reactions), illustrating different types of chemical transformations (combustion vs. acid-base reactions).\n\n- **Practical Applications**: Used in rocket propulsion, energy storage, and as a model for clean energy systems due to its zero-emission product (water).\n\n- **Broader Discussion**: This equation fits into discussions about reaction stoichiometry, energy changes in reactions, and sustainable energy technologies.", "full_doc_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}], "matrix": "p2ZPPTLULj3KAi29OJ8AvI5eW7zsORC9IPwGPVMLkjxZOSQ9A/H7vHQI9ryT2l69ZkfXPOW8rztliw+6tHVfPN4+crxrEcy8GMy6vBvjw7vX+5A8VzfqPO6yfDtL0Yw7PiYaPImVQ7w/f6G8s60kvQ+HHz14bs25cT/eO+HoAb1p+5+9XmZZvcV7Ez2985w8117RO8r3lr22xC29gJ4ZPH0uCT1dUYq96XsOPTizcrz+YAa4mEGTPDq1LL2AAdq8ViKbPHpwh7yPX7i7esmOvOKlJj2lRQ290X8NvaYCsjzU5Ie9tsStvDEioL0VZuO8ntLlu/biyDzDhG+8ZpYlvVjVhrwrpT895FgSPRQDozzjuvW8MIXgvCrzsLwsTRU9CFgwvcec1bzhVfu6PnQLvN4/zzwmKpm8TTaHvB9e6jynZs+7Z5eCPKgYXryhOL07rkbwu/N88TxXLg482BDgPGmtrrwjYQG9S9GMuzaTjTouC5e8ZZXIuwSPGDiwSKq8mworvTCFYD3346U8yveWvLkqhTyXjwS97wFLuvN88bxjfxy9Wp1BvXhuzbt6Ibm7hn1dPJEn87y9Vt08H/spPGXkFj2YQRM9Sim3ORfL3byH4Xq8Z6t0vJfyxDt4bk28DHAWPSCtuLz+dHg9yU9BOnrJDrvEyQS9xXsTPN81FrxO6BW97U7fvO5PvLx2u+G8CbIUvS+9JTxtbA08ijIDOluenrtCPoA9x+pGPXzVgb1CSLk8E1A3Pfytmj1+nF+8tsWKPHlvqr2Wo3Y8NpMNvGXjuTy2xK08MG80vO9QmbzbxKg7Nk9VPfV+K70M01Y9A4SCvDdQsrvCvRG9zhm2vBuAg7x0CPa8K6W/O6NO6bx0CHY8y2VtvUHkm7zPy0Q9PS92vToY7bzpew49sqzHuourb7yXjwS99eHrvK/5Wzznb5s9ZdkAPWx1aTz+J2S8vk2BvCmPE732f4g8IsNkvRE6iz2pDwI95tH+vFo6Abwy1K670MwhPb6lq7wz1Qu9+fnROxxIPj3hVfs8+ZaRvdSLgDy9pM68f5ODu1g4RzxTC5K8OQOeO6hnLLx9OEK89+MlOkcSLj3/EpU7mEETvSymnLxZ6tW8Ra2zOr8JSb1PpTq9KUGiPIkxJrxdZXw9dU0LPewAbr30fc48jaITvS+9pbrcd5Q828QovDtoGD1E+6Q9oHuYvdx3FDwgrTg9uNrZOzgCwTy1Ep+8eSE5PeHogT3jpgO97JxQPOZuPr1KeIW7KN0EPSMTkDtuKNW8LAldPFJZA703AeQ8VRcFPZ29Fr1FVYk91IsAPSqk4jxrBxO9/nR4vdQ9Dz1N8fG7p7TAvFnq1Tyknbc95AnEvI5e27saf6a7iuQRvZaOJ724d5k7edJqPfxezLz0zBw9cdwdvDXrt7vnISq8esmOPPBl6Ltx8ew8Cr2qOF4DmbtBR1w75P8KukHkG7xYOMc6JSm8vDHT0TyaV7896Tb5PDaTjT2mZXI7IPyGPBwyErxM3CI89jC6vfQajr0OIwK9r5W+u4tHUj2GzKu8kymtvPJnIj2DZtQ7m7vcvB/7qTxeqpE5pZ4UvkzcIr1kMas8F2gdPVUXhbyMq+889uJIPLL7Fb3usvy5B6ahvLgpKL1VIb68p7RAvFg4R7yCAxQ9wr2RPMtlbbstCjo9oi6EPBri5ru9Vl28eCBcvKDUHz2/poi73o1AvFuenjyvlb47+/quPPv6LrwGmwu90tiUvTx957t3soU5XFCtvFNkGTuvPZQ8WIeVvCymHDwm20o8Vzfqu8K9kT2wlps9gAHavHpwhzyy+xW8wAomPbFd+Twm28o8346dvAi7cLztTl+6ViIbvDAXCr334yU9FmdAvdgQYDz+w8Y7yE5kPNza1Dv5R0M86XsOPR2WL72JRnW8Wp3BuxvjQzztTl88dwqwPOs4M7vmZAU9glEFvTsZSjxhGiI9IhIzPWj6wjwkxZ68lD58PX7rLb3DIS+8BpsLPL//j73e27G8mv8UvFaFWzwuso887OCIvPmWkTzBZIq6zxoTvZTbOzscR2E+uIxoPPytGju/WJe8W56ePIYv7LzcHg08uYMMPb66+rxorFG8/hE4vek31rvlCiE7PH1nOwmyFDyszQM9xXsTPAHbTzxzpNg8M+l9vKlnrDp3vL46Fg+WPFc36roLIUi9Gn8mO5y8Ob2dvRY9gQI3PDBvNL0ePoU66YVHPL66erxJKFq7vVZdPJpXvzz4lbQ7YswwvQwXjz1SCjW9KOiaPC0KOryGfV29wr2RvLTC8zsCjV48rOH1vK5GcDqiORo9rpThvAvSebwGpcS7D4cfPAXztbwd+e+7PBonvAm8TbwqpGK7mJoavXGOLD2/pgi9LgsXu6ZQIz0ubte7a2AavfACqDqulGE8kmwIvcjrIz2otR09FQSAPMwXfD242tm8rTEhPaDUHz2+CGw7feAXPZ/Twjz+dPi8lT9ZPGaWJb0YL3u83NrUvG53IzwPLpg8fepQPMPSYDxEX0K83NrUvEDkmz02k428c6TYPEVViTxzpNi8tiduvIK0RTwusg86I7oIvUKWKr05Ax49H0kbPSPEwTtwKg+7dU2LvODxXT1iL/G7xYYpPKCFUbsTAka66XsOu+8BS723KEs8u46ivCTFnryehHQ8WerVPMnsgLzF1Jq6CFiwvJu7XD21Ep+8ehcAPL66erzJT8E6rz0UPb5NAb3+uY27Z5eCPHX0gzxYOMc8f05uvKZl8rx71CS9yOujPEJIOT2AT0s8DiOCPYBPy7tGEVE8XbUnvFaFW73eKgA8TkGdvPbiyLwE8tg8E/iMPI9fOLyoZyw8DtWQvHOk2DzuRQM8ML4CvY9fOD3nISq95P8KPW53o7t+nTy8oNQfO/eU17zxA4U7jPq9PD4wUz3FexO9reMvPZQ+fDznIM278GVoPfFcjD3W+jM9Z0i0vL4I7LyTKa28TNwivTlnuzybCis8plAjPRh97Lw3nqO8l4+Eu/Jnoj0f+6k8DYZCPMG8NLxj4lw9NwHkPBgv+zxdtEq8KOiavAabCz0dSL68hhqdO6NO6T0UtNS8BPJYvG7aYz3MZsq80X+NPYBFkjyrzCY9ZDGru3a7YT0f+6k81IsAPS+9JT22J269+6IEvSiOtryH4le9JttKu9p12rj2f4g6C74Hvc58dr1K2mg5RmAfvTAhw7xNQEA9OPiHPIz7GrwAxgC8mle/PGis0bw5tM88p6oHuxdoHb3LZe08+UfDuFG75ry+TYG9x+rGvNdUGLzpIge8zAOKPNb6szrcxQU84lZYPf/EozyJRvU8c+gQPNde0bxKeAU8oZt9PB+s2zxzpNg8G+NDuzcB5Dx3CjC99HMVPHyGszyqGhg8cfHsu16qkbzlCiE9TNyiO11RCj3zy7+7g2bUuqVFjToXGqw8b9vAu0Kreb16cIe8+6IEPSD8Bjyhm3281UilvdkHhLrpIoc5Nes3u6YCsrvohOq86oYkPKDUHzyBAre8lNs7vQq9Kjxpra67EeyZvIRnMbyeIbS87ABuvU1AwDzzGTE9kGCVPAKOO7w5A548bncjOv/EIz0a4uY79+OlOqHp7jrVXfS8HJXSu/8nZD1NQMA8Qj6Au/wQWzx1CdM84ECsPBQYcrzcdxS8YzBOvTMuk7xUvSC9ZTIIvUPwjryv+H67BqXEPAEfiLrMZkq9yUWIvK+LBb2FaI68+qtgO33glzyqy8m6vrr6PCwKuro+MNM8afsfvSwJ3bzWSQK9U25SvWXjuTwGQgS9bncjPMnsgDyg1J+8uNpZvQLcrLx/Tu676XuOvJkIcbvdKaO8sJYbPEFHXL3qhqQ8zcrnvH+dPD1FX0K9LKacvCymnL09fsQ9afufvJPaXj3nISo84lbYvF1RijzJT8G8JR+DPA4jAj1Clqq7l/LEvEJJljv9Xym9T1ZsvVrrMjzwZeg7FmdAPS4LFz0f+6k8gQI3vNweDbzXVBi9iDDJvOYf8DzYXy68bBIpPJyyAD2W8ee8O7YJvQ/qXz1OpF08CVkNvKvMJr0NIiU9tna8u46tqbyeITS8CQAGPOk2+bzVSCW9TfFxvO5PvDxfy1M8l48EvcG8tLz4RuY8kMNVPByV0jwwheC8DYXlOoXLzrzh6IE6kSfzvZDD1buT2t6823a3OzWc6TuSKNA84VX7vGAZRTz55AK9OQMevVUXBT2GL+y8UbvmPAm8zbz3MZc7LKYcOxKeKLz/EpU8tifuPLGr6rvrm3M7co+JvJ7SZbz8ENu7IsPkO15mWTxkRnq85P8KveBALDzQL+I8+w/+PC6yj7umZXI75m4+Pa+VvjzGm3g9kWyIu50gV7yM+r276TZ5PKCF0Ty2xK276NO4OhnNF7wDhAI9/mAGvS68SL2VP1m98LS2vMXUGryFy867r/h+vE3xcTzegwc9VoXbO7MQ5Tuhm329qFwWvQSPmLwQ67w7VL2gvT3MtTyoGN68yOujvEGLFDqTHpc8mJqaORoxtTw5Zt48vVZdvdGTf7ypGTs9RVUJvMhOZDwZMFi74ECsvNasQjymZXK7t9l8vPFmRbwwIcO6udu2PPTMHLwD8fs8MtSuOz8xML3BH/W87eueOjq1rLv22I87G4ADvbQRQr0lKTy9gEWSPEgnfbytf5I8i/ngPItH0jx4C4264wjnvPhGZjyWjqe87rPZu6wwxLsvIOa89X4rPWjwCT0LZQC8Q5eHPdwoxrxm5Ja8M+pavDCF4LwLvgc8AR8IvUvbRbtpXuA7plCjvIkxJjzcKEY6G4ADvWmtrrzus1m7CbxNvLmDDD1SCjU7CgscPZQ+fLvjV7W8EOGDPGjwCbxdAjy9vVZdvJTbuzywSKq8WDhHuzI377x71KQ8n3CCveySl7ybWBw8rdgZO3Kj+zuuRvC8ferQPIs9mbs3niO8W+yPO/ytGjyNrMy7c6RYvLV13zvdKaO7PH1nPbNfM73rODM9g7UivUVVib3cxQW9hMpxO3QIdjsC3Ky8maWwvOCj7Ds27BS8rTGhPGSU67x08yY9qmgJvG4oVbvh8ro8MCHDPCrzsLsfrFu9IsNkPd7bsTw8Gic99n+Iu1xQrTzg8V083j5yPOfSWz3OGbY8K6W/u57SZbzGm3g9btrjO9t2Nzv9wuk8EZMSu0ko2rvhpEm7OWe7vG53ozrYEGA9WuuyPGF9Yjwb2Yq87xd3OkKWKj1HEq69H/spPUl3qLzX+5A7XQI8vClBor32k/o8aq4LvaNO6bxIdss82nVaO3GPCbyt2Jk8GMw6vFWEfryLliC9asL9PNlgC722xYo9jq0pvQKN3jw27JQ8al89vJePBDwm0RE9BI8YvTDSdL3pIgc9vrr6O6WelDyPrga90+OqvN81ljwxN++6ViKbPHzp8zyjTmm9CgucPCxNFTxFEHS6tcNQPHGOLD14bs08r5U+u3hpOjwQzR48Zqolvcnnfju0OTU8OYMTvbhXAzt/H509QPiBPDKMPDwWtY69r9ryu68b57zT8Q28fp20POiQcLuUT8+8gXoOvS/0J7x+G8y8qTCDvQPjwTt7g7e7p9WRPMX8Gj3nT3y7EUu2PJgsqbvtcRs9zULwPGYovbzbqmS8SQG0vUPRCr0QiFk8F38wu5I5I7zHyg06QslovcOwkDze/pC89wCHvIckfjyW1Qi98A2BPLN2WLy8AXM3mSwpvSDCkb3x3ue8xLumuzj9WbwkYes8TJKDu+TxFjzHyo26vsigvXVTjrtaAb29NeetvOuuPrw+MVQ81Xo7O6N6oLw/MdS86RaqPGjrmbzhH1M8h+urvHhpurzBoak7+Y2FPPMjLbxhdqs7g7sCve8JsDt9mWM8ZBIRO1n9azw5gxM9/kZcPFxRGDufnUa8SX9LvYTGGL3GEkc99n4ePAY64runlB09hAeNvZ/aab3vRtO7SMA/vFoBPb0RjCq8kviuPM0BfL00ZUW8jAUpvdxC+bxm4/e8NmmWO9EfSj1WaSi8EYwqPUf9YjsgBvq7hyEKPPa7QT0l56S8WTebPNJkD7082rO7vgkVPXQHhLwxCtS8rkoAvaT8CLxSCuY8/XEkPaossjzfShu60R/KPazA9bzZVxW8g7uCPBObET3z5ok96BJZvHOM4LxChYA8IYyzPOrZhr3PG3k7akK6OyXnJLupadU8z0oSPblpXj3wDYG9GtZQPa9VljwnOnS8rcTGOx5ytj0hCku9Y8YGPcswFb3olMG8r1xbvWVTBbx+2te7F4MBPOT4W733AAe87O8yPQ0xuTt/oYU7MQrUvPLe57ubAWG89Xb8O/Z+nrxuYAi9pU9YPHjrorsfdge9ddGlPWvEorwdr1m9IAb6PKko4TzEOb67XdpFvWrAUTwr1tk8qm2mPWYoPTwHPjM9yWnnvCWmML3H0VK8y++gvMptuLw4wLY8VywFPQLfcL2+CRW9ltE3OyuZNjymEjW99TnZuw3wRD0FuPk8UHYiPLko6ryrAeo8SQG0vD3eBD3Hyo28Ywrvuzh/wjwKWLA8ZNEcvTSiaLyESAG9BKYevRrW0LyRcnW7BKYevUIKXTrmfpW8w3bhuwPjQbwIVF+9vAXEPGZeG7t+XEC9kbPpu63IF70We9878mDQO72HrDx8F3s8bRfyO7JvE732PSo87DCnPA6zIT3IFpg7/4dQvLBgrLv9spg8VV4SvQzscz2Qs2m8N/aUOwqZpDy8fBY9E9wFvXOFmzsk41O9jp09vFxRmDsWtY46ncgOPEnAP7sUZTO9JB0DvNQ5x7vGT2o99j2qvDsQEr2zNWQ9vHyWPS5yvzzeP4U7E9/5vOtmhTzrJZE8NONcvNttQTzvzAw943bzPOIf0zs9nRC9FSiQvKquGj0G+W0859HkPI4UkLx/YBG8X2uVO/40Ab0hCsu8Ms2wPHsBT7vsMKe8Che8PdT40rqpKOE8sm8TPB0t8Tz8Zg694qG7uJfn47yH51q9QozFvIhtFDyf3rq8ckvsPPyyGL00omg94RiOO8CWk70Nci28QtEKvBcBGb4rWEK9OYMTvBvaoTt6/f08T6yAPP40Ab0n/VC9nciOvCCIYr2y9G+9cDFvvd9KG70aVGg8bh+UPOiUwbzj5gC8cbeoPPPmCT0WOuu8bZlavbT8EbwKmSQ9cfTLvE7w6Ly3U7K73T8FvZL4rjz3kPk6zsipvNeQZ72MBSm9LnK/O/8FaD2MRp25c5AxPb2D27yj+De9O1hLPJCzabyvXNs8Ms2wO0lCqLyWUyA7+tkPvSCIYr1kTzQ9TJKDuy6vYr1F42W8srdMvN8Jpztm4/c70aEyPF7eFr1TT6s8m8BsPPkWsz1WJGM76BJZPJ2HGjzraXm8jAUpPbEjCTxiyfq6Ic0nvVqDpTwFOmK8qKZ4PH6dtLwk41M9JaYwPVoBvbwLG406y++gPEj94jwZE/S8um0vvJN6lzu9h6y9ncgOvDoX1zyzNWQ71DnHPPuq9jy5ow09rEJePOT4W7z5FjO8NSRRPixu7jx0jGA83sRhvKYStTyWEqy8SxAbPdJkjzyrfI26zcTYvNGhsrzMcYk7f94oPY0b1TpTDre7cktsPccSR7zLLMQ8mgFhPU3ejbxgdis9gKybvAcBkLsr1tk8gvglvWk+6TprxCI9CtbHPM29E72j+Dc7YHYrPI+dvbw5g5O89TlZvZL4Lrtgs049oKGXvHtCQ7zbLE096RYqvTWmOb3KbTi8+lenPMOwkDr/Beg8V+sQO7bRybutBTu9gDH4vHdl6TvyZKG65XpEPZmqwLtjzUu8vsigPMrkCrz/yES9qWlVO+Z+lbwvtwQ8rgkMu+ss1ruk/Ag87oP2vCb90LzTdmq8/XGkuz7w37zwixg9VmVXPS92kDsbG5Y9OUIfvdU9mD3+g3+5rQW7Owb9vjzE+Ek9GpVcvMowFTz7bdO8RWVOvD3pGrxunau88A2BPAtcAT1Jf8u8/XEkPY8fJj3aKPw7DjUKvJI10ryFT8a84VmCO3bnUbzQG/m85bu4PC4xy7znT/y8Ec2ePFcsBb31MpQ8tPwROs4JnjxkDkA9sm+TO4eqN7zbsoa7NB0MvfpXJ7p9F3u9A2HZPEoFBTxlZeC7oSOAPIp/b7t9WO87m8DsPEoFBbzkNf87nIPJvJHtGLxH6we8LBufO0LJaDv6qna94h/TPCvaqjvVPRi8qarJPGbggzu0eqm8uWKZvM4FTT0gjDM5bNZ9PGam1DwJE+s8Vig0vVxY3TxTjM68qWIQvcswFbkXwKQ7oKEXvGoBxjxRhQm8Mg4lvTReAL3I1SO9seIUvdEYhbw1JNE8qOu9vBvaIbypMAO9u3GAOta/gLxnqqW8OLxlvHG3qLyWlBS9F7xTPMmqWznynXM8sfRvPOV6RD0bXIo6JSgZPIQOUr0G+e06af10vO6D9rwdbmU8PzUlvaEjAD1YeI+8AMlEPOlXnjyv3kO8XdrFO7dTMjt7BaA8AIyhPK1GL7ybO5A9ncgOvSg+xbve/pA9CJXTvBtcCj1JQqg9qapJvPJkobug4os9uutGvYdlcj3DNe08n966PCxck7yBs+C746WMPdU9mDwucr+6p6b4PAb57bwDYVm6221BOxkT9Lu2kFU9vAXEPLosu7zbJQi9xDk+PCgBIrxGaR+9QsloPV+v/TwamS08d+uivNuyBjwYwCS9/K7HvOos1rzz4ri75T2hPSc3ALmjt0O8m8BsvRjApDxaRoI7NntxvHyHCD1IwL+8DGcXPED4AT0ACjk8wnZhPJoB4TkuMUu8GhCAO829E7xCRIw7YHJaPXoBT7ycg8k6SUIovTJPmTy2zXg8VONuPPlXJ7ysRi899j0qPUUk2rx4qq68hJC6PJXN5jyHJH48wN7MvJ/eOr0nfzm8Mx0MPB52BzyH59q81r+AvbbNeL3wzAw5NWXFu2tGC7xCzbm8x1O7vIXRLr29BUS8eKquujpU+rx00SU8ueQBPU+zxTyZ67Q8vsggPE9yUb1u3p87t5SmvDHJXzyqrhq9vsggvXMKeDyz+MA87cRqPKxCXrw0XgA8e4M3vMssxLwxwpo8kjmjvIwFKbx1Epo8hMYYvNkofLyFT0Y8GxsWPNW7r7wqz5S8dqZdveb8LL29Rri8Y81LPAur/7zHC4K7PFycvNdP87xJwD+99XrNPO6HR7y9Rjg9QktROxrW0DzLriy9+lcnvVfrkDoYwCQ91wuLu8ssxLzNxNg80qUDvaWJhzySdsY6p5QdvdwwnryVDtu88yOtvFWmS7xBCt28/OtqPGbggz0LGw28RCRaO3RPvbwwwpo97ofHvATnEr0iDpy9EyBuPTjANjyYZfs8wJYTPDmDk7wQgZS8bp2rPK8b57mpowQ9IIyzuwJalLuH66u84Vx2vAtcAT1nqiW6hU/GPDxcHD2Jrgi8RmkfuyQdgzw1JNE7LBsfOu/Iu7zccZI6XFEYPfws37xt0wk9vUJnu+gLlLtJATQ982QhPWamVLxW5z+9nELVuS6v4rvmPSG7K9oqvTwbqLuLQsy7EUs2vfgS4rzKqlu82eSTO0l/S7xCCt07ddElPaxCXjwYjhc8rAFqORnSfz071uK8aX9dvAtcAb6cQtW718qWPAZ71jwIQgS99j2qPGE5iLzh4i88ULeWu6xCXjx1Epq8gPRUOt+LDz1A+AE8dyhGu5hl+zzEOb68ZJAovetpeTyMxLS8ZNGcvPslmjyv2vI8QcnouMHinTyBtzE8QozFvCHJ1jxf8HG8Ac0VveTxlrzVuy87KlRxPHhpOj1CzTk8uWKZPU1cJbuvG+c7GMAkvTj9Wbw8XBw9PFwcPNhTxLzAXGS8cTVAPYEuBDuQ4oK8g7uCvGD0QrwRS7a81HbqOqemeD2gHy89Y81LPN+HPrwz0QE9uOf1vPe/Er0QR2W97HEbPH+hBb0CJDY7gvglvK+WCr3j5gA9KlhCPOuqbb29xE89MUQDvFYotDyZaUy99LdwPKyDUj0Z1tC7VmXXPGyZ2rlYvPc8CtZHPKM5rLxDDq48KAGiPGoFF7w8XJy9n5aBPOkWKjy1iRA8qOs9vXoBzzwCWhQ8YDHmPBFLNryUT8+8HW7lvGbgg71bkoy9Moy8PAur/7w7UYa8ppBMOhhCjbqjt8M7JOPTPPPmibw15628HS3xPEYoKz2Q7Zg9JCRIPOFcdj1WnwY9JGkNPWaqJb3aaXC9ZWXgu6S7lLw2qgo9kvguO2bjd7xF4+U6At/wu49cSb1MF+C89n6euzPRAb1kDkA87G1KvJem7zlxNcA7O1jLPEamQj17BaA83sThvJL0XbyjOSw91HZqPSDJ1jvH0VK9M2H0PLptL70NMbm8P7O8PIJ2Pbx7gze76yURO45gGjwr2iq9YfgTPSHJ1jyGJP47DW7cO4I5mrv97zs9PzHUvPX4ZD1Vovq78R/cPPPmCb3GT+q8ST7XvF2Z0TzwSiQ9dyjGvF2dIjwYQo08xk/qvJzEPTuLwOO8EU8HPFafhrxxdrS80iMbPeQ1/zxyS+w8mes0vcnnfjyBcmy8oB+vPMBgtTzNg2Q990wRPCHNpzxaAb0946WMPLkoajwtLfo8w7smPSFLP7xmXpu8jx+mO9hTRD1H/eK7RmkfveJgRz0qWEI86RaqPAtcgTkyS8g7ymnnurHilDymkEw9mSwpvUl/Sz1xtyi9hqbmvB0t8bzSpQO9phK1vG4fFL2QLg282ZgJO1LNQrwAS6287DCnvEl/Sz0aF0U8s3ZYvNhXFT2Lg0C9tdFJPQsbjb1CjEU9rkoAPSsXTjyvG+e8McKaPEfrBzyqrpq87G1KPStYQj1u3p+8RaJxvCqV5bwqleW8NntxPKu9gTu+CRU9i0JMvOpmBTxZuQM9tHqpvLH0bzxCzTk9TzHdPLdTMjz4UUs8uz2JPMZfMb1zRb47XxwYPJf5Qr1BU6Q7BK+gPTCtGzzj21s8enSKvR/VczoGFxS9fDqgvDZdfzzwXGm8Zl2AvPEZ8bxTWBK8dlidvDPJiL3/gBc8yutcvNVIMjw3TCY99Bq0O4uK0TxceXc7mR37PKMBBD1ez868JnR+vCYNzr20Y9G8tA49PAiifDs495G8UmBduynccb1ogbg8hISWvHfRabza5nk800fvvDXksjx30Wm8Y0ohvNvMEr1fJaa97Y3FvGdmDro6Lea6H9XzPAiifLuCxw48msjmunw6oL2aDKK7UgvJvQwLs7zQzV+8GHqkPCqZeTvYKfK8iSLeu96kxDyKeDW8Roo7PGKNmbyrsqq8Eu01uoTrxjxJa3u8ruj+OykgLb3M4xE75pCYPFRhoDpdVoI8zOwfPTF7/DuB2Oc7k22Xu1pDI7346hq9BWwoPRGXXjzhHlS8pYzsPNXqj73lqn+9fpmFuqbQJ7xspjO9SQRLvMvagzz3LZO9gMbLu8i+Fr0WtI682MLBvI9InDp7jzQ9EoaFu0jyLj0F01i8i99lvECouLvYF1Y9/4CXvEFTJDx0koe8KAWDvAoK8DwggF+8+OGMvM6pJ723IZw5A2vlPIOV7zwUVSk7ghwjO0qvtj32gqe8MgyBOgUobTy7mys9+bh7Pcvag7zgc+i8vdH/O49IHD2bt429POrtO4At/LtAD+m6kn7wPLWwGj2RbFQ9wfZ6vUJ3XD2kelA9KjLJvJm2Sjy8WLM9ejldvSt2BD1inzW9RGYDvRZ5Yb0qmfm7CpGjvD/9TLuaYTa9QmXAu1YeKD1o6Gg8a5QXO+eZprzIvpa8vrcYvAoK8Ds0Jyu8YjiFvIzXmjthSd47jM4MvcqErD0F09i8Xno6vWDQET1mGcU8eBUluhRVKb0MYEc8TW0BPTY6ij3v4xw8lfj/PK/XpbzA5N68aOjovNEjt7wR0gu9uomPPGiBOD1F30+98AfVvK4aHjz+zJ08EUJKvdxO7btSmwo9dwMJPWdvnDyd20W9gscOPSdal7z/3jk9HlOZvKO9SLz+w488hFL3PNiwpbxoGoi84GHMvGiBOL0qy5i8GHEWvNN5Dr1lbtk7EDCuvFq877sMCzO8A2tlvXmO8Tx4fNW7mKQuvXF2mrrpARq9PdCGO/sg77vSzqI8rW8yPLH73TqkEyC9owEEurzxgjz8dkY9FEMNu8iD6bzy/wm8N+6DPDBYB70F01g9xUQHvGbEsDrwXOk8fUw8Pf93Cb0HKbA8/YhivRCFQrzRimc7MXv8u9PgPjxyKpS8RG8RvQg7TLxk/ho6MtFTPb/AprwfBxO9dq0xPTWPnj3un+E85dOQO85LBb1NkHY8aSwkPFA8pbyPBOE7v2sSPTZd/zzT4L485lXrvK0IAry/wCY9D9pWPAh/Bz2jaDS8Gp7cu2gjljggxJq88PW4vHOItjxfJaY7h/4lvOhWrj2iEl28vrcYPcKh5jw1hhA9NUvjvGtieDwWtI68QbpUvRrZiby+Fbs76FauvDwlmzzrJdK8uwJcPWti+Lnpz3q9NYYQO54xnTq2ZBS+ZQcpveVDT7yrsiq8xvgAPaTPZDzbzJK8tHVtvVaX9LxGnFe9gFaNvaWMbL1QPCW97NA9O+zQPTpfxwO9pnuTuXZGATzZbS09S2y+vDahOr0xaiO8pYxsPe0mFb0J+NO89LMDujJ8v7wAnME88wiYO2+whLxEb5G9KssYvTIVjzvJQHE9/A+WO4sjIT3PInS8GM+4vJzJqTwtRai82FsRPXYU4rs5Ca68eSfBu9iwJb39ITK9h2VWPXIqFDzlqn+9s7jlvBLttbzJchA8OQkuPJ4fgTz5/Da95zuEPCTplTv7ub49ruh+u9kPCzznO4Q7BME8vG8gwzysxMY8I5M+vLSnDL1MF6o8J7g5PNhSgzyW3hi8VXM8Pfg/Lz3MU9C8KSAtPGdmjjybc9I84Pobve0dh7vc57y7C06rvXDLLrsUqr08PdAGu2WpBj26V/A8rF0WPRUAlTwNcuO7T5G5O+BhTD6V+P88O9hRPPXXu7t08Kk8QhCsvF7h6jy6V3A8jll1PBJU5rxLbL68v8AmPKnjBj1WhVi7CgpwvMUbdj1Mflq8RiyZPFXabD32eRm8NeQyPRklEL2FOBC8VsAFPcT3Pb2dQvY7SloiPUOyCTyQ8we9nMmpOz+NjruHZda8WZg3vIkiXr1BUyQ6R0dDPQwLs7yvk+q7bsprPdXqD71S+Sy9AllJvD+NDj12rTG8KA4RPYK+ADxNKca72n9JvVd9Db0Z4VQ8lSofu+x7KT3TeY47noYxvBRVqTzwXGm7E5ghvU5/HTx4DJe89nmZPFUMjDtcqxa89IFkO+TKAr2e7eG8+yDvuzm0mbsjLI68WNsvPZ1Cdj3FRIe6lDt4Pc+7w7xVFZo9mbbKu3h81br0xZ88GDZpPbnVlbw6xjW50SM3vTtxobzUiyq8s/ygvGgaCDxScvk8E5ihvHrkSD1AShY9jouUPHF2GjpQ3oK8ZW7ZvLy/YzvxSxC8wDnzvAii/DyehrG8kFq4vKCq6TyehrG8ryw6OknyLjwoY6U8HFtkPV56uro5Ca68iBDCu7E2C72E68Y7W6KIvdp/yTw4XkI7EOxyvAVsqDzf8Y06oOUWPCC7DD1O5s27yoQsPFx597y8rce8W2fbu3p0ijxLBQ48LQFtvauyKj2EhBY8yWkCu7LqBD0/jY473j2UvKW+i7tDIkg93/GNPLiaaDwUVSk83NUgPZGnAb2PBOE8QndcvFFOQbw5tJm6DoT/OjobyruUO3g5NY8evNjCwbweUxm9P40OvfCOCL2PSJy8SlEUPbubq7yBcTe80+A+vWL0yTuHuuq8nh8BvbbLRLxymtK8G0lIvcLThTwjk747jeCoPJdO1zzRIzc9uwLcu9Zazjwl+zG9dZsVPMfYfbwKCvC82ClyO4sjIb32gic9mshmvAJZSTwwFMw8ZP6avIR7CDzMQTQ7C06rPGA3wjz26Ve8KAWDPWVuWb1q1w+7aqVwPaGZkLx+9yc9p42vPYaoTrxvh3O8y/14PZoMIr3vSk09HFvkPECoODxvh/O8p40vORbOdT1vIMM8XKuWuzb2zjzTeQ69ecAQvPjhDDuPBOG7uldwPY9InDz3+3O8fvcnvfQaNDyNR9m8ibstvXNFPj1Scnk8KjJJPObuOrytERA8goPTvMUb9rzqrAW9RXgfO0OyiT0EWgy7JD6qvM4QWL015LI81PJaOLjvfLzf8Q09/SGyvHIzojs+hAA9fDESPFwSxzyvk+o78AdVvNLOIjzxS5C8lfh/OaqXgD03TCa8HwcTPBCFQr05Ca482hiZPCjKVTzJ2cC7a/tHPaUlPD1ymtK8MK0bvIPZqjyKNPo8gMbLPHBtDL2jJHm9Gp5cvKXHmTxMFyo89y2TvLwUeL1wMl+9Zz39O3ZPj7krfxK8MSZovFq877ylvgu9ruh+vNI1UzvlQ8+8J7i5uz2V2TzAOfM8IIDfPBP/0bnwB1W9Oi3mO8+7w7zXBbo7HJ8fvQwLM702Ogo87p/hPCSlWjveC3W8jJztO5WRT7yp44a8tGPRPOoTNrwRQsq86WhKPINAW7rv45y8O3GhO9sqNbt/cHS8T5G5vFmYN70urFi9qJ9LvGTDbTzScAC9u5uru5Ntl7vdiRq9oQBBvY8EYTzqEza8Roo7PdAIDTtGnNc82W0tvYZBHr1yM6I7rQgCPbZklLyo9N+8sIIRPUtsPr1J8q47Qszwusb4AL3Ui6q8CKL8vHdqubwvpA26gFYNvc1lbDwnUYk9KsuYu2aAdTzw9bi7pBOgPUwXqrye7eG8rFSIvY8/jj27Atw5+OqaPOPbWzxdvbK8FhKxu24FGTyE68a7QEoWPeeZJrzcTu27qpcAvTWPnrzXnok8Lr50PIWWsjzAfS49V30Nu9w8UbyDlW88UN4CPC6+9DrWWs68yMekPEIQLD3YsCW9VGGgPGiBOLu8v2O6wDnzPJKwDz0S7bW7msjmvOXcnrprYni7ZW5ZvAcpML0KkaM7iyOhuyW39ryAVg2995RDvPf7czvMqOS7C04rPPf78zwh1jY8tyGcuvzLWjzYKXI9qqAOvcQJ2rs37gO+2n9JvFL5LDxRtfE8ejndvF8lJjwL8Ai8K3+SO8zsH7wNtp48FWfFvFKbCryuGh49w0xSPLjMhzqO8sQ8J1qXvGksJL1uDqc8p42vvKXHmbxvIMM8ZFy9PG8gQ7vhrpU8wNLCOzqC+rzVSDI9WIabvI6dML2TbRe8tVuGvKwZWzz+zB09Zz19PKnslD2Ee4g6jYKGulCjVb0anly8luemPAYXlDzj29u83qTEvACcQT1nb5y59y0TvQDxVbxFeJ+8cd3KvNG8BjsUqj09mU8aPTWGEDx08Kk6I/ruPPxkqrxASha9oO4kvbchHDsVZ0W95IZHu71qT7xNKca8MK2bPCP67ju7Aly95zuEPeTt97sdsbs7DoR/veeZpjxWwIU9rFQIvDez1jw+p/W6qqCOPMQJWjx3Jv68NH2CPC9pYDzg+hu8TcKVvZQYgzyT1Mc86fgLuzLRU71Odg89qvWiPKFn8Txnb5y8M8kIvYgQwrwKM4G99y2TvY1H2TyXTte87GmNvJWRzzs90Aa8nMkpPBAwrjzJ2cC7Roo7vL8nVzwvAjA9lSqfPUy5hzzkyoI9ptAnPfEZ8TwJiBW9pjdYvc9UEziu6H68vPECPVNPBLtogTi8Dbaeu9VIsjsuV0S9LueFvMlykLz5uPu8GGiIPOsl0rzQZq+6HsPXOyWUgTwtAW09nMkpOtbB/rwi6NK7v2sSPQTBPD0qh108l05Xve44sTyUfzO90YpnvEOJeDxsP4O8h/4lvJrI5rsBA/I7P/1MvfCOCD2u6H48RXgfPBOYoTsJTWi72LAlPcDSwrz4pl89NKB3vN+24DxaQyO9Sq+2vMLTBb2UO/g8cXYaPSGS+7z117s8Xb2yPNSdxrypSjc8JOAHvU5N/jtO1DG7Pqf1vCgFAz12WJ08dlgdPXWbFb1sDWQ8SQRLvG5juzzd+Vg8S2w+PUFTpDvuOLE8wjq2PZphtjx65Mg82FIDPeFZAT1ymtK7MyervFjtSzwV9wY9XBJHu052D73FRAc9PuuwPJ+YTTyGU7o7ljw7POGuFTxCZcA83IAMPd+2YL0tRSg9EB4SvdhSg7yDQNu8QA/pvNoYmbySF8C8BdPYu1sAq7tO1LG8X4xWvGmT1LyFljI9YNCRO9nU3bz3lEM9M45bvbxYMz195Yu9rBnbPC08Gj326Vc7hOvGvL586zwXi/077OLZvGCecj18odA8oKrpvHp0CryKeLW8bvwKvZ9DOTzV4YE7WwCrPD+WnLxyMyI8RSMLPRZ54bwMC7M8WlU/PY5ZdTz/gJc8iKMLPJ21XD3RUQW9Kh0TOZbnnrzvuTu9MO0qvNzaLT2zFQM9v2mOu7ynFL3mVbi8OJZDO6602ro/Gre7tRMpPWPMDryda5I8KEQSvHx7NDqifuW8D9gnvTtRLjx+TSa8am4Yu9oWWjtquGI8E6EwvJB/5ztk+MK8B2u7OzaBlrzncfS9vspfvdcorDs0tjO8f4BpvQC5ObyOYyu9BxiIPELVoTxSzRC9JlsZvKrGrL0sBgw9KGm3vKcLwryfPQS9vnkGvT8DsLmentU7TzC8vOk1SD016Xa6Z9hSOyXTcTkBlJS9ytsvvIT/p70OOfm8tQWLu+dMTzyFygq9Et1cux+yALy9lxw9VL0YPWBU3zx+l/C81Xvfu7McEjvX8449ht+3vJ6eVTwx1iO8i2yUPEXxXbzlkeQ6iYyEu5BMJD3jg8Y77ufJO1yw+zsnpWM6iLGpvWT4wjzzdCY853H0uwoIED2OXBy9n1savTwcEb1nsy28xUA1vWalj7z+OXu8a6HbvPlwcryOejK97/XnvMKFyjvQjbE7R4cjO8rbL73FZdq8pkfuOjaBFjx0M+26fT8IPfsdv7tiJtE8KC2LvJ1kgzxFkAw9URBMvRG4N7x419C8rmoQvX3FfjwliSc8pSJJvCiO3DwSkxI9Xy+6vF8hHLy/s9i8sHiuu0mVwTwO76689mu9PLzTSLvY+h08bGWvvd2lELzEfGG8F2q5PM33az0zqBU9PSOgPBH0Y73TXyM9WavGvM3SRjyBaeK82uOWPfHsfr0ma5E8d8kyvczEqLzR1/s8oGIpu8rNET3aCDw9xBQBvVedqLp9oNk8dhxmPM2tobyvnVO977m7vIJSW7vgyFu8qBlgO0LVoTgz8t86+SYoujxIxbwPupE9A8dXu3H5GrzJ8jY92NyHu+habb106aK8wUKPvCN7iTz1Rpg9dbQFPYEBAjuMtt68SVIGvQD1Zb3AwXa8RbUxvWalDz1SxgE9RsPPvLq+G71JuuY7xU5TPG6B67vgfpG8V+dyuxwOnTyhcEc8B5DgvFTLNj2Sdv46XLB7PMQyFzymC0K8/6OMPCa86jwHnv47vA/1vHIXsTn68Qq9/8EivKzi6Dryx9m8xxInPBidfLyeeTA84lCDu57Der1BNnM9FNTzO+c+Mb39uhO9MBJQvAk9Lby+vEE85ZFkOxlTMj2W0Jc9YSZRvTxfzDsqFgS79UYYPc2PCzxtr3k8mceuvJqLgjy/yt+8WdBrPM+kOL00AP67npA3PcvEqDsnpeO7XhoNO0hwnLxLmna6d6QNPRlTsrzP4GQ9klHZPJeygbww1iO97iN2vDxtaj04u+g6CXDwut93gjygS6I9+UtNuVeGITzoJyq8Hzj3uv/BIrvGKS47yC5jugdUtDzlKQQ9L9+MPPv4Gb1zJU+9346JvDZjAD2Fygo9vJANvBwOnbxy4pM8u66ju42RubwXPoU8GjyrvGfYUj31gkQ9fFaPO+oHOj2gley8ojQbPKuoFr1gChW9NZ8svd28l73jVxK9IaKIupE1nTwyvxw9lskIve3nST0pLQs9YAoVvdKpbbvdvJe7PCMgvkorh73hdag8zfdrvP26kzxGw887oHBHuy4EMr2RQ7u6puacvP05+7zzbRe9CGLSvKbIBjtgPdg8TTmlvLnzuLsRjIM8raa8PTyE8bzIIEW9KZz6O1QHYz0paTe9xQuYueZVuDwc8Aa8TgQIPYEBAr1NbGg6TgQIvZuZIL1Xnag7FNRzPKuKgDvTQQ09v6W6O5Nf97yyWL48eI0Gu01HQz02rco8IaIIvR0FtDzPf5O7YzTvvIIIETw2iKU8zo+LvCTcWjxWtC88XHTPvHupQrzd6Es8bHy2vJ5bGjwd9xU8MftIPV9GQby587i6CQGBPB0qWTwOOfk8BqdnPLIzGTvuDG+9k193POz+0DwaYdA8XCqFvCoWhD3QaAw9OUOQvAwdPTz1Pwm9RnkFPa+d07z1Pwm9WpQ/PZAujr3G7YE8a6FbPK16iLtaol09wDsAPJ1rEronvGq8Pz/cvDxt6jmgcEc+qbiOPFyZdDsliSe90W8bPY5cHL0FVo67xjdMPCiAPr263LG8KS2LvcGqbzxLjFg9WqJdPBDBoLxGhyM9r3guvOZVOD2MqEA9O1Guu6j0ujwDiyu9qM+VPMnytjeifuW8AqIyvXfJsjzc6Ms8XmvmvGT4wrwJAQG9HA4dvL68QTyTX3e9By+Pt+6rnTxdgm29qd2zvLyQDT2BAQK983SmvGyKVLwmaxG7FVwbu3ibpDxohR88OUMQPYazA70PswK9dwVfO+CjNr3/z0A9gi22vGmFn7xwIJo8q68lvS3vhLz1Pwk9Xy+6O3Mlz7lcTyo8oXBHPEtns7uK+/O8k1FZvM2toTxF//u8esDJvJFDuzwsJKI8nWQDPWIm0TzEFIG9h983Pd6sHz1pfpA8KI7cvLuuoz3K8rY8FqZluyVyIL2ZsKe8F49eO82tIb3v0EI7O1/MPNKbTznqHkE9iKoaPZga4jvDVzy8OzOYuyZbGTwDi6u8/cqLPBslpDzdngE8eO7XvD4/XLkVbBO8ys0RvYBEPbwlxVO8kC4OvKb9oz12HGY8qQLZO6jdszu/yl87OTyBOMQyl730p+k8KjSaO8Gq7zxuMJI8rcvhO9DX+7fzsNI8ytuvO3vOZz3b8bS8WG8aPLb1Ej3ThEi8ytuvPGpuGL1pfhA9v46zvBwzQjxVppE8XjijvLuuI70hCmm8V3+SPZyCmTwztrO5uc4TPdn6nTzkqOu8GJ18PE1saL30mcu8JNzavBGqGb1gVN+81wMHPXfJsruLv0e9Fa9OvZX+pby8+G068rBSu//mRz3TQY296DXIO4ixqbw2iCW844PGO+7nybwpLQu8cmH7O1Fjf7wogD69cwAqPWxlrzwAjYU8VL2YPUAoVT0VmMc8n2KpvE1eSj0oRBI6aHcBvTXp9jsK8Yi8v1IHPJr68bwsBow8GGo5vG0wEjzAcB09bTASPDtfzDwIh3c9rOJoPIEBgj2frHM8qd2zvBtYZz22E6m8za2hOQHe3j0Q5sW8UCfTvA7vrj0v5hu9TV7KPKFZQDyPY6s8eLIruwHe3rz/5kc9B2s7PZ/DerwqFgS99pBivYQNRjzLJfq73rq9O7uuIz3MxKg8LvYTvV8Dhr0c8AY8dOkivFQHY72Y3jU9sML4Om1OKD1kHWi9NdvYPINg+bzdvBe91Yl9vCg9A72OejI9FZhHO08+2jw4fzy98tX3upu+RboDi6u8hA3GO4+WbrwqOyk8TV5KPQ7KCTsU1PO65EALPGIBLLzWZNi6NNtYPQtC4rxdMZQ9nWQDPcQbELyUOtK8kgAAPCOgrjwikhA8V52ovMrbLzx9oNk8y9uvuoX2Pry2OE49XZn0PIThkTsfyQc8wI4zvQz4l7zr8DK8Lhu5PIUy67o4Uwi9euVuvcdF6jzQbxu82sWAO/ZUtrxZq0a9PUjFu5vj6rtNR0O9DB09vQkmJrwx+0g9LAaMOW1OKL3xorQ8Cg8fvcGcUT2skQ89bXPNPDO2M73GEie9QrcLPYXooLnK8rY8wyuIvBGMAzsZU7K7uiZ8uXttlj3K2y+8GXhXvcy9mbrK8jY8aeZwvCa8aj1Xnai64KO2vIP4mLwAqxu9XjijvJbnnrz9ygu5bWUvvdv/0jvkqOu8nHsKvTC4jb2U95a76BAjPNcorDyvndM8sm9FugSwULxphR87F2q5vDtRLj1F8V28xk5Tu9KbzzxAA7C8n6xzPIp8jDzvlBa9n1savTk8gTyda5I8Z7MtvZ6QN73CbkO9WW+aPLyQDb0dHLu8q/lvvfU/iT0guY+8rmMBvcE7AL165W49B3lZuqFLIj16hB09TYNvvI9Flbz/C208UBk1uZeygTwfOPc7KmDOuzG4Dby5AVe8LkDeOkwUAL1511A7WqLdPMVlWjzPeIS8kC6OPEm6ZryDO1S8eoSdvM94BD2ZsCc8yRfcvPZrvTyV5546w1c8PGAYMz0VbJM7+D2vvPU/Cb0PuhE9ubeMvDDPFLwIYtK7U+I9vCl31Tz4S029SVkVvQlLSzwqUrC7yyX6vLYhRzwJPS082FtvPQcvjzxcmXS9lEhwPBAL67sAjYU7fpfwvbVP1TxeXcg7NXqHPMjkGDwsBgw9Vo8KvXjX0LwHkOC8cfILveZ6XTyNxHw7YuMVPLRmXL3v0MI7FlUMPA0GNr2upry87buVOVL5xDukUFe8sWGnPEDHA7xJo9+8NsTRPDPNOr09DBm9lEjwuymc+rzZLeE7sm/FOzqyfznHN0w41XvfO/kPIbzlbD89fYnSPO20BjxT1B+9qN0zu7+zWD3HEqc8u66jvHQOSLsf0BY9SozYO1ECLr3hjC+9TFAsvc/J3bzSqW08ac9pPUsyFj2wPAK7lucevZu+RT1jS3a6EMEgvAdru7xbfTg7/AY4PJi5EDyDFq+8N2qPvTe76DtdmXQ8i+TsvDmkYTxBTXo77bQGvRDBoLw9I6A8dwXfPBSDmjvd0UQ9J5fFvGPMDjy4GF486CcqPFbw27wSobC8FIopvIX2vrwlcqA8t94LOpb1PLvidSi9WqJdPP6zhDxBNvM8/Tn7vEIfbLxiS3a9e2aHvC72E72V/qU7Wblku4ixqTzc6Ms8w27DO3mUlTueWxq89JlLu0mjXzs5QxA8q4oAPUARTj0t7wS8HPCGPZX+JTw/9RE8YFRfvVmrRr3CbsM8kHHJvH9yyzyr+W+79i8RPRDmRT2frPM8FWyTveoeQbyDJE28WrlkvGE9WDyeWxo8YzRvPUS1sbuhcEc8KlKwvCC5jzzWTVG9uurPuxmd/Dwbb+48nnmwOrGrcb3GXPE8GVMyvb7KXzx3BV88EaoZvR8497tea2Y8pfYUPM33a7zPjTE7KWk3PdoW2rwuG7m8NXqHvDSRDjqkKzK9htGZPVyZ9DsNBjY8sKtxvFirRjwaSkm8Lhs5PBW97DsN7y68eI0GvYvkbLwg1yW9jbZePVfn8rzibpk7cvmaPLnzOLwXgUA9maIJPLUqsLt198C8ximuO+GMr7plBuE8Ms06PF5GQT0x+8g8B1Q0Pc6WGj2pAtk8pSJJvMB3LDyrryU9MM8UPDH7SLzYNko9DyJyPJuSkbxnnCa8+yvdPPhLzTxDCOU8Q76aPAOLqzyce4q8UjXxOxwzQj0CfQ29lDrSPF4aDb0dHLu850zPu7nOk70aPKu7D7oRvTqy/7zvuTs8JdNxvIvk7LwEdCQ7SrH9PDs6JzxOIp46uc4TPXAuuLyNtl49Y8yOveFuGT0dHDs9w3zhvN3RxDs9IyA9p/S6uoX2vrufh049OzqnPAD1ZTw9BQq9kgAAO6BLorzmet28SzIWvEZ5BT10M+08jKhAPSs7KT35DyG8AZSUPMFZljxbsPs8ZLUHvA=="} \ No newline at end of file diff --git a/dsRagAnything/Topic/Chemistry/vdb_entities.json b/dsRagAnything/Topic/Chemistry/vdb_entities.json index 9368eaae..f4fe2129 100644 --- a/dsRagAnything/Topic/Chemistry/vdb_entities.json +++ b/dsRagAnything/Topic/Chemistry/vdb_entities.json @@ -1 +1 @@ -{"embedding_dim": 1024, "data": [{"__id__": "ent-7f3f40b149836e219fde3f5ec3bee219", "__created_at__": 1751960218, "entity_name": "氧化铁", "content": "氧化铁\n氧化铁是一种化学物质,参与与硝酸的化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-44635b939a0dac857d1d84583d9cdbfc", "__created_at__": 1751960218, "entity_name": "硝酸", "content": "硝酸\n硝酸是一种强酸,参与与氧化铁的化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-a9fd7dcf0855ca37941cd02429f5cef9", "__created_at__": 1751960218, "entity_name": "氢气", "content": "氢气\n氢气是一种可燃气体,参与与氧气的燃烧反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-5efee68823291bc4ac21479758bde4c4", "__created_at__": 1751960218, "entity_name": "氧气", "content": "氧气\n氧气是一种助燃气体,参与与氢气的燃烧反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-9433672146b909186b2c0374cc2b16f7", "__created_at__": 1751960218, "entity_name": "反应方程式1", "content": "反应方程式1\n氧化铁与硝酸的化学反应方程式1,描述两者之间的化学反应过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-435c8d3685d0cefa0f8e6c63f14ba8b5", "__created_at__": 1751960218, "entity_name": "反应方程式2", "content": "反应方程式2\n氧化铁与硝酸的化学反应方程式2,可能表示另一种反应条件或产物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-bde6519cd5920ad6801aad3305444fbc", "__created_at__": 1751960218, "entity_name": "燃烧的方程式", "content": "燃烧的方程式\n氢气与氧气的燃烧反应方程式,描述两者反应生成水的过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}], "matrix": "AFNMPZAibzzeoX+9zR8luiB747qw5Qi9d01EvBLVbj2fyMc84RhavD+11bzfs4a9El4kuzEP4bsNCxw9ta/NO2FU47v3EZ+8/e2wPFeco7sqM2u9EueDuhJepDzKuhe8J85PPYtYnDshe0c9PseUvGPdij3LMRy7UMBJPGgwIb2v01e9fKBovM0fpTvn9E89/9sdPTdiab0+x4a83qH/PLWv6TwuIVi9pZL+O1gTtjxTNyS70A2uvGNUD72pCb28RhoBPFkBd71xcTI8U8ADvVDSiD1HCEK85vTPvAqUwbybY8i9SX+cvIZqr72VdXe8AUFVvAwLOLxVrho9aR5Gved9Bb0aKD89R3/UPH8XQz2qgM+8RpETvWyDfTsnV7095I+KvQ9wt7yrgJc8eynyPBc6tjzdKu28YWaGPChFxjzwrPO8kxDcPBXDP7yubiA9K6p9uaakBT3S6fe8JWm0u2gwIb33/3u87UfYuvSa4Dupko470JabPJaHNjy4Jii9d9aHvJGrFj0k4OI7oj+GvBix5Lvkj4q9s0oyvMuW77wsMzO8EXCNveGhKzyUh+68CpTBPJSHbrzbxbU7Q6MmPelrKj3+ZBk8DnDTOvx2gruzSrK7iFhUPF2KAjyE8zg7I+D+PGowBbzhj+w87kegOvvtzDzlfT29is9KvKO2irxDGtU5fSk6PIjhJbpmMPW8u4vfvA/nybv3/3u8AFPMPP5S6LykLSs9z4TcOzdiab0fFgI9KjNrPcTekz31msS8+YgHPZ1Rtb1DoyY9I/KhvNvFtTxI9mY9O2KVPNINkrw3/Ye8hXymPOR9dbwvM4k9paShvD218TwsRYC9RBodvWwejjy4nXK83LNaPICOVbzU6ds84CoZveZ9obs0dHw9D/kIvcNV3rt/F6c8CKYcvU9Jb73LqEq95Y+KvCB7YzyLz649+RGDPLsUMbt/oAa9nz92PEr2Er082Rk8f6CwvfaaDD1gZpQ8I+DivB4EUbwcKAe9hXwmvKaS4rzq0P286uKgOHfE8jzna0Y9LiE8vaoJobz77cy8Y92KvMNnHT3IQxO8hmrLO36OcTyZ7LW8qvfhPOZrYjx31gc9SAgKu1M3pDwJHS+9v3mwPGZCGL0sRYC92k4VvdP7Nr2H4V098TUpPDpQcr2ZdRW92k6VPJE0BDpAo3o8qZIAPcLeZz0LCzg9dU3gvFWc9zxouQA9rm6SPIZ8iryY/iw8VTeWPQuUCT2nG4q8ZrnGPMdDr7wan+28NutWPDAhIDxf3ey8HCgHPcVVJr2v03M7wd5nOzCYMjwfjaI961lPvECjejw+Pie9lJmDvWRUAT06Yoc7VyWDvJMQwDwNgpI9reXOvMq6pbtUN4i7Pz4nvKz3qTuX7G06zKgSPNGEJL0uIdg8RBqdPOSPmLt7KXK8C5SJPAWm1Dxrp4k7vItDO7SvabyBjp28b5UEO0IssDylpL08jM8EvaSk2Tz0I5Y9BS/CPLivhz1PSW89FMP3PJzaPj0S1dI5GChbvHL6H72hPyI7kiI3PA6ChDptDLO80ITcvBY60jxop2u7bQxPvV7vRz23OB+8T1sSvhyfNb3cs9q71HKtPM0N5jvlfb27jb23u4XzuLxmMPW8KOCAOmRUgby/ecy8JeAqvbFK6jzQhNw8CKYcvSB74zwpzgk93MULvAwLODz/ZAu7jb03vddO2zzSDYS8aDChvIQFBjxuDBc7tzgfPO9HEr2dyOO8HRasveIGf7u5Jgy7hnyKvDvZi7vMH908LqrFuvcRHzyvXGE7d8RWu8NngT3FVSY9wfAYvcwf3Tte7yu9BS/CPOxHdD131gc9By8KvXL6Hz2ftmw8UjdAuk1brrxPSdM8oMgPvUMa1bnIukE8TFvmPAwLDrk8Pvs7oT+iPKmSgL2fP1o7TFtKvGa5qryVECS95/SzvDCYMjySIjc8o6R1vZaHGrxI9mY8gQXovBqfbTyqCZO8SvauPYpYnL1hVMe8UjdcvOIYor0XKHc69xG7POdrYjrymnw87EdYvFQ3CDuvXMW7g/PwvNs8yDxiy1k+fSk6PWkeYrykG2y8dNZpPGseKr1FCN65fDsHPVclgzw6Yge8ZUI0vShFYr3S6fc84gb/Onyyi7yBBUw9NmLpPNdO2zvJupc8wWdVvWBmvjziGL48yqjmPGXLBTpGf3C8TeSNvMqoZr0Zsaw8Sm3dO4dqr7vwNeE8OHSMvNPpWzzxNUW8tTi7PAodBT2sbti7uBRpvP9kCz3o9Am9XHg1PNyz2rvVcgM9esQCvUd/uDzT6Vs8MJiyvChXBb3lBqs8IAS1uwBTTDnfs4Y8NXRguwmUXbztWQk8h/MAvXrEArz3ERG9W4osvSLyvbunGwo8bB6OO5vsGTuHahM8+na6vOji9LxouY49AFPMvJYQCD0JC1Q9wGfVPOChRz0JlN28FtUMPYR8Jj28iyc9ecQ6POrioD22rzG9LLwSvIdqLztug0W8ecS6vCm8dDsP+SQ9uK+Vuyq82LsHlHk8XngZPNTpPz072ae8Kc6zPPeIsTx11rG7vYsZvBLnET3uvk48TVsuuwkL8LxQwOW7qPf9O1kTNjtAPgu9xMxwvf3thj1O0sC8HgRtvKQb7Dt3xHK7IAS1PBNM5TtSrm48ntqivDP9zTv6dtY7Xe/jOIMFML2Iz+Y8I/KhvDGG8zyOq3i8w2eBPDnrkLq2wZo8gwUwPY80Lr0WTK08yTFUvO++zjxkVAE9/WTDvFSuUr2H8wC9HCgjPd6hYz36/5m74o9QPXmyezy2JuA7+v8nPV0BFb32mow8D+flvDjrnrxy+p+7FdUau6akBTynG5g9ajATvCq8WD2QqyQ8EHAbPGkwhT0DL/q8II0GPXg7zTsuqim9jqt4u+V9vbwHHWc8kxBcPDpiBzw1dES9vwKQPFQ3iLwkV/U8u50QPSu8oD1ZAfc828UZvZIim7vAZ3G8NuvWvCTgRj0PcFO8TNJ4PEIa1bxVnPc6w1Xeu2DdUD3AZ/E73bO+u/E1qbxHCMI8lIdSvCuqYTzLH3k7sdO7vFM3QD0Lgua8HRbIPHrEgj1bEwy8mmNIvP1kJz3eKlG9ZcuFPRFwDb387TA7vgIevJ3IY7w664I8yDHwOzb9Bz3IQxO9KFeTvHnEkL0RXly8TtJAO+pZazyGfIo8pKQ9vXwpVr2lkn68DIKuOhk6DL27nQI8i1iAvJxjLLzQhFy95/SzPLsUsbzbPGQ8Sm3BvCrOibwN+UA9uCYovGge/rwP52W9b4OpvO1HWLvT+5q8OGLNPM4N5rxKbcE8d8TyPI69Dbzo9Ak96+ISPEd/VLxWnD88tq/NutdgNjxslSA8RCwGvPaaqDwsMzO9k5mtPLU4OzxgZpS6lv5IPM2oEr1lueI8++1MPIXznLumG7Q8dl8DO/1kw7vq0OE8PFCeO0EsTL3KMTg8qJIqPa5cYbr2mqi8b/q7vKcJ2bwsMzM9rFx9vB2NWr3zrLu7QbUPO07SXLwzD424iOElvRc6trwyD6m7HRasO9jXLLwuqsU8S21BvPx2HrjgKos82OkHPB0WyLyc2r68+IgxvBk6DD3lj4q8P7VVvbI48zwdFsi8yqjmuyy8BD15xB48fo5xPE7S3Lzq4rw8Oz77Ou5HvLxKbV27AFNMvPA1YbzlfT29vgI6u1YlyTk2dKg8ah7GPGbLBbz4dvK8UMDlu9s8yDsvmGq7f6CUui4hPD3bxZm7OOuePAsLuLxx6GC7b3HqvB8WAr2r98U71ekjvYnhiTsUw3e8L5jOvL95sDx6sl88Bi8YvQFThr0YKFs87jV9uwDKwjthZoa9phtQPVwBv7zjGJS6n1GLu0A+Cz1e78e7T0nvvNuzdr3Tcsk9dl+DvIpYnDzMqC48K0UOvcsfeT121hW7LSH0Oz218TwVTEk8S+TTvJl1lTyqCQW9NHR8vSB7Yz1TN0C9mdp2OyNpUDqGaks8tUoIvM6WU70dFiy9l/7IOhko2zynkio7zh8JvEn2yjzY16y8HY3avHAMiTxFkUu7L5hqvN2zPrykLY87uhRNPA35QDsTXha90vvSPIxGpbuzSha9y6hKvW/6uzxcAT89erLDvZSH0jwA3A89XYoCPJp1o7wxD8W8yzGcvIZqrzwP5+U8/e2wvSdXvbkJC9S8v3lMvHPoRLylkn48mdr2vMDwQjw5UPK5eTvNvFUlyTyKRnm8El6kPIvPrrx6sl88v/DCPK3lzryyOPM7rG68PC+YzjzjGCK8BriFvGa5Kr3BeRQ80YTAvEG1D7mRq6Q8mnWHvNXpv7v92/G8aLkOPdpOFb3LMZw8PD5fPVWuGj0ZsSw9CaYAPerivLyv5bI7J+AOPZKZyTwwIaA837OUOuxH9LvJMdQ7y6iuvOxHdL1y+h+9YN20OywzzzsMC4484RhavJ7aFLx0cQg9GSjbvFclgzyXh4y9KOCAvUK1Dz2xXKm8b/q7vLPTAz0oV4W8El6kvEvk07wvITw5ieGJu94qtTx4O+k8zpZTu17vx7xUwJG8n8jHPAmmADskabQ83bM+PPC+srsnRf47uK8Hu3D6O72gyI+7dNbNPDnZw7wsvAQ8m+wLvRZMETtoMCG8ecQePGJUqzyOq9y8aTAFvdrXAr3PhFw8wvAKPUl/HL2mGzQ8ic9mu4OOAbxouY685QarvH4pArvkBse8tibgO5aHmrvPlje9vAJWPQyCLj2zweA8HwQ1PeT067vdPCw9sNPXPBc6trxHCJg82cVRvBgo27vPlpu7bAxrvT8+Gb1kuf68FkwtvTZi6bx11jG7DoKSvKqAszowmE68sjhzPUGjwryfyCu86msAPSPyobyNRpe9SX8cvO/QDT31Iwg8JfITPNGEJLwhjQY8+YgVvT4+J72Z2nY8Bi8YPNINkjy4Jii9T0lTO795MDw8UDo9cIOpu0j2ZjzWcgO8YVRHvQ75JLu+Arq7aDAhPa/TV73s0MU81em/vIR8Qr25rwe8T0lvPLJKsjpfZj69yzGcvL6LGbuW/ki8HJ+ZvMPeLzuKz8o8ZEJQPITzOLxQwGU9LKrhO1PALbx9KTq9w94vPfOafD28iyc9By8YOym8dD2G8448pwnZPE3kDb3iBv878KzXO8oxOLyI4SU986yRvG/6O7zQlhs9WopIvQLKJrvb14I8CQvwvIF83rxnMNk8jjQuvHZfg7tEo4q8OmKHvHVN/DynpIW9hHxCPYfhXT0S55E6dU38uw0LHL1z6ES6HRZIvKI/orsP52W8CR0vvTP9TTwEuC89gwUwvSZpGL3OllO9LjMJPYjPZr3dPCw9SAgKPcbMuDyTmS09yLrBO6S2CjxJbXk86H0TO154C73Olrc8xcxUvHAMiTwOggS9XO9/vAxwbzzxNUU89KyDvCdXITsDL/q7TtJAPX8XJz1Doxi8ic9KuwMv3jxsg/26Gp/RPPCrMD2ufFc8+tMyvYRZ5bziROK8Gej0vOfVeTx+yE09gn7dPPEJojuFvSm9P9hAvTB3xbxhqGU7RG+rPJzuCDvtcjc7+E+FvEqDLDxpcva8zQAEvQN4Bz0OSS+7f30ZvJ0aGD0g3dA89xH9u+WDrjtauVw98CjHvBNX3bqZLFO9W5RkvVdhvrwS1HM8Z/QbPWyLBjwpYoC9udwOvNgoBj1o+7I86NV5vVhb6zt3Vtu7AO6GPH3zmDzRqm28joHnvFPK0zlvFQe9q5t8vMYLqLzfxoc9FTg4vI2BZ7wZa9687SeDvTrKkrylska9XiqLvB2FsrwM6z08hOIhPVhnkb0Lk5+8nZ0BPcNVmDzjolM9o9FrvBrPIrzrGhm8rB5mPcNJ8ryKpRu8Ng4wvPNb7TylL9084aEPvQDoM7yOBNE8Qo7QvHuPVD3t7029V2G+u+31oLwcLZQ80LBAPBS1zjkVr3u8AGXKvH1wLzwmzNk8x+BcvCG4WDyFt1a8HYUyvUtetLwaz6I8EoIou4F+XbvA8VM7Hvx1vHDwjjzYHGC8z9sLvX7OIL24IXC80IoEvDBx8rpgJfy8d2IBPC92AT39qOc8DGhUPXm6nzzb2MK7tXEzvOsOc7u846U8sbujvB5/3zzlg666wXS9PDyZ9Lt2e9O5hGULvKQ1MDyOhzo8mg0uPFaGNjyQ5Su8QI2MvKcQOLx7lae7S1hhOh+3FDwKjcy8ykQhPSqIPD2X1DS90g4yPR2Fsj3m+nE9bob3u2KPEz0cIe69Pi+bPAzrvbxmvGY8aPuyPETswTrh5vC8Wx2hu8303TySumC8NS1VPdr357z+DKw81O+MvSBa57wM8RA9FbuhvIPczjwoMB69zFELPS5EH70M8RC8YoNtPXSaeL3XIjM6Yo8TPQQhLb0M67286hTGvN25nTsS1HM8y5y/PdPjZjwf13274HWAvLgnQ7sTXTC9udyOO/l1Qb0pYoA97e/NPIjwT7yLSG689blevKcQuLw1CN28YonAvL8WTDzuR+w8uoU0PdCKhL3eEby8AkBSvf8+DrwWE0A8R5x+PIym37u2TDs8J7OHO0E2sjuZMqY6ZUWju8JPRbxMOTw7Bi4XvUvbSjwyWCC8rVYbvVoR+7yP39i8YQZXPRAkt7oOT4K9wXS9vN25nbzb3pW8Z53BPCn//zx303E9/gwsPbxaab1hg+08YolAPAm4Fz2G74s8DG6nvJObOz206HY9Kd8WvUgf6DyeQNS8NTMovVdhvjwAZco8fXYCvRaQ1rzhoY+92thCPXfZRLvWQVg7cGdSPTYOsLt/AAM9Ge5HvdiAJL3syRE9gKNVvBnux7zWR6s74sF4Pfa/sbzHXfO7IN1Qu2n1X7pBPIW7BJ7DO7n8dz2isYI7nF/5PHaBpjzhRGK8jClJu5zuCLubZUw8oQIKPYn2ojuChDC8llFLvJLylTyE1ns7UHI1PCs9iDpQ78s7PXrPPXaBJj1hK089UwIJPdEzKjxuhnc9exI+PSdJ8LyPYkK8T5etvMYLKDo7HF47YQZXvG8JYb0OTwI9Fw1tvEWhDb2vY4U9LbviO+31IL4rXXG7IOOjPIDbCj1ZFgo7s5aru55AVDzXeQ29fks3vdr9urxbmje9ypw/vAsWCbxjZMg8j7kcvIRfuLyEkZo8gCDsPF7TMLyOhzq7tGtgvGY5/byJ9iK8pbJGvEbB9ryo6z89y5y/O0ioJLsjEHe85CW9vERp2L1KAMM8DswYPLeqLLynaFa8U8pTPSenYbyOgec7D3sRPZoH27zD0i49UwKJPacK5bw2DjC8i6ZfvQSewzwdhTI9TJCWO5LyFbwwd8U8C43MO7OWKzs1qus62nT+PLikWb0hO0K8IGC6PAqH+TySEv87drMIvSfSrDsnT0O9c3oPPW+MSr3fjtK8QI2MvKubfDzN9N08Wr8vPQX8NL01sL47J0nwvJRQB72sKow8Voa2vKjxkj2vY4W9Dx7kvERDHLsy1ba9JXqOvFdhPjuzE8K7qkPePKPXvrv/Xnc8Q5QjvEVE4LxGSjM8a9BnPm2xwj2uV988p8UDvWThXjtPFMS8afuyOwk7AT20cTM9G34bPK1WG70F/LS8vDtEPA5Jr7zntRC6yOavPaynIj0SBZK7IOMjPem21Lw44+Q8GcP8PAmyRD0l96Q44W+tvIRZ5bxhrji9XfioOkZQBjz1uV66SQBDPM/bC7tLZIc8FhNAvDwoBD0Vu6G7mgdbPMSttrx335c8NYvGuniOEDxfzV08spYrPAOkFr2hfyA8f32ZPMIpCb0CRiW94sF4PQDoM7zfFw+9cb/wvAEalry2o5U7ZsiMPKWyxrwkdDu9rgUUvdtVWb1DETo9xDAgPAN4hzu846U80gjfvEtY4bzt7008+kp2PUTmbr1ijxM93K13PTPVtjzt9aA8DU8CvE+RWj1aNvM8oVMRPbqLBzth4Jo9hBQEvIF+Xbt2e9O8aXJ2vCs9iLxsCB26iMoTPHQjtTqgnsU8cOToPGhSDT3NLBM96hRGvB5/3zsGVNM8RG+rvKAnArxbmrc8sxPCO1F4iDsXlim9TxoXPVWAYzzXIjO9GslPvDZAEr15tEw9JqadvIoohTyqxsc8gCY/PAxoVDyE1ns7IFrnOY3+fbw1CN08HosFPVInAT0s5q28yrvkO3ztRTvC0q48e5Unvem21DzL85m7i07BPNGwwDyLpl+9TJAWPNmApDs2i8Y8twEHPdtbrLtSpBe9hUATvc/bCz39MSQ92v06PTUtVT0gQZU85vrxu1Fs4jw9es+7EdmCPEgfaLuKpZu89r8xO2bCOTxgJXw8AkDSPM/VuLuwr/08IBUGPauhTzs2CF09RG+rvD10/LsLQhg9vLjavF1v7LuJ6ny9wyT6unOgyzzwq7C72QOOvIW9KT2lNbA7o9FrulH1Hj3tbGQ9HYUyPEtY4bxoUo282XT+u7u3Fr0W7QM9+W9uuo+5HD0Z9Bq91yIzOguHebw442Q9L6IQPYL787tcdT87ITtCPMNPxbxtNKw87kfsPEu1jrylNTA9BX+evFUDTTzizZ49m+LiuuB1gLygmHI9gKPVvPvNXz15Nza9zH0aPJiJAD0gNW884URivEii0TzDSXI802bQvHXYAL24LZa8tkboOy/zl7wWapo8udwOPO0nA70ik2C9pxC4vGRqG7x0I7U7UXiIPAuTn7w9VJO8R5z+vKynIj3jotO8kcCzvKCeRb2dwz28CTWuPG8PtLxJfVm80KptvaPR67vo4R+602bQvJmvvDv94Bw7N0CSO6eTIT08n8e86xoZPZTzWbtzph69J0nwvCzmLTuFt9Y8JXS7O3Ogy7zuR+w8MQCCvbVxszz0Fgw8B9e8vAzrvTruTb+8OOk3PX+pqLw89+W66w5zPP0l/rxyQlq7TxTEPBeWKbyluBm9xDAgPWtNfjzizZ48qswavckYEr2EWeW8652CPBbtg7xsLlm9Q5Sju8QwoLvh7MO8C4d5OxL567zRM6q83hE8vPNb7TxQ70u74KGPO8ucP73a2EK9xLMJPCBmjbuj3ZG88v37vHK/8LtwYf88P1VXvM13x7xMEwA9Hfz1vC+ikLs442Q87SeDPMqcvzxhMaK8Fa97PbZG6LuaB1u8PHpPvKPXvrxfUEe804V1vcrHijtZQpk8SoOsO+P/ALxrTf67+81fu5+kGLwcJ8G8TLwlvHFOAD0BGpY97e/NuwxuJz01Myi8652CuCmIPDxw6ju8QgtnvEteNL2j0Ws8gCa/O3TYALylrPM8/SX+vJqKxLyXS3i9EvlrOuaJgbyaB9u7pbJGvYRZZT2sKoy9fywSvMSzibzo4R89rldfPHaziDxZudy8BCGtPe3vzbzYHOC5SoMsvMQEkbwuwTU9eI4QveLBeDwOTwI9lXZDPNtbLL33lOY7xguovOhYY715MWM9OGZOvbw7RLsBGpY7jKZfPMsZ1rzkH2q9a9wNvcdjxrwjFko9QxG6PD9V17s46bc8OGD7vK7/QLtUpds74MYHu9Et17x+RWS60bBAuqWs8zvl2oi8Ajr/vK/ayDzWvu6604X1vEgfaL3yuBo815l2PZEXjr1hrjg8iXM5PPrNXzwhuFi8wXS9vG2xQryo6788pTuDPPcX0L0vGdS7jCnJvJqQl7wlbmi8Cof5uqpJMbw1LdU7y5w/O8QwIL0VMuU80wjfuoW31julska7Z3eFvNIUBT0/W6o83wvpux+3FD0wUYk8xd8YvU0/j7w9Awy9ZUUjvD6yBL3teIo8XfgoO1x1v7u+8A+8UWxiu44EUT1+wnq88QkiPC8Z1DsWkNY80bBAPXN6DzzfFw+9E+AZvf4G2TzmiQE9LbviO7KWK7wjmbO87MmRO77wjzyAIOy8DGjUvJoHWzyevWq8X0r0POHm8LsZ9Bq97aQZPJ5GJ7wl6/48NLaRvSKTYL2zE8K89x0jOS0YkLza2MI8iqUbvWW85rzI5q+8xo6RvJmvvLwGVNM8TLylPKYKZTpUpdu8TD8PvAkvWz0zWKC82v26PLE4ujvDSfI7xDCgO7E+Db3Yn0m9+E8FvHDkaDyo67+8AkYlPacK5bxGSjO9lXDwuydJ8DpauVw9aKMUu6CkGL3wIvS8hDrAu2tZJLrP1bi87O9NO8lEoTyoaFa7B1omvZ94Cb3x3ZI8ZGqbvL01cbzvTT89C0IYvCtd8Tzvpd080+NmPBU+iz2n5ey82thCPehY4zy19Jy8ZOFePPtQSbx2gSY895TmvOZ9W73oWOO8Pf04OrVr4LyroU+9sbujvEZE4LuWK488mgfbvKcWCz0jmTO9+1DJu+m8Jz1YZxG9F5apvfnyV7sUPos8WpTkO14qCzyPYkK8ata6PMuikr2lNTC9KK00Pa3ZBDyAo1W8/2odvWvQ5zyLrLK8hF+4PIYP9bzzW228DG6nvPcRfbx+ReQ8J0/DPFDJjzwyz+O8vxwfu67gG72hAoq8S9vKvOuR3Dy7Wmk7+W9uvaCeRbqU81k7i9GqvL8cHztNOby7S9vKOwQhLTycZcw7AOizPcOnYzsx9Fu8a4uGvSBBlTwleg49LkQfPTPVNrzizZ48sw3vuqFTET2jWig8E9RzOzH02zw/3hO8345SPck+TrzU74y8oBtcPY4EUTyOCqQ8W5Rku8jmL7yo6z+75omBOyezh7p5NzY86bynvPvTsrzBdD092nT+vO0nAz2YiQA9ma+8vEOUo7sZ7se8LkSfvFhnEbwef188RkozvEvhHb0x9Ns71O+MPYn2Ir15MWO8uoW0vbKQWD1V3RC8XE8DPQm4FzyjWqg7vOMlPTz9uDyZr7w8S9tKu31wrzsnSXC9Wr+vPOP/AL1STb26JfckvXuVp7xvYX86CbJEPKYWCzy5CB69/YnCu4vL1zyD1vs8RGnYvIjKE7z9Jf48olTVvO/K1bujZh49kawzPdXvSryyDBi8TDgGvFxVV7066Xs8avdTPVjKjjwWAsy8BB/FvIgBA72HbOM7KhbpOFx+8zvNUJG8FytovHEnMLwXCkY6TkCAPMl+ZLyswxM8MBUvvG9heroxHak8/tVAvUDHH7zn0lG86+o/PIIj37xkYJQ8XhcQO2JYmr3FZva8UXmQvBJ3A718ZwC9K/XGvNOZFTzTmRU91vdEO4DySL2S/us8YXW/vBLq3bvx7QK9+t70vA+IsbuWN3y9/926vOVTgLrjuuO6z1gLPaE1CDyfKRG8Op+9vDV/1b0m/vq7e7G+vVF9Db1BOvo7Z75DPYkqH7y3eju8SGrWvNjenD0s/UA9cw4IPR5bxLuRg5e92llxPLfEeT2ty428sVLZOxjpI7z87ug7hOmUPPdbJr0D9qg7GOmjPMIMxLyohgY8YEyjOtK2ujwdBY88CGDPvPucML1bLDs9Mm/hvN1IQ7yDVHW8w8IFPKvguLt5oUq7oodAvfI7PrzkRwm7z1wIPQX+ortq1jG9KswqO4DRJj05l0M9YXW/vO8Crrx5Vwy9S6NmPSkObzuECjc9fGcAuemUCj3puSk8/qykPA5flTza7hC9Qs8ZvSi8trz41vo8J93YOohLQbz2Lg08GOmjPHhTD71VLfW8XQ+WunH+E72QpDm8bealvI5OBL1kZJG81aUMvVTbPLzOVI696IyQO5S8JzsNynW8YXU/vMAlbD1hdb88vOThvIK0AbxReRA9o7BcPDmXQ71ljS09NHdbvX25uDwUrBa9EncDPUTbELrZMNU8ZWyLPNUYZz2i0f68RNsQvYIjXz0Qa4y8e/v8u6XhcjzS39a8v6qXOyv1Rr1Jk/I8ZGSRuxYCzDxoxj29WM6Lu3ZoOj1ix/e8PK8xvJ2IejyOToQ8p36MvVKBijyqAVu8GcgBPb2inT1mlSc9LSbdu9SdkrwO0u+8+m+XvCgG9TjWrYa9GMCHPEc5QD1ePC+8mNgSvasJVbzwCqg7UoEKu6NmnrziaCu733nZu0Cegz3puam9UcNOPaenKD3c+ge9eJlQPBgz4rvY3py6zXWwO6KHwLwS6t278AooPVjOi7u2csE8KZ+RO8IMRLwqFmm7hAq3vA1XG72OlEW9kc1VvWJ9uTwyJaO8rMOTvJbtPTvKPKC8JWKEvKn54DzrE9y76+o/Pb8dcj1DIVK9FBt0PFGiLD2m6ey8bL2JPbDbgbxWvhc9MD5LPe0b1rqdPrw89SqQu+vJnby9eQE9XTQ1uqXhcrxH7wE91q0GveR4n7x4mdA8ZWgOvVL0ZD31dM481akJvLExt7x1P568xv8SPXSB4rxSy0i9SnLQPEyCRD3ikUe9cPqWu+oLYju+ppq6iAGDu9TGLjywc/s8U9NCvK7Pijxxce47XV3RvK7Th7zIVcg83y8bPW7unzxfHwq8wQTKvKfIyjx3cLQ83PqHPHBp9LwhlNS8e/t8PLxxBz363vQ8atYxPW7FgzxsuQw9S3rKOznA3zx4Uw+9LEf/vNYg4bys6LI6+Nb6u4kuHLsNVxu96bkpPeqYhzyU5cO8SSCYPW7JAD0AuRu+8js+vC1HfzyQex27JrQ8vPdbJrx82to8zG02vYdDx7yG8Q49M06/O/qUtry9op28giPfvBPy1zwsR387jnOjPOixLz0AB1c9rtOHvE+SOL2mn667b2F6PXnK5rxA6MG8izqTPDQxGj2jsFy8Y4WzvCv1xrzmgJm9++buvPWd6ro3QQ47UvTkPGRgFLzp4kW8y2W8O0E6+jsAB1c8/906PQ+xTT1svYk8bjhevDz577xbAx88C5nfPJc/djsZ8Z08eluJvMIMxDxIata8Z+ffvOw8+LxP3Pa8CiIIu3EnMD1aJME8HjIoPIgBAz0BxRK8VxRNvVjOiz0mtLw7jIzLOQZQ27xRfQ06zG22PHMOCD01f9W7VbqaPIYaq7xhv/083XHfPMoXgTnpA+g8HltEveNwJby+Ffg8++ZuvVTbPD00LR09uII1vKafrjwfhGC87fozPMoXAb2UBua7CT8tPWSuTz5rsZI8UstIPCBjvrxFMcY7NahxvF9EKb3TvrQ8clBMPBSslrtPbRm9S3pKvbWTYz33Noc8jK3tu0t6Sj1u7h+8w+uhPO3VlDyeRra894TCPL7Lubu2KIM8dBIFvNShj7wYxAS9+3cRvUhq1rtXFM08tIvpvGBtxbzuTGw94DcVPXEnML1ThYe8F7gNPDmXw7wQuUe94KpvPPJk2jtY86q8qNDEvOKRR7wjUpC8IWs4u5O0LT0tJl289EuyvIK0gTwxHam6InMyvTmXwzyxe/W8dIFiumW2STwq7cy8U9PCvH7qTrt2Q5s8kHsdPJGDFz1nnSG8/7QePaM9gjv9g4g8RoP+vJDu97uu+Ca9v9MzPfjWej3w5Qg9YZ5bPSv1Rr2OvWE97ytKPQwqgrwaZPi8KLw2PSTNZLxAooA8XAuZvPucsLyIAYM8Q9eTutSdEjw78XU8jIxLPZncj7rPpkY8lZsFvKvgOLw9ihI9ZGQRPdSdkrzjcCW9vezbPBC5RzwgY768VQTZvKFWqrnEFL68t1GfvHzaWrxzWEa83PqHPIkuHD0LJoU8shCVPJrkibygd0w9VCV7OyBCnDyY/bE5RQgqvD7gxzzk4/88IIxaPRa4DT24o9e5BgadPWBMI72HIiW90M/iOqmKgzyGGqs8K6uIvRUjbj3CDMQ8furOPIGsBz12kdY7BgoavawRz7w2XjM9BgqaPDdBDj1Wvpc9LuQYPdjeHL3Buos73EDJvSa0vDwOX5W8JYMmvWnON7wPsc269Z3quwRI4TzQrkC98x4ZPfBU5jyCTHs9GfGdPa3Ljb1LMAy96bkpvTV/Vby97Fu8ryHDvMK+CLweDYm8cScwPdTGrjqECrc8n5B0PMuO2DxfHwo9PNDTPG9A2DyvIUO8tZPjPGGeW7xoxr28v6qXvMZFVLsT8lc9RzlAvavguLvJfmS82g8zPZjUFT2zFJI8oHdMPEmT8rns8jk8eHguu1OJBDuohga9eE+SPIkqH70GL7k4Qvi1Pb0Nfrxhntu7AxdLPb3s27yty409hhqrur+uFDx0qv47oKBoPN6ae7yRzdU8yjwgvUVS6Lq2m928pp+uPSbV3rsPiLG8P5oGPcVmdrt70mA7Y4UzvcoXgTuKfNc7otF+vWAnhLyJUzs9izqTPOTCXbwSwUE9TmkcveTCXbvxEiK8fgvxPKoB2zyXP3Y8RN+NvAg3M70Q2mm7cUjSu/Htgr1ljS29h/mIu9CFpDylwFA9rs+KPJUO4Lv2Lg27MiWjvNkwVbvmgBk9avdTPO8Crj24zPM8/c1GPAZQW73eJ6E8gKgKvW9hejyEM9M5cgYOvSNWDT3s8rm88VzgPDAVrzqkuFY9SSQVvWwHSDzc9gq9sVLZvGjGPbwLmV88beYlu7fE+TygoOi6sAChu3IGDjzkwt08MkZFvYIjX7zn0tG8LdwePazosr1Yzou8mzZCPM6eTL0KHgs9LUd/PA2AN73+1UC9zLd0vJQG5jvlobu61c6ovBFvibwIYE88/H+LvCTN5DzOx+g6UJoyvQXZA72Y/TE6PwlkPI+cvzk+AWq79zqEPKB3zDtnnaG7cPqWPFxVV7qxCBu9M04/vBe8Cr1fRKm8VgzTu2JYGr31dM68kfZxPSFrOL2jsFw7p6covZbtPbp/ySy61MYuPGaVpzzmgJk84KrvvDMEATsiThO9niGXvJ0dmrxC+DW7ljd8PK9K3zsgGQC9jIzLu2jGPb0W2S+85aG7vGSuTz0pnxG9ZpUnO//+XL2UBua8Nj0RvXJ5aDw7pze8gBtlPJOTC7194lS7urNLvfFcYD04RYu88AooPcPrITw5wF+9QBHeOu3RFz1FCKo8k91JPIVcb7y1SaW891umPMoXAb1Os1q8wdstuzrIWb0B5rQ8Ch4LPRnxHbyPnD89vsu5vO8ryrs2XrO6mNiSPFc17zycFSC9GfEdPfeEQrxyUMw7BB/FPNo4Tzy9w7+8zp7MvLqKLzuZJk488RIiPFssu7wo5dI88OWIu0+SOL0t3B69/h9/uxQb9Dzv4Yu6JmaBPOixLz3m63k8qY6APF9EKb2jZp683f6EPNCuQD1/yay9nWdYPLvc57x1FgK7PNBTvEL4tTyJLhy9UX2NPHuIorul4XK8VCX7uxjEBDwa9Ro9Oul7vZjUlTw/CeQ8EqAfvcX3mLunyEo9w+uhu6fISjvYKNu8AAdXPIDRJr26s0u8UHUTvGNcl7yuGUm9vJqjvLVJJTzdSEM8DCqCvRjEBDz3Noc9E8k7PWErAT2MY68891umvKiGhjyiOYU8i4RRPZSXiDuRh5S8/c1GPK4ZyTs1f9U7Hzqiu8IMRL0XCsa6sTG3vHwDd7ygd0w89CaTPWedIT1jz3G8KAb1PAhgT73//ty86sGjPMtEGj0x9Iy9vcM/PJ5GNr13cDS8NTWXvCnEsLw5wN+8VCV7PVT8XjwKR6c76pwEvdoPM7xMOAY8Ch4LPasJ1Ty3vH+9v6oXPYQKt7syRsU8ljf8vPm12LwGBp27ReeHvK4ZybwVI+47Qvg1vCrtzLyOlEW8A80MPe8rSrtdD5a8S3pKvYh03byVDuC8TWGivUXjijxtMOQ8MBUvvFB1E7z6bxe9QwAwvCnEMDxMWai6Bd2AvDhuJ72LOpM9Yn05PWd4Aj10YEA9FSPuvA3KdTxFUui682zUvKExCz2fTrC8kayzvGG//bsmtLy8aBD8PEhqVrzIB42782zUPPel5DyHbGO86xPcvHZDGzvAJew8Li5XvN9YN70TyTu8UvRkPJouSL2Na6m8beYlPXtjA7vQYIU8hvGOvPJkWjwEH0W9cB+2vPzuaDsZXH48zG22vKoB27y4WZm7GOkjPevqv7on3dg8/YOIu4U7zbyOlEW9ktXPu8ldwrwBwRU9F+EpvXv7fD32fEi96ZSKvND4fr3ggVO90Pj+vIDyyLyPUgG9PY4PvWBMI73KFwG7PgFqvNMI8ztRw847r9cEPHEnMLtXFE09jkoHvWZwiLsb/RQ9d0uVO/DliDu0HAw8BdmDPfqUNrwuLtc8LQU7PAtwwzxZ0oi8NHfbOzY9kT0kpEi9OEkIvHQ3JD2G9Qu99JXwvIkqnzrhO5K7PdhNvVB1Ez1zCos8CBIUPWXX67o8+e87oHdMPcZF1LyPxVs88emFPKKoYrsTE/q8K/XGvFlF4zraD7O731i3O09tmbyMYy+9/qwkvUpRrjs5wF+7zn2qO4kunDl3S5W8YJZhvfzuaDzGJDI8iqVzPJgeVDzrE9y8f6QNPbMYDzzX/z47ATBzvRLBwTv75m68IGM+PeV8HL2xMTe8eqnEvA2AN7xXNe86vJoju5c/9rwF3QA9LP3APAYKmjvisuk8yAcNPSqjjjw8r7E8euIFPc5ZjjzeyB29Y3lXvTpBuryQIk29L0MDPeyaaT3fIYg8USUTOvC5Jb0yu1C9FR6uO5UVHrz6yHw8mPrSvJqvBL2PM+06P0UrvGtR3TyLDTy9CEK3PKTxlDzL1xU8Elu5PLcjGb0Grx488PohvexITTuUifq81UI0PHGn6rv2FoG9dBhDvHR0Cr1CKuC6xyXBumMWm7y/PJu8jdONPKYXRjyFZRK9MK0NPW1APTyhwbg7GyIfvdjELLx29gI873gpvcVRLL3mRFw848yOvApJBT1jivc7W6HRvPeRK7w3baW95V8nvd2Hob2k8RS9iTmnu97InTzJpzm9c9fGvKygjLyotIk95HDHPKUyET3/abG70JqKvWHmvjyqPfc8SMFpu48iTTwtt1+8BmR3uuRfpzx23hS9aLABPOCcsjz7E6S8G3Q7PQavHjyq2rq6T2KevPC5JbxmTWy9BAQYPXW1Br3cPHo7GfLCvEabuLzdhyG8Ri7Ru+7KxbxCGcC7nsQVvIl6IzxIb028dBhDvYbITjz+1hg9sg4IPTEoOL3mRNy8YaVCvV9TpjwtCfw761ntO/Ke2rvaqeE8qLQJPc0Ykj3g/+47gzW2vDHuCb0Pn5I7gaIdPLNPBLxhSfu75F8nOwhT1zzG06Q4E0BuO6bFqTwPPH28dQcjvMlVnbz7CXm68Pqhux+8Bb1ftuI72/SIvbJgJLu8J4q8PwSvvC6mPztfUyY9bAYPPADvhrzlNpk7swRdPUNaPD3qtTS9dbz7PHiJG73n4Z88vbqivP3nuDxDa1w7+JGrPIoeXDvD/w89YjhbvLs4Kr3M15U9lsOBvMaSKDstVKM7orCYvIpRFbuf4/i8uvctPVyQMbuzBF08gLO9vA88/buCoh09R6KGvDXrrLxiONs8VxGWu0njgr1i1R48a62ku3uvzDyV7I895rgRPekiHLxhlCK9q37zvPy3XLxd0S08+JGrvWBkRj2l5+k84x6rvE60urvS0Vu8jLF0PPLf1jklO6G8AVkRO/xK9TxeEio9g+MZvVPa6zxIwem7dQcjvaaErTztiUk86SKcOoGzPTyq69q8tEVZPMs60jx1Wb+63Nk9O0tDYjyIOae8m73HPFwVB7x8AWm9qLSJvYNGVr2P0LA8ykvyO3/EXb0Oh6Q7xoh9O6HSWLwvSvg8oW8cPOD/bj3oIpw9nj/AvLY0OT0y7gk8Fl8qvQjwmjz1YU88vgy/PGZN7Dxojmi8JiBWPc68yryjAjU8dMYmPdzZvbzL+VW8SV6tOx5IUL0/l8e8HqQXPU+jGr2rGzc97nipPEufKbwvbBG9SeMCvTCLdDyd/sO8jV9YvegzvDwRWzk9Fw2OvKFGjjvy39Y7TXM+PDHM8Lwr0io81a8bPPumPL2D45k8jU44OjgRXr23I5m8WB/ZO5bDAbzXgzA9NY9lvMeqlrxMzwU89f6Su/960Twupr+6VzokvaMCNbuXqDY9+cGHPDzDMj2syRo9MDnYPE4Xdzy6Scq8E+5RvP7WGL06nYG8JTuhvJxrq7sKSQW8V95cveBbNj2hwbi6r+9LvVIlkz0cdDs81scJvv2VnLzQ7CY8Djz9uhWB6rqjArW7Kj8SPd12Ab2syZo8NyL+PF4jyjsZ8sK8FsLmvJa51rwlO6E8SU2NuQ6HJDzcRiU97dtlPcDgU7yRUqm8KKLOvJysJz1ftuK7fF0wvPumvDzddgE9fveWvDZ+Rb3ohdi8LBOnvaSmbb188Eg78p5auzK7UDzP/ca7zK6HvDpBOjwfvIW8rMkaPfLf1jx5oQk9yAOBvCPphDw7Bwy9G9CCvAnmbzxSJRM82Whlu03F2rwUYoc82lfFvOljGLyyw+C7FcwRvQgIiTsoULI8KNWHPF3RrTy1hlU9wX0XvaBvHL0CT2Y91a8bvIqSkTu8y0K9FC/OO6KHCj05Ulo8KGFSvO03rbqSY8m8bO4gPdCaCj3n4Z+8OzCaPPRyb70DT+a83JhBPBZfqr3JVZ08MnrUPEnjgrvJAwE7PRVPvMNizDq3+gq8ny4gvGkrLD06Ulo+oG8cPW/CtTpD3xG98LklPWq+RL3veCm9S5V+O/UPM7xuLx27mTtPvScPNr2M/Js9BH9CPIXIzrvUZPQ8xoj9uDiuobsTShk8wiHQvHg+9LsrJMe7ZBYbvLl8A72f4/i8yGY9vfy3XL02RJe7qEciPe2JybwGhpC8jzNtPP9psTw7B4y8PMMyvTcbCT0PhyS6PHEWvQpJBTzaqWG8vMvCvL77nrzs5RC88BxivK0KlztXUpI8w7Tou4iLQ7xaT7W7v/HzvMgDgb0Ix4w8B6XzvAM+xjs+Vks8SMHpvMyuB72Rv5C8S5+pO1gphLuoRyI9pJXNu2UMcD37Cfm8EBq9PHjbN70rgA49dMamvT+o5zzcRiU9VZ1gO7h8gz2087y8ze+DPczoNT0kOyE7SF4tvL88mz081NK8gTiTvGMnO7wMqeS7qEeiPGeYk7x9jYw8kqRFvGeO6DzX1cw86CIcPROcNbsICIm81K8bPdqzjD3SHAO9qtq6vPSUCD0ORig8ra5PvHpu0Luyw2A8wBONvBBs2Tsx7gm9jU44vC+VnzwiC0U9h30AvTzU0jyv78u7/fhYPagelDxjJzs8PMMyPBdfKjzR4vs8T1jzPDqTVj350ic9ft+ousXkxD0wi3S9riKFvEHYQzxvFFI9HyaQPEufKb2E2e48S+AlPDzUUj3tiUk8ZamzvOuklLxZYFW8YWuUPbLDYDwheKw8Q1q8PT8ErzzUZPS8fjHFOh5ZcL1XeyA8HGMbvN7IHb3vuaW8GHeYPNIcA731IFO81aXwvOagIz1kVxc9Wk+1PCbOuT2e7SO9T1jzPBcNDr1DCKC831u2O2QWG7yfgLw5tEVZueFAazwjTEG7RWEKPSvSqrvn4Z883JhBPSV8HT03v8E8I6/9OjpBujzo13S8kb8QvP6L8bsPfXm9S58pPQTbib3Vrxs8JCoBvDzUUj1ErNg8Yor3PPbVhDyAsz076SIcPCtXADvvHOI7GLHGvFlx9TvJuFm9eImbvHVZvz0T7lG8m71Hu7/SkD3TI3i8lIl6PU0QgrzK+dU83YchPXW1Bjs1LCm8P5fHPFuQMb1Mt5e8gVd2ux+JTD2LzD88gphyO788mzymKOY8w/+PvJj6UrwRtwC7+XZgPH7fKL3Gkig82CdpPcLPszwwKLi8XX8RPcK+E71hlKI8pwYmOwYBuzuJKAc9+wl5O0/1tryHSke9Yyc7vcaSqLvYxCy9bUC9vC5skTxnbwU9M2k0PU+jmjq0T4Q8zzCAuwuKAb0C7Kk8TM+FPTINbbzHd109qtq6PDOqsDzSLSO9WQ45Pd8JmrwUL8488RIQPEaKGL0v57s8mPrSvCILRbyoaWK70n+/PC+VH73t22U8+mXAvJ8uIL3nuJG8sGMBPYUa67wY8sK7l8r2vJDQMDxYeyA9HryFug/IIL2oWMK8NSwpO98JmjwUL869o1RRPD+oZzqMTri8KjXnPNEtI7qb8IC9/q0KvT+XR7vJCvY77TctPM0YkrxwAzK8coUqPNqp4TyfLiA90P3GvI5+lLwl39m8btPVuTZ+xTwzqrA7cFVOvGoQYTy1NDm7nFqLvIY8BD0xKLi7FYHqvN5s1ronDza96/YwPIUaazthSfs7jE44vahHIj34Pw+9SB2xOnzwyLuDuou58Uy+u18I/zwb0AI9UYjPOjO70Lw9Z+s7lrnWuzDnO7y1kIC8WXH1uuRwxzwHr565+ONHvNMj+Lv4kau8dgejvJ/to7w6xg89txnuvBNA7rptLx29GVV/PA48fb0ZMz+7tYbVu39yQbtoK6y8TcXaOYl6I7uZbog9f4PhvBKcNT2f7aM83EYlvZIAjTwJMRc90P3GPMpLcjuKL/y731u2vCskRzzdnw+9c9dGvFm8HDw+8469E+7RPFbohzyxDog7EGzZPOGcMr1jede8UAbXuxXMET3Sfz88v6mCvEZhij0lzrm8esqXuyV8nTueP8A7gLO9vDzU0rzBMvC7jLH0uukY8bti1Z68b2buOx2kl7rsSE29/fhYvWRXlzsahds8YjhbvVkOOT164oU9BwE7PeaxQzwVHi69yiwPvQYBuzytXDM9S5+pvdqp4TuYqLa8WWDVO8jJebw7MBo8aSssvUuVfjxXOiQ8uMfRvBEJnTxB2EO8OIWTPLg7B70iC8W7f84IPf96Ubw/qGc83mxWPRXdMTwFI/u8lXhavWPtDLxF7VS9yRQhvWychLzjowC8riIFvXHykby+Tbs83uCLPBK+db3VpfA7esBsPVm8HD2D4xk9ny4gPL6wdzwuAoe72EkCPTSqMD0Zlns8RUkcu5npsjzYJ2k808A7PC6mP7xYzTy99mFPO0PfEbwzaTS8026fPLdklT3UATg9aq2kvMgDAT2TQQm9tPO8vIl6I7o4Y3o9WQ45vUeA7TsIU1e9yvnVvO5nibzdK1o7FC/OvD8ELz2BBVq7qEcivHW8+7z0cm88qxs3vBPu0TwmcvI8a60kvWGlwjzMe0677DctPVcw+bxoPMy7D4ckOoy7n7yLaYO8UHoMvSQ7IbtyhSq8/UOAPBvG1zxP9ba87DctvX4xRb2I54q7vIrGvFWdYL2/qYI8smAkOy1247x42ze6PwQvvXXGJryAD4U7g+OZvJARrbzeyB29iJxjPVeMQDyOj7Q8UbuIPetZbbycWos8Q1q8ug6YxLzpdDg7mq8EvekY8byIi0M8Aj7GvJ+RXDwxKDi7X1OmvHXGJjqC9Dk9LROnO4KY8rsUowM8imkDPQwWzLwYsca8MnrUvNYxFD3wuaW9kqRFvGpsKD0nDzY8HbW3PB+8hbyyYCQ8VQpIvcs6Ur0Z8sI8hDW2uyo1ZzxgKhi9vW97u08GVz2H+Ko8024fPS6mP7xDtoO88zFzvSn+lbuv78u8hNluPcttC73nlng9QmvcvLTiHL1ZvBy9nj9Avbo4qrwl31m9n4C8vJoqL711WT+9oAWSPIiLw7r8SnU7uUnKu045ED0f5ZM8iSiHPao2Ar020GG8zRiSPJo7Tzu69608Rx0xPSTphD2xDoi5H+WTPHkcNDwuVCM9f9V9vKXn6bzTElg9XnXmvBzGVzw4riE9gvS5u/LfVrxDGcA8VFxkPAZuIr2+TTs9OG0lPI/QMD3vbn684oFnvOoHUT3aV0W7CPAaPbRFWTzGiH28TrQ6vE/1trz8lRw8Yye7vM5qLrsB/Um8pQmDvP9pMb2cGQ+783wavEfLlLw9cRa89z+PvLbYcb1z18a8lNShPENrXDzUAbg8uaWRvDRO6TyoHpQ8ZvtPuzHMcL10KWO7phdGO2LmPj075XK9egsUvV9kxrwBMIM8hglLORKtVbz/zO07AA7qPJmXFj2XC3M7QV2ZPJYVHj0syP87b2buvN6MJz1m1888S+BZvddiNbzQ0R08iP41vSpMULsthAM9R8JjPSUu2rzDafq8nn+LvaiMwTyQm8m6uFPHPCfTMD3iC8U8EmHWvJxtkbwO3Lq8glPhOoJNY7yBc5w8ZURzvCfNMjzkF0G7RuIePXWeVbzYSHg9JVSTO5DHgDwRfhK9K3WIvXhDLL1QhTA9I7s4PWT9CD1ScXG93IapvCNLFj0dKiE9j7iFveUdvzxR+NE7UYuuu90WBzx64gS9QtAkvbEpVbzV6RW92GgzPD9XBb0Yf0w9SFu+vJa5v7xD1iI88mWnvd75yrwIUaG9ahUBvTeUOLxxEzw8odVwPFMthr1Mc7a8rrA1Pd0fBDxo6Uk9ZT71vGcJBbw/vqq8lrk/Pft1XL2PwYK8fcjHOhT6sDwbHiU9PIz1vNZct7xfs9s8y0kDvQTJBj0S7rS878ZOu4wWLjxpXOs8slINu4LgPzw2IRe9bI4gvQ5J3rsxAyE9AY7UOpDEgbzEb/i4hogVvWLrDr32V2Y9aXwmPN0fBLy90mS8BdWCvTf73Tz+gdi8J9Owu7lTR72Wub88y7mlvM2/ozwy6eO85LCbPKSaAj0zfMA871OtPBT6MDwhHGC8xG/4u0XiHruUrUM88/4BPPpp4Dz0dyG95KodPdZct7uuivy7wBCWvUI9SDy0W4q7ae/HO6BiT7xSl6q7LfEmvXjNC71fuVk6UGV1vP4aMzzdHAW8VH1tPWM4dz3W8pK9G/hrPYnkeD0MPWI9NPXfOosWLj10Bfu9N/vdPN75yrySocc8vWs/PYN5mryeeQ28yRpNvcOJNT2ijga9OjORPXKM27z6aeC7X7NbvcogyzwGssi6qyuau/HyBbv8e9q8a4giPXeqUb1i6I+7T193PZa5P70DmlC8oIUJOp55jbwBvQq7eiNxvRoYp7y9az+7mdG3PfmSmDw2jro8UgROvNRWubvdFoe8WijCPP4aM70lVxI9AZTSPAdFJb1+YaK8tkfLO1gixDyct/q8WLUgvdXJWjxxphg9xgjTPBT6ML2VJuO5t7psvX/UQ7weMB88ZdfPu5xwELwwcEQ8uMDqO0ptODy4cwI9EFXavL4Hmbza51A7jygovekPfrya1zW9OZo2vclABjwG0oO8m2eTPbNYCz3KIEu99HGjO3zCybx73wW7SvqWPFKXqjuzwi89PkuJPQoxZr20qPI6nEpXPVWjpjyZXha6R8LjvE5/Mj3uTS891vURvd1g8DyI/jW9QmMBvHQFe7rGdfY8913kvKYTorz0caO86cUUPeSqHTwo2a45Jcc0PR82HT19VaY8IrU6vT6Ycb1drd08nnaOO4N/GL12pFM8ofupPX9BZ7yYW5c88T9uvBl/zLx5HfO8odVwPF+5WT1yGbq7e08oPVH+z7wKV5+712K1umoYAD0aq4M8THO2POKeIbscl0Q6C8rAvCc61rkJvkS8D3gUPIoQsLwT9DI9fFWmPf6B2Dyzwq89aoKku0/sVbnJQIY680VsO1i1oL2GjpO9chk6vHETPLx/Qec84xdBvA1mmryhiwc91MNcvNnb1LzmIz09E4ePvA5vF77+FDW9HCQjPMmHcDxQGA08e+IEPNdiNTzy+AO9t9qnu1OdqLxaKMK81mK1vEbinrxmBgY8VqkkPRPOebsHSyO7lkwcPVQwhbzfJQI7IrU6vJC+g7wEE/A8UBsMuvHMTLyxlvg75IpivHsj8TwDmtC8FpYKvRZtUr1hUrS8KUzQO4umCzxeIH853IapPAG6C7y78p88ZUTzPFMKTLx1wY89slKNPUS257x0JTY6dLsRvXUxMj2xTw49feiCPGv7Q73Nv6M8v97gvI8Cb7y78p+8cYZdPW2UHr0rUk48lSZjPGXXzztTLQa9JE4VPc1SAD2G0v65LOsou7FSDbxKABU8oWLPvAU5qTw2IRc77EEzPdhoM71zklm8BM8EPSzrqDr38EA8KLN1vBHotj3CHJK8ueajvCJLFrwBAXa9Eeg2vcabL7w/nm88f87FPBu0AL3f/8g8SFs+PM6faLyXWJg8OhNWPmVqLDxAxKg77y30vFQwhTwRfhK9MuPlPN8lAj0RfhK9TXm0vG96Yb2Sp8W8REnEuzoTVruQLqY8vWu/PD5LCT20onS8iqaLPOk1t7yYy7k8+mngPKYTojubq/679lFovaH7KTwObBi9RLbnPGPujbw5Ddi8Zt3NPO7mCbzGdfa78mWnuj9Uhjy3cAM912I1PKYTIr0+UYc9Aw1yvaLb7jxPX/c5XiD/vEwMEb1Q8lM8A8aHvK9Ak7yYON28VhxGPRkYJ7sr66i81OmVOhmlhTuDdhu9eyPxPDYklrxofKa8rT2UvNp6Lb2zNdE8E/QyvDUhl7vKrak8bAFCO3eqUb0qUs47qwvfPB0K5rwCAXY8ZmosPWr1xTy5U0c96hX8vC1YzDzQPsE85bYZPQEhMT3ZTvY8NicVvecvuTpi8Qy9mte1vJQg5bwPT1y62W6xPBfm8TtSJwg8djEyu7NbCryVT5s9GKIGve9TrTwmXZA8oGJPvGIyeTxxGbo8VhzGvElnuru34CW9q5g9Pb/e4Dx96AK87dqNPBwkI73dYHA9etkHvX1VpjwX5nG7o25LvHETPLw09V+96TU3u4DUw7zvM/K8XMcaPFKRrDxYtSC9gEdlup5W07wasQE9FZkJu3fKjDyb17U7tKjyu0lhPD0QeBS9N5Q4O2gJhbxtmpw7Sm24PK8j17vMJsm8mj5bvO3aDT32V+Y8QmCCOwTJhj1R+FG8yT0HPI+VS7vgkiW90Uq9uy3Fb7zIOgi90debOXnWiDwlVJO8kjqiO8iBcrx9WyQ9jIlPvK+2s7zGCNM8UGX1vBBVWjxxrJY8nLF8vHrZB7xR/s+8xZWxPCO7uDyLFi49ZfqJvBl/zDyfXNE72P4Ou+uuVj1I8Zk9JjRYPZQg5bzCY3y8RU9CvYf4N735jxk9PlGHPMg6CD14F3W8s8gtvHrfBb3Oyx89xI+zPCfNMjv5/Ly8lSZjPf2hkzvLJkk9TE19PEI9yLxiWDI9cIDfvOAogTt6ts09i6aLvQQzq7wOSV49oFxRvbNbij2WTBw9a2hnPOaW3rwUZ9Q8vdLkPCMo3Ds+knM9qiUcvZg4Xbx/O2m9VDMEvQkraLuVJmM7073eupa/Pb3bCgu9eBd1vDF2wrxIzl+81zx8PWJesDt96IK8/hQ1vRz+aTymEyK9PbisPMuTbLxTd2+907dgPQjbgDuddg69Q2YAvTkNWLxg35K77eMKPOMXwTwku7i7JaH7O3MlNj3Lk+y7xALVPAG9CrtCYAK98thIO+Swm7zPOEM9I5V/O35hIjsFz4Q7KkxQvTkN2LxTBE49R+gcPGT3ijuJl5C4DMpAPQ3QvrpboWE82udQO+kPfrwW4PO7y43uPNVcN7pVoya9LcVvvC2EAz2a17U8JloRvYujjL0jS5a8cRO8PEW2Z7yvQ5K8n++tvJhVmbtKbbi8oYiIOw5DYL1K95c79VFou2As+7sn0zC8kAhtu2964byvI9c7nb34O0Gk7TzlkGA6feuBPMy5JTuAR+U8fLxLvH9nIL05mjY8fegCvZKnxTtZlWU9wfBaPLlZRTyfXFE8B9gBPZrRtzyew3a8QqprO11AurxAN8q8YusOvQ7WPLxguVm87bpSPOgvOTym52q89urCvGXXz7vy2Mi8MQmfuzmaNju5WUU8spb4vEwDFD0bi0i8SWE8PGpiabzaei29JaF7vOqoWL0KxEI8nlBVvSNIlzvGoS09cKMZu8cxC71R/k+8bJQeu0ZVwLx30Ao8cRO8u6MBKLzy2Mi8ueYjvKooG71LA5Q9HCSjvAAhMbwXnIi9EOK4PXg9LrwY7G89aHYoPQ1jm7yMFq48JVeSvE8VDrzqFfw82P4OPSROlby1rnC6MN3nvF1AOr36Ars7o+FsOyTBtjweo0A9NIK+O+0h+Lx6SSq93vlKvZRAIDxVNgM94ZijPDsZ1Dli6448dQv5vGv7Q73jF8E8uewhPAXMhbtZux48Vz8APdRWubtbNL684SsAvWYGBjzJPYe8bnRjvddC+rxnBgY9tMgtPYdrWb3BE5W8vf6bPGDfEjxiWDK769QPvVgiRLzJGs283BOIPFmV5b0AjtQ7BDOrvHQltrww/SI7fMLJPOF4aLzCGRM7dsQOvfd9H71ODxA90t2ZvF+52TrxX6m7xzGLO5cy37uPAm+83BCJPLhTRzxXIsS5vPidvDHjZbx74oS8lUaePAcf7LxgTLa7bW7lvK4X27wZrgK8jwLvu+0h+DyOKKg7CFEhPfBZKz0IS6M8IBZiPRFVWjv4g5285bMaPLCQ+jzz/gE9NPVfOAEhMTtam+O86s6RPHCA37wMykC93ownvXu2zbt9VSa87NeOvBLutLwDoM47kMeAO0xN/TvKIEs8HSohvT2yLr1Q8tO8BkUlvBmFSr0/vqo8aoKkvIR8Gb1BN0q7jrIHPBefh7zinqE8n38LPbRhiL39FDW8PSVQPa6KfDt3yoy7jY/NvGrvRzzGDlG77+aJu0HQJLy0yK28wV1+vGJYsjwb+Ou8fTVrPd8lAr0WBq28jIPRvDYhFzyqmL27fegCuj1ICr3Ad7u8k0AgvaMHJj0aq4O83BMIPBkSKT0Qwv08QmACvPpv3rwmp3m82w2KvAw35LscJCM8OxlUvNDRHTwmOlY9LVhMPAEBdj30AQG9A8OIOwK9Cj17I/G8+WNiPLdNSb3t2o27bI4gvMqtKb11wQ+8aVxrOx0K5rxyjNu8mFuXvJ29eLwZhco8jKwJvIJznD20W4o7G7SAuzxCDD1BXQO77bpSvWTRUbzKQ4U8yiBLuzw/jbv0S+q7QdCkPPNFbL0OaRm8VqmkPGd2qLvJFM87qgXhvCfTsDx8L228jINRPCzFbzvXz1i7Wi7AuxHCfbyXUhq69eTEPP+HVj1PX3e9iQQ0PXO1E72OlUu9qPlkvE7mV7thxVU8OaA0vMg6iLr7ddw8ZD71u8GDtzyTFGk7zssfPQQTcLzov5Y8mtG3POy01DxSkay7S/0Vvbh2gT02IRc9qpI/PaoF4TqbapI8ekmqPCVUkztwgN88RLbnPJI0pLsU1Pc7VTmCPZvXNTtq9UW8UR4LPcEQlrv38EC8ZwOHvPBZK7ypjEE7j7sEPS+KATwlNFg5dZ5VvJ9/i7yUIGU9ueyhvaR0ST2JlxC6iZqPO4b4t7xiWDK9Tn+yPI+7hLyvtrO8xJWxu0RJxDuB2kG8eM0LPVapJL0btAC96C85vZSzQT0a8m28HCQjPQ3Qvrw8H9I8HzYdPTD9IrxZu548zLklPTIPHbxiXjC9aoIkPImdDjxHyOG7OTYQvX0167ztIfg8iAQ0O5xwELvza6U8jY9NvNhoszx2ygw8xI+zu5/przuikQU9UYuuPNyGKTsUc+M8yJX6PMHDTL3PlFc8bvfNu3KFML2S0hC94Ll0PWOXPT2+RTG8hQEGvY4aJb2bSYo8VdPTuxxi+TxfFvw89ny7PM0wfrwCyQi9TwEmvKsDLLwEW2c6rUf3O3cgtDv2fLu877euu1phtjxzv4C8i8aSPVlEzjyKtks8bz6/vJTfsb0FlTe9rCAUPUS71zxEyx47kphAvf6V2rx09io9wxoFPBfH9bzouNE8wabkvMP9nDtKY3w8RK42vRj0JL38Tmk8YGATvcmyYjyKnAm976oNPWzAI72xni+9AO2Su2JttL1zr7m77Ea0vYc4ML32psS8Q6GVO+tGtDj7NCe9SA/qvDhBhTxR+oM834/rPLeNxbwY5wO8r2RfvLT/Yj0cF4y9FaASOz2iuLpWlQc92MpePC/ezrzGe7i8wLarPCwvCL3QlNc887CMuwoT0zyUFlw8Q6EVPYl/ITxAEzO8LrTFvHKSUbvd/Yy8c59yO5Gl4TsmtWi80ujpuxfk3bxvPj+9q9kiPQNOxrvGbhe6BZW3vIBGdL2JjEI7q4sPvfoH+LwDMd68aVxKvMGm5Lw2wEM7zyyCvAxqizz4SxA9weC0POjlgDyjyn68cWjIvA2u1ruBJZC7aEKIPIElELy6eQI8AzHeuZUZgj0Foti8qZ/SvIXxPr1rlpo7v3xbOx2PKL21Vhu9m3OTPOQ6Nr2tLTW9OdYJPCI3zbyL8Bs8QT28Or5/gT0woAI9a5aavYvDbD32IYc9vDiQPWBd7Ts8vyA9Pbx6vXS8Wj1KVlu9q9mivGbrzzzHe7i78D+SuyyX3byAZoI9HalqvPa2iz3DGgW9jzRnvMilQb0woII7QwyRvI6iiDxSjwg8u/GevG+5gTwrfRu95zMUvU1fgD2MWxe9ERIwvchKDT2DxzW8G0i3u9aGE71R+oO8msGmu+6NpT3+ssI8qHXJPIPUVjzJwik84LwavdP4sDwB6uy8m8EmPZQWXDxjh/a8Rsj4vNnnxjov3s47UXIgvRtIN71JWQE8fPWHPfntNT1BTYO9KSkJPAD6M72fTOM76OLauqrJW7zNTeY6rPPkuhM8Obywjui7oA6XPH4PyrwutEW8g7fuOhDbBb189Ye7eXRGvR2PKL0EW+c8HqnqvHz1hz2LW5c8m96OvW+cmbxW8Du7n+QNPAIH1TzVTEM87X1ePSwviD17YAO9C0r9OwDtEj0Fotg84OajPGXRjbzHIAQ9aqM7PVE4UL2XQOU8X0OrvKHAA73FUa88XFqUPBJMAL0cckC8ygmbvNP4MD1t6qw89EWRvEZTgj2t0gA91Tx8PK1KHb0g8Fu9lkOLPcwzJDshGuW8Un/BPMQnpj05Tqa84gBmPJ5cqruQXvC8OKyAO3uuljygdmw9wuC0u3NUBT1yDZQ858VyPLU5s7xrsNw8j0QuPC7EDDuJjMI887AMvLkyEbyYAhm7p1jhPEN05jsOvp28vTVqPCyKvD1tcpA88f6fPRN2ibu/bzq8WgaCuAhkjLr5dZm9J9JQvRWDqrzzNUq8F/QkPC/7Nry3CAi8cXgPPVcNJDtqozu94dmCPEk8Gbui6gy+5YEnvdnK3jznM5Q8NbOiOoBG9DwtmoO82vRnvaGTVDwcFwy9iG9avOKYEL2PRC68NcBDPG8u+Dqxu5e8V5UHvPRvGj1WAIO8X6GFu8VB6DuGDqe8nlyqPGlp67y1ObO8HbkxuipDyzzqegU9yxa8vFzFj7xrvX29HRcMuzyVFzrWdsy6HGL5u0gfMT3/v+O81huYOya16Dw39225VeOaPSWLXz3tgAS9rCAUPRkBRr1CZ0W7jidGPZZQLD2D1Fa9suWgPHFoyLt3PZy8rR3uvPntNT1oXEq9OBRWPIvTszxbi788Eklau1XGMjyL8Bs8PUeEvNV2zDw36sy8HalqvJUmozyM4NQ8PukpOgMxXj3PsT+9iG9aPHmRLj3p4to7BFvnurmqLbymaKg9zTB+vF6hhbxSj4g58NFwveerML0sLwg99Wz0PO+3Lj2ghjO7f0mau4vTs7xvIde86NW5POMdTj7ouNE7P5sWvC3EDL3i80Q9B79AvTkxvjw0iRk9Ml8QvXz1B7xSYtm8Rtg/vLCRjjwtpyQ8ZiL6PCtQbDwLagu8sCYTvZPCyTw9RwS9RxKQu1XjmjvIlfo8rBDNvHl0Rr1xeA89olWIvPaZIzxablc8SCzSvHOvuTo9v6C5Y7SlO7UpbDtcMIs7v3zbPAH6M7vimBC9PL8gPW9OBr2Oogg9LsQMPKq8OrsljgW91C/bvOC8mryQi5+8YnpVvSAAozz7JOC6S60TvM+kHjpLGI+8ZdENvQswOzyr2SK9hZYKvbUcS7sDQSW9XwnbPAjM4bw0iRm8VgCDPJtJCrxILFK9F9e8PIYbyDyOGiW9OSF3PLdwXT3HIIQ8lRZcPbrUNr3nqzA9x3s4PQbPBz0XfIg8XhkiPTgHtbzvp2e8SCzSvFzSsLyBkAu8c9nCvFFVuDyM8Bs7Ns3kPCgMIT2fTwk8NaaBPRvtgr1XN608d6gXPIdVGLxRVbg7xojZPEqQq7qivd27bz6/vAkGsjyi6ow8CjA7Ol8MATwOoTW9W5uGPZz40LzN5RA8UXKgPMilQTrtcD07JHGdvWYIODpzv4C8F+TdvF7vmDzuFYm7lOxSvdaTNDrPlFe8G1VYPcLgNDs0lro8/i2FvNw72TwiVLU8dhBtvWTerrwSWSE83C64O7w4kDwhsg+9JrXovLGer7yPRK48fzlTO2FQTLtqozs9weC0PPWMAjyL07M8zeUQvV+hBbvGiNm8lq4GvQIXnLz9mAC8oGlLvE6JCTw6ABO9tlP1PIYbyDwybLE75QkLPbCOaL3qegU915O0PAn26ryi6oy8/y0FvW9OBj21Vhs95d8BPSLcGL2LW5c8jhd/ulBIlzz2jII9DpFuPaLqDD1AIFS9d0o9vDEV+bs2ZQ+92fcNPaiSsTtNx1U9eWclvHKS0TthetW89pkjPXzV+TwX54O6woWAu9G+YD24gCQ87DZtPR65sbuOGqW80JRXPfaJ3Lw39208cFunPUJKXb33s+W8e7s3PUS717zedSk9KSZjPJATgzzFrwm9oKObPDJPyTwI+ZA8BaLYPHYQ7bwTdom8QeKHvVc3Lb2IcgC8MkIoPHct1TzUL1u9LsFmvV8zZLwjYda7w/p2vGzNxD1W8Du8GqYRvVKPiL353W48qby6vO2NJbpfGaK7LC+IvX0fkT0bZR88b06GO1XjGr0wNYe7GPF+u1XwO7qcJQA9N/ftO/nd7jzHIIQ9XgyBvMCZwzzfvBq7v4wivfDhNzwoKYk7b04GPKh1ST0km6Y7X6EFPKvZor2zAom8vDVqPRJMgDzaIRe8rPaKuzo+3zyWrgY8vVLSPLZWmzyybYS80zIBPeMdTjzD/Ry85QkLvQ2Ezbtksf88la4GOuPCmbwOkW69bM1EvMG2KzzPpJ46bQeVvCpDy7xBTQM8Q4StO0E9PDyTz2q9rSCUu0nuhbpm68873XWpvNewHD0JBjK9m+uvPKzzZDzSgBQ9gPuGvL1SUjznjsg8HwAjPcQnpjr2iVy9t3BdPJ4/wrhO8V67+Rc/PW8xnjwiVDU80zKBPKwDLD1O5D08mbSFvCcJe7yFKw+9PtlivBU1F70Nrla9gfuGunYDTLxSYtk5iqmqvDyScbyjzaS8wLYrvQ6+nbtfDIG70ttIPOr/Qrzg5iM9vAthvHJ16Ty6xO+875rGvIYoaTyj2sW8MRifOz8g1LysIJS8sI7oPEgfsbuLtku9wabku5hq7rsVgyq9j8yRvFKMYrwMZ+U8qbw6vHlkf7tHAkm9g2yBPTbNZDvIpcG7OTG+vTAYnz0A0Cq8coUwPWp5Mj2lPh+87DkTPbw4kLwsfRs8xAo+PfRSsjxUTpa7eFdePF3fUbzvqo28zmpOPOMdzru9UtI88gtBPSLcmLzAjKK8NbD8vBxyQL3qDGS7qBqVPKzzZDzedSk9M/SUPPtesLxDdOa8H9NzPM3lED1LGI+8KRlCvIPUVj0Q6CY8hg6nvCI3zbyuZ4W8Ezy5vNsEL70DXg28xnu4PEZ9Cz1QSBe9Az7/O8nCKTzImKA815O0OqrJW71hXW07CQayvOYJCzzgufS9BYXwu6P3rbwzXGq8XhkivDfdqzy3cF285nQGPMVRL7109iq9+yTgO8KFgLyoguo876qNvLCRjrt3LVU8vAvhvLwLYTx8Aqk8I2HWOqmfUrwOke67sZ6vPHTpCbzC0G28kG63uzkkHbx+OdO8Tw7HO7p5AjwrUOw7MAjYuk8rLz0wFXk9M2wxu+oPCj0TSVq64KxTvKU+H7xbi788e7s3PWFQzLiWUKy83UugvLQPKj3WG5i8qrw6vSEdC71uLni8Vw2ku+VUeDyASRq8byHXvF4MgbzHa3G8TdecPGzAI707aGi9z6SevANBpboPu/e8yUqNPLr+v7uLw2y9H8bSPFzCabyBcP27hhvIPFL6Azwf1hm9k8LJvHqB5zxHEhA8qwMsu4O3brzHezi80L5gPAIXnDwv+7a8Y4qcvH3y4bzqDGQ8VcayvFCzkjyWrga9VyoMvGYV2byET5k81D8ivMA+j7x+LLK8AhT2vOMdTr3x4Tc9PtnivAo93DwLSn08PJJxPEgfMTvqD4q8mYdWO6h1ybzvp+c7Wm7XPIu2y7zej2s8HqlqPRfKGzvKz0o9UBvovC9ZEbzbBC+7hZYKvZGoBzx8yFi9wMPMO6wtNTyxq1C8rkqdOmbrTzrlVx69yuwyuwjpybzlgae8ygmbPNCUV7t2qBc9AzHevEJX/jthXe08HGJ5vGu9fb1DkU69TfQEPVuopzxMqu07+eAUvPTalTwHZAy9ZiJ6vOMtFT2dCBi9L1mRvEb1J73o1Tk8C0r9vM1AxTy4gCQ8w/2cu85qTjzjwhk8ZvuWu9Q/ojyW2A89BYXwvLyjizqxq1C9YqeEvSNxHbw0OwY9HHLAPACCF71qlpq8n3bsuzSzorwDQaW73EsgvOZ0Bjxbiz+8bzEeu+Qq7zw5IXc8A0GlvPZ8O73o5YA9ES+YPMrsMj2UZ5W8MTJhPR/G0jxm6888DFpEvLUcSzxz2UI8W6inPOebaT0DQaU8rPYKPJ0IGD2mLti7nPjQu6sDLLwg8Nu8PJJxvCyX3TzK7LK6GQFGPHqRrrrdWMG8vShJPejFcr0MWkQ9CPmQOriApLvGiNm8K3p1vdzTAz0aK8+8c5/yvEOErTsCNIS8BGuuvJtzEz1BWiS9I2HWu1y1SL3enzI9bi54vABYjj119iq8b5wZPQDQKj0pJuO7KZSEO2l5sjsIZIy6c7+AvT4GkjyqYQY9mYdWOwtK/bvBaBi8eZ7PPBa61DuZsd+75nHgPBjkXTsVgyo95gmLPK1Hd7y+RbE8RlOCPPWZozxcqKc6hBKdPKEYJD2bg0S97x9DvH3IT7wttGW9us3VO2AapjynvnE9/FrwvIMe2Lx11l+9Od4kPYbYeDyjdTQ8cXScPBIkdTwbI7C7zdy5vAVaKzw6Luo82ZUVOiogFjvMnWI7z8hmPIbgEL3W7GI75DTbvAWZAj03Qj29dEfDPJH9hLxm4ZG97sIyvVA2RjygiYe8cRy/vD2YRbw53qS88EWUPGOdhzxxHD+9glDkPIKPO7z1NvS611GLucGIBr0wHsG8FFcRvY56o7wFsog7qsu8u5Zskz3HhjE76sm6u5AWCz07k5K9knObu+gt072pyzy9/JnHu4DzUz3MnWK9NVaQu7mWlryN0oA9gLT8PIKPuzxDr3a8KcMFveVBprvqCBI9N0I9vBlI8btQ2TU8EdQvug7bNzz/AyO9X6QPvfJKxzwk4xO9mudcPMa4vTuVDwM7jAQNvdDVMbww3+k7Fpubuzpgdrw0F7m8wCNevE18pTxdsEq8L8EwvXhyR7xOml68NrMgvO70PjyIC5W8tLYkvZgZ6TxH58W8cd3nO0z+dr0sGP68D6mrvDyL+jx6nUs8Y8d7PTxhhrz/AyM9VVWPPJSenzy6DC09RpcAvHGNIr12Owi9JpgBvF8N2zvZF2e8PifiO6UE0Try+gE9TP52O0IgWrzH1na98xi7u/BFlLvZVr47JXKwvAVaq7wVzae8WTWBvc6qrTw2syC8m0RtPDxhhjzr1oU9WGcNPXss6LxbkhE9YNvOu4rRcDyE7Mu875AmPRtih73/W4A8biNHvexlIjze3tI8EPlwvMK/RbzK14Y8l8mjPDQXubzbdHc9jdIAvTt6DL3edQe9KolhO4aIs7yz6DC9H91QumOEgbyMHZM8y8/uvOYPmjsUcBc9z/ryvMUpobyxTEk8V1pCPDDfab1Q5gC865euvCJHrDytFHo9r+JtPEGRPbzF6kk8woBuvWDbzrwBoAq72ElzvX6WQz1kRSo9CuI/vaWT7bsPOEg7glDkPEJfsbs4EDG9SURWvM0s/zyCUOQ8n+2fvSVyMD0DvsM8yBVOvGQTnjtLBo+8Hb8XPZ2hfTwriWE8IghVu+vWBT111l+9QMNJvSr6RDsFmYI7MrqovIwEDb3F6km9yFSlPF5+Pr1RBDo9qlrZPC4ZDr2UIPE8NzXyvF4/Z7zvwjI8XWCFvFF1HT2vYJw9YwZTvcrXBjzdTzY9d7Eeu1YjAz1fi4m8C7CzPAoIET3CgG68idmIPLoMLb29+Nk8IXm4PKwckrvySke8Ot6kO0//Br2Xikw8vof2PBoW5bx/vJQ9idmIPR8cqLwT8ui8zDQXvQvvCj1Z9qm80jJCvQWq8DxM/nY9gYLwvGXhEbzcgcK7P4yKvObQwryK0fA7cykKPT5mObxY6d48QAKhO1YjA70Jo+i8qfGNPDouajxRBDo9TppevKfwfbxWPAk9hth4O9IywryqmTC8uHDFvPwKKz3IVCU9kNezPHlNhj0O2ze9NabVu8NOYr1WyyW88ruqvRhQib1CXzG95vaTvKagOD2WvFi7EF4ZvZWFGT1WI4M8xSkhvXLqMj1fTLI7E6Ijvq+wYb1yW5Y80vPqO3JCEDw3Qj28eyxoPPZDv7x/ZDc6zwe+uwfdjLvfbe+8Xn4+vJkmtLyZ59w8TO2IPIAyqztQ5gA9wrJ6PXC/LrxP/4a8qyhNO29inj19yM+61V3GvHBOyzwYUIm6uK+cO+8fQ725lpa89kM/vRoWZb0FWis84YeFvACTP7hCngi6B3hkvNEUCbuOYZ08rDWYu0S8QT2Aiog9JcJ1vKsoTTy1hJi8nR8sPfU29DyG2Hg94hYiu8njQbzZlZU8dEfDvF3vIb3VHm88Q+5NvVuSkTuUIHE87sIyO7QniLx6XnQ9eAHkOz80rbz/AyM9fHgKOyBs7Tz0V5K83Y4NPa0DjDv6PLc8/SjkvJ13CT0jFaA8w405PahuLDrhSC69g10vPbEN8ryerki8b/E6PTwJqb2YWMC8CEZYu6g8IDp4ckc8WTUBvcBiNTybg8S8WfYpvcAj3jx9yE8+Mey0vNokMrsxrd283RDfPEnTcry5Prm6jnqjPNSP0rzRFAm9h0lcvKM23bz2BGg9KF7dOxZcxLxdo388ddbfOpUtPDwf3dA8BunHPMVbLTx9yM87y89uPLPosLuEgwC9woDuvIdWp7y2Bmo84KxGvF7WG702NfK7wCPePLR3zTx9ifi8JkCkvDmfzTu31F086GwqvZRfSD01VhC8bmIePIKPu7xDLSW9K4lhvMqxNTy2EzU7qcs8OpJaFbxBkb08omhpvFY8ibwmmAG8n3w8vOWZA70Pqas8xnnmvLmWlruBgnA6B3hkvDcDZjxcFGO8wr9FvLubST3e3tI54cr/vLQniLsze9G89XVLvZ0frDyUnh89EdSvPM94IT3kNFu8Z/9KPfr93zw2JIS7oAtZvC/BsDzJ40G9dRU3PPV1S726jn675vaTO8AjXjxiOF+64YcFPevn8zv8jHw8z3ihO9RQ+zw1PQq9DH4nPQTcfD3NLP+86KsBu/Sn1zzFmgS9Z//KvBtiB73z2eM8r0cWvD1Z7juv4m0846U+u3Y7iD0hOmE8xZoEPWjzjzwCL6e8glDkPM/IZr1Q9248mkyFPABUaLx24yo9wfHRPF5+PjxRdR09KF5dvPOJnj0gq0S8L1BNO9e61rstZCC8IoYDPZLDYL1sVVM9zDSXvBU+Czwx7DS5lF9IPA/58LzEs4q6g7UMPcAj3jw4aI48i0+fPRBemTx4AeQ8FT4LvKrxjb3z2eM88XxTvACTP72a9Ke75DRbPGxVUzvEW628go87vY4JwDy72qA8jmGdPJJzGz06YHa9k8NgvIAyK70VJYW7Mey0u+EJ17szSUU8YWrrOp/tHz0JFMy74hYiPWppJj0gq0S7r2AcPWYxVz2U0Cs9g12vtuKYczwJ1XS8g5wGvQf2kjy3EzW8xavyPG4jR73PXxu9MI+kvOF6Oj0tSxo9+v3fPP8Do7usNZg9JpiBPV1ghTuI5UO8X0yyvECE8jx2VI685w8aPPtJAj4ihoO9O5OSvJ+7kz2rKM28tzmGPTwJKT1rKs889xGzvHh/Ej0VJQU90vPqPD+MirunrYO8mIrMvJfJIz2cUbi7sC4QvVKT1jxM7Yi8BbIIven7Rr3pOp670iV3vBZcRL3YSfM8HxwoPUzUgjxLBg+9RpcAPfUlBr3UJoe7x4axO/UlBr2f1Jk8uZaWPEcNl7z4UAq97EycuQYPmbvimPO8Y52HvBh6/TsY+Ks87hqQPWRFKjx11t874haiO+xlIr2ukig7lQ8DPHdlfDyIC5U98T38OxWOUDuHF1C9m3Z5PMXqyTsGKJ88/MtTPLvaILxyq9s8lNCrvIwdEz29+Fm7cuoyPKIYJLxTYUo8NiQEvdVdRryy22W8LJasPET7GDtfDds8rpIovUpRIbzsJku8gCVgPGbA87yQZlC9cqtbvHJCED24rxy9RLxBvWq5azyXIQG9DH4nvFW+WjtMPU69Ho0LvQVaqzwRldg85MuPPMeGsbxGWCk8EhOHPD6YRT08SAA9qL5xvJICOL3O+nK8H575u3bjqjxmcK48D6krvC6CWTuTQY88cP6FPGQTHj0BuRC8duOqvL4FpbxVVY+8hOzLvD/11bzSJfe8bdMBvUsfFT1rKs+8XKN/O0fnxbz5N4S8b/G6PDMKbrxSk9Y8mFjAPJ13Cb1Z9qk8jN47vTeBFL0Y+Cu9UQS6uyYzWTxFfWq9jy8RvXQIbDtqueu8fJEQvf2/GDu0tqQ8j0gXvYW6Pzsslqw72MchvUV9ar2G4BC7Ip8JvepY1zxFijW9BVorvGnaib0QBjw9nm9xvJp+kT1GqO48Dts3vYcXULvwrt882DiFPAG5kDz82B48TgvCvMa4vTsJOp28zqotu12wyrzLQFI7nz1lPT+2fj0SJPW5ixBIPHtrv7sfnvk6/b+YO3UVtzyK8g49Q+5NvHhAOz2aTAW8KWsovR6AwDzoq4E8Rw2XvJnn3LxjnQc9/JnHvMeGMTvXUQu8DzjIurfhqLoFmQK9tzkGveRzMjok45M8MI+ku5c6B708YYY8sC4QPbQOAj0OGg+9FSUFvK6SqLy7XPI71MHevbA//jwzCm68tgZqvBnGHzsBuZA8SlEhvaXSRDwS+gC9itFwvDFEkrte1hu8cP4FPCwlSb03gRQ8s0COPApxXLwj1sg8/We7urZFwbxWPIk8SdPyOWWiursqIJa8ZsgLvWc+orw4aI68CaNovQBcgLus9kA9JpiBPFMRhbw2JAQ8hIOAPTv83Tw3syA9XBTjO9LzarxUhxu8VsslPIdWJz3Uzqk7l8mjvIX5lrwaVTw9fJEQvckiGb3c8iW9+W5DvBDHZLz2mxy9z3ghu0sGjz0Df+w8PifiO0S8wTxdsEq94sr/uk4xE72+BSU8F4IVvS7zPDzhSC69riHFvNjHITpEvMG7xrg9PF4/ZzwS+oA84UguvXh/Er29+Fk9gYLwO8hUpTxQ9+67VoxOvXHd5zxM1AK7ejQAPIrRcLuSAji9GpSTPCKfCb2PmNw8GUjxu6w1mLvw7ba88K5fu9UNATzsJss7zdw5vKg8IL0LP1C9Y50HvRZcRL3ZxyE8e6oWPThoDj3xLI48f5ZDvBOJHbt1hho8NwPmuw4aj7zhCde8uksEPcL+nDyXIQE9j0iXPWwWfLtUhxu81M6pOgDSFr3u9L48bBZ8vTk2ArzUUHu8sQ3yuxzxIz343yY8iAsVvYa6P7x6ncs8fYl4uuC5kTzhO2M7NnRJPRBeGT1lY2O8592NPLQnCD1nPiK9/8RLPNtKAz2ukii8JbGHPJa8WLzMfyk8S+A9vWrr9zsDvsM8gQCfvCKfiTw6n028lvsvPFiAk7xGGdK8zvpyPFuSEbw63iS8fcjPvLNAjrzHhjG64/2bPeUCT71t5G89Xr0VvUmDLb05n029C7AzvZp2+bvhyn87yrG1vNH7Ar0OAQm9ftWaO8u+AL0XKrg8QdCUvB8cKD0BoIq8RckMPfTmrjrovO+8BiifPIqBqzzSo6U8qss8PLbUXT3Mf6k7Hb+XPA4NRD3FmoQ9czp4vFLSrbyckI89PlnuvFCnKbu21F093lwBvOfu+7tnPiI7DzjIvI8vkbwZxh89HxwoPeGHhTzhejq86TqeOmMGUz3cgUK9XCEuPRAGPL0riWE8Dyv9vL+UQb2imnU8a4dfvF7WG72AMqs5us1VvNokMr0Qd5+71I/Su6sozTvEWy06shq9u3ZUDr1SQxE9R+dFvTHstDzLz+47ruJtvcgVTj24MW48HPGjvBGVWL0eTrQ8Cz/QPIOchjzK1wa9J5Dpu8rwDLz1DAC7BRtUPGWiujx/o468uksEPRUlBbwvwTA9Ma3dPM/I5jyoPCA9x9Z2vA=="} \ No newline at end of file +{"embedding_dim": 1024, "data": [{"__id__": "ent-7f3f40b149836e219fde3f5ec3bee219", "__created_at__": 1751960218, "entity_name": "氧化铁", "content": "氧化铁\n氧化铁是一种化学物质,参与与硝酸的化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-44635b939a0dac857d1d84583d9cdbfc", "__created_at__": 1751960218, "entity_name": "硝酸", "content": "硝酸\n硝酸是一种强酸,参与与氧化铁的化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-a9fd7dcf0855ca37941cd02429f5cef9", "__created_at__": 1751960218, "entity_name": "氢气", "content": "氢气\n氢气是一种可燃气体,参与与氧气的燃烧反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-5efee68823291bc4ac21479758bde4c4", "__created_at__": 1751960218, "entity_name": "氧气", "content": "氧气\n氧气是一种助燃气体,参与与氢气的燃烧反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-9433672146b909186b2c0374cc2b16f7", "__created_at__": 1751960218, "entity_name": "反应方程式1", "content": "反应方程式1\n氧化铁与硝酸的化学反应方程式1,描述两者之间的化学反应过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-435c8d3685d0cefa0f8e6c63f14ba8b5", "__created_at__": 1751960218, "entity_name": "反应方程式2", "content": "反应方程式2\n氧化铁与硝酸的化学反应方程式2,可能表示另一种反应条件或产物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-bde6519cd5920ad6801aad3305444fbc", "__created_at__": 1751960218, "entity_name": "燃烧的方程式", "content": "燃烧的方程式\n氢气与氧气的燃烧反应方程式,描述两者反应生成水的过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-d0670b6ed821e322d5eb9449407cf8e7", "__created_at__": 1751960408, "entity_name": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\nA balanced redox reaction where iron(II) oxide reacts with nitric acid under heat to produce iron(III) nitrate, hydrogen gas, and nitrogen dioxide. It exemplifies acid-base and electron-transfer chemistry, with industrial and environmental relevance.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-d1600688f909095e97951ab6f96cc573", "__created_at__": 1751960537, "entity_name": "Hydrogen Combustion Equation (equation)", "content": "Hydrogen Combustion Equation (equation)\nThe equation represents the combustion of hydrogen and oxygen to form water, illustrating stoichiometric balance and energy release. It is foundational in chemistry and energy applications.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-9d319891f5c0f5f8005c29e4876e258d", "__created_at__": 1751960616, "entity_name": "FeO", "content": "FeO\nIron(II) oxide, a reactant in the chemical reaction, involved in redox processes.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-07a7e47676df559a0d1928f824bf7b40", "__created_at__": 1751960616, "entity_name": "HNO₃", "content": "HNO₃\nNitric acid, a reactant in the chemical reaction, acts as an oxidizing agent.Nitric acid, a strong acid reactant that participates in the redox reaction, reducing to nitrogen dioxide.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-c1632d1eef24bd10e3c1110d8e44cd2c", "__created_at__": 1751960616, "entity_name": "Fe(NO₃)₃", "content": "Fe(NO₃)₃\nIron(III) nitrate, a product of the reaction formed by the oxidation of iron(II) oxide.Iron(III) nitrate, a product of the reaction, formed through oxidation of iron.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-e4b5dd503a0984464c9e4adff164571a", "__created_at__": 1751960616, "entity_name": "H₂", "content": "H₂\nHydrogen gas, a gaseous product evolved during the reaction.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-3ef9475ac009d568c7243a56a5b9e965", "__created_at__": 1751960616, "entity_name": "NO₂", "content": "NO₂\nNitrogen dioxide gas, a gaseous product and a pollutant, formed through reduction of nitric acid.Nitrogen dioxide, a gaseous product and pollutant resulting from the reduction of nitric acid.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-c2b419403de977b50d58f2dc347e35a8", "__created_at__": 1751960616, "entity_name": "Redox Reaction", "content": "Redox Reaction\nA chemical reaction involving the transfer of electrons between species, exemplified by the oxidation of Fe²⁺ to Fe³⁺ and reduction of HNO₃ to NO₂.A type of chemical reaction involving oxidation and reduction processes.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-e79e9cc5d5af9369a9a9df9ac1ccbecc", "__created_at__": 1751960616, "entity_name": "Stoichiometry", "content": "Stoichiometry\nStoichiometry refers to the quantitative relationship between reactants and products in a chemical reaction, as demonstrated in the balanced equation.The quantitative relationship between reactants and products in a balanced chemical equation.The quantitative relationship between reactants and products in a chemical reaction.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-160631ff58dfd24b89716cc26d0a4b6echunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-28652166e35ddbb6ef5525964606fb77", "__created_at__": 1751960616, "entity_name": "Δ (Heat)", "content": "Δ (Heat)\nHeat applied to drive the chemical reaction, denoted by the delta symbol.Thermal energy applied to drive the chemical reaction forward.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-861174d430e3dcc4f9c3e23ff754969f", "__created_at__": 1751960616, "entity_name": "Oxidation", "content": "Oxidation\nThe process where Fe²⁺ is oxidized to Fe³⁺ in the reaction.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-9e834f13e35e4edf64863ab414a6217a", "__created_at__": 1751960616, "entity_name": "Reduction", "content": "Reduction\nThe process where HNO₃ is reduced to NO₂ in the reaction.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-c600c5bc39c6d92d48c8c68ca8910c0e", "__created_at__": 1751960616, "entity_name": "Gas Evolution", "content": "Gas Evolution\nThe production of gaseous products (H₂ and NO₂) during the reaction.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-fc2756e91df29c4e6abd7f8c19c4d108", "__created_at__": 1751960616, "entity_name": "Acid-Metal Oxide Reaction", "content": "Acid-Metal Oxide Reaction\nA type of reaction where an acid reacts with a metal oxide.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-a211a0a02c95d55eecea6e96ec63938b", "__created_at__": 1751960616, "entity_name": "Combustion Reaction", "content": "Combustion Reaction\nA contrasting reaction type mentioned in the context (H₂ + O₂).The combustion reaction is a chemical process where hydrogen and oxygen react to form water, releasing energy.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6echunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-d86ae4ba4a532d9caefc2ceba00784cc", "__created_at__": 1751960616, "entity_name": "Laboratory Synthesis", "content": "Laboratory Synthesis\nPractical application of the reaction in synthesizing iron(III) compounds.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-4659f5daa8c3d423bb7de064e69302e8", "__created_at__": 1751960616, "entity_name": "Industrial Processes", "content": "Industrial Processes\nUse of the reaction in industrial settings involving nitric acid and metal oxides.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-864a18119231521e7d070253c3eba438", "__created_at__": 1751960616, "entity_name": "Environmental Chemistry", "content": "Environmental Chemistry\nRelevance of NO₂ as a pollutant in environmental studies.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-95db70646830ec5cb931f0b93d0944f6", "__created_at__": 1751960616, "entity_name": "Inorganic Chemistry", "content": "Inorganic Chemistry\nThe branch of chemistry dealing with inorganic compounds, including reactions like the one described.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-60ed203d55e812c10392f7aea97fb9f5", "__created_at__": 1751960616, "entity_name": "Iron(II) Oxide (FeO)", "content": "Iron(II) Oxide (FeO)\nA reactant in the chemical reaction, composed of iron and oxygen in a +2 oxidation state.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-5415e49c5d264aaf162d5c97c9e09a5f", "__created_at__": 1751960616, "entity_name": "Nitric Acid (HNO₃)", "content": "Nitric Acid (HNO₃)\nA strong oxidizing acid that reacts with FeO, producing nitrogen dioxide and iron(III) nitrate.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-c356b975d314882236bdf932bc504b08", "__created_at__": 1751960616, "entity_name": "Iron(III) Nitrate (Fe(NO₃)₃)", "content": "Iron(III) Nitrate (Fe(NO₃)₃)\nA product formed by the oxidation of iron(II) oxide in the presence of nitric acid.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-f29211b654758a64d5bb186b9f618fe5", "__created_at__": 1751960616, "entity_name": "Hydrogen Gas (H₂)", "content": "Hydrogen Gas (H₂)\nA gaseous byproduct released during the reaction, indicated by the upward arrow (↑).Hydrogen gas (H₂) is a diatomic molecule and a reactant in the combustion reaction, forming water when combined with oxygen.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6echunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-9bfc829880d6e09b27bbce6c27553e3d", "__created_at__": 1751960616, "entity_name": "Nitrogen Dioxide (NO₂)", "content": "Nitrogen Dioxide (NO₂)\nA toxic gas produced from the reduction of nitric acid, contributing to environmental pollution.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-b9f673881c56eed80e7ad1cf52d7e970", "__created_at__": 1751960616, "entity_name": "Environmental Pollution", "content": "Environmental Pollution\nA broader implication of NO₂ emissions from chemical reactions like this one.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-3b0f7c034012aa69f2262af21c5247b3", "__created_at__": 1751960616, "entity_name": "Industrial Synthesis", "content": "Industrial Synthesis\nPractical applications of this reaction in producing iron(III) nitrate for industrial use.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-f7179aa6e57a45915a846067289ea2f2", "__created_at__": 1751960616, "entity_name": "Laboratory Demonstration", "content": "Laboratory Demonstration\nEducational use of this reaction to illustrate redox principles in chemistry labs.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-ecd7a163f2fc67eeff505c7673e20ba6", "__created_at__": 1751960616, "entity_name": "Oxygen Gas (O₂)", "content": "Oxygen Gas (O₂)\nOxygen gas (O₂) is a diatomic molecule and a reactant in the combustion reaction, combining with hydrogen to form water.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-dc04d2ac5f1a04f73e997d762be4224c", "__created_at__": 1751960616, "entity_name": "Water (H₂O)", "content": "Water (H₂O)\nWater (H₂O) is the product of the combustion reaction between hydrogen and oxygen, representing a clean energy output.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-bb1908fa96ef16c45f6f573528c06c1b", "__created_at__": 1751960616, "entity_name": "Redox Chemistry", "content": "Redox Chemistry\nRedox chemistry involves oxidation and reduction reactions, exemplified by the combustion of hydrogen and oxygen.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-f52f067b9b0ec37e01962f91876d1dcd", "__created_at__": 1751960616, "entity_name": "Hydrogen Fuel Cells", "content": "Hydrogen Fuel Cells\nHydrogen fuel cells utilize the combustion reaction of hydrogen and oxygen to produce clean energy, with water as the only byproduct.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-44933ad332b9448ddbd37f3e60795e7c", "__created_at__": 1751960616, "entity_name": "Law of Conservation of Mass", "content": "Law of Conservation of Mass\nA fundamental principle in chemistry stating that matter cannot be created or destroyed in a chemical reaction, only rearranged.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-f1ed490db2ed2bcb92141cbdac37d96f", "__created_at__": 1751960616, "entity_name": "Thermodynamics", "content": "Thermodynamics\nThe branch of physics dealing with heat and energy transfer, particularly relevant in exothermic reactions like hydrogen combustion.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-9e95fffe44fcafcc603b15870db350fb", "__created_at__": 1751960616, "entity_name": "Exothermic Reaction", "content": "Exothermic Reaction\nA chemical reaction that releases energy, exemplified by the combustion of hydrogen and oxygen.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-0c3c6286c1c2b8f15914e02e67692b27", "__created_at__": 1751960616, "entity_name": "Rocket Propulsion", "content": "Rocket Propulsion\nAn application of the hydrogen-oxygen combustion reaction, used to generate thrust in spacecraft.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-6f5e1d29892b77814c3f983fc5690a2a", "__created_at__": 1751960616, "entity_name": "Clean Energy Systems", "content": "Clean Energy Systems\nTechnologies utilizing chemical reactions like hydrogen combustion to produce energy with minimal environmental impact.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-25da832997a0aff5c601866819f976b6", "__created_at__": 1751960616, "entity_name": "Iron Oxide", "content": "Iron Oxide\nA compound mentioned as part of other chemical reactions in the broader context of the discussion.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "ent-28910c9747db991734c7c471be861a0e", "__created_at__": 1751960616, "entity_name": "Nitric Acid", "content": "Nitric Acid\nA chemical mentioned as part of other reactions (acid-base) in the broader context of the discussion.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}], "matrix": "AFNMPZAibzzeoX+9zR8luiB747qw5Qi9d01EvBLVbj2fyMc84RhavD+11bzfs4a9El4kuzEP4bsNCxw9ta/NO2FU47v3EZ+8/e2wPFeco7sqM2u9EueDuhJepDzKuhe8J85PPYtYnDshe0c9PseUvGPdij3LMRy7UMBJPGgwIb2v01e9fKBovM0fpTvn9E89/9sdPTdiab0+x4a83qH/PLWv6TwuIVi9pZL+O1gTtjxTNyS70A2uvGNUD72pCb28RhoBPFkBd71xcTI8U8ADvVDSiD1HCEK85vTPvAqUwbybY8i9SX+cvIZqr72VdXe8AUFVvAwLOLxVrho9aR5Gved9Bb0aKD89R3/UPH8XQz2qgM+8RpETvWyDfTsnV7095I+KvQ9wt7yrgJc8eynyPBc6tjzdKu28YWaGPChFxjzwrPO8kxDcPBXDP7yubiA9K6p9uaakBT3S6fe8JWm0u2gwIb33/3u87UfYuvSa4Dupko470JabPJaHNjy4Jii9d9aHvJGrFj0k4OI7oj+GvBix5Lvkj4q9s0oyvMuW77wsMzO8EXCNveGhKzyUh+68CpTBPJSHbrzbxbU7Q6MmPelrKj3+ZBk8DnDTOvx2gruzSrK7iFhUPF2KAjyE8zg7I+D+PGowBbzhj+w87kegOvvtzDzlfT29is9KvKO2irxDGtU5fSk6PIjhJbpmMPW8u4vfvA/nybv3/3u8AFPMPP5S6LykLSs9z4TcOzdiab0fFgI9KjNrPcTekz31msS8+YgHPZ1Rtb1DoyY9I/KhvNvFtTxI9mY9O2KVPNINkrw3/Ye8hXymPOR9dbwvM4k9paShvD218TwsRYC9RBodvWwejjy4nXK83LNaPICOVbzU6ds84CoZveZ9obs0dHw9D/kIvcNV3rt/F6c8CKYcvU9Jb73LqEq95Y+KvCB7YzyLz649+RGDPLsUMbt/oAa9nz92PEr2Er082Rk8f6CwvfaaDD1gZpQ8I+DivB4EUbwcKAe9hXwmvKaS4rzq0P286uKgOHfE8jzna0Y9LiE8vaoJobz77cy8Y92KvMNnHT3IQxO8hmrLO36OcTyZ7LW8qvfhPOZrYjx31gc9SAgKu1M3pDwJHS+9v3mwPGZCGL0sRYC92k4VvdP7Nr2H4V098TUpPDpQcr2ZdRW92k6VPJE0BDpAo3o8qZIAPcLeZz0LCzg9dU3gvFWc9zxouQA9rm6SPIZ8iryY/iw8VTeWPQuUCT2nG4q8ZrnGPMdDr7wan+28NutWPDAhIDxf3ey8HCgHPcVVJr2v03M7wd5nOzCYMjwfjaI961lPvECjejw+Pie9lJmDvWRUAT06Yoc7VyWDvJMQwDwNgpI9reXOvMq6pbtUN4i7Pz4nvKz3qTuX7G06zKgSPNGEJL0uIdg8RBqdPOSPmLt7KXK8C5SJPAWm1Dxrp4k7vItDO7SvabyBjp28b5UEO0IssDylpL08jM8EvaSk2Tz0I5Y9BS/CPLivhz1PSW89FMP3PJzaPj0S1dI5GChbvHL6H72hPyI7kiI3PA6ChDptDLO80ITcvBY60jxop2u7bQxPvV7vRz23OB+8T1sSvhyfNb3cs9q71HKtPM0N5jvlfb27jb23u4XzuLxmMPW8KOCAOmRUgby/ecy8JeAqvbFK6jzQhNw8CKYcvSB74zwpzgk93MULvAwLODz/ZAu7jb03vddO2zzSDYS8aDChvIQFBjxuDBc7tzgfPO9HEr2dyOO8HRasveIGf7u5Jgy7hnyKvDvZi7vMH908LqrFuvcRHzyvXGE7d8RWu8NngT3FVSY9wfAYvcwf3Tte7yu9BS/CPOxHdD131gc9By8KvXL6Hz2ftmw8UjdAuk1brrxPSdM8oMgPvUMa1bnIukE8TFvmPAwLDrk8Pvs7oT+iPKmSgL2fP1o7TFtKvGa5qryVECS95/SzvDCYMjySIjc8o6R1vZaHGrxI9mY8gQXovBqfbTyqCZO8SvauPYpYnL1hVMe8UjdcvOIYor0XKHc69xG7POdrYjrymnw87EdYvFQ3CDuvXMW7g/PwvNs8yDxiy1k+fSk6PWkeYrykG2y8dNZpPGseKr1FCN65fDsHPVclgzw6Yge8ZUI0vShFYr3S6fc84gb/Onyyi7yBBUw9NmLpPNdO2zvJupc8wWdVvWBmvjziGL48yqjmPGXLBTpGf3C8TeSNvMqoZr0Zsaw8Sm3dO4dqr7vwNeE8OHSMvNPpWzzxNUW8tTi7PAodBT2sbti7uBRpvP9kCz3o9Am9XHg1PNyz2rvVcgM9esQCvUd/uDzT6Vs8MJiyvChXBb3lBqs8IAS1uwBTTDnfs4Y8NXRguwmUXbztWQk8h/MAvXrEArz3ERG9W4osvSLyvbunGwo8bB6OO5vsGTuHahM8+na6vOji9LxouY49AFPMvJYQCD0JC1Q9wGfVPOChRz0JlN28FtUMPYR8Jj28iyc9ecQ6POrioD22rzG9LLwSvIdqLztug0W8ecS6vCm8dDsP+SQ9uK+Vuyq82LsHlHk8XngZPNTpPz072ae8Kc6zPPeIsTx11rG7vYsZvBLnET3uvk48TVsuuwkL8LxQwOW7qPf9O1kTNjtAPgu9xMxwvf3thj1O0sC8HgRtvKQb7Dt3xHK7IAS1PBNM5TtSrm48ntqivDP9zTv6dtY7Xe/jOIMFML2Iz+Y8I/KhvDGG8zyOq3i8w2eBPDnrkLq2wZo8gwUwPY80Lr0WTK08yTFUvO++zjxkVAE9/WTDvFSuUr2H8wC9HCgjPd6hYz36/5m74o9QPXmyezy2JuA7+v8nPV0BFb32mow8D+flvDjrnrxy+p+7FdUau6akBTynG5g9ajATvCq8WD2QqyQ8EHAbPGkwhT0DL/q8II0GPXg7zTsuqim9jqt4u+V9vbwHHWc8kxBcPDpiBzw1dES9vwKQPFQ3iLwkV/U8u50QPSu8oD1ZAfc828UZvZIim7vAZ3G8NuvWvCTgRj0PcFO8TNJ4PEIa1bxVnPc6w1Xeu2DdUD3AZ/E73bO+u/E1qbxHCMI8lIdSvCuqYTzLH3k7sdO7vFM3QD0Lgua8HRbIPHrEgj1bEwy8mmNIvP1kJz3eKlG9ZcuFPRFwDb387TA7vgIevJ3IY7w664I8yDHwOzb9Bz3IQxO9KFeTvHnEkL0RXly8TtJAO+pZazyGfIo8pKQ9vXwpVr2lkn68DIKuOhk6DL27nQI8i1iAvJxjLLzQhFy95/SzPLsUsbzbPGQ8Sm3BvCrOibwN+UA9uCYovGge/rwP52W9b4OpvO1HWLvT+5q8OGLNPM4N5rxKbcE8d8TyPI69Dbzo9Ak96+ISPEd/VLxWnD88tq/NutdgNjxslSA8RCwGvPaaqDwsMzO9k5mtPLU4OzxgZpS6lv5IPM2oEr1lueI8++1MPIXznLumG7Q8dl8DO/1kw7vq0OE8PFCeO0EsTL3KMTg8qJIqPa5cYbr2mqi8b/q7vKcJ2bwsMzM9rFx9vB2NWr3zrLu7QbUPO07SXLwzD424iOElvRc6trwyD6m7HRasO9jXLLwuqsU8S21BvPx2HrjgKos82OkHPB0WyLyc2r68+IgxvBk6DD3lj4q8P7VVvbI48zwdFsi8yqjmuyy8BD15xB48fo5xPE7S3Lzq4rw8Oz77Ou5HvLxKbV27AFNMvPA1YbzlfT29vgI6u1YlyTk2dKg8ah7GPGbLBbz4dvK8UMDlu9s8yDsvmGq7f6CUui4hPD3bxZm7OOuePAsLuLxx6GC7b3HqvB8WAr2r98U71ekjvYnhiTsUw3e8L5jOvL95sDx6sl88Bi8YvQFThr0YKFs87jV9uwDKwjthZoa9phtQPVwBv7zjGJS6n1GLu0A+Cz1e78e7T0nvvNuzdr3Tcsk9dl+DvIpYnDzMqC48K0UOvcsfeT121hW7LSH0Oz218TwVTEk8S+TTvJl1lTyqCQW9NHR8vSB7Yz1TN0C9mdp2OyNpUDqGaks8tUoIvM6WU70dFiy9l/7IOhko2zynkio7zh8JvEn2yjzY16y8HY3avHAMiTxFkUu7L5hqvN2zPrykLY87uhRNPA35QDsTXha90vvSPIxGpbuzSha9y6hKvW/6uzxcAT89erLDvZSH0jwA3A89XYoCPJp1o7wxD8W8yzGcvIZqrzwP5+U8/e2wvSdXvbkJC9S8v3lMvHPoRLylkn48mdr2vMDwQjw5UPK5eTvNvFUlyTyKRnm8El6kPIvPrrx6sl88v/DCPK3lzryyOPM7rG68PC+YzjzjGCK8BriFvGa5Kr3BeRQ80YTAvEG1D7mRq6Q8mnWHvNXpv7v92/G8aLkOPdpOFb3LMZw8PD5fPVWuGj0ZsSw9CaYAPerivLyv5bI7J+AOPZKZyTwwIaA837OUOuxH9LvJMdQ7y6iuvOxHdL1y+h+9YN20OywzzzsMC4484RhavJ7aFLx0cQg9GSjbvFclgzyXh4y9KOCAvUK1Dz2xXKm8b/q7vLPTAz0oV4W8El6kvEvk07wvITw5ieGJu94qtTx4O+k8zpZTu17vx7xUwJG8n8jHPAmmADskabQ83bM+PPC+srsnRf47uK8Hu3D6O72gyI+7dNbNPDnZw7wsvAQ8m+wLvRZMETtoMCG8ecQePGJUqzyOq9y8aTAFvdrXAr3PhFw8wvAKPUl/HL2mGzQ8ic9mu4OOAbxouY685QarvH4pArvkBse8tibgO5aHmrvPlje9vAJWPQyCLj2zweA8HwQ1PeT067vdPCw9sNPXPBc6trxHCJg82cVRvBgo27vPlpu7bAxrvT8+Gb1kuf68FkwtvTZi6bx11jG7DoKSvKqAszowmE68sjhzPUGjwryfyCu86msAPSPyobyNRpe9SX8cvO/QDT31Iwg8JfITPNGEJLwhjQY8+YgVvT4+J72Z2nY8Bi8YPNINkjy4Jii9T0lTO795MDw8UDo9cIOpu0j2ZjzWcgO8YVRHvQ75JLu+Arq7aDAhPa/TV73s0MU81em/vIR8Qr25rwe8T0lvPLJKsjpfZj69yzGcvL6LGbuW/ki8HJ+ZvMPeLzuKz8o8ZEJQPITzOLxQwGU9LKrhO1PALbx9KTq9w94vPfOafD28iyc9By8YOym8dD2G8448pwnZPE3kDb3iBv878KzXO8oxOLyI4SU986yRvG/6O7zQlhs9WopIvQLKJrvb14I8CQvwvIF83rxnMNk8jjQuvHZfg7tEo4q8OmKHvHVN/DynpIW9hHxCPYfhXT0S55E6dU38uw0LHL1z6ES6HRZIvKI/orsP52W8CR0vvTP9TTwEuC89gwUwvSZpGL3OllO9LjMJPYjPZr3dPCw9SAgKPcbMuDyTmS09yLrBO6S2CjxJbXk86H0TO154C73Olrc8xcxUvHAMiTwOggS9XO9/vAxwbzzxNUU89KyDvCdXITsDL/q7TtJAPX8XJz1Doxi8ic9KuwMv3jxsg/26Gp/RPPCrMD2ufFc8+tMyvYRZ5bziROK8Gej0vOfVeTx+yE09gn7dPPEJojuFvSm9P9hAvTB3xbxhqGU7RG+rPJzuCDvtcjc7+E+FvEqDLDxpcva8zQAEvQN4Bz0OSS+7f30ZvJ0aGD0g3dA89xH9u+WDrjtauVw98CjHvBNX3bqZLFO9W5RkvVdhvrwS1HM8Z/QbPWyLBjwpYoC9udwOvNgoBj1o+7I86NV5vVhb6zt3Vtu7AO6GPH3zmDzRqm28joHnvFPK0zlvFQe9q5t8vMYLqLzfxoc9FTg4vI2BZ7wZa9687SeDvTrKkrylska9XiqLvB2FsrwM6z08hOIhPVhnkb0Lk5+8nZ0BPcNVmDzjolM9o9FrvBrPIrzrGhm8rB5mPcNJ8ryKpRu8Ng4wvPNb7TylL9084aEPvQDoM7yOBNE8Qo7QvHuPVD3t7029V2G+u+31oLwcLZQ80LBAPBS1zjkVr3u8AGXKvH1wLzwmzNk8x+BcvCG4WDyFt1a8HYUyvUtetLwaz6I8EoIou4F+XbvA8VM7Hvx1vHDwjjzYHGC8z9sLvX7OIL24IXC80IoEvDBx8rpgJfy8d2IBPC92AT39qOc8DGhUPXm6nzzb2MK7tXEzvOsOc7u846U8sbujvB5/3zzlg666wXS9PDyZ9Lt2e9O5hGULvKQ1MDyOhzo8mg0uPFaGNjyQ5Su8QI2MvKcQOLx7lae7S1hhOh+3FDwKjcy8ykQhPSqIPD2X1DS90g4yPR2Fsj3m+nE9bob3u2KPEz0cIe69Pi+bPAzrvbxmvGY8aPuyPETswTrh5vC8Wx2hu8303TySumC8NS1VPdr357z+DKw81O+MvSBa57wM8RA9FbuhvIPczjwoMB69zFELPS5EH70M8RC8YoNtPXSaeL3XIjM6Yo8TPQQhLb0M67286hTGvN25nTsS1HM8y5y/PdPjZjwf13274HWAvLgnQ7sTXTC9udyOO/l1Qb0pYoA97e/NPIjwT7yLSG689blevKcQuLw1CN28YonAvL8WTDzuR+w8uoU0PdCKhL3eEby8AkBSvf8+DrwWE0A8R5x+PIym37u2TDs8J7OHO0E2sjuZMqY6ZUWju8JPRbxMOTw7Bi4XvUvbSjwyWCC8rVYbvVoR+7yP39i8YQZXPRAkt7oOT4K9wXS9vN25nbzb3pW8Z53BPCn//zx303E9/gwsPbxaab1hg+08YolAPAm4Fz2G74s8DG6nvJObOz206HY9Kd8WvUgf6DyeQNS8NTMovVdhvjwAZco8fXYCvRaQ1rzhoY+92thCPXfZRLvWQVg7cGdSPTYOsLt/AAM9Ge5HvdiAJL3syRE9gKNVvBnux7zWR6s74sF4Pfa/sbzHXfO7IN1Qu2n1X7pBPIW7BJ7DO7n8dz2isYI7nF/5PHaBpjzhRGK8jClJu5zuCLubZUw8oQIKPYn2ojuChDC8llFLvJLylTyE1ns7UHI1PCs9iDpQ78s7PXrPPXaBJj1hK089UwIJPdEzKjxuhnc9exI+PSdJ8LyPYkK8T5etvMYLKDo7HF47YQZXvG8JYb0OTwI9Fw1tvEWhDb2vY4U9LbviO+31IL4rXXG7IOOjPIDbCj1ZFgo7s5aru55AVDzXeQ29fks3vdr9urxbmje9ypw/vAsWCbxjZMg8j7kcvIRfuLyEkZo8gCDsPF7TMLyOhzq7tGtgvGY5/byJ9iK8pbJGvEbB9ryo6z89y5y/O0ioJLsjEHe85CW9vERp2L1KAMM8DswYPLeqLLynaFa8U8pTPSenYbyOgec7D3sRPZoH27zD0i49UwKJPacK5bw2DjC8i6ZfvQSewzwdhTI9TJCWO5LyFbwwd8U8C43MO7OWKzs1qus62nT+PLikWb0hO0K8IGC6PAqH+TySEv87drMIvSfSrDsnT0O9c3oPPW+MSr3fjtK8QI2MvKubfDzN9N08Wr8vPQX8NL01sL47J0nwvJRQB72sKow8Voa2vKjxkj2vY4W9Dx7kvERDHLsy1ba9JXqOvFdhPjuzE8K7qkPePKPXvrv/Xnc8Q5QjvEVE4LxGSjM8a9BnPm2xwj2uV988p8UDvWThXjtPFMS8afuyOwk7AT20cTM9G34bPK1WG70F/LS8vDtEPA5Jr7zntRC6yOavPaynIj0SBZK7IOMjPem21Lw44+Q8GcP8PAmyRD0l96Q44W+tvIRZ5bxhrji9XfioOkZQBjz1uV66SQBDPM/bC7tLZIc8FhNAvDwoBD0Vu6G7mgdbPMSttrx335c8NYvGuniOEDxfzV08spYrPAOkFr2hfyA8f32ZPMIpCb0CRiW94sF4PQDoM7zfFw+9cb/wvAEalry2o5U7ZsiMPKWyxrwkdDu9rgUUvdtVWb1DETo9xDAgPAN4hzu846U80gjfvEtY4bzt7008+kp2PUTmbr1ijxM93K13PTPVtjzt9aA8DU8CvE+RWj1aNvM8oVMRPbqLBzth4Jo9hBQEvIF+Xbt2e9O8aXJ2vCs9iLxsCB26iMoTPHQjtTqgnsU8cOToPGhSDT3NLBM96hRGvB5/3zsGVNM8RG+rvKAnArxbmrc8sxPCO1F4iDsXlim9TxoXPVWAYzzXIjO9GslPvDZAEr15tEw9JqadvIoohTyqxsc8gCY/PAxoVDyE1ns7IFrnOY3+fbw1CN08HosFPVInAT0s5q28yrvkO3ztRTvC0q48e5Unvem21DzL85m7i07BPNGwwDyLpl+9TJAWPNmApDs2i8Y8twEHPdtbrLtSpBe9hUATvc/bCz39MSQ92v06PTUtVT0gQZU85vrxu1Fs4jw9es+7EdmCPEgfaLuKpZu89r8xO2bCOTxgJXw8AkDSPM/VuLuwr/08IBUGPauhTzs2CF09RG+rvD10/LsLQhg9vLjavF1v7LuJ6ny9wyT6unOgyzzwq7C72QOOvIW9KT2lNbA7o9FrulH1Hj3tbGQ9HYUyPEtY4bxoUo282XT+u7u3Fr0W7QM9+W9uuo+5HD0Z9Bq91yIzOguHebw442Q9L6IQPYL787tcdT87ITtCPMNPxbxtNKw87kfsPEu1jrylNTA9BX+evFUDTTzizZ49m+LiuuB1gLygmHI9gKPVvPvNXz15Nza9zH0aPJiJAD0gNW884URivEii0TzDSXI802bQvHXYAL24LZa8tkboOy/zl7wWapo8udwOPO0nA70ik2C9pxC4vGRqG7x0I7U7UXiIPAuTn7w9VJO8R5z+vKynIj3jotO8kcCzvKCeRb2dwz28CTWuPG8PtLxJfVm80KptvaPR67vo4R+602bQvJmvvDv94Bw7N0CSO6eTIT08n8e86xoZPZTzWbtzph69J0nwvCzmLTuFt9Y8JXS7O3Ogy7zuR+w8MQCCvbVxszz0Fgw8B9e8vAzrvTruTb+8OOk3PX+pqLw89+W66w5zPP0l/rxyQlq7TxTEPBeWKbyluBm9xDAgPWtNfjzizZ48qswavckYEr2EWeW8652CPBbtg7xsLlm9Q5Sju8QwoLvh7MO8C4d5OxL567zRM6q83hE8vPNb7TxQ70u74KGPO8ucP73a2EK9xLMJPCBmjbuj3ZG88v37vHK/8LtwYf88P1VXvM13x7xMEwA9Hfz1vC+ikLs442Q87SeDPMqcvzxhMaK8Fa97PbZG6LuaB1u8PHpPvKPXvrxfUEe804V1vcrHijtZQpk8SoOsO+P/ALxrTf67+81fu5+kGLwcJ8G8TLwlvHFOAD0BGpY97e/NuwxuJz01Myi8652CuCmIPDxw6ju8QgtnvEteNL2j0Ws8gCa/O3TYALylrPM8/SX+vJqKxLyXS3i9EvlrOuaJgbyaB9u7pbJGvYRZZT2sKoy9fywSvMSzibzo4R89rldfPHaziDxZudy8BCGtPe3vzbzYHOC5SoMsvMQEkbwuwTU9eI4QveLBeDwOTwI9lXZDPNtbLL33lOY7xguovOhYY715MWM9OGZOvbw7RLsBGpY7jKZfPMsZ1rzkH2q9a9wNvcdjxrwjFko9QxG6PD9V17s46bc8OGD7vK7/QLtUpds74MYHu9Et17x+RWS60bBAuqWs8zvl2oi8Ajr/vK/ayDzWvu6604X1vEgfaL3yuBo815l2PZEXjr1hrjg8iXM5PPrNXzwhuFi8wXS9vG2xQryo6788pTuDPPcX0L0vGdS7jCnJvJqQl7wlbmi8Cof5uqpJMbw1LdU7y5w/O8QwIL0VMuU80wjfuoW31julska7Z3eFvNIUBT0/W6o83wvpux+3FD0wUYk8xd8YvU0/j7w9Awy9ZUUjvD6yBL3teIo8XfgoO1x1v7u+8A+8UWxiu44EUT1+wnq88QkiPC8Z1DsWkNY80bBAPXN6DzzfFw+9E+AZvf4G2TzmiQE9LbviO7KWK7wjmbO87MmRO77wjzyAIOy8DGjUvJoHWzyevWq8X0r0POHm8LsZ9Bq97aQZPJ5GJ7wl6/48NLaRvSKTYL2zE8K89x0jOS0YkLza2MI8iqUbvWW85rzI5q+8xo6RvJmvvLwGVNM8TLylPKYKZTpUpdu8TD8PvAkvWz0zWKC82v26PLE4ujvDSfI7xDCgO7E+Db3Yn0m9+E8FvHDkaDyo67+8AkYlPacK5bxGSjO9lXDwuydJ8DpauVw9aKMUu6CkGL3wIvS8hDrAu2tZJLrP1bi87O9NO8lEoTyoaFa7B1omvZ94Cb3x3ZI8ZGqbvL01cbzvTT89C0IYvCtd8Tzvpd080+NmPBU+iz2n5ey82thCPehY4zy19Jy8ZOFePPtQSbx2gSY895TmvOZ9W73oWOO8Pf04OrVr4LyroU+9sbujvEZE4LuWK488mgfbvKcWCz0jmTO9+1DJu+m8Jz1YZxG9F5apvfnyV7sUPos8WpTkO14qCzyPYkK8ata6PMuikr2lNTC9KK00Pa3ZBDyAo1W8/2odvWvQ5zyLrLK8hF+4PIYP9bzzW228DG6nvPcRfbx+ReQ8J0/DPFDJjzwyz+O8vxwfu67gG72hAoq8S9vKvOuR3Dy7Wmk7+W9uvaCeRbqU81k7i9GqvL8cHztNOby7S9vKOwQhLTycZcw7AOizPcOnYzsx9Fu8a4uGvSBBlTwleg49LkQfPTPVNrzizZ48sw3vuqFTET2jWig8E9RzOzH02zw/3hO8345SPck+TrzU74y8oBtcPY4EUTyOCqQ8W5Rku8jmL7yo6z+75omBOyezh7p5NzY86bynvPvTsrzBdD092nT+vO0nAz2YiQA9ma+8vEOUo7sZ7se8LkSfvFhnEbwef188RkozvEvhHb0x9Ns71O+MPYn2Ir15MWO8uoW0vbKQWD1V3RC8XE8DPQm4FzyjWqg7vOMlPTz9uDyZr7w8S9tKu31wrzsnSXC9Wr+vPOP/AL1STb26JfckvXuVp7xvYX86CbJEPKYWCzy5CB69/YnCu4vL1zyD1vs8RGnYvIjKE7z9Jf48olTVvO/K1bujZh49kawzPdXvSryyDBi8TDgGvFxVV7066Xs8avdTPVjKjjwWAsy8BB/FvIgBA72HbOM7KhbpOFx+8zvNUJG8FytovHEnMLwXCkY6TkCAPMl+ZLyswxM8MBUvvG9heroxHak8/tVAvUDHH7zn0lG86+o/PIIj37xkYJQ8XhcQO2JYmr3FZva8UXmQvBJ3A718ZwC9K/XGvNOZFTzTmRU91vdEO4DySL2S/us8YXW/vBLq3bvx7QK9+t70vA+IsbuWN3y9/926vOVTgLrjuuO6z1gLPaE1CDyfKRG8Op+9vDV/1b0m/vq7e7G+vVF9Db1BOvo7Z75DPYkqH7y3eju8SGrWvNjenD0s/UA9cw4IPR5bxLuRg5e92llxPLfEeT2ty428sVLZOxjpI7z87ug7hOmUPPdbJr0D9qg7GOmjPMIMxLyohgY8YEyjOtK2ujwdBY88CGDPvPucML1bLDs9Mm/hvN1IQ7yDVHW8w8IFPKvguLt5oUq7oodAvfI7PrzkRwm7z1wIPQX+ortq1jG9KswqO4DRJj05l0M9YXW/vO8Crrx5Vwy9S6NmPSkObzuECjc9fGcAuemUCj3puSk8/qykPA5flTza7hC9Qs8ZvSi8trz41vo8J93YOohLQbz2Lg08GOmjPHhTD71VLfW8XQ+WunH+E72QpDm8bealvI5OBL1kZJG81aUMvVTbPLzOVI696IyQO5S8JzsNynW8YXU/vMAlbD1hdb88vOThvIK0AbxReRA9o7BcPDmXQ71ljS09NHdbvX25uDwUrBa9EncDPUTbELrZMNU8ZWyLPNUYZz2i0f68RNsQvYIjXz0Qa4y8e/v8u6XhcjzS39a8v6qXOyv1Rr1Jk/I8ZGSRuxYCzDxoxj29WM6Lu3ZoOj1ix/e8PK8xvJ2IejyOToQ8p36MvVKBijyqAVu8GcgBPb2inT1mlSc9LSbdu9SdkrwO0u+8+m+XvCgG9TjWrYa9GMCHPEc5QD1ePC+8mNgSvasJVbzwCqg7UoEKu6NmnrziaCu733nZu0Cegz3puam9UcNOPaenKD3c+ge9eJlQPBgz4rvY3py6zXWwO6KHwLwS6t278AooPVjOi7u2csE8KZ+RO8IMRLwqFmm7hAq3vA1XG72OlEW9kc1VvWJ9uTwyJaO8rMOTvJbtPTvKPKC8JWKEvKn54DzrE9y76+o/Pb8dcj1DIVK9FBt0PFGiLD2m6ey8bL2JPbDbgbxWvhc9MD5LPe0b1rqdPrw89SqQu+vJnby9eQE9XTQ1uqXhcrxH7wE91q0GveR4n7x4mdA8ZWgOvVL0ZD31dM481akJvLExt7x1P568xv8SPXSB4rxSy0i9SnLQPEyCRD3ikUe9cPqWu+oLYju+ppq6iAGDu9TGLjywc/s8U9NCvK7Pijxxce47XV3RvK7Th7zIVcg83y8bPW7unzxfHwq8wQTKvKfIyjx3cLQ83PqHPHBp9LwhlNS8e/t8PLxxBz363vQ8atYxPW7FgzxsuQw9S3rKOznA3zx4Uw+9LEf/vNYg4bys6LI6+Nb6u4kuHLsNVxu96bkpPeqYhzyU5cO8SSCYPW7JAD0AuRu+8js+vC1HfzyQex27JrQ8vPdbJrx82to8zG02vYdDx7yG8Q49M06/O/qUtry9op28giPfvBPy1zwsR387jnOjPOixLz0AB1c9rtOHvE+SOL2mn667b2F6PXnK5rxA6MG8izqTPDQxGj2jsFy8Y4WzvCv1xrzmgJm9++buvPWd6ro3QQ47UvTkPGRgFLzp4kW8y2W8O0E6+jsAB1c8/906PQ+xTT1svYk8bjhevDz577xbAx88C5nfPJc/djsZ8Z08eluJvMIMxDxIata8Z+ffvOw8+LxP3Pa8CiIIu3EnMD1aJME8HjIoPIgBAz0BxRK8VxRNvVjOiz0mtLw7jIzLOQZQ27xRfQ06zG22PHMOCD01f9W7VbqaPIYaq7xhv/083XHfPMoXgTnpA+g8HltEveNwJby+Ffg8++ZuvVTbPD00LR09uII1vKafrjwfhGC87fozPMoXAb2UBua7CT8tPWSuTz5rsZI8UstIPCBjvrxFMcY7NahxvF9EKb3TvrQ8clBMPBSslrtPbRm9S3pKvbWTYz33Noc8jK3tu0t6Sj1u7h+8w+uhPO3VlDyeRra894TCPL7Lubu2KIM8dBIFvNShj7wYxAS9+3cRvUhq1rtXFM08tIvpvGBtxbzuTGw94DcVPXEnML1ThYe8F7gNPDmXw7wQuUe94KpvPPJk2jtY86q8qNDEvOKRR7wjUpC8IWs4u5O0LT0tJl289EuyvIK0gTwxHam6InMyvTmXwzyxe/W8dIFiumW2STwq7cy8U9PCvH7qTrt2Q5s8kHsdPJGDFz1nnSG8/7QePaM9gjv9g4g8RoP+vJDu97uu+Ca9v9MzPfjWej3w5Qg9YZ5bPSv1Rr2OvWE97ytKPQwqgrwaZPi8KLw2PSTNZLxAooA8XAuZvPucsLyIAYM8Q9eTutSdEjw78XU8jIxLPZncj7rPpkY8lZsFvKvgOLw9ihI9ZGQRPdSdkrzjcCW9vezbPBC5RzwgY768VQTZvKFWqrnEFL68t1GfvHzaWrxzWEa83PqHPIkuHD0LJoU8shCVPJrkibygd0w9VCV7OyBCnDyY/bE5RQgqvD7gxzzk4/88IIxaPRa4DT24o9e5BgadPWBMI72HIiW90M/iOqmKgzyGGqs8K6uIvRUjbj3CDMQ8furOPIGsBz12kdY7BgoavawRz7w2XjM9BgqaPDdBDj1Wvpc9LuQYPdjeHL3Buos73EDJvSa0vDwOX5W8JYMmvWnON7wPsc269Z3quwRI4TzQrkC98x4ZPfBU5jyCTHs9GfGdPa3Ljb1LMAy96bkpvTV/Vby97Fu8ryHDvMK+CLweDYm8cScwPdTGrjqECrc8n5B0PMuO2DxfHwo9PNDTPG9A2DyvIUO8tZPjPGGeW7xoxr28v6qXvMZFVLsT8lc9RzlAvavguLvJfmS82g8zPZjUFT2zFJI8oHdMPEmT8rns8jk8eHguu1OJBDuohga9eE+SPIkqH70GL7k4Qvi1Pb0Nfrxhntu7AxdLPb3s27yty409hhqrur+uFDx0qv47oKBoPN6ae7yRzdU8yjwgvUVS6Lq2m928pp+uPSbV3rsPiLG8P5oGPcVmdrt70mA7Y4UzvcoXgTuKfNc7otF+vWAnhLyJUzs9izqTPOTCXbwSwUE9TmkcveTCXbvxEiK8fgvxPKoB2zyXP3Y8RN+NvAg3M70Q2mm7cUjSu/Htgr1ljS29h/mIu9CFpDylwFA9rs+KPJUO4Lv2Lg27MiWjvNkwVbvmgBk9avdTPO8Crj24zPM8/c1GPAZQW73eJ6E8gKgKvW9hejyEM9M5cgYOvSNWDT3s8rm88VzgPDAVrzqkuFY9SSQVvWwHSDzc9gq9sVLZvGjGPbwLmV88beYlu7fE+TygoOi6sAChu3IGDjzkwt08MkZFvYIjX7zn0tG8LdwePazosr1Yzou8mzZCPM6eTL0KHgs9LUd/PA2AN73+1UC9zLd0vJQG5jvlobu61c6ovBFvibwIYE88/H+LvCTN5DzOx+g6UJoyvQXZA72Y/TE6PwlkPI+cvzk+AWq79zqEPKB3zDtnnaG7cPqWPFxVV7qxCBu9M04/vBe8Cr1fRKm8VgzTu2JYGr31dM68kfZxPSFrOL2jsFw7p6covZbtPbp/ySy61MYuPGaVpzzmgJk84KrvvDMEATsiThO9niGXvJ0dmrxC+DW7ljd8PK9K3zsgGQC9jIzLu2jGPb0W2S+85aG7vGSuTz0pnxG9ZpUnO//+XL2UBua8Nj0RvXJ5aDw7pze8gBtlPJOTC7194lS7urNLvfFcYD04RYu88AooPcPrITw5wF+9QBHeOu3RFz1FCKo8k91JPIVcb7y1SaW891umPMoXAb1Os1q8wdstuzrIWb0B5rQ8Ch4LPRnxHbyPnD89vsu5vO8ryrs2XrO6mNiSPFc17zycFSC9GfEdPfeEQrxyUMw7BB/FPNo4Tzy9w7+8zp7MvLqKLzuZJk488RIiPFssu7wo5dI88OWIu0+SOL0t3B69/h9/uxQb9Dzv4Yu6JmaBPOixLz3m63k8qY6APF9EKb2jZp683f6EPNCuQD1/yay9nWdYPLvc57x1FgK7PNBTvEL4tTyJLhy9UX2NPHuIorul4XK8VCX7uxjEBDwa9Ro9Oul7vZjUlTw/CeQ8EqAfvcX3mLunyEo9w+uhu6fISjvYKNu8AAdXPIDRJr26s0u8UHUTvGNcl7yuGUm9vJqjvLVJJTzdSEM8DCqCvRjEBDz3Noc9E8k7PWErAT2MY68891umvKiGhjyiOYU8i4RRPZSXiDuRh5S8/c1GPK4ZyTs1f9U7Hzqiu8IMRL0XCsa6sTG3vHwDd7ygd0w89CaTPWedIT1jz3G8KAb1PAhgT73//ty86sGjPMtEGj0x9Iy9vcM/PJ5GNr13cDS8NTWXvCnEsLw5wN+8VCV7PVT8XjwKR6c76pwEvdoPM7xMOAY8Ch4LPasJ1Ty3vH+9v6oXPYQKt7syRsU8ljf8vPm12LwGBp27ReeHvK4ZybwVI+47Qvg1vCrtzLyOlEW8A80MPe8rSrtdD5a8S3pKvYh03byVDuC8TWGivUXjijxtMOQ8MBUvvFB1E7z6bxe9QwAwvCnEMDxMWai6Bd2AvDhuJ72LOpM9Yn05PWd4Aj10YEA9FSPuvA3KdTxFUui682zUvKExCz2fTrC8kayzvGG//bsmtLy8aBD8PEhqVrzIB42782zUPPel5DyHbGO86xPcvHZDGzvAJew8Li5XvN9YN70TyTu8UvRkPJouSL2Na6m8beYlPXtjA7vQYIU8hvGOvPJkWjwEH0W9cB+2vPzuaDsZXH48zG22vKoB27y4WZm7GOkjPevqv7on3dg8/YOIu4U7zbyOlEW9ktXPu8ldwrwBwRU9F+EpvXv7fD32fEi96ZSKvND4fr3ggVO90Pj+vIDyyLyPUgG9PY4PvWBMI73KFwG7PgFqvNMI8ztRw847r9cEPHEnMLtXFE09jkoHvWZwiLsb/RQ9d0uVO/DliDu0HAw8BdmDPfqUNrwuLtc8LQU7PAtwwzxZ0oi8NHfbOzY9kT0kpEi9OEkIvHQ3JD2G9Qu99JXwvIkqnzrhO5K7PdhNvVB1Ez1zCos8CBIUPWXX67o8+e87oHdMPcZF1LyPxVs88emFPKKoYrsTE/q8K/XGvFlF4zraD7O731i3O09tmbyMYy+9/qwkvUpRrjs5wF+7zn2qO4kunDl3S5W8YJZhvfzuaDzGJDI8iqVzPJgeVDzrE9y8f6QNPbMYDzzX/z47ATBzvRLBwTv75m68IGM+PeV8HL2xMTe8eqnEvA2AN7xXNe86vJoju5c/9rwF3QA9LP3APAYKmjvisuk8yAcNPSqjjjw8r7E8euIFPc5ZjjzeyB29Y3lXvTpBuryQIk29L0MDPeyaaT3fIYg8USUTOvC5Jb0yu1C9FR6uO5UVHrz6yHw8mPrSvJqvBL2PM+06P0UrvGtR3TyLDTy9CEK3PKTxlDzL1xU8Elu5PLcjGb0Grx488PohvexITTuUifq81UI0PHGn6rv2FoG9dBhDvHR0Cr1CKuC6xyXBumMWm7y/PJu8jdONPKYXRjyFZRK9MK0NPW1APTyhwbg7GyIfvdjELLx29gI873gpvcVRLL3mRFw848yOvApJBT1jivc7W6HRvPeRK7w3baW95V8nvd2Hob2k8RS9iTmnu97InTzJpzm9c9fGvKygjLyotIk95HDHPKUyET3/abG70JqKvWHmvjyqPfc8SMFpu48iTTwtt1+8BmR3uuRfpzx23hS9aLABPOCcsjz7E6S8G3Q7PQavHjyq2rq6T2KevPC5JbxmTWy9BAQYPXW1Br3cPHo7GfLCvEabuLzdhyG8Ri7Ru+7KxbxCGcC7nsQVvIl6IzxIb028dBhDvYbITjz+1hg9sg4IPTEoOL3mRNy8YaVCvV9TpjwtCfw761ntO/Ke2rvaqeE8qLQJPc0Ykj3g/+47gzW2vDHuCb0Pn5I7gaIdPLNPBLxhSfu75F8nOwhT1zzG06Q4E0BuO6bFqTwPPH28dQcjvMlVnbz7CXm68Pqhux+8Bb1ftuI72/SIvbJgJLu8J4q8PwSvvC6mPztfUyY9bAYPPADvhrzlNpk7swRdPUNaPD3qtTS9dbz7PHiJG73n4Z88vbqivP3nuDxDa1w7+JGrPIoeXDvD/w89YjhbvLs4Kr3M15U9lsOBvMaSKDstVKM7orCYvIpRFbuf4/i8uvctPVyQMbuzBF08gLO9vA88/buCoh09R6KGvDXrrLxiONs8VxGWu0njgr1i1R48a62ku3uvzDyV7I895rgRPekiHLxhlCK9q37zvPy3XLxd0S08+JGrvWBkRj2l5+k84x6rvE60urvS0Vu8jLF0PPLf1jklO6G8AVkRO/xK9TxeEio9g+MZvVPa6zxIwem7dQcjvaaErTztiUk86SKcOoGzPTyq69q8tEVZPMs60jx1Wb+63Nk9O0tDYjyIOae8m73HPFwVB7x8AWm9qLSJvYNGVr2P0LA8ykvyO3/EXb0Oh6Q7xoh9O6HSWLwvSvg8oW8cPOD/bj3oIpw9nj/AvLY0OT0y7gk8Fl8qvQjwmjz1YU88vgy/PGZN7Dxojmi8JiBWPc68yryjAjU8dMYmPdzZvbzL+VW8SV6tOx5IUL0/l8e8HqQXPU+jGr2rGzc97nipPEufKbwvbBG9SeMCvTCLdDyd/sO8jV9YvegzvDwRWzk9Fw2OvKFGjjvy39Y7TXM+PDHM8Lwr0io81a8bPPumPL2D45k8jU44OjgRXr23I5m8WB/ZO5bDAbzXgzA9NY9lvMeqlrxMzwU89f6Su/960Twupr+6VzokvaMCNbuXqDY9+cGHPDzDMj2syRo9MDnYPE4Xdzy6Scq8E+5RvP7WGL06nYG8JTuhvJxrq7sKSQW8V95cveBbNj2hwbi6r+9LvVIlkz0cdDs81scJvv2VnLzQ7CY8Djz9uhWB6rqjArW7Kj8SPd12Ab2syZo8NyL+PF4jyjsZ8sK8FsLmvJa51rwlO6E8SU2NuQ6HJDzcRiU97dtlPcDgU7yRUqm8KKLOvJysJz1ftuK7fF0wvPumvDzddgE9fveWvDZ+Rb3ohdi8LBOnvaSmbb188Eg78p5auzK7UDzP/ca7zK6HvDpBOjwfvIW8rMkaPfLf1jx5oQk9yAOBvCPphDw7Bwy9G9CCvAnmbzxSJRM82Whlu03F2rwUYoc82lfFvOljGLyyw+C7FcwRvQgIiTsoULI8KNWHPF3RrTy1hlU9wX0XvaBvHL0CT2Y91a8bvIqSkTu8y0K9FC/OO6KHCj05Ulo8KGFSvO03rbqSY8m8bO4gPdCaCj3n4Z+8OzCaPPRyb70DT+a83JhBPBZfqr3JVZ08MnrUPEnjgrvJAwE7PRVPvMNizDq3+gq8ny4gvGkrLD06Ulo+oG8cPW/CtTpD3xG98LklPWq+RL3veCm9S5V+O/UPM7xuLx27mTtPvScPNr2M/Js9BH9CPIXIzrvUZPQ8xoj9uDiuobsTShk8wiHQvHg+9LsrJMe7ZBYbvLl8A72f4/i8yGY9vfy3XL02RJe7qEciPe2JybwGhpC8jzNtPP9psTw7B4y8PMMyvTcbCT0PhyS6PHEWvQpJBTzaqWG8vMvCvL77nrzs5RC88BxivK0KlztXUpI8w7Tou4iLQ7xaT7W7v/HzvMgDgb0Ix4w8B6XzvAM+xjs+Vks8SMHpvMyuB72Rv5C8S5+pO1gphLuoRyI9pJXNu2UMcD37Cfm8EBq9PHjbN70rgA49dMamvT+o5zzcRiU9VZ1gO7h8gz2087y8ze+DPczoNT0kOyE7SF4tvL88mz081NK8gTiTvGMnO7wMqeS7qEeiPGeYk7x9jYw8kqRFvGeO6DzX1cw86CIcPROcNbsICIm81K8bPdqzjD3SHAO9qtq6vPSUCD0ORig8ra5PvHpu0Luyw2A8wBONvBBs2Tsx7gm9jU44vC+VnzwiC0U9h30AvTzU0jyv78u7/fhYPagelDxjJzs8PMMyPBdfKjzR4vs8T1jzPDqTVj350ic9ft+ousXkxD0wi3S9riKFvEHYQzxvFFI9HyaQPEufKb2E2e48S+AlPDzUUj3tiUk8ZamzvOuklLxZYFW8YWuUPbLDYDwheKw8Q1q8PT8ErzzUZPS8fjHFOh5ZcL1XeyA8HGMbvN7IHb3vuaW8GHeYPNIcA731IFO81aXwvOagIz1kVxc9Wk+1PCbOuT2e7SO9T1jzPBcNDr1DCKC831u2O2QWG7yfgLw5tEVZueFAazwjTEG7RWEKPSvSqrvn4Z883JhBPSV8HT03v8E8I6/9OjpBujzo13S8kb8QvP6L8bsPfXm9S58pPQTbib3Vrxs8JCoBvDzUUj1ErNg8Yor3PPbVhDyAsz076SIcPCtXADvvHOI7GLHGvFlx9TvJuFm9eImbvHVZvz0T7lG8m71Hu7/SkD3TI3i8lIl6PU0QgrzK+dU83YchPXW1Bjs1LCm8P5fHPFuQMb1Mt5e8gVd2ux+JTD2LzD88gphyO788mzymKOY8w/+PvJj6UrwRtwC7+XZgPH7fKL3Gkig82CdpPcLPszwwKLi8XX8RPcK+E71hlKI8pwYmOwYBuzuJKAc9+wl5O0/1tryHSke9Yyc7vcaSqLvYxCy9bUC9vC5skTxnbwU9M2k0PU+jmjq0T4Q8zzCAuwuKAb0C7Kk8TM+FPTINbbzHd109qtq6PDOqsDzSLSO9WQ45Pd8JmrwUL8488RIQPEaKGL0v57s8mPrSvCILRbyoaWK70n+/PC+VH73t22U8+mXAvJ8uIL3nuJG8sGMBPYUa67wY8sK7l8r2vJDQMDxYeyA9HryFug/IIL2oWMK8NSwpO98JmjwUL869o1RRPD+oZzqMTri8KjXnPNEtI7qb8IC9/q0KvT+XR7vJCvY77TctPM0YkrxwAzK8coUqPNqp4TyfLiA90P3GvI5+lLwl39m8btPVuTZ+xTwzqrA7cFVOvGoQYTy1NDm7nFqLvIY8BD0xKLi7FYHqvN5s1ronDza96/YwPIUaazthSfs7jE44vahHIj34Pw+9SB2xOnzwyLuDuou58Uy+u18I/zwb0AI9UYjPOjO70Lw9Z+s7lrnWuzDnO7y1kIC8WXH1uuRwxzwHr565+ONHvNMj+Lv4kau8dgejvJ/to7w6xg89txnuvBNA7rptLx29GVV/PA48fb0ZMz+7tYbVu39yQbtoK6y8TcXaOYl6I7uZbog9f4PhvBKcNT2f7aM83EYlvZIAjTwJMRc90P3GPMpLcjuKL/y731u2vCskRzzdnw+9c9dGvFm8HDw+8469E+7RPFbohzyxDog7EGzZPOGcMr1jede8UAbXuxXMET3Sfz88v6mCvEZhij0lzrm8esqXuyV8nTueP8A7gLO9vDzU0rzBMvC7jLH0uukY8bti1Z68b2buOx2kl7rsSE29/fhYvWRXlzsahds8YjhbvVkOOT164oU9BwE7PeaxQzwVHi69yiwPvQYBuzytXDM9S5+pvdqp4TuYqLa8WWDVO8jJebw7MBo8aSssvUuVfjxXOiQ8uMfRvBEJnTxB2EO8OIWTPLg7B70iC8W7f84IPf96Ubw/qGc83mxWPRXdMTwFI/u8lXhavWPtDLxF7VS9yRQhvWychLzjowC8riIFvXHykby+Tbs83uCLPBK+db3VpfA7esBsPVm8HD2D4xk9ny4gPL6wdzwuAoe72EkCPTSqMD0Zlns8RUkcu5npsjzYJ2k808A7PC6mP7xYzTy99mFPO0PfEbwzaTS8026fPLdklT3UATg9aq2kvMgDAT2TQQm9tPO8vIl6I7o4Y3o9WQ45vUeA7TsIU1e9yvnVvO5nibzdK1o7FC/OvD8ELz2BBVq7qEcivHW8+7z0cm88qxs3vBPu0TwmcvI8a60kvWGlwjzMe0677DctPVcw+bxoPMy7D4ckOoy7n7yLaYO8UHoMvSQ7IbtyhSq8/UOAPBvG1zxP9ba87DctvX4xRb2I54q7vIrGvFWdYL2/qYI8smAkOy1247x42ze6PwQvvXXGJryAD4U7g+OZvJARrbzeyB29iJxjPVeMQDyOj7Q8UbuIPetZbbycWos8Q1q8ug6YxLzpdDg7mq8EvekY8byIi0M8Aj7GvJ+RXDwxKDi7X1OmvHXGJjqC9Dk9LROnO4KY8rsUowM8imkDPQwWzLwYsca8MnrUvNYxFD3wuaW9kqRFvGpsKD0nDzY8HbW3PB+8hbyyYCQ8VQpIvcs6Ur0Z8sI8hDW2uyo1ZzxgKhi9vW97u08GVz2H+Ko8024fPS6mP7xDtoO88zFzvSn+lbuv78u8hNluPcttC73nlng9QmvcvLTiHL1ZvBy9nj9Avbo4qrwl31m9n4C8vJoqL711WT+9oAWSPIiLw7r8SnU7uUnKu045ED0f5ZM8iSiHPao2Ar020GG8zRiSPJo7Tzu69608Rx0xPSTphD2xDoi5H+WTPHkcNDwuVCM9f9V9vKXn6bzTElg9XnXmvBzGVzw4riE9gvS5u/LfVrxDGcA8VFxkPAZuIr2+TTs9OG0lPI/QMD3vbn684oFnvOoHUT3aV0W7CPAaPbRFWTzGiH28TrQ6vE/1trz8lRw8Yye7vM5qLrsB/Um8pQmDvP9pMb2cGQ+783wavEfLlLw9cRa89z+PvLbYcb1z18a8lNShPENrXDzUAbg8uaWRvDRO6TyoHpQ8ZvtPuzHMcL10KWO7phdGO2LmPj075XK9egsUvV9kxrwBMIM8hglLORKtVbz/zO07AA7qPJmXFj2XC3M7QV2ZPJYVHj0syP87b2buvN6MJz1m1888S+BZvddiNbzQ0R08iP41vSpMULsthAM9R8JjPSUu2rzDafq8nn+LvaiMwTyQm8m6uFPHPCfTMD3iC8U8EmHWvJxtkbwO3Lq8glPhOoJNY7yBc5w8ZURzvCfNMjzkF0G7RuIePXWeVbzYSHg9JVSTO5DHgDwRfhK9K3WIvXhDLL1QhTA9I7s4PWT9CD1ScXG93IapvCNLFj0dKiE9j7iFveUdvzxR+NE7UYuuu90WBzx64gS9QtAkvbEpVbzV6RW92GgzPD9XBb0Yf0w9SFu+vJa5v7xD1iI88mWnvd75yrwIUaG9ahUBvTeUOLxxEzw8odVwPFMthr1Mc7a8rrA1Pd0fBDxo6Uk9ZT71vGcJBbw/vqq8lrk/Pft1XL2PwYK8fcjHOhT6sDwbHiU9PIz1vNZct7xfs9s8y0kDvQTJBj0S7rS878ZOu4wWLjxpXOs8slINu4LgPzw2IRe9bI4gvQ5J3rsxAyE9AY7UOpDEgbzEb/i4hogVvWLrDr32V2Y9aXwmPN0fBLy90mS8BdWCvTf73Tz+gdi8J9Owu7lTR72Wub88y7mlvM2/ozwy6eO85LCbPKSaAj0zfMA871OtPBT6MDwhHGC8xG/4u0XiHruUrUM88/4BPPpp4Dz0dyG95KodPdZct7uuivy7wBCWvUI9SDy0W4q7ae/HO6BiT7xSl6q7LfEmvXjNC71fuVk6UGV1vP4aMzzdHAW8VH1tPWM4dz3W8pK9G/hrPYnkeD0MPWI9NPXfOosWLj10Bfu9N/vdPN75yrySocc8vWs/PYN5mryeeQ28yRpNvcOJNT2ijga9OjORPXKM27z6aeC7X7NbvcogyzwGssi6qyuau/HyBbv8e9q8a4giPXeqUb1i6I+7T193PZa5P70DmlC8oIUJOp55jbwBvQq7eiNxvRoYp7y9az+7mdG3PfmSmDw2jro8UgROvNRWubvdFoe8WijCPP4aM70lVxI9AZTSPAdFJb1+YaK8tkfLO1gixDyct/q8WLUgvdXJWjxxphg9xgjTPBT6ML2VJuO5t7psvX/UQ7weMB88ZdfPu5xwELwwcEQ8uMDqO0ptODy4cwI9EFXavL4Hmbza51A7jygovekPfrya1zW9OZo2vclABjwG0oO8m2eTPbNYCz3KIEu99HGjO3zCybx73wW7SvqWPFKXqjuzwi89PkuJPQoxZr20qPI6nEpXPVWjpjyZXha6R8LjvE5/Mj3uTS891vURvd1g8DyI/jW9QmMBvHQFe7rGdfY8913kvKYTorz0caO86cUUPeSqHTwo2a45Jcc0PR82HT19VaY8IrU6vT6Ycb1drd08nnaOO4N/GL12pFM8ofupPX9BZ7yYW5c88T9uvBl/zLx5HfO8odVwPF+5WT1yGbq7e08oPVH+z7wKV5+712K1umoYAD0aq4M8THO2POKeIbscl0Q6C8rAvCc61rkJvkS8D3gUPIoQsLwT9DI9fFWmPf6B2Dyzwq89aoKku0/sVbnJQIY680VsO1i1oL2GjpO9chk6vHETPLx/Qec84xdBvA1mmryhiwc91MNcvNnb1LzmIz09E4ePvA5vF77+FDW9HCQjPMmHcDxQGA08e+IEPNdiNTzy+AO9t9qnu1OdqLxaKMK81mK1vEbinrxmBgY8VqkkPRPOebsHSyO7lkwcPVQwhbzfJQI7IrU6vJC+g7wEE/A8UBsMuvHMTLyxlvg75IpivHsj8TwDmtC8FpYKvRZtUr1hUrS8KUzQO4umCzxeIH853IapPAG6C7y78p88ZUTzPFMKTLx1wY89slKNPUS257x0JTY6dLsRvXUxMj2xTw49feiCPGv7Q73Nv6M8v97gvI8Cb7y78p+8cYZdPW2UHr0rUk48lSZjPGXXzztTLQa9JE4VPc1SAD2G0v65LOsou7FSDbxKABU8oWLPvAU5qTw2IRc77EEzPdhoM71zklm8BM8EPSzrqDr38EA8KLN1vBHotj3CHJK8ueajvCJLFrwBAXa9Eeg2vcabL7w/nm88f87FPBu0AL3f/8g8SFs+PM6faLyXWJg8OhNWPmVqLDxAxKg77y30vFQwhTwRfhK9MuPlPN8lAj0RfhK9TXm0vG96Yb2Sp8W8REnEuzoTVruQLqY8vWu/PD5LCT20onS8iqaLPOk1t7yYy7k8+mngPKYTojubq/679lFovaH7KTwObBi9RLbnPGPujbw5Ddi8Zt3NPO7mCbzGdfa78mWnuj9Uhjy3cAM912I1PKYTIr0+UYc9Aw1yvaLb7jxPX/c5XiD/vEwMEb1Q8lM8A8aHvK9Ak7yYON28VhxGPRkYJ7sr66i81OmVOhmlhTuDdhu9eyPxPDYklrxofKa8rT2UvNp6Lb2zNdE8E/QyvDUhl7vKrak8bAFCO3eqUb0qUs47qwvfPB0K5rwCAXY8ZmosPWr1xTy5U0c96hX8vC1YzDzQPsE85bYZPQEhMT3ZTvY8NicVvecvuTpi8Qy9mte1vJQg5bwPT1y62W6xPBfm8TtSJwg8djEyu7NbCryVT5s9GKIGve9TrTwmXZA8oGJPvGIyeTxxGbo8VhzGvElnuru34CW9q5g9Pb/e4Dx96AK87dqNPBwkI73dYHA9etkHvX1VpjwX5nG7o25LvHETPLw09V+96TU3u4DUw7zvM/K8XMcaPFKRrDxYtSC9gEdlup5W07wasQE9FZkJu3fKjDyb17U7tKjyu0lhPD0QeBS9N5Q4O2gJhbxtmpw7Sm24PK8j17vMJsm8mj5bvO3aDT32V+Y8QmCCOwTJhj1R+FG8yT0HPI+VS7vgkiW90Uq9uy3Fb7zIOgi90debOXnWiDwlVJO8kjqiO8iBcrx9WyQ9jIlPvK+2s7zGCNM8UGX1vBBVWjxxrJY8nLF8vHrZB7xR/s+8xZWxPCO7uDyLFi49ZfqJvBl/zDyfXNE72P4Ou+uuVj1I8Zk9JjRYPZQg5bzCY3y8RU9CvYf4N735jxk9PlGHPMg6CD14F3W8s8gtvHrfBb3Oyx89xI+zPCfNMjv5/Ly8lSZjPf2hkzvLJkk9TE19PEI9yLxiWDI9cIDfvOAogTt6ts09i6aLvQQzq7wOSV49oFxRvbNbij2WTBw9a2hnPOaW3rwUZ9Q8vdLkPCMo3Ds+knM9qiUcvZg4Xbx/O2m9VDMEvQkraLuVJmM7073eupa/Pb3bCgu9eBd1vDF2wrxIzl+81zx8PWJesDt96IK8/hQ1vRz+aTymEyK9PbisPMuTbLxTd2+907dgPQjbgDuddg69Q2YAvTkNWLxg35K77eMKPOMXwTwku7i7JaH7O3MlNj3Lk+y7xALVPAG9CrtCYAK98thIO+Swm7zPOEM9I5V/O35hIjsFz4Q7KkxQvTkN2LxTBE49R+gcPGT3ijuJl5C4DMpAPQ3QvrpboWE82udQO+kPfrwW4PO7y43uPNVcN7pVoya9LcVvvC2EAz2a17U8JloRvYujjL0jS5a8cRO8PEW2Z7yvQ5K8n++tvJhVmbtKbbi8oYiIOw5DYL1K95c79VFou2As+7sn0zC8kAhtu2964byvI9c7nb34O0Gk7TzlkGA6feuBPMy5JTuAR+U8fLxLvH9nIL05mjY8fegCvZKnxTtZlWU9wfBaPLlZRTyfXFE8B9gBPZrRtzyew3a8QqprO11AurxAN8q8YusOvQ7WPLxguVm87bpSPOgvOTym52q89urCvGXXz7vy2Mi8MQmfuzmaNju5WUU8spb4vEwDFD0bi0i8SWE8PGpiabzaei29JaF7vOqoWL0KxEI8nlBVvSNIlzvGoS09cKMZu8cxC71R/k+8bJQeu0ZVwLx30Ao8cRO8u6MBKLzy2Mi8ueYjvKooG71LA5Q9HCSjvAAhMbwXnIi9EOK4PXg9LrwY7G89aHYoPQ1jm7yMFq48JVeSvE8VDrzqFfw82P4OPSROlby1rnC6MN3nvF1AOr36Ars7o+FsOyTBtjweo0A9NIK+O+0h+Lx6SSq93vlKvZRAIDxVNgM94ZijPDsZ1Dli6448dQv5vGv7Q73jF8E8uewhPAXMhbtZux48Vz8APdRWubtbNL684SsAvWYGBjzJPYe8bnRjvddC+rxnBgY9tMgtPYdrWb3BE5W8vf6bPGDfEjxiWDK769QPvVgiRLzJGs283BOIPFmV5b0AjtQ7BDOrvHQltrww/SI7fMLJPOF4aLzCGRM7dsQOvfd9H71ODxA90t2ZvF+52TrxX6m7xzGLO5cy37uPAm+83BCJPLhTRzxXIsS5vPidvDHjZbx74oS8lUaePAcf7LxgTLa7bW7lvK4X27wZrgK8jwLvu+0h+DyOKKg7CFEhPfBZKz0IS6M8IBZiPRFVWjv4g5285bMaPLCQ+jzz/gE9NPVfOAEhMTtam+O86s6RPHCA37wMykC93ownvXu2zbt9VSa87NeOvBLutLwDoM47kMeAO0xN/TvKIEs8HSohvT2yLr1Q8tO8BkUlvBmFSr0/vqo8aoKkvIR8Gb1BN0q7jrIHPBefh7zinqE8n38LPbRhiL39FDW8PSVQPa6KfDt3yoy7jY/NvGrvRzzGDlG77+aJu0HQJLy0yK28wV1+vGJYsjwb+Ou8fTVrPd8lAr0WBq28jIPRvDYhFzyqmL27fegCuj1ICr3Ad7u8k0AgvaMHJj0aq4O83BMIPBkSKT0Qwv08QmACvPpv3rwmp3m82w2KvAw35LscJCM8OxlUvNDRHTwmOlY9LVhMPAEBdj30AQG9A8OIOwK9Cj17I/G8+WNiPLdNSb3t2o27bI4gvMqtKb11wQ+8aVxrOx0K5rxyjNu8mFuXvJ29eLwZhco8jKwJvIJznD20W4o7G7SAuzxCDD1BXQO77bpSvWTRUbzKQ4U8yiBLuzw/jbv0S+q7QdCkPPNFbL0OaRm8VqmkPGd2qLvJFM87qgXhvCfTsDx8L228jINRPCzFbzvXz1i7Wi7AuxHCfbyXUhq69eTEPP+HVj1PX3e9iQQ0PXO1E72OlUu9qPlkvE7mV7thxVU8OaA0vMg6iLr7ddw8ZD71u8GDtzyTFGk7zssfPQQTcLzov5Y8mtG3POy01DxSkay7S/0Vvbh2gT02IRc9qpI/PaoF4TqbapI8ekmqPCVUkztwgN88RLbnPJI0pLsU1Pc7VTmCPZvXNTtq9UW8UR4LPcEQlrv38EC8ZwOHvPBZK7ypjEE7j7sEPS+KATwlNFg5dZ5VvJ9/i7yUIGU9ueyhvaR0ST2JlxC6iZqPO4b4t7xiWDK9Tn+yPI+7hLyvtrO8xJWxu0RJxDuB2kG8eM0LPVapJL0btAC96C85vZSzQT0a8m28HCQjPQ3Qvrw8H9I8HzYdPTD9IrxZu548zLklPTIPHbxiXjC9aoIkPImdDjxHyOG7OTYQvX0167ztIfg8iAQ0O5xwELvza6U8jY9NvNhoszx2ygw8xI+zu5/przuikQU9UYuuPNyGKTsUc+M8yJX6PMHDTL3PlFc8bvfNu3KFML2S0hC94Ll0PWOXPT2+RTG8hQEGvY4aJb2bSYo8VdPTuxxi+TxfFvw89ny7PM0wfrwCyQi9TwEmvKsDLLwEW2c6rUf3O3cgtDv2fLu877euu1phtjxzv4C8i8aSPVlEzjyKtks8bz6/vJTfsb0FlTe9rCAUPUS71zxEyx47kphAvf6V2rx09io9wxoFPBfH9bzouNE8wabkvMP9nDtKY3w8RK42vRj0JL38Tmk8YGATvcmyYjyKnAm976oNPWzAI72xni+9AO2Su2JttL1zr7m77Ea0vYc4ML32psS8Q6GVO+tGtDj7NCe9SA/qvDhBhTxR+oM834/rPLeNxbwY5wO8r2RfvLT/Yj0cF4y9FaASOz2iuLpWlQc92MpePC/ezrzGe7i8wLarPCwvCL3QlNc887CMuwoT0zyUFlw8Q6EVPYl/ITxAEzO8LrTFvHKSUbvd/Yy8c59yO5Gl4TsmtWi80ujpuxfk3bxvPj+9q9kiPQNOxrvGbhe6BZW3vIBGdL2JjEI7q4sPvfoH+LwDMd68aVxKvMGm5Lw2wEM7zyyCvAxqizz4SxA9weC0POjlgDyjyn68cWjIvA2u1ruBJZC7aEKIPIElELy6eQI8AzHeuZUZgj0Foti8qZ/SvIXxPr1rlpo7v3xbOx2PKL21Vhu9m3OTPOQ6Nr2tLTW9OdYJPCI3zbyL8Bs8QT28Or5/gT0woAI9a5aavYvDbD32IYc9vDiQPWBd7Ts8vyA9Pbx6vXS8Wj1KVlu9q9mivGbrzzzHe7i78D+SuyyX3byAZoI9HalqvPa2iz3DGgW9jzRnvMilQb0woII7QwyRvI6iiDxSjwg8u/GevG+5gTwrfRu95zMUvU1fgD2MWxe9ERIwvchKDT2DxzW8G0i3u9aGE71R+oO8msGmu+6NpT3+ssI8qHXJPIPUVjzJwik84LwavdP4sDwB6uy8m8EmPZQWXDxjh/a8Rsj4vNnnxjov3s47UXIgvRtIN71JWQE8fPWHPfntNT1BTYO9KSkJPAD6M72fTOM76OLauqrJW7zNTeY6rPPkuhM8Obywjui7oA6XPH4PyrwutEW8g7fuOhDbBb189Ye7eXRGvR2PKL0EW+c8HqnqvHz1hz2LW5c8m96OvW+cmbxW8Du7n+QNPAIH1TzVTEM87X1ePSwviD17YAO9C0r9OwDtEj0Fotg84OajPGXRjbzHIAQ9aqM7PVE4UL2XQOU8X0OrvKHAA73FUa88XFqUPBJMAL0cckC8ygmbvNP4MD1t6qw89EWRvEZTgj2t0gA91Tx8PK1KHb0g8Fu9lkOLPcwzJDshGuW8Un/BPMQnpj05Tqa84gBmPJ5cqruQXvC8OKyAO3uuljygdmw9wuC0u3NUBT1yDZQ858VyPLU5s7xrsNw8j0QuPC7EDDuJjMI887AMvLkyEbyYAhm7p1jhPEN05jsOvp28vTVqPCyKvD1tcpA88f6fPRN2ibu/bzq8WgaCuAhkjLr5dZm9J9JQvRWDqrzzNUq8F/QkPC/7Nry3CAi8cXgPPVcNJDtqozu94dmCPEk8Gbui6gy+5YEnvdnK3jznM5Q8NbOiOoBG9DwtmoO82vRnvaGTVDwcFwy9iG9avOKYEL2PRC68NcBDPG8u+Dqxu5e8V5UHvPRvGj1WAIO8X6GFu8VB6DuGDqe8nlyqPGlp67y1ObO8HbkxuipDyzzqegU9yxa8vFzFj7xrvX29HRcMuzyVFzrWdsy6HGL5u0gfMT3/v+O81huYOya16Dw39225VeOaPSWLXz3tgAS9rCAUPRkBRr1CZ0W7jidGPZZQLD2D1Fa9suWgPHFoyLt3PZy8rR3uvPntNT1oXEq9OBRWPIvTszxbi788Eklau1XGMjyL8Bs8PUeEvNV2zDw36sy8HalqvJUmozyM4NQ8PukpOgMxXj3PsT+9iG9aPHmRLj3p4to7BFvnurmqLbymaKg9zTB+vF6hhbxSj4g58NFwveerML0sLwg99Wz0PO+3Lj2ghjO7f0mau4vTs7xvIde86NW5POMdTj7ouNE7P5sWvC3EDL3i80Q9B79AvTkxvjw0iRk9Ml8QvXz1B7xSYtm8Rtg/vLCRjjwtpyQ8ZiL6PCtQbDwLagu8sCYTvZPCyTw9RwS9RxKQu1XjmjvIlfo8rBDNvHl0Rr1xeA89olWIvPaZIzxablc8SCzSvHOvuTo9v6C5Y7SlO7UpbDtcMIs7v3zbPAH6M7vimBC9PL8gPW9OBr2Oogg9LsQMPKq8OrsljgW91C/bvOC8mryQi5+8YnpVvSAAozz7JOC6S60TvM+kHjpLGI+8ZdENvQswOzyr2SK9hZYKvbUcS7sDQSW9XwnbPAjM4bw0iRm8VgCDPJtJCrxILFK9F9e8PIYbyDyOGiW9OSF3PLdwXT3HIIQ8lRZcPbrUNr3nqzA9x3s4PQbPBz0XfIg8XhkiPTgHtbzvp2e8SCzSvFzSsLyBkAu8c9nCvFFVuDyM8Bs7Ns3kPCgMIT2fTwk8NaaBPRvtgr1XN608d6gXPIdVGLxRVbg7xojZPEqQq7qivd27bz6/vAkGsjyi6ow8CjA7Ol8MATwOoTW9W5uGPZz40LzN5RA8UXKgPMilQTrtcD07JHGdvWYIODpzv4C8F+TdvF7vmDzuFYm7lOxSvdaTNDrPlFe8G1VYPcLgNDs0lro8/i2FvNw72TwiVLU8dhBtvWTerrwSWSE83C64O7w4kDwhsg+9JrXovLGer7yPRK48fzlTO2FQTLtqozs9weC0PPWMAjyL07M8zeUQvV+hBbvGiNm8lq4GvQIXnLz9mAC8oGlLvE6JCTw6ABO9tlP1PIYbyDwybLE75QkLPbCOaL3qegU915O0PAn26ryi6oy8/y0FvW9OBj21Vhs95d8BPSLcGL2LW5c8jhd/ulBIlzz2jII9DpFuPaLqDD1AIFS9d0o9vDEV+bs2ZQ+92fcNPaiSsTtNx1U9eWclvHKS0TthetW89pkjPXzV+TwX54O6woWAu9G+YD24gCQ87DZtPR65sbuOGqW80JRXPfaJ3Lw39208cFunPUJKXb33s+W8e7s3PUS717zedSk9KSZjPJATgzzFrwm9oKObPDJPyTwI+ZA8BaLYPHYQ7bwTdom8QeKHvVc3Lb2IcgC8MkIoPHct1TzUL1u9LsFmvV8zZLwjYda7w/p2vGzNxD1W8Du8GqYRvVKPiL353W48qby6vO2NJbpfGaK7LC+IvX0fkT0bZR88b06GO1XjGr0wNYe7GPF+u1XwO7qcJQA9N/ftO/nd7jzHIIQ9XgyBvMCZwzzfvBq7v4wivfDhNzwoKYk7b04GPKh1ST0km6Y7X6EFPKvZor2zAom8vDVqPRJMgDzaIRe8rPaKuzo+3zyWrgY8vVLSPLZWmzyybYS80zIBPeMdTjzD/Ry85QkLvQ2Ezbtksf88la4GOuPCmbwOkW69bM1EvMG2KzzPpJ46bQeVvCpDy7xBTQM8Q4StO0E9PDyTz2q9rSCUu0nuhbpm68873XWpvNewHD0JBjK9m+uvPKzzZDzSgBQ9gPuGvL1SUjznjsg8HwAjPcQnpjr2iVy9t3BdPJ4/wrhO8V67+Rc/PW8xnjwiVDU80zKBPKwDLD1O5D08mbSFvCcJe7yFKw+9PtlivBU1F70Nrla9gfuGunYDTLxSYtk5iqmqvDyScbyjzaS8wLYrvQ6+nbtfDIG70ttIPOr/Qrzg5iM9vAthvHJ16Ty6xO+875rGvIYoaTyj2sW8MRifOz8g1LysIJS8sI7oPEgfsbuLtku9wabku5hq7rsVgyq9j8yRvFKMYrwMZ+U8qbw6vHlkf7tHAkm9g2yBPTbNZDvIpcG7OTG+vTAYnz0A0Cq8coUwPWp5Mj2lPh+87DkTPbw4kLwsfRs8xAo+PfRSsjxUTpa7eFdePF3fUbzvqo28zmpOPOMdzru9UtI88gtBPSLcmLzAjKK8NbD8vBxyQL3qDGS7qBqVPKzzZDzedSk9M/SUPPtesLxDdOa8H9NzPM3lED1LGI+8KRlCvIPUVj0Q6CY8hg6nvCI3zbyuZ4W8Ezy5vNsEL70DXg28xnu4PEZ9Cz1QSBe9Az7/O8nCKTzImKA815O0OqrJW71hXW07CQayvOYJCzzgufS9BYXwu6P3rbwzXGq8XhkivDfdqzy3cF285nQGPMVRL7109iq9+yTgO8KFgLyoguo876qNvLCRjrt3LVU8vAvhvLwLYTx8Aqk8I2HWOqmfUrwOke67sZ6vPHTpCbzC0G28kG63uzkkHbx+OdO8Tw7HO7p5AjwrUOw7MAjYuk8rLz0wFXk9M2wxu+oPCj0TSVq64KxTvKU+H7xbi788e7s3PWFQzLiWUKy83UugvLQPKj3WG5i8qrw6vSEdC71uLni8Vw2ku+VUeDyASRq8byHXvF4MgbzHa3G8TdecPGzAI707aGi9z6SevANBpboPu/e8yUqNPLr+v7uLw2y9H8bSPFzCabyBcP27hhvIPFL6Azwf1hm9k8LJvHqB5zxHEhA8qwMsu4O3brzHezi80L5gPAIXnDwv+7a8Y4qcvH3y4bzqDGQ8VcayvFCzkjyWrga9VyoMvGYV2byET5k81D8ivMA+j7x+LLK8AhT2vOMdTr3x4Tc9PtnivAo93DwLSn08PJJxPEgfMTvqD4q8mYdWO6h1ybzvp+c7Wm7XPIu2y7zej2s8HqlqPRfKGzvKz0o9UBvovC9ZEbzbBC+7hZYKvZGoBzx8yFi9wMPMO6wtNTyxq1C8rkqdOmbrTzrlVx69yuwyuwjpybzlgae8ygmbPNCUV7t2qBc9AzHevEJX/jthXe08HGJ5vGu9fb1DkU69TfQEPVuopzxMqu07+eAUvPTalTwHZAy9ZiJ6vOMtFT2dCBi9L1mRvEb1J73o1Tk8C0r9vM1AxTy4gCQ8w/2cu85qTjzjwhk8ZvuWu9Q/ojyW2A89BYXwvLyjizqxq1C9YqeEvSNxHbw0OwY9HHLAPACCF71qlpq8n3bsuzSzorwDQaW73EsgvOZ0Bjxbiz+8bzEeu+Qq7zw5IXc8A0GlvPZ8O73o5YA9ES+YPMrsMj2UZ5W8MTJhPR/G0jxm6888DFpEvLUcSzxz2UI8W6inPOebaT0DQaU8rPYKPJ0IGD2mLti7nPjQu6sDLLwg8Nu8PJJxvCyX3TzK7LK6GQFGPHqRrrrdWMG8vShJPejFcr0MWkQ9CPmQOriApLvGiNm8K3p1vdzTAz0aK8+8c5/yvEOErTsCNIS8BGuuvJtzEz1BWiS9I2HWu1y1SL3enzI9bi54vABYjj119iq8b5wZPQDQKj0pJuO7KZSEO2l5sjsIZIy6c7+AvT4GkjyqYQY9mYdWOwtK/bvBaBi8eZ7PPBa61DuZsd+75nHgPBjkXTsVgyo95gmLPK1Hd7y+RbE8RlOCPPWZozxcqKc6hBKdPKEYJD2bg0S97x9DvH3IT7wttGW9us3VO2AapjynvnE9/FrwvIMe2Lx11l+9Od4kPYbYeDyjdTQ8cXScPBIkdTwbI7C7zdy5vAVaKzw6Luo82ZUVOiogFjvMnWI7z8hmPIbgEL3W7GI75DTbvAWZAj03Qj29dEfDPJH9hLxm4ZG97sIyvVA2RjygiYe8cRy/vD2YRbw53qS88EWUPGOdhzxxHD+9glDkPIKPO7z1NvS611GLucGIBr0wHsG8FFcRvY56o7wFsog7qsu8u5Zskz3HhjE76sm6u5AWCz07k5K9knObu+gt072pyzy9/JnHu4DzUz3MnWK9NVaQu7mWlryN0oA9gLT8PIKPuzxDr3a8KcMFveVBprvqCBI9N0I9vBlI8btQ2TU8EdQvug7bNzz/AyO9X6QPvfJKxzwk4xO9mudcPMa4vTuVDwM7jAQNvdDVMbww3+k7Fpubuzpgdrw0F7m8wCNevE18pTxdsEq8L8EwvXhyR7xOml68NrMgvO70PjyIC5W8tLYkvZgZ6TxH58W8cd3nO0z+dr0sGP68D6mrvDyL+jx6nUs8Y8d7PTxhhrz/AyM9VVWPPJSenzy6DC09RpcAvHGNIr12Owi9JpgBvF8N2zvZF2e8PifiO6UE0Try+gE9TP52O0IgWrzH1na98xi7u/BFlLvZVr47JXKwvAVaq7wVzae8WTWBvc6qrTw2syC8m0RtPDxhhjzr1oU9WGcNPXss6LxbkhE9YNvOu4rRcDyE7Mu875AmPRtih73/W4A8biNHvexlIjze3tI8EPlwvMK/RbzK14Y8l8mjPDQXubzbdHc9jdIAvTt6DL3edQe9KolhO4aIs7yz6DC9H91QumOEgbyMHZM8y8/uvOYPmjsUcBc9z/ryvMUpobyxTEk8V1pCPDDfab1Q5gC865euvCJHrDytFHo9r+JtPEGRPbzF6kk8woBuvWDbzrwBoAq72ElzvX6WQz1kRSo9CuI/vaWT7bsPOEg7glDkPEJfsbs4EDG9SURWvM0s/zyCUOQ8n+2fvSVyMD0DvsM8yBVOvGQTnjtLBo+8Hb8XPZ2hfTwriWE8IghVu+vWBT111l+9QMNJvSr6RDsFmYI7MrqovIwEDb3F6km9yFSlPF5+Pr1RBDo9qlrZPC4ZDr2UIPE8NzXyvF4/Z7zvwjI8XWCFvFF1HT2vYJw9YwZTvcrXBjzdTzY9d7Eeu1YjAz1fi4m8C7CzPAoIET3CgG68idmIPLoMLb29+Nk8IXm4PKwckrvySke8Ot6kO0//Br2Xikw8vof2PBoW5bx/vJQ9idmIPR8cqLwT8ui8zDQXvQvvCj1Z9qm80jJCvQWq8DxM/nY9gYLwvGXhEbzcgcK7P4yKvObQwryK0fA7cykKPT5mObxY6d48QAKhO1YjA70Jo+i8qfGNPDouajxRBDo9TppevKfwfbxWPAk9hth4O9IywryqmTC8uHDFvPwKKz3IVCU9kNezPHlNhj0O2ze9NabVu8NOYr1WyyW88ruqvRhQib1CXzG95vaTvKagOD2WvFi7EF4ZvZWFGT1WI4M8xSkhvXLqMj1fTLI7E6Ijvq+wYb1yW5Y80vPqO3JCEDw3Qj28eyxoPPZDv7x/ZDc6zwe+uwfdjLvfbe+8Xn4+vJkmtLyZ59w8TO2IPIAyqztQ5gA9wrJ6PXC/LrxP/4a8qyhNO29inj19yM+61V3GvHBOyzwYUIm6uK+cO+8fQ725lpa89kM/vRoWZb0FWis84YeFvACTP7hCngi6B3hkvNEUCbuOYZ08rDWYu0S8QT2Aiog9JcJ1vKsoTTy1hJi8nR8sPfU29DyG2Hg94hYiu8njQbzZlZU8dEfDvF3vIb3VHm88Q+5NvVuSkTuUIHE87sIyO7QniLx6XnQ9eAHkOz80rbz/AyM9fHgKOyBs7Tz0V5K83Y4NPa0DjDv6PLc8/SjkvJ13CT0jFaA8w405PahuLDrhSC69g10vPbEN8ryerki8b/E6PTwJqb2YWMC8CEZYu6g8IDp4ckc8WTUBvcBiNTybg8S8WfYpvcAj3jx9yE8+Mey0vNokMrsxrd283RDfPEnTcry5Prm6jnqjPNSP0rzRFAm9h0lcvKM23bz2BGg9KF7dOxZcxLxdo388ddbfOpUtPDwf3dA8BunHPMVbLTx9yM87y89uPLPosLuEgwC9woDuvIdWp7y2Bmo84KxGvF7WG702NfK7wCPePLR3zTx9ifi8JkCkvDmfzTu31F086GwqvZRfSD01VhC8bmIePIKPu7xDLSW9K4lhvMqxNTy2EzU7qcs8OpJaFbxBkb08omhpvFY8ibwmmAG8n3w8vOWZA70Pqas8xnnmvLmWlruBgnA6B3hkvDcDZjxcFGO8wr9FvLubST3e3tI54cr/vLQniLsze9G89XVLvZ0frDyUnh89EdSvPM94IT3kNFu8Z/9KPfr93zw2JIS7oAtZvC/BsDzJ40G9dRU3PPV1S726jn675vaTO8AjXjxiOF+64YcFPevn8zv8jHw8z3ihO9RQ+zw1PQq9DH4nPQTcfD3NLP+86KsBu/Sn1zzFmgS9Z//KvBtiB73z2eM8r0cWvD1Z7juv4m0846U+u3Y7iD0hOmE8xZoEPWjzjzwCL6e8glDkPM/IZr1Q9248mkyFPABUaLx24yo9wfHRPF5+PjxRdR09KF5dvPOJnj0gq0S8L1BNO9e61rstZCC8IoYDPZLDYL1sVVM9zDSXvBU+Czwx7DS5lF9IPA/58LzEs4q6g7UMPcAj3jw4aI48i0+fPRBemTx4AeQ8FT4LvKrxjb3z2eM88XxTvACTP72a9Ke75DRbPGxVUzvEW628go87vY4JwDy72qA8jmGdPJJzGz06YHa9k8NgvIAyK70VJYW7Mey0u+EJ17szSUU8YWrrOp/tHz0JFMy74hYiPWppJj0gq0S7r2AcPWYxVz2U0Cs9g12vtuKYczwJ1XS8g5wGvQf2kjy3EzW8xavyPG4jR73PXxu9MI+kvOF6Oj0tSxo9+v3fPP8Do7usNZg9JpiBPV1ghTuI5UO8X0yyvECE8jx2VI685w8aPPtJAj4ihoO9O5OSvJ+7kz2rKM28tzmGPTwJKT1rKs889xGzvHh/Ej0VJQU90vPqPD+MirunrYO8mIrMvJfJIz2cUbi7sC4QvVKT1jxM7Yi8BbIIven7Rr3pOp670iV3vBZcRL3YSfM8HxwoPUzUgjxLBg+9RpcAPfUlBr3UJoe7x4axO/UlBr2f1Jk8uZaWPEcNl7z4UAq97EycuQYPmbvimPO8Y52HvBh6/TsY+Ks87hqQPWRFKjx11t874haiO+xlIr2ukig7lQ8DPHdlfDyIC5U98T38OxWOUDuHF1C9m3Z5PMXqyTsGKJ88/MtTPLvaILxyq9s8lNCrvIwdEz29+Fm7cuoyPKIYJLxTYUo8NiQEvdVdRryy22W8LJasPET7GDtfDds8rpIovUpRIbzsJku8gCVgPGbA87yQZlC9cqtbvHJCED24rxy9RLxBvWq5azyXIQG9DH4nvFW+WjtMPU69Ho0LvQVaqzwRldg85MuPPMeGsbxGWCk8EhOHPD6YRT08SAA9qL5xvJICOL3O+nK8H575u3bjqjxmcK48D6krvC6CWTuTQY88cP6FPGQTHj0BuRC8duOqvL4FpbxVVY+8hOzLvD/11bzSJfe8bdMBvUsfFT1rKs+8XKN/O0fnxbz5N4S8b/G6PDMKbrxSk9Y8mFjAPJ13Cb1Z9qk8jN47vTeBFL0Y+Cu9UQS6uyYzWTxFfWq9jy8RvXQIbDtqueu8fJEQvf2/GDu0tqQ8j0gXvYW6Pzsslqw72MchvUV9ar2G4BC7Ip8JvepY1zxFijW9BVorvGnaib0QBjw9nm9xvJp+kT1GqO48Dts3vYcXULvwrt882DiFPAG5kDz82B48TgvCvMa4vTsJOp28zqotu12wyrzLQFI7nz1lPT+2fj0SJPW5ixBIPHtrv7sfnvk6/b+YO3UVtzyK8g49Q+5NvHhAOz2aTAW8KWsovR6AwDzoq4E8Rw2XvJnn3LxjnQc9/JnHvMeGMTvXUQu8DzjIurfhqLoFmQK9tzkGveRzMjok45M8MI+ku5c6B708YYY8sC4QPbQOAj0OGg+9FSUFvK6SqLy7XPI71MHevbA//jwzCm68tgZqvBnGHzsBuZA8SlEhvaXSRDwS+gC9itFwvDFEkrte1hu8cP4FPCwlSb03gRQ8s0COPApxXLwj1sg8/We7urZFwbxWPIk8SdPyOWWiursqIJa8ZsgLvWc+orw4aI68CaNovQBcgLus9kA9JpiBPFMRhbw2JAQ8hIOAPTv83Tw3syA9XBTjO9LzarxUhxu8VsslPIdWJz3Uzqk7l8mjvIX5lrwaVTw9fJEQvckiGb3c8iW9+W5DvBDHZLz2mxy9z3ghu0sGjz0Df+w8PifiO0S8wTxdsEq94sr/uk4xE72+BSU8F4IVvS7zPDzhSC69riHFvNjHITpEvMG7xrg9PF4/ZzwS+oA84UguvXh/Er29+Fk9gYLwO8hUpTxQ9+67VoxOvXHd5zxM1AK7ejQAPIrRcLuSAji9GpSTPCKfCb2PmNw8GUjxu6w1mLvw7ba88K5fu9UNATzsJss7zdw5vKg8IL0LP1C9Y50HvRZcRL3ZxyE8e6oWPThoDj3xLI48f5ZDvBOJHbt1hho8NwPmuw4aj7zhCde8uksEPcL+nDyXIQE9j0iXPWwWfLtUhxu81M6pOgDSFr3u9L48bBZ8vTk2ArzUUHu8sQ3yuxzxIz343yY8iAsVvYa6P7x6ncs8fYl4uuC5kTzhO2M7NnRJPRBeGT1lY2O8592NPLQnCD1nPiK9/8RLPNtKAz2ukii8JbGHPJa8WLzMfyk8S+A9vWrr9zsDvsM8gQCfvCKfiTw6n028lvsvPFiAk7xGGdK8zvpyPFuSEbw63iS8fcjPvLNAjrzHhjG64/2bPeUCT71t5G89Xr0VvUmDLb05n029C7AzvZp2+bvhyn87yrG1vNH7Ar0OAQm9ftWaO8u+AL0XKrg8QdCUvB8cKD0BoIq8RckMPfTmrjrovO+8BiifPIqBqzzSo6U8qss8PLbUXT3Mf6k7Hb+XPA4NRD3FmoQ9czp4vFLSrbyckI89PlnuvFCnKbu21F093lwBvOfu+7tnPiI7DzjIvI8vkbwZxh89HxwoPeGHhTzhejq86TqeOmMGUz3cgUK9XCEuPRAGPL0riWE8Dyv9vL+UQb2imnU8a4dfvF7WG72AMqs5us1VvNokMr0Qd5+71I/Su6sozTvEWy06shq9u3ZUDr1SQxE9R+dFvTHstDzLz+47ruJtvcgVTj24MW48HPGjvBGVWL0eTrQ8Cz/QPIOchjzK1wa9J5Dpu8rwDLz1DAC7BRtUPGWiujx/o468uksEPRUlBbwvwTA9Ma3dPM/I5jyoPCA9x9Z2vNWf3zweT9s8FXtlvaU9YDx8DSG9Bxs/vNxGHbvjLms9rL0ePdi+eLzRUw69+30UvaeFJb2YMXG79SRVPJtrl7yAgHG8jdyLvD9RtLw/1NA7CwvzvMzL6TzBKAa8yNu1u17c4juF58+5VTGZOkYr4zpqyTg9PQnvO/NTurwB6f68o5uqveAP0rsIY4Q8oU2sPAjmoDuCRZq8IrY5vRPZLz0h61e8Z4Hzu4jRyjwSDs684ygyu8he0rtOqyG7H09bum+lFL2aHRm8ZVwhvNsl1zw04cE8o5uqvH8yc73ZDHe8yqYXvW8BMrs0XqW96lKMu/MmAjzY2QU9WW9LvOo3/7zxvfa8QwxKPTWy3LygBec8G2XgvB8UhLw1rKO8BPwlPJvHtLx0tg48CrGCvHbVp7q4tma8QjuvPFmesDxyaBA99CRVu0vgvzzZg6G83MMAvMMgIL22FLE801Fhu+KrTjz72bE8mn9vvfkvFrxJSvy8LiYsO8jhbr0pkhU76rTiOzQvQL3GRfK6xTkAvGTfvbyggkq8KgeTu/DsWzwMqRy97MeJPKJTZbxOsdo8YcgKPHPrLD0B6X68kHiIPLNDFjzKrNC7lGIDPfwnsLz01ta8VQI0vU2rITzz1lY9/HtnPMjbtTwiM507IeWePS96YzqMu8U88ojYO+t/xDzNaZM9Yj2IvLBf1Dw7Mpu726I6PfgOUL0itjk91pmmPDFFxbyzSc870wPjPFzejz2W3Tm9EUPsPEjwiz3wNKE51Z/fvF7WKT07C5y9Qe0wPa46Ar1M5vi87Z5dvYYvlTuGuOq8kxQFPSMEuLzDnQM7yNs1PaTpqLtciCs8P1G0u7qijjw2dwW90TLIO8W8HLpKFV48j4zgO/9GyTwYlMW8Ps6XPSMEOL1uATK9Cbe7PMRunjtKDyW7bTbQvDEQJzwyFuA8wVW+PfDsWzx6Qj+7SpLBvIZWlLuI0Uo64A9SPDGTw7wCMcQ8iVRnPZp5trwJ7Nm64Iy1PAV5iTziKDK92QY+vMLSITxWhdA7HLNePSoHE73yBTw9FCeuvOMuaz3aToO884IfvAHdDDvprqk8ONF1O3M/ZDyzxrK65PlMvbNJzzzHChs98DQhvb0+izuCbBm9YkNBvd5E8Lzr/Ke9w52DPdfnJDzBKIa9ro45POR86bw0L0C9y82WOjWy3LuS7YU8vBeMPGkfHb1vVWk8n7foPB37ozzM+k68zWkTvYoZkDzMQhQ9GyoJvfPQHT1VhVA8/nUuPMt96zzoYCs81M7EvAM3/TxufhW86wLhOx+XID0Yw6q7FCeuPLGtUjrRMki8ss6YvFBuHb2d5k09CWm9u7e25rx6Qj89joanPe8VCD3KzRY8MWaLvMJPBbyByLa74l1QvIy7RT1a7C687UomPHd5Cj2fsS+77RvBu4EeGz1ONPc8fdiCPP9njzvv7Nu8SkRDPKy9Hr2w4vA6ST4KPSagNLxA8+k8ipysPet/xDyvlPI8gktTO7blyzwhbvS8OMu8O7VqlbyScCK9GyqJPFPpUzvM+s48RFrIuyAaPb2XrlQ9Q77LO5RHdr2oUAe5jECPuzhIIL5jwKS884KfPOXErrz377Y8HAHdPB2EeTvtIXq9vD4LvU4uPr19E1q9OJxXvQVKJL3njxA9ahe3PJAqirzaBr68zRnoPJEipDssW8q8QEOVvBxRCL0OobY8uAYSvKa0Cry7TCq8nmOxPKXv4TxonIC86jf/vEV7jr2QV8K8Zi08OwFgKbw04cE8G2VgPcbCVbzZgyE6Uma3PCXVUrsVyxA98Qv1uk4097wGG7+8eHmKvZbduTwU3+g6RVrIPA0eGr1ksoU71KGMu2dOgrxuB+u89aG4PCVSNr0JsYK71pmmPIcAsD2+a0O72YOhPO2YpLw1UAa9b4ROvOv8J7w57IK8R65/vF0sjj1O+Z+5Z3UBPTVQBr0C40U8PFmaPMRuHrw66tU82QY+OzDxDT2lNye9Ykn6vB7Sd7xH9sS9aP7WOxSqSjzmR8s7o6FjPeR86Tzzgp88KHFPPL7u37wytAk9ABhkPj7OFz2+NiW8NgBbvL/ahzz6XE69pcB8PGlGnDtGog08yF7SvIsfSb0CMUQ8FntlPFzej7y7TCq8pXJ+PWByprx1hyk7S+A/Pd32cbwJioM9E9mvu+ePELlctxA8QZETvUV7jjx7SPg8qdOjPJGr+buN3As77+aivPc9tbs40fW7l67UvBwwQj3Qr6s9YK39vKFNLL1ksoU9lL6guovqKr0C3Yy8rWGBPDdIoLs5Zzm7GJTFu6v49bzX56S85kGSvA5FGT1LZQk8qifbPOzHiTuPUYk8q3VZPCoHE73QZ+a8UcSBuyf0a7zuIXo8QZGTvFNmN7x8kD08qVz5vPmRbL2DFrW7JIGbPA1TOLzewVM821p1PTyGUj2BgHE9N05Zva/ctzwDhfs84iiyPEK+Sz0GG789fv8BvSjusrwocU+81SJ8vYvwY7ymtIq8uoHIPAjs2TzroAo9M9sIPSDrVz2CRRo9PIAZPAbT+bufsS+9vB3FO6+UcrywX1S8hjVOPFppkjskWhy9M9sIPeR8ab0T2S+9VDfSPErHX7tKx1898YhYPDLnery78Aw9MPENveR2MD233xK9B57bPGOXeLxvVem8brOzPJodmbuS8z68wIQjPWVcobvI27U87xUIva/ctzxufhU5J6ZtPGoXNzuBgHG9tuVLPZ+xr7wpPDG7bn4VOoJsGbuQeIi8PDhUu/aTmTz7pBM9fA0hPO3NwjxgcqY8LVtKvenjRz0cUQi9DnLRPAYh+Lwi5Z68gmyZvCxVETwivPK823WCvMzLab3Vn9+83B+evE+dgjxmLTw9jLvFvHl3Xbxmqh+9hggWvUFwzbopQmq9LxiNu0//2Luggkq8IwQ4vIzw4zqTxgY8a5QaPJJ22zwcs149Zi28PFBHHr0Np2+8ArTgvHPrLL3gD1K8OZaevGYnAz1B7TC9XtapvEf8fTyUxNk8548QPDEQp7sRkeo85pVJvOCS7jwSLxQ9BtN5vYVks7yggko9svUXvGByJj0uyo49CooDvIa4ajsAjw49vWUKvX8sOj29ZYo7HfujPAuI1rumN6e8QZETPL+5wTx1Csa5JFqcPFlvy7w1KYe82DUjPMTrAb31obg8am0bPWlGHLzYiVq9ZGLavKKjkDxbvUm8u0wqPbRJT7oVqsq8IWi7vDgTgjybaxe9ekK/O2aqn7ztmKS88bc9PdTU/btDuJK8ONF1vZBXwrs+UTS7GREpvO3NQj3B2Fq8XlMNPceTcD1ct5A7MD+MPNFTjrwPbJg7+A5QOxZ1LLzhV5e8CG/2PI8P/btMY1y8dN0NvQ9sGD00L8A846tOuuhm5LvbJdc8uv6rPCFou7wwP4w8ZgAEPdOhDL2qnoW848yUvM63kb2nDnu9QByWPP34yjw0sly7Ob0dvX7eO73tzcI8n7GvPFuQkbxl5fa8pY2LvMkvbTunhSU7ox5HOxb4SLyzSc+8qqp3PZ3gFD3oZmQ8Guh8vNN6jb1Hrn88QO0wPJawAb2VviC9RiWqvL7uXz1pRhw9TvmfupMUhbyvWZs8WuyuvOzT+7xhyAo8N8UDvJfjcjzQLA89DnLRPAXHh7yypxk8tpdNPAv/ADwHb/a65spnvNi+eL1r6FG8hGrsuyI5VrvrAmE9A4X7vH1bH7y/v3q9qp4FPTZ9vrz1p/E8Xyrhu+xKpjyVEli9MwIIutN6Dbs6bfI7enEkvCFoO73P5Mk8zRsVvAGPjrp2hym8kaVAvZwVszyMjg29wqM8PK46gjyeaeo7b1XpOmSyhT2N3Iu8fyaBvAR5Cb1OLj49KTyxvLAynLwKsQK8a2tuPe2YpDtvVek7PLvwukqY+rwv98Y7D+80vDfFg7szAgg9eceIu+jjx7nXO1y8qqS+u9CvK73W7d27wthat3U5Kz2sw9c8R3MovCf0a7zYDHe7KO6yvPE0ITrroIq71T2JO4y7Rb1lXCG8zRsVPBsDijstLGU91Z/fPNJTDrzs03u9GBdiPNt1grx3Xv26BPwlvdTOxLwZjgw7KuATvXPrLL2HALA70CwPu4XnT7xpH528pGxFPQXNwDzYvng8J/RrvMzFsDyqJ9u8IJ1Zuzkf9L05OgG9d1KLu46GpzyuOgI6KJKVu4CvVrxjDqO8p4UlvVf0FLyIBum7mfzSuLWRlDz0dAA9fL+ivLaXzTws3ua8tMayvEdzKD3Ny+m5ksYGvanTo7xO+Z88RqjGvOePkDsUpBG7XnoMPALjRTziLuu7+i+WvXtjBT0J7Fm9fuR0OwLpfj3OkJK8zRloPSze5ryPXfs7hwCwu6F8EbzlR8s81NR9PMTrAb0cMMK8HsaFPYLOb7zOkJK9XY5kvOHg7LxRlZy8IJ3ZPDQvQD12h6k8kat5vLblS7yNwX49Gl8nvb3oJr0Quha9UU3XPLNDFr2F50888DQhvWaqH70I5qA7r1kbPPBveL3mEi09BPylu04097uEZDO9pWxFvLiwLT33kxk8ET0zPY4DC72i8Y68NfqhPFyIq7s3y7y5COYgPVu9SbzuPIe9h4NMPOVHyzyqngU93+IZvTFL/ru6gcg7Hk9bvOx/xDrF9/O8PQnvvC/9/7tc3o+9tzNKPAjs2bwVyxC8YHKmuR37I7ys8jw8BpiiPE0uvry/DXm8j9revKLQyDylcn49a+KYudOhjD01rKM8P6VrPBpfJ7xfJCi9xXTXuzyAGTwNp+87t2IvvPPWVrwsVRG872MGPEAiT73gku68Uhi5vESJrbsO9xq7bTAXvWoXNz02noS82k6DPE//WD3FRfK823WCvXEaEr0m9hg989ZWPP9nDz2ckpa9NfohPCj0a716Qr+8gs5vPDDxjbwHPAW8+ZHsvLN+bTwUpJG8m8e0PF0sjjuL6qo726K6u2TfvbwULec8+IuzvJ3glD2KnKy8HIR5PLN+7bw2fb681+ekvID91Dthxt06kav5Od67mrziLus7S+C/vMCEozu9ZQq9A4X7PNL9qbuSnwe8twaSPRdAjrjtnl08a2vuvB9Jojwgndk8rPK8PAee2zxUtDU9hBzuPNzDADwGmCI8KTwxPP0ZEbt5IyY9tuXLPGwJGD0KBTo8k3ZbPA5y0TwI7Nm8B57bvDmWHj27TKo8UZtVPWqa07watYs7zhOvPJLtBTwYwyo9Ob0dvWTfPT0Vqsq730Twu7cGEr0y53q8I7a5O7ffkrwGG7+8QriSukxjXLsNp2+86TFGvJ3mzTz/F+Q8g5MYvSoNTD01AFu96GbkPP17Z72WsAE9wybZPD1Xbbxyo+c60LVkPV2Iq7xyIMu8jLtFPQcVhjw4EwI83MOAvfrf6rzTS6i8LNitvJP5dzzzgh88kaVAvR1+wDz+da48hWQzvKeFpTsB6X48GY4MPXpxJL3MZrA8rpv3PGHxJ72FQwG9WD1IvCR8nb0iKze7p9rKPGmyVD1dYHq8JMkxvaBmMr0zU688ht+Suoqx3rwepJY8hiwnPQuPpjpwKj+8BWgiPD9WjLuiBC28ponkOwjxK7xrB428KqMhvGgYLD2joqc8Yjrqu4WKWr3moLu7IEAovDY+vr39PMy8PgcPvOspxbx9yS29SLmFvNkFH704LR89p+AFPGsHDb3EuIs8ppGIvX8alDzsyxG9W8L/vDxpFLxItxy9gVI3vPtN6zvZuIq8op5VPRbdLjz/Qoe8PgcPvAacc732Lou8Ln2RvbQTYr1Qy5i75pxpPIFSt7xi7dW7iBe2vCySAj3PVRE9jE/ZPFHNAb3iYHS8nxmeu8EYKD1HzA29Jc2DPACOsryVZb488vKVvDtlQr0SVg69EqE5PTSgQ7xq/2i821aFPMShsby/fBa9cci5O0dmNjw/7ks8/etlPHIVzryv8C+9+GLcO9j9erw+VCO9/AYSvfpmrrtoGhW9EqE5u7cCQ70jfJ07VFI5PGUtnbw/UNE8a1BPvWXcNr28h/q8vZEHPX3Jrbv9pAw9hPSDu4u3GT2ZVoi6bpCWPN6QkT3DA7e8SAQxvL2Pnruc3ai8vd6bPHAqPztyyDk8GhmkPEH0Bj1xxGe8uvGjOi/KJb0DZNA809rIu1RSObzc7Fs8c2LivNHzizupyau9hPCxO6cn37zxnd08XrmEPXMbCT1fuQQ8gVI3vcfZVDvJLo286DpkvCF0+by9j5498/KVvfyiIz3vAzW9obNGPGNCDj00oEO7CT5APPloFz1TAdO8096avJDYYj3ZZyS8Pf/quya0QL2D8hq8Yu1VvMc/LL3SQCA9HVWZvNtSszyeyLc5dbcaPBJWjj0Ye6m8maGzvBfhAD1O3qA8irFevU1ApjtetTK9nS4PPVc9SD0A20Y8sPQBPe//YrwF/ni9GHupvNub9TkAjjK9VqUIPd7Xaj2UGhO7+wYSvNlnpDw185I8Huvvu5mhM71/sGq8HQgFPVzKIzyXBwu9rP18PRqzTLw/7ss8xaExvCHeIr0bt548etb6PO1lOj0giWq7DC8KPagtGr2A/f68OClNvFJpE7278SO86y0XvWKHfjys/fy8YfEnvcJlPD3BFFa7M1MvvbyH+jzR8wu8Rq94vBjhALzTkYY8CotUPULdLD3S1va8S+vtOyCNvDuw9AG7Zn4DPW7Z2LoHV4O8N9jmPFeK3LygaoQ84sodvXAqvzyDo5084cqdOkE/sryOPro70OvnvBT0CDwtKFk8YFMtu1WjHz3y8hU99iq5u59iYL0msG695AJBPd4oUbwsQRy9a1DPPG/fkz3aTuE7DXbjvAQXvLuzLo48hPAxu+1lOjwUQR28wRoRPBEHET2xQRY8WJAXvXSvdr18K7O7qC8DPe5pjDz3FUg8CYvUvCTLGj37TWu8RhuLu0aveDxMQCa8VAUlPXJ9Dj0zU688jj46Pb96Lb2TfBi5e+AHvYtPWbw3jyS9TECmvVOw7Lyk7zu8kIvOO4866Dx9yS29z1E/PR7rbzxfnO+8pysxPal+gDy9jx6+fMXbvGQpSz2Qj6A725t1O7GQE7w5fJy7hiwnvVosqbzULZg8gVI3vHzF27z12VK97hgmvGXcNjzF7sW7AsqnPKaJZLt2VZU9pO+7u19P27nJc/27JMuaPRNUpbyMVRS9x9lUPYOjnbypLwO8iWB4vO0aj7vMYl69jod8vAikF7uaO9y62gFNuya0wDzVLwE8bfKbvADfmDyR3LS8B+3ZPDMCyTzgLgy9EZ3nPO18lLyjoqe8RcTpOmjNALwskJm8EAO/OyBAqDxyzAu9U7DsvDK1NLkyuYa9PGkUPZr0Aj3dilY98VDJvDl6szy1F7Q8Ft0uvE/gCT3d12o83D1Cvcp9ir2VslK8XBe4PGq2pjycc3874xuEPfiv8Dw9uBE9pysxO3zFW7w3jyQ9I36GvYwGF72mkYg9RRF+vVROZz2inlU8+gDXuoQ9Rjzp3LA78upxOzp+hbxk4Ai9+MyFOVEWRD41V4E9CFWauopoHL3JJmk72GPSvO5haLzzP6o8BGB+vbTGTb1aKFe9agM7O+5pjD2EQRg8Rq/4vDgl+zy4uYC7vuAEPdV8FT1Vo588imicOoEHDL2R4AY90KIlOmGkE733FUi9lWHsOgYIBj3djqi8bkMCvUkAX7zjagE9AShbPBh7Kb313SS8On6FPJpBF72EPca8vY8ePbA9RLymkQg7+BmaPIv+8rymQCI8Hu/BvH7LlrwlHIE7II28vJzZVrvDA7c8e5GKvdpSszsbr3q809pIPAmkFzwxaCC9/kCeu70l9Tu8h3o8V4pcPFkoVzzbOXA8nsg3O8AU1rymjba8bkMCvTMIhLzR7zm9zBuFPUdi5DwppYo99ndNPeolc73SjbQ8yXP9PL/HQbz8oqO76ItKPfM72DuaPy67ZCnLvCBCkbw5LR86dGa0vPM/qjyBBww9CYvUPBfhAD1puA88jZxtOzl8nDtv3ao87RTUPGZ6sbwALC08RXunPLvxIzwppQq9GHfXvDAbjDw7GC68rlaHvONqAbw+Bw+8D2FyPQft2TyBUrc8UwHTum9DgjyffYw8qRJuvTjgCj0duQc8ibFePNbJKT2UFNi6NTpsvHmNOD2mjTY8KexjPYsCRbyBn8s7HQgFPOk+tjpzaJ08tcofvdpSMz0GCAa9d6IpvAwvCjtvjMQ7fhbCvGoDu7wUQR09yXdPPRPuzTviE2A9lWkQPcvEY71oZUA8t2RIvO0U1LzYaY28Hu9BvTsU3Lxs7kk6yJASPEXEab0YxGu9Oxguvdubdbs/obc8eKKpPVQFJb0mtMC88AcHvafgBbyUx8O74hsEvcNMeboQaZa85VMnvJo/rrwe78E8s3XnPNlOYTvJLo09SZ7ZPM9VET3Y/fo7QPIdPd7X6rw7HIC8e9rMOkpRRbwfoq08GRmku7hP17yRJfe7QIj0PLGOKj3qdlm71hJsOwspTz18L4U8QDtgOwWx5LzHiG68+a9wPeT+7rzjtSw8bTvePRH/7LsHnHO8OXqzPZMvBL1FxGk8VZv7PG073jt+FkI8PlQjui0sK7yHwv08AsZVvHIVTrx8dHW9tRc0PXLMi7zEoTG9U7Q+PSCJajz8oiO8csyLvWzuyTupEu67IZEOvQW1Njs7FFw7nn0MPPlmLr20E2I9VAWlvPq3FL3sFNQ7tMbNvCmfz7tmFNq76uACvEdmNrwVjMi7iRc2uyTJMb3AGCg8v3bbvDNTrzyfYuA7V4rcuI86aDxiPry8nn0Mu03W/LtyyLk8Tifju2Z+gz3XGpA8QUGbvI1Tq7yhuQG6/jxMPH5j1jtKVwC8JgHVPA124zze1+q8BWqLvEChNzzaUjM9hNduvGBPW7kjfJ28OxTcuxsAYTyrsGg84MZLPEYVUDy66X+9ni4PvJidYb0OGDA7NaSVvGsHjb3dPUI73ijRPLZkSL1Zji69YaSTvL98Fj0HoMW7nndRvHYIAb1Ed9W89d0kPV7+dDyGKFU8TEIPve//Yry4txc9p+CFO8iMwDyRKcm7arYmu9s5cDt0ZjS8N9w4PGI+vDx0s8g6SqKrvHMZoDxv3So8vZEHPciMQDtuQZm8OxRcvAN9E70kxV+86dwwvcjZVDrc8pa8EGXEPG6QFrrcVgU8xJ1fvQimAL0W2dw8yxH4PEYZojzaUjO9Tis1vXLMCz2wPcS7iMyKPGTYZL08HAC8UWPYO0BWDLwril68QpAYPY2cbb1l3Da9dp7XvIgXNj3d12q8Kj1KvMRWBr2koie8ccg5vb7cMr3yoS+9xqOaPdi0ODxL77+8G7cevQjxKz11BK+7wq7+PFEWRD2RLRu9A2D+vGzuST1O4Im7jqSRPMKu/jz7BCk7vi+COgvgDLzYY1K8tWD2PN4oUTzsfJQ9c2LiPGtUoTvmnOk7vdjgO86zRDwF/ni83tfqPJlWiDx0ZjS8/4ngPBC4k7xM77+7r6UEPbXKnzzY/fq8G696vO5pDD2eyDe9mO5HvKXzDTzmnOm88VDJPEyNOr1hOmq99d+NO98o0bvan8e8pKInPNcakDxTtD49mj+uPONoGL12ntc8mAeLvH5nqLyNnO29knovPfoAV7w4LR89SLmFO9qb9Tw6fJy87BTUu1zG0by+kYe87WW6PJyQlDx9foI83tfqvHfvvTuPOmg8vId6vfsGkry4uQC9o1FBO12x4DorjjA7bJ3jvLHX7LzauAq8d1WVvEE/srzn7U+9+MyFvMEYKLtYQwM9cxkgvUpVl7w/7ss8I3wdvKz9fD2Bm3k81ha+OvQm57yTFNg7mFBNPaaRiDyKaoW8DC0hvJVpED2pxdk8lBgqvS4uFL0+VKO8Ft2uvAjxq7tft5s8aBgsPQRkUD2pxVm8uGqDPIwGF70mY9q8lrgNvcvMhzuinlU8GhsNPWHxJ719xVu94hPgPJCRiTwbaoq84Hk3O2q2Jj1qtqa8LSyrvGXD8zzurnw8hiynO03azjx5jTi90e+5PLuLzLuXTHs83fIWvEkGGr3Jd0+8mj+uu+akDT1UBSU8gQUjPHfvPbw6foU8J05pPLyLTDuwOXK9URJyvKjgBb03kY08X09bvRZDhjwxtbS6z1G/PIPwsTwPGhm9imicPGq2Jjw44Aq9zBuFPLPfELutAU889i6LPFg9yDwtkJk94X0JPWcYrDrxoxi8ZxTavP9ChzykOP6877LOvDePJL268SM7C9w6PLDwrzsgieq8lWHsvDU6bLzBZbw7nxH6PJmhM7z5r3A9d+vrPOJg9LqXTHs73UEUPFQHDr3FpYO8YTrqPBJQ0zxEd1U9sts+vcfZ1DvQnlO9tcZNPDl6szxsneO8VAHTu58ZnjuHLKc8XRsKvDSgw7ts6vc74mB0u2XD87ywilg6gU5lvMc/LL0YyL09JbBuPOmPnDyUZT69FZCaujFqiby6pA86YfGnvFnX8LsEYP67BgJLvZMvBL1M1vw8jFMrvW8m7TxqAzs780ETvKl4RT0rjjA9mkEXvFWb+7zLYt66wBTWPDsU3Dz5r3A9ey0cPd8sIz2ABSM9URZEPe//Yj3qJfO5xFDLPChSOz3xVgQ618mpvOnYXj1fuQQ8/Th6vHeiqbsLQpI8d6KpOxQ/tDzc7Ns74sodPeQCQbzbOXC8d6QSPS4uFL3z7sM8av9ovZHctLxk3La880GTvZzdqLsX4YA8f/1+vbuLzDyVYey8g/CxvGUvhrziGRs9VvAzPIRBGDpv3So99ndNvVJnKj2WAzm9bybtPJ7INzzbo5m8eY24PPUquTztyxE6lBiqvHrWej2hBK08htvAO34aFLxFfZC8W8L/vPq3FL1aLhK88VDJPE3WfDwOGDA9vtyyPJHghjyDo508RXsnPWtQTz1Jnlm8S4NNvK/Z6jxeAI+9fJVUvGA4v7xUC9i8bWWmOmvy2D0ilTK8bQGIvL/gl73cFBm9VnhxvJOuZDsVaMs8BmqsPBxUh7xCaFy8+6neOywgFz1hAHy91cS+ux9aqDydaH68zkiJPKpj1ry1vwU9QDOGvLxq8Dxcwiq7ZEG6vNKJtDsuwpm9JJ6tO/PGsDzq2oc8/uqcPGYYprx15DW9mzMoPcb7CL168Hc6w1NSvAEpAb33ATs80U6qvMvS4bwPiGS6e/YrvRl6Qb09XBq9hOgIPTYPGj0/+8K8j6KivfwNfbwrs2q9Cqh9vIn0Sr1bJsm774UFPAyFHT1b9xM8deQ1vfZl2bxE2yk9PYj1vPbJ9zy2yIC8GkL+vEU/yDwVNjw8AIpFu/MqT7wDLyK86dTTPB6+Rjw/+8K8f2xAPUDJMz2/q666JgtHPT2RA7xul7U76nMPvTCTUT3fths8K+6HO+KH07rVKN28ALzUvH1jRb3+UZU7VhRTvTq6F7u+c2s7VKc5vbdYejw/LdI7D4jkvMO9JL2vC/o8hbDFPFXZSL3WLhE9Ywl3vGqOurytAv86KUbRPJcbfrxEDbk8yMnmOibZtzt3te08BWR4vJBBS73524A7qmNWO6rQAjwUzOk8pSWFuwD0lzzg6Ko8MSl/vG2aDzxWTBa8uQMLPBL+Cz35dAg8WYHsvEOaazxKHy89gngVvTbdCj1Rnj69CnbuvOc1K7y3LB89fJXUPJPmJ73LbkM9iSZaPVu8djxMWrk7KRRCPTD3b73sFRI9tE//vB/2Cb02czi9iSZauxLDbrxG1XU8P2WVPE0rhDwarFA9yAEqPDpTHzzBUAu7mS0HOyYLxzs13Yq7VNlIu99+2Dzi6/G6UW8JPMtuQ70wKX89yDM5vGkhobw1c7g8wUpXPOk+Jr350vK8LCCXO3Nx6Dxj3Zs9c6krPDbX1rs4rkK9F6PVvMNZBr1C0q47+9vtPMTvs7vkkM48xi0YvWYYprxhAHw6tE//Ow+687ywC3q8GD+3PLTrYLw66Uw929Y0vKwIszs+jim8OK7CPPJZl7tMIva77A/ePNoIxDyW6e67Y92bu6UlBbwCYTG83XuRvNQfYjzsD169P19hPLwMhr3Qski9/rLZvAU4nb2PoqI9kKsdu1XZSL3IAaq8TCL2vKCpvLzkXj89EsmiPMNT0jyGucA8EskivTEyjT30MAM9wIIaPHSyJryPnG68xIsVPYWBkDzAtCm9U0ObPdWMe7xe/TQ8N38NPSKVsjxKVJi8eig7PVXZSL3+HwY9UQgRPMbA67oQ8jY9vkcQu386MbxH5KS8HBnqu48+hDyo9ry8cj9ZvPEhVDz0+xk9I9C8vIyTczwjnq28zKBSPMPp/zzlYZk8TCiqO4RPAb1mEnI8SBmOPAYA2ryEFOS7Zq7TPJPg8zxtZaY7xpSQPF/F8bydbrI8YQD8vGDUID0Nsfg8wbeDvOTIkTujtRE9vnkfPdNXJT3yU+M8tE9/PB1RrbyqlWU6QJFwu82vgb3MoNI7E/uxPE5jtLztebC8yM+avSvleT0vWEc8bclEvXnEHD3LpgY9Ev4LvkdIw7wfvsa6rQsNulRv9jvQFuc8UWwvOvK9tbyFsMW874IrvIyTc71W4kO9QqCfvCoUwjydcYw8o7I3vFJvCb1/0N48ao46PDiuwrzNRa+898+rvHcfQD3yU2O8h/GDveyrv7qJXh0823IWPfmml7zQg5O88YsmvSQCTLxRnj48TyvxPL04YTzzKk8901clvcPvszrBSlc7R+SkPF5hUz1OMSU9QJekvF5h0zwSySK9RaPmvFHWAT0nQ4o8K+utvfadnLxjpdg7YaKRvHJxaDshY6M8MDINvenU07ydcQw9KapvPacugDxR0E08bwqDvbVVM73c3y89LLmeO3BobTtUdSq9KOKyPBoQ77vYlXY92ghEvQLLgzyePCM8wOkSvTEvszzTH+I8icUVvJ96B7xR0E29TFo5vY+ior2b++S8D4jkPBejVTyBp8o8QwS+vIGnyjsUB4e6KqpvvF4ADz3dp2w+fP8mPdCAuTzcraC7HB+ePWQPq716KDs8hrnAu/ZrDT3nmUm8qL55vMwKJb1PlUM62GmbPODidjsKElA9pyhMvIycgbtF3oM92jrTvOdqFD1F1fU84OiqPMGudbwzAOu8gXU7PHr5hT3E8o28sk8SPEMHGLkzooC7/K8SvNEcm7vNSIm76qLEPA/DgT2e0tA7hEZzPAacu7uMk/O8TIxIvb6l+rw7uhc9kEHLvHXnj7yiHAq8i86QvBQ5lr3gTMk8+dgmOxKXkzyVIbI8zAqlPLYsnzytCw09uZk4PHzH47yEFGS8iV4dPAjXRTwP8rY8my30O48+BDoPiOQ8nTyjvPT4P7wrgVs8El9QvVv0OT3aOtM8BPfePEwoKj2bLfS7RKmaPGau0zw5SiQ9c0UNPYw1iT1cXgy9WO6YO/7k6LvNdz69w72kuzd/DT0UaEs9huvPO6f2PDpwo4o9tIfCPAUyaTzh8SW9IpUyvCuzars1RIM8VBGMuo+cbryJ9Mo6yc8aPGhN/LyMYeQ8A5NAvfaX6DmOBsG6oEUevYmQLD0XDSg87nz3PHINyjyqmxm9GqzQPGCcXbyFGhg9HFSHvGHO7Dx79qu6PVwaPNCySD3Ei5U9eyi7u3J3HD0Sw+67ghGdO6yeYLsXo1U9W1hYOLTrYL0LsYs8w/INOrRVszyOzn08sUy4Ow4bS7rnahS9fDSQPAUGjrkwMo08aiocPVDHUjw2Qam8vqX6PBoWo72doEE79Pg/vXrwd7tul7U70IC5PPsWC72Zxo67ndgEvDpTHz26y8e8ujUaPP5RFT1rkRQ7MGHCPFsmSTwBKQG92JsqvK0LDb3+HCy9DRtLPBC6c7xy2zq5DVMOPHVIVLsDk0A7ZhgmPS6QCj2lg+88Ok1rvc4/+7yC2Vm8K+utvb6l+rzfthu929mOPOjLWLwI18U7QmjcuSxVgLyvdcw7Bjidu0rtHz2qm5m8A/0SPTNqPT2C2Vm86j6mvJPgcz0AisW8ASanu7dhiD05SqS7Fz83vY+iIj2KXh29b24hPWiIGb0LsYu78SFUvDDFYL19NBA7QjwBPRoQ7zsV/vi8huvPu5Pmp7zsq788r9lqvGOlWD0V0h09AVsQvZXvorwI10W77EHtO/cEFb3LpgY9h4oLPeQssLy+D828J6coPNaSL7x/bMA7VkwWPPgNEL1KH689nTwjPWtcK7w/+0K9K7PqO/h0iLrTUXG88SeIPEJoXLx4iZI8lu8iPU2+VzvuUBw9QtIuPNO7wzzBrnU89MkKvYZVorxot049YXCCPJaF0DtWeHG9cJp8vEAzhjzdET+8JNOWvMO38Ds4dn+7JWbqvCmwozqdPKO6Dem7ut8aurvNRa+8HIO8vfK9tbwnb2U6hLBFvFyQmzopTIW8uz6VvHA8Ej1XGgc9Kdz+u09mDr3hIzU6RT9IPAp27rxYVZG8J29lPNvZjrzjVUQ8Nt0KPWBqTrtIspU8tCMkvSwdPTzRHJu8ecScuxhxRr1F3gO9W/Q5PULSrjyo9jy8FQeHvIYjEz3+6hy8LyY4vcg2EzuERnO8QZFwPF5hUz0ZekE6ucvHu9+w5zoGOB0841VEOtibKrxWRuK8+duAO9BIdju0h0I9QtIuvdfQEz0+8ke9OHb/O+5QnLxyP1k9qwISOtXHGDxtM5e8sN8ePbZeLr0FOJ08L1hHPDOigDy0HXA7A/2SvG0BiDyvdcy7CG1zPFHWgbzsqz+929mOu4HZWb2vQz283+sEvZTpgbyHT247dXpjPSiwozydNm+7/EVAvKqVZT3ftps5OoiIvOqiRL3lLLA9q/+3PG+gMD2J9Mq67x4NvbYsnzxRNGw8JgtHunNx6Dw7f3o72M05vIn0yrxY7pg858vYu84TILyU4HO8b6MKvODoqjx9Y0W9UjogvN513byO1DG98r21vFQL2LvXaRs93eIJvTh8Mz3MCiW8aYW/uhSaWj1Rnj497EFtvLeQPb3GXE094OL2uy4muLuCPfi8aBttvKJ69Dzxi6a9rdBvvV4AD7xtyUQ80IOTvc0NbDynxwc9mCqtPEXVdTvW9s06T/nhvKsxx7z8d087JWbqvbfCzLt78He8OODRPH1jRby5YXU8hX42u0I8gTwa5JO7vHAkvJSCCbyhdy087nx3PBLJIryMzhC91ccYPU/5Ybx3te28lIIJPfWO7TtKGfu8d1HPO1FvCTwkAsy8AIrFPIGnSrs6Ux88b9K/PJYb/rzs3U68u3CkPO60Or0jOo888YumPdVa7DzcFBk8KhTCvD3yx7xt+9O80OoLvZ+sFj1gcII615uqvFRvdry08ZQ8vDjhvEVx1zzv5sm6+6lePEXeA71/Am68c9s6PIR+tjzfTEm7cDZeOz8t0jvD8g29mCotvW0BiLyvES49Dek7vVrrvjsaSDK9w+l/vTMy+jxAyTO81vyBvWHO7DuYwFq89MD8vFEC3bxhohE8MTINvEd60jwQVlU9s7DWvJ1xDDwshw89xCFDvBoWIzvnmUm7pyjMuytPTL2itRE8/biNvMHmuDynkh69mjMoOsbA6zsY2xi8bQEIvOqiRL1FqRo7js59vJjyab0K4MA8fwJuvDsbXDtZI4I8FQcHPE/H0ruRc1o8kd2svH9sQL23Juu4CKgQPTU7dT30+xk9LOstPbcsHzwm2Tc99mXZvCHHQbwNhZ28rxEuvHVOCDyJwju8sRqpvL4PTTwfXQK9R3pSvelBgL3IyWa83K2gvOxzfDuovnm90IMTPIeHsbzQgxM9T8dSPcb7CDwT+7G9hiMTvVECXT0OG0s90u3Suw+OmLxM8OY8H12CvZszKL0wYUI7UdBNva0CfztpIaG8sRopPGuRFL2jsrc7FdIdPXascrxKGXu88r01vTDFYDxMXZO8+3dPPYR+trxDBD48IcfBuxL+C73qokS9iZCsPHrwdz2r/7c83K0gvCvuh7pfxfG8NkGpO0SpmrxhAPw7fWNFPDpTn7wT+zE9+0VAPTU7dTy+eR+9Bc5KPEwoKj2Rpek77nx3vDuIiD0DW308/K+SPPK9NTy+Qdy7vThhPMgBKruL/cU8Y6VYPGhTsDu8ojM88yrPPFN4hLz7qd68D/K2O0d6UjzvhQU9GhajvJCrHby5/da80eqLuzDLFD0GBg69NddWPUlRPjvN29w7lhv+vJEPvLql7UG8Ho+RvNo607wFZPi8X8XxvEcWNL3E7zO8BWT4u9vZDr0Nt6y8+0XAPLVVM727pY0837YbPEMEvjwZsgQ9GD+3vCwgl7whK+C5Zq7TvIpY6bxVPWc8evYrPD2IdTx1Toi9decPvP2Ayry/FYG6o4AovLyiszyfEw+9M6KAPT2RgzyCPXi74r+WPELSrjs1RIM8BZ8VPDK/MLwsBa+5KTFivHKrz7yE/Jm8a1I6vVFYhbvpcII93g5nPJwQGrtB20G9EAs0vfTbC700Zz68HOAjPbFZR7tE2we9H8ZYvW5bNLxLnoO71ktrvTUykTvVDcS8XApqPJem7TyMnNA85tHiPCDylzxw+g27xoeSvCEwP7wDlzC9Lw6pvYRvbrtRNXq8J7UTPPA87Dww62O8G+AjvNZ3Kj3JZJO8/BHcumuH5zwWJiK9qLmQO87yVTyccQa6b5nbvMEU7Lw7IcC8Y4aKt9vzhDpSWIU9jJxQvGVakb1xQWk78GgrvTX9Hb24ChW9GTgWvG447zq3SPY8AVCPvKqWS7wLHIW8hjqHPX4fU7zheBM9pdyPvFjmDb1HNNc7u0iCPZ5Oh7xmLpg86HnwvM8elbyr1PI72LWXvChUp7xfsvc81W6wOyubyLvBAgQ7frXsvE4amLxCuHw8x87tO2GpCTzNdoc8XmscvUiVQ7yj/468fG6RPJGuxLyx72C8fNixPNJlNr2/C/K8p+69vMuZBr3N6Vs8GXY9PHN2Ij2O2ve8YeewPGxJBr0S34A8yJnAO7KX7jzGswu9FbwBPSrQ9byJTDU9P5QgPTCtgrywRxm8xN+EvK4+HzwaFdE8vcRQPNJcAj1hfRA8PjM0PZ4iSLvGL9o8EaGTvBLfAD3NFZs9zErIu2NRlzxI02o8b5lbPX8Wn7298A89v81Ku3KrzzxA20E7A5cwPYUFlD2LVS+9niJIvMyigD0eJ0W6d/vqvFSoWj1obIW9/+WovGb5pLyF2VS8frXsvC5vlTw6Vu27xEmlvIRvbrunjdG7DgI6PSPYzDwNN+c79vbtOjbRJDxmmLi8oz02vf2wbzyF2dS81W6wPEywMb2O/YK8nIO0Pa0+H72CZvS8/rlpPAfeFz2M0f06oxF3vJBwHTyFeOg8F86vPU5PRTxX3ZM9n+2avIVmAL1OjWw8ODuLvDUykbyBgAU83MeLPWRs+byyhYa8gVSMPDUG0rw20SS8+GDUvF500DueIkg8T3uEPPjBQL2ZEFQ9nyIOvO5fsTyH4k67NV6KvM7yVTxgP6M7xocSvaZGsLzDvPm6M/1XvUXKcLw8Krq8aknAvOOKwTz/hDy9GrTkvJO3Pr2ZaIy9rkfTPIJm9Lz4wUC94a0GPNQEkLzD6Lg6Og8SPXNKY7oveI89b5nbPBOQ/LxA20E8IJGrPPHbfzxR95g7wRRsvPiMEzrLf/U8mWgMve0zcj3eDue7DJhTvOZejjyqwoo88WirvJP15TsBYne9NcgqO32jBL3iv+67nEWNOpoQ1DrHzm28XcyIvP8aHL08X+c8ST1RvGmqLL1NT0U91EJxPeX0JzwvpIg82sfFO+JMGju2Ng69/8LjvPNOYD1o31k9HB7LPJwZzjwXWxW98qbSOrZrOzzIkAw8K/OAPZKlELwBLUq9Ae8iPUR6G7wIht+84OIzPF02qbzSOfc8FbyBPbiy3DxDeps7otNPvA/f9DzL4GG8UViFPNB/Ab1mLhi9GQxXPKP/Drtea5y8k7e+PJyDNL0H50s9waEXPUQiY72Kitw7VaigPBjOL74gkau8ENaGOvaDGb2rYZ47cqtPPGSGirzkk7u81neqvH0W2bzDHWa9WsNIvb2PI700O/889KYYPMXF87yZaIy68p2ePcaQRj1O7ti7/HJIvcaQRr2VnXM8oTS8vAOXsLyhK4g8Ijm5Ozxf5zuQcJ28EhSuvDcGmL3w/sS8u+cVuu/AHTy5UXC7GG1DPbNZjbxTarM8tWu7PO7AnTxtHY07HBUXPM5KDrxsSYY86g8WvaiEHbmKity7IJGrPMiZwLuEXYa8E/HoPHFtqLw4TfO8LAUvPFwtL707IUC8F1sVPUN6mz13XFc9SdzkPOF4E73O8lW8g9BaPZvbJjtMcoq8pKecu5xFjT1+Fp87vAL4PBxBELzBAgQ8xfEyu/dgVL241SE8xbMLPFyXlbyh00+9mjwTvdL7FTpcLa+94LZ0O8GhlzymTyq8jV4pPUbkATyvEiY8R4wPPLSOADzEfpg8mU57PgUTfz3Zvsu8SwikvI30iDj4jBO95IqHPPJxJTyZENQ8/4S8vG76x7zjisE7hG9uPO0YkDxrFJO8GUp+PeJMGr2m5cO7Qrh8PbocQzzL4GE9aAIfPPJxpTxd+IE6y+DhOzcPzDz19m081Q1EPM9TQrz0r8w7rJ9FuSPYTLzfpAw99iItvMmZwDxhHF49bOiZPNBTCD2XaMY7HHYDPbyGKb21oOi8mtumPGKygzwox3s7GG3DPKEriLzqrqm8dAyCu0Pku7qGpKc8+mCaOrNZjbxpScA7CBMLPWvfn7zZXV+9dfLwPJ9paTy+C3K77RiQPCN3YLs4Owu91EJxu/xyyLweJ8U8AszdPGb5pLuJTLU8FLw7PRdblTztt6M8YD+jvMcvWj3RxiI7cMWavMk4VDwZq2o9un2vvHrGA7wuTNC8tcwnvAkl87qMnNA8K/OAPG76x7wgUwQ7EAKAPb0uNz2Xpu08nmBvO1rvhzr1GTM811TlPKQ9trwqkhS98dt/Pan3t7weiDG9lMA4PfJF5rwC+Jy8l8kyvDC2trz4Kyc9To3sPBWHDr1r6NM8f4A/vRWZdj2CZvS7vgtyPJpxwDu0P3w822bZu6ewFj00yKo8GtcpPSbhjDxMp7c9BNVXvJMYKzwniVS8E/FoPNWs17zycSW9SmkQPXdcVzwC+Jw7Xz8jPRCqxzsm4Yy8dbRJvWuzJj1QluY87ewWPJUhJT0yk3E8E/FovMLWCj1dCmq9aX5tPC5vFTs/yRM7/HLIvC4OqTy2zCe9PBiMvP57wrwfkSs7Sp49vCFuZj2H4s48oZWouxhkD73AmB29Z3VzvLdrgb1fsne9qLkQueqC6jvOtK68z5FpPaDK1TwS34A8vByJPAJZCT23SPY7tgrPOtgWhDtbzEI7zx6VvORVFL1SAM28K9nvvFbdEz0XonC9XC2vO+23ozziikE8slCTPHIDCL3uM/I8y5kGvXx3xTxlLlI9mNKsO9PPHLzFh0w9bbwgvcsMoTy/+Yk9d1xXvdm+y7zkk7s8JoAgvcg4VD0y9N28XMzCPIrrjrsYbUM8v83KPO5fMTwh+5E8vIYpvPKmUr30GTM6JEKzPEZXnDl+tew8Bj8+PSv8tLvax8W8zbSuuOvjHD0G3lG9gzHHO25SAD1GyvC6NCmXukhyfjvcMSy96NpcPAnnEb28xNC8v5gdPBdkSbwFoKq8ecY9vfxplLrSZTa8hkO7O5SCEb3/WP08HEGQPFBYPz2py/g6JurAPEa4CL0r2W+8E36UvGF9kDu2Ng6822ZZPWb5JDywUM08odNPvXi9CT2yujM8wbN/PCVCM71rUro85MjouyjzOr1eNim8uLLcPDCK9zyk0xW9iK0hvI4GN73E6Li8z5HpPCjzOjzxRWa8s1kNvXhcHb11HjA9p41RPQc/BLxkbPm87pTevIqK3DsPAgA7F5AIvQklczysADK97EQJPD/JEz03cLg8Wfj1ukYrXb3PU8K7j8iPvMyIb7wAJNC8c3YivflgGjz70zS8vsQWPCjH+7xfaxw8RCLjvOUpG73erfo8/hrWvJMYqzyJTDU9t3Q1PZb+37uB6iW7+GDUvL0CeDuyhQa8JUIzveT0p7x/gL88waGXvF0Kar0SUlU9CVGyvGihsjo4O4u9lv7fPCDyF7o8wFM9xCZgvN46Jj2Lthu9S3v4vEIZ6Tyh08+8VXMtuy7i6by+zUo8aEBGvewYEDwQC7S8k7e+vMYvWjwPbKC8uNWhO8kDJ73ycSW8Wfh1vNJlNj1Q99K8GW1Du2/6R70izxg9qOWJvGFIHb2QnBa92r4RPYv0QrzZgKQ844pBur4ut7zcBe28Aszdu8LfvrulGnE9D5gZustBzrwy9N28QBBvvK/mZjoZSn47lJR5vJSCET2kpxw9lZ1zvI2THD2N/by83g7nvLXMp7oHP4Q8NcgqO0HbQb0veA89t2sBvLgTyTz4nvs8eTAku8xBlLy4E0m9ygOnO1IsjLxA20E8CSVzueDiM7ytCSy7Sj1RvW84b730TmC7TBGevGsUE71JYBa8liofPYMxxzy/zUq76q6pvG5btLtBGek7Sz2XPPTt871vUoA87bejvNZ3Kj3eOqa8AO+iO5xX9bvTBMo7nOQgO7dI9rs7tx88k/XluoLQWrwZmYK8Tu5YO6o13zzBzRC986YYvdQEkDzS+xU9P3HbvJK3PjldqX285MjovFXUmTxJPdE8kHAdPEsIpDxo39m8tmKHvdB/AT2ucxK9H8bYPFVzLTxm+SS9iIFivF+gj7xFr448+CsnvcECBDwSFC49FVvPPLG6s7wsBS+8waEXPVvMQjzGkEa9vSWDvBxccryaccC8OBhGvHKiGz2fK8I8oxH3PHFB6byL9EI9FfpivasAMjy1a7u8o9zJPFBYP71I/6k8EbNBvVm6FL3/hDy8SJVDvPoIYr2lGvE8v81Ku13VvLxr6FO9cc6UvNwFbT1gqYk8uhxDPQc/BLuLths8YeewvBdbFbzSZTY6V90TPPppTjxqSUC9KOoGPbQB1bx3XNc8HVzyvC4OKTyyl248y6K6PKthHr0pks68m3q6vPppTrzSZTa92fxyvK+ohbwTfpQ8G+Aju7U//LzaiR68+J57PL2PI71+4Ss7kXCdO4QxDbwT8Wg7sFDNPNRCcT0oVCc9yDhUPdkfuLwvrTy9p8L+vCbhDDxY5o07DFosvPNOYL2P0Qk8POySPOYyT72nhB29EKrHO3QMgrsw6+M85v2hOckDpzwxrQI4DJjTPIv0Qj1ZJLU8gICFvdiApLuaPJM8faMEPWlshTyJKXC92b7LPEJ6Vb2y+Fq6TKe3PAhIuDzDvHm62R+4vH0WWbvOtK68y3/1uhBJ2zzfeM25nBnOur2PI72iniI9514OvDbRJD0Lj1m9NMiqPLwC+Ly53pu9/8LjvKthnrtrs6a8gzHHvG76x7zq49a84BdhvKEI/TyLVa+82iiyPG5btDu5UXA7ydfnPBdkST2msBY7lMA4vY2cUD2cgzQ8K/w0PMuiOj1w+g09v2xevCvZ7zwnKOg8YX2QPDIgHTyvEiY9vsQWPaUacb38aRS8/4S8PK2fCzzVbrC8+MFAPD5oYT1/gL87AsxdPP+EPL2lRjA5geqlPNQEED1czMI8CSXzvHMVNjwwinc8eL0JvaBXgTt8mgo8Bz+EvDiu37zm/aE7RCJjO39LEr0oVKe8esYDvRWZ9jsmKOi692BUvZdfEj10FTa9x85tPC4OqbzQ+089QdvBPLv5fbwjd+A7J7WTO8A3sbtMp7e88dt/PO/1kLzJLyA98nGlvVDCJbyMMmq9WSQ1vCasmTykCIm7WRsBve71SjxGjEk9lp3zvGd1czyzw608l6ZtPF+y9zvQQRk8l1O9O60tYL0LoAw7TlnCOjquFb1T/6K8qwW9Palq2DxahTK8bORBvS7gbbxxiiK9MM7CvOxO2zzyjyC96iY4vLyBc72uOwa8hBFVvPJkU71tPgU92VRnu4cc0TsVTr87mhZFvAbdBD2bM2w8TAZSPQPSCL2PouC7MwQMvYmMaL3Ow9u80c7XO9D5pDwetye8nGk1vEt5E72G1wY9qVQEvW0+BT1THMo8E2DqOt9NuDormyM6c2rRvIePkrzqLQu92X80vW+nybsZ9J87ml45PXGKorxzskW9wQqtPCGXVr1uN7I8WAd1vY4yybs04JE78B8JPfr4iDyfewS8J9gbvLY4AD3Iu4m83gEbPfKB+rx12ui71nQ4uwf6qzyHRx69vGTMuvtoIL1FY5s7s0NYvFyt1bvrls+7fdM5PYZrmDxVbzo8k2VoPMNP97wlhSu8Z2kuPPhdJLyV46U81yzEPE4udb1aolm8RdoFPEAMAjx8/ga9sUaCvO6hyzu5hJ2998K/PJ+u/zk0Zv27OFTSvMXUh7yVm7E8+HrLvJ+R2DycaTW9bOsUPWPumrzO0QE8aw8PvK4XDD3MNp08yJePPPftjDvGWvM7IjK7PJRPlLy/b0g80GUTPY16vTxiNo87XMr8PFGBZT2OMsm7ub5rPKdfXDsfChg9KR3mPAk/drwhwqO8jJfkO1bCKj0YqIK9QVifPHvwYLxJnY08BPYCvEAi1jyvgFA9opzUvAT2Aj2OMsk9Z3CBPEPPiTxdkC49ocehvfw90zyliim9xlrzvAYXU727yec8s0NYvAwQpDroqPq8M/ZlvGaxIj3OprS6qof/vBxrijlyQi66Bt2EvAM3pDwOz4K8RWObu+VjsDzTTBW9kpA1vHbElD2WWhC9htcGvX8mKj1yuRi8ZF6yvNZJ67xtVFk8Q8g2PRxrij3Vn4U7r4BQPd1CvLwjv3m6TYQPvGSmJjzyyW48p/rAPOAiaz1AxA29dU2qOrZ5oTw5xGk8CT/2vB63p7yAwQ49LRIOPVsS8Twve1K99W/PO2b5ljz3wj89vf8wvCKBAr0t7hM8Gi5uPEbw2bzhvU88Bvqru0OHlbwSqF68+U/+Okn7VbzKHfu5ciWHvVmi2byk0h29abwevekmuDw2AeK7lbhYvLTePD3yZFO73rLTupKt3LyVooQ8VW86PIwKpjsbZLe8gN61PGnZRTxxSQE8v7c8POJYNL19i8U8lZsxPK1fgLzn8G49U3aNPD8iVrvn08c8CHGWPIzJhL1VCh89DocOvaBJZDw0vJe8G6wrPILpsTw5GgS8mx0YvV1lYTy/b0i7YVM2PbL+Db0j6ka9DoA7PShlWj2WcOQ7yK1jPAuSZrx90zm82KqBux8KmLptPgU9TekqPH/7XDwL2lo9xdQHvV2QLjxCECs9R4s+PHFCLjyG14Y7Hye/vBwcQ7z9IKw8ocehugbdBD3TBKG7UTlxuy2mnz0sEo48opzUPCwo4jw3o5k8GHZivA0tSzz7aCC9Dp3ivA+Au7trSd07KE+GvA84xzyREni9ddpoPaT2l7uzbqW9OTerPN54hTz1vha+XyuTvCkHEjvRsbA7uaHEPFkVmzwVa2a73MR+vT9NI71VJ0a99JqcvWeGVb0JP/a8pNKdPHVNKjz5Mte8BCl+vPrNOz366uI7Q88JvRehLzxsxxq9V3o2PAxYmDynF2i84QwXvee2oDsigQI9j6JgPD8FL71dkK69MmknvNNpvLt78GA8fbaSPGaxIj1vxPA5GfQfvFOMYT37aCA8YTaPPGsstjx3dU289Zqcu6xYrb3MU8S74OgcPNYsRD1EVXW93rLTvBSWMzx1vcG702m8u+xO2zvWdDi9Ng8Iu+fTRz3WSes9U/+iPD2yvjzkyMu8BV9HPBVrZjwQ8NK8u8nnvErlATtHiz49ho8SvGRlBT2JjOi8teWPPIdHHj30HN+8wpdrPMY9zLtOLnU7KR1mvbFGAr2y/o27oQFwvbLaE71BSvk8c2rROslISDufrv88EPDSPEG9OjwyaSc6mKYtPHo4VT7FsA09wnpEPKvolbxecwc8vtTjvBJKFj0fJ788TaiJPC8dCr1OWUK8nGm1vAPSCD2YNpa8NHQju6pUhD16Vfy8lQDNvJyGXD1BdUa8occhPb+3vLzpUYU9zQtQPIi3Nb1wp0k7O4obPX8mKr0wzsK8TagJu2hMh7s69gm9rOiVuxh24rzNC9A8jl2WPYccUbw/P/07SpY6PcLJC7y3zBG8ltV/O4j/KT3I3wO9+vgIPTYB4jwWI/K8HfH1vAk/9rnlgNc8cQENPdKG4zvNNh07TE7GPIj/qTwDDNe7G6wrveuWz7yaQRI8SSYjO2tXgzw/IlY7+rAUPUWAQr3TBCG9xfiBvJLYKT3+req8Ik9iPcpPmz0gtP27vtTjPMf117z01Go9d3XNPHOVnjwjzZ89F9t9PRrm+TtKVZm7FbNavB3UzrwoZVq7NqOZO3P6OT0CnL86QXVGO1E58TyOzS09k9gpPE5ZwjyaZQw8N7ltvFUKn7zCgZe85/Buva7IRDxs6xS9vEelvAV8bj1yJYe9/QMFPNrvyzsvM948lABNPWFaiTwUs1q9GISIvBfpI72RIB49/SCsO02+3TzNU0S7gr5ku0ItUjwz9uU7afbsuw3lVjzjEEC8FU4/PRfpo7xNdum8f5bBvETlXTw8X847IcIjvVkVGz0yhs48iW/BvCuNfTyOFaI8ZqN8vLv7h7xmsSI9zq0HPSkd5jtDnWk9V3q2PM+JDb00Zv08sf6NvN4BGz3JZe+8mXvgvDhU0jtz+jm8fyaqvCitzrwoSDO8R7YLvUGS7bv+l5Y7z6Y0PSTNHzuNpYq8QlgfvbihRLwiMju9VERtvWFTtrufvKW7gGv0vPGsxzyZXrk7/vXeO31DUTwvXis8yuMsO7Hw5zwUeQy9mOD7uxz/G73g6Jy8dTCDPJXjpbxQydk8CU0cvSwLu7u4zJG6h0eePB5SjLyythk8DC3LPI7q1DvqwZw7Ba4OPA6AO71rdCq8aPZsPf3fCrxmo3w9rKChPf713rzo8G681+RPPfJkU71OhA89RTjOO2UdETyIvgi9zLjfObG2GT2LJ008aZHRu3VNqjsw6+m8dJUevYmM6Dx7G647cRdhPZ68JT1J+9W7C72zvChl2rw3oxm9Sd4uvZRPFD1Xwqo8SG4XvW2czbzg6Jw8z8NbvH1g+DovFje9AZw/vUkY/TwvHYo8dAyJvTnE6byI/6k8gjGmu+WrJLy6Edw83niFvA3lVrm9HNg8tZbIOlD0pjzmagM8BV/Hu5jge7z8PdO8WlplPPS3Qz3WDx28IMKjutKGY70LkuY8jjLJu3DSFrn7hcc7KUgzPWFTNj2WcOS8y+OsvOJYtDxFG6c8jV2WPOx5KL1hcN28K1MvvDOucT36+Ag9QOgHvdfHqLwUs9q8BWYaPAiytzy4FAa9ZobVO7i+67x/s+i8fLYSvO6hS7thfgO8ZvmWvNKUCTwj6sY7VNTVPBGLN7oGQiC9iXYUPNGxsLwFX0e8VG86vZuxqbuRaJI8m7EpPXQMiTun+kC91leRuxlZu7xfAEa9z3vnvFTU1TxADAI9B/qrPNWRXzyGa5i8JVpevYOokLzSuAM8h2TFvGbOSb3x+469D4A7PEreLrtNoba8EW4QPZjuIbx3WKa8nIZcvV8d7Tx9bp68jJfkPIjU3LxKa209SG4XvdZ7i7ufrn+6ZhY+vIi+CLyDdnC9Lxa3PKWKKb0IakO7kSCePP9l9rmDdvC8CLI3vYsKJryZ7iE7VsIqu/fCvzzwQ4M9FZazO80LULklhSu8pO9EPRP7Tjw4VNK89Yx2vRMmnD3ZVGe8WF0PPeQXkzwqjf28HlKMPIKoELq0++O8W0QRPWpJ3TyfdDE8ajMJvacX6DzTBCG8fW6euZjD1LyolSU9E/tOPMEKLbxT/6I69W/PvPAfibzwPDC9gGv0OV8Axrsg/PG8MPmPPBxHkLy+4om7x/VXPO+hSz2FrLm7ZUELvU12aTxwiiK8mokGvHUFtrx1Taq8fUPRu5Z+Cr3PpjS9BjR6PPDXlDwd8fW8uKFEu0kY/TxpvJ68syYxvDn2CbuMl2Q85C3nvChIM7waydK9qU2xvL+aFbsemgA9N+Q6vcEKrbzLuN88fIvFu5WbsbzJlw883niFPK+A0DssEo48fLYSPD8i1rt7G666bZxNvIzJhL1Ibhc84dp2vMEKLbwL2to7JKLSPFeBCbsIakO8qbLMPEwxnztTty494OicvIWzDL093Qs9cO+9vP27EDwuQYQ9gGv0O4i3tTwrUy+8sv4NvRrJ0rxDyDY8n65/uuVjMLxHtou9LnvSvINZST3iddu8PmpKvQI3pDvlY7C8KEizu22cTbzSuAM9twZgu3UFtrwG+qs7C9raPNuKsL1ajIW9Vfz4vPn4iDrDT3e9Lxa3PEmzYbwG3YS8j7CGPCnjl7xpIbq8zu4oPUsxn7zX5E88pfYXva1fgDy8RyU9r/ORPBMmHD1y+rm8i/z/PBMmnDx6VXw8gU7NPCiQJzwYPBQ6dsSUvXXojjxXwiq8QL06PYQ8Ir0UljM9J8p1vNQom7tQ9Ka8MkwAvS9eq7pVCh+9DgJ+vZ7ZTD3g6By9dU2qu19IOrzXxyi9k0jBPLUJCj0uQQS9i9/Yu6WnUDwq1fE8JT03PURjm7o4GoQ9cF9VPb+3vDwAxwy9GslSvLYxLb2rBb088BFjOx8nP7yevCW9EyYcvZ7287ydIUG8iLe1vODoHL17G668Z2muPFbCKr0/Ba+7b8TwvKX2Fz3O7qg9y+Osu/TikL2jVGA7U4zhPLiEHT1DyDY99lIovecbPDxPWUK9DgL+vPTikDw8X048rJL7u3qrFr3zR6w8XwBGvVqFsjxzh/i75moDPXXojjyI/6m8padQPcZac7zVvKw8hBFVvcvjLD2V46W9zq0HvbWzb7zsMTQ9nSHBPAvaWr1Xl927+2igu7MmMbwYqIK8bOTBvA6d4jy/vo+8padQvTh/Hz2skvs767P2PLvJ57ymQjU84qCoO1w9PjyS2Km89lIoPTIhszlGqGU86Kj6PIj/KT28gfM86UNfPQhqwzxG8Fm8rKChOxwcwzuDzAo8wnpEPHctWbxF2oU6VQofPFUnRjzH2DA84E04u8lIyDyW1f87CQUoPf6tar0MSnI9G2sKu+NfB708F1q9aPZsOErlAb1ahTK8padQvCJdiLz1Uqi8k3OOvHgQsrzNKPc8bLn0OsT4gb1FYxs9apFRvZXjJT36sJS8Qi1SPK7l6zy1lsi6ze6oPBtkNzxFgMK6lyjwvLcGYD03x5M6IZdWO+reQ7tLMZ+8XCAXvUOHlTwbrKu8w0/3u3+dFL1GqGU7KuMXPXXEFL3SuIM88azHPLofgjzQ+SQ7wcypPKiAGj1uScC8R3FNvNgOCrzgMBu9IbQfveUScz2IYGY866P7vFrDIr0nGw+9scqCvJT5W7yazYA8UvCeOxGx1zzH5Au8zfvMvPd/DbxVxgW98loZPBOigzsjioa8+835u6GFP7nNMDY8b36pPJAkljz8A4S9J4cjPII8kzqi1My92q5mvd1AkLsxqTS9vkgzvRPzUjts7P+8JdkTPfP7Fr2OJlg8koL3O/T6db2iuig92aHUvIXNG70MEz27osc6vZGqzjsYnyA9vTuhObKU+DzMCN88TLEGvRUA5byMNIu9cs02vbS6Db2Hbpk7otRMvIYeaz0CrzC82Hn9O0sQibwfcqQ9C+yGPeEjiTxzsvG8tTM0PAT+PTyin2M94mUEPAmPRj01Lau84o78PHFUkLyHe6u8BkC5PGrtoD31Fbu8EB4NvRm5RLsycgk94nIWvW5kBT2mI9q8gEtnvE0c+rvtQre8ywkAPACinrywUn08TmyovIXACb0B14c8pT4fva5gsDxYc/S8zmWfvHUBf7wrC5o83Ri5PJ5QVr1uZAU8BhhiuwveUzw00Oo7Mt4dPamnULlDuG09oqx1vFKg8DuviAc90IxVvQOFl7yXiwW9O5SavDBnuTzdTaK5DOtlvEbrFD0Kqeo8WY65vG9+qbsLWJu8HkpNPcZdMj0QlzM8guqiu2LlM7xSoHA8ilGSvXUPsjpV0xe8LECDO7Vbi7vry9I8NLSEPYQsnrpvVtI8ww6lPA46czvWKvC8C/kYPfO4er3tDc48jdWIvKK6qDqlPp+7JAOtPOPrvLuae5A7Tb4Yvb8t7jv76D49/1HwO29xF70UDpi8vTshPb5wCjvqegO9FEMBPCKmbDs0tAQ9FQ33PE43Pzxluxo9Aa8wvRCXM7yazN88+m+YOx4V5LxgRng8GHdJu+f2DD2lPp89Hj07PMHMqTt2Xj+8KckevcB9HL3kIKa8JCsEvBbxEDwtTRU9qD1+vGPYIb1G65Q8/l+jOiHBMTuEHwy9ySYHPfmZMTzyuHo8u6l3vbm3Kj1j2KG8tf7Ku2KIc7tYFZO8vc+MO8BiVz3vXNu7nA5bvMy3Dzw6lly7JlK6u34xwzzbu/i6hcAJvc9K2rwoX8y7PmqBvZ94rbxs7P88MJwiPQve07wz+MG8DRM9vWm4N724PgQ9iIi9PNd6nj2ghb88VT8svemW6TwJtx09lKgMPQZAOT1D4MQ7Wqhdu/ScFD1vfim9lmOuOyc39TtC+4k7Ua4jPa70Gz082Fc89T0SvCvjQjy+IFw82/6UuwK8Qrwa4Rs9S/VDPbUYb7sadQe9muekvHiguj0FugC8jAw0vQ99jzzC2Ts9BTMnvMG/F7xsIgq70sE+vKGS0bydNrI7TwCUPLda6jtlJy88GuEbPfmZsbvOZZ+8QZG3PFrQND2kCTa9I87DPKweNb1HjJI8RjzkuvsQFj0wnCI74alBPKCFv7w5RQ09YSoSPPCsiby0uo28Nm8muuhvM7y1W4u88wipvdh5fb2ocmc886vouv7zDjz/X6O8DOtlvdvWPT3AYtc8mYrkvEvosTzd/fM7uAkbvs9X7Lyl0go9Y/JFvUKr2zv0nJS8UqDwPApYG70gZPG73lq0vDBnubzeWjS9lMTyvGPyxbrobzO8yaw/PFLIx7y08bg81PanPWCWpjsq/oe8abi3O4rKOD0TDhg7t2gdvfrAZ7zVHV688satPGUnr7x2US29WsMivTS0BD0QYkq8NS0rPbYYb7ztyZA7QFzOOxzg+roQlzM9dQ+yOJh90jyvOFk9OLEhvVQKQz0Aoh68ZSevvM+aiDymS7E8pzBsvKU+n7vgnC89f3O+vFymm7wWNc674+u8vK9gMLxXZmI9yuEoPYP3NDyRxRM9W91GvEC5jrwPiiE929a9OysLGjtc6ti8ctrIPBPz0jsqoUc93z/vvEQ9hT2tRoy5rOnLu1QymjwXarc6jdUIPVlXjrz9AuO83f3zPIBLZ70qoUe9N1ThPGZBU7xWJOc8bmSFvKPh3jzzuPq8GTMMPDdU4TyJomE+UYbMPDN/mzrr2GQ7+CCLPDGpNL1Kb4u8rivHuXGl37ycvYu9cIs7vR5KTb0qocc8dA+yO5CDGLyomj49267mvNTbYryu9Bs9ZMpuvJu/TT0Aop484DAbPUQ9BbucvQu9GE/yvFChkTyXcEC8au2gvMTmTbxysnG8AIdZvOm+QLwqyR47NTo9OEL7CT2v9Ju6fhb+vFFCD7wSpEU9Tb4YvRifILxExf87nPS2u48XBL0RfO48hkZCPILqor0tJb47kCSWPFBRY7sQHo082JTCuwvRwbz23o8925IAvSq767xRQg+7ZK4IPOmWabw00Go7p4CaPPYizTw2b6a8lCEzvSG0nzztQjc9/So6vdlQhTzRtCw9Ubu1PGBGeDxzsnG9SC0QPfZXNj2MDLQ80rQsPLPxuD3dn5I8oF3oPFLwHr1nTmW9tTM0vT9czjzeWrQ7VdOXPC4K+TwD1uY8NVWCPOyHFTzGQ468zCMkPcB9nDyT0iU76/OpvIejAry8Bjg9fMfwvHiGlrxvBQM94dGYvb07Ib2nWMO6JnoRu9A7hj36YgY66wA8PMiSGzxGB/s7HNPoOxv7P7wFC9C8OKQPPJMHD73ZySs9UIZMu/beDz2X95k8Y9ihPASFlz3NWI27n3itOnMCoLxglqa8FEOBuc1YDb1hy487tQtdPDyHCDwGxxI8I85DNzLenbw4VOG7xPPfPCX1+Tzi3io9uuyTPfrAZzzwhDK8IaZsvH/6F71051q8r4gHvR5lEr29Lo+8ut8BvJSojLyM5Nw8wH0cvZPSJb2T7Mk8kGhTPRPmwDwgZHG9C+yGvSGMSLzry9K8SsBaugZAOb36pkM80/anu+CcLz1sB0U8/2y1PMZdsrl9Cew80bSsO/G5mzxBdvI8UsjHvPLTvzxGL9K7GJ8gvUsQibwXkg69g8/dO4lteL2IYGY82tY9vCiUtTy2QEY9Y9ihPPGRRD2nZVU7X3yCO55DRD0olLU7kXXlvJKC9zz0FTu9qrRiO594rT0JZ2+9E77pulu1bz0PYsq8MHRLPaT8o7tVCkM8G8bWOcP0AL3gZ0Y804oTPUgtkLyylHi8G4KZvOzl9rt12AY9GsbWvFeBpzurY5M7K5+FvACiHrxd24S8++g+O3q63ry8Bjg9/2y1PNF/w7xJzo29Fg13PC9M9LxnW/e8oGr6Ozvl6Tu+O6E8XDoHPaThXrtRhky9hRFZPAUzp7si6Qi9nCkgvSX1+bydG+08zVgNPdCM1bxk/1e7uZxlvSvw1LyC3ZC8vjuhPMQbNzwake08RlepPBY1TjxfHYC87NhkvF5UKz2FHww813qePMpoAjywois9ApRrvMgzmTzNMLY8D32PvFYXVbuKouG7CbcdvTmW3Lsanv88Mo7vO6BBgjwkEL+8LPDUu4d7Kz00BdQ88KyJvFQliDvs5fa732fGvAeCtLt3a1G9i8q4PLb8CDxwcPa8rlMePZCdvLwdxJQ8zjC2veGOfLzK4ag7oZLRvDmJSr1G3oK9zNN1Pcp1lDyKvaY81BDMvD8YkTmz8bi7h3urvFuZiTywbUI8UYbMuWZB0zxhyw89qcIVvG8u+7t6hfW7r21Cu8gzmTs8DUG9fTHDuyBkcToL0UG9sG1CvW3Dhz0hSIu89BU7O2dbd70dMCm8C6lqvCQ4Fj1lT4Y8EJczvSpqHL0b+z88IcExPKZLMbrSfQE5VzF5vDLeHT0uCvm8Gp5/vGzs/zzTpnm9l0jpu75VRTyV+ds8cIs7vd0YubwwTHS6l3DAPNT2JzyxygK9DiDPvKBdaD1Cq9u8pAk2vZKqzjwKtnw9pkuxvO4a4DxlNEE8euI1vR9Kzbxm8AM9qVaBvPMIKT3LCYC8NS2rPNZSx7xuZIU7Bk1LvTixobzlICa84qlBPbv5pTwSvum8EG9cPKGSUbw5lty8GpHtu8u5UT2xygI9Sm+Lu/LGrTzTihO82/ECPTm+M7sCrzA8/1Fwu7TW87pXZmI9XUcZvdd6njyIlc87nCmgO58MmTycKSC9P4QlvR4V5Dvpluk87k/JvEpvCzx3hha87moOPbmCwTxVF1W9Em2auirJnjrKaAI9wwETvtFIGD1uPK67jRlGPPqmQ7wmRai729a9O+CB6ryXVXu8E/PSvNeHMD0EJhU8wtm7vF5UK70dPTu73OPPPBZC4LxG65S80s5QPKLUzDthlia9Aq8wvNuu5rtr+rK86b5Au5PftzwJnFi8GDOMvO4aYLwBh1k7Tje/vNOm+bxHSfY82F9ZPXGYTT3XhzA8+m8YvL5VRTwHgrS8fjHDPLGvPT1l/9c8EtkuvSpdCrwpyZ49yXfWu1wSsLsRYIi84+u8vOQgJr3L7jo9aYPOPFChET25t6o7GuGbvET66DzmLbi8G9PovPqLfr2rBJE8O5QavW48Ljy96/K8BAvQvWLlszz5cVo5vAY4vYQsnryIo4K8VDKavHZ5hLunSzE9+c4aPfd/Db3fj5088cYtvRUN9zzb4088pkuxvDHRC70EJpW8+835u6442bsdMCm8dfTsOy4K+TzwrAm9G+6tO1LwHrx+Fv48M8PYvBq5xDsUQwG9cGPkvCGZWr2C3ZA8k9IlvKPhXrpAaeC7NQVUvPhx2rsIdSI8MZyivD8YETsl9fm8H3+2PFChET075Wk83z9vPaiNrLzBfPu8zliNvOvLUr0Yn6A7ZMpuvWGwyjxON7+83z9vvFuZCbwHgrQ8NTo9vLPJ4Tphy488tvwIvMy3j7tT1Vm7Fig8PUzN7Ly+INw8HO4tPF5UqzwFuoC90UiYvIKNYjztyRA93SXLOxO+abzTpvk8U8hHvfvbrLz6psM89zxxvJG4gby8E8q8jDSLvCGZWjtQUWO8jRlGPIP3tDyZiuS8p1hDvBUovLq9zwy9T1+WPfnBiDypcuc6W7VvvIQsHjuuK0e9W5mJvJhV+zonGw+9Yw0LvesbATs5vrO8HCMXPIBLZ7yvlZk71cyOvIbACbx8/Fk9PUKqPJPSpbw3VOG8sCmFPJZjLjyFObA747ZTvatjkz3nVO47TmwoPWzf7Twk29U86b7AOcPZu7u6xDw9RBUuvN5NojzBfHs8errevLmCwbwFugC8jdWIPFOEirz/lIw8pxQGvWk/ET0u7hK92VAFPHVEGz3i3iq8OGFzOyHBMb3zjwK92vGCvFrQtLyIiD29TbGGPCMDrTpnXJi8T3k6vdYq8LwTvmk6+wOEuuGcr7xE+ug893+NPPF2f70+d5M95SAmPNmUwrycKaA84YFqvZrNgD2i7xE9KrtrvOmxLr2fKH87njYyPBUN9zzs86m9RQd7PJmyO7xlDOo8Q7jtu/4qujzFUCA8TAJWPUwCVrzHakS6LECDPOCB6jy3da+8EbHXPAWdvrywapk6ZzBKuo5mlLzARIM5PY2TvTCJJr1zC2U946Jdu5OCnjwbc1O983IjvaIpEr3MUhS90bVcPPFfDDp31728aVkcvG2VhbzJSSE8CYbSOgWAgzzjot27IgsFPftkqjwa5oe7tfYzPLYTb7ugwyW8ZXCIvFCtijyOZhS7eAAQvTyh27yt29q8byLRPMnZkLwxLK28Y82Bu+Pf9zxwxVe8B33fPNYE3TxQWrW94+sOPVZDyTyV6Iq7BZ2+vCvdLL19HBq93ZD3PL0lVTzELRc9EsEKvT9NVb1/qWW7HrlgvT2NE72WyCu9WWl3vMHxrbzZ8BQ9CfmGOnzpozsZEIu6MX+CPYCpZbwYx1m6Ta67vKK5gTvbVgE95IJ+PT6Nkzsn9Bg99FJEvK0YdTr9B7G8Jm5NO5Aw+ry6ZRM7FToOPEecVbx21z28UnfwvCL/7bwuI7o8IoU5PPo72DxwSyM8qVgzvKgv4bzvxim9tUkJuyVRkrtbGBW9in0APHRxUbxJaK68IkifvOWr0Lx0cdE7gUxsu+QoKT0qV+G8oABAPP+gE713XYk9/QexvDaP9TzgH7a84OIbPf1ahjzX5P08IDWIPAJXMb2I5J08mWEOvJcFxrvr+tA8JOuluJW1lDwA1Ak98GmwPHkAkLz/oBM9grJYOzzedT3R8nY9ryHou1b8irwEF3O8jtYkPfPs1739JGw9T7cuPEV/Gj3uA0Q99vVKPHe3Xj1ntpW8skq6vGu/CD3svTa8505XvTyh2zxJKxS9YmcVPOXLL73NzEi8EBLtvPhbtzygAEA8VVkEPV/ukTyNjfO6ja1SPUItdjzrEIy96joPvDn+VLxCOY27YfcEuxuTsjwqlPs76BG9PLn/JrxCdie9UR2bPduTG73svTa9Vqk1PUIGFzzkjpW7OHstPKDDpTxFfxo9jJCXPf1ahjxlcAg9X+4RPLUzTjw9HQM7yinCvNKhFL20sKY8xVR2PZe+h7o0r9S8/02+PBrQTLyobHu8ucIMvYCp5buJSoo8b2sCPWGkL70zDM48ubb1O+hkkrxlrSK9DY/FvMadp7wr3aw8dTS3vAJXsbwUoau8qZVNvbkyHb39JOy6xpMDOrnCDDw4uMe8vm4GvPb1Sr0WbYS9nTTnPH6MKjylrDm9IyhAPcmGuzwaQ4E65ujqOwG0qjsc+R49Of5UPeNlw7oU3sU80HhCvDcyfDzmwQs9xRdcvNO+T7wdFlo9xkAuvdktLz2F+OW761dKPFD0SD3YLS+76/rQvBJY+ryc2hG9r1cCvfFJ0bxypfi8CPmGO7DE7jzIphq9xdrBvBGOFL2ZlIQ9IFznvF5eIrw9RGI9Wwx+PedO1zs2aJY8N3utu5iozLyn1Yu8MBmWOzze9TtYTLw8ormBPA1Sqz11rmu8FqoePC4jujwj66U833wvO+QoKTyxxG69XDVQPFrvwrqIF5S8Brr5PI2t0rwgXGe8YpoLPaKjRrxlyt2793uWvPDGKTwDN9K5iYekvDaPdbxDVki9zEZ9PCaOLLzefK85mit0vLRTLb20Uy09OLjHPGo5vb1YTDy8xzaKPEDTIL6o8sY7fgbfOw4yTL1+jCo8EBJtPLSQR7zU++m8XX4BvTJpR72KSgq9fk8QvS3TiL0eLBU8i80xvKt17ryoeJI77WA9PWqzcT0BtKq6jtakvIV+Mby6Wfw6fKDyvJB5K7rlyy87FqoePRaqHj2UJaW7BBfzvLNzjL0pd8C7RUIAvLX2Mz2uYaY7omasPJQlJTx7CQM9QqkdPRShKzzgpYE8fcnEPDe4RzvYgAS7RDZpveWr0DwE+jc8AC5fPBSXhzxDk+K6GuYHPXngsLtnRgW9GE0lurh527wdnCU8+jtYPVw10D2ZYQ494rgYPLfWVL0+bbS8BL0dPagIgryzKlu88GkwvLYTbz3kHoU8cu4pPTIsrbrp8V08vIJOvCHC0zrWBF082IAEvNfkfbx5WuW816fjvFiJ1jy6WXy9MEyMOdG13DzTvs877EOCPG0Fljzh/1a7umUTvDe4xzvL7Ke8Y2RxPjaPdT0PMsy8N9gmvPsb+TtWQ0m954vxOek6Dz3Gfci8nppTvfFJ0bx5PSo7YAEpPb6rILynEiY88klRPTi4x7y7RbQ7Ta47PRSBTDtySP88DvUxvJgumD27v2i7oh37N958rzzS3i494B82vckAcLwmbk27vL/ovPWP3jsS/iQ8N5sMvUS8NDwZauA8sKczvHkzBrus21o9AQeAPCs6prwdFtq7ZxOPPP7nUTzH47Q7WEy8PMxSFDxNjly97wNEO9inYzsUgUy8QNOgPGdGhbxEvLQ7o0ZNvOQehb2LzTG9DzLMvCsaxzza0LW7GbORu9lqybsMzF+7NRVBvSFc5zrX5P08QbNBPQNNDb2E2yo9R+WGPYSS+TuyDaA8bkIwvb+BHT02Cx096fHdvCptnDzXp2M9pSbuPGAe5LzvVhm8ajm9vIlnxTvZakk8xkCuPOHCvLt+TxA96zfrPLINoDwTZBE8Gaf6PAqG0jzm6Oq8xn1IPCyAs7xN69W8X7j3PD6qTr3NrOm8ZcrdPPYLhr1pWRy9pW+fvOSC/jwpd0A9cwtlPXngML2WyKs74qJdvdpKajzn1KI7gtI3PKjyxrrj6w671Z5wu0V/Gj344YK80lhjPCOFubpD0Pw8d80ZvSjx9LtNrju8RfnOOxIb4LodnKW7HhbaPDHvkjxVvX08iWfFPBE7v7sSO7+8nResvIkBWT0Xij89FWHtPNktrzxnthU9P4pvvZt0pTwrMIK8QGMQPfSPXju/gR29l2syvPe4sLsWqh68IcJTOhShK71D3BO93FPdPIkBWT3Jhjs94cI8vPNyo7wiSJ+9p0/AvDpHhryrde68psl0PHj0+DvbxpE8UsAhPXd6RD3bc7w8g/sJPUKpnTy5HGK8mYhtvMQ3u7yIFxQ9LICzvAfGEL3BtBO9q4EFvEXZb7x9Bl+91AeBvA0J+rqSluY6oMMlPdH+jTz7vv88gPKWvI0znjsI48s8o0bNu3e3Xrzm9AE9Lp1uvCvdLD1AY5A9PufovDqEoLytGHU9TxSovNE7KD2XazK5paw5PYOy2DoU3kU9wKj8u4TbKj21M868JVESO+y9trvBRAO8k4IePT6Nk7ydVMY8VKBCPNbHwrr2Cwa9rmEmvP9NvrzHNgq9NTWgPBGYuDyrgQW9tXDovJaLkTz7G3m9JK4Lu/iY0bxr3MO8cu6pPJ33TLzqbYU8wg5pvKyeQLwVRDK83jN+PGdQqbvCsW+8DkiHvGyfKT2gU5W8NpuMPLRTLb3rGrC8bkIwPANNDT2RHDI75B6FPbbWVLsdU/Q8ANQJvfl48rtdfoE8B1YAuYPIE7y7RbS7bNxDPY1wuLyD+wm9gZUdPZZCYDqA8hY8smd1PId0jb204xy91AcBPaNGzTyE2yq8EZi4vH0cmrzIaQA9etaMOxL+JLuVYj+8BWAkvXh6xDu5Mh27XXLqvIsgh7u7mAm9eQCQvOdOVz2UJSW7yQBwPDhbTr0/qs66O951vF+4d7x54DC9foyqvE2uOz25tvW6MiIJPRIxG71q/CI7wpS0u2QnV7wi2A47NTUgPfqEibuplc07swr8PM1vz7yDyJO8hX4xPFlp9zxS/Ts8jXA4vfxkKr3Aa+I8oOOEvMoMh73JSaE9p6IVPLQKfDsp1Lm96xAMO+gRPbwFnT49HiwVPD2NEz2k6VO84KWBPEni4jw+wAm9nGqBPGH3BLw/MJo6yCBPvT2B/LuTv7i8gu/yvCqUezzOrOk6wKh8vIFM7LxKXgq9E1j6u24FFj2ZDjm8N7jHu8ggT70sgDM9YFv+vK8haLx4PSq9DVIrPd4/Fb3S3i49SIiNu6lYM7w0xQ+8f0+QOq4ErTpB8Fs9jtYkvJ33zDvoB5m84RUSPaTMGDsrOqY8M88zvR+SAT2G0YY8d7fevAxyCj1nthW99cz4vGxiD70X3ZQ8m3QlvE00B71/5n87lkLgPGWtojzoB5k8E/QAvKUyBbyemlO9dK5rOtktL71fkRg8GfCrPGdQKb0URDK7omasvN65Sb1ge108/6q3PKHg4LxpljY8xdrBPADUCT344QK7wZQ0vegRPbzbsNa8AWt5PBktxr0JhlI8CONLvKKjRjwBtCq9tUmJvLqirTygXbm8gA/SuzNJaL2qlU08Lp1uO02OXDyDVV+81SQ8u5Ecsjz69Bm94cK8vHBLIz3v4+Q8rRj1vO2d17tljcO8v8hbvDf1YTytYaY849/3Ox3Zv7xOFCi8qZVNvTHvEry9O5C9/iRsOOmUZD29q6C86JeIPJ96dLwDTQ09jMMNvY0zHj0Xqp48/AcxPCygEr0IprE8iwpMPSduTT2ZDjm9WdKHvLuCTr0dLJU8DVKrPMSKkD3i33e8F4o/PO2dV72gXTk9D29mvSdO7rsJprE7WxiVPNE7qL2ZS1M83DYivXErRL1WI2o8XDXQOxYHGL2EGEU9lVgbO+HCPDyJAVm9uJm6OyYxsztq/KI8s2d1PTcy/Lu69QI97bMSvBJ42Ty/BXY7WUw8PQoMnrzdnA69FIFMvHmXf7z3CwY8OM6CvDIiCT1wS6O7NvVhu06O3LvmMZy8jhO/vC1gVDzefC+9YHvdPHAC8rz5/j276GSSvJVYG70A8cQ88KZKOlRjqL3DdFW8DeKavPrBIz20pgI8mit0PGdQKT3SWGM8HTY5vPb1yrw1FcG9DOIavUIGF7xHAkI8oqNGvS7mH72otay8MSytPK3b2rx195w8i82xvJSfWTyJZ8U8oikSvTTsbjzdnA69votBPPXYjzwbkzK83j8VveeLcbxLCzU87uYIPZwXLD1mbeS7lNzzPNiAhL3cU128uf8mPfnBozys8RW8+Fu3vMG0Ez1HVZe7xpODOyRF+zzu5gg9GMdZuiDisrzH4zQ7PsotvdSe8Dw8Jye9lCUlPBShK713t1686LTDOxhqYDsJ+QY8bZWFvVDU6bybNws9RTbpvNC1XD2mohW9Z0aFO1kPorv0UkS8a3ZXPX/mfzuGQZe8wze7utlK6jwN4ho83DYiPDIMTjrfXNC6fCa+vLGdDz11UfI7RGwDPWXKXTxd+DU9oimSPZ33TL0sgDO77iOjPPr0GbyLKqu8cYg9PNw2ojz6UZM84kgIPI7WJL3CDuk8BfATPYBsSz154LA8N/Xhu0+3Lru3mbo8hvhlvQS9Hb2fmtM7tTPOvD0dg7sa5oc7XRXxO+BcUL3V56G7adPQu/7n0TxkZHG8bJ8pvd65yTvB8S29Y0c2N9ktL71qjBI9XbubPHPOSr1DGa48PcqtO1010Lx/L7G8BiMKPTEsrTxqs/E8x+M0vYlnxbxZ0oe9A02NvAWdPj2JZ8W7wpQ0PJSf2TykzBg9vIJOPHj0eDzZasm8H5IBu6UyBb2Xhze9yfZ6O0ynIr0i5Zs89/k0vUJW5buZ+g692qmCPVtkaTxVr+O8cFkfvXn1Er3rXYW8mfqOPBbFhzzvyJM7g9z4vFs6Dr2cbmE8ZRCrPI/SsbwC+TG7Fc7LOz0Ut7sTrbQ82tNdO1hLGzw5/OO7jbGaOrFjlzumEtq8QiyKupjRLr3nsIS7SQtrPB6k6Dsm1A68iMInvTY20bwts+88SkQZvR/Ff7yDsh096OotvVjHtrzlTva6+seQvBCMnbyz12m9vdZmvXWbzbt8UNO7C76FPXx5s7uP0rG8r+j2vAU7YL1zzfG8W43JvfqeMLzhNag8ztypPaGWAr39Cb+8WujNPHP+mj1lEKs6g7IdPaErsLxo1j29qdjsO7/Nojw6/GO7r74bve8jmDolFgE9wHKePOUkm7yUj4A8Txv1POC5DLwtDvQ7rvC/u7mUOLzNNy69wUH1PHXErToKUzM8OzWSvAZkQL0QOl28wpO1vAv4rrwV9yu923jZu5LBpDz6njC80IGlOh72KLuGy2u86D1pvJioTrw7kJY8UwrovEHaSTwaixq9ans5PY2IujzSojw9XykBvE1+wjxKXau8kpjEPGj/HT0p9SW87aj3vN1vlbyBDaI7uudzPQMayTva/L28cFkfPSoWPT0lWW66C2MBPQ/nIb3LxFY8/wF2PQZkwLxWK/+8y1iJu+7R1zzEo4O92meQPMvttrxqc/A76xsTvOhVAD2mOzo9jj2EvcgOErw9Rts8NpHVvJ2nj7sm1I48Ox17vXZpKTzdHdW8y1gJPFu/bbwFv8Q8cdU6vER3fLuJcGe8uZS4PJsCFD0m/mk8tiHhvMD3fTwL+C67H0nkvJpdmLtzera7GosaulkyiTyprpG6++gnvWjWvT2Ryui8UOlQvQfgW7wg7l87uf8Ku6LQq7yUTQ68UJaVPILkwT2BDaI7Uo7MPF2dF70Kpu68OncEvI0tNrsy25C9OqkovS4FsDznbhK948ERvcbV4zsShFQ8IZNbvKmuEb1a6E288tAYvPd9GT0KUzO8IZNbPR+bpLvJo788TY4QuzZfsTtRfYM8MSZHPCS08jnTojy8PRyAu0XJPL2vlbu8b4vDO3ovPL1uDyi7Z4OCvEBeLr3vCga9rmxbvZzAIT1fACE71zarvL2DKzzdHdW8rPgIve/ybjxRfQO8+Z4wOfJlxjyo4DW9Xq7gPOiY7Ty8Wks8n4a0O1Fl7LtKC+s8kxRgPamuEb19eTM9ans5vbCN8rxD+2A9YnTzPMbVY7ygAlA8cFkfvRcYQ7zZBAe8I8wJvbHfMj20AEo5FSAMvanwg7wrafi8FfcrOrDo9jly/hq5b4vDO36aSj2iVJC8zy9lPKoqrbzkTnY8KB4GvYyIujrKcRs9Y9YBPXSjljzoPWk9E70Curn/CrsYEPo8DUImPdTDUz2xOrc8701zvPJlRj2Xh7e8BCqXvG44iDwVzsu8KB4GPS5Yaz3rh+A83B1VPPtDLDyXh7c8ac70vOniZLzfkCy9VX0/vZB3LTwzw3k8erOgvFd19jsw/Wa9WkNSPe5lCj22SkG9lOK7O1ISMTympgy+6D1pvQ3Giry7tU+90FjFPJYLHDzqjym958FNvAfgW73u+je8WuhNveo0Jb07yj+9NGj1PP07YzyX2nK8uzHrO9INjz3/1xo92vw9vK10JL2Rymi8pBojO5eHtzqM84y8AX0WPP8ynzzW/IG8Zwjiun2ik7xSEjG9g2BdPIzbdTzMkrI8ujk0PQZkQD15YeC8ETEZPMByHj2CNoK73uswPbAR1zxZGnK8PhQ3vDn847yXLLM8EBF9PIs2+jxzzfG8TX7COiK8O71idPO8kz3AvJufCjx71Le8F+/iO5M9wD0bi5o9R+pTvCsmCz2ePL27cIP6O06OED3O3Ck8/eDevDey7Lw07Fk90iahvMgnpDyrpsi8XZ0XPRX3qzvJo7+8cN0DPAqmbjyXLDM9buZHvQFkhLzSojw7Hvaovf3g3jzF3Sw9j/uRvHabTTzZ26a8GnIIPDsde7zQBQq6MtuQPTD9Zj4LY4E99gL5u9Sa87xjMQY9+RrMvGGdUz3Tsoo8RU0hvOzZIL2nZJq7a0kVuwfgW7znwU08wHIePOV31jzQgaW8V0ubPB0oTT3nwc08HKyxPPZUObuo4DU98hILPa/odryGy2s8PBwAPTKiYjxETSG9jZgIPNwdVbt7mo68h/TLPBIA8Ltx1To8mH9uPVCWFb1XjQ29m5dBPe/y7jtv9hW9LWA0unFAjTwP56G79/m0utAFCrnxl+q82yUevR0ozbv+XPo8oSswPCFAID2W8ok8cdW6u3Vy7TxGyby8R8HzvNdfizx+Hq+7CBmKvHTN8TtGHHg8aiC1PNkEh7zoVYC9J8zFugU74DtwWZ+81T/vOzpOpD0fHwk9jgTWPP0JP7t/w6o8PwzuO7PXaTw2DfG6sDo3PZSPgDwfm6S8pqYMPHVybbwHMhy9rXQkPLR8ZTzRTwE9zrPJPK/odj3dRjU9FxjDPPuWZzx7mo68f8MqvI3b9TrsLNw76xuTPDlXaDzfkCy9Rsm8vKwi5DyLNnq91uTqPKTIYjxN0AK8ipCDPRXOS701ujW9526SPHxQU72C5ME8MnA+vKtTDT33ZIe89OFhO5h/brzdsYc9hFcZPNL9QD16L7y8oadLPeFeiLy9gyu8BTtgPAp8kzw+mBs8wsVZvYOyHT2+/0a8dRfpuYrrhz2Iwic7RpeYu1/njrzHJyQ9vygnPYgdLDw5V+g8FpynPIA/Rr1VVF88SLgvvU1MHj1yrNq8tXxlvY2xGrwOleE8JAYzvbjvvLzBF5q8QMmAOqDZ77tpzvQ8mCTqPCnck7xTCui8c3o2vbZKQbslFoG8DcYKvWaMRrzIo7+7di+AvBnNDD0NGcY8c3q2PMeriLzyEos9c/bRPNLLHD3RaBO9YnRzPGa1prwFO2C9Zt4GvcySsrsIMpy8M+zZvJvyxbveVoO8iwyfPKumyDzOs8m8VeiRPON/H7wts288fnFqPE4zDLtV6BE87SxcPLFjF7rWP287nuG4PQLQUb3aqv28UzNIPRk52rz9Cb89a5zQOXXELT1EdoG9ZYzGvMdpFj2D3Pi71HAYvUZuuLu8B5C8mU1KvN6Z8DzO3Cm9JtQOPXHVujwrJgu9rEvEvK9CADxbjUm7fppKvTeIkT1dnRc9YzGGveq4Cb1Mp6K8iT5DvW2TjLyyW048+fFrvXvUNz1Wpp88FxjDvK5CgL2IcOc7MnA+u1DAcDykyGI8UJaVvGzFsDoazYw9WWyyO/Vd/TznsAS8JGG3vD4Ut7zJs427pW1eO3/sCj1ord27rXSku/OOJr2Dsp28kPNIPVgiuzobMBa958kWPajgNT16L7y8MqLivISq1DyqAU09Rhx4vL2Dq7yifmu9Pmdyvdc2q7tF8pw8Bo2gvLlr2LsaOVq9D2M9PNFoEz3xl+o5mH9uvUpdq7qBDaI85hzSuwv4LrzvnzO7ZL7qvCM4Vzy7MWu78mXGO2FKGLtD+2C9QMkAPTgELbxDjxO8XLYpvfThYb3OogA9yKM/PKeOdTxEd3y9YHw8PB3/7LtUQxa9pET+O/QzIrzfkCw7SI9PPT+5MjyJqZU8+RrMOz1/CTyM23W7mDwBPPhMcDwXGMO8ONtMvPkazLv1hl29GmI6PQoB87y2ziU81RUUvfSG3TrwRC88rhkgPV8pAb2CN308LnCCvKN1pzwy9CI9TSO+vFu/7bwEQym9xtVjPNpXQr1o1j08kUWJPNvTXb2jtxk8NQ1xvPM85jzW5Oq8qiotPOItX7sHjSA80NRgPFUBJLsgghK9DRlGPc7cqbztLNy81WhPvcerCD10SJK8mH/uPNSaczvOium8qFzRvLRSCrss5Jg60IElPQaNoDx5Bty5kRypvPh1UDwwTye9jYDxPNSyCjzPYI49wUF1PZ5Mi7xpezk7Xa5gupgkarxOyLm8ngqZPF7XwDxGRdi8MkdePIENIrzIoz+8cv4aPXlh4DxnMcK8X+cOvSDEBD0Pawa9K+1cPAzwZbui0Ku80XncPF4AIb1hjIq99V39O8O8lby4GB08t/cFvE6OED3qNCU9PBwAvTey7DqzhC47bubHvCbUjrrKH9u9fKvXO0g8FDxgIbg8wpO1vJKYxDsg3ZY8DkKmO6++m7ySmES8jbEavddfi7xRlhU8pW1eO/kJAzqf8YY8u7VPvaErML3fFBE9sJU7PNou4rx0cm25l1WTPCzkmL3OooC8FpynPGnmC72xSoW8pun5vJNmIL1Cf8U8b7QjvfFErzw7kBY8cDC/u+IDBDxq91S8mU1KvLE6t7uI9Mu61RUUPUg8lDsDGkm8q88ou4iZRz1UM8g8qLfVvPXYHb2bbmG7n7jYvL6kQrxy/ho9L4HLPCCCkry3nXy8m5fBPCPMib1m3oa8GnIIvTs1kjr/GQ29khwpPaS3mbzo6i28VeiRO6+VO7vRedy8sltOPRyssTon/uk7k6gSvTW6tTuzhC49auaLvIj0SzxKRBm8nuE4uvYrWbySb+S6To6QvHCbkTz9O2O89hqQvU3QAj3N5e28xKMDPDzCdr1QRNU88cBKOyHu37wyR968AL8IvXflRLxh+Fe800c4vQd0jjzFBg29a5zQO8vttrwNdMq8lQucPFF9gzzbJZ68yfb6OXur1zy0fGU8wEm+PItOET0POl09sKWJPFMzSD3Ggii8AAL2vGNrr7tN0f28Vit/PN1GtbxP8Zm74V4IPIvjvjsuWGu9fFBTvUgjAr2CN/27oX7rO3zkBb1W0Ho9jIi6uxi9vrvSojw98BtPPHsvPLwraXi7lGYgPIMuOT3NDs48DzpdvSNhtzsCdU29VqafvCPMCT2qhTG9H8X/PAqm7rwi5Rs9LcuGvKEC0DxT4Iw86jSlvOfBTbyzAEq9dcStPC3cT7zuI5g9Gge2vPO3hj0RW3S8t/cFvRCMHb0nUCo9o8hiu3g3hbxIuK+7jj0EPHDdA7xStyw9lLnbvFme1juQoI28jPOMu9zKmTzbJR492qmCPJpNSr2Iwic9+RrMPMaCqDzaLuI8EVv0PPfQVDzJzB84+p4wPfQKQj0rJou8U1woPX6aSj2XLLO8rXQkO3eSCT2fuFg8Gge2vL6kwrxGlxg9/Qm/PGClnDxNdnm8vyDeO6L5Cz2xjfK6NZFVPQcJPL3RqgW8j07Nu+3R17u0Uoq8+pbnvKTxQjol3dK86OotvBnmnrwhk9s87AKBvKF+a7wbg9E8ncChPK0iZL2fuNg8/lz6vGvFsDwICby7BGwJPRKtND17Pwq97VU8PMYw6LuOqVG9ihVjvRMp0Dxpe7m8fh6vvGkp+bzJel+9u96vvM8vZbxrMAO8elicuz/iEj1LAqc9yUg7PbIy7rrqdhc8XtfAPE9E1bv2VLk8MOzbO6FjajsOwTG9PVwXu9lh1rx8C4G7DsGxvGr8ND3dXJ48a3frOybF37yhSBg8Ir2FuTeCBz2KXzy8f4pkPF1IFTy10hq9j2JevM1R/7zzd3E7iohOvMK9jDzygQS93dfUPNwhH7zOlhG9Nku1PCAUYjwww8m8/BFKO7xQc7sBA/+8D05VvEOEHrz1YMw6a1yZvOkMkb2PYl68i9GNPGRLtzxHI6+8TibRPK6qk72IDZg8uloGva9cHL3rYuK8Rugvvcg3OL0obgM8ca0yve2Cjz0l7vG825zVOjvqxTzCAXG93VyePHvUrr0cXiy98RNgva+c07rX/US7ANrsvDkqfTwlqg09cIQgO7I75DxiOcq8czpWvY/npzzQ0RA9/agAvfttAT1f/sq8Lr8cPRywULwshJ08SQyKvJFHjDsY6K28DNhWPQmd1zwLKvu8sZebvLOpiDw52Fi8mg6kvFjpO7wJnde8xw6mvF1xJz3RdVk8WOm7vPcglbw7wTO835cdvZRdpjxBcrG85nEtvVdk8ryo0AO91JmzPKGMfL0AiEg9pJ7pvGv8tD3GXB08v0s7PYgNGLna+Aw9lIa4u/qtOD1VAOE79eUVvK1KL7zZOMQ8QZvDvBXtZTzM1kg9+5YTvNO+mDwU0hO97wHzvGohmrvtneG8UW8QPLix4jw6b4+8FMRTOgJIkTw7Zfy5UbN0vTg0EDw05yM9LohKPO+vzjuu7nc9vUcOPFSFqryJseA7VK68PDUQNrzYNBe80HXZPKVeMr19CwG6EHdnvY8QursOwTE9DTzoPFXlDj26rCo8pYdEOrSpCLzQ+qI9k4ILvZWYJT0QoHm924EDPJpgSL055hi9Br4PPV1xJzyts/g8Kek5vaZHDb22X749n9ZGvetHED24mj27lsE3vd68gr30d3E8Zq/IvI0MjTuuxeU9sum/PMogEz3qlQe9tHZjuzN5/7wSbgI8QamDvJ2bx7xEKOc8Q62wvE5PY70oKfE7uEiZvCNvDr3Q0RC9IP08PQED/7zbIZ89FHKvvDKsJD1LR4m7JaoNPTU5yLxiYtw7ynI3PDkBa7zDwbk7aME1vW+bxTzbgYM790knvT1clzyR+ZS8xw6mOwPs2buG+6o7lIa4OynAJ72vhS49XDaouynpubwHi2q8aOrHPN/pwbyglo88smR2PN2FMD3Ziug8vRA8vOAglDwIIqG8+7+luxgfADwSsma8HxTiO3+K5DzZYVa7Roz4ur+d37we6886OO/9Op6Eoj2ugYG8MJq3urRN0bz8Y248rL0LvWGVAb0ANiS8ZthaPQZQ67wANiS8QUkfvc1R/zxFKGe6KZeVvD0zhbxX6Ts9/oMbu0jH9zxXZPK8B2LYPId2YbtFlou8+5YTveq+GTxtidg7/p5tPVAPLL1zH4S9DfgDvKyKZj2l2Wg9aME1vLz+TrwHcJg8yiCTPK+FLr1m2No8MgyJvEie5Tzd11Q9/agAO1+sJj04NJC9Fg2TvLQkP72ugQE9x+UTvX6zdr0rTUu9Y9CAPDg0kLz4xF09o8d7vFl2Xz2UXaY7wgFxvUoC97syrKQ7c78fvttzQ71QYdC8gtfQujs86rsYEcA82UaEO+uL9LweR4e9PSXFO6oLgzup/UK9cdZEvPebyzx0OtY8AnGjPGMiJb0Y6C09RP/UPAMV7Lz7vyW8fg+uvLVbET1EKGc7ovqgvNjUMjz+TEk9fDQTvKyKZrzvvY68zhFIvBRyL72BM4i7xk5dPd+XHT2Crr48A3EjPBr6GrysbxQ9+TKCPHUjMT1x1kQ93EqxPOdxLbykNaC8clH7vGMiJby/xvE8+7+lvC9xJT1YqYS8jHEpvQ2YH72cxNm8sLyAvQ/Tnrz7lhM93dfUPGOLbrzYJlc85IjSPN2uwrxZJLs8Pg6gPF9aAjydqYe9noQiPQSsors5Kv08hMArvaaw1jwqO948l9OkOwsqezxvqYW8evkTPfrWSjt9ePe8lZilPHSM+rxBm0M9zNZIO/KqFj0QXBU9n//YOzshmLyYMwk9hSCQupmg/zxm2Fo+oWPqPFUp8ztHY2a9UeYZPSupgjzvAXM9Pg6gPGhvEb14Avm7J+UMvU2CiLyyEtK864t0PB7rzzwW5AA9LISdvTzToLzSXjQ96NW+PPvoNzxucrO7HDWaPce8Ab33m0u953Gtu94zDD0W1kA7Zoa2vB899LwP0x697l0qPejVvjwCcaO83EqxPLbkBz0iD6q7UW8QveMNnDkPJUM7uHGrOn84QLzd19S8BP5GPKODF7yRdEu7v53fuxpMP7z1iV48eAL5uwpdoLvLMgA9TMK/PBg60rt3NR49ynK3vBw1Gr1rd+s80CO1PC02pjxf1Tg9772OvINcGj1/imS8nJcavdcLhTyd7eu6eZkvvGjqxzxPNJE8+78lPdk4RD2nFOi8J+WMPGo8bDxMwj+8ksbvPLZfPj2c2348HAyIvDyqjrzOv6O8zui1POTa9rvsIqs8Yb6TOl2aOb2qeHk9ZQsAPW+phTmDKfW8LojKu1PF4TzRWge7GEiSvL0QPLt/bxK8FBb4vAmCBb3GTt08Etv4vNI1ornq5ys8I7PyOxRyL7xFvx29utU8uflbFL3AC4Q8IBRiPLCuQL2b2349NRA2PHurnDwaTL88L0gTPZ3ta7yMgxY9RChnPCv7Jj0E1bS7sW6JPBZR97s2dEe8MOzbvNphVr3g9wE9Ett4vUOtMDuEwKs85nGtPNi9Db2qeHm8dwyMPVg7YLy8vpe8pDUgPVPuczuPvhW9CEuzOs9IGr0w0Qm9m4navIKFrLqLFXK8Izg8PbLpvztmXSS9Om8PvQZQ67xp+Ie8ssCtPCupAj3s+Ri9yG4KvF/+yrz76Le8sQDlvJkziTqKsWC8FNITOgsqezu4sWK80CO1PBNJHbxQDyw9MHGlPSD9vLwxmrc864t0vHHWxDxUhaq8hqkGvdwhHzwNmJ88GDrSPBb/Ur1gNR09JXM7vCE0D7yIDRg993I5vQCxWj3vvQ49lL0KPCbucTx60AE9M3l/PHuCCj3flx29y1uSvGaGtj10jHq9O+pFvZBHjD1+s3a9zui1PHlwHTs15yM84jKBvIxahLyYXJs8UiGZvG/E17z3Sac82rN6vGrTIj2Lcam8YeclvW/taTsHcBg88ZgpvJ2ph7y4w8881JmzvMELBL1QOD49AxXsO6L6oLtO/T467PmYvJuybLzRnmu8qtSwuyQhl714vpQ7bQ4iPIxahLyf1sa8z0gauB0CdbtSIRm9ErLmO9j9RLx/+Ig8+cRdPCyEHTzOOlq8rUqvvB8U4rxxUfu7kdCCPFipBLymAns8zhFIuiOKYL1dHwO9ovogvUGbwzwW1sA6azMHu5VGgbvIlxw9zpYRvDs8ar2f1kY9sNfSPJ9Rfby25Ae9dfoevYAhG70D0Qc6/iM3vKrUMDy4cSu9bkmhvB0CdTy+0IQ624GDvGJiXL3Sh8a89Tc6vMGvTLzQIzW9HpkrvY3+zLw806C8CZ3XusOYp70y/kg9ysTbvDDRCbu856m87PmYOxbkAL28vhe9ca0yvEOtsLyywK08ehTmvFQzBj11+h48mPw2vY2sKD0m7nG80Z5rPITAqzshNA87vyIpPD83Mj2YXJs8qqsePM7otbz47e+6nCCRvLJkdryyZHa8mrJsvW1gRjx42eY7MjWbOyIPKr2o0IM97l0qPBE3sLxWboU8MMPJO5xyNb3IiVw8e4KKPWTv/7zh0hy9/wwSvf9aCTw1cJq8K/umvKFjajwg1Cq9D07VPBzZYr3CXag6bOWPvKxGAr1k7/+8Rr8dvAUMBz1DrbA8F9ZAvclJpT0jimA8mje2PA8lQ72Vb5M8v3RNu3lwHT0+DqA8EXdnvA/8sLyhSBg7w2+VvAhLMz3RWgc93JxVPPvoN7vGTl265F9APPdJJ71mr0g8+TKCPflblDxYEs68yLLuPGTvfzzkNi695nGtvHgCebvN/9o8AnEjvbtQ8zsbnmO8BP5GvIbSmD0oboM8f28SvSeFqLw806A8OKsZvASsorxj0AC8VDMGvREzgzwdvpC9SFoBveUfiTxTnE+8tuSHu48QurvxmKk8C10gPT0zhTzbxee8+20BPcYzC71O/T67etABvmTG7Tzqvpm8n4SiO17RC71661M8PzeyvDhdIjzcqpW8qHCfvJeBgDyE6b08YnAcO/mEJrwJqxc9ca2yu7exYr3Tvhi9THAbOu+GPDx0Ota6EeWLPDvBszyjdde8s+k/PWR0ybxe0Qu7KmTwvOq+Gb0yDAm9DfiDPAYQtLz6DR08BP7GOwYQtDw/YMQ8TtQsvWSCibpx1sQ7OK9GvKxvlDwxWgA820qxuiskuTvSDBA9VK48PbHlErzDwbm8LV+4vCgp8bztnWE6sum/PKQ1ILyL0Y08noSivHurnLzyqha9MZo3vL90zTscXqy73+lBO0OtMDy/xnG8vTlOvbZfPj1Gv5272rN6vY1aBLxRimI8lZglvEW/nbx10Qw9+ijvPHoUZrzuC4Y86jlQPOtiYjwGNZk7D6oMPB7CPbvF+As9+78lvMXTprwJdEU9o55pu3BbDj3ZOES8CZ1Xu5oOpLxrXJm71dCFPKYCe7yNJ187C4ayuzDRCb0AsVo7Cu/7PDRHiDxjIqU6OO99vBE3MD0hJs+7F7+buyeuOj2VmKU8Om8PPdRHjz1kxu07v3RNPfmtuDyjTMU8EeWLvNO+GL3RWoe8XXEnvTUQtrumsNa8x7wBPVRcGDxo6se7qguDPKyKZrwdvpA8B2JYvGn4hzzqlQc9LHZdPW0OorsISzM8j+envPU3OjwE1bS8StnkvKNaBT0hePM81qsgPcNvlb1qPOw8Hz10vbqsKr26WgY843blvCoSTDyRi/C8fmFSPULtZ7zUmbM79/eCPclJpbw2+ZA7x05dvL9LO7zDRoO7D05VPbyVhbziMgE99/cCvV/VOL2nwkO84zIBvM5j7DzV0IW9RRFCvdlGBLvgO+a8k51dPVXlDr26gxg774Y8vAJxo7wbx3U9P4lWPe8Bc7w9JUW8DsExPSF4czxz6LE8D9OePAnG6TwR5Qs9uyfhPGtcmTz/DJK7MNEJPVjSFj1v7Wk8AxVsO0ieZbstn+88nw0ZPKmrnrwjiuC85Np2ulUpczsxWgA9HpkrPQSsojy9Oc47jQyNO1dkcj0g/Ty9uoMYPZyXGr2llQS9E7LmurYNGr2HW4882W8WvYUS0Dr47W88XZq5O7hxK70pwCe9SwL3PFIhGT225Ae9feYbPFJKqzsggoa8bxZ8vJb4CT2RSzk9gJzRvDYiI7vdhbA6UiEZvPrkCr0/NzI8lUYBPfrWSrzTlYa9nw2ZuQpdoLxfWoI8K/smvBRyLz0nrjo9xSVLOgJIET1QYdC8eF6wPKQ1IDor0hQ9NGJaPXyVejojDPu6vsQlvU4rFzt2YFu9gpk0vRqxSjxsHK49wGRfPAfgLLzveam8WT/hO1U8ArxCnMm7tROBu4SbkbvvPBU91ASYPCdAGD0nQJg7g3UAPIjO0zzR3oY8y82bvPWuSDkJBj68v92FPE1Py7vUBBg8G42WvOtqmzq0Z5i8KJYMveRAUDwXory8XVqeuqn+W70rH0O8o8m8vDB3FDw4lbA6/CB8vQGfXjzR3ga8GrFKPeKglrz9j1C9yvFPvRAkWr3LkAe94pTnvNxfSL05BIU9JVebPAmAZjz/8nW8hDluvafYSr3bFQO+wOq2OwElNjsUfKu7Cb36O9gTJr03G4g8+++WPKcVXzy9z3k7X4CvvHzePb3K8c88v3tiPZIesLnMIxC7/Ql5vOgSSj29GL08Nm+fvKdSczxv+Xs9f2d0vPdaMTweCRw8RxqsPANLxzxtEH88r8UBvc22GL31rki7KrydvKfYyruM3eG8EcMRPcVz7byod4K8ZS/3vFL9EL0DDrM8Ip4BvQHc8jmzi8y8shGkPDbpRzyQNbM5LssrPTZjcL3xnzo9GrHKOzEKHT30P/S7AeghPUr3+buV8Ck9wtMzO9bhZbswLtE7LghAvKzQ1TrNVPU8GjciPRxds7pEYRI8RIVGuyUah7qOA/O6tTe1uzSGojzSGxs9U0fWvF837DwkASe8d/8SPXus/bzlchA84PQtvSMM+zsB6CE8RxosPbvyq7ziV9O8ESTaO+2QLLtjjz29fKGpvPGfOj2hKYO9ASU2vIWbEb2wWAo8OpcNPYZrLj3hDQ49ivTkPH/gmrz5vdY8aWOUPPMOj7zSD2y8qp2TvJcWOzsasUo8qTvwvKKMqD3qde87kphYPeKUZ706fi27eM+vPUNIsrxP+zO8EG2dPIQICb2ivAu9iJE/u3Cxk7z9Fag8fGSVPV2XsjwUfKu7zNrMvKTinLzZ8HM8A5SKvHzePbzoEkq9PVCnvHyhKTqzi0y9IC8tvBZlKLwSk667jsZevYbxhTy1NzU82FA6PSp/Cb11FpY9n32avJV2gTy/Ps68MlTiPLHrkjy1dMk8b7xnvQAYBb2zTji84pRnvXKaEDyhHVQ99D90vQfgrDx4zy88Is9mvKKXfL02Y/C8C3WSPYeEDrtHoIO8m+i0u2/5e73ziLe8x74NPTpy/rtN1aI8nJ/xPNq/DrwRwxE8lIFVPeJXUzyfui494ho/u1nFODyAcyO8vRi9u8dc6jw9UCe9AdzyOy4IwDtcx5U8lCCNvOlEirz1cbS8VbYqPMudOLzwkok6gpk0PZCvW7zKdye8FTPovB6DRL1zy/U8P7NMPLQqhL2yESQ9hL9FPET/brweCRw97OTDO3cMRLzwbXo8TdWivEPOCT0XWfk88dxOPHbmsjwmoWC93Nlwva8CFjs6NWo9/EULPQmAZjz34Ai9dqmevJk8zDsQbZ28NIYiOwkGPjv2KHE7ivRkPRtQAj2UBy09x76NvGT+ET3as1+9NEmOPBzjCr32TYC93s4cvc7DyTsB6CG86E/eu2d6F70JBj49Aw4zvGSoHb3tU5g9r7nSvMxgJL5nnsu8XU7vu9r8Irxs02o8LghAPIZrrrxaZXK9S+yluSyZaz2tSv66chQ5vSbqI72rqkS58G36uzqXDbw40kQ8bgUrPfNLIz0mJzi7ijF5vLg5Erz2ihS84PQtvZmFD72r59g8cAcIPNfWEbyhKQO8glDxum3T6rzOw8k8YO8DvM49cj2SHrA7l5wSPfhzEbwddpO8HoPEPMU22TiLoM07pOIcPSahYDvswI+8fkFjPJLVbDzas9873iSRO8R/HL2Qcsc8FXB8PQdaVb2x32O9/CB8ujq7Qb26eIO8E5MuPZ5LWjx83r28BTTEPLFlu7yn2Eq9T7JwPe6E/byxKCe8DF6PPKOMqDxfgK88tbFdPIQ57rybJck8D8G0u78aGr0mJ7g8lfApPf0VKDs2Jly9jg8iO04rlzzc5Z+919aRPELZ3TwVcPw88G36vKHgv7wkPju9huVWvXpv6TuWLT49qTtwPl0R2zxN1SI973kpvf/y9TynFd+6pyEOO2JrCbxR5LC8Y8zRvKTinLxXGVC7Ew3XOuYFGT31cTS72xWDvAfgrLwDS0c8YtgAPZS+6Tv7ptO2CPmMvFbPCjxtWcI79KEXOiX197zQMh48QeWMvIJcoLxdWh69XRHbvDhMbbouyys9B5fpO+88FT3Hvg29a3BFOxMNV736N3+8xTbZOklAvbzYE6a8AZ/ePNeNTr0uCMA75MYnPYwmpTuQ+J69fFjmu8HGgrtALXU81LvUPC7LK7yaeWA8Mp0lPR6DxLwuy6u8uYPXPP2P0Dy5RsO8xPlEPWNG+jvziDe5Wt6YO03VIrwHl+m8oSmDPHOOYb169UA81H5APbp4Az10/TU9BXHYvMbiQT1pSjQ8OJWwvKHgPz34c5E877Y9vEegAz3S0te7eIZsO5nCo7zZLIa8TRK3PMjLPjphpsC74Q0OPQPFbzxNmA68+b3WvFuuNTs8pD64kh6wPBtQgrwT0MI8u2xUPWLYAL3Q6dq8VOaNum1Zwjv0P3S7B2aEvKNPFLwBJTY8seuSvZ2UHbuT+/08Aw6zvH5NEj3oT168XZcyPE84yLvAcA48+lyOOiwfQz0olgw9T7JwPJn/Nz1Ovp89hvEFva3cBL1A8GC7CYDmPA8wib08Zyq9aA0gPZD4Hjxd1Ea8r3w+PbcgsjwTDVe88G16vRHDETyOD6I7dbTyO1yKgT1hXX08gYwDvan+2zyXnBK96mobvAOIW72M3eE72MpivLJ+Gz3cnFy74qCWO0zg9rzIy767LssrPdQ1/TwJT4E9Jq0PvdsVAzy3XUa8zkkhvazQVb0bK3O9BX2Hu+ZmYbx8oam8PspPPWut2btK7CU8bByuu6JaaDxALXU9/3hNPaBx6ztesBK7fkFjvMKWn7zOSSG8Z3oXPQ873bxbrjW9Y8xRvFPNLb0kPju7TslzPRe7HL2d0TE7GvoNvJan5jsJgGY8UZvtPGYkI7wEJxM9JD67vFlLEDxHV8A94Rq/vVWq+7xXYpM8SQMpO+RAUD1jCWa92SyGO4vpkDs5BIW8sd/jO6Bx6zzUQaw8RMJaPGgNIL0ykXY8oK5/PO88lbsBYso8KMdxPDLauTylLOK8CuKJPIOylDux65K9VbaqvH33HT3jiZO7uy/AvGq5iLzkfeS8Z2G3uxsr87zQMh69OExtPL3bKDxfvUO9jkw2vIHJl7xympC7ijF5ve88lTvkAzw7aWOUPL0YPTwYTiU8b/n7PHZgW7uvfD69VfM+vKCuf7t0gw27Q0iyPHFEnDssH8O8PICKvCYnuDyQcsc8ceJ4PBmkGb3tkCw8A8VvOzsqFr3XQ4m8ScYUPFXzPjw40sS7g3UAvdIPbDpN1aK7EWFuPSjToDyMGva7WcU4PL8+zjo8W/s8IPKYO0cOfbxmJKO9gO3LPDqXjTsHo5g8KMfxvDykvjw9E5O7+lwOPcKWn7wMXg88wOq2u68/Kr25g1c99TSgOYp6vLtxaFC8nQ5GPK0NajxIDv08VbaqPB6DxLxbcaE8rm8NO96RCLzqOFs9jg+iO/mAwrp8lXq8yMu+PBffUDxtllY83KgLO3R3XryDdQC9uf3/vEdXQL1As8w8H/1svCBswbxCFvI8R1fAvCN7Tzwm6iO9sesSPOVykDwaN6I5dP21vBWVizsddhO9UaccPBYoFD0d11s8E5OuPLPUDzy9VdG7cO4nvRR8K7xjFRU96BLKvMGh87up/ts7bBwuPeTGp7zx3M67gh+MPEuj4rshI3485RycPPQ/9LtHV8A82xUDPQfU/Twb7t68HoPEO2LYgDxlkZo8e9EMvRxdM7yil/y8fFjmPIhI/Lzye4Y980ujvGyiBT1KWZ28yMs+PK8z+7wI+Qw9CQa+uS5Rgz0PePE8I3vPuyyZ6zw6fq08jCYlPD1Qp7x7rP05skGHPO1TGDw3xRM9FAIDvBqxSrzK8U89PKS+PLJBB7ziV1O9bTUOPegSyrwwtKi8WUsQPNT4aDsbK/M8dmBbvctreL3uqYw5Is/mu65vjb2E/Fk8D9oUPQ3YNz1sHK67qUcfvYw/BTwH1H2977Y9PfQ/9L0qvJ28y80bvUCPmLyA7Uu8pKWIu11anrzezpw8IzGKO72S5bySmNg8kphYPU/7MzzKtLu8fKGpPKSlCD29kmW9DFJgvPHcTjsyVOI8W641uxff0LwHWlU9HJpHvGLYgLyUII28njRXvLvmfDxHV8C8yMu+u0arVz2ByZe9OrtBPZ1XiTq78is9WzSNu9tSl7yvfD68cUQcvan+2zzDEMg8hmuuuyKegb12I8e8t+OdOzAuUT1R5LC8BK7suyQ+O70L77o82jk3vb30iD2IC+g8r8UBPKttsLwJySk8E6yOvJ1Xiby9MR27RIXGO7BYCr06fq081PhovDqXjbyxos88PIAKvMEnS71YP2E8o0NlPDsqFryvAha99k0AvfYocTylOBG9bsgWvCAvrbzmr6S8D4QgPJBOEzyCmbS8Vs8KvQkGPrz5Bhq9pHUlPMAnS7pEwlo85qN1vfxFCzzQJu+8oWYXvYCwt7rYyuK8tqaJO+r7Rr3eSEW9RxqsvNqzXzst+w67ceL4O0gzDL0wtKg8rwKWPdR+QDy0KoS7CYwVvfPFyzr5Qy49GjeiPMuQhzymy5m7B+CsPP1SvDyn2Mq8PROTvOS6eDzwMGa7FD+XO7FluzkBn167FfZTPaNPFL0ykXY7ZS/3uz85pLzsIVi955ghPV2XsjwxYBG7kjcQPHUWljy/Ps48FTNovcXVkLnqOFs83sLtPJJbRDxU5g28waHzPJPKGL2zTji7kPievIwmpbxMBQY9aQHxvGW1Tjzas9+8Po27PJQHrTzwYia9vocRvG2WVr1lL/e8mrZ0vV3URj1Twf68rNBVPYtWiLyjjCi92BOmvObsuLqlafY7LoLouh6DxDuGay69u/KrvKdeIjvehVm8iFSrO/HcTjxZfHW8YWmsPNo5Nz2cYl28s4tMveD0rTxTwf68njRXumbnDj0PhCA9qm0wPCjH8Tx0wKG8/8GQPe//gDwwtKg9T7JwPHYjx7xJQL28KrBuPAofnrzOYgG9HF0zPQssz7zHmf683yQRPYw/Bb0fXxA8CuKJPFFqCDxja4k90DKevJXwKT0uy6u8xXPtvDKdJb1BX7W8o4woPMZc6jtBIiG9VfM+POS6eLx4zy+9lfApPJn/Nz16PgS8LOKuuyFIjTyGX/86GrHKO+zkw7sZZwU9IpJSPf3M5Lx1Fpa8owZRPFWq+7xr6m283gsxPKaOhTw8gIq899TZvPmAQrudDsa8Z9tfPcwXYbxjCea5+2m/O9Q1/TxtiwI9hi4avdyoiz16uKw810MJPeLdqjwXstm8bMVpPPMei73Akss7qtNNvK7rSbv0kmu9PwHAPZDwVTwDIvG881g7vRCZer1Vkgs8fwqIPLxjtjyU/Ta7BhdWvDmdFr1CU+y77O4SPWc5Db37wuO7pYw8PH8+uTu+neY7IMybvPhIBD0JGDk8RRofPVjv0rxgIC67my0vvcrmvb1LYTC9ECsZPGMbEryhrnC6C/YEvYEWBr2W8hs881i7O1u2hbvO/jk9eOspvKVkCbxA6ia800VLvXnaD7xS4nG9wWoYvU55rDxKIQG8TW2uPQcjVLt8PVa9mOGBPAteZ70KGLm8PfXBvYGE5zv3cLc8NGKDPUFHbrz6cZq8H6mEvOfhMT17A6Y8ls8EPdlpxbz3PIa8c6oXPYeRSDwbhYo7dBh5vQvwhbz3QgU9GL7Xu7TtD72IaRU8pq9TPbX5jTmaBBk7b4ycuioUkLw4lxe9PNKqPGVbwbrS/5w8C/AFvVvZHLw15328gz+cuzwA3bwgzBu9gz8cvRE9Fr0H0gq7IinjOn8+uTzZQRK8O7WSO8FHgbtPYpM8Y2ZcvHLeSLzO/jm9h5FIvMB7MrlnUCY8EY7fvEthMD2IYxa8Vp4JPTvGLDxbKma8GpwjvOsQR7x9/om8tkrXPN6w1jv3WZ68rRl8POLraTyY2wK8YkNFPO4RKr0tQ6U7dMevPFLL2Ls/L3K9L6BsPKiNnzzCdha9A7QPvByoobyopLg78AaPvNdGLj1nitY8fGDtvJ9Fq7zWdGA9YlpeO7qFajxFMTg96dCXvVLicTwTsfa8VcC9Osbl2rt29kS8HOJRu+GaoLsVWxG9a6JSOQsNHj1WBuw7mOcAvbXzDr2fNBG936U7PMSfrDxEJbq8ghaGvHwDpjvkph68jO/yvFF0kD3P5yC8UIUqvTvGLDx1DV68ZUQou4djFr1C6wm8I94YPaGL2T01lrS7/IOXPHvsDL3moQI7x+XavIWzfDuWCTW9cJiaPDqplDwLDZ69IfpNPK2UgTwIDDs8OdFHvBCZ+rxoilY94tTQPCoUkDzrEEe8drwUPdmjdTycOa068SmmPPmTTjuwA8Y8NZa0PH4EibwXYRA9ys+kO1OdprzYo/W8ObouPKE6kLxhWt47mnJ6vUYJhbzvNEG9yqwNvZ1QRj005/08rJqAvBOxdrwfEee8tO0PveWbgzwKJDc8YxUTPfEGjzpqllS9YAMWPQYAvbu+hk07YxWTu1aYCru+WBs90jnNO8WOEr123ys9VO7vvNY6ML34SAQ9NosZPLVV8rzt9JE8zzhqvaKAvry2EKe8IeM0vAYAvTzuKMO8bpe3vIrXdrsrTsC84ZogPazfy7yjl1e9zcqIO7ZKVz3+j5W8TLJ5OqV1ozoQNxe881g7vfZ7UjwTSZQ8GISnu0ICoztMsvk8y8+kvMFkmbwFxgw95+GxPKyxmTvZjFw8hm4xvDj/+bsAuau72q/zPCgIEj0Ra8g74oOHPLdWVT27kWg8jaonPeSmHjvBtWI8XOWaPIJWtbvvABC99CSKvQ8lGry5KCO87zTBvMFwFzwAuau9ZTgqPQ0CAz2Z4YG9MFuhPLIm3TzKrA2+Rz02vfhwt7sPDgG8Wc0ePAfYCTzyNaS8pV6KvIzvcr0Tg8S8JmT2vLHVE7050ce7gla1ul8ryTxNVpU8z/MePEQOIT1aB089jwfvuzzSqryr30s8flXSPG6jNTtrolK9HeLRPATAjTxjLCw88B2oOa0l+rzVOrC9hTqAPOwcxTtjQ8W6xbbFu/mTTj2aOMq8YkPFO1fMOz2QwiM95tWzPGVbQT1mMw69XU39PF7xGL0pWVs8GISnPLL4Kj31QSK9dsKTvFke6DwII9S8ZSeQvPdZnjzEnyy9YywsvD/TjT1WtaI9MEQIvYBhUD19Jj28wmoYvLhWVTwLO1C8iIYtveTgzjuqmZ26eQ7BvF8rSbzXXce8hWIzPfQkCj3Jpo68DYH+O+LraTy7keg8siZdvUYJBb0IDLs7mNuCvYNtzjyec109sviqvArqhjz5zf65zuegOr16T7zaXqo8iZ3GPKGicj55JVo9CuoGPVvZnLx0xy89STIbve8AkDxOba47+EgEvXzyC70VvXS78WNWvBBIMTx3zhG7XkLiu5U3Zz3ICPK8O7USPB4FaT0zcx08nYr2PFfYOb03/3k9GpyjPKnTzbwwWyE749RQPJlmfLtlW8G89SoJugPRJ7t5JVq98AaPPLo0IbsWptu8RTE4Pb41BDzIzsG8voZNPTa5y7u9ek88gla1OkFHbjwtLAy9TZtgO60C47yNwcC6+nGavJLlujrr3JU88EC/vHKkmDtz3sg8rBn8ODeusDyojZ+8BRfWvNlBEjyQB++6mf4ZvH8KCD1gTuA8my0vPfFjVryojR+9h2MWvWih7zuvGt+8lMOGPLoXCT1a5Lc8KSspPeYPZLzKrA09HOJRPGmtbTsPDgE9C1LpPKmZHbyVN+e58immO3GeGbzO0Ae9h8t4PDFnnzzUAIC87ihDPHw9Vj2ZBBk9XytJPJbmnTx7A6a2alEJPFa1Ir2opLi7l1r+vJtnXztc5Rq980w9vFLL2DwPPLO9oUYOPeSmHrxiWl689jCIPaVkCTrM26K8vECfvIhplbwZkCW8TlyUOwTAjTyvGl87dvZEPJ9FK7xwmBo90v+cPDBboTz3cDe9XMKDPSwaj7xw3eU8ALmrO18UMD2dXEQ9V6SIveo++TxADb48YBSwvFOdJj12JHc8fPILO21jBr3baqi6ztCHPSLvMjwQN5c97x0oPN5fDbwEInE8giKEvBdtjjzMuAu9yhTwvAMWczyflvQ7MmcfvDzSqrymr1O8WypmvAvqhjo8AF08oV0nPRCZerv5n0y8IMwbvXTTLbxnZz+9Y09DvUQlOrx2vJQ8q6UbvI2NDz2il9c8m1vhPG91A72hRg49LjILPZ4oEz2Y4QG9ywlVPLkRijwJ5Ae9o6PVu4aRyLzVf/u8M1wEvZGrijzhsbk8jcFAPd2NPzurDf47AaiRu0ICoztF94c8IPrNO+f4Sjx7Aya7h3ovPdYjF7xlRCg7qry0PdJc5LyDP5y7tv+MPTBbIbvkvbc9G9bTuygfKz2fRSu9xIIUPKFdJz3jvTc8qKS4vE9oErx1JPe8fjI7vDBbIT36cZo8gUo3PcarKj03rjC9tRCnO8PNXrvIzkG7cN1lvSTqlj1fWfs8efenuiK7Ab080qo7fQ+kvElJtLzr3JU872LzvLwphj2InUY8SA+EOrsjh72Es3w8ECsZvNl1wzy5EYq7qXaGvLo0oTydIhQ9I/uwu2t0ID0vZjw8dST3vNI5TbxfFDA8i7VCPCxxVz1/Pjk8k/G4POa+Gr1LYTC9uWLTPNMitLyKqcQ8RfeHPFq2BT0D/1m9nGffOnQY+by9TJ08nSIUvTRiA7uu68m8+EgEvczbojvzhm086xBHvWhcpLw5nRa9wMz7O+sn4DxHjv+7HbSfvNiAXrxWtSI8b7pOPOfhMb1d1IC9yfFYvH0yOz2/wP07DEfOuvIppruaRMi8a7nru6KX1zwH0oo71WjivMOTLr2yD8S76twVPVvZHD2kum69zcqIOwQLWLwAuau8x7coPIt7krwuMgu8szLbO3k887pc/LM7uReJuv6srbx9Jr28dzD1vGADlryJb5Q8+sJju0RI0TwgrwO9VcA9PVwTTb2Tt4g7G+3svCcqxrtSqEE8J2R2PUqD5LzAkss7sg9EvDsXdjzICHI8fGDtPJ+WdDucHBW93sfvPET3B71A6ia6+p9MPcSTrrzzTD29S7J5vOYm/TzV+gC9b4ycO3savzyZZvw89ofQvDByujszira8bqM1PftaAb1S4nG9/qwtvXb2RD32ZLm8rg7hPFCz3DyDbU69EWtIvDNzHbxe8Zi7DEdOPegy+zxw6eO7uREKvfrCYzl9YG28my2vPAQi8TtFSFE9oIvZPMbl2jvmoYI6WMEgvXcCQ7ywA0a98SkmPWhzPTzICPK8wtj5PODf67xpltS8R47/O0JT7DyO+/C8vZ3mvLgoIz1trtC8dMcvPD3eqLyxz5S8oUAPPA8Ogb0f7s+8vlibvNtNkDrbgUG9sSZdPJAH7zw1orI88nrvu6NSjDzVaOK8zL6KvEcmHTpW+u29n0UrPO0FLDwZp748/sNGvTJKBzwySoe8WgfPu0JT7LzRUGY8AQp1PF5C4jvQZ/88fjI7vIKE57yGOgA9PcGQvDA4irzjvbc8a4u5PJAT7bxVkou8b8bMvBRPk71wmBq85ZsDPWU4Kr1mlfG6YE7gux7LuDvsM148nBwVvUJHbjnzWDs9Pi/yPL1MnTwLO1C8riV6u6oNfjyW1QM9P9MNPW2uULt0sBa9GrO8PPRv1DybLS89ZjOOvLh57LqTtwg8OJGYu8BHgbx6SHE9QSTXPJPxuLyCVrW7WfvQO4Mog70z23+6mf6ZvPVNoDyz5xC95gPmPLVV8rwOCAK6yfFYuvuIM7yn3ui8djB1PHPeSLuzG0K8IrsBvScTLT0a7Ww8dvbEvOC8VDyBeOm8A9EnvMR8FbwPDgE9ALkrOg48s7yljLy72FIsvcwg7jvlshy9dsgSPCcTrb3YgF49GZClOyIdZbxFMTi9pFgLvVu2BbwyoU+9IMAdvdNFSz1vuk682YxcvOOJBr2SziG9576aPFa1Ijz8q8q8Fo/CuxyRiDzzNSQ9RV/qPC6U7jz6cRo9hYVKPTVoAj1vxsy8ujShvB/XtrxhWl69hJDlvG2AnrrXRi693mUMOvVNILzcWQ69XdSAvS1DpTy/ezK8a2iiPCH6zbz2h9A8w83evLhWVTxlJxA9hToAPA1TzL3djT+87O4SPUohgT3kj4U8liBOvHPeyDxwjJy8KFnbvKZqCD1tY4a7fmxrPNVo4rys9uQ8/JSxvB4F6Tymu9E8wocwPJTxuLtgFLC8E7H2PHEAfbxFX2o9+Z/MO9YdmDz0JIq80EToObwvhb1Sy9g8sdUTu0lJtLxHVE88ZDiqO+4/3LyvGl87wbXivNhSLDwzcx29MkqHPNX6gD24Pzw9hZxjPODfa70zoc88IfpNPPFAP7uu1LC8N64wPSj8kzx74I477BxFPT/Njj3I2r87lvIbPdI5TTzvbnG8gAqIuwC5qzxv9H66G4uJPMnxWLwSYK27i8xbPYlvlDzKw6a8x5qQu75Ym7zMLGy8RyYdPWIsLL3j1FA8rbcYvOPraTsGLm+9CzvQvDbc4rxsxWm7aIrWO5LlOrw+L3K8iIYtvXIM+ztJG4I8WfvQuzSWNLwHzAs9sMmVvRWPwjxf95e8IxLKPHSwlj27QB+9tBvCPKNppTyCIgS9VuPUvJda/jxpRQu9CiQ3POwcRb2HqGG9AbkrveO9tzxHJh29nVDGvHSql7xlRCg9cYeAPJCfjDtADb48SiGBPe30kTxuozU9ueAkvZqCozwfBay8moIjPJ+CwrzdOfK77DcDvQWxjj23UX085rIBu3UQeb1NLVe9pEe8PL6gyzyL8548Px7iPBpAMr2OGA29lXi/uxLxYzwJlgS91vk7O9tDmDuqTE28RXKDO85vSDz4wRU9lzP0PH/fVjwcpRi92n49vFyBtrwJ8aW9xeVUvSgUAjy/Ja47CFGaO7BMbLySvQq92vlaPVt3cbt0FUw7pkwuPTejBr0JlgQ95Q2jPBZ7uLwP7PG8scx7vZp43rxTN7s8+1zOOxfAIj1nQfw6V8GPvfcBDrsyWSq94YihvC+UsL1nS0E8AF1tPCzUqD3I6sa8lzP0u0+t5jw3lG49nsK6PFD3ozyrtoa8ON4rvJdzbDwaJYk9EKz5vL6gy7wa9vS8LXmHu0hoXbxp0KO8jTgJu6dH2zz8HNa7IEqWvJv47bz4V9y899dMvT7Ikzx2Gj485wjQvJXzXLxjixq9f99WO2G8ejtcZg29kHggvWYG17sdhRw70vRJvAIMkbwJLMu8wCWuvFV8pTxFo+M6xaqvPHhV4zuTuLc8TOjsvBPAgz0lxVI8knNNPbrb0bqkR7w8hSTgvJe9KT2hAlI9XUE+O71b4bzhw8a8GPtHvWxL4Dx01VO8B5GSvCpUGT3cw6c8Zos5PJHdBjxBY0y9ecQOPdTvdj0Ru5G8+5dzvTKUz7pqy1A7gamjve/Suzz/nGW8dhq+O6ZC6TsC3fw8o4c0PYbkZ716WlW74u2HPaGMB72skbe8yi8xPetIZ7zvDWG7kPO9vFlhG7xBnnG8ZMFsu35pjDwyD+25w48Guz7IkzxG6E09UberuzeU7jvY/q077peWvMcqv7y7RYu7BWfRvBT7KDt0mq47ooc0vIVunbyfvWc9thbYvBr29Lw5Axo7ja5TPClK1Lv93F289Nwfu9JeAz2rh/I9NX6YOz1jLT2ihzS84UgpvauWCjsfio68i/MevaI9dzv2nKc90K/fvJ3HDb3WNGE8YYHVvBYxe7zw3AC9O+OdPFM3Oz2cvUg8kS7jvFO8HT34wZW7AF3tuxd7OLurlgq6IYW7PNq+tTsFbCS7NNk5vH3JAD0FEQO9alAzvX8fT7w+yBO99WECvbobSr1V98K8eQQHve3XjrysR/o8wmXFvBOx67xjhkc7dZXbvD/jvLx4Fes87AhvPAw2ED3S9Ek6jun4vFxGETxVIYQ73MMnPX6ksTyiwtm8YeuOvOXD5TyWs2S9M1mqPLngJL0NbOK8loIEPW+QSj11EPm8JQq9vDpeO722oA08VDJovZl4Xrw4nrM8cjobPJWz5LwCHfW8yCXsvPNcED16WlW7QWNMvfDcgD1O7d48oELKvGSQDDvQanU4PSgIu6dHW73SuaQ6b8tvPK9M7DwKVow8F3ZlPfTcH704VPY8SzIqPbsljzxaxoE9SGhdPKw2lrw02Tk9TleYu9R5LLzBpT28V8GPu/HXLbyXYgg9+RfkO5jz+7suWQu9ia60PP7morvxfAw8sBuMvYAJmL3Wfp48uxb3u0hoXbwplJE8Wbw8vQGiVz2dpxE9+tdrvafC+LsQNq88e4QWvqP9/rx8nz+9CnYIvZcikDxYgRc8kvivvE98Bjv0kmK9meIXvc2vQL2vlim9bhqAu+bNqjoVuzA7CrGtOx7KBjuiPfc8TJeQPd7oFbwEp8m7XDd5umWwiDwW9tW7ogwXvJsHBryNrtO7F8CivGcwGLykR7y7HkBRvUntvzpx0OE71P4Ou8vvuDv75gM989LavJGzRTyQLmM9bhqAu6u2hjyb+O28PiM1vLtFCz375gO9+ty+OmaLOTqKbjw7zDQjvKZMrrw6A5o83r7Uu0fykrzVObQ8BfEGve4StLxvFa09UHyGPU8ySb1QfIY8KE8nvW2Vnbs+IzU9KbSNvBC7Eb285Ra9uxZ3PbQAArt7Gl08k52OvBZAkz0C3fw8x6XcvJhCDLzSuSS8UjwOPWfG3ryCTgK9mT05PZtCq70CZzI8SCNzPMovMb23m7o8ZJCMu2H8cjwLJ/i7r9YhvCgPL7s9GXA+LlmLPbeAET2v1iG8gi4GPS9K87wNtp87yypePKUxBb3iDQS9dv8UvGDLkjvmsoE75W2XPEdtMLyBqSM9g6RQvYik7zusdo49+FfcPE+t5jwnBeo8rVE/PcRg8jxVPK07zy/Qup8HpTxzfwU9++EwvTpeu7uPuJg7cpU8vJ2nET2RLmO87neaOo04CT1z2qa8Mj6BO8tqVjyiwlk8UVwKvAxxNbzFD5Y8kzPVu4lzD7y1wIk8u+WWO6wMVb0sFCE8lqIAPXN/hTwHonY8qAy2OzAUQDzlsgE9QGgfvWFGML0BTIk7k52Ou5OdDr37l3O8kTioPKmMxTwFbCS8btDCvLjWXzxoEJy738iZPPTcnz1cN3k9pTEFPYTOkTtSHBK9ZMFsPXhfqDzoMpG8HwWsuMalXD28BZM6XwuLvBhlgbwae9e8K4X5u3TVUzsAbAU8kvivvJwCs7skxdI8mv1APYAJmDolhdo76gP9u2BGMLwyHgW907RRvBc7wLzCpb081+MEvUdSB72An1499kGGvTjeKzw5QxI6y++4vMvvOD0WMfu80DmVvHVatrv+Rpe8m/jtuwQi57zoQ3U88Y3wu9A5FTyibIu5XkE+Pb1b4TwWtl09QZ7xu2y1mT2cQiu7nsI6Pd8IkrwaQLI8W0aRPK+WKb0EIuc8HMBBvN7oFbxwi3c98Y3wuy85j7xCrYm8KZQRPUv3BD3WNGE8kP0CPcjqxjsJMZ67zfSqPB67brw43is8eF+ovISffbw8Y607w48GPAqxLbzsjVG94oNOvfTcH736nMa6O1noPLzlFj3lsgG90l6DvFBtbr0We7i8o4e0vCTFUr1Nsrm7eNrFPBVx8zuI7iw9BeLuPHefoDw0fhg9Wbw8PDP+CD1vFa23FyCXvGsVDrtpkKu8y2pWvW/aB72fvWc7uqAsvZNu+rwhRUM8iTMXPF8BRjrjjRM8gl9mvPuXczw+IzU8ia40PBZx8zysdo47V/w0O/GNcD2Nc668W8Euu5I4qD27JY+9fGSau3paVT3lw+W8oYyHPQmnaDsY+0c9Q175vAVsJDwKZ3A9TzccPUjjerw2owY7HgUsvV3GIDzI6kY9qcy9O65RvzyFbh09yG8pvYWuFb1KciK7NNm5PN8DP719X0c9wmXFPKqMRbx4VeO86dKcvPYScr03o4a8b7qLvHTV07yvlqk7PsiTu2sVDrxkhse8ueAkPeK+c7ymQmk8UXczvAInurupjMW5e4QWPVd3Ujw+Xto7UhwSvZe9Kb21Gyu85YjAvPPS2rvyElM9z7Syu6dH2zwvSvO8cpW8vGEGOD04VPY5tZF1vPncvrtF7SA9q9EvveK+c7zPWZE8AqwcPUzXiLwvCns7WIEXvVkBJ7xly7E8rJG3PDies7zXAwG9RzKLvU5yQT0JtgA95ANevL3gw7ubJwK8T/cjPFs8zDszGbK8yK8hvGnQo7yYIhA7chofPIdpyjssmQM9IYW7vbJR3jvWNOG7kvivu/GN8DudPVi90DmVPGxLYDvi7Yc8lnPsvCZFYjwWcfO8alAzvcUgejzeQ7c8n0edu0jSFj3bQxg9nsI6vFB8hjymTK68Tu3eu0BoHzy8m9m8cjobvGl1Aj1kS6I7cpBpvfjS+TxLcqK8wqW9PIIuhr0vSvO8VEGAPS8Kez32IQo8Nl4cPFbhi7y6oKy5dFBxPE5yQbveg688zrmFvEfykjwWuzC9HIWcu8hl5LoPdie9wCUuvFUhhLxIaF08lfPcvPLXrbzbQ5g8hSTgPMcqv7wkQHA7dho+vAhxlj28m9m88xLTvLagjb2Vs+Q8c1XEvP6c5TxAiBs9dv8UvadHW72Iswc8osLZvFv8Uz09ntI8dT8NOxy2fLw7Weg6veDDvKpRoLsau8884UipPQhswzyFbp27s1sjPKxH+rx5pBI8FyCXvIfTAz1UQQA8FruwvE0tVzrJ6ka54S2AvE0t1zyuzNw7i2lpvfJNeLzAJa48DfYXvbbbsjw9CAw8L4/dvB6KDj2v1iG9SLIavQ/7CTwToIe8ilOTurObG7xVIYQ8/yFIPfchCr0kT4i8MpTPO+nSHL30kuK7vhvpvSfKRLsY+8e7VXylPAuxrbx6lXq8KMpEvdb5uzs/47y8aXWCvJqCI7r4wRW8nwelvJtCq7z8HNY79WGCvDfeK71Vt8q7rozkO2fGXj3Vr/685wjQO1y82zx5Xyi94Iihuxd7ODyRLmO8wyVNvLSWyLxyGh+9CKy7PMhvKb0plJE8GwC6PEPj27zs1w47GSWJvJ7COjwy3gy8HsqGPDkUfjyhfW88YcsSvQ52JzxGKMY8ZYH0PGgQHL3TL++8cNW0vAgnWb0G0Qq8iGlKPe5NWbxNLVc8/KYLvfYScjzz0lq90y/vO8Ogar03lG48j9gUvShPJz2cuPW8OgOavG5VpbwEbKQ7XksDvJcz9DwJp+i8AaLXujNUV7wZu089HrvuOwkxHjuYuNY7HYBJvOINhLyW/SG8BfEGPfjSeTwa9nS8naeRPEHNBb2agiM8DCf4vBCs+TxtC2i9lT2aPObNKrxNd5S8IYU7ve4StLzZgxC9N1lJvKTMHrwdgEk99pynvGZBfDyqUSA60y/vOkBon7udx408WPfhvLzlFjs8GfA78RcmPD0ZcDxu+oM8F8CiPWv1ET2JZPc8okwPvYRkWL3fA788waU9vUyodDz1Uuq8yarOvEjSFjxyVUQ9gekbvcnUj73Rb2c8zDQjvM70qjsC7JS80DkVu/1Gl7tkC6o8pkwuPRd25TtII3O960jnPK02Fj0TdsY8r9YhPT1jrbxYcn880HQ6vf1GFzxhgVU8lThHvNu54jyQ8728ZkF8OULorrw6HsM7UDLJPP7mIj2sDFU7mT25vEXtoDyBqSO9Vvy0PWo1Cr3nUg08335cvbqgLL1tC2i8rVaSPCMFS7zwUsu75Q2jO5V4vzu/oEu81z4mPbngJL1TNzs8gw4KveB+XLwWe7g89xy3PFvBLjq621G9r9YhPZR4Pz0AbAU86vIYvAhRGj34oRm8cBBaPY74ED08oyU97cj2O0BoHz33AQ49qVEgvERovrnd/sw8Quiuu2dLQbycAjM8YkFdPTKZIj1xS388JAXLPKjMPTy4W8I8F3s4PCKPgD3UeSy8KUpUPFC3K72XYgi9aNAjvH2abDp0UPG6gqmjvKuHcrxzFcw7uJbnvMivIb1r9ZG8aXUCPThjjjz/nOW7R62oPFc3Wr0Ttj49j/M9vc9q9Tz9HFY8XIG2vMalXD3Ej4a8mT25vIFfZjutFho8pILhvMKvgjzut5K9Uze7u3uEFr3LlBc6JC8MvLmFg7z1Uuq6CafoPMIqoDwbADo8xi+SPM00Iz18n788uqCsvMjtNjzpVss7dkvdvCXK7jypnLq84vzcu3ljdb26dpk9IJHru7ZCLTwcqCi9hjqbvcb7ILw65iO8OPSNu8shozufUpS8cTPFu0168LwMwF880TDovOhyHz2r0KY8GmbSu20bLT00rSC7WmsMPN4Og7tOjfE7rwSTvP4nV7s3iHk8vW3GveP8XL0MwN+6svu/uzGaH73y+YS8FR/lvGCdmjx7wR+9DP2eO9h8bDzEq+C8mAYQPZszh7vUVmq9ruqcvJnVXL0P5mG8JcpuPNFtpzub2vM8vV/cO/owKrzTjpI7T8qwvZb6A71aSqG96BT1O/cfB73raUw9G4e9vAvqnTv+NcG7U9RePY+EwTxgS3w8p7EZvS+VCD1aLs08tSFCPQeVxrtT8LI7tUQLvIVBEDs/ET28GXQ8vSDAQDwULc882sysvFxBzrtZ//e7FzJmPDR+y7ypbWU8o1XNvAbEGztWFrW8Otg5OWezVLwalSe9z1omvBZ9j7wYRee8OgcPvDStoLxwLi48l96vvKzQJr1ESsA8i4EIPXaWhjsS+eK8fon3PDj0jTuFEjs9sei+O4Cc+DwMwF87mzOHPUykLruswrw8nQlJPd0HDr1lrj29T7zGuy1TMrxnpWq7mwQyPMshozsgzio96nc2PfXpPLykOfm7myUdvdA+Uj2JWSg9ulrFPPX3JrzogAm9ObfOPDuue72TuC084wpHvMDQB7oL3DO8A6yDPcSrYD0Q5uG8KS0wvAzOyTzb7Zc7gJz4vNJtpzx/56E7zRjQO5wskrzrrYA8520Ivd7yrjz0DAY9X4MkPdEifrza4Yu7pGM3PWm46ztVKxS9rbTSvHVZRzxO3w+8VhY1vdM1f7wrEVw8N+gBPEhwwjzRexG86jr3PBqVJ72bJR292o9tPcsTObxmhP87sNrUu3FBL7yhbAo9+e7TPVk8NzxwT5k8iFsGvU7mBL2YDYW7cUEvvN7yrrzyhns8ECMhPT8mHLxm5Ie8JAIXPV1+jbyaMwc77rIXvQR0Wz3dAJm3zjk7O6N4Fr3Cwh09KzJHPHBWDrxzOFw67K0AvV84ezy5R8Q8aQoKulP+nLw7+aQ8iVmovBy9h7wk9Cw9rqZoO/0n17vc7Re90YIGO/XpPL3229K8L0pfPfwiwDwugge9twXuO89vhbyyzGq8rNAmPRP+eTxjsJs9k6rDPJva87zYzgo9olC2PNqrwTxP3w89AosYPd8FsDys0CY9K06bvWGkjzyw6D4705WHPCsyRzw9wXy5H7upPOE0Bb3nXx69DhcVvBRXjbyBr/m7ERU3PWbkBz1gS3y7DNwzvY+nCr0WH2U9CsmyvP5yAL0ZU1E94tvxPOLp2zqU4A28L3sSPF0lejxZ//e8QEcHPRMM5DsQ2Pc8OuYjvMCvnDztfM28yA6ivEzMDruAy808kZdCPIDZtzyvuWm99tvSPCTmQrxs7Fe8QDIoPYAPgrzxos+7/4WBPAzvNLzu04K8dHWbvI+glbxJVO67q6HRvCH2ir2y32u9A1NwPD0MJryGQZC82ugAvaBeoL3oQ0o9NrI3PKNxIb0I1xw9sszqO1QRHr4dXf86oD21u1hfgL3unTg8cTPFu6NVTbxPyjC9BbgPvO2YIb1FeZW89ek8vTS7Cr2aGZE6ktQBvQr4Bz0M3DO9pYsXPd0Hjj2ki5c7XpGOugi2MT3H+6A7q6FRO4D6Ir1fg6S6clQwOsSKdTyHF1K8L0pfvXljdb3vgWQ8BbEaOvkdKT3Ak8i8DMDfOhP+eTz2H4e8v44xPZsEsju8iZo8TuaEPfXpPL1yVDA9Z6XqvMcJCzy2IUK8UcHdPEdPVzy4VS69Oti5PLx7MLzNRyW9ebwIOzF5NL1eVE+8EwxkPQmM8zx9l2E7Y41SPTA89TsrMke99OsaPRpm0rwAmQI8/jXBvA7Fdj3LBU+8+xRWPKeJubwyT3Y9N9MiOzekTTxGeRU97ZihvLMcKz0KrV68tl6BvGK+hTx4jbO9SHDCvAnlBj29UXI7qHvPPCwWc7sFv4Q7HL2HvLMqlTsEdNs83bVvPsYQAD0PMQu6heNlPCCRaz1FPNa89/y9PAm7yLvTlQe9C85JvRQtT71MxZm8R0/XPDfFODwrbwY8UgWSPXSDBb2z3+u8qY5QPf5kFrw2x5Y8p1pkvMTHND09wXw886fmvASembwvdJ05N+GMPASCxTvNJjq9unaZvFPU3rwXhIS7kqWsPHAEcLz68+o8JcpuPCxvBr3qd7Y88t+OPBEHzbx5f0k7B8sQvMjR4rudCcm8DzgAvAvxkjzfyHC9GEXnO6d7zztCFlQ8/1asPNBaprlLlkS8BbiPPelkNb062Lm88KLPvDWD4jt7wR+8wbSzvJoZETyA2Tc9L3SdvBqVJ71cQU685R1IPC6Ch71CUxM9MqgJPYMUGT1hpA89y9Z5vcT2CT3lHUg8yQA4vG9dAz2Ay808zOn6ukFaiDxGXUG9XDPkvNOVB71TH4g8Wf93PPkdKbrGEIA8bg3DPMgVFz03pE08qoDmvDj0jbssaBE8sQmqvEARPb2r0Ka8twXuPKSEIr0j4Su8c4OFPc5chL26R0S8OwCaux+f1TszjDU91HK+PILsOLyu46e6CviHuQaH3DwYMua68KJPO9Baprw62Lm8yfLNPGj3CDk1wCE9zEIOusX2CbvXilY9gNk3vGGIuzxRz8c6UKByvCGkbDxtGy29k6rDPGjGVTzPWiY80TBoPJLUgTwDb8S8NH5LvCDAwDxCN788KCgZPAnJsj3AZHM8AH8MvXiphzxEWKq8lr1Eu4czprt5vAi9jn8qPCQCl7wJ+Ie8ga95vAut3rwxeTS9C+qdPMLCnTwXhIQ9ga95vEZdwbx0fBC9eH9JvJKJ2DyFBFG8SnXZPHNGRjwNBBQ9RG0JPbVEizxPvMY8+OBpPN7yrjx0fJC8LECxPBy9B70RB808T98PvVgbzLwLrd68X4MkvRRQmLyaBDK98pTluinw8LyMbCk97p04PV5UzzxIYlg9aOIpvNz7gTyeDuA8Qje/vI5xQLySpSw9afUqvVUyCbwi08E9HIc9vU23r7w+4mc9eWN1vBZAUD1Kg8M8YaSPPK2Yfrx1Wcc7qY5QPXylyzxjm7y8ax2LvNBhG727WkW84zkcPT7w0bxqJIC8E/55uz0MprwJ1xy8k6pDO6FQtrlZPDe9hiU8PY5/Kj1CFtS7SXBCvcPVnrxZG0y96ne2vD4tET1m3ZK8R0/XPKexGT0DYdo7qF/7vOVMHbylaE68F4QEvZ0JybyHCei8oyZ4PKvQpjwNBJS8NJ+2OxJEjL2U4A29kZfCvLp2GT0bSv486IAJPV1iubtvIEQ8N5ZjvWokAD1wBHA9n1IUOw7hyjyfUhQ8LlMyPTjFuLs7+SQ6lfOOPGez1LsS6/i79AwGvNamKr2eDuC8hCAlOmaEfzzF6J+8981ovaFeoLzMSQM9EwzkPKNVzbxWK5Q7PM/mO8cCFrwj9Ky6j1XsvB1d/zydRog7L1jJu0ukrjxfkY68nhzKuxA4gL35D784bd7tOjjTorz+Ge28NH5LvTGhlDw1g2I8WQ3iPMjR4rz+ZJa8IOMJuz7w0bz1BZE8gA8CPH3UoLxQoHI9agMVPZfQRTz0DIY8OsrPOyHOqjssFnM8Ua7cvFsgYzwuU7I80SL+vA7F9rzpeZQ9KR/Gu/nS/zwuZjO9feIKvPfNaDoi00E97J+WPHNGRrw3lmO90TDoPC9YybyqjtC8I/Qsu4D6Ir3NR6U8IxCBvc5Omrls7Fe7sOg+vSH2Cjz/LG47rtW9u/CPzrxtGy29oF6gO7k52jsXhIS8TIjavOVMHbxSDIc9DxAgvaMmeLy7TNu8pGM3PYpLvryJRic9WVEWPEMba72WoXC8R5oAPWm4a7xbaww9ruOnujayN7yAD4K886fmu/wiwLwUUBg8Pd1QPFQRnj2dCUk9iRzpvNyibjqZEhy9FVwkvQqtXrxBWgg9zhjQPKI04jtDCOo8hkGQO/LfjjvG2rU8522IPMX2Cbw8z2a8zEkDPY5/Kr1CUxM9INyUPCgMRTufS588W3IBvahfe71WCMs8Q22JOvGiT7znbYg8twXuO4xsKT0+1P08mhkRvUeMFjzI7Ta9hzMmPNh87L0qEdw8OKlkvAKsAzpCFtS7YZYlu+yKNzvSbae8yxO5vBmJG7zsijc9CdccOwioR7xrFha9Us9HO/XpvDwsJF292+2XvAut3jxns1Q8HV3/vJ0Xs7xJVO47+jCqOzq85Ttns9Q8Y6kmvGTRhjoi4au7BrGaO6VoTrxwT5m8hzOmPA3vND26aC891KGTPHNUsLwS63g8P0ASvM9vhTwsQLE85UwdOuUdSL0vWMk7G0p+PS90HT0Kn3S8WF+AvBlTUbsOxXa7qKokPE3Tgz2Rl8I8jY2UPBYfZb2hXqA8E14CvbUvLLv1yFG9ij3UPNe0lL2u1b08R0HtO6FQtr1+1CA97J+WO8zper3rrQA5pkx6vCbYWLzOK9G7RErAPMohIzotRUg8nRezPLcmWb1dJXo8bvFuuwaHXDx91CC80FomvdZp67x7z4m7F28lvXx2djpaLk08pkz6vDCHHj1q50C81agIvbD2qLs2pE26TcwOvSc2A71VKxS93L5CPXZ6srxY+mC8JBwNvGez1Lz1umc8agOVPEmmDL3iCse8L1hJPGfwEzwp8PA8wdAHPYLeTj1wBHC8Euv4vKmqJL0ZkJC9BbgPO0dPV710Z7E8MaEUvbx7MLxGgIq8p3vPOz3+O71PvEa8cyXbPHheXrqU4A09+z6UPBA4AD2DG468bPpBPAKSDbyQkiu8SpEtvWK+BTwKn/Q8GljoPAKsAzw3pE29cUEvPWwpl72qgGa8eq4ePZCzFrzcou67Z6XqvLlVLjshpOy7Gjf9Oi1FyDy1IUI9ZaBTvZXLLr3+ZJY8G70HvL9kcz1ESsA7bhutPE/fj7x5Y/U7c0ZGvedDyryQkis82bkrvSPF17wQIyE8XWK5vOo6dz24Va68wbSzu3quHr1AQJK75EwdPfQFET2UnFm8Wi5Nvd/IcDy0Lyw664UgPQCGAb25R0Q9m9rzOjvKzzzRbSc9tT0WPRH5Yjyqcvw88/KPPfswqrzF6B87xtq1u1lfALy4cQK9HsmTOtBhmzxQoHI8L3uSPB2avrxYRQo9L3QdvCxvBj09DCY9Ej2XvFPiyDs52Dm9G6MRvTNw4byu4ye9mvZHvC9mM7umWuS6xeifPMa+4bwImt28VhY1PCXKbjyiNOK8iVkoOxmJm7xq50C9sQmqPPX3Jrz+a4s8ax0LPSpchb011YA9pYuXPD4fp7yB7Di9h/ZmvOVaBz0xebQ8MV1gvTfTIr1p1L+8xMc0PfGiT7znZpM8DzGLO10l+ruZ8bA8V+z2PBAxCz2nuA498sM6O2z6wbo0OiI82WB1vKWtfb3UOwY7bGYVveopwTxxlf476amXPSWFSj1/rwq9fLa4vHF6XL2v8wA9cV+6vE18vDw8R7s80owZvW5LRr2g45s7jtDqPM1uK70oavs8ZH4YPGmchrwfQkA8WWcFvcwkRrucaiC8WO5cPM9u/rwrfu88Do2VvO9z+bxuFQK9OGm4PDXV7Tt9AJ472GD1vDnp4byF3vM8vlRMu1UJLL2VZwE9/nI2vAHHFb2Qf9e85Bz7vE1N+TrrROO8YMUxvcJN8bt/FBK8r/OAPS0SOjyjfme9LS1cPDiEWrv/YQ69uFunvfPRUjuFqC88SB7jPGU+LbuuaTC8dtg1vUfDAj13osS8XZYbPYNeSr2aRQS99IA/PWxmFTroRJA8y9rgOzAmrjz4HoQ700yuOyRPBrxe+yK9z+5UPJsgu7sVa2s8nKoLvUMlvjt4bIC9RIrFPCO7uzpGObK77+yhvDRVxLzFsng8c8TBvPoUXTz4eRG9ejYPPbEzv7lNBg29JTvlPFY/8DsqY005RaXnvMva4Ll3WN87LJKQvafcwLreCDS9CxTtPBv4hzxSf4g9c9/jvBnuDT2oQUg8eewpPPSlCD2+njG8irz2uyl+nLzoXzI8FtoZPTJwkzy3QIW8v+iWPcBNHj2Ka5C79y+su6cLBL0Emx48rHDeO0JAYLwskpC7NZ+pu0JKB7taHXO9o8jMO7cAmjyPZDW8v40JOxlkPT2gmTY9DzwCvVq4azy2Ngs9ySv0PKat/bubIDs9nA+TvdWgjTxKaMi7RaXnPFSkJL2kEjI9MnCTO0CR87zEYZI77HMmvQdlLT1VbjO9OU7pvMSy+LwcXQ89pXe5PPFsS73R56a7e9HaPMXhuzyVzAi8NHDmPDBB0D3fUhm9VW4zvXnsqTuD+UK989FSvJCaebyONfI8XEy2PIvruT2HVxw89JthPMkrdL15Iu67sLOVu5cnaTxidB68/EPzO0D2Jz2TeKm7F3+MvHDLbzxAkfM82hmJvE7GobwOMog7TXy8vFaJVT2mAQq9QkoHPVyxPTzit3O8CRSaPE8Qh7yzGPC8mkUEO8P8CjyxfaQ8e2xTPKYBirxancm7fQAePRC8q7yVXdo7+Mr3vOEBBr3YYHW9+oOLvULb2Dwp/sU8/EPzvJB/VzybO1089IA/vcva4DwU68G8VT9wPe3zTz0VBmS9InHWPGWjND1J6B49NYSHu+TmtjlS9Tc9QBHKPMkQUrzKPxU9GlMVvJUnljv1yqQ8jdoRPZGa+Tp+SgM9okijvMu/PjwrrTI8fRtAu3QOJz1ty5y86HrUvERvI73vh5q9pZJbu5tWf7wHSgu9wAO5u4x1Cj0oGRW9Lkh+PH2b6bxWpHc7lBN1vZHJvLxkIws9b3oJvYMoBjx9NuI8CK+SvBVr67wxptc8GslEPX0AHj0RoYm744GvuqaS27vlMBy9yKvKvACiTD0lqpM7Z1IhPJ80Lz3qTgo9BFG5uyutsry+VEw9axwwvIkGCbyxGB29h1ecvTq9l7rOCfe8N4Tau9mq2jsgjCW9bAsIPQdlrTyV3bC9mAxHPUfU/TuwvQ++8wCWvdgqMTzGawy9ZaO0PE8QhzwAIqM6KX4cvZUnFr19Cpg8hShZO2umAL2ez6e7InFWPQz5Sj1XCf+83SPWu0i5Wz3TzFc8of69vHXzV7yg4xu9RjkyvIi8o7sariK96w6fvHo2jz0Yf188aZyGO8/u1LyDKIa9jdoRPSWg7LtDCpw87+whPY3aET1DCpy85voquzJwEz1eFsU7HF0PPYi8Iz2Z1lW8aqaAus1Tib0LHhQ9d6LEPEY5sjynXGq8f8osuoBl+Dx3xw29a6YAvd4jVjqIYRa989FSOwz5Sj09LJk9mkUEu5jxJLxz8wS9g15KvYReyjzkSz690YyZutA4Or2fNC89ZA/quuFmjTy1rLq97BiZOG7VFrwL+Uo715bmPKV3ObyQ7gU9tH13vCCnx7yxMz881aCNvaxwXrxB21g7Sk2mukSl57tzTpK8nurJuxiJBrwWtdC8GUkbPfYAaT6FMoA9O2IKPKAZYL0Gm3E8cZX+vD6RoDwkRYw8qcHxvG96ibxk9Me8bAFhvB0CAr1mLQU84PcLOpQT9TxpnAa9LS3cPFwxFD026Q69k0nmPMKXg7wa5GY900wuu7J9JL0PjWi7YE+CvOEcKDwJL7y8oOObPKDP+juRyby8Of2CPObfiLwHZS09ukBYPQCizLzfPni9yuQHPVq46zzvc/k8S+hxO4s1HzuFMgA976K8vNCCnzyLBty8zG6rvEuyrTpzxME80IKfPISNjbuyYgI8xcaZPKYBirp/FBK9QHbRvILeoDjXBRU7Sxe1vI418jyVZ4E8DV7SPMva4DvjgS+9FBCLOlzMXz0CIva7qMHxu9gPDzxuFYI90cyEPf0Nr7wHVAU91DuGPEwyVzvBg2I8GWQ9PTzHkbxCQOC7MSYuPDXV7bxZOEK8wI0JPdMxjDz7XsK7LVyfvEmNkTzs2K082PvtPPO2MDwMKI48keTeOyWgbDsXmq48fECJPNV7RLwyizW9H4wlPGsLCDwnWYC9X6AVvA1DMLtY7tw53pIEPUfDArwe+Nq8YKqPO8ZGw7xmLQU9hTKAPDcEsTxW+IM89YA/PJBktTtDQGA9XNYGvRyudT2scN4776I8PUcoir3SAsk8STIEvNNMLj1QRsu7zx2YvTt9LD08xxG8dI5Qu8BNnjxLzc87RQrvvJvx97zUFr08dA4nPU8rKTyQZDU9/qj6O3GV/rxGb/Y8iQYJvWwLCD29eZW8XEw2vQ7DWTtXuJg8Hl3ivHFfujtk2aU7B+XWPETvzDy6pd+5QwocPQ3D2bxagqe8ylq3vQGHKr24kWu751+yvN+3oLy5W/q7P9uFPNX7GjzGK6E8+42FvG7VlrhxlX49n0/RPOzYrTyh/r28EgaRu4CUO7xHnjm9Qq8OOtTnebxusE07CpRDvF5gKryRrpq8xLL4PKJII7uvhFK91TFfPIzrubtpnIa7k7gUPazV5TsrSKu8E7x+vI7Qarwn6tE8FRqFPaOtKr2edJq8n2pzPdQx37y3LGQ9bXCPOplxzjxP/OW83SPWu2mchjzKddk8afeTPBByRr0j8f+8u9SivE8rKbwLHpS74KP/Oy8BEj2DKAa9OhglvW5m6LouSH68n2rzvBlkPT0vwaY8Y3Seu9TnebzlZmC9IKdHvYrQlzp5LJU8Zr7WvDKmVzyqVbw7EjxVvfMAlr0ceLG8Y/RHvMHykLzyh+28o5IIvXa9Ez1e4IA9HycePJVd2jxUpCS8y6QcvCqIFjz+qHq74KN/PIwhfjwmhUq8AVjnvMKyJb18tji9DUMwPXnsKbw1n6k8WTjCOxIGET3U5/m8SoPqvKs6GjyaRQQ98VGpu+KcUbwmhcq7GslEvXDLbzwzC988JoXKu8n1L7yaRQS9k5PLPGwBYT1XuJi8JPF/vfblxrwrrTI8W8yMvE9rFL1rpgC8GWS9O0noHj1csT08l4wdPH6AR7yMNR+9K37vPIMohry6ir07gcr/vLoKlLySEyI9gJS7PBrk5jz53hi9FNAfPVI/Hbw0hIe8M9Wauw15dLxxXzo8URoBPbpbej2h/j28J8+vPFH1tzoFmx499kpOvLiRazuZVqy7kMm8ui5IfrzM7oG9udtQPecVTb1rHDA8MFxyvUnoHj3do6w7lydpvKLtFb3oXzI9R8OCvCtjzTwfjKU63b5OPEFbL7zAA7m8FzV6PXYOerw0hIc8MabXu2CWbr1kfpg89krOvBBXpDyqC9e851+yvPp55LyQmvk8SANBPHrbAbwvAZK8ZT4tPcUrIbufz/q80mfQPP88RT3EBgW7tGLVusR8tDxlWU+9j2S1vKPIzLsi4AS8X0UIPU6XXrySLkS8pVwXvVUJrDz2rwK9vygCPGR+GDuyfSQ9D/IcPd2jLDw5s507O2KKOyTWXb2Z1lU8ZHRxPKQSsjzkcIe99JvhPE8rqbyKvPa8nA8TPczugbw0cGa8KL6HvDPVGjx1Dno7cqmfPCt+77wvd0G9Dqi3O4x1ir0K3qi9brDNO/VvlzyH8ue8bXAPvY6aJj0e+Fo8syyRPIb8DrxAkXM7GxMqPSt+7zsdk9O90FNcuUIlvjoPPAK8ZH6YvAab8TxXCf+8QXZRvJs73bzK5Ae8o5KIOwYAJj3E4Ts6cTD3u4sG3Lx+gEc9fRtAvToYJb2wzjc9NYQHPe+HGrtmo7S7D/KcPGxmFb2Y1oK8oLTYOuxzJrzhN8q8xJfWu87TMr2nwR48KBmVvVoCUbyFDTc9ld0wPS+S4zx0qfK8D/KcO23mvjuLodQ8JzQ3PX0KGDx7h/U6QCxsPKoL1zzKPxU8xmFlvQqvZbtVCSw7TyspvC+mhLzq31s9E6Hcuz7Ri7wZSRu8JCBDPFUJLL0Uody8eSyVvC1I/jx7bFO9mkUEO8w/aLyTk0u7v9T1PCcFdDz73mu9d1hfO6rwNDy0R7O8eQdMvCkjD7qq1RI9RG+jvFI/nTwKuQw8p0FIOpSubTzlegE8keReOgfKtDz4yve77j01vcHykDyV+NK8PMcRO+FcE72hY0W7wGjAvICUu7yLNZ+7yz/ovB9CQL3qxDm86ekCvRxJ7jwd3bg8Cnkhu7KYxry1rDq7YqriO177IrzQwoq804Jyu+Z6AT1oUiE9sb0PPZB/1zxkvgM9KuOjPIi8I7uvBHw8YU+CvdOCcrzWRQC8PZEgvGVZTzycaiC8d8cNO7XifrjRJ5K8z+7UvdcFFT2M6zk7LDeDvIzrublzxEE9IdaKu177ojv4r9U8JaDsPD59f7271KK8jVBBOd+j/zxQkLA8EaGJvU2XXjtRGoG9xeG7O8/u1Dz1ZR28pBKyvEqXC73SAsk8b3oJvLnbUD3a2Z08NdXtOexzJjt3xw29HZNTPBKrg7wkRYw9TuFDvSmZPj1ptyi9j2S1vJDuBb1Gb/a8rdVlO+XVDj2ld7m81kWAu9jgS72z/U0831KZvPLR0jxokgw8ZPTHPNm0AT3+VxQ9awsIOlRJl70QvKs8jzVyPVPkj7xSfwg9o5IIPSPxfzyXMZA4lScWPULANj0gcQO8lzGQPbx5FT3XxSm8uJFrPHps0zxveom76w4fvbcAGrzfbbs844EvvIR57DxxX7q8WB2gvCfqUbv3FIo8BId9PWYIvLxtMKQ8KBmVPF2WGzx6bNM6hF5KvAXRYrtQdY68p9zAOy0SOrwCIvY8jX8EvUL2ers3BDE8pwsEvd8++Lw4hNo8Rm/2vBV1kjnwUSm7gh4MPRj/NT1pt6i8dY7QPHFfujw9R7u7IDEYvYprED3AHtu7kMk8uwkAeb31AGm9TeHDO1CrUj34r9W8QCzsPKy6Q7xsnNk8AaJMPD0smTvAA7m72A8PPUMKnLwrfu87s0ZePL3gfzx38w+9DIknOzL1pbyXKGy9cyTDvBz/lz3gQTg91fOrvFOUE72F8my9R5E+PMK9rLz+eow7CG8jPe8RHry6iaS7DC7UvK/gxDzI8bS79N8MPf7UgTwqZko80z9Bu0eSnLx11vE8iMBbvL2jqLyGple9iyixO1KGs7w2DW69TLoAvWtLjrxG3w+95sFVvc8YOzzZsty8wmLZO4KMU7v1hLm6+qs/PaM5Ib2C5Wo8aNa2vH1lTbwJyLq8D+/AvIsoMb0GrjY8QmuWvKU3ZT08noW8zcCBvf1srLuFASu9S/dXvOFPmL2oBxC8nl6wO5Z2PT3g5uS7YKMMO1vHPbxQHl49VJM1PRni+Tw8j8e8LjS5vISZ1TuhHeE8eww2O0MeI7tCajg5x+SyPE96jzxspCW9+PkQu5ncVj2o+NG8X+HBOwvVPDwsGjU7MZwOvftfqryoBxA8wnEXvbNGXrxCHiO8ldEQvODm5Lz1hLm8CX0Dva+Vjbw821w87wLgvDyehTz+LRm94fNmvI9QFbtbbOq6zcABPSqyX72sIRS9SDZrvUtgCz3XWUU8E70vPZMB5rt2ilw9+J49O7nVOT1iVhk91qVau9LX67zCvSy8zQl9PBMYAz2Wz1S8Ib3qvMXXMD2jdvg8lFr9OgM537vdj4m94PWiPDka8DuGWsK7NFydPL6U6ryfXHS8MvWlvYNAvjsdDBq8jekdPTka8Dtc1Z08pvoNPejOV73Lo2O8FcoxvIqDhLvcJ7S8OXXDPOMQhb23byA9cWPWvGo+jDtQHt47kwHmuz1DMjzKpR89Yq8wvWfXFLxox3g9QLgJPGS9EL3Aoey8MfaDO9OLVjwevya9HbKkvHn/szyBJP48r4Xxuz1DMrm4bWQ9x5gdvT33nDp+cs88iRuvO8MWxLxFhLw65bTTvGZu4TyPm8w9n8aFPBnkNTzUmNi8u4dovbVinrxdiKq7fnJPvTl1wzvfnIs9sZSvvKdE57tflSw811nFPJudwzwmTgK9gNqkPOiCwjxp5BY9q15rvemCQj2wOdw6ZyJMOzo3Djw0EAi8UeEGPeFOujxZE9M8oGl2O9pmxzwe/H29ASzdO8iJ3zsymlK8JT9EvDQCqLySEKS8z8wlvU7Hgr3VTaE9+awdO/56DL3tUDE8gpsRPGYVyrxP1AQ9txRNvEIfgT0HB049CtU8verqFz2ta+08I40VPBUlBTypYCc9u5eEO6Xrzzy8lqa8s1WcPHK87bxtSVK7MDL9PCu/4br0OYK80cppPJeDP71KnkC8gvQoPGJWGbzPvWc97071PDL1pbwtGPm8W3yGvSwaNT0fsOi7/sVDvJ2qRTwfGRw9F9czvYL1Bry7LlE8mUWKOzgprrztqwQ8VEcgPSQyQjvNsOU8kbeMu/afG72u00K9meuUPCPZqjtc1D8841yaO4jCF71S38o8VVUAvZxRrjq1rHc8ZBcGvU24xDzhTxg9ZK30PKzGwDxp5Ba9XYiqPLfJlbyIHA296YLCvZy5g70gveq7MwMGvK16q7uPm8w8rzuYvVSTNT2OQrU8+qs/vVAeXjxyJaE8tK4zvit1iLx9dAs9rtNCuxGwLTzh82a7r+8CPCBxVbweCzy8zQu5uqPgCb3kD6e80ucHvfSFlzv0hRc9rjsYvI1DkzwBLF09pvqNPfj5ELsszh+81OTtOh+w6DtvC5284EG4vJ5esDx5AJK7JDLCu3zAIL28O9O8jDWzvP1srDkkQYC7Y68wPPARnjtceew8LSgVPMv+Njsa8hU9yv+UO9soEj27PY89LyV7u4EzvDvAsKq8MwMGPQNG4bxrS448wAogu8BV17xWrTk8S7qAvZZ2Pb09NHQ8hQErvWNUXTuEAas9DvAePXMkQzzKWYo824KHvAautrwy5uc8j/afvBfXs7xT7gi9DT0SPeW0UzyaRKw8KQ6RvEwTGD2hxMk8SEUpvJsFGTwL1by8d5dePetEDb1spQO9Eq7xPEfskb18GpY8TsVGO7DgRLpqPgw8DZYpvJ1fjrxvC528JOeKvPBrEz0ZiWI+kEB5PaWSOLrW8e+8Kg0zO6PgCb2DmVU8Vp57PCgAMb32gn29t2+gvRo9TbxBXbY8uy5RPJ9rsruLKLE8KQ4RO6/vgrvbc0k9jNrfO+UdhztPIJq8zQn9PCDNhjx5S0m8zbDlvM+9ZzzeNLY8gH9RvPlSqLjFI0a8X4ZuvKb6DT1ELAO8QKlLvLh9gDwmmFu87gQcvTka8DzN/Po8TiAaOSgAsbpflaw77VAxOw07VryJGy870TI/vEhFqbzkaRy9nAWZPOtEDb1BXbY8ljgIvDgprjxDw088U+4IvfTQzrsTGAM8CG+jvOmRADwa4nm8FtiRO5co7DzL7/i8Ib3qvIsoMTxxY9Y7FiNJvZQdpjwDSJ08udU5PYqDBD2D9Ci9RRznPNLnBz0L1bw7meuUvACVED0wQpk6CLs4PBYjyTsymlK8I9mqvGJH2zrXWUU8Q3e6PIHnJjxU7Ew96kMvPVRHoDwC7Um8J6eZPJGozjwM4r675hypO+gabTw7kQM9Qh+BvCcBj7yOQrU7MwMGvSTXbrwyP/88QQLjO7KijzwxnI488h6gvHimnDzqRA28R5IcPa6Ii7zAsCo9uomkvOXDETwgcdU8xXxdPUusoLyzVRw9WGEkO4UPiz3WTMO8IsrsPBZ+HD1iR1s7ngPdOxo9Tb3zKyI97EHzu1lvhDuta227KPHyPOHz5rwIuXy89SlmPYPlaj1g7kM6KaVdPS7boTx3TYW72ygSvCPZKr20U2A8HO/7vMvveL2u00K8e1hLPJQdprzXpdq82gt0va+HrbyMNbM8YvtFPXN/lj2b9lq9a0sOvEERIb3V5G28lSuGvJusAb1ShrO6G5ZkPMK9rDv91IG7iQzxPGd9nzyIwpc8iikPPS7bIT1R4QY9V/nOPPc26DwFCYq8p1QDvaTtC7vU9Im8lFp9vLqJJLxCW3q8wFVXveQPJz15pGA8DT2SvPdFprvmHCk9+xOVPAyJp7s9Q7I7JpjbvAWvFDwdsqS8aDEKvN+NzT05dUO9aNa2vMpKzD23FM2835yLPXlLSTs3HQo9ZXCdu3yx4rxT7oi6geemPDzqGr3NCzm909drvfJ4FT0JI448hJnVvN+cCz0bpSI90NoFvHFjVrx+vmS8xdewPHElIb1joHI97gScPKoFVDysIRS9kKoKu/55rrwKbee7nbkDPQRGYb3bv948wq5uPHqk4LrDy4y9KmZKvEPDz7s96N68bUlSvJUrBryduQM9W8c9PTsn8rtlcJ086kMvvO1QsbxR0si8uXwivPu5n7zYaIM9G+/7O/y4wbz+1IG9zPx6POtEDT0Svo08NFu/vOAyejzI4vY7PlA0vQL8h7zMDJc7xj+GPQCHsLweV9E8tWIevc0LubuM6R28LRh5PNzMYLzL/jY8HO97vR9kUzzvuIa8u5cEO9my3LyyRt68CtYaPJH0YzzS54e9eg0UvUc4p7v8Edk8crxtPBH8Qrv9bCy8US0cvdOLVj2H/248T9SEu/7Fw7yMQxM8CSOOPZXCUjxHkhw9PpxJvW9WVLxbIFU6veB/vAPtSbmgeDQ8RSslPL78v7sJFNA8sZLzOnfysTx5S8m7wr2svFsgVbx/y+a8atT6vJusAb1CxQu990WmvNmyXD1Caji9bwsdvO8CYL1ayBu8IM2GPGylAz297727FBZHvCml3bzL/rY8lXcbOX7NIjvCFkS8baSlvCLKbD2DQD69ykrMOyZOgjz27I69CRTQvDJOvbx5pGA8qJ3+vPlD6jtDd7q8fRm4O4yBSL3AoWy8Unf1vJQOaD3wtso8fRk4vc7Ng7xkCEg9FjIHvK0uFj3bc0k9WGEkvYNOHjxaX+g89uyOuLGULz3gQTg8ppB8vGjWtjtrl6M6CckYvUtQ7zyvhy08QKlLPW2kpTvqNHG8xz3KuloTU7wxjdC7krVQvKAQ3zzMvyO864/Euw09Ej2rXuu8z8ylu6efOj0Fn/g76uoXvcxXTrybnUM9ve89vB+/Jjt15o28tAfLOwOhNDy1B0u9IHORvX4mujyqBVQ7I9kqvVXszLxo1rY80ICQPYp0xjznKSu9U99KvVVVAL0a8hU9lyjsvaVHAT2C9Ya7Ut/KPMg9yrzXWcU8dYyYvHLLK7tauP+8ef+zvJQehDwrwR09gTM8PJMQJL3Gixs8MI3QPKVHAb1oMQq9FiPJPOD1ojwm8668hmkAO0JrFr0Qoyu9279evAyJJ7wk5qy86CfvvAvVvLxn15S8ZAhIPXFjVr0HrPo7710zPYgMcTxH3dM8/sXDOyRBADzlaD47veB/PCyCij2eT/I7iAxxvMz8erz9IBc9zQn9O0Ypab0u2yG9PwQfPMxXzrxu/Ty9KACxPH3OAD2eXjC8o3Z4vO9dMz2ETUC9dTHFvDOpELzR2Sc8GeQ1vWRjGz00EAi9hVpCvRH8wjwdsqQ3Fbvzu6Mq4zoMiSc9AHjyvIvN3bziAiW7Ut9KPFoiET0i2gg9zyYbvdhZRTtlvLK7eww2PAvVPLxCxQu995+bO0Cpy7xspCU9EEhYvR7AhLweC7y8jCb1u1+VrDv4j388TKtCvTH2g7y2rHe7FbvzuxD9IL0FrxS8duWvvLmKAj3vuIY8e1hLvPbd0Lw5dcM8o4W2u8cwSLwSrnE8Xi3XOvoGEz3+xcM85ymrPSzOnzxlvLK7ItoIvJ1fDr19gY07wLCqvBBXlrw40Ja8vkjVO7s9jzwDknY86IMgvWzwOr2v7wK7qhQSubi5ebtIRSk9E70vPam5vrzGfN07dTHFPP55Lj0cWY296tvZu4HYaD23FE07jekdPZlELL3OzYM7bqJpvI5CNTtxY1Y9kajOvGrUerx7DLa8VDhiPK/gRLx+zSK8XHlsvCwatbx9gQ29Qg9lvPUpZjtauP+8JvOuPaF4tLxq4zg90IAQvQpt57wnpxm9BJL2OjzqmryzrjM8SJG+vIAkfr2UWv28hVpCPYHnprxHkT48X+HBu5ZnfzsBOxs9279ePfjqUrzJTIi9PpzJu/fq0jxbIFU8fMAgPFHhBj3PGLs8mZDBPKF4ND3Du/A89pG7vNJ+1DzmHCk9IHFVvAdvIzx34/M8958bPNJ+1LwSCUW83jS2PAkjjrxSOh49FzDLvOfQEzxMq8I7dEADuiX0DD2pbge9nl6wPLfJlbwk54q89t3QvOcqib0wMn285bTTvMUyBL3XAK67whZEvFX7Cr0ZmKA7pqAYO3PZi7trl6O8JphbPJ4Sm7ydqkU91JjYvHTJbzwqDTM9IiVAvWzwOj2yog89ZiSIvFQ4Yr0hveo8sZSvu2jH+DgcSs+8C9U8vKefuroSvg296kQNvMyyITxmybQ8s0ZePUBeFD3QJb27VaC3O8YwyDxLYAs90TMdPN9waDt4dUk9xb+SvUwboTwxpUe9bUa+uzkX7zwG4Xo9aiAxPafrBLyPaja9n3wyPCwk27u8iOe7K1ktPPmIjTyUgX68ZJ9EvMtxgTvtXFc7Wtlivb6u9DnWAhE9JOeFvIbK4TvkJqe7DfIYPT/3Cj06RRw9oQtpvclHJDyrQhS9h7yXvXaxQDyX2Yg7ASw3vN3hMbr49QY9xlVuvY5uBjzCAi+8AGguvK069DzL1to8OkWcvIqAIL3hy0e9gwZZvCR94bw54xe82lmgPEgACTsf/PQ8xfNpvGhcKL01KoQ8NvHhvK6VUzzNl469CdOwPDrb97tBVT89EEVYOzpFnLyqSTm8p+sEPCbcEL1mzHY9AcqyvOa13bzuKIA6UG7gO+nYlbwMkBQ8lE0nvQYWTbznrri7tHyUvcvThT3DZLM98uGTvLiXrDyw9IK8dPEHvMUoPDwwqZc7Jm8XPGJ9B728gcK7s3/pvCej7jsXVXs8ASw3PMMv4bz1mie7yUckuyUUOL3xRu08jzVkusndf7oweBW8dO23PDdTZrz6G5S8iCVBPXKSWLzdDmQ8AP+Eu3TtNz34Jgm6JRQ4PGQ9wDw+mNs8GLf/PLZxH7us2G+8uf0AvEOwnryGxww9sxoQvJEnmrsksjM9Y9s7PAEst7yUttC8YFOqvHVPvDyk/Z48LSGGuwKOuzsJCAO9IF75PBF6Kr2Xc7S7CdOwuy2GX7yyuAu9m8bzOpeoBj36G5S8f4IXPTCplz0d1uc7qFDeu38cwzwJCAO9aonaPElePbyXqIa7/QxPvbdpfzwi7qq8SiYWvE2x/LvkJqe8ezItPS1SCL301h49oEfgOyUUOLwHDyi92x2pO0gxC7v7fRg8qee0u6e6AjxCgnE8vuNGPbN/ab3qa5w7yUekPL3qa7yZzhO9BLttvVZRUTxuDpc83BaEPWUI7jveQzY9bwpHvRghpDxwzk887yDgO9nCSTxUwpq712fqPFDYhLzuWQK99KHMPA29xjze2oy8zJpjvfC3Nj0hwP08UZwNPLfTI71KJpY81gKRO5pkbz3tXFc8sn9pvNMUqzzRUKI8YkRlPDnjF7w8a6k7BUufPE2x/LsOVB08yUekvfBOjbw28WG9WLAAvaqvDb2Cd6I8H/x0PXqbVr1Godm84/h5vBhVe70C92S9cscqPVkONTwC9I89waCqvKGmj735Irk83H8tPZfZCD2VFYC8DPk9vVTCmrxVJB+8WBIFvZhsDz2aZG+76dTFu26oQj2tBh09I7lYu3uYgbuSW3G8T0GuPUJOGrzYK/O6U5RtO4JCUDtfvFO81T4IvRlO1rxvoZ08eHVJPMXzab037ow7kfYXO2eYnzuVr6s7Rs8GOITSgTtYSqw76zbKvGFMBT3ZJM67uDWou/gmiTxKJha8WBXaPF/xpTvc5YE8SyLGPJ5PAD2LD1e81py8u9OrATzYK/O8YuLgPAvEaz2H+A67JtyQPSNQrzy+40Y7Kf5NPGXUFj2Pl+i69QPRPIZhOLzjxKK8lRGwPH6+jjvxe7+8DfIYPXnXTb133nI9v9whvUjH5rxFdCc9SDELu1LND77FVW68b6GdvAo1NT3xf488FS9uPWXUFr1D5HW98eTovK7KpbjPwHC9zsiQvZCX6LtImjQ9CpsJPXrQKLx8lDG9UpTtPAPwP7poXKi8FJmSPHRTjLwByjI9vYHCPApqh7v9qkq9b2xLPThMwTyKgCC7A/A/vOyYzrzgnhU95Canu+wvJTxMG6G7AvdkPQ+Bzzs/vmi80BtQOzzU0rsHDyg9pMhMPNjCybzZwkk8YhCOvQEwh7xiF7M87ooEvBARgb2uaCG9fF/fO283ebxpviy9e/1aPHRTjL22pfa89Ar2OwkIAz2Onwi93Q5kvIOk1LxDe8y8x4ObPPTWHr17Mi298kZtPE92gD2BQtA85xQNPeayiL0eBJU8hmG4PG4/mbxhtS47HzHHO08M3DyXc7S7usTevM0xurxX6Ke9PTbXvIi8FzzWnLy7hWjdO1PJvzwSp1w8nripPDHaGb2qq708L6xsPsjlnzzTDQY9ab4svdzo1jzL1lq9PTMCu+mfczz4Jok8XP/vvMP7CT3wTg28zpO+vDlFHDxQo7K8RT/VPEIdGL2XPuK8JRQ4Peh2kTwlSQo9+rmPvHz6BbwUaBA8otcRvVMrRDy4AFY8mpIcPZCXaLuJHhw8klvxu2bMdjxG1is8D+p4u8lHJD22PE09T0GuvARSRLzVPog87C8lPWKuCb2n7tk6gjurOxghJDwBMIe7arcHvDi16rwno269ixZ8O0FVvzwHQ/+78X+PPNjCyTxO3yk9PGupu4vipDzDL2G9kx96vKNqmDxJwME8TBuhOr56HTzdDuQ8KNEbuwHKMr1xZSa9rsqlO2KuCbzrNko93eExPA4fSz1Godk8aonavKhQ3jzsmM46qIWwPAEwhz3835w9gH5HvA7q+Lwu6OO8Cpe5vAnTsLwXVfu8kieaPGUFGTzPV8e8IfVPPBVkwDz4i+I8jtPfvHVPvDtX6Kc7qq+NvFZRUTtG1qu8KpUkvNU+iLxDGci8o5uaPYZhOL1apQu7YFMqvCCTy7w1vYo9bEqOvDmuxbxpIDG5vnoduxKkBzzPwPC85xA9PU6qV7xqVYO9wgKvPDCplzzGTsk71/5APYTSAb3mTDQ8JtyQvKzYbzwyB0y7pirRPMCnz7vZwkm9C/0Nu6FAOzxt3ZS8X1rPO0NG+jz1OKO7J9hAPKCpZLx8X9880rKmO5r7RT07cs48t2l/PLxMcDzJRyS9zyJ1vK4zT73Hgxs9GkuBvH+FbLz/Baq8L+G+u3xfXzyjZki6fPoFPK4zTzw+kTY9tENyvLxUEDzliKu83kM2vSEqIr1voZ28qqu9vApiZ7uZzhM7UWuLu/I/SL1CHZi8IMgdvCpgUrx9wWM9RXSnPFHQ5Lx+I2g7SinrvFpwubwlegw9sbtgvFMrxDuk/Z67BnhRvMeDm7vGTkm8d95yPPxIRr3Hgxs9xrfyvGzkOTwR3C47s0uSvE3mzrmqqz09tENyvJLyx7vMOF89Onnzu3xfX7ydViU9Oa5FvasREj38E3S8wgIvO8Cnz7xQo7K8xY4QO46fiDzYK3M8X1pPu6frBL06RZy8sI6uPPGwEbwxpUc89Ap2PRqw2rwC9+S8EUKDO8oLLbwBLDe8xCwMPR8xxzzyRu27cAMivPt9mLxS/hE9680gu/BOjbxWHP86qIUwPDpFnDtG1qu9PpE2vaaM1Twgk0u8YOoAvWzkOTug3ra8PAmlPC9Hk7yGyuE88UbtPD++aLzG8JS86tTFvLyFkryuyqU84o9QPQzEa7vGisC8tOHtvEhiDT0N8hg98kZtPLThbTzt+lI9dwwgPRjs0bwbRzE8SovvOwS0SLyuyqW8EEVYvQS4GL046ry7aiAxPEgAiTxQCQe90O6dvGpVA71HOLA86zZKPSXf5bwasNq8CmJnvPF7P7q0fBS8Ume7vM4qlTwI14A79mVVPePEIryQl2g9m2GaPI/Mur0nbxe9zpO+vMbsRDvLbbE86HaRumDqAD1rGQw9RtarO0yEyrszAKc8duaSPKgch73JEtK6K/eou0EgbTs7pyA8DfIYuwPwv7woOkW7YbWuvKMExDwvrOy71gIRvX32Nb0k5wW6EqdcvLli2rzqaxw7JqPuvCR9YTw1xC+9xb8SPdR2LzwiUK87QxIjPEtXmDyZAuu8uf0APHzJA7yZnZG8m5IcPEEgbb35Vws9tnGfvOnUxbvjJic8pJP6vF74yrxapYu9OkWcvDzNrbqUTSe9bRHsPJmdkT2f5Vs8xfNpvDIHzDw9za09Yq4JPd5DtrvuKAC9a7cHPYxEqTymjNU6D4HPPMqpKL3vu4Y8N4i4u/Adi71se5A8KTMgO7/cITw7ck69drFAvMA+prz3wDS8TBshPRTNaTx3SBc8MwAnPOh2Eb2JUnM7FJkSvWqGBb0nb5c8kZDDPGQ9wLxSyT88jtNfveUfgrxHnoQ8kx/6PEEg7bu1Dxu8vIhnOo1xW7vWoIy8vB8+vYvipDxJwME8k1RMvZOJHjtNfaU8DJCUvOcUDb2KgKA6ZjYbPYsPV7x3qhu8rjNPO23dFDwkfeG8NMvUO6WM1b1HOLC8BhbNvFw0QrvR5n28tnEfPHA3eb3sY/y7xMa3vDhQkbwMwRY7J9hAuxwPiruxVoe7YhczvHeqmzxcaZS8WOECvazYbz05FJo89mKAvISdr7tU9nE9YUyFu+prnDwdcY48sR3lupjVuDwgyJ28pJN6vTzUUj2RxRW9ie2ZPAVLnz2bv0493wuPPMI3gbuA53C9F1X7O7xUkLtUjcg7foIXvHUaar38SMY70xQrPfPWnjqH8O67pozVvNWj4bys2G+8mNW4PCZvFzwUmRK9Bq0jvBe/n7t/ur47Rm2CvaSTer3hy0e9A1npPGRyEr3zqPE8Pc0tvfgpXrqspJg8rTr0vN1KW73pCRg8dCKKOuEAGjxLVxi8b2xLPcKZBT1kPcC8twf7u+cX4ryCQlC7iUtOOeaBhjyqrw08aiCxvM6MGTwJOQW9fcHjvI4IsjyIJUE7NC1ZvQnTsLuF/7O8PpE2vQ+2Ib1qhgW9EqfcvGVq8rwiV9S9NiY0PbrEXjxSZ7s6SyLGPKpJObsJCAM9oEfguzVbhjz+btM8DSbwuThQET0LLpA9N+4MPFqliz3V2LM8FcqUvHOPAztU9nE8pV+jO8ttsbxZDrW6aiCxu91HBrqPAY287ZGpvEU/1TxEP1W97C8lPAD/hLwWxsS8poxVvabBpzxuc/A73niIPLO0uz2lXyO836U6vdpZoDzO+ZI9yUckPEiaND20Q/K8BhbNPKPPcb2ioj+93azfvG3dFL1Hz4Y81zMTvacjrLxOqle8PpWGvM7AcDqPzDo8HA+KvIKrebwweBW7FM1pOy5/uj3n44q8la8rPCCMJr0J07C8e5iBvHFlJj0LYuc8pP2eu1SRGD3JRyS8qqs9vcptMTwh9U+9GCEkPcWOEL0UzWk8A1lpPf/QVz2+eh08fMmDvTA8njwtHbY7kflsvBVkwLwafAM9rmihPGqGBT1DGUg9RN3QPQqbCTqkZkg8VFh2uzM0fjwL/Q08g9mmOz5khDy1Dxu81NyDO5LyxzxvbMs7GrBaPaxvRj0VyhQ8YUyFPPfAtDz6T2s9fCuIveVTWT1CTpq85644vUy5HL1LiJq7LCTbPBvehzxcmpa8lLbQvHAwVDyi1xG8xk5JvEPdUDz0oUy88kMYvT6RNj0UAry7+eoRPRVkQDuj/R48XS2dPCigmTxf8aW7Nx+Pu0cD3rya/5W8b6EdPTGlx7z1mqc83jyRvW3dlLtmLnu8sxqQPfC3trx/ur68hseMuhKkhzw/8zq8UdDkvBdVezy/RUs9u/ILPCSyM7xPalG8tCtwu+6fXb1wCwA99UcBvS65rzzOPau6SBRcPUPh8zxjMHS80P4WvTESfL2HWRA9WIGyvBX24zwUIka8oGiMvJ2Rr7zTcJO81hsOPG9qYjw/JoY8YIi4Otjs7LzkiHw82DvcvM8UCL1cKe460oYEPYBSCrx1UZq7s1oRvXmEAr3Y2Tq7l4qpPCkkJjtnfIw8GAa/uzpCDb1hroQ8PyYGvB2bSL3wFBk9RxTcOcOI67ziA048kLlivVP/WryZ/KW9sldSPHrj5LoB4VG8fhZNPagKsrxB+qO91XrwPCz7gr18Qi+7OyndvT85OD3HNqU727AXPUz7Ez1Got+8b4MSvUrVRz2PgyO8fZEePQ1qr7wNaq+8Xkx7O3YiebyWOzq8diJ5vJQr37vKLdC5+ncqvPfJcL3V4g89/Zo3PUdjy7xDHbG89hhgvIiSjjtzej073Eu3PBzHqrz/btU8cvWOPLg+Cr10Z4s8hPrFvEZAPjyex267Hw1FPAIE3zt12Ye91519PHtukbyuxYc6DBvAO0hQGbrKLdC7lzs6vf04Fj1qUCq8j+gDPW/SAT3mYpg9t059vPH+pzxrJEi74JQQPRxM2TyWoBo8TZazvNc+mzto3q07Z94tPfmjDLwYt088CSSVvLQrcD0hf0G7An+wupagGr03gSE9hiCSPKrLHbwpmXm6TuWiu6tQzDy1GL67PBarPIfePj0A+oG87Ms/vMuyfjyOR2Y9nZGvvIxzyDwA+gE9xZhGvImyXLxUAho9yhqevVMYCz36dyq8VTsYvcabBb1IASq7VewovaFSGzxl0RE7P4invDaXkj0vkAy9NXSFu1qkvzy0et+8M/9JPK5gJ7wGxUq7OrdgPND+Fj2Mwre8em4RvEz7kz2Cq1a9TEdEvaQTBz0vV468CXMEPQQnbL01dAU9sTTFPJ+0PD2QIYI8Dj7NO8dsZL2GIJI6gIjJuyD6EjzYiks7nZEvPRQlhTyzWpG8aLLLvL8W7zw6t2C7+TttvAQn7LxpZhs8Yq6EOuXEOT1Lcya9SFCZPKvuqjuOmRQ9mV7HO7gP6bwlpY08Mk45vN5bkrxptQq7IjBSPMmPcbiRIYI7TmpRuvmNG71N5SI98yE1vV7KC70CU069SiQ3ve6iHD0xYWs7XmUrvPBgybx5/BS9KAGZvdD+ljw7pK64a+6IPUEQFTtnQE+9i1A7u+6inDyFbEI9u9MTO3tV4bytwkg9lC4ePfKDVr3NPas80tK0uyjo6DwMzNA8xkwWPBLshjyhOes7ULlAvRqLbTy/RZC73r0zvFetFD02wDU76vchvQtHorzcmqa8hDaDPZEI0rxHxWy9ma22u1GQHT1hJhe8IL7VO8EDvbv8S8i8ErDJvNNX47yOESc9TEdEvF5lq7ur7iq7OyndvJeKqbyvEbg8nPPQPNUYTz1wudG8IMGUu1P/2jxJsrq7BWMpuoT9hD2EzmM7C6yCvK9gpzyQg6M8xklXPK8RODwfDUU9Uis9vNrGCD2Utgu9uzJ2vcot0LzSCPS8z6+nO4iSjjwJC2W906ZSPQNWjTwCBF+968u/PAzPjzvq9yG+zxHJvNNXY7vc6RU9NvZ0PBWn9DxMqeW7qKiQvc3uu7xD0QC9Kgt2vQeZaL1Y/AM8MSssPWzCpj1JASq8i1A7vWKuhD0gXLS8CkcivE9q0bsxyQq92Nm6PM/FGL0srBO9uzJ2vG/lMz2aMuU8PMc7vTUllrxXlGS9+TttPPMOA7s1D6U6HZ4HvLOmwTygaIy8EzV4vKKIWjxtqXY874wrvEXxTjwfDcW8SYkXPUH6o7wR/zi6QvqjO480tDvH1IO9G9rcvMEDvbsBHQ+9xpuFvZmttjwqC3a9N+PCvHitJTwI6Fc96Q2TOUqJlzvMUN28jMI3vX4WzTwz/0m9MSusust8v7wf14U9XHucO0qJlzzPEUm9T6aOOxZIkryk/RW9PZtZPalAcbw/6kg9E3G1vItQO7uRCxE854WlvZgSF72805O7pEnGPMVJ1znbXmk8lezKPOst4TySV0G7ImyPPDjjQj6faIw9WONTPcotUL3ecYM98GOIve4qCj0eOac8KAGZPHitJb3Ky668JXZsO5FagDyfZU080tK0O4LEhjpHY8u8Z/FfvDSdKD2Tes68NDsHPaxQTDyZXke7GAa/u3IrTr3uPbw7V14lOyz4wzxbVVC8YVxWvKsEHL1CMGM8JY+cPHN6Pby/RZA8btKBPQTY/Lso6Oi8hh1TPbleWD15gUO80GA4vH3HXblQucA8eF42u/5bo7wCU868cQuAvJ2RL7wcTxg9bzSjO3Ab8zzT+AC8QfqjPETOQTuv5dW8ArXvvNZnvrxbWI88I86wPLnAeTyv5VW8O9ptPGjF/Tvsyz+80/VBvO5Q7jye4J67hh3TPJ2Rr7sQK5s9rNV6PdGDxbynbFO7w9qZPLwig7thdYY9HP1pPU2WM7zEdTm9c98dvVV0Fr0cZQk8QV8EPfdnz7u42am87qKcvMqP8TzldUo9bWAFPWmySztBXEU80jTWPHn8lDzGSde7FHE1vZCDIz1JAaq8wH4Ove1pnjvhA069xZjGvC9XjrzhtN68eYFDPc1THD0ysNq8BNj8u9edfTwo6Gg9H1w0vKoB3Tw/JgY9P+pIvfXioDwSsMk8FkiSPJ1Vcj0sRzO8UJCdPL8vH72nWSE9oVIbvZlex7uA6uq7FfZjveG3HT3wEVo8SomXPFIrvTyVGC089PXSvJbZmLyyCOO7gg14PZlexzukmDU9bpmDvPX1Urz/QvM8QkkTvFkywzzYO9y8a3O3u/LSxTt3wFc8YVxWvRL/OLsizjC8tRg+PMcddbz4O+08Qn9SPVDv/7msnzu8hgohvVMYC73adxk8rXPZvLjA+TuqY347PZtZPDUlljyGCiG7BsVKvMhZMjrrLWE8qS0/PZRnnLzD2hm9RbuPORva3Ly27Fu9AOFRPdWToLrCOfy8eUsEu969M7zBA707IZLzPLIhEz35ity8kbniPIa7MbzIqKE8C0eiPAkklTuGbMI6BWMpPdXij7zQYDg9V8OFPTwp3TogvlW8vaRyPX3gDb2b0MM9EcN7vN5uxDx7vQA84H4fPBUPlLvcOAU96xqvO2jeLTuvrxa94vAbvQ/vXTyxufO7c9xePBASaz3nIwQ8iwFMvaRJRjtEbKA6qmN+vJykYT0bFho9F5cBvFrQIbwdTFm6bUfVuhqL7buHkg69nVVyvO1Qbjyg6vs8fUIvvdyBdr3COfy8Zc7Su7yB5byiiFq8btKBO8PaGT2aMuU81ZMgPefqBT1y9Q69kqYwvAldk7ybHzO7ADBBPbG5czxzej28wtfavEz4VL0WlMI8h96+O160GjylTAU9waEbPbV6X7s0Ile9kQjSPOgNk7vq9yG8VdN4vCjo6LzlE6m84OBAve3xCzz3VJ08bCcHu0POwbyGIBK9uMB5u2A8CD0tlqK88E0XvMds5DuxNwS7O3jMvHwG8rz2GOC878LqOzb2dD1GQD49onUoPPbiILu4d4i9uumEu6ktvzvbmiY82CgqPHheNrwizrC78oYVPddUDDzm+vi7q1DMPK8RuLxaVVC9n2iMu7yBZbyxgzQ8WPwDPSiyKT3+h4W8ThviO9xLtzpuNCM9tgUMvbNEoLyLnyq9TMIVPY0k2TxPzHK8qN7PPB/BFL2bbqI8VewovdWTID0JWtQ7HiD3PEmG2LpJASo9etCyvA7ynDwVSBK8GinMu+c2Nj2pLT+9g5gkvB/BFL1ZgbK6ZbugvPrcCr3vc/s80TeVu7ad7Ly6rUe8aN4tvL6RwDvEE5g9qnwuvYIN+Lyk/ZW8kghSPeOI/Ltr2Je80OXmvM2iizwI65a8eK0lPYTnk7upyx29CHOEvBrdG7t8pw+9lC4ePfoouztkuyC83Es3vSbImjxem+q7L1cOvX3HXTyJLS68KAEZPQuWEb0fXLS735FRvLZO/byDmKS7FfZjvEmfCDy6YRe9qFmhPBDcK72/x/+77vGLuvz82LmHWZC87xHavKeoEDxeyos8MWFrO9CW97x0ncq8uq1HvFGQHb2sUws81snfPMc2Jb13D8e89ZMxvTTsFz2L7hm8KYbHPD/qyDxmQ4487oyrurR6XzzaXum9BNh8OVRRiTwA+oG43IF2vMOI6zx5MtS8ADBBvMne4LzH1IM87e7MPI1gFj1u5bM7P+0HOxL/OL0JhrY8lu8JvQQn7LzwYMk8DlH/PHGN77yV74m8iC2uPHVOWzyfx248RkA+vKVJRr3gQuI8AeSQvBvaXL3Y7Ow8wohrvSMdoDsHmWg9cQhBPHunjzyzpsG8Ek4oPI12Bzy80NQ8pEnGPIiPz7t4D0e9+xUJOvg7bT2AAxs9OrdgvTYPpbzpWcO8MI3NvF+IuLurUEw9RnZ9vcgKw7s4MrI8gJv7PExHRL0WSJK8NpcSve+MK7zWGw691eIPPX1CL70EQBy9c9xePFwp7rxOzHK94gPOO3k1Ez2p4Q693IF2vHlLBDxaBmE86IUlvCz4wzyLnyq85pjXO7ZO/TrjiPw8EjX4PIR/9LtsJEi8OlU/vb1bgTxjMHS7KIbHO1VxV72+82G8Vg+2PNZnvrwXl4G8E4TnuyFJAr0znSg8c9xevb5bAT3Owtk7ADBBvKpjfryJLS68giaou0rVx7xOgwG9SZ+IvO1pnryxuXO8NSWWPM09qzyFbEI9k3rOO9a2rbv0cKQ7KlplvW6ZA7somfm80tK0u39lvDsGAYi72/8GvcxpDTxb8y69otqIvXMuDT2sUEy82OzsvMPEKDtceN27jvh2uiV27DyNJ5g9u9BUvK/lVby5Xli949frO9GDxTxVioc9P+pIvVRRCT3IWbK9Xkz7vM4RSbxBEJU8vB/EvO6MK72idag7dw9Hu59oDDxIsro8+YpcPd0ilDuxNEW9qXyuu7jA+bxlHcI92I2KvO+MqzxgPIi8P2/3PHNnC70HN8e736qBPGfxXzlV0/i8K/jDu+jUFL3Edbk8h94+vaFSmzwhq6O89UeBPMxQXT1uNCM9GLdPu3iUdb2AiMk8feANPWvV2Lt+Fk09Yl8VvemosjxIZgo93qqBPY0nmD122Yc8hJgkPSF/QT1hq8U8NQ8lPC8IHzwBHQ+86IWluy5XDjwAkuI8XsfMO8VMFj3uKoq8z8LZvPKcBj0LLnI9hJgkPTES/LwsrBM9snACvP0f5rvohSW9p28SPNT1wTuUK9+7mfwlPFSduTz5o4w8BgGIvO7uTD1etJq8BPGsvLNaEb1RK707/lujvFfARju4D+m8nUJAPbUYvjwxyQq90dK0vB8QBD2Mc8i8LczhvCRALTzqlQA8z2C4PA7vXb1Bq7S84WXvvCg32DyULh69mfylvC9BHbzhzY46V8BGOwqpQzzCUiy7tcwNPIT6xTwEQBy8htQWvaGofTxawZm8hkEtPDNOn7wFdU+9ncG3vIvnAT1hVAa9C0//OnEOO72oAb28zMFMPLqBRL3+DQg8zbS2PLABwLy/jl08Jw4avSOOGD1Xm0a97fREvFpbRzzxpy88PDXoOyyCdzw6TiI9z9oJvXCBI72pAb045ToTPJ+BuLxDARA8es6+vKyBvrxGjqe78Q0Cu63bbDuWh4e81LQ5PWRBnrwxjh69jyj2u8hBS71N6Ng8j1vfu4ZBrbzvuhe9XzQFvRAoPb1ZlIK8nYcKPc9BTj1tW9C84ueovL2aAb1otXu94fS+vPXtg715NJG9K46bvLdbcTyoBw+84Y5su4tBsDuwxxI99CexvMgOYjx3Dj67LQ4dvcAb9Tw9AQ09RfVrPPCB3LvKNDW7XajfvD0BDb2e6Hw6prQkvXC0DLt96O27HcJwPD1oUTxpTje7nAE3vT716Dy6gcQ8RGhUPACbn7yL2928cXQNvfqaHL3yAd67HoLxPOSnqToTdVU8zhoJPAUP/TsFroq81kFRvJN0nDweGy2858FYvBb1Vjzv7QA7R4GRvWZbzTwTqD479w53PHC0DDvh5yg8wXqDvCP1XD3O5588KsGEvGVoYzv7LYY8V9QBPUTOJjxSaNq7mLQePTzOoz0RThA9hgEuvYPo8Dp7KO26NUEJPVdoXbx0W9O8z3Q3vZ30oLvVp6M8IUJyvZVnhj1gwRw8atvOPFwUhLvb5yU9N8J8OTWoTb2pm+o8wzQyPTvbObwrWzK9lAE0PQ8ovTzwtMW56zREvM0bezt2tA+8wnSxO5XHBjwn27A8lWeGPVahmLtMjqo8RM6mPFwUhLuWW+I7+jRKvUioVj08NWi8fYGpPNE0OD0dwnA8JYECPHcOPr3ddL09DEJpvKrHD716zj49iw5HO9xB1Ly+9C+9vAHGPMX6BD0zgQg927qOPBw1WTuI9Je8ihSZPF1BG7zLZx69zhoJvQA1TbuQwTE96E7wvCUhgr1zm1I8gfQUvAPot7xDNWu9jc5Hu84b+zwCW6A8p3QlvBQ11rwS2yc8ixSZOzuo0LwvAnm8fg5Bu8z0tbwSQmw8hmjyvOfBWDyw9Cm96zoWvVQUgbylh429DG4OPWp1/LzgJyi9P8GNvGdUCb2ytCo9e1SSPKAO0DyGAS67abSJPPcO9zyoNKY8hs7EPFtUgz2MdBk9Dyi9PGFbSrzt9MS7zFv6PDIbNjzigda7atvOPCmbMT3GJxy9ZmjjOvy0y7xzaOk6GkJvPUkOqbor9d+6vyeZvE6BlL3XOg295HRAvTKCer1HTig9JqjHOk6BlLua22O8SmETvK0O1jqcx4m8aOhkvU8OrDw4Wzg9NA4gvOqnrDyLtBi8kweGPM7nn7yvAcC7JhswOnC0DLuLR4K7hLQVPK1HkTue6Pw8GwLwu860Nj2FDkQ8IEGAvJMOyryVwTQ9BgJnu4ZBrby2zlk9yXQ0vaHbZrtOTqs8Hu4VvA/10ztgwRw87o7yO4Bob7wyteO8wBv1u53BN71aVAO8ilQYvXyBqbr0J7G8Tw6svJqniD16NBE60WehvZs0ID1eARy80voKvhEbJ71VG0W9XzSFvJHodjw0deQ8BBuhvQjC57umG+m7NaGJvJdOTL0egnG90Kcgvc56CbvWpyO9a864vHcb1LwaqEE8+pocPfwntLswYYe8zbqIvEdOqDwjYQG9fbQSPbOBwbvzzYI8UNtCPUDoUjtwgSO9kwcGvXgOvrsOmyW7+QFhPEoBE7yB9BQ80pv8PNDbezvMjmM8gc5BvAROijyZQbY8BA4LPDtC/jx/QSq9UJtDvYmOxTzigdY7rUE/PLO0KrwGqDg8zhoJPObObjwnDho9HxstvaAOULyrTlU8HI6VPCTBATxKYZM7e8GovMyO473Dzl89odvmvGgbTjzyQV29H06WPDABBz1n9Xq7TrVvvCZBgz3dpyY8aBtOvAZ1Tzwg2627AM/6PFL1cbzmZyq8dw4+PIA0FL07QQw8ioEvPZJBszzctDw8hQ7Eu0b1a7sKT/88EYJrOzpOojxqdXw+XHV2PVwUBLyGBwA87icuPcl0NL2WKHk6h5tbPOYB2DyrjtS88XTGO4j0l7sVKEA8u3SuPG5UDLyaDs08PWENvGLo4TvkdEA9HhutvEHo0ryh2+Y7os5QOqHb5rs/jiS99CexPBeC7juJjkW73acmPJYnhzt6NJG8+40GPYlUGDwmDhq8mLSevIro8zyhNCO9yjS1O/PNgj3wgdw8hs5Evbvb8rzt+pY8ZihkPMuahzygQbm8AM6IuyUhgr3b56U7CfXQPEeBkb0Iwuc87xqYvDabtzwGAmc8pPQjvfhBYL2GaHK84w5uvEYhET28Dtw7+ye0vG0o5zwvoYY7epSRPK3b7DwzgYg7QCEOPPXtAz4VAu08rnQoPZlBNj1qDri7qZvqPAdouTwTqD69YoGdPHJoaT26tC08707zvLlOW7wEtU476LoUPTQOIDy4J5Y8bSjnvMSbdjywZxI9zFv6PIro8zxfAZw7962EvJcbY7ohNdy8bAEivVibxrxyaOk8i4GvvNfO6Ly/Jxm8N46hvAtOjbyHAa68PNu5vP6ntTuqW+s8pCcNvRSbqDzQpyC8/E55vIknAb2wAcA8LQ4dvL70r7vCDt88V9QBPdc0OzxP28K7S44qvUOhDz1szjg8TFtBPCAOFz0gQQA8KxuzvEOhjzs8AY07drQPvFtOMTudJ4o8mnSfOzThCL0Bj3u9pPQjPZsHiTxMW0G8U8GWPBmowTyGzkS9lTQdPZVnBr1gwRy9kI5IvN80vjmLR4I5oZvnuwEuCbyztCq8uPQsvRC11DzvTvM8Ck//O7DHkj1awZm70KcgPXsobb3mJ6u8sGeSu/v0yrw7QYy8zbS2PLqBRD0OAuo86E5wPOtnLTsqYQQ9MsL5OyF127tWdAG9HVusu+t0wzx7VJI8lAE0vWK1eLxXm8a6RfVrPCrC9rz0wV49rQ5WPCZCdTy6GoA9dU69vBxoQjxaVAO8hIEsPE8OLDw/9Wg7PZs6OSAOlz2fgbi8M06fPB8brT3zznS840HXvNNaCzwBjom8lltiPU0bQrzm+hM9rIE+vGLo4bsbmys8f6juPH4UE730LYM7+mezvLJO2DwoNd88ag44vEOhj7ujwTq7gShwvRfowL01qE08MShMvbOBQTxawRk901oLPZbBtLsBj3s8xJqEPJ3BN706gQs8gxtavFWBF73gwdW81tv+PPX0xzxZjrA6y2ceu9P0uLuftCE8jc7HvBqoQTw2mze9S44qPRYukrlfNAU95/RBvT5hjTyEgSw7ihtdPeD0PrwUNdY91RoMPfxO+bvrAVu8SA4pPIbUFj387QY9Wo4wPbV0q7xGGz88i0GwvCihAzyrJ5A8mkG2ur8nGbohddu8fE5AvbfOWbylTtK8hnQWvLjBQ7wvmzS9I2GBvcLb9Tu+W3Q8/LTLPHXBJb2xJ5O6sPSpOzx157wf6MO8kYGyvC3hBb3sZ608OChPPR9OFj3tWhc9+jRKvWU1ejzJdDQ8vlt0PD716LtYm0a8F+6Su4Fb2Ts7qNA8LLVgPMBOXj3SJ6I7v4cZOjR1ZD2EG9o8MVs1O52HCr0rG7M8hmhyOl1BGz03wvy7WvQCPZWbYTwh2628bAGiPDY15TzgWpE8wnQxvT2bOj3AG3W7lZthPDvhi73fZye7ncE3PXh0ED0om7E8noE4PQpPf7wNNdO8q8E9vDkhC70Hm6I7YrX4OvstBrxPqFm92AHSPMM0Mr0bbpS8c867vF3bSDtawZm8i0GwvGsOuLxrQSG8jHQZPaNbaLx6Aag8kg7Ku9P0OD3O55+8oXQivXyOv70HLow9+G2FvO6O8jx19A65sMcSPBeC7rxr1Ao97AHbPFx1djw2m7c7XmjgvPinMr0BLgk93joQPbeb8DyR6Pa8cBQNPLWnFD27QUW8MrXjPBwuFb2mgTs6CSg6vc4b+zy8QcU3OYJ9vQQOi7wmqMe82cHSu43ORz2XTsy8cdtRvPy0y7xezjK7LeEFvZqniDwZQu88dxQQPXwbVzy5tK283EHUvIQb2rwCWyC8+y2GvINUlTw7QQw9OSGLPdoaj7y0RxS9wtt1u9y0vLsdjhU8Bqi4vRhOkzyGaPK8x7QzPcGBx7sftVo8E9unvFfUgTtujrm8noE4vWZbTbx0W9M8z0FOPAsOjrz3gV+7tHQrPXWOvDwjYYE8Yw61O4tBsDxXaN08+/TKPCuOm7xEmz081eeiPBQC7bumDlO9bVtQvZRoeLyyTti6gGjvPHF1f72gB4w8v1oCPT+BDr3NG3s8pI7RO9A0uDrqQVq93EFUPOKB1ruzgUG8IEEAvfk0SjyVwbQ8Mk6fPXtUErzMJx+9M+hMvSgBhLzO55+8B86LPapb67zQDmU977TFO5IOSj0uqEo8WfQCuzdozjxlAR88RiERvaCo/TuLFBm97VoXvfHamDwJW6M8DgJqve3OcTu+x5i8Bai4u4tHgr2oAb08i7SYu9InIj2GdBY9S44qPQPoN73eAVU8oKh9PWFbyjvwrYG8FAJtvFDbwjzTW329mwcJvOi0wrvBegO9wXoDPef0wTxVFAG8y2eevNy0PL3Peom90JqKPLp0Lr1sNAs9HoJxvNSB0DtsNIs7k3ScvO3O8bucx4m80AHPvIiORb1xQaQ85EFXPchByzztzvE64boRPYYHAD3j2hI6JMJzvdPBT72LDse6xiecvC7bszxeNXe843oSu1ZBGL28NK87MSjMvMxberxX1IG7uhqAvJsHCT0fTpa8MJs0vPAaGL0wzp06K44bvPEOdLtcQZu6C04NPG7BIjyIW9w8GULvPCfbMLyQ54Q8ECg9vUG1aTxdqF+8h5vbvLdb8Ttg9fe80WehvO3OcTzt9EQ8kIeEO5EbYDxlaOO80c5lu1r0Ar0GqDi9PNs5Pch6Br2OZwM91eeivQFotju8Dtw8ik5GvKpb6zvEmgS9SQ6pvA1C6Tn9gWK92o5pPVS18rwz6My8C04NvWp1fLuONBo9cBSNPESbPTxGTqi9zRt7PZ6BOD2gDlC7Npu3uxtulLxTVIC9xcHJPH7b1zwGD/08PNu5PAyouzyiZww9AVsgvb8nmbpI4RE9ik7GvO3B27y4J5a8707zvBi1Vztujrm8P8ENPTvhCzyWjks9HfVZPdNaizyF29q8wOcZPTdoTjyTQTO9+TTKu/jamzvQAc+6HY6VuvzB4TwvNWK8UNvCvY/BsbpVtAC8AWg2Pe+0xbtGtWy9uqeXvCOOGL0FDgs9E9snvWEbSz3r2pU86E5wvIQb2rzKAUw7+ZqcvJto+7ppgaA8rg7WuzACeTsmtV27xoHKuwjP/bzhwdU6VRSBOzCbtLtN6Fg8jpvePPzBYTwWjpI7wtoDvZ2OTrvHG3g8dVQPvdk+I7uuKBc9r3/WOlqrRbsY5428L6FavNkHvLyD7Bc9mFiDu64TGDyFjvW8r4y/vFlHnTxZ3qE82aspvIODHD2wHnG9A3uivATKSzsvVjw8BVBcvLFybTyuBi89hDMrvIPTDT2w8Gc8mN6TPBjjgjwE7LO82V9Dva/X3TzZgSu9GBGMOzCD/TsujaO8hCI3PMNEkTrYSwy9BGquvNq/YD0E9Ek82EsMvdlsLDwvd9y8A4wWO4QAz7zaY069hZ/puwRIRrwFm3q9BZdvu1nirLxut5M9WsRPvNnuMb3cH368L9Q2vQTXNL1ZDKu92ulePITBUTxb6Xo8WGkFPQQaPbrDAYm8hvfwPDDT7rwwVXQ9mJeAvJjaiL0vnc872OIQPQWtNjwva7u8WdG4vFnvFT2Y3hO7MJh8va8SULpZ5rc820n8vAVyxLoFbfE6WTKevAU73bzZdEI8GPwMvVmSu7uuRay8BPRJve3lgLyvH7k72mNOPQSpKzyEqMe8MHvnum45mTsElCw9riyiOxgigDsuGIe8sAVnPITGJLyFIe+8BWXbOy5fGr2vXrY8hU94OxnOgz2Eacq5WvpuPYNmBz2v7Fw9LigzPYWKajuY2gi9Q9ObPK6uJ73DLxI9L1Y8PK8OxbzZaKE82RSlOVp0XrwDsom42eqmve6qDj2DKxU92yznvC+VubuDWR69hB4sPYSgsb2ugB49bt2GvNmrKbywh+y7BWXbu9m8HTyExqS72UIuOttJ/Dwvy9i7roAevbFM+jyY8xK9MDzquwNFA71ZvLk7mAgSPANiGD0FVa+7hffwuzC6ZDww6TU8W1J2PS7QK73Z2bK7rr+bvK5OirxZcRs8MDRUvQRZOjyuPRa8LvaePK/XXb2vEtC8A+CSPW0Hhb0EFrK7Lxe/vJjvh7yDwhm9MPXWu254FjtYWJE8WT+HPYUJLTzZA7G7hSV6vdsk0bzZ8jy7BFm6O9lsLL1Zn6Q8W/55u9mWKr2F+/u7gyeKu8NInLywtr27r75Tva5vqjzDQAY6MJBmPVuRc72uGy49sM5/vBgmi7nbLOc8L1a8PNl9oDwvx828BOwzPS+22TnZxDM8BC88N65WIL3ZBzw6WWkFvC/twDwDIxu9XIB/vZjJlL0vXlK9LokYPVmwGLwvLD47L53Pu8Mrh7ywtr28L4jQPARAsDzDGhM9WldJPQP5nDxaLUs8Bfzfu1pf3zxZFME7Lsygu64wLTyv7Fw9LsygvMPCi7ztuwK97dABOoXrTzzZaKE8mLCKvASxwbwFzla9g/CiPEN7FL3DAYm8267sPFoMKzyEvUa9A5AhvVog4rzZxDM9rytaPdrQVLuvqVQ8LwZLPS5OJr3a6V67LuWqvG6JCrxZU768mPMSvZgEBz0DnYq9r5ESPIUM8DyFer68gwGXvFmKJb3YuBI9RPmOPYOtGj0Fzta82YGrPMN/g7zZRjm9L7JOPIWKajtawES8sNtoPa/s3Dovy9i7A7ofvQWPWTzZlqo5hcVcPVtndbwDYpi92157vNr/JbyFGdk8r8MmPdq7Vb0u3RQ9MCfrOoN/Eb1DURY9BEAwu4OYG76ugJ65hk/4uwTwvryv/dA8Q9ObOcMvkjzazMk8BRl1vdoo3DyEAM+8hZfTvDAOYbyu2CU9W1dJPATKy7wYjwY7BQDrPK58kzvcH367MA7hO4XicbzYn4i8WnjpPFo+Pzza9sc7BY9ZPZhcDr0Fj1m93B9+vYXm/LzDXRs8L+m1uy9J0zwwK3Y8LvKTu9mnnjtbZ/U82UY5PS45J7sEBT68A5AhPQRdRbwEnMI8A/EGvbAJ8jzbBvQ8BeNVPG54lrwE06k8Wo3oOoTKL71b/vm8MOx4PAQFPr1ZcZu8hCpNPVneoTswrfs7sCL8u9mvNL1an6S9Wt3ZOwSxQb0DWoK7g1EIvTBR6TwFbfG7LpGuO7Bheb1ZvLk5r77TPFmfJDzDSJw8A50KvQR2Tz3ZHLu82szJO4NRiLsFJl69sA39OjBR6Tuvf9Y52ZIfvNmSH70ELzy8LzBJvAZcfbwFhns7265sPsOYjT3ZGLC87u0WvYQ3Nj0DRYO7rigXPVlcnDzuEwo8WnhpvDGU8bxZxRe9hm3VvG6zCD1D9YO8WVycO21wgLuuY4k8WVwcPYVkd7ut9gK6BBayPNrdvT0w7Hi8WUcdva5OCr1aY2o67dCBvNlkFr2YgoE6Lu4Iu+8XFTxu4RE9MML6OzAn67pDOIw8LyQovUOMCL0Yegc92Ry7PC/YQbwYjwY8GeMCvMSDDrxbr9A8LtkJPQSYNz2wnOu8MVn/PC7Qq7rblWI8hbRou6/XXTtuD5s82uFIvAOdCr0uDym9bkqNuxi5BDzZicE8L4RFPdpnWTuEYTQ9WnTeuy2rgDwueKQ82ZaqPASUrLuEqEc9w7GXPIOQhT2w01I9MAH4vK4oFz2Ecqg8g9sjvTDseDxtHAQ9haxSPAXjVbyE9C282hgwvC7yk7uFIe+72z3bPNnusTsu9p68r4NhPa49FjkwEuw8QxIZvFs5bDzDL5K7hN+uu6+lybxZvLm7LqYtvC/k4rwD+Ry9WR0fPZjeE7xaV8m8BaxuvAOIi7sD9ZE9r1XYuy8K1rwGKuk82lrwOy6RrjzZbCw8Wd6hPARqrryDapK7hCZCPVnqwjwtV4Q8hm1VPVjrCj2vVdg8A5Ahva5aqzyvc7U8BdLhPFlTPjwvQT29hKxSPbAe8buviDQ8miEcPC6NozxY1gu9r162vFrzoDuYRw892IoJPdqVYj0FrG68Wt1ZPC76KTwFwe28mJcAvLAjxDxZ3iG9WTq0PAX9pz2FYTS8L7ehO1gVCTyEAE85hOdEPIPPgjuErFI9buGRvIWbXjzame27WSnAvFiXDjzuVhI8WX28O6/XXTxZiiU9BOyzPFkpwDzapta82aspPa4bLj0EqSs9Bi70Oq+hvrwvLL48WrPbvNtz+ryuViA9WeIsvDABeL2wWWO9BZNkPIQit7zbG/M8A7ofPRi9D71bE3k92Zq1PC7IlTwtbAO97bsCPK6uJ7yEYTQ97sMYvdr/JbtuSo09WWg9vS6vC70F0uE8g5QQvVnirD2E1lC9WgtjPQVt8bwuLQa9hPi4uy4thjwFAGu9WhxXO0P5DrwEHki7BExRuoQiN70vVrw8rxZbPVr6br2wYXm7rzQ4u688Tr0DI5u8LrchPe3QgT0EJ6a82tTfvC5nML3ZUyK87r+NOdlXrbwuTqa7r6XJPFmoAjzaVmW92pltvQO6H73ZKSS8LiAdPFh+BLww/ey72V/DOkNiijyEzjo8BVDcO9h1CrwvVry8rTUAPC/L2LuEtbA8sJzrO69VWDxZ0Tg6hA24vAWo47wFbXE9hD/MPK8KOj1ZxRe9hHuGPW5KjbuEnKa8Wp5cvdqmVj2v/dC8BBayPNkHvLxYGRS9ro0HPIU6eTzZV606hB6sutqR17zbPds8A6UgPIRyKL1aLcu8gxqhO1oYzDoFrO68g2oSO1x89Lwwqji8WshavS58rzyvate82lrwPNnuMb2xGma8hUvtOxjSjjxut5M8BL6qO9nIPjvZTxc9mmAZPQVl27zaD1I8r4QpvNrAqLywzv87A9yHOxioED0GWPI6L29GPVrVQzwuD6k7BEQ7vC6aDD2v5MY7A7qfvLCc6zxZMp68r4w/PYS9Rr1aW9S6hY71uQRyxLkwqfC7rtAPvFneoTxuohQ9BEkOOwZ62rtY0oC7WUuoPNqiyzzuvw29BGIYvBjSDrzZkp+8265svAYqaTwwUek82t29vS9FSDvYMgK9W69Qu1kQtryuhKk6w3IavRmXnLsF0uE72xtzO4MWFr1YVIY92oBjPcPwFL2v4Du9ru0kPa5jCb1D05s9BKmrPINZnryFn+m8WdE4O9pKxLtaPj89rtglvNlkFj2wzv+8hTLju4Pbo7sDoZU8rpkovFuA/zsxQHU87lIHvS49sjyv/dA8r0k3PK9q17sF/Sc8mFgDPAXvdr2YsIo7Gc4DvYXz5byDRJ883AZ0PK84w7yuZ5S7MBZ3PAO6n7wwAXg8A8sTva7UmryFdeu52EuMOzBqc72FIe88hC8gvO3lAL0wEuy8g5QQPdrl0zyuBi+9w4MOvdjehTyvEtC8bgsQvQXj1b3ZeZU8BIfDvMOtjDtZkru8gyeKPFp03rwuA4g8Wg9uvAWGe7xbOWy8r6VJPdk+ozqDPAm9g8KZPLCUVT0v7cC82hPdu4Uh7zxZjrA8LrOWvNmvtDuEk8i6Q2IKvQTwPj0ukS69haN0O64Xo7yuWiu8Wj6/vIWO9TzaE129WuXvum54Fjswwvo7WltUPTDX+bsYuQS9WvMgO1i9gbxau3G7L7JOPFqBR7uusrI8mN6TPNqm1jqEqEe9sCL8uy8XP7zau9W8W2f1PDFZ/zyFMuO8BKkrPa9NwjwYaZM8LrOWvYW8frxDpRK8WkZVPUP1g73bx/Y8MJlEum4LEL0FN1I9A8uTOa9JN7zZJRm8L2u7O63MhDyvXra8hCI3PdnRHDwGaea8LtCrPK49FjtDH4K82eomvJiGDDxZwQy82k7POwPch7wD+Ry9GLkEPVmKJb3a9se7BF3FvC9z0TowumS8A1GkvNpOT72F8+W8WTo0vDA8aryDWR69Q+CEPa8BXD0Duh89hcnnvAP5HLzuLJQ8BKmrPIWGXzxbqv07WTq0OwXOVj2uFyM9BW1xum7dhjyYbYI8WRA2PBkqFr1D9QO9sPBnPK9uYr1ZISq8W+n6O8MaEz3aTs88hOdEPQQavTsvCla9MKXlO5ohnLyFjvU82e6xvITjOT2u8S882Z7AOhg7ijtaB9g82kVxvZgZBj2u7aQ8BfzfPAM4Gj2FOnm8bkqNOy8GS73u7Za8WUsovNl5Fb0D3Ae9L9xMvbCHbDwvgDq8sOhRvC8wSbyvAVy93B9+vK4CJL2wZky8hQxwvAOlID2DpQS9mUsaPS/UNr2v7Fy9WgwrvNrMSbwD+Zw8LpEuvYXv2rvaUto8MNNuvS+qOD1aNWG8hHKoPNr2xzvvhBu9sA39OwTKyzza/yW9L8tYvbAaZj0DUSQ9haP0u9lCLj3bc3o7sMZpvFp9PD0uC548BOyzPG7yhTwupq08A2+Bu1n3q7wFP+g7Lo0jPUM0Ab0ZABi92vZHvbABXLuuMC087tQMulm4rj3aGDC8gysVPRk/FT0vQT082XmVvcMWiDyGBFo82zR9vANmIzyD/Yu8w6mBugUEdr0F41U7Q88QvVpw07vaIMa8rkEhPMOpgTzuZ4a8hYJUvbBI77zZeZW6WaMvvC4gnTtaX988WsDEPDDTbr0uBxM9sAVnvC5wDr0Ebjm9hF0pPa/s3DwuMZE8LlsPvTAr9rsut6E6sGZMPDB7Z72uMC09r9wwPFm0Iz2urqc8GLkEPFnqQjtZo688sH9WPC4kqDvhXSI81d2sPFk/kb0OwiE6Oti1u0f/oLzrzNy768zcPZbunzuoXdO8IfSkveiaS73FGmu8U38WPNvMajtkCqQ8m7wHvQcQlLw8R/e7MfQWPa3Bdb2YILE3k1JJuECKw7sb6Qw917azu8h5kbvJIIe7ANjmPKZocjw0zZ28JIIOvShNqL1fPLy80V0wPU95+jxgx9c8XmYDvfuPHr35mr08yrmPvNEggDqPILi74yXuvGCYlDus3c+8WtiZvIpS0LvYtjO9/VdqvVMKMr1tCh08hpUjPbTdSLyDY5K9YKaBvPsJf70Sf068iXyXvV5YlrwO/9G73sFLPRiKZruRxy29DM3AvJrofDyhBNC7ZL8GPb8P07yCq+G8giOUPPpBMzym7hG83ZIIvIs29ru24BY8V/+SO+jzVbyX0sW5jUcxPUwKuTvY82M9T/+ZOvTM1bqxmny8J6YyPSPphTy/0qI82qsUvGrYi7z0Nhu9pKAmvSNjZjtvPC69xHN1vKAgqrzxXRS9c3ENOzu8WzylhMy8J1sVvWGrfbvM+Q087DYivVoVyjvREpO8FsKavFoVSrxOPEo8sceRvKcP6Dywmvw8qCCjPN2SiDxrf4G84MSZuwL3jrv0V3E8tiu0ubi2zzzrJee8EPQyPRp/xzzAXb67GdhRu6EE0LxxFTW8Jv+8PNfSDTvnTGC8xjmTvPBrAT1aUnq9Bv/YPHpuOL2rFYS8BbHtOwTNRz0wW448cqvvvE1mET0YimY9V/+SPOjzVTyvD2E9kSOGvUjHbD3e/nu9ivlFvEK81LwJm6+7hPwavAdpHjy/0qK870xZvHXSYT0Ainu7NuPUvKSgJr18oEk8zd2zuvnXbTvFR4A5mF3hPDtHdzyflQ68iOMOvcfSmz0P4/e8Ne7zvO7+7TzlkoG8Fv9KvVt/j7wwW468OTHAPCTNqz2Z1RM8tcFuvMRz9bxJ9AE8yF23vAwbLDwIMWo8vuCPPHFuvzxECkC9CLeJvG4r87sEdL07DbHmvGxHTbw3tBE8EE29OtrMaj0024q8Zv8EPNK5iLxODYc8jitXO2SgXryDNv07tu4DPTCK0byVK1A8y1KYPLQaebxMCrm8k1LJPByQAr3Lj8g7gDGBvePoPb1DoHq9HIKVvUTNjz3K6NI8DbHmvLcPWrw4bvC8SyaTvEfjxjxyUmU9X/+LPJ4rST28GnK9ditsPWJSczy5YBO8VVidvJYr0DljvDg9qdWFvCmpAL1eWJY9JXShvDXuc7xZMSQ92qsUPAC3EL2LUtA8ohWLvLVHjjxAx/M8sZr8uvBrAT3hXSK8R/+gvJvdXbxY4zi8isoCPecPsLwUzbm8zmjPPFXuVz3CQeS8REdwPLSgmLz4tpe6rYRFPMpB3TuOo4m7nivJvFBu2zzDBwI96ug2vYI2/bwqFXQ8KbzpPN8PtzwmWMc8RArAvCJCkDwMCvG8BHS9PItSUD376Ci9KfSduVjHXj1S2CA9FbFfPREx4zz8RAE9AlCZvPldjbxe0va8O7xbvX55UDxIijw8A+khPOudmTs0Ck69ysx4PXv5UzzWwVK95ESWPCdpAj3vHRa+gjb9vLgglTsUzbk6/HPEPHYr7DxB9Ag8xsFgveVX/7zSq5u8DRusvGWxGb2v0jC94LasPNB5Cj1soFe8ABCbvLHHETzZXSk9/Rq6vFExq7wf4+m8wLZIPXQYA73kc1m9qF3TPC2xyjyYIDE9oLbkvFMKsrxNZpG94sxjPBWx3zsR2Ng8isqCPLBdTD33pdw7W6BlvK2ExTxVWB09eCBNPSZYRz3vxIu8Te7eO02xLr06FWa8UtigPC60GD17cYa92X7/vAyQkDxHtAO9gQRsO4QKCDweWE69r5WAvJTd5DucNmg9OIrKPCV0obxOlVS9d3nXvNFdsDzz6K+8JM2rO0xHab1LJhM97v7tO15YFj2L+UW9TGPDOzzNFj3A8/i80ehLPM6l/zzFR4A8Q6B6vMmaZ73gXSK9hzyZvTs0jrsmWMc8p5UHPYrKAj0DnoS8OpuFvAw3Bjt+PKA5VLEnPe6lYz77jx4930xnPPldjbwkgo49IamHvbjzfzyy6Ge8DJCQvL3BZ7w2lem8++govRExYztQijU8M4IAPaJulT07f6u7JjxtvEwKOT3Tc+e87g+pPOGa0rxiFUM9sLZWO4puKr0zY9g7sZp8PR0pC70wTSE8iryVvFrmhrsvPGa8ZtLvuxhNtrxLfx08fYRvPeudGTxHphY8IyY2PQD0QL0S94C8RbE1vELYLj3MGuS8BcKoOtoEH7wZqQ68R+NGvWzuQjwAinu7P+NNPP0aOjzvpeM7dzynPJggMT26YJO8CE3EvPw2lLwfTS+8m7wHPJpuHD0MkBA8HuNpPLC2VrzOpX+7+vaVulO8RjzlkoG9Te7eO4HHuzzDj088CveHPbkEu7uvlQA9jw99PFzu0DwItwk91HNnPSExVbwePHQ6J2kCPPdoLL2D+cy8+8xOPObBRD3oawi84ZrSu40rVz0hqYc8fjwgulkxpLxo46q80SCAPH48oDsMzcC8T6YPuu8rgzxomA07wqupvMOPzzx+K2W96iVnPK1oa7xpbka8fKBJPUExObzfTOe66gSRu9bB0rzcc+A8OIrKvP3dCT1T+XY8nzwEPVrmBrx83fk7cQR6PF1HWz1koN68tuAWPYzd67xr+WE8nEcjPO0ayDzcNjA9hYRovUoVWD13eVe8vUeHui+0mDzLzHi61sFSvLSuBb3Owdk8sJr8PCIV+zuBxzs9wujZO7cPWjwuWMA8xUeAvRBNPTyoLhC93HPgvKHHn7sQTT08tu4DvNfzY7wwTSG9a7yxut3ByztUoOw7CLcJPUExuby6bgA9uceKu/oEA72vXcy8yLZBvdbB0rxkK3o8fpUqOyzueropqYA8pcF8uzemJD0gil89vRryO05YJD21Gnm9jYThOweKdLu6boC9KkKJvBwKY7wsCtU8kcetvK0rOzw97mw6TbEuu4ygO7lkGJE8AIr7PB08dLzzj6U8jtJMPTMmqLxUR+K8r5WAPaVHnLzrJWe6xaCKPfYdDzpTfxa9eCBNPXbS4bxS2CA9xiumvPyw9LuPeUK8CdhfvTrYNbtzyhc9yRIaOuBrD71hbs286quGvIJusTv8sHQ7kSOGPRWxXz2TFZm8+MSEuz2xvLydK0m5g7wcvVzuUD0G4/48em64vB0bHr2U3eQ81ZKPu/mavTzvtp48YTEdvXc8pz07vFs9bKBXvJygLb06jRi8YtgSu8EEtLw9dAw9/6XVvNuPujz7nQs9fYTvu0kxMj0p9B09iRUgPPAw/zy5q7C8N6akOgWxbT29wWc8nw/vO3P5Wr1pbsa8B01EPKKrRbtZbtS7tmhkPOiaSzzaQc+8R8dsvDamJDybUsI80HmKPGQYkbzgXaK9F+PwuwFehjxl7sm5SDGyOgbQFbzrJee8KfQdPI88Ej3g81y8T+O/vAgQlLuYILE8MIrRvN+l8byj3da8h7Z5vBJCnjztV/g8zjmMvPQawbtMY0O9MIrRPNoEH7xDf6Q8L+Nbvetz0rybUkI8SyYTPVq8PzyNCgG9Tg0HPRtjbbvU+Ya8uaswvAwbrDsdKQu8CyZLPUlu4ryJFaC87euEuvRECLyHeck7g7ycvMKrqbzRXbC80PNqOt/SBj3l3Z67uaswPOdoOr00zR28xISwvDlucD0/PNi7AE3LObh5H721Rw49tw/avH5KDTwldKE8Vg2Au3Djo7wv41u8ouh1PRWx37skzSs8cQR6O17Sdr2ABOy82486vaXBfDycoC29ccfJvBbCGjvWaEg9AvcOO3luOLwckAK9MzSVPXcgTTyKbio84QQYvV48vD2k+TC7yLZBPXoVrjyyqze9DArxOzI0lTrRmuA6ZUdUPdLoy7tQirW8IAISvfpBszyF7q07jw99PJtSQrxRMas83mjBu4JSV70VWFW8KfQdvRiKZr04isq8/d0JO9Ua3TzItkG9zjmMPbh5H7wWwpq8GdhRPT0bgj2abhy8y1IYvTBbjj0fil88dpUxu/BrAb01/y48izZ2O+7Bvb0H43696UHBPB0bHj2D+Uy9QTG5PPpBMz0Cf9w7JSkEPBC3Arz9Grq8qHmtvDoVZjrOaM+9LXQauqz5KbygtuQ8iYoEvel+cTznpeq8fitlO57umLwEdL06sccRvE4NB7xHtAM9cnENvC/j27koitg8gm6xu6T5sLyPeUI9v9IiPBvpDL0P43e6yHkRPNi2M70uGxA8lYRaOozd6zs824O7eW64u495Qrzomss8+vYVvWIVQztwIFQ9mCAxPS7ChTzWaEi8D2kXvY/STDw8Ckc8PQ0VPcBdPrzH0pu8p4eavN3+ezyCFae4kOOHu6uPZDuCbrG84kHIO+aElLwwTaE8pmjyPOKPs7zg81w8CdhfPMtgBbyxBEK9CkKlvC10GjyWK1C9wF0+vGk/A737nQu9M7ziO6VVibz4mj295sFEPHc8J7w7fyu9zmhPvbMHkDyTj/m7r5WAPJ4rST1Hx2w8YIqnugbQFT1bGJg6zHPuOokVIDwNKRm8H00vvXPKlzyf0j69ZlgPPdXdLL2LNvY7++iovJugrbvhmtK7vjkavfIEijwATUu8Q7xUvX7utDyMY4u7HlhOvAbjfjzaQc87vuAPPKJuFbxQTYU7Y38IvcB5mDvTJfw8tKCYPViKLjxn8Rc9EZsoPOdoOj3fTGe8UhVRvO+2nrwR2Ng79oSGvB7Ck7uzUq28sm6HPIP5zLxqcZS9mOOAvTtH97xj+Wi8FXSvui7CBb20oBg7O7zbvMNgjDyf0j492gQfPBHY2L1iUvO8648sPSTNKz3WOYW7ahU8vUMmmjygICq9jw99vdC2ujszJii9xiumvH9KDb09DRU9oCAqvTCKUTyFCgg9eW44vJl8CbwrJi+95d2ePF2xILt3ShQ9kXwQvXRjoDzIeRG7Odi1vAmbr7zj6L08EyZEPYBd9jolKYQ6sqs3vFpS+ruMoDs74+i9vKcPaDyuaGu7XCYFvQ2xZj1yFTU9lg92PFMmjLxUsSc8atgLPe1XeDwFGzO8OTFAPTRH/jz3DyI87euEPN+l8TwYEIa7mXyJOUr5/TwKUBI8l7ZrPDX/rjyGlSM8xWhWu6AuF71m0m+7LlhAPHP5Wj3V3Sy810zuOtPM8bxxFbW89FdxPEb/IL0TY3Q9TlgkPMtSGDyKq1q9QW7pu0//mbqcRyO8VWYKvSEV+7yN/BO9IZsavdoEnzvZmtm7I9sYvaHHH7zd3aU8GE02vUQKwDzLUpg8Rg0OPU4NBz2/D9O8HJCCvMkSmjyPPJK8uauwvLkEuzyabhw8DXS2O6Q24byxQXK8Uwqyu5buHzwLJsu8fu60PK1VgrwQTT09mXyJPKHHH7xpbkY9HSkLPOKPMzzNkha7zkExvMN5iDtnyTa8iOGrvFlO87scSR+9nuccveHBeT39Agq8Wnvlu1e1N71IKA+9KvMwvamul7z7MCo9tXUSvUf7HL0LNaC9GZVWvNfLMDy1GoC9u8IWPbezO73GQOQ83OvCPBxJnzzTYUM87uJYPBg78jyvsu67HP/DvMMD6bxFdEa9JRL2vAsHgDzJmZo8NiZ1PMvXQzvgC9W8An4uPaVyyrzEMFs8HXYRPW7MXzv5mJy80K16O3I2zTvyH9S7wk1EvafMLjwTv587Odo9uw5ymzx+Kjq8fikMvX4qujsZ3gO95XQUvFc+ar0Gcc68St2FPKncNz1FKuu7t4Ubuz5EK73Fij898h/UvAsHAD0GFY683yg+O4XRIjzkdcI8HlkoPESQAbzZ2zm9EYKkvBGvlrtWEfi7U+8Jvd6fCz04Nn48k3u0u9muR7y20CS9wsSRvBkMJD04yjQ7dfz6PEyk4TxoQAS9z8rjvD4WC7yQPQu8J+MnvcC0iDs0jTk7ivE0vV/127xTwhe8zXB/vHAJ27v1EnS8NBZsPVb/kru9tuQ8fqGHvCogI7zxlqG7rvzJPIMA8bz58y498mgBvJJOQjy9LbI8NAQHvZnHijz6qdO8m9eTPDdBAj0r8gK7zkExPfJoAT0FYJc94MH5NorDlLmkj7O7n/hTPV0vrj2OEce7ZRXuuzNgxzwYaGQ9+zCqvbdpYDxM7Y48oX+qO7LvabtXa1w9/hNBPfFpL70eowO8T1iqPZ/40zwMRSm8+ZicPWiblr0Gcc67t7O7vF4SRbyMeIu9qdy3PKj5ILtvyoO8+XzhuwJ+Lr3APTs99HiKPK4pvLm7HSm8CTf8O+FUgjvC1na9mJqYPGvYEb3pDCI9zedMvMnGDLxAJpQ9An4uvWaLDb0niBU9rBmzO+ixD7u+LAS9+SAhPJa4Lz24so09OzQiPIseJz2FWlW8r1auvKvsQLznhUu8Cds7vPaIEz3N50w9Ji2Dulp75Ttyv388sLASPC/2Wbv8udy8g0rMPJe3AT2ajuY8h5dQvUGBpjxX4qk7fOwQPZMEZ7u44C28SZRYOxxJHz14Zui8jhFHPCJ5OrtiT0C9Or3UvMC0iLvIx7o8nDKmPK1GJb2RTkK9qGXqvPlPb73g3mI8R6CKvABABb2/aq08ux2pvNf4IjuhCN27miKdPBkMJD3R2uw8ACTKvFAOTzwtAgw8cmM/PGUDibzdchm9tHZAO/NLGD2Zft28vNNNPfYtgTwKCC684jeZPDg2fjzBPA29zAOIPIKUJ71LwJw8QFQ0vORIUDwr1sc5LIzsvCR4DL2L8Ia6kD0LvaoJKj1AJpS8BURcvfDFbz2e55w9Hv4VPX8pDDs7NKK7PHP5uyIfVrznaGI79KYqPReFzTwPnw08IwLtPPQvXb3iZTk8VAHvPAD3VzyjYsE8bRY7uhyI9ryQayu8R7HBu1Mu4bxN/sU8gcP1u7McXDwIyoQ91URauwOroDweLLY8/LlcPez/wTpnJXc6H1movJh+Xb2+mXu7NuedO3rch7vT6vU82a5HvZBrKz1JZ2Y8haSwvZIE5zznhUs7JdMevgEjnLwLvtI6UWizvHIZZDxuFY08QMsBO7LdBL2VAgu9YSJOvQidkr02cFC9bRa7vPSmqjxSHlg8mWF0u8sENrtCN0s9jlsiPNx0dbyvVq68IDw/vX9XrLvHI3u89RL0vLR2QLwLB4A8zHD/PDpjcLwArXy8pXLKvUeET7wBUTw7QsB9OhzujLxyY788xYo/vJ3LYbzDejY8CgiuPFrEEjxy7HG7fio6vU2HeDwntYe97O6KPEDLAT3TYcM8NnBQvTIzVb19RyM9U++Ju+t4azwx2fA7EmU7veahhruHKwc9mavPPUo4GD1r2JG8Owcwvaj5ILyVFHA8m7tYvBZY27tT1Py8qVOFPUORLzvBlx+7GN8xvbP/8jtgPgk85P50vRzSUTz1P2Y8An4uvBR1RL0ddhG9Ps1dO4xdfr3M1pW8DnIbPdBAg7vjvx09mavPPBEL1zwD6ne6gh1au/A8vTuTBGc+8wJrPURjDzyxwnc8hdEivRGCJLyz//I8YjLXPLxKGz3nO/C8NborvdKrnrwgsww9qpLcvGNOkrxAJpQ9dL0jvfqp0zqsdXM9mX7dvFWkgD10jwO87Sw0PQCt/DzpDKI6hC3jPF0vLjwRgiS8WLQJO0o4mLq5llK7qK/FvL4sBDy9/xG8UMRzPMLEkT2yk6m8cr//O7xKmz2PEcc8jF1+vNraC7tL7jw86u+4ugoHgD15k9o8Gkt7vKxGpbyhCN08U8KXvMSnKDxdL668hO4LuTZw0Ds/no88qtuJvE606rwilqO7tQ98vPVcTzvVjYe7mwU0POIbXrxa8rK7c9oMvW/KA7wfD009LRNDPB7+FT1HoAo9OPemPIwBPj2vVi69B55APcUBjTyzwJu85ykLPQMFhT2YyLi8+SAhvFMu4bxT7wm8DnIbvXhUgzwNjwQ8s2WJvCsDujxWiEU9VywFPRhoZD1sM6Q87uLYPKivxbwTki276sLGvIE6Q71sBYQ8E2SNvOTsD72mnzw9EtwIvRkMpLyrdXO8fUejO/VcTz0AQAU9bDMkvZyMiru6eWm9r1YuPQqRYDtEdEY6SQumPOUZgjwBUby6bRWNu5nHCrsDfYA8qDj4u5Mx2TzzAuu8KvOwvC9ANb0iH9Y8KU/xPBWiNr3U6Bk9rBmzPHtkjLweLLY84tyGvMohn7yMAb68mthBPXmT2jw+cR09hyuHPQidErvMAwi6nXF9Pfe1Bb1hmZs7Gd4DPHRiEbykYZM7joiUvHndNb2y72m7cjbNO70AwLuNAJC8mtcTO3RG1jxrj2Q7/snlvP6KDr2g22q84IIivRJlO70fKwi8SCiPOhHubbzEE/I8p8sAPSE7ET2p3Dc7HEkfPQyhabsl0548Kca+vP9tpbzx1Xi7DftNvNBAAzyk+/y7U+8JPXrATL2UXks8zhORPKoJKj0unPW6xKeoPL/GbbsB2u68Ca5JuqncNz1vcB+935+LvJjIOD1gERe9OzQiPVk8jj3NcP+7jxFHumwzJD1+/Ue9JRJ2PYxd/rtftgQ9AFE8PKzrEjw+cR09qPkgPFKVpTwRrxa8UcTzvP6KDr0j8Ac9vxBJus5BMT09jgY9BUTcO0lVAb3wDp28xuSjvHvtPr3+nHO7fimMPC9tpzr8MKq77lmmPEixwbwomcy7CgiuvE11Ezup3Lc8I/CHPNI0Ub2ClCe9+D2KPG5DLbyFdhC7kGurPOKSKzvKqtE7ymD2POT+dDz71sU8VHi8u7HC9zu/ai280n6su4un2Twl0x49O3P5ue12jzxZTnO9Uy7hPMGXH7xhBWU8gjkVPI0AkLqzSc67YSJOvet467sJJZc8p8wuPeAnkLyBw/U81OgZvRZY27tSOhM9jAG+PMohH7znhUu9nxQPvWARlzzWFQw95XQUvIeXULyZft28MG2nvLmW0ruYmpi83OtCPMtOEb04yjQ9Cq0bPfNLmDzMutq8oVK4vDVD3rrs7gq8rKLlOwS7qbz+yeW8FHXEPD0XuTwbeG26mWH0vEsbr7svQDW9K/ICvejfL7wNjwQ8DKFpOlZr3Dx2oDo94twGveXPJr1cuOC8GLI/vHRG1rwgPD+9EmW7vHX8ejsIgde7LTAsOtRglTyB8Oe8HNLRujD2Wb0GyzK8XAI8OmecRD1yNs28qdw3PSzVmbwcSR+8FSvpuu6Y/bwNGDe8PRc5vTmtSz3Jfd+8FnSWu4I5Fb2u/Mm7cjbNvIaHx7xf9du8nRW9vJ3oyryK8TS8s0nOPRzSUbv5ICE8GN+xvL/GbT0CqyC88LMKvRLu7byLHic9Z0CEuwpSCbtSZ4W7XS8uvT3pGDx4sMM7/22lu6Yobz23PO67a7zWvMnGDL37MCo8A30AOw77TbuogtO7vxBJPW9TNrovbac6AFE8vGLYcrxYtIm8dheIuyQvXzxrBjK8IwJtvcNMljxhxg29D58NOyA8vzybjmY8AECFPBjfMb0Ocps8hVpVPJl+3bzzebi7bkOtuw5ym7yzSU69TqKFvQCbl7uvKTw8jAG+vH2z7Lzt/8E8miIduwEHYbsn46c87XaPPN3OWbztLLS8UPHlvd0Xhzg+J0K8gWe1PD4WC73Vu6e7358LvPswKjytRiW9Ds5bO8eaSDxaxBI8b52RuwidkruhUri8v8btPOho4rslEna9ji0CPYt4CzyEd768WLQJu9kllbsciPa6Mdnwu6S8JT2STkK6YthyPFiYzrut65K97Sw0PBvvOr1omxa89T9mPXpkjLvM1hU9jS0CvKjLgLvmsr28a+lIPE9YqjxwJsQ8qIJTvdZxTLyrdfM83rFwvFvxhL1DNp074a8UOologjucjAq8i6dZPT4nQjzcj4I8YZmbvGOpJD29iXK9C+tEvIMA8byUXss8+D2KvW7omjyHat686ZXUvKdV4bsZsZG8g8GZvSWJwzzdchm8W9VJOn79R73i7us7VdIgPQiB1zuxsBI9zNaVvEDd5jwwI8y7spOpuzxz+Tw+RCs8KT2MuhLciL1fm/c8tSxlvELA/TykjzO9SQsmPbLAGzx9GQM9pyYTvAXoG70l0568SJRYvXCvdr2GPew8mk8PvfWJQbsP3mS8SbATvf6cc7zdchk9KBAavcjHurwtE0M8rM9XPL7/ET3Rfqw8CgguPc1wfz2M1Es9pAYBva0YhbzcdPW8OPcmvEMa4js8F7m6G8EavYezC73Aai27dEZWvbBVAL1CN8u7LeZQu1a1NzykvCW9LxKVvGdAhDsByAk9s0lOPS0wrDxr2JG9emSMuylP8Tz6qVM8IkzIPDJ9ML1Ld288q79OvRpLe7Z+4N48rJAAPbLdBLunng6811RjPD5Eq7wzqiI997UFPOlLeTwwP4c8xF1NvcN6tj21D3y8qr9OPJt8gbxrvNY8TdFTvbyJ8rxWa9w7g2YHvPUAj7wRVAS9mnwBvLkNoDgnIn+8g0pMPOxJnbxJwUo9WU5zvDCambyxsBI93vvLPDs0IjwiH1a9DHT3PJA9izxFV906xBPyvGpQDT36xY47E5ItPFFoMz2Kemc8XokSPZUU8DxXa1w9Maz+vGVvUrxBwH081OgZPIgOHrzqS/m7cYCoPKPZjjwZDKQ8xrcxvaF/KjvqZgY7h5dQPD0XOT2NAJC9p8wuPWbmnzxeyOm8vNPNvHdW37wAJEq9EcH7vO5ZJrnrwZi8reuSvEkLpru1LOU7RGOPOyCzDL3WcUy92pHePBRI0r0l0548yD6IvKyiZTz7MCo9FnSWPAoIrjyhNU88+iAhuXvtvry2PG494mU5PJjHCjwDqyC9x23WvDiAWb1aaYA8I9X6u8QTcjrpDCK9TEghu45bIj3HtgO8QCaUvHyjYz0IyoQ7CmRuO8taJTyuNsY6Sf+BveNvMzlAKpm7YsJFvYLAn7xLGrU94V2RPEn/AbvWwE+9jAIGvcHyOb39cF68VHmPPM4FCr28I5G80Y06vQ3UNzwQrjK7LRxbvb3j6DyNgSW87Ptiu3p8eDzSZ7W7oBrlPI+TxzyyqYM9Hi6AvLwsortwrxC9E6xxvelhkLxniN071JwLPej9Izz2hoK8QZcWvcTMND2Cd+a8urYTPbh4rDyD5GM85e7SuxzBgjupOAe9eg/7u6hwLr1xuCG9Z3Y7PA4vkzkFxyc9dKQ+vDjdYL2kYd07gJ1rvaaWMzvTHny9xyVPvDu3WzttTvU8kkc9PAbZSbvWwM+85zXLPPDvAL2W6RA9m6YXvXwMqrsd3DW7CJiRPGzyCb0yqsu6kzUbvQy5BDxEjMS83yi7uYi7DbxiVUg9b0KTPCTOEjtd/K27H5P8vM+zv7opMD48i/FzvGT3Gz2MC5c84gI2vTpK3rpKrTe7ijqtO3IcDr1/MO67EPh7O+YamL2nTXq7XEZ3O3URPDyb+fG8dWMGvbjTBz1gjW+7DLmEPL79C730rAc8MCusvGc1gzyVfJO8GvCYPBkowDxFjMQ7EWX5OwLKeLjcTsA8VqbkvAFdeztqB/08rvWNPM1GQjy0ads8J2hlPZo5GjwfpI480me1PEoIEz2Nucw8WaOTu1q1tbyioYW6vNFGPU6rdr0IBQ89VgHAuyXOErxE3g47bU71PBY8Iz39sIa8iJjZPBqVvT3BRIQ8j5NHPGm9Mz2bOZq9m1RNPRbhR70oFQu9RyWHvViaAj3mI6m8slc5u8paJb3eYOK828YPPZMGhTs8f7S82PUlPL4GHbrhp1q82zONPOUA9Tm5nHC8aJr/PNlQAb0swf+7ciWfPRY8I7388T69PxB2PZZ8E7yh0Bu9Vy0FvcZL1DwqnTs9aZp/PTNggjljgQ09OHBjvGH67DsMuYS8GXqKvLsagDx1tuA8xMw0PSAjrrzbz6A8IkfyPDZMHzxXbj29ar2zvLr3yzyGGbo8a8/VPJ72IL0A8P07AEvZPKdNej0Whmy8I2EVvQhGRzwhfok7t2YKvdXm1DxRnxQ7K2UUvcq+kbtvcSk6kdo/vNWuLbo/IYi9o6EFvVmjE72Sf+S8iGCyPCaO6jpcNNW7jtwAPUMNpTsi6wa963zDvBBT1zzCsQE9UxWjOaxu7bxzSeM8gLcOPL+94zoL+ry7iJhZvUnl3jxTeQ88Acr4vM5YZD3HE608tZ4xu62RoTye0+w8wpdevVjbujy9kA690p/cupEsiruRyB08G1SFPPwD4bxrdPq8XNl5PPbQS7vJ/0k9jbnMvDGYKb0zqks9IjVQPTbxQzwkD8s7MvwVvM1GQrzjbzO8qSf1ugl7nTyQWyA8R8EaO6Vzfz0DURm9seq7PNctzTyAt448UxWjOyhWQzwdJn+86Q9GvKzJyDwkaqY6ic0vPbxkyTlHZr+7n2OePe0Vhjw4igY99PbQPLF9vjw8fzQ8o6qWPPlyn7wzciS9288gu9MMWjw7bZK7SeVePEDYTr3AvWM9rZGhOzmTl71tXwc9fnAWPFIMEr7ltqu8J7GePH0DGbwswf88PCTZPJBSj7xBl5a9JdcjvYqViL3F8Hi9cJVtvZM1m7w+o/g8JMWBPBfhx7yPpem8LAo5PanLCTshyNK8jBSoPIkXeb361os8U4KgO3rFsbyQEue86yHoPDZMHz1lrmI7vT5EvVFNyr0bOuK8kRJnO+FdETwMZzq7MuLyPAQR8bsjtG+8BccnPbLqO7v1GYU8MSusu3+LybywEEG5f/jGvRfz6brT1LI8AKY0PTB1db294+i8G1SFPLtSJztdVwm86aJIu3a2YL3vMDk6288gPasB8D1719M6Hdw1PMWUDb2a+XG80CA9PM97GL2ih+K8JdejvNb49jyocC664Uz/O4hgMr0hfok8APB9PJEsCr2e9qA88z+KPJI1mztCDSW9VCdFvdRBsLxfxIa9gFMivX1nBT082g+8PewxOfg9yTzCuhI9mp2GPEZUnTpyJR87D1NXPv9KWT3ookg85JN3vPZ18LvJ/8m87EScPH4ezDxs4fc86P0jvW/wyDvQ34S8ZmQZPfZjzrxJQDq82VmSPTF19bwfW1W8e+l1PZwcprz3jxM9i6cqvE4YdD3feoU8e58svVFNSjzuggM9ylEUvY2Bpbvw5/+6nGbvu/25F71uFk68QDOqvBbz6TxhnoE9R2a/u7HqOzzMfmk9xDmyOwfZybx1/5m6ylolPciAqryIF/k87NcePLmccLy3C6+8Fc+lPJdF/DwwCPg8uUmWvHyfrDkdb7g83mDiOykVi7y2+Qy90TLfvO1EnDpg+mw79IlTPDKGh7s3uZw8x3cZvZwTlbzhp1q8HcoTPfCdtrwtHFs9roiQPfSJ0zvAhTw94rn8vPxePD2qgtA8puB8PF8xhD3ODps9HG84vAehIruSmQe8lnMCveGnWjwljmq7GbtCPZ4uSLy1e308RB/HPIORCT0bVIU8y35pPHt8+DyFa4S8BjQlucJft7wsCjm99bWYPIPk47zoosi8UDsoPVIDgb2q70071JwLu7u/JLuke4A9odAbPaaWM712I168OZMXvb2QDj0u5LO6wBi/PAxnujqIu428428zPF8gcrtUOee60gzaPOw7i7wzaZM8rSQkvHfrtrzusRm9J7GePGzh9zyUDxa9XmkrPabxjjwalb28ffqHulw0VTrarGy8mXpSu602xjxQOyg9hivcPJxmbz0+/tM8JSHtvK9rHD1kQWW8ylolPQM39rxWwAe9u7+kPKhwrrz+OLe8jW+DvPFlj7yu2+q8WlpaPHVjBjzF8Hg9vHbrOj8Qdrxv3ia9mjkavMt+6bxRqCW9E1CGOzTWkDsdFN28ZfcbPCexHrxdoVI8bDxTPH8wbjwcwYI8HTeRPEGgJ70mRCG7Azf2vKoB8LziFNg8WUi4vLh4rDwCgC+9RZ5mOelqoTx4/Vg8sqmDvAETsjwQwFQ8OIqGvOsh6DtPGHQ8uUCFvXOJi7xOGHQ9OqW5OcC9Yz30rIc9pGFdvJBtQrxYgF89ahgPvWmrET04HQm89ayHPHSJC723Cy87bPsaPd96hTx3kFs8zaEdOexWvrwjD0u9juURPbrlKTwDSAg9FWIoPSf7Z7wzvO28/bmXvBaG7LweSTO9cbghPVcthTxtBKy8EAmOvPiqxjx/3RO8ju4iul7NF70VGe+88Z02PfaGgjxWE2K96+nAvGGnEjz+JhW7E1AGvMCFPD3vMLm7rSSkPPyW4zzTHnw8rMnIPINR4bttXwe8P8YsPOd+hLzCTZU8UDsoPVUBwLzUQTC7BtlJvUJX7jz2Ipa65lvQuyzSkTzgOt08wL1jPV2z9Lz/Slm8rtvqPFAylzwZeoo8J7EevTKGB73oosi834OWPQETMj07t9u8nK+ovDqlubzdPB48qqWEPG7MBL2i0Bs7EPj7vJM1m7zhp9q7BFoqu4s6rTxqGA+9UrpHPA7m2Ty+Bp08d0YSvKYpNr1wOQI8TU+LvONvM7xdYBq9vZmfvCXXIzwBJVQ94Ux/OwZsTL1V75289QjzvCEjLr2mqNW8wOAXPcq+kTylc/87+KrGPNqs7LzZmkq9gJ1rvEyHsjyfY568AoAvve7VXb15IA08Sxo1O9JnNbzI2wU9ukAFukX5wbzwQlu92OwUPP0dhLwmjuo8Jo7qvB0mfz1BRUy9+D3JuhaGbLxVAcC8jYElu8QWfr3kk/c8Nx0Jvbh4LLu+PkQ8YmdqvLJXubxH0zy9it9RvAqNPzwxj5i8ReefPH/mpD3KpG47Lpt6vFjbOryREmc9ylqlPOMm+rzpaiG9IYeaPW/eprxRAwE9QUVMPCrvBb1F5588Xg7QO8ZL1LwMuQQ9gGXEO0lAujt7fPi81mX0PBBT17w97LE74Uz/vILAnzx2I946tYwPvJBbIDvLKw+9huESu0ziDb3Bl966OHDjOxItUr0QwFQ86KLIvPN3Mbxomv87wIU8PWbRFrsIRke9AJQSPJr58btaBwC7OxK3vCyv3bxbx1c6pGHdvOxWPr2nqNU755AmPXT/Gb3p64G7IpCrPGLU57wQwNQ7zUZCPLGP4DyfYx68uxqAvOkPxr3+OLe87x6XvIc9fjxCV+68uIrOvOPcsDyUD5a87Fa+vAsyZDwdgVo86yFovLSylDx4sw88roiQOiuv3TsH6+u7czdBvYCd67mfCMO7QNhOvHVjhjYhfgk9JLRvu9ctzbzIgKo8PkcNPJ9jHj0yT3C84yZ6vctaJTwVzyW9tUNWPEGOhT0YYGe7aauRPKaoVbzr6cC8DGc6vPtDiTwE7aw6Zna7u1CFcb3W+Ha71vh2PSNYhLyOk0e9vj5EPFoHgLz1CHM87UQcvKHQGz0sdza8skWXvPDvADscwQI9/bmXvWmaf70VzyW9T86qu0JXbr0gI648AAEQvQfZSbz19tA7FFkXvBUqAb2DkQk9gQrpvEdmPzxniN284V0RPW4ELD3F8Pg59b4pPQ5BtbygdcA8f4tJO4y5TDskfMg8CXKMPOlhELuSf2S928aPPDL8FTxQKYY9NrALvccTLT1nNQO9rYgQOYORCbxZoxO98WWPu6JPO72oy4m9645lPe6CA73J7ae8LMkAvG4o8LwpFYs8d9mUPFCWA73IynO7G6ffu7PENj3cTkA9XsQGvLewUz1ee009mp0GPFEDAb1omv+8EWX5vDbxQzxxXUa8pM7aux0uAL0l1yO9tYwPvVYTYrsp1WK8ZQm+vLJXubwKxeY8Z4hdvYqViLwrZZS8EuMIPXG4oT2st6a8JdejveYjqbxTzOk84Uz/PESMRD1Xbj29pvGOPNvGD70NZ7q8/cs5PM6zvzzTHvy755AmveMm+jukzlq9e40KPZjDC7y1Q1Y92JrKPCaojbyWM1o9XH2OvBFl+Tz5ch+9UODMPPyWY73c4cK8bnGpu3/mJD30Uaw8PTZ7vYxe8btgMQQ8AhMyvJxUTbwyPc68mQ3VPB+2sLyQEue8x24IPeXu0rtyysM85e7SvPYrJzy698s88Z22u1pa2rzywfo8tUPWuUJFzDwftrA84soOPdxOQD0LjT89MY8YPQizRLylO1i8kjWbu5/tD7wJex081Yt5vCLrBrw3XkE8n0DqOyr4lruQbUK84yb6O4NR4TuLpyo9WzRVvctsRz0H6+s7NwPmvLHqO70CktE7puD8vJBtwjv0Pwq5SC4YvA1nurxmG2C7MAh4ux1vuDzXiCi8X41vvXIlHz2nXoy9BccnPbmKTrgVYqg8ipUIPcpaJTuVc4I8I1iEPFntXLs2TJ+8645lPYHAHzuAZUQ88z+KOz60Crv1tRi9P8asPH+d67xoooC85IFVvez7YjsEWqo8Rma/vLBiCz1exAY9TZlUPJ2Akrz/XW08dE+HPMU+lbz7bO+8I0Cgu1ZmZr0nN928vc5hPbAzhjkfHnK8t7V2vV8q3rz6rKE7DqEavG8QhLzn2IE87tGTu2x8jbwtpxC8g3gaPbZyCb0vO4c8OFFuumWPeTo/oUg83ZcpuxaLKrnFHry724ATvDNvcr2jfpA8hwNOvAgcpr2mGEa91sSvvAho1rxT8ki9+rJgvJT+tLwJIuU8A7cKvYmArjzj9oU6rWigvdnsHD18Aii9SSgSvQ3nC7w3DoE60OhyvGslRblGwHK76DUJPaInSLzoNQm9ycMJvbW+ub20vjm95USLvXN1nzvXtS081wHePNIZI7zBcy+8shOtvE5nlT0BI5Q9i0uUPLgsGL1CW9e7EizOPOC/lj1+wvW8tcT4PLQKaru0xHg8p4zjuveK87xmPYq8Zok6PeCO5jt9P9a87cA8ughoVjzMN6e859gBPSa0PbzH0gu7uAYAPArcc7vFm5y8LJY5PE3Z3Tmf/1q8U+wJvdZBELoKUxW90ZaDPM8CjbzH0ou86TUJvP9d7Tx6F2k8tAQrvQCV3Lzr4JW7fbw2PbqmdLwauVY9HSe1Ox+VEz0Ivx68wbmgPPdeHD3pG2+9+fhRO4j9Dr00I8K7QpJGPGPPq7u29Sg8062ZPZPBBrxyPrC8U48CPCEpCr3IjJo8OUsvPZNKZbyP1sc7hmkYvfFrSTwxr6S9NB0DPY7lybtZUaU8x1tqPKu00DxFACU9KSIcvHLBzzy5wI670V8UvNrGhLw5C3090vOKvSuWOT0V19q8pRIHu368trtt31M8hVjBPLgsGD0tUEi9Ig9wvOBCNj2VNSQ9MVIdvU5nFb35Txo99U3FPAho1rw0puE7cYpgu9PZ8DyfnBQ7qUAzvLqm9DyZoP68GlaQvG6TIz0Z/8c8kx4OvUFb1zw+M2q8HHPlPGd6uD2NYqo7EHj+PO10jLxjz6u8zyglvQWux7zQZdO6aFSgPLgsmD3KALi7yiCRvL7IIjxfxxe7CZ/FvFQpuLxe7S8877G6PMWh2zzMPWa90GVTPW3fU7zecZG8FHQUPPfB4rz3ivO74Uj1PHZmnTsQNZG8ScuKO12wAbwJ9o28IBizu3Zs3LuB5KM73BrJvHBNsryVNaS9ib1cvZP+NDxSEqI8Yd4tvbd4SLya1+28znTVvOfewDx6joo8v0WDPQflNj1Ubym92PLbPD2wSjsHKyg8BUsBPeb+mTzT84o8crsQPaKNkrxPR7w7BHdYvPKodztGujM9o34QvGzf07oyteM7WVfku2xcNLxdMyE8FlS7vFBNez2Rihc99qQNvWruVb3Jw4m9TNOePV45YDvID7q8KtwqPTPsUj0auVa8Ig9wvNiPFTlZKw283ld3vDqI3Ti/iPA8Ma+kPPaEtDzzXMc8m1TOvMnJSL39nZ877f3qPJNK5bscEB88dP59vQ3N8TwXZZK6N1HuPOahkrvu96u8tUFZPIEwVD0QbAA8+4YJvMdVq7y57OU8WkjiuRZUu7sZnIG9MJiOvcvaHzuqw9K7GMKZPEpr/7qEr4m98O7oPNhvvDwRJg+92saEOCyc+DxEyTW+sNy9vMogET2RE3a9kZBWPEc9UzuBMNQ8tL45vfLf5jwDQGm78tknO1I++bzBkwi90ZxCvKrD0jwWi6q8LmEfO+iSED0weLU9l2wTPK8o7rwFrsc8ghsTPV0zobzrg468Gf/HO5BTKD1PR7w84L+WvL+iCr3IDzq9aFQgPFadVTq9zuE8UE17vN9RuDztwLy7b02yu4wrOz2U/rS7NSPCPA3+oT2vX128WBo2u4cDzrxRAcs8+2awO9LZ8DrCcy+7SmXAu4cDzjzIDzq9hVhBvb1LwjzKBve8eNo6PJgsYT2qdyI9fH8IPWuipTtCFWa8AsaMvPIlWD2BZ8O8ZsApvcnJSL0LigQ9RMk1PH9whjt5lMm8EcmHPQVLgbuVO2M8ywC4PJkdX7vfK6A8cNBRvU4Qzbw5Sy89WVGlvcOw3bzm/pk77AYuPC++Jj2b1207Oc7Ous/o8rzANoG8RX2FOtQQYD7Y1YY8zD1mvNVBEL3KBvc8BgUQvUAk6LxRfiu6CrAcvYmALr2gsyq9BTFnvHoRKj0yMkQ7oHw7O9eEfT0Ed1i8nKsWPEpfgTxGujO8mObvPK3lgDxQRzw9WJeWOyO9AL17Tti8qUAzPJqaPzy+S0I8+nWyvCxwIbzv7mi8GlaQPEHe9ry03hI8mtftPCKGETy1Oxq9EHI/PIsruzzLfZg7/EAYO0UAJTy816S7sDMGvCxwITyIhu07C4oEvQauR7yFjzA8NSPCvLfPkDpxB8G8q33hu/spgjz4uyO9ZUyMvJvX7Ts/B5M8O7/MvJ0OXTyGQ4A8Z8CpPNPTMb2Rihe9bFy0vHBT8TzK6SG9ryhuPFmOUz08eds8UrUaPZGQVr03UW499colPU9HvLuFUoI7u3qdPQi/njnYu+y7RQAlvYHkI7zxori7HQGdPGmxpzuVuMM8MVIdPXlXGz2VO2M8TBmQPOCO5rvYu+w85qdRPGWP+bvT84q8ygb3O4DzpTxd/DG9PHOcuw+SGD0FS4G9kQ03vUmFmbx2Zh27+HvxPB0ntTxVgIC852HgPA/YiTqOIvg8PU0Eva3rP7ylGMY8l6MCuv13Bz21xPg8WkjiPP13Bz2A8yU87wiDPYYS0LpwbYu7FdGbu3xIGbw6PK08b5nivHijyzyC6uK7n//aOzSm4TuPn9i7MokMvR0nNb0kyf48fcJ1PbS+OT0mN1099colPZtOjzoh0kG8oidIvZNEpjyt8X68kRN2vRNjvbx2Zp08j9AIvB9epDx4o0u97EPcvO56yzx3nYw99tBkPX45l739Jv68v4KxvAIJerymm2W509lwvWxcNDxHboO8Ea/tPCRAoLwSqa47Zgzau/h78TxQRzw8GXyoPH7C9TwCxgy87npLPaiM47wS5ly8sOL8vF4NCb1psac7zLSHvX/55DrkaqO83JepPBKDFj1aEfM84AtHPcJ57jwF+nc7l6lBPScLBjyVNSS9vwVRPdd+Pr1CD6c7oifIPQ+SGL1OZ5W7N2uIPYVYQbzn2IE97ENcu8VqbDzgBQg7wEJ/vF0zIbw3kSA9zDcnvA3+obxRu9m8cAdBOw6hmjuHzN68+ikCPYCttDyrtNC87wiDvG/Q0TuGEtA8bHwNvbPNuzyVNaQ8aS4Iu9nsnL2v/BY7MX70vHZAhbxHwPI6bFy0vFqO0zw6PC280hkjPGPPK70V0Zs7jCs7vMogkbyW9fG8oNMDvSn8Az2m0tQ8EakuvQ4E4TsxMsS8Smv/vIt36ztdvP88tUFZPCIPcD0YyNg8+nUyPNsjDL2ixAG8umOHPFEBS7xhW4483wWIuXXv+zyL9Mu7FHSUOylfyjx42ro8RQClPK5CCD2/RYO8JwuGvJDWRzyhbbk8LO2BO3jaujtRAUu83BrJPEooEjwJHKa7N5EgvcFC/7zw6Km8P2QaPMpMaL3/2s28WY5TvJ0OXbz4e/E8HqrUvGmLj7z1yqW917Wtu9VHzzu2FQK8SSgSvdONwLxjnns9IB7yOzCYDj15F+m8YSSfvNuAk7wo8eu7FJqsPDsWlTzZj5W8MX50Otc4zTwnbky82PJbO5/5mzp5F+m8t8+QPPBlCr2zzbu8ppvlu7xaRL2ic/i8wL9fPc8u5LwgGLO84L+WvYtxLLwAEj07ByuoPGaJOj10+L68r/yWvHZsXDzBv188JtQWumWpEzyPn9g7jpkZPBhFubyGEtC889mnu9Lzir2L9Mu7lP60vCwZ2Tz3B1S9kNbHvHkxA72AKpW8CrAcvLS+ubzkMzS97zRaPWfAKTy5aca8ZQzavAM6Kj21Qdm8LgpXPbUVAj3jtlO9jiJ4vD8HEz18Aqi7gyFSPcWbnLwQNZE82saEu9e1LbyijZK8osQBPDKJDL10T4c9HEcOPSa6/LzOq8Q8Pu34vJtOD70tjXa7MJgOPY+f2DzN8bW7g6TxPOTnA70g8ho9RQAlPHEBgjyRE/a7AgM7vH+WHj2IWha9DceyPEsfTzvl7cK8ehfpu0x2l720h0q9rm7fPP0gvzyRDTe9Y1LLPK5uXzyVNaQ8stP6POlMn736Txo7hkMAvFDK2zzKyci9RMm1PE1c/by4LJg8DMcyvEAeKTw/7Xi8shMtvESjnbwn66y8j3MBPTcaf7uZupi8Ig9wveqJTTw8/Po7R24DvRpWEL2OIvg86olNPIyCA73Fm5y5n//avOWnUb3KTGg5jIKDu1lX5DusCxm9YVuOu5m6GLySRCa8xaFbvT9q2Tse4UM9syQEPN9ROD2GST88wb/fOyEpCr2auhg9zLpGPQ3Hsjw6iN287rd5PIbMXj1KhRk8OzwtvdZHz7yMMfq8jd+KO9vdmjw4zk49AgM7PcZ1hLsAGHy83OPZPL5FA70/waG8zy7kvPtmsDwQ7x+9XBwLPXBTcbwLioS9VjqPPAyQw7tjz6u7H+FDPEucLzwVHUy9Ba7HvEAeKbwbPHY8sRMtO4TVIT2JOj29yZLZPGOYPDocRw47w7DdvHK7kLx8IgG94znzvL7Iojt3IKy8i65aPI7lyTuMgoM843mlPPXKpTzXu2y8PPa7O3/NDb3K6aG8mCxhvf7UDjwvYZ+85GqjPK9ZnjxroqW6OrkNPEIVZjyVO+O8SoUZvFUDoLy+yKI8wfZOPbqgtTwPvm89P2rZurNQ27yNPBK9LM0ovas38DqixIG8wDaBvKUYxrzw6Km8QlUYPAzHMj2ylky9MEFGPB7bhDz6suA7uAYAPBp8KDtrH4Y9vUvCvHyFxzfhSHW8YeTsPJTYnL1ZKw28FdfaPFVgpzxuEAQ9FXSUvO+xOjw8/Hq983ygvG9tCz1d1pm8zDenvGCnvrzzXEc8bCXFvGOYPDrkaiM95LZTPEpr/7zrDG28c3WfvA1KUr1n4II9U2+pOz1NhDzyVoi83RQKu/OzD71pVCA7uSPVvIm93LxRu9m8WsVCvQki5byA8yU9cCeavJSB1DyDvos83tTXu3ldWj1IqzE98GvJvL1rG72iJ0g8g9vgPHoRqjzu96u8JOMYPZmaPzoXCAs9qAnEO9xm+Tz6+NG8LaeQPAAYfD10NW289gfUPGUGGz1m4IK89BCXvCni6Tv4OAQ9TNndvGOe+zxpt2a6MuzSPAzHMjzR4jM67MA8PUUG5LzE58w8cQfBvNONQL1mQ8m7OjytvMgPurzWAd67SuKgvHvrkbyMgoO9pswVvX+zcztVA6A62qarO+73q7vpG287usCOvBZUOz33pI28DgThPCQaCD0tpxC9A1oDPWAqXrvG2Eq8kwT0vGWP+TxRPnk8vRTTPDCYjr0scKE7VQOgvJm6GLzQX5S717UtPaLEgbzMPWY9L8RlPOb+mTvvNNo8x1WrPJU1JDw0Q5s8g4s5veV8fDxZUVC8nxHTvJxcj7wHRWO96TQbvTnCaj3AoLg5WSEbPX1JbL0eRR29sHrmvKNK1LwNH0u8M7hNu2iKrrwoIFa6+r/3vGHaCj2mZ/2794b2O+JD+zq/vBA9WunqO2XpxzvflwM9QiFhvPVyGbuNsn87BNwsu0HV07wEKLq8ooKEvIXEOry3qac8mxACvO1D2LyiGh+7UFo/PQz9Ab1fD+A894/CPOb7mb2pVPE8kVyyPMXGLbwHFa67l2ZPvX0ZN71HJQ09GwwcPA4D8zxrp9e8o7I5vX4ig7yPn/O84UN7vfaGdr0X05q8LBaWu50kXzxXzEG7K3CPvHiwAL2krZk963uIPNXjM7rp2qG8dLpAvJAekTx/nkU9UHYXPNJepTucqJy83r5svD5sHb0t+j07nSRfupfOtDwmpBM8r+JLO05ty7syloS7vc+cvBPdWj1Fwkc87dvyPP4BxTuiGp+89VbBvEivO71iSOE7TgVmvGKUbrwJXBs65u2tu+DjEL18gZy7MyCzvFPfzTyRjOe80WyRPC3e5bzTJvU7n+Edvdfekz3u2/K7/SsJPTdUFLzV47M8rKlKvLapJzymN8g8sv/0vJLY9Lvecl+7RlpiOkvovDwQwDG9GwwcPSakEz2rxSI9dLrAvNe0Tz2Hcw27W8KBPVvCgT17XPi8TSE+vIfNhryI/Ts9MH/MvaD1ej07Y1E7/uXsPOm+ST0adAE9AR9uPSCMCr0gjIq8sMbzPP7l7LuElAW9u8bQPJkjjrxLgNc8GnSBvfknXTuBzvq8CjJXPHl4UDzqvsk8ss8/PYf0bzsq8XE9czCSPC36Pb1HFyG3aisVvFymKbzVe868jW8+PPe5Bj0PgpA8BxWuPLzdCL0Grcg9xHFUvXPkhL0vmyQ97rSJvF93xbug9fq8FaiFPILzHj1nAIA9BiOaPBtYqTxQ0JA8YRgsPJ68+bt06nW8194TvbcRjTwWMjQ9cKuDO2E0BLxZbSg8lpATvKxB5bxHfwa9LD3/vPY6aTxvLOY8Bn0TvfEUdDpL6Lw8AodTu02Jo7zdUBa8MH/Mu1FavzzsX7A8jIJKO0Wm77vsj2W9qx+cvJf+aTwxy9m7FX5BPKvForymG/C8eeA1vUXyfL2Mgso8mCMOvMNBH70/UMU8kKg/PGgiyTlQwqQ8/rW3OtkJKT2J4WM9i+ovPEENhLxXZNy8196TO8+9vjuX/mk7Uq8YO9uhQz2HzQa9rEHlPFDCpLtoIkm7p4whPd0ECbxeK7i8YA9gO+k0G70+UEW92QmpvJ87F707F0Q8IfpgPKRTILyuLtm8ALEXvQzTPT1W6Bm82zlevFmdXT3BqYQ92suHPA3TPTx/Biu8MH/Mu4TgErxhzB68nYzEO4Q6jDwFpHw7C++VPbVUzrzuAJc8O0EIPSwkAj1oBnG7sRvNPFw+RL3YtM87tFTOOqj0hrxA6F88XUcQvQcVLjsWfsE8yzgwO+B7q7yUEXa8L0+XPFL7JTxNBea8E93aPO4Og71qDz27vSmWvG2+Dz1aBcO8A56LvV+THT3AOFM8BteMvdQvwTxEDlU8ZF8ZvpxcDzzpNJs8+zApvZL0zDyLztc8Amv7vBqbarxxZee8FjI0vaZn/bwFySC9+EO1vBKRTTyS2PS7BCi6vNV7zrvpvkk9n5UQPcMJ7zrmr4y8hJQFuyopIrwnPC67gj+svAs7o7t4Voc9kRAlPR7dN7yNPwm9taDbvcUSu7yIScm6w42sPHTqdTzl+xk8puu6Oxdi6bsxloS6bki+vM9xMTwIRWM7AR/uvG/gWLycjES9w42sPM7ZFj3c9hw8f8gJvfdfDTz9Kwk9EmGYuwatyLwQWEy7+fKHvF3tFjyWgqc8G8COPZuD+DwLyvE5t6knvRXmJr18gRw9Jn/vvP0dnbvLoBW9bbCjPTp2XTztq708zyUkvDB/zDyfEVO8F2JpvODjkDyuSrE5bvywPGcZ/bxj4Pu8uCXqPALqmL1xsXQ8YrBGPUxLAroGMQY8ChZ/PDmStbyx6xe8uuIouR7dNzwnuHA+M9SlPTrC6rwYT1248ZORPA0Dc708f6m81xy1PJj+6by83Qi9M9SlvOY5Ozz1ok49c+QEusv6jrzQ7XM9VfYFvD37azzonIA9+dtPvPt8tjx3pzQ8FHV1PTKImDtVQpO84C+ePJCfczzqcjy9Xiu4PElQojwe3be8MYiYPPxgXrrDJce8s3AmPIkGCD3EVXy8O0EIvceqVT1Uk8A7+SddvCfUSLxvLGY8lpCTPPo+lbsqKaK7MuKRvBvADr2+/1G6k5WzPG1klrypCGQ8HVOJvOL37TtMSwK9VZyMvdT/C72GXNW7Bq3Iu+60iTwVFlw7HDzROyQz4rzHjv28O5sBPIvOVzwniDs9KGxjvDszHD0yPIs97F+wPPe5Bj0eRR29o0rUPI1m8jx+SWy8GqS2PBc7gD2lB5M86xOjvJ8R0zphNAS9k5WzPNhoQrqaB7Y7UVo/vMJPCz2KeX48q129PKVTID0w5zE8f57FPIS77ryIsa48p89ivJhmT7wqda88Qm3uvGvDr7x9ZcQ887VavVGKdL3moaC8Jct8OymRhz2lN0g91xy1vOATRrvJsyG9YRisPLA3pTynz2I8DnSku+7b8rvPcTG8Y0jhPNRZhTzv5D482iWBuyb+DD2o5hq9iayOvJUtzrg/NO07DEkPPEzM5DsNa1g8y1SIPCcg1jyjluE80SCEvIQ6DL1rp9e8y64BPXhWBz3rEyM9szIFPTYNJz1RinS9XSLsPB2RqrzRbBE9bRgJPAC/A73yHUA7QtXTO66WvryAnsW7GGs1vZDSg7xLgNc8sUURPSXLfD1xzUw85jm7PKW7hb12W6e8P1BFuycg1rxhGCw8jT+JPAHTYDwouPA8DDsjPU0hvjyOI7E83V4CPb6XbDpBs4o8a8MvvXyBnDyyZ9o4QDRtvfS+prx0usC8lS3OvGg+Ib2CTRi8WZ3dOzKWBD3qonE9ajkBvAfdfTxwnRe8MuKRPGJkuTuo5hq9FRZcvMMlRz13I3e8xRK7PFpoiD3Js6G8SRKBvBZ+QT1FWuK8zWhlPRA8dDwFMYY9jIJKOE0hPj0iYsY7t9ncPFScDLzHdQC8P+jfvJB4Crwjkvs8eZSovNfQpzyNsn88WXuUvEHxK70ekSq770wkvekmL70mPC49SRIBu6IaH72Ob768ROyLPOCJl72jSlQ7Ng2nvJGM57ygLas81pIGvezHlbpqd6K5ERWLvLTYi7vnhcg8McvZOtcctTvv5L671V92PUpQIrwA77g8J/AgvTx/qbyD18Y8LZLYPAatSDsYhw09yZfJOuL37TxmTA29G2YVvByIXjxWgLS8eVaHPLfZ3LyrHxw9uhLeuzY93LzM7CI9rF09vD+A+jtGf4a8ajmBvSNPOr0N0z08VJPAPHCrA7031Xa8sDelvO98WT3otf08qnkVPJdmz7zvyOa8fLHROy0qc7uuZgk9VfaFPHnE3byUedu6LD3/PCeIOzzt90q8/01SvTgq0DwPNgO91OOzO3bzwbz+tbe8o/5GPaY3SDx3I3c8yMENvaH1+jvtQ1i8T8IkvN1Cqjyisrk8iJVWvJQR9rq6Et48mG+bu6NKVDuwg7I6eXjQuyTnVDzCqQS9ecTdvCKu0zymG/A7RN4fvWAPYD0Ba/u7rBGwOwHvuL2Q0gO94atgvM7ZFj3vfFk7XSLsPKDFxbuuZok8MGN0O6jmGr2pJDy7I0Zuu4GC7bvrEyO9fI+IPFm5Nb3CqQS9KTeOPPusa7rVe068UytbvI5vvrxhgBE7Iq5TPVMJkrwDkJ+8f55FvZUtTj2cjES8Ae84PFoFQ73DJUc99MySvCQDrTzwyOa7xnqgvHVS27u0cCY9DDujPEIhYT10usC7Nc8FPKZnfbxpUv48Jf6MushnFD1lze+8iUlJPWun1zwLO6O7vc+cOyNPOr1v4Ni8HylFvSEWOTwenxa435cDvQQoOrzHqtU8/gFFPPusazygLSu85qGgu4ueIr1QPme7RCotvXoQazuulj48chlavckvZDzn0dW8s7NnveTkYTz/TdI7l2bPvArmSbyJBgg9y6AVPbglarwmPC69ooIEPGuL/7wNt+U7A3THvdPaZzynjKG806USPCrBvLzZmPe7z1XZO6p5lbvVX3a8GGs1vVFavzz7MKk6kkDaO5UtTryOb768P4D6PKWtGb106nW6M9QlPdoXFT1npga93ibSuunaoby9z5y83r7svDPUpTy1CMG8pa0Zvf6ZX7w4YgC9d4vcu9T/i72mZ326kdh0PdEgBL1B1dM8HilFusZCcDzGxi295lWTPK7+I7tiZLk86b5JveK0rDx9/V49Y22FPZ30Kb2U4UC8hcQ6vbB65jugebg85vuZPXcj97z2Oum6L6kQvYnhYz3cOV69VMN1u+UJBjwcrYI8vWe3vWywozyqCOS8gk2YvBsMHDzpjhQ7MwRbvY+7Sz2YZk+8QtVTPPYFlL1TCRK8qJqNu9KqsjwqwTw92nGOvLP/9LvEcVS8UYr0OxkDULwjxQs848KYvDXBGb1ilO68ZG2FvBqb6jurXb28cM1MPTqNFTyG9G+8n5UQOzx/qbxuePO8tqmnu8QJb70iRu48UMKkvJTF6LmjluG80tpnvTfV9jx6LEO78wFovc4zEL1Zbai897kGPUJtbjwnINY88oUlPWBb7bpOUfO77wAXvUm4h70K5sm8pQcTvQBXnjwqwTy9cc3MvCsNyrwpNw498h1AvcrHfrzntX26FzuAPCvxcTt5opS9LSrzO43lD71EKq08UmOLu2+rA7xhGCy9Eq0lvBhrtTwqdS89M5x1PTiuDTzevuw8hDqMvV3WXrwJmrw8aD4hPcMJ77sSYZi8Qm3uO+yPZTy5Sg49n+GdPGvDLz00dQw8zDgwvfBHBD2Obz69a6dXPUXCR7zutIk7K6VkvQOQHzzPVVk8dQ+aPNOOWjylUyC9Eq2lvON2Cz1380G9/mkqPQOQn7xobtY7smdaPB75j7yX/mk9mW+bt+oK17sXazW7JLcfPVVCkzzSqrI8+sjDuunaoTwniLu87+Q+Pe1D2DvuWpA8Joi7OkM4mTzcUJY9ui42vdRLGTtZexQ8QPGrvL7j+buDB3y6EPDmO8DQbTu83Qi8Z9Y7vbOz5zsXOwA9nSTfPGorFT2Isa68e9sVPE3VMD3VL0G9tHAmvdH2P7mAUri8O0EIu4tSlbwXrva8M9QlvcZ6ILw7fyk8SSv+PIfNBr0B7zi9enjQuf4xer2/Foo7Nz1cvTAXZz2NmQI9BHTHvCi4cDxhGCw9kNKDvD5sHb0D3Kw8+UwBPY5vvjxXzEG9VrDpu0HxK70Hrcg5YrDGPMXGLbxFDlW5J4g7PVsOjzz7fDY9BmE7PKAtq7thJpi8U99NvWFx1LwK3tY7QR4KvUbYAj3WKrS8WcdwvIUbvbyQan493wu3OuDVRLz1h7W8hOSdvDuQzLwFExy8kLULvXBzgzxyjym95TNuPOQGhr04jx89PoC3vBBslDzhDOQ7T56MuwWRbzxMLHU8LxuuPJ1hSb2VEzW8a3i0vI+PrrxiRRk8eu5/uyIkY73hDGS8yI+4ujZDZbxMyZq8LBqBvE+eDD0B7BG9LBoBvXFYijwgx2a975adO0NLcjtASkW9ulAMvJ5Qh73dUmu9qsUlPPO9J7tAphQ9iHg5vVpa37zaUb687ecIvfT0xjtVPYy9RM0evcILsrz0hzU976dfuEeiEL20gfi7G/wrPQk6prv7C7w85TPuu7BJrLx2EoM7PCM7PBgMQToU9ni7i/sSvUpiZ7yX3cK8f6h4vVdq9DvHxao8D2JdvNDdzLyh9WQ8d+3SvCv0o7wqYTU8oFE0vDWftLyjQZ88EP8CvWKXMb2AzlW8GGgQPSEumjz39fM77MwPPUj0qLy/rjU8mwRNvPRh2Lxsr9O84EJWPH875zsBWSO8EixrvAWALb0+kXk9Pu3IOQ0PmDwFkW860OcDPdJEgLsSGyk9tnsaPZeBc7odB5A5PVpaPIsM1TtWM9U8auVFvI+g8DxT4I891r0iPXrdPb0Gpgo7ohtCvUUEPj1ueeE7TwsevQtgg71xacy8Z2JsPAyXor0coFw9qY4GOyd7AT2G74E7Zs99Pd8LNz1ecCe9Gw3uPPyvbD2cl7u630yNvHyWiTwX5mO8f5c2O9Fwu7ySLQE8XFQBvZcemTuaza08LWLiPBT2eD3TKYe8cMWbPPWYd7x3WuS8Ct7WPJwqqrxQQj286JDqvPlScLzUDg47vVG5OyW4/jsgWtW8XBOrPcuQZb28Ghq9OPwwPXgTsLxXtQG8nJc7vUHds7wUQQY9pkLMPTvsmzxQ5u08LM/zvMYyvDtR1au80paYu9dQkbz83wC8yKD6PIWIzrtL5BO9CAMHvPyeKrsx9v25ZPQtvfsLPDxeFNg8ewObPPiI4rw2Q+U8PMfrvPfkMbxjKqA7rbWQur53lrzSAyq8fd7qO8+mLbzRzIo7A8dhvUpi57x9e5C6An+AvJw77LoIHgC9IoAyvVHVK70GSju9wWeBPXmmnjwdxjk8eu5/OzILmTwkHgU8jXMIPSHcAbsFE5w9KBX7PGWHnDwZTRc8pp6bPKBRNDzakhQ8P7dWPPFx7bzcrjo9qtbnvBH1S7tUace8whz0uxBsFD27K1w8Jt5bPJa35TvgMRS9nWHJvGa+O71Pngy9TiYXPT7tyDyyE7q8d9wQve3dUb2x3Bo9u5jtOwAHC71hBEO7LuQOPZk6v7z2vtQ7jWnRvP0xmbnF+5y8a3i0Ozvsmzwu9dA7Wu1NukHdszzyl8q8aCx6PPHzmTynaCk9tN1HuwZb/Tw8NH28S/XVPAyo5LyPPZa8madQPcQWFr2O/D88W4A8PWFgEj248488Sc/4u1y32ztCp8G8FPb4uRNSSL2dYcm9A1pQPNUEV7yumpc8mnFeu6v8RL28vko9EhspvGWYXr0U9ng9GU2Xu+XQE76FiM68aIhJvKUc77yjrjA8J97bPEwbs7yQxs28IMdmvNPNtzuGUty8lCR3vaR4vroluH48TMkaOzj8sLvtOSG9ZGG/POdICT0yr8m812HTu0zJGj0JS2g72JjyumiIybztOSE8LVEgPdHMijzvp1+6887pusILMr031tO723cbu9Rx6Dz7HH483dSXPJ8rV7y9Ubm8ejkNvODVxLp0ank7AeyRO2rUg7xvQ+88lRM1vZBZvLxuaJ88PtwGPX+o+LxZZJa7XFSBvNPNt7wDth+9BrdMPQreVr0rmNS8Q+iXPP3EBz1prqY7xtbsPDpZrbwTUki9slSQPPUr5rxi8wC9DqKGvD/BjT1rifY7XwMWPXKPKb361Bw9UrD7u13uerxD3uA8pp4bPJH9bD00gw69O38KvJNJJzxWIpO9JIFfO5vzCj0ZQ+A8yI+4PD1aWrydawC9JIsWPL8KhbzA74s8lSR3PvApjD2XHpm8UXlcO0RgjT1NUlK9Y70OPSd7gTyjv/K8+a4/vffksby5O3E7PtyGPJhwsTyK5nc8ZYccPPnvlbwjpo+3nytXPbK36roO9B46xfscvOh/KD2luRS7eaYevXuB7ruT94482b7Pu3MimDzptse7RQS+vCwaAT2dzto8FvCaPMILsrvjMkE9pbkUPHTsJb24BFI9khIIPX5x2bwBkEK8k1rpu86A0DuMjoE8HWrqu0m+Nr3I64e9/44VvBC+LLyeBXq8kpBbPSyHkjlT4I885Gngu0wbM730UBa9yI+4vH3e6rozngc9mafQvC/JFbwMlyI9RGANvSTdrrspl6c7UrB7OyVwHb3B5VQ9fvMFPSGR9DxZI0A9RZcsvW3VsDxcVAE9yrWVvMr99jwK3tY8Log/PO6xlrxbJO28XnAnvLk78blXB5o812HTPNFwOzwTUkg8NNWmPNiY8jxpv2g8Hdf7uiTdrrtCFNO8D4cNO306urqIuY+7h+VKPfqCBL3ucMC8gM5VPJtgHL12trO86kk2vJgDoLxwc4M843MXPf3VybxyM9q6ohtCPPRhWDxaSZ28o0GfPC8bLrx8S/y8n4cmPFpJnT2GXJO79ciLPGmuprzmIiw9YEv3OyhFDz0Gt0w8jI4BPDvsm7wPmE+9DXLyu9+epTub8wo9oK0DPQO2H7ygYva84p9SvddhUz0pl6c8kLULvPfkMT2fGhU7xY4LvSO3UT3X9MG8JuiSusRorrsIHoC86aUFPK8jzzxd7nq90ErevDCunLxD6Bc9njUOPewCAj3JIqc9GGgQvCgV+zy6Yc68ruyvvHgTsDskHgW82uQsOuWPPTyh9WQ9u/S8PFDmbTzSRAA8f5e2PLK36jywSaw85FgePSBa1byjQZ88G/yrvAfdKb2bYBw8h4l7vHO1Bj0cIom9Xd24PA70nrwRURs91io0PUbOy7w5M1A8J80ZvIUs/zzXUJG83e+Qu9m+T7pLiEQ9ihaMvAH9Uzs4/LA99r5UvU1S0rwW8Bo8bJ4RvTNCOD0m3ls8LCtDPcWOi7yJQsc78oaIO7Y6RDz4dyC94DEUufeSGb17gW49vWL7O+dZy7y8vkq99ciLOcpZRrxkohW9sqaoPDYyI726YU689Ie1PVWPJD19zai8T54MvWa+OzyDvkC9DXJyvAyo5Lo9SRi9ekpPuTigYbxXmoi8+uVevHSaDTzT3vm7RtiCvdmtDb3I/Ek7CTomOOT8Tj2LaKS7BqYKPRngBb1AOYM8h0EavQLRmLsiwYi7hYjOPWPO0DzaUb488pfKvPxC27yvI089Kr0EPVBT/zzTKQe86oqMPN1BKb1PC568IiRju5+HpjvmIqw7zaUAvWYrTb0Trpe8PpF5vMKv4jz83wC9PxOmvAk6pr1Vj6Q8yy0LPWUrTbnd1Be8xZ/NvM+mLbxXWbK68CkMvZwqqjy/v/e724hdPKTUjTwm3ls8zoBQPNuIXb1XtYE8mAOgvKBi9ru+5Kc7DDvTvMpIhDxoLPo8Jqc8ParWZ7w6xj49bTEAO2Koc7sMO9M8HyM2PLNK2bt07CU8bebyPKdoKTwJOqY8gColvHsU3bzusZY8nWsAvRZT9buwtj08pxYROmBLd72LaKQ9r8d/vJhwMTzTzTe9b/uNuqBidjwyuQA9YDq1O0bOS7tq1AO9et09PGDNo7ueUAe9rcZSvIZck7yjv/I81r0ivRQmjTwvLPC8Dc5BvVKw+7xFqO47cHODvB8jNr1Ld4I4jJ/DvPf1czx7Axu9GTKePHKPqbxnYuw9Twseu1Wg5rzlxty8gVCCPU1SUjs7kMw8i/uSu1pJnbw/E6a85/17PeEWm7yj5U89dGp5PGf1WryAvRO9W9wLPU7lQDzCTIg8o0EfvQAiBD0hLpo9xkN+vHDW3bxJvja9itW1u3xL/LzAeMM8OD0HPHI9Eb3QSt680gMqvH87Z7ujUuE8p9W6PF+WBLlDe4a8b58+PbpQjLxd3bg8d1pkvCQehbvg1US8tMyFvKJcmLxbkX48YN7lvJ4F+rujQR87U9bYO3da5DxWIpM7ia9YvR0HkDyttRC9WOygvMbW7L0Wr0Q9lRO1u13duDzKSIS7szmXu8cGgbz+aDg5kiPKvDH2/bxVxkM8CBTJvH/YjDxjKqC8A7YfvLiXwDwff4W8pRxvvHEN/bpMyZo86CNZOyyHEj0OYbA8IS6avHUjRbzJM+m7I7dRvOgtkDr4iOI67d3RPOEMZDzVBFe9CB6APHT9Zz0gx+Y7mTo/PVCDk7xMriG6/dXJOtpRPjv1K+Y8Mq/Ju1wTK729Ubk7F9UhPVpJHT3QOZy8mt7vvEyuob2tWcG75aB/vKJ3ET3in1K9JB6FO+mlhTqxgMs88QRcvdpRvry0gXg7WSPAPAIjMb25O/E83BtMvTg9B73XYdM8j48uPJISiL0mOis8mg6EO6JcGD3jxa+9OKqYPDfW07vJM+k8EfXLPEkaBruE5J27Up+5PLTdRz0a1s48vuQnvd1BKb3kWJ680zrJvJ41DrxflgS7ACKEveXrjDy23nQ71GCmvPdRQ7x7FN28z6YtvTTVJj0+3Ia94Xn1PClydzwNcnI8F9WhvOpa+Lx0mg095TNuu1BT/7ydzlq8Sc94PGWY3jx33JA8Lb6xPC9chD1v+408Kr2EvIgLKL1ASkW9iULHu0IDEb1ZI8A87nBAvDF4KjxztQa8DXLyPOm2x7v++6a78CmMO+RYHrs6xr48gxoQvR+QRzyWStS8A8fhO0NL8jwH7ms8P7dWvMUM37yKeeY8TuXAPEM6sD1ct9u8GAzBPFWg5rx4E7A80N1MO8Wfzbzin9K6LIcSvVf94ryKMYU8mBRiPNXzlDvPt288wEGkvKR4Pr3YmHI8SmLnvBIsaz2u/fG8FOU2PVPgj71d3Ti8lt1CPFh/jzyeUIe8dJoNvXsDG725zt+7ebdgvY3WYj0FgC29FkIzvIKHIb1snpG8CwQ0PTIcWzsqYTW86u1mvX5gFz1X/WI9qmlWO8HUErynaKk6xHlwOyBkDD3Nioc8cDItPbITujxCAxE9goehPTvsG72emGi8pjGKPOWPPbyxgEu9ycbXu9XzlDsdxrk7WSPAPA8rvjzgQtY8gochPfYaJD1+8wU9v661vAWRbzyj74Y8GAzBvAeLkTrg1cS8R2G6POF59TtPC568WkkdvYDO1Tu/CoW5f5c2unKgaz3of6i8TL/jvFMyKLwIA4e9NbD2PCBkDL1Uacc8OPwwPSUDjLwHi5E85cbcPCyHEryKFgy92vVuPCHcAT1MLPW7Sb42vSY6qzumr907VMWWPIyOAb19zag8NZ+0vL7kJz2o+5c8DQ8YOYIrUrxj2Ac9dOwlvJ5QB73cIgO8ZkkJPXQmN73rxwY9YKEAvTSQzDu4D7g8G9SUPW4Jbz3brjG6ufMivV8uHTuiTWy7JkC7vFYxojzp/sK86+DRuyALFjyPU3a7umaGuyfL+7wHZzs7ok1sPFJrKLw2//e8ZvBeOmjUST2TjNM8dghGPXd7qbwR73Y8HicrvTypXL36+4K7BfazPE2/5ztKU4Y7NXQ3PQEwOr2LWYo8XNoYu7iDCbuSARM9P4vrPFsP+byV46G82srGvHlfFLzjyR295R4QPFPcrzz6FM46sIPEPFTBCL2ZqRu9wLXkPDIfRb3UIGI8V6KpvZCqxDz2TlQ7i1kKPRzSuDyV+/68WROxPIcgrTwr6w29xkUQPZbHDL2GVnu6k3OIvBNgfjusSue88vu9Ouen9LwX8gW9n97AO9dbG73ECHs9oMSHPZGQi7z2wbc7RDesvMsjZ7uABUE8MTtaPFCHPbr+2se6DvWKPGR/V73lxeW7mVDxO47INTvCf5a8BvYzPFkTsTv5Fiq9S93YPFtoo7sPZpI7GfApvP6D+Tykot67eeywOt8ByDy5nNS8jlVSPEr5bbuAH/o8zHo1u7HbgLuABUE8E9NhPH8hVjwVDwk7CNhCvLHbgLv4Mj87OTqxPGEsQbwor2Y8trjpPAjYQj1smkO8zXhZu7n0ELyKHHU88I2APJOM07wH2p483pDAvEj7ST1WMSK8GWMNPehzAjxoupC85o+XvPi/Wzx1JFs9qdu7vJyJTj2uobU9zl4gPN0FgLt5Xbg8VFCBvTN3AT2/KqQ7jFcuvLO9j72TjNO6pIkTvSqVLTyy2Da9o6Q6vSaznjw1dLe8nlMAPFyCXDxFjQy8pL7zvNHLbzuqaFi8CL4JvD0AK7xNpwo7Fpu3PGXyOj1o0m29NQHUvDjJqTzSsTY741Y6POHlMr3yb488sIPEPIxXLj2KAjw8LVsnPUHGJL3eHV08S93YPNC0gDpzta88Xr2VPK4SPT2iM7M7leMhvGOBszymFcI8K5H1u9lX47wYDD8978LgPIge0Tyfa1296lWRPPRsRTwbRZw9MSKPOxB+77ztU7U8smXTOtMiPrybNNy7UmuoPPH+hzzoGlg8Lz+SvLqAP73Z5H+8ocKrvbXU/rxBVR299Wrpu7Hakj1Ib5u84jwBvZ7gnLzmqyy9kB0ovbJlUzxB/HK8c7NTPSoGNb1KUhi96HKUPK0u0jwZ8Ck9K3c8ux+ya72YNri7Y/WEPFNpTLxDqg89B9oePBNGRTuyZ688bmIZPcXs5Tvnp3Q8NAMwvKtmfD3OXiC8a7R8vNbqkzvZzKK8MiGhO1NPk7wmWvS75wENPc52/bmip4S9JkA7Peen9DwiesE6MSIPvMKX87oZl/+8a5rDvHJCzLw8jyM9ozFXvN2SnLvzFXc88vu9vHrq1Dy8SQM8ODyNPCxdAz38EvI7oTWPup9SEr31UDA9jOYmvABMTzxTUAE8dX0FPJNziD0WKNQ7jlP2PKj19Dyv+AM9HSkHvMoLij3GX0m9MSIPvSLukjsCSvM8ZtalvHYk2zxENVC9SmxRPeTF5bwuzC69gnRsPe5R2bukiRO+zl6guwbbDLwHZzs96uKtO9foNz37hzG9hcu6vTEhobyC50+8YZ+kvbiDib1TT5M8OcdNPSXPszxC4F28zAdSvS7MLj1TTxO9g1qzvK277ju0L4U7Z0gbPRgK4zvGRZC8mN9pvY3ibj2Pxtk8A4cIveeNu7xBU8G8visSPLmAP7vfAyS8g+dPOfxrHD1NNCe8yT/8u8CbqzzgdRm8F3+iPOgY/LzJmZS8x0M0O3fujL1R+468fiOyOsyUbjxeZGu9W4LcvBeZ27up3Ze7ATC6vNDNy7vwjJK9mRsRvdQIhTpc24Y9DZzgvJdSTbwhfJ28Jlr0vJ9r3TrD8J28rp9Zva6fWTxkZow9IZT6PLnzojxZnnG9Yw7QuSsE2TvJmZS8/YP5O06lrrxIbxs9E2D+vMOXc7yRqOi8lIzTvXyyKr1BbXq8CWVfvEUzdLrJP/w8PAIHPRFi2jwMK9m8lf3aPAwrWT7X6Dc9QlFlPR6aDjrJP/w8B4F0vbnzortl8jo8fZeDPFAWNr1/egA5BtsMu0BVHbvasI062j2qvI08BzwAMwS9Lc4KvTseHD3uNyC8cNMgPTKTlrydbxW8R3CJPMdDNL34paI8n205PGqcHzy/KqS8gekrO0BvVrzTlSE8Js1XO4AFwbyyTAg9c7PTPNjm27zAteS8NZBMPMN9ujxLavW8FLdMOxtFHDw4PA07PKncvGqcn7raPSq9OToxvcEmbLpqnB89KCQmvEn57TzvM+g7l8UwPWKdSDx2CEY7WS3qvJXjIbxGjJ47Yw7QPAugGL1RhWG8d5XiPAq8rbx4YIK8SPvJvPr7AjrnjTu8YKGAPeLJHTwqk1E9RDesPFxmx7zy/Zk8LeqfPC514Dtc24Y9i3WfPVXY97u58yK9824hvQWD0LxqKxi8wn8WuVJrqDxYL0Y8+KWivF9I1jypaNg87MYYPQ9ngLwZ8Km70SUIvOXF5bvvpss7ap0NvYzkyjwXJvi6GJf/u45Tdj0XfyK9VjGivKfehTtA4rm8z+lgPcCcGTvkVN68LnVgu1JrqDxa95s7Xy4dvTfLBT34GIa7QjiavZX92jyAeCQ8jOTKPMAODz05rgK9SlMGPMRhJbxl8rq7PQGZvED88rtkf1e82HN4vVkTMTwZ8Kk8cV7hO78qpLsZ8Ck9a7bYvKKmljuC50+8rhI9PfKI2rsgCxY9tp4wPCp6BjzxF1M9jlN2vGFG+jpXFQ29F/KFupffabxRhWE7/00rvQstNbyqTMM8crWvug4PxLoH9Fe7mambPSF8nbwudWC8SfntvOxTNb0iB168XdqYvOCOZLxtfi68ZGYMu9shlTzZ5lu848fBvItZijtXFQ29SmxRPbpmhjxPFra8nuGKPAdNAr1tmOe88+GEPW2Y57wHTQI7p4TtuwX2s7tyRZY7oU9IPLJlU7vF7OW8x0M0PPbBN70MK1k8gHgkPaSJk70FagU8iASYPfRsxbv13cw7hMs6Pc3uBjybGEc7Z2HmPF/Vcr0Ogic9mambu+Q6pTyDWrO7Mh9FvH0jsjvMejU9k3OIPH2yKjxNv2e9vNUxvCJ6QTwfmDI8SG8bPWUMdD3NB9I76XEmvcuYJryxZy+9mxqjvCVcUD1UZ/A7QG/Wu38Hnbznp3S8Ab+yPKpmfLwrBFm9BIcIPErfNDyiM7M8RTN0va0UGb2pwQI82VdjvApH7rxnYea72j2qvKHCqzzAnBm9LFwVPY8fBD3oi9+7WYYUvAi+Cb2narS8z1xEPdhZPz2M5ia8Igk6vHuzGL1XL0Y9EfFSPLqAvzxZhpQ8lHA+PU8WNjyJj9i8Ab1Wuqf3UDz0+WG8iJE0O5CqRL3SsTa96XGmuxB+bzyfUpI8dgqiOfuHsbtENVC9sYFoPBxDwDxJU4a8Xy+LPAwrWby5nNS8Ox8KvBphsbw0kMw8E7mouwstNT3k4fq8YEZ6PdyTCjwbRoq9QOK5vMQIe7xSbQS81ZNFPCEJujwgmLI8kB0oPfm9/zphn6S8p2o0PNzI6rrcrFW9VGfwO/GKtjshfB27hbATuwG91jxeSrK8ZAx0vLaesLxqQ/U8XNuGvItzQ70UnoG9S2r1PEQ3rDxveva7es6/PP34uLx5XTi7QcYkvab5rDzZV2M7ckUWPCt3vDtyKQE9FLdMvTo41Txl2IG8g82WvB4nKzzBnJm9zHq1PIQ/DL37oWo8IJZWOSoGNbzX6Le82j0qvYNas7yl+wg928hqvP9Nqzxo1Mk96XEmvNnmW7wqBrU82cyiPTUB1DsA2eu79GzFu6WKgT3BDLM8b3p2udd1VLwDhwi9IZT6PDV0t7qB6pm9ztGDPGEswTsbRZw7Gu5NvbmAPzvz4Ba9ySXDvHfujDyeUwA8JOnsO5c5grxT9ui8aEetvL25HLx0Jre8m6VjPIetyTvEYSW9HkHkO7H0S717QaM6vWByPJ9RpDzwjQC8Ox6cvD+Lazu1usW7jOTKvAy60bxn1Ek8oxiMPFGF4byKdZ88bZjnPDwcwLzRy++8jlXSvODnDj0SSKG8vyokPM/rvDyGOuY8hLGBvEWNjLxGF9+9XkoyvQEwurxm1iU7mzRcvDN3AbzHXe286HOCvNQHl7xuC8u8hT4ePC1bJz0FEsm7qN2XPMQI+7tKbNE8jsi1vHl38bxbgtw8Jc+zOwOhwbtZEzG8rKORPfbBtzy/nYc8EkmPu2dIG7wX8oU9oU9IvHeVYr1BU0E9pKLevAy6UTy772o9YUb6PLxJAz31aum7XPU/vb4sgLyV/Vo85hw0PDGuvTu8SYO9QG/WvHHRRD1hLEG8Ab3WvFv1v7yK6AK92cyiO/Vq6TzFe148BYNQvaLAzzuuhg68B/TXPMXSrL0TLIy9XUwOvaO+87vvT/28XPU/PUb+E72YNri8Y4GzPF1MDr0PgEu90zz3PPZO1Lu6mvi7umYGvXu0BjxMTuA8A6MduqWIpTxBU0G9qWjYvJIbzLtm8F48HLeRPBgMv7xYoE06g1ozvXrqVDwuQAA9elvcPAq8Lb0Wmze82T8GvNo9Kr258yK98vu9vBFiWryy8m+88vu9vTfjYj2ligG84la6vEM5CDxiKuW8kDk9PKHCKzwmtIw7x0M0PP/AjjwYmVs89ttwPWR/VzwsXYM9NnJbPDKTFr2un9m85427uy1bpzxbD3m8qcECPC9ZSzxZhhS8a7R8vGP1BLw4yak8VMGIvNlX4zwEn+W8YSzBvG5iGb2Lc8O8tbpFu+Q6JT2Fyd49vtNVvCB9C70etMe7p/dQPQ71iruV+/48svJvvXvOPzwfmDK95qlQvf9Nq7xYhwK7fiHWu6HCK709GuS7dwZqvLgp8bqfbTm8x0M0PUHGpLy/t8C8XGijPMEoyLw4yak9u2WYvJxwgzxMNZW9Yp+kOt6QwLtiERo9OckpPCc+37xDNyw8X0jWvC7MLrxK+e05G9I4vcoLijxlDPS8DZ48vCaznj0QDWg8K+uNO+gYfL0t6p88VE23PDSQTDtPFja8VkvbumhHrTsEEkk9Lz+SPFCJmT2XOQI9pvksPfGk7zppuLQ8ocKrOwUQbbuWbuK6NXS3u2/UDjyLc0M7RagzPDg8DT2hwis9yrLfux+YMjxqnB89z+lgPYCSXb1H/4E94ViWvM9cRL1Bbfq8LVsnvM92fTxiKuU8cygTvZ38sTpFptc7k/82u1/V8jz5iQ09BRJJvIY6Zr3wjQA9Vy/GvGFG+jzrxwa8kDdhO1CHvTy872o8OFbGO5kbET08j6O88RdTPMAODz2ap7+8St+0PPZOVL3BKMg8ok/IvGlFUT1huV29gs6EvJff6bvjx8E6ZfK6PN2SHL0yIaE7G1/VPHuzGDzLI2e8S+TGvL4YazwBKGq8Oir3vBYvg70GF/O7yLMnPbe2gj1pagc9TaIbvZ3A4LwsG7G8JvwdvE1zOztUIJk8FugdPWHQ9DzQeIo8Ia/UvJ6VkDwRg0+9H92KvHpnLD3K4zE8VfG4vAQWSbzVZ5M8t7YCvFs/rDu6/hG8oCD1PCB/yryKwhG9ShMnvBAkZTi1Jw69UpEkPE4V+zvWfxi9CTSyvIIo/zwfIGC8LtkFPG5Bi7z/JsC7EfkUvOsMXL1AeOq8Id40vcM2VLzWf5g8qrsxPSIOPz0ewXW8ncDgvCKEhL1DlSm9DZXwvHkIQr1iL1+82g+3vKJslDsl5Bi9EOEPvYzDuzzSA289KgICvfZJ2Dz6CNe8rktQvGtrMbs2V4M8b/vPvF7+KjylzCi9keGkPBnSbLw2+UK9qLqHPcEGSj2mKxM7igXnPIw1cbyNaQs7khEvvRGDTzwu2QW9HfBVvMb1Ujwhr1S9gxW0vD0YVrxmTcg8Cwb8vCZDAz2/SPU80ZAPvSyN5jzrDNw8YgSPu/8mwLxv+888nE2BO/ceCL2x2sQ6huuNvRGDz7v+PZs8qP1cPUKshLsc7ys8FqG4Ox6tAD3OARs9iHoCOvXq7bxFJB68jsTlvPoI1zv31yI7s9vuuiVuU7qaYEw9LhxbvRNBpDyZpge9keGkO/+0Cj0WoTi8joEQPXk3IjznCgg7yoTHvEAGtTy3+de8SFXSu5qPrDspXDI9lqHNPFqxYb21mcM8BhfzPJ8MgDu+1ZW8tMijPMj2fL2Jkge9hkboul0Rdry9diu6XeHrO7iHIj2P9O+7VZP4Oq8c8Dy/7Ro9sHvavMfKAj2l+wg9keEkPY5SsLu0Olm9kIK6PLcouDx4ZoK8F6LiPKAkBTuVccM9qgIXvXBaOrtpUgI835/VO276JbuCKP+8jlKwvOXtyLptKYY8ryCAPCBQajxvcRW9bT17vDCrTzrIs6e8FdCYvFZQI716rpE8RvU9PKXMKL3dnis74o20vK0bRrzK4zG9nvBqPLFoj7wjbSk9gCdVvUPcjjxH9ue8BefoPICdGjs1+Ji8uhaXPHs4zDsOmQC6OuehOzlZVzwQsq+8nvDquzM6RD1O5XC93BDhO3Xq2Lxivam8lEG5PCoah7wkzBM9Gr8hO309hrzMiQG7//ffvMdUPb3xoIo9FHGuvKmLJz3ZJpI8QjY/vVfHEjtuy0U9p55yPZVC47sXouK6J/1HvEbGXT31Gc68JD7JPAO3Xr1iAH87hRZePUxDsTwL1nE8YHUavP8mQL3Xr6I8bT17On09Br1qgow8WLA3Pb4Y6ztKQoe9cMxvvK1KJjyaj6w8gJ0avYoF5zwPyYq6RAyZvMM21Dut7GW8PqYgO2UdPrsbHow8g4fpOhh3kjwO9No8XUBWPMoSErxmkwO9TLXmPC7ZhTwHdt08sjmvPBqnHL3o2yc88KCKvLVqYzwiDr88pOODvGOOST0NOhY9hLdzPJdybTya1hG8vEahu9w/Qb0/1iq8xGbevEb1Pb2J1Vy8Nmt4O1BhmrqtG8a7sgpPvTMLZD37fhy6GHcSvXZJwzwsGzG71SAuviD1j7w4Kc276wzcvID49DoNxNA8Nmt4vbQLeb29dis8Kbucu/NfibxMtWa93Z6rvHkIQj331yI8XRWGvJrWkbzLQhw8mo8suymjF7ypzny8Qja/PGK9qT1k7TM8AMn/vFgibTv4eWI9Mqz5vJCCOrvJ+gy7nk6rPOO9PrzBfI+8qdKMu5DJHzuAtZ89IFBqvJWgozsHdl28bZs7u2Nf6TzgXSo9lXHDvA3zMDrZJpK8OPrsvGIvX7yqLec7AbY0vVrgwTp1eCO7OuchvXDMb70gf8o8xCOJve9wALz3qEI7XUDWvBth4bxdzqA8CXuXvL/tmr0XomI9MCGVvCQ+Sb2Yovc7pyuTPUKshLv2vx09p81SvcWW6Dymbug8gfwEPJkBYjwt7NC7+WYXPegefb2jDlQ7emcsvKadyL3o2yc9MmmkPFdRzTwJNDK7DcRQvOyaprxRwAS9fm0QvcizJz26WWw+x8oCPab8srzlexO9+92GPV7+Kr0t7NA8Jp5dO6ENKr1Oo0W97OGLvBmPlzzorEe8NGrOO7Gr5LzvcIA87imbvOV7kzoVE249q4zRPCxiFj0igPQ8agzHvMM2VDyNaQu7X89KPWa//TzzX4k9SSbyvBZyWDw9GNY8U8EuPXs4zDxl7t05252BPX2Y4LmhUH+8vXarvJ7w6rrJ+gw9MwvkvPz1i7yffrU8Gx4MPcWW6LxY35e8oK6/vDsXLL2ougc9x8oCvOH/abxx/Hk95kwzO55Oq7qNlFs8pyuTPB5PQL10i247ZR2+vAEoaj3oIg07t/lXPDsXLDt6rpE8MQo6vYIsD7yBFIq8E4T5vCKEBD37Z8E8qYunPRzvqzy4WEK7Z6yyu0iEsruNlNs6igXnPNuxdj2W/w29tlcYvTlZVzoiPR+9gFa1u1PBrjypXMc8k3CZPIqqDD1T8A49+5ahPEVrAz0D5r68Xi2LvNIyT706Loe8OJ+SPL12qzy7uNa8BhsDvb1GIb11u/g7MttZvecKCL0ERSk8Kl1cvYTmUz2G6427t/nXvDq4wTxBqHS78uiZPMMH9Dsve0U9QWUfvQs1XL1sEYE8lecIPZ3A4DzX8vc8LXobO0OVKT16low8eXr3PCQ+yTuB/IQ8OJ8SvYC1n71zMJQ8xfQoPCvrJroG1B09UGEavC4c27zmHVM8tGm5PC4c2zz2vx28zRRmPfrFAbxa4EG90WEvPXd5zbzyuTm95h3TvBgBTTxgdZq7OrjBPC4c27w/p0q9SkKHuk6jRT32SVg8KS3SPLbJTT1kNBm9Ze5dPNiAQrw6uMG8SFXSPEI2P71uy8W7AeWUO08CMD2O80U9npWQvJbjeDyYone8pQ/+unKKRD199qA8qc58ux1OFj3ijbS7jSImva+qujw9jhu9+HniO+jbJ73agWy6t2+dvHHoBD2OxOU8aAudvU1zuzzA1j+6hqSoPL1GIT2HpdI7pisTOk3pgD2tG8a8XnBgvZ7waj2jPbS8VZP4vHDMb7vqrXG84l5UPeO9vrxSYsQ896jCvEAGtbzUwUM8SSoCPfeowjvgoH+7wQbKvO+IhTuNZfs7OPrsvAvW8bvUM/m7Alj0uyO0DrsOmQA9fm0QOpXnCL2Qgjo97OGLPOkLsjxfXRW9DvRaPUjLF73NQ8a8eq6RvCwbMb3WULg8C9ZxPAJY9LzPGaC8BXWzu6iigrwWQ/i7vtUVvSQ+ybsXomI9AJ0FvBzAyzzXlx09cStavddQuDtTM2S8hgOTvOyapjuJ1Vw93s41PKmLJ7oQJGU7ZnwoPEnjnD0igHQ8eKnXPBzASz39JZa8f8jqvIBWNTwPgiU9/A2RPD1HtrxsEYG9FnJYvRgwLb36fpy8FugdPH2YYLw/1iq9a7IWvQPmvjwf8f88Wm4MOxKzWb2lPt66u+c2PEaDCLxCB9+82lYcPSTMkzsJBdI8JW5TO8oqFz3YUWK8MttZvdevorzA1j+9KM7nvIoF5zu/d1W9TtIlPbIKTztfRZA8SbS8uv2XSz0YAc08/ZdLvRAk5Ty4WMK8TEOxvIfUMrxWUKM8+2dBu+BdKj2we1o8zqKwvLf51zvNQ8a8/WhrOiBQ6rwYAc07/DhhvUTFMz0S4jm9ELIvPYUWXr1/yOo8s2m5O+DP3zw04JM83lyAvAXnaL2ibJQ8rezluel957oGGwM8WYFXu2oMR7o7ieG8FugdO3cHGLxyW2S9AFfKPOH/abxyGI88nJBWvQSMDr1nHui678taPD/WqjwX0cK76Hw9vKAkhT0fIGC8fN4bvLsunLxE9BM98YkvPLu41ruw8R+8ECRlunKKxLt42Dc8koNkvYVFvjxp3Lw8ijTHuwcziL07iWG8s7AePMlV57wn/Uc9vqY1ujouBz1SkaQ7SMuXusq0UbyWccO7IoQEvcy5CzvkS4k9mKL3PGceaLzRYS+9pRMOPL12qz3bnQE8FgAjveCgf7yd78A8o4QZvXfvEryqLec8tZnDu0PcDj3MuQu9/vY1O2w8UTtdEXY7lqFNveCgfzztyrA8copEOxdfDTy0Otm8dqgtPTYoI72KBWe827H2vToq97sXX428HO+rPH+FlTvZsEw8Y45JvOGkD71uWRC9khEvvek6Er1z6a483p9VPWo7J70XXw29eKlXPBahOL2hUP+8+ansuu2b0DzSA++7TEMxvNLAmTu5KWK8UpGkvIGGvzovCZA8VlCjPF/PSrxOFXs8CzXcPJPiTrxD2H48zRTmPB0ftjxd/QA9Fugdu/CgirxuQQs81lC4ujZviD0QJOU7TBTRvGvdZjwCh1Q9rZELPKENKr3JVWe85b5ovVWT+Lxu+qU8FgCjPEB4ajwUuBO8maYHvdORubrV8U29OClNvM5E8LwigPQ8j5mVu7iHIj1mTUi9fZjgvPg2DTwNlXA82IBCvSANFT3eXAA8OVnXu/5VIL25KeI8F6LiPP1oa7tMQzE7pfsIvczkWztCxIk7y0KcPAhLDb3rOzy902JZvMLX6bu+GOu8ne/APGB1mjt1vwi9tWrjvCoCArx0SBm9ffagvcsTvLzP0jq9IH/KvHDMb70HBKg78dAUPV3hazxJtLw7GAHNvLiHIjqBhr883UBrPAG2tLr16m08u3WBPITm0zyuejA9hLuDPQ5qoDyk4wO95e3IvCvrprxsypu6+5YhvdAxpTycYXa8WVJ3vDAhFTyW43g8jlKwu9ACxbui3sk8ZZODOXaorbwIpue8Vq8NPWZNSDtuy0W8sgpPPZCCOjyvHPC8HfBVvLoWlzyRssQ7QU2aPHl+h73FO448/A2RvDYoI7w0as47sgpPvQW8mDycYXa8ullsvBh3kjzM5Ns8FnLYPCKEhLwV0Bi9yPZ8Ojrnobx9Ofa8T3TlPZ9P1bz0dw49XJ4WvWAuNb2wTPq8i9qWPH3HQL0f3Yo899ciO9kmkrxV8Ti9chiPPDZreLzVkuM63W/LOzI5Gj1UY+48X89KPIIo/znaPpe95qudPKlcxzyk3/O7GWA3PQHlFD0OIzs7mF+iPBOIiTxMQ7E8fvfKvFEyujxnrDI9Y45JvGMcFDyW0C27iHoCPe9BIL1Nohu8fJc2PV9dFTwSKR89KbscPPD75DoJBVI9WxBMPTy56zwXouK8CmS8PIXn/bxe/qq8vtUVvTj67LxkvlM9ViHDuxNBJL1qgow8AMn/uearnbxSkSS8ady8PGD/1LtKWgy9CNXHunPprrwGGwM9BefovPAqxTuo/Vw9+alsPK0bxrvBeH88PkjguwV1M7xS2Ik8oTyKPGqtXDyqLWe9O0YMO1kPojvkX/47u+c2Owd23Typ0ow8SbS8PNUgrjwaAve6KS3Su3wlgTxu+qU83W9LPHJoAzzLB+E8MDIbvTs1NL1/IRm85QWRvRGdS7zDKy09t1d7PCwPd7u7Gm+9aVdFvarxnjzjCdK8fbTxOfAVoTzEgXm82y2ePMIvbjziQh09OOMovYQcKjnyvqY8tgEvOxIONDxLQNW7S7G9PC7tBr2St5C8bfwJvcVFmzzqcQq94mDMve1SLb0uKeW8+YBsu7RYKb3kero7IV8XvWtxszpK6gi8GUFiPK2nmzzBhmi9oZeLPOKzhb2gGay8fyEZvLiqtDuRGwK9ZHrjO5wrEjzodUs903yQvN8oL70+Ftc6pemWveKYab2Rqpm9DRMjPNj5QTzTVP08qEzavK7SQbyvwQk7WqJwPbJC/DzrVu48AQMTvZLEh7xBHw09OzW0PewnB70erVs8qYT3O9L+MDwlTbE7nCsSvMSBebxPkuA8glk2Ox5W4TyOoWO7erUfPOPrIr3tw5U8M5VevNCspTsYIzO7tgEvPMLzD72ABn28+ynyvGHfgrzDSdy8B1RwvMt4STtOWkM89o6RuTarC70Almu8xdQyOzxtUbwM+TS9yGwAvfNnLL2g/708fz9IvHQRiTz6C0O7GurnPBPVaDxgYSM9hByqPJUnS71R/we8WMFNvEaLhrsGHNM7aeZcPFVvQjt03P483NajvMrPQ7vJFYY8FDUZvSxEgTwyBkc85PiZO9j5QTyJNeq84WDMOlZeir08bdE84phpvJLEhzzH+5c8ngP/PHQRiTx/P8i8XQ8YPIzaLjvNIU88R7YsvH0lWj1vpY+9frRxPcm11bwHxVg7ZgU6PIHKnjyQDos8uTULPTcB2LvLlvi8T1aCPe6KyjtQ8hC982csvUOCUDsWTwc9Zc0cvc/KVDxSN6U89yogu2RCRjxcLce8FUIQPQRzzbth34K81d9TPVJVVDwaPSG9sgaeOrzekDuCc6Q8PsCKPYHKnjxJXzI8Vl4KvalImbzimOm8GCOzvBBlLr0xXUE9G7uAPRtXD7193AS8L7S7OS64/Lr6fKu7ALDZvDn9Fjyq8R48e7UfPeJCnbzRxhM9wdkhvEV+D73XiNk8aB8ovQ3A6Tr1EDI9Y9FdPOfq9DxFfo88gwK8vPbX5rwuC7Y8DYSLvEJo4jzv0Ay9qvEevdzWo72f/729dWdVPSl0Fj3jCVK9kdU/vCOobLwiir07X8WUPBx1Pjx4Kkk9fO28PeKYab1rcTM9gcqeu2g91ztRjh86kUaoO7pCgjxcc4k8DYQLvMDZIT0+3rm8lLbiu5PvLT2EyfC8YA7qvNN8EDyMS5c7XtZMu3hwCz0qKhO9uFd7PWiQkDzM6bG81IkHvfMUc73VUDw9C86Ous2w5rweDQw9SuqIPVyer7zcZTs6EZ3LO+iTejuL3u+7jMDAupS24joCWd+8oxj+PNAqBTzrVu6818Ekvf5Mlru96wc820tNO1H/h7vt4US979AMPDPoF7x5SHg8uMjjPNq8Nb0NhAs9Qvf5PNVQPDw0IDU7TVpDuzJMiTyeRQA8h261vK2nG711uo69lEV6O4qm0rx4cAs9l19ovDjjqL36fCs9Na/MOioqE71KeaA8AZKqO6IzGr5WNve8/c42PfWBGr1Aoa088IYJu9BZ7DzJFQa9HGQGPUNkoTx4SPg7anX0vKcuK70Y0Hm882esPLJC/Ly6QoI82ktNPUK7mz2MaUY8gM7fvJFGKDtZvQw9ouDgvEFoYrvHXwk97cOVPGeDGT05YQi97vsyvXi5YL0qSMK8GurnuW0auTvVbuu8xIF5PLM+uzyVeoQ8Cs6OPCJsjrpRyv08M3evPeqPuby5xKI6Y7MuvfZm/jyD5Ay8bDhoPKnXsDtCLAS96R5RPMO6xLy+bHq88ZOAuttp/LwAWo07jjD7PHMvOD0gUiA9/T8fPDxtUb29Fq68Of0WPTPol7yOZYW8Vqdfvf5dTjzS04o8aD1XPMrPQ7ylFL08OWGIPGNgdbzahBg9aB8ovLBqDz1eHA+9bfwJvQGSqjtFcZi9hjaYvCmfvDwDHYE8vRYuPZwrErxIDPm8VYkwvFDyELravLU784VbPg86iDwwQ9O8ASFCvfCkOD2dA3+98zwGvXW6jrutGAS9d/KrvNZua73VULy8PmmQPdfOG7zkejq8N5BvPWd2orpoPVc776h5PNVQvLwq11k8O6YcvaKkAj26QgK8Ybdvu0548rxV/tk56JP6O/e5tzyMwMC7jmWFO6y407z8Q+A6bgkBvY34XTzDAAc94X57u0PVibx87Tw9pGs3vGGZQLzKsRS8wEoKPKKkArt5fYI8xn24vEuxvTzuisq8IhlVvU3pWjqhqMO8SH1hvJCdorw0PmS8aK6/PKA3W71eR7W86gCiOysqEzxqRg29HJPtPNyDajvHKv88WoTBvJytMrxNy6u8A+j2PBl5f70TRlE6MT8SPfTYFD2lFD09/V1OveauFj3AaDk9H6kaPf5MFju7bag9p58TvFLGPDkAWg08mFsnuWEKKTw0WQA8cPvbPFT+WTlj0d08OapdPYSrwTx87bw8eJsxvN8OwTxViTA9ZVy0vEC/XLwdj6w8neXPPO3hxLz5Yr24kreQPJe/mL1nzO68F3otvHDdrLxuUlY9yUTtPAqm+7uPARQ7aB+oO59wpjyZsfO8Poe/O2gfqDxXo5481VA8PJutsjwGHFO8ddg9PHQRibwkM0M9/LRIvPjxVLsxe/A814hZvJK3kDyxdwa9ZtoTPW7h7bzIRO07z8pUvCSkq7sCWd+8DzoIvchEbT2qnmU9JU2xPGTrSz0AsNk8sZW1PBrMOLvmEoi94+siPWYFurzIJj6990jPvMGg1jw5YQi7XC1HOgIQCr1D8zi8rrSSOsD3UD2yzVI9zZI3vcab5zz6C8O8ueLRvMgID7uKptK8ApIqvLS8mjwqjoQ81z8EO2gfKD0tuHy6vqGEPH0Hqzx87bw8O6YcPVA75ruf/z09SF+yO4WNkryHbjW8kfNuvRR+7rpRrE69CW7evD92B722rvU8bRo5PXtENzqUnPQ8/V3OPP3sZTzDSdw8sSRNPO4Z4ry2AS89rSm8vIAGfbyzr6M9AFqNvHvClrzaE7A9NM37u7LNUj1V/tm6Gq4JPbS8GrlLeSC8+ylyu/WfST2LT9i85ZQovHZn1byw7C+9e9POOshsgDxXwU09rkMqPZh51rxp5ty8o8IxvOJPlDs+TyK9j0rpPGnIrTxhmcA88IaJvbk1iztit++8coYyvPp8q7otmk29x/sXPUNKsziHQ488KRAlvWf0gbzwFaG7WmrTOi7tBr2mAwW9+0NgPcVjSj2+vzO9kWTXPFrKA7wLap28qUgZu0PzODwJUK+7VgcQPfAVoTxxW4w8BHNNvXi5YDxFuu08nx3tO0h94TvcZbs7e7UfPUWcPryutJK69PbDPB08czy83pC7fM8NPZ3lz7yTfsW8OOOovNLTijzGUpK8uSiUu7iMhbzsJwc9rJqkOqSJZjtSVVS9ucQivesakDuWJ0u8TnhyvdpLzbxg0ou8TCKmOy58njyt8HC83w7BPKqe5byGNpg7glk2POiTejtRrE69OTn1vLiMhT0KwZc8AllfPXvTTr0EVZ66A6yYu1dQZbsXeq08EizjO/GTgLzd45q8yJemO9IcYLxyhrI8iewUPBVCkLoAWo28kRsCvfCkuLyLMSm8XUv2u5ABFL2+oYQ9tdYIvc0DoLxokBC9NHcvPBsEVjwyTIk8AZIqPalImbxtOOi8Ct9GPCJsjjyRZNc7xgzQNxPVaDydx6A8AGcEvfMU87y2AS88QDBFvcHZobwmLwK9l0G5PL3D9Lye1Je8Cd/GvP8G1LtzBBK9EeONvAGSKr367RM9BMaGPC24/Ls8s5O7kfNuPfjTpbwS8IQ9Q/O4PHfyK70IJYk8e0S3PNQYnzwP2lc9qdewum6pUDwsRAG9gtcVvGZ2orydx6A7k2AWvZHVPz0BsFk8jqFjvNdqqjyRRii9RmPzvPGTgLxjQkY9X/A6O+3DlbxsOGg9VqdfvErqiDxNoIU8jGnGvIE7hzkdABW9Lbj8PMPYc736fKu797m3Oy8lJDl60843bRq5vUyTjr1VGMg8R7YsPQwx0r38JTE9RivWPNf5wTyStxA8ZT6FvVWJML16Jog68BWhPJEsur1Av1w7eRmRvIzAQDzFRZu87P9zPDJMCb397OW8s68jvDw1tLyCIOs8zOmxu8zpMTsYBYS9QiyEPG0aOT0pEKW8py4rvEYrVj3BaLk8vRYuvctArDs3ckC97vsyvf9ZDbtJQYO8DiAaPPTlC73eLPC7nFp5PBcn9DzUpza9Rpy+OnxeJT17C+w83vARPVb6mDzwM9A8ye3yvO/QDD2yXGo9dbqOPFVeCrsuuHy75+p0PZ8d7Tx/sDC9hlTHu/YuYbwWYD88fz/IPPGTgD0vJSQ9KPY2PN9G3rwaef88ueLRvJIbArzjCdK7SnkgPbBqD70qECU8oxj+vBVCkL0AP/E6dbqOvF30e7uib3g8l9DQPOKYab2uQ6q8Gnl/vBgjszy9w3Q8Hg2MPYffHb34KiA8c9x+urTJkTy6QgK9xir/u6/srztcvN68L7Q7u9Q2Tr1Rjh87D9pXvJAsOj1s75I8XJ6vvH1rnLxVibC8shOVvPyWmbxcS/a8qlWQOr89E7wqKpM6d/KrPHMvOLpxpGE8CBgSvDfn6bzX2xK9F3qtvG4JAT0ZQWI9eiaIPBgFhD01kR08q4C2vFcytjr40yW9ClCvuomIo7xZ+eq8/bTIvOCmDr0kM0O6LnwePY4STL0hX5e7VI3xOe4Z4jve8JE8u22ovN/VdT0yJPa8VvqYOwSsGLy4qrQ8sZW1vVKbFjw7U+M8pU0IPQ+D3boBsFm87KknPLiMhb3vqHm9k+8tPTE/krxEEWi6a3EzvCoQJTyR1b+7cPvbugIQCj05OfW8OOMovWaU0bwf5Xi8kJ2ivPTYlD07ppy8LDcKPQwx0rvLXls7F08HvJseG7w+h7+7Zc2cvNAqhbw1zfu8lLbivGQxDj2gN1u8XS1HPIuiETxrcTM8lLZiPWQxDj0i+6W81z8EvYfFrzt4Ksk8Cs4OPYHozTvv0Aw90CqFO2GZwDy7Gm+54JmXPJfQ0LwUfm65MpVePdFVK7vWMg26CcEXPaGXi7zbnoa87eHEugTktTutR2u8vpQNPZNgFryv7K88MLS7vMD30LsJwRc9ZgU6vVv1KT27Gu87YNILvfLc1bwsYjC9lzABvNpLzbvRVau8XPUpPN+dWL1GK1a8yLVVPIuikTts75K8oqQCvQRzTTsla+C8KtfZPB4NDLyo23E8KGefPMKCJ70Ysso8k8QHPSxisLxEcRi9fM8NPURxmDzrx9Y8sQYevZQN3TurD868ZEJGvGGZwDsgcM88CDbBPE9Wgj1BHw09sWoPOuT4mTx1uo48huNePK2nm7yYUYU7+wj9PClEK703h6G8CRpavFdkVr0nWSy9WjpUPRw2Dz27a6s5xNCMvC03Qb0g9Mo8dTn0vFykiLzaK0g9EGIju7jKhzx+oRa8sZoAPEs++LtnxGQ6416QPA7b1roSTSI8C9O/u1IiDz1bUha8OyuGvAodG70sGik8zIQfOx3ss73QPQW9r68BvRJNorwE2BK9B66QvFd8GL0duho8RGDju7UO4Tv9wWI8GjNOvWTUDz37pMq85EkPvS2bc7x2B1u9H9cyvJdmhjrm5/E6F11QPaCzpby1DuG8JLVHu95Qd72zope8GPkdvYT7n7rx0x+7kfF5PUFwDr2AV7u6ThT2u+eDPz3P8Gg8g8kGPaXg67yII5A8BCdEulxXbD0k5+C8lJXeO5E+FruZbh08PWU2vCPNibyTW668BcORPXAsB7ytXQ+8aJJLPCWDLjoTOKG9GGARPDYA1bsbAbW8doYQPCSYrzo3COy8QVjMvMYKPbxNkyu99ca1vIB0Uzuv4Rq9G2VnPHEURbxFEbK8vlYqPMbYozt3wEA8Q0NLveDXw7sYYJG8N7k6Pd0BxryuxAI9dLgpvARZ3Tz0+E48vw8QPdTOfT04pDm9dOrCO6hnOLz50Q28HOyzPEV9+zvpPCW8P4WPPYgLTjyjiSO8VMBxuhRVOb0NDfA7kT4WPJk8BD1ZACQ8jDD9vB7XMrtvKca9B0cdPTIqV7ubJMI8KcV1PbHpsTzQvs+7bCGvvGp9yrsaZWc7vsJzvKVfoby/doM9876evacYBz0H4Cm8oALXu3Ykczzn0vC7Hlh9PBIbCT3poxi9lEatOijadj3QWh079wBmvYdS6Lx5eSa84Dt2PJGlib1LqKw8Z5JLu9/sxDwJMhw8TsXEvHrIVz3FPFa87WHUu3L/Qz1cJdO7ivZMvW9BiDwwJYG8HFDmPHtHjT1Vq3A8vnPCO9mP+rz7h7K9461BvfLwN73eBIe9KcV1POm9bz3IkYm8+WoavAXDkbq1vy89ADSuPOKQqbzbFke7hyBPPAJUBz1RuFq9cjHdPF/70Dyl4Gu68iLRPBSH0rz3TYI8pnw5PUrvRrq5ssW8/npIPNHG5rz6h7K8HR5NPObNGjz6vIw75ZjAvKxazrkAtXi9fyWivVDq8zyT3Hg8PZfPvNsryDxgLeo8yeA6vCL8YToVihM9D/juPAKgdz0PxtW8QOyCPO/ooDxS1fI7ZDuDPE6wwzpfExM8yMOiPOpZvbx6rgC9o4kjvZ4XWLq3+d88JJgvvCuWnbxSIg88Iq0wvFK7Gzu33Ec8gKZsOx1tfj0aSxA9+DL/vL5BKb04VQi9FaRqPfics7xbCLu7v5BaPcgqFj1BcA69kAZ7O7sBd7lJU/m7ONZSu/3eejuIioO87kxTPJCiyDyQugo9oR9vvT+fZr0L0z88ZVgbPb9BKTzs4Ik848WDvE9+qjzZj/o6Sr2tvL9BKTwLoSa9Au0TPTnzajx0AgU9c071PIdS6Lwbgv87uGOUuX677bzYcmK9RfywvQfgKTyGOJG7eas/PH46ozuhniS9/30JPXNOdTw6wVG9lHsHPN9QdzykdCK+rhM0vF2PBz1Pfqq8+9ZjPAiZj7w+tOc8ivbMvNcjsbz5OAG948WDvOpZvbwjzYm9C9M/PG2ieTxqfUq8hyBPPOT88jwTn5Q9epa+u2ULf7w+Mx07npaNPSKtML20I+K8Uz+nuudRJrw0saO8oZ4kvcJ+mru7ncS8lEYtvJzdJzn93nq6hjVQPAQ/Bj3xVGq7p0ogvLmyxTwYYJG8BSoFPeonJD3H2KO8ALX4POPFA72DYpM8rkXNuxJNIjzUzn2763bVvHqWPj0zlIu88dOfvKg1HzsFRFy9kKJIPKCzpT18T6Q9+M5MvMXtpDsBZse8Qiazux6IgT3IKhY7yi/su+qOl70wVxo9vKAFPTMtmDztYVS8v3aDPRVyUTxolQy9nSzZOsAsqLynSqA89fhOvWpoSb3x0x896IaAvQJRxjx2hpC8lk5EO8iRiTwSnFO8/SsXvEmgFb0qYUO9tQ7hPBKcUz7Uf0w81ZxkvJlrXLy1vy88UTeQvGu3erqd+r88r0gOvf99Cb0pdsS8p8tqvEGKZT0y+D08GeScOdAoBD0xP1i8MHHxPF1C6zypUjc8bVNIPMjDIrxpSzE9LU+DOWl9yrypUje9i+HLPOcfDTy4Fni5wwKmvCdZLDvF7aS8YumQPAM8xbwrflu7g2ITurYOYbxe3ji811VKPTfulDtSiYK5s6KXvEFYTDwt6I86hPsfutldYTxjA+g81gaZvGcRgbw7jzg7qVI3vXpHjTxYZNa8XKQIPYNiEz2UlV69ThT2uyio3by08Ug7gaZsvBRVuTvntVg8an1KPEL0Gb1a6yK9SaCVvF96Br04VYi9+c5MPVR0AT3zvh49urJFPKlSN73xVGo9/d56PUfnL7tXZNa7QQmbPcgqFjwEi3Y7jUuAvBjHBL15D/K6HIL/PLbcxzy0CYu7mFGFPA/47jylw9M8Z8TkPAV2dbwDCiw9KcX1u87WEbzO1hE9x9ijPF+sHzx4jie9X3oGPBYOnzu1vy+9fjojvV/7ULw6wdE8E58UPeluvjxDdWQ8YwNoPH5svDrvaWs9sh4MvWXuZrwl0t+7NgDVu1gyPTwKN3I8vYuEPBlITz2YUQU9YlCEPfO+njvQWh28nEHau/8WlrrKy7k8BSqFvAYSQz3N6xK8KcX1PINikzx5jqe89RARvZG/4Du6z109wkwBPQgyHD1So1k9FqTqPHB4d7zDaZk860S8vOpZvTxV+Ay9ZSaCvcXtpLxlJoI8LobyO8XtJL3cshS9cRRFvFvWITydyCY9juliPZLceL33TQK9xbuLvSSYr7xy/0M8fqEWvEZLYjxhGGk8rzDMPIwwfbwqeQU9r5T+PEkHiTwpRCs9g8mGPbtrqzzCNL+7i+FLPY3MSr2Mr7K8ovCWO3btA70x26W8EOPtvFwlUzw/n+a877aHPOmL1jxTccA84pCpPNPj/jxwRl474Dv2POEMHjwXK7e8diRzPUe1lrxVXD+7azawPVKJgrzSd7W8i/mNPaWRurwo2vY8yeA6PJKNxztNk6s7wGGCOQGDXzqAdFM9gRAhvSZuLb3KL+y8eMMBO8y2uDzy8Le8vw8QPSioXTx/JaK8Ixn6vKtvT7wAApW8tfSJvRM4Ibx7ZKU6LBopPYP7n73DaRk97OAJvddVyrz0jAW87BKjvGlLMT2sWs48gXRTPEgEyLzKfAi7vnNCvHQCBb2vSI486W6+vAbgKT2bQdo820hgvA/47rvUzv28+blLvJUxrLvHpoo8UtXyO1rroj0wDb88vIjDO18tar2DLbm7v15BvHL/w7uRv2C7odA9PLX0Cbvo0nC8QnAOvF+sHz3FPFY9cuKrvDLGpDxQaam8d8BAPFgApDy0Bso8DNaAPOEMnjyUld68bgyuPHyBPb1YFSW8nfo/uqeZUb2K9ky7jUsAulfjC72KxDO8aoALvf99CTsbZWc8ahkYvZZORDyBkeu8eY6nPBYOHzyK9kw8HG1+vL29Hb0pRCs9dqOoPHIx3TsDCiy9461BvLUOYb1EETI7ivZMPKlnuDzXI7G837orvEV9ez10AoW8K37bPGw2MDzke6i6sP4yvHiOJ70KBdm8ONbSu0L0mbzlZie9bCEvPdr5rrxpS7E6jwZ7veKQqbyWZoY9iAtOPUe1FjxMdhO75cpZvXBb3zwNjKW8aUuxPDBXmryGAzc85fxyPVNUKL2/XsG88TqTu9zkLb3ezyy9XUJrO+DvBT0wV5q8nSzZvAo3cr154Bk8MdslvRK0lbwkBPm8f1c7Pc89hTv93vq89RCRO5nVkD08FgW89wBmPa5FzTwloMa807HlOzjWUj1f+9C64QwePdlDijzxOpO8IS77vOx5FjwI/cG58tMfvGtrCr3h9Ns8qqFoO8Zu77xsNrA7KmFDvcv9UryqA4Y6bLf6PNPjfjyelo28DYwlPYooZrtrBJc8g/sfPVBpKTylX6G8Z6qNvI7pYj0v8Ka8uBb4OnIxXTxRm8K8ikX+PJskwrwv8Ka9R+evPIKRazxPs4S9cWP2PJb/EjxlC/880Iw2PDXOO70EPMW73LIUvSbv9zycD8G9u2srPY9Tl7zKFZU80ayPvDnWUjx5D/K8RhnJvEnSLr1UdAG9E7lrO9yyFDzQvk88Nc47vTUAVbvaK0g7wGGCvTsrhrx7Moy8F9yFPG1w4Lus2YM8JVGVuy2bc7wt6A+7g2KTvFUqJr3LmaC8GzaPvBZAuDs6wdE8qu4EvZay9rs6XR89MakMvNacZD3nUaY8fIE9PN9Q97zt/SE9qYTQPLW/rzwcnQK9CjdyvN0BRj1Vppo8TfddvXQ0nryxf328VI7YvBtlZzzIwyI9IPRKPV0olDwSTSK9S70tPYCMlbzbFse8Sj54O9879rs2He28YukQPJUxLL1PzVu9OdmTO9zHlTgu0w68c80qO/rW4zuzVXu9aUuxvOk8pTxokss8xydVPBcrtzx0mxG9iQ6PPPaxtLtL8gc8t3iVvIkOj7xcJVM8IsrIuj+FDz0FKgW9M0fvPDSxo7vO1pG6iShmPLaqrjw9ZTa90hMDvItggbz6vAy8lWNFvS1PA7t8TyS9ZVibO3bVwTwTnxQ7bDYwvLHpMTzKFRW9AlHGvMmuobxQaak8fqGWPH8lIjyDyYY9mWtcPNzkrbzCZti8VHSBvS4FqDz9XbC8HglMvKxazry4lS27s9SwPFNUqDzWnGS9HqWZvFGbwruFtIU707FlPBUjoLyCQjo9Ky+quum9bzs0saO8V3wYPfbGtb0ssPQ85EkPPXrIVzzA+g49ZO7mvIgjEDyxTeS8wwImPIF3FD0zFda8BSoFPFgyvbx9bDw84aWqvBAwCrukQok8RjGLu3btg7xPswS9P9F/vMMCJr3BF6c9lk5EOxUjID2elg290Iy2uylEKzsBg9+837qrvDMVVrtf+1C9BCdEvY2aMb0oi0U9rNkDvSyBHDyYB6o7zOhRu0vaxTwKBdk8qoeRvHBb37wsTEK8y2cHPbDMGTzYQMk8sekxPafL6jxXZFY90pTNPOPFAz2xG0u8J1msPHuzVj2WTsS7QOyCO84Faj1Vphq8qbZpvE0UdjwZ5Jy8Ek2iu5pZHDx42AI70cbmPIx9Gbl9HYu83QFGPYafBLzz27Y8n7MlvQvTv7ypUje9rNmDvedRprwzlIs82Y/6vPdNgrtRNxC9uk4Tvf6SCjv1d4Q6semxuxd1EjyO6eI5ncgmvZ0vGj0QRQu8cheGvODvhTw1AFW9aUsxPUccijzm53E7pNjUvDHbJT3jxYO8qbZpPCWgRr3nUaY828eVvMy2uLztLzu9w4NwO6eZ0Txg/hE9ErQVPa0oNTmZ1ZA8+ryMPBplZz0yEAC9v2Pyu/WkvDxZ2XK8rTmTvN3kSL2bNra5qHRkuyRH2TyMPHI8W/M8vDhkgL0eKMK9HsqNO19rOzyLor65/f9SPFUDwLyIKsC7pJ6xPPvybTxVA0C8GdJ4u3OzsDxiI4W8g6XcPGFB7jpk/QO8kv3UvKEmMzu1YcO7IaDAvKqOLrxCyC+926wVvPYCcTy7gFq8OQKAPDZXG71LX8W89+A7PYcujLyJagu9fRssPWGFBb2O66K6bFgavBkWEL2kzcu7J79XvenEQr0BhbY8OWA0PFBTjj3WiTK90DuBvfopoLzL6YO926yVvSFxpr3JrYQ8Ob5oPJboBD0KS2a9OjEavJWk7bqSLG895qp4u3UeSj1gSQa9ZsZRvTqcs7srFSE9uHsNuwPwz7z0aL27MJqEvAPBtbw0Cuu81B6ZPIlmPz3IPh+95lAQPMJ9vLosRDs8ggspvUmB+juwfqs8FcDGPJtl0LytZOG8m2VQPGb16zsQ3a681okyvQjkmDx6bPs6m5TqvG4haDyKN6U8AbTQO79jcrzdhpQ64PEtPJylm7xAXRY9QIwwvdnSFj0wyZ4843aRPTZGajz4S9U8bIe0u8sU0jtGq0c9NE6Cu/L9I72nRcq7g3ZCuiKtJT1PNfg7mWADPTsLGT2t15I8Fp6RuxOERz3EiqG8Z9O2PP9MAz1S6XU7B3WzO6u9SLy1v/c76vNcvQ+hLz1at7273Ab+u5L9VLyXsdK7kCciPZgcbL25qie8Bpfou6T8Zbv+amy8G99dO2//sr0ZOMU8HihCOw2YFjzWibI6gaCPu2NO07xRIKg8kv1UvPvybTx+xpA9zSE3u9fFMbs5YLQ7KqoHvcRbh7wMh+W8U8sMvLnmJjzgi+E8cdXlvI5J17yt15I971YLvbW/97z1pLw71HxNO56yAL3GNQa9pPxlvP7dnTwur9Q9skd5PIS2jTt1Hkq9mODsvHYrL7p9td87j+uivW/QmDtzszA9FcBGu0VArjv1qIg8MCdTPHNA/7thtB+9ZFs4vY9WPDoZeBA9+ikgvd6GlD2lDZe7qr1Iu0ZNkztt8s24se0QPQtLZjyI+yW802/ouzbotTyY7dG83/EtveCLYTt8Ska9MdaDPLyNP70fBg29dR7KvDGSbL1atz09OY/OPB6G9rwZdES7iwBzvGDWVL33goc79uSHO9/CkzzHAqA8jA1YvchtuTy1v/c7bLbOunf0/DzZX2U5EndiO9xKlT2e3c68x2DUPHPiSr2Iv6Y8RW9IPWDW1DuaWOu8E1UtPM7/gb1obWo79aQ8PF48Ib1IiRI9OQIAPccxujta9wi9vwmKvYjMCz1mxlE8cC5NPHx54Lu5c3U99AoJvQQsz7tFcxS869EnPDypGL0qZnC7SSNGPenzXLwiC9o7ktIGPWb1a7wxNLi67kmmPPopoDwzn1E9YOeFPOXhKrwFMBs9LcAFvbUDj7vmqvg8ycvtvF1e1jzjMno9EN0uPdGmGj1dbwe7z8ybO0JVfruM0Vi8pNEXvXJ3sb3nTEQ93RNjPFJcpzxsWJq8pquWvesvXD24e408QwSvvBViEjywrcW7NlcbvpFjIb3Kep66CYKYu5lgAzwYZ1888ltYO7uA2jxAXRa9WHu+vDA4hL2y6US9JBg/vVvzPDxjH7k8QYwwvLxeJTwzn1E9yG05PZHwb7rQmTW9mMKDvGngmzxnpJw7hYMnvJn+gjvSFYC5QzNJve/jWbw129C85eEqvd21Lr0wVu06DtQVu8NOIjy78ws9gFz4vEC7Sry8jb87UovBvJeCOD2++Fg8mL63u+5JpjkD8M+89+QHPcrY0jtv/7I80GobvB9XXDw6+uc543YRvRkWkLwZeJA8aj5QvRFMlDzDrFY9mWCDPccCILzyMIo9M0GdvFvzPLz7lLk8oEhovPggh7yF4Vu9tm4oPaUNF72BoI88IxyLvMXGIDzlP1+7Z9O2upCWhzz+auw62V9lPYvRWL3lbvm8LuvTPJeCuL2NryM99XWiPJJjIby2zNw8xzE6vFPLjDtRftw7lUY5vNf0Sz3j1EU+/0yDPZop0byt1xK9iL+mPSGgwLxGTRM9i3MkPRMmE71+Vyu93UJ9u4ACkDzyzgk8CiAYPJlgAzz4D9Y85h0qPIj7JTwwJ1M9Z3WCvMhtuTx6bHu8/t0dPdGmGj1H2mE877iLvDoxGj3y8D49Rp7ivOJprDzvp1o8HPAOPcp6Hj0V7+C7JpSJuyHPWj2wC/q8MDgEvXsORz3yzgk8Rgn8vDboNbqtk/u8oFAAPIhZWjtIuCy9flerPAngTDq784s8vifzPLgIXDpH6xI949RFPDD4uDsYZ986f5OqvBXARjy+a4q8V25ZvDSfUTyS/VS7tmFDPDlgtDyKNyU7JVS+vPyUubo7C5m6Kgi8Od8gSD3GNYY9oSazPZTbHz2JxPO82QGxvDYXUD2DpVw8nGkcPB+TWz37NoW8JSUkve+FJTxMMCu8ZmgdvKH3GDxmOQM96LfdPJ6yAD0Ezho9rPlHO6TNyztzhBY8bLZOu+xr27ypUq+7oBnOPDI0OD1Ljl88sE+RvANjAb0mJSQ8hbYNvcp6nry2bqg7uKonvbBPkT2wTxG7fsYQvb4n8ztN2w+9lAo6PXHV5TuhJjM9bfJNvZ2hz7xPE8O7EK4UPUjnxjwpDIg9VGkMPCidIj3+O1I7dvyUPYACELtDM0k6rxMSPcrYUr1O10M96y9cOzFj0jv78u08XQAiva8Tkrz1dSI77Zr1PMp6Hj24CFy8xcagPMUkVbvUfE29l4K4u7/Wo7yy6UQ9QpkVvDOwAr0MWEs7Nug1PWR9bbwMKbG8wtvwvA6UyjxUmCa79dNWPd1CfT1LAZE73yBIvIlmP70rN1a86fPcPC7r07zmTES7bjKZPKDqs7oqZnA8tZBdu/EfWbufDOm7vJGLPQkPZz1GTZM8Y8GEvLUyKTw3U0+8G1IPvdf4lzwwOIS8nwzpvNxKFbw82LK8/S7tO8p6Hj05YLQ82nCWvK05Ez3qBI481ICZPLMY3zrZAbG8hLaNvA6USj2FEPY7bjIZOxjakD3pyA69gFz4vDckNT1Fb8i8qbBjPbMpkLx9tV89MFbtvNHZAL036DW8AePqO3iWyLw2KIG8fRssveUQxby0ZY87c0D/vDJ0gzufUIA89+C7vDNBnbxUJfW6fRusPBVikrxCVf48ZsbRPPuUOb2OeHG8u/OLPNwGfr1wLs27sM/6vFrmV71RT8I8IJPbu8X5Br04ZIC9MPi4vBzswrtKI8Y7oVkZu/3QOLwFbBo9A8E1Pexr2zkP/+M8vOvzu4sAc7v7ZZ+8hkx1vH7GEL0WK2C87N4MOmkPNrwrom+9cC7NO0PVlD0kR1m86y9cPDJ0g7xGfK08rZP7vBTEErysm5M71omyPNEET72mZ/+8309ivbHtkL02uZu78vC+PH4okbyudZK8vwmKvUNiYzx6bPu7YEmGu0/kKL1Ljl86P91/u9NAzjxg5wW8Xjyhu4RHqLwh/vS7u/OLPCgq8Tx+KJG8rTVHvSGgQD3JrQS8Dy5+OyKtJTsc7EK94Lr7PFPLjDwxBR48fyB5vVJ+XLzOu2q71yPmvGAFbzz1daK8ja+jO6nf/bmEdkI74IthPJL9VDuzxw88OWA0u+54QDwxNLg86SJ3OzzYsrzH0wU8zX/rvEarRz28kQu9KxWhOvXT1ryI+6U8nrKAPJ5/mjzvp1o8XCLXvIBc+LxshzQ9lWhuPLZuKLmay5y83iQUvRWRLLwGObS8xFuHO7adQrwb3129Rc18PDlgtLwWkSw9N8YAvA//YzrKSwS9X2s7PDNwt7shQgy95h0qvaiFlT2kzUu9Cg/nvFKLQb34HLs8f/HevKzKrTwnYaM8G7BDvYo3JbyRY6E8DcNku+mVKD1U9to8Y/AevJL9VLz7w9M87A0nva9CrDyyGN880J2BPalSLz3OYQK8rMotO0B/SzzEubu87hoMOzoxGjwhcSY9olVNvC0ihjydoU+8TgZevFiqWDsZ0vg7cGrMvJs2Nr11wJU8BFtpvRJISDnWiTI6wUE9vSoIvDvw9Iq8F1p6vUVvyDy/1qO7b/+yuyI69LzBcFc9BmjOO3hnLr2MPHK8vI2/PJucAr05AgC8pwnLvdGmGrxO10O8HzWnPItzJDvhi+E6kfBvvEB/S7zabEq9A8G1vEZNE706nDM7zSE3PWJBbry+miS8xwKgurm3jL30l1e8pqsWPeWykDx/wsS8heHbupzYgbvKS4S9B3Wzu6dFSjxcMwi8au0AvZ3Q6bxUaYy8EhmuPPIwCr0x1gO7GrQPPfc+8Ls8Nuc84pjGvLkVQbtG2uE8zVBROIOlXD1shzQ7DWUwPDlgtDx2uP08iFlaPTboNb33PvC8Q2JjvL+nCb1tlJk7vifzPDmPTj2U2x+8CbGyuwG0UD34D1a9c7OwvKlSL71djfA8de8vvb5rij2yuiq9GNoQvaGEZzzZX2U7naHPvJHwbzxIFuE8S5+QvPHBpLw9Nmc8ueYmPF48obrR1bQ8z8wbvf1yhLuQlge9msscPYuiPr2/CYo7kZI7vII6w7wuvLk8gCD5O7VhQ7oMh2W9ehITPM3DAjyvoGC8SzArvQVsmrw7+uc7sQv6u6z5x7zQmTU8Yx85u7SD+Dw17IG8T0Ldu9QemTwYCas7MQUeOqTNy7wU4vu6IgvaPHa4fTzIDwU8pjhlPaRiMryG7kA8iPslvGd1Ar1t8k08srqqvBWRrLzUTbO7bfLNvIUQdrw/UDE926wVvS6Nn70wyR691U0zvNEzaTyesoC9qht9PXKmS7xQQl28EyYTPYR2Qjz47SC9MWPSvJ3Q6TycdgE9D//jPFKLQb2PWgi8H1dcvTf1Grz+DLg8TD0QvU3bj7lI50Y7ZzFrPEVvyDvGNQY9uURbPA/QSTv7w1O96IjDvFGPDbz3sSG8u6/0PWQsHrv+3R09dR7Ku/3/0rzWibK8y+kDPTROArzinBI77tb0u9HZAD1v0Ji8K3NVPfL9I70CiQI9G9/dOf7dnbyRkjs99QLxPNa4zLsiC1q9pG+XPDdTTz2psGM86152PUJV/jlkW7i6hh3bPFQldbpwDBg9HIEpvEw9ED36KSA9uyImPHhnrry42UE6Fe/gu56uNLyilZi8BWwaPS2v1DwTs+E7l4K4u8ESI7unFrA81B6ZPADrAj14Zy69h5AMukMzSTs1rLa6f5OqvJmPHb39Lu082TBLvZsHHL1hhQW9Vz8/PNbnZrxO10O8lnVTuzE0uDzCTiK9gT4PPSpIB72bB5w8y+W3vJckBD1RrfY7HL2ovPIsvjzW5+Y7TMpevS1RIL1vbpg8fKh6vKerFrwi3D+9aG3qvLUDD7xm9Wu9eJbIPLKLEDzgYJO8H8J1PQTOGjzxkoo8PDbnOXkw/Dx1XhU9PXLmOwFA/LuvW2e8DjsdvYo0wLy6EAG9j/aWvSlAbzwEeyA9mOKjOlO3Vbwr6E699wKFvT5TrTyZlea8eUBVvRUiTry1Xum8N73mulRKmrwMk728DCYCPFhkETwUPh89meIjvMCAvjwh92W7WaoYvdqh4btu/oG89OiNvB6cwzwmFjk8iFCRvaYuL7wSx6u7clkkvUdP+bwJunG7y0UXvS0uVj1TVf27eUBVvScrVLzk9CK9EservL5rI73oT8W8zi4ivEsMdL0wByI87D2sPCW0YLzIXAw9TNCkPOr3JDu2wEG8CbpxvZlk+rxFVi+9F1iWPEehkjyvfBQ95z+GvGNJaLzqKJE7CRxKPXHG3zwZnh09f0PXvLNJzryKlhg8cwznPKl5kjwqBKC8OSSbu5XYa7stTwO7cLFEvQUuY7gVwHU8l4DLvLsw/7wf0ou8i2WsO4i9TDw4sgM8m9vtvGEDYT3uIVu811tavNbZA72lvBc9nnMOvFKiuru2Ihq9zIbCPDKJ+LtUSpo8mZVmvI2P4jwNxCk8dkeLPDQx2Dt2Fh+9Hi8IvcUhaLziTMM81RXTOxBQODvpsR281tkDPeLfhzwBwwE9KO+EPXlcJr1pTOq8+vZyvDt6YTtIRBY9nrS5vEwBkTvvmE49c9v6O2Xxx7xqrkI77UKIvdZGPzwnGxW6CRzKvFscMD0jjwa9NjuQO1QZLr3M6Jo86igRvECZNDuS3yG7Ntm3OzAHIrx2Fh+9j6T9uwRKNDzTz0u6AtNAvPF8fT30t6G9P2jIPETDajy/HuY8xSFovGXhiLxomac8w/wNPVhDZLy6fby8JbTgPJdrMDqRfUm8vMPDPJxusjwLUhI9RQnyvJD2FjzQQ705YpYlPU/J7jzsPaw8dAGEOyNu2byUVhW8rUbMPKYuLzzHZ2+8M8//u3oEBr136g49DahYPeY6KjxMnzi9PA2mvOTDNr06+Aq9UFyzvKD6QL1TVf27G8N3PbWP1TzTicS8DMQpO4gfJT0WU7q8qHQ2vZQlqTx/ZAQ9L3TdPMtVVr1FCfI8x2fvvLI0szzbGFU83HqtPB1rVzzRJ2w83vGgvNWz+ryXcAw945LKPLSrprxr5Aq9Rpw2vVrrwzwSKQS9R0/5u3phgr3dScG8KtOzO5Wnfzwpose8PiLBPGwlNr0vpcm84erqPKvwhTtnN888KXHbPG0qEr2O8bo8DpgZPH2b9zuQmRo8at+uPLquqDs4gRc9gaUvvHgrOr3UMaS8vx5mPPgSRD3zFJ68H+JKPE2klLwRA3u8onE0PVd0ULz34de85adlPc1qcTwZnp07aZ4DPBZTOr1EuIc9P2jIvOr3JL1LXo09ZlOgu3Sfq7ynQ8q8t9XcPEVbC7xIEyq9jNyfuwO3bz0dOms8EYYAPRbxYbyJ85Q7WbrXu0UJcruAdMM7cz3TPJKuNTzugzO81qgXPQzEqTygZ3y8OLKDPPVq5LyhQMg8pZtqPTMA7DvHycc8NajLu78/Ez2b/Bq9fpAUPHtVcL0Znh291nerPDllxjw2CqS7akGHvFg4gbzsPSw9BpA7vH/BAL0zIZk98a1pvHJZJL4J6908yd7iPIo0QLzVFdM7NDFYPGHSdDxzKDg8KUDvPFg4AbrN6Bq9YO7FvJrG0r3kwza9x5hbvLuCmDyyZR88ScbsPM4uoj05ZUY8FNxGvB7Nr7uyZR89eQ9pvV13Ur032Tc8pcxWO+Y6qrx1tEa8yPozuox6R7wzz/88q57sukeAZbwRA/u6CAevPFnbBDxfvVm8e7dIPOixHb1PG4g8KI0sPdWz+rt+Ljw9NJMwvHPbejs98dQ8clmku1EPdjwVwPW89y6VPZooq7zuUke9DJO9vBI0Z730hjU9y3aDPS7yBj3wKxM7SijFu6q6vbpGa0q8ZKtAPUF9Y7yEMT69nNAKvYjuuDwTzIc8KtOzu0pZsbydcw49xoPAvLth6zue5aU8clmku2XcLD3tDMC9Q8Nqup60OT0UPp+9KUDvu3Sfqzwovpi8a/TJPLkb5Lw+IkG8H+JKvSTQMbyw7is9U7dVPpPD0Lu+p3K7pv1CPHDiMDv/Sw69bv6BuxpyDT2HjOC8zv01vCjJe7xEhxu9c9v6PBQNMzx0br+8UtOmPJT0PDrXW9o7XMSPulIEk7v2LpU7WbrXvIPP5TsF/XY8CNZCvTbZN720erq7Vl+1PD3A6Dx7pwm9ixjvvOyfhDkovhg97J8EvULfO7zbOQI95ciSPPKihjxa60M9DMQpOhpyjbv6iTc8vdjeO2l91jzMhsK8ZsBbPHWDWjvR9v+7fFVwPAFAfLu03BK9q7o9PM79Nb28Vog8kW0KPTWoS73hC5i7SOI9u2quwro2OxA8tV5pPev8gDtCcgC7UqI6PLbxLb04Hz+9iSQBPAbyE73gmYA9zZtdPZpZlz1GnLY733N3vb3DQz0rhnY9DajYvP/5dDtNUns9KUDvvOvGuLsLMeW8fBmhO0yfuLzW5Oa73U4dPRyHqDxSBBM9u2HrOu+IjztLPWC8GX3wvIQxPjzHZ288oQ/cOjrHnjzLVdY8hMSCuteMRr0rt2I73HqtO6dfG7y3pHC9LR6Xu6b9wjuEYqq6bdj4PJc6RDwC00A8onG0POLfhz1dFXo6n5hovOjiiTzt8O68CNZCPBpBIb2hD9w8RIcbPQh06js5JJs9k5LkvNd8h7umkAe9f+F+vGDuRTyKNEC9zLcuPQYjADzXjEY8nuWlOpeAy7xg7sW8Y0nouhmZQbxl8cc8z+HkPHDisD2joiA7oUDIO6Wbaju2Ipq8KjUMPKToJ72ppaK9OTRavFPYAjonTIE8bdj4PNEn7DpdRma7uer3PMy3Lj0HQ349j6R9vbM5D72GCoq9NXffu1FxTrw2OxC9NgqkO8yGQrsFLmM936Rju3ChBTyw7qs875jOPJDKhjwxiXg9og9cPL46N7mWzQg9/1tNu4bZnbwI1kK8f2SEvDkDbrwY+5m7//n0Ogz1Fb1I4j08PA0mPYtqCD2C67Y8meKjvETDarzXW1q7lpycvJXYa7xmIjQ91ncrvMaDwDzZcHU9PNy5PIo0QDzY7h49WhwwPC90XT0YmcG86LGdPGiZpzygjQU92gM6u5Y6xDzogDG9WyEMveT0Ir0VEg89cii4PAMZyLwG8pO7bIcOvInS5zumLi+969tTu2CBijwIdGq9pOgnvV4KFzwDBK27dQGEvau6PbxRcc68Mk2pui903bt3+s28lpycPGlM6jyQaC46CzHlvIDWmzxNUvu7VBkuvT4iQby1j1W9ElWUPXQBhLt9m/e7vjo3Pc2b3bytFeA8g575vPfhVz3MhsI8sQNHPffhV7zCxkW7TJ84vXblsj2FFe07fl+oPHrTmbyJ0mc9FlM6PGaEjLstGbu7AjUZPQyTPT1EJcO8OvgKO02klLvHZ2+8DZiZvBUSDz2Kx4Q8vjo3POTDNr1D5Jc8rJMJvGlM6jz/KmG9dYNavRyHqLxGnLY8cKGFvRdYFj1qfVY85wm+PAFxaLsda1e8VBkuvUgTqrwbQaG7of8cPShcwLzLRRe9Ntm3vBjKLT2+ayM94Aa8POAGvLyI7ri8htmdvLhoIbxf3oY5D71zPOZrFrwbJdC8UgQTPSJZPjsZmUE8+rojPJ+Y6LwXWJY7mwxauxQ+H73mOqo8etMZvWhou7ybPUY9YscRu+7li7wAviW9f+H+vLAfmDzq9yQ9pv1CPDuWsrywjFO93NwFPTqWsjqNj2K79ZtQvUS4Bzy1fxa8CbpxO7xWiLz/W007uKRwvPue0rwSx6s8uWghPQFAfLzryxQ8a8NdvQyTvTtS0ya99l+BvP3k2btwsUQ9UI2fO3grOr1+/U+8ZT6FPW0qkrwyr4E8gNabPJsMWr2t5PO8CHRqPXVzm7xcYjc8l3AMu2QYfLxdFfq6Qa7PPNdb2rzA4pa7+ok3O11GZj2dg808pBkUvdUFFD2KZSy9xfD7PCu3YrsTzAc944KLPQ3JhbwESjQ95djRvCKKKj3MhkK9PlOtvAaQOzw5ZcY8DmyJPXf6Tb366w89WDiBPAIELbqDTQ+8mLE3vRUiTr0tLlY7h60NPQp+orzpM3Q8WutDPaYurzxLXg07pLc7vQnrXbwaQSG9enFBPBFQuL2D8JI8gk0Pva93OLwFX887Z9X2uwX9djwBkpW8HLgUvc2b3bxWwQ099sy8PKgzCzzQQz295pwCPN+kY7w2CqS9cfdLvJ1zDj3tUsc8YgPhuyTQsbyMDQy8bv4BvQLTQL3lp+U77AxAvWObAb3Y7h47Mq8BPG0ltjrFcwG9khCOuwh06jxDw+o6Q+QXPBwVEbzwNva7egQGPYGJXj0cuBQ9eCu6PBxWPL3LVda7tY9VPR7+Gz2nEl69XJMjvVNV/bprknG8FcD1OYx6RzyopSI97J8EPcdn7zxjm4E8oyT3vPMk3bwA75G9TyvHvHPber3I+jO81qgXval5kr1C3zu6ZlOgu6dDSjqCuso6akGHPKb9Qr0D6Ns7NgqkvIo0QDyJA1S7zczJukehkr1TpxY9clkkvZRWlTtbMcs6OQPuvPWLkbx5MBY9Ve0dPZF9yTx4jZI8hUZZPHBEibsTm5s6mvc+PO0RnLzXW9o74n2vu4zcn7xG/g69FoQmPcLGxbxoypO8HWtXPP3UGr32X4E8mE9fuzwNJrv1auS8jV72vMQ9Ob1dRuY808/LPBsQNT2wjNM8ghyjvFjWKL2EYiq945JKO8P8DbzVs/q8U1X9uydMAb1woQW85w4avBKWP70Zrtw8WTgBPIhQkbrnHtm8T/ravFm6Vz2vW+e85+3svFdkkTybPcY8SecZvd/VT7wOmBk8IShSPRCyED31amS9pzOLPCu34ryHvUw7SESWO8mt9rxw4rA7rqgkvW5rPT1ua708lCWpPDgfvzuRfUk85PQiOk4WLL0MxKm8OQPuvFUZrj0pkgi9VsENPdvnaLwKHEo88yRdu3f6TTuyNDO9JtUNvWwlNrxDkn694epqO3phAj0WUzq7XGK3PPhDML3664+8bpypPIRiKj3FUlS8rDGxu50hdTwD6Fs8U4bpO83MSTu1j9U8yqITPcJZijyhMAk9U9MmPOTDtrxnN0+8yPozPYB0wzv8zz67n5hoPYMA0rtOeIS72L0yPC39aTxlsJy5s0lOPaEwCT1xlXM9XXfSPJacnDygK609VpAhPaXMVrv6iTe9Sz3gvGcG47y2Ipq9Qa7PvMtFFz2KJIG9etMZPPF8/bxbIQy9KFzAO2WPbzw5ZUa8yQ/PO4mh+zxnJ5C9R7HRPCfJ+zxggQq80XQpPLAq+7wCNZk85z8GOzyrTbzh6mq6yf8PPUsM9DsBotQ7nG6yvGUNmbhwRIk7quupuRmeHbzJrfY7j6R9PFRKGrtKxuy66OKJuu3w7jyZtpM9nhaSu2vD3bvvyhQ9QCI5PYv/Zry96345YKVjvBOTg721Mxq9KDsPPZBTDb2zDJq7RX8bvY0mZ73HpUO9kGG/O7U4ELyCRlI9wk1XPEehpbxtrHi93D+dvOlGMr0w4Mu8vMUuPVxNd7yBKT491KxYu/h0R7ypTg+7ScilOGyPZLwL+0g7GilePJsuLLw1S2C8jkP7PAwO8bhto7y8j1gDvaYh6bs1QfS7tTxWvK2g1bzj5Fm7BHLwvI9N5zytnI+8V+MSvat1D70qYg88vdkGvX3uZbwAJHA8g1qqPeyKRrzvypS85x8yPVGBOjzUwLC8V//2vH8CPrwVvsm8veLCvIRkFr0oREs7tTzWPKcrVbvFh3+8NlGGvHl/i7z4m0e9U5qIPBkIhD38voG9up6uvBbXF72pZX082PGcvFfjEr1Fg+G8hpCMuyLF3rp4cCk99kmBPaCZwLzx8RQ7z1RsvIjFvruPWIO8HW4ivNOZML3OM5I84bSdvE89Jj33YZ+8dCIpO9TJbLzAHZs8XnR3PB1RjjxMDDo9I+JyO2ckUDzyCTO7IKjKvOK+CT0dZDa9lKYDPTH0Iz2DY2Y9/uWBvJ5ywLpFjU09oreEO1kKkzrMENi8dCvlPIwKgzx7qwG91s+SPC2mIz3Y8Ry97Z6evENTpT3BQ2u8LbUFvJB0Z71FeiU7eX+LPOcyWr3Gl5G8LZy3O8nMQ7wsjoW9VLH2PMwMEr0BJaC8+GuLvNBVHLqRdGc8xZFrvOx8lDzHpUM7bZoAvNFysLwj2ba6oLZUvapcwbs8wRC9Jic3u6uMfTwpTjc9BYICPR+ByjyPRKs7tTxWPSTjojztoxS9kHTnPENTpb1/FeY89CbHu77sLryX6he9nVUsPQetSD0++7i8Wh27O/mXgT3oPEa95OCTvFom9zwShKG864YAPSLPyrxUsia87IaAPNkX7TyGixY992EfvbutkLzpUJ68osl8ubqx1jwZCAS9d10BvShESz0k4yK83m/ZvEE14TuoP628GPkhu49Yg738zDO9FLTduVSoujxgwve8GR/yPBs9NjySf4O8tCmuPHQiKb03X7g72zWxPCt1Nz2+9hq9pOfAvIwJU70dbXK9RINhPLiKVr1smVC8GAJevf/9HzsNIsk7Qj9NvR5zGD2tnI+8x5wHPEAr9TzEa5s7D0CNvIjO+juyH0I6IbI2vJKIPz3VyWy9IKhKvHMKi7hBLCU91KxYPfqu77y0Mmo88xMfPR1RDr1QTAi8EoShvLMVVjyV33s8xX5DPbIo/rwUsJe8Oq24vKuNLbwhsjY91d1EvJj9Pz3tsca6sORpvUnSETwRcEm9ltY/PVFt4jwDTKA8UHdOvAWj3DwL8gy9vvaavIaUUjvI1X88Mxr0u37vlbtEg2E8/N/bvH8MKj2Vwxc8TBYmvbHvhTwJ1Ei9LH8jPeydbj3TtkQ9r9r9vDH0Iz3PS7C7H3iOvPvCxzyk8aw849udui2mIz2Seo07X4hPPM0kML3v2EY90o/EvFkPCTsK6CC96UYyvQWGyLwSerU7qEhpPJ1e6Dz5kVu9LZw3PTU4uLux7wW9ZOonPT3n4LsSiRe+i/YqvEwMOrwONXG8fdKBPIVugjsCQrQ7cyH5vKTxLL3nKZ47LISZvAnLjLxCSTm9+Y2VPbICrjxX//a8kFONvBFnjTyUr7881dNYPBS0Xbxl9BO964YAPa/Rwbwtr188eqaLPL8mVzyj2Y68kog/vRj5oboEabS9NlEGPaciGbxtrPg8hqf6PM0t7Lyi0+g7LH+jPAaaID3PVGy8LISZPDL+jzxdWJO7rsMPur3iQrstpqM8eHCpvHZJKTwkCfO8CLc0PbQprrzMEYi8GAJevc9BRDpX4xK97sRuu+UBbj0Sjd27YsxjPOUB7ryPThc8fdIBPCYwczxaOs+7jAnTuxFwSb3sisa7ZhEoPbdtQj0W2129IJ7eNp1fmLmIt4y7NkeaPJ98rL3AHRs9sgvqvMRhL701QXQ83EhZvXEO0bxmGuS7yczDPNoh2buoLAU7eY29uN+DMbyVwxe8RGZNPZfzUz4QZt28NkeavFf/9rzRcjA9w0kROxkDjj1l/U+7PN30O0aEEb1fm3e9QA+RvBolmLwQZ426VtmmvPU6n7w+BHW7FLTdPNXAMD2PThe8L8O3PDmQJDwDX8g9B63IPGGribwL8oy8nVUsPcJOh7s6mpC8UG1ivG/UqLx+9Au7LaYjPRW+Sb3uqAo98v/GvN+Nnb11Pz29K2eFvIaevjurluk7dm/5ujqjzDwvzHO7/fMzPINQPjwJ3jS8tlAuvW3AUDzlC1q8n3wsvLQ81rneaxM8a2mUPEsCTr0ivCK8NC5MvQekjDytqkG7ixx7PQ9JST12XFG8TBV2PWYRKD1gnKe8Jic3OuUCHjwEabS8+Y0VPU0liDytqkE98OKyPOCXCb3MENg8QBQHPJxU/DwX3A26F+XJPBBc8bxurai8rbP9OrvE/ryw7tU8hYpmvZBOlzvlAe48F+XJvGLDJz3aNTE9PN30vK/IBb0usI+8DkWDO4JG0jugrGg7zjdYu7U4kLzGl5G8h7Hmu/DUADx/Ar680V+IO2yPZD0gqMq72PuIPTmVGj3bRJO8zi4cvfy+Ab2X81O9WAAnvZbNAz0gqMq8se5VPWtplDxyBGU8NkyQvDq2dD2NHSs9tlnqOt+NHb0oRMs892YVvROhNTq4ita77IpGvJkHrDyJzyq9ot1UvIiyFj0bL4Q77IpGvENTpTuVuas8Zy48PYn1+rznKG49/gZcPKcnjztbNgk9/eCLvHmqUTttrPi8Y+A7vQVzoLyBKb47y+qHvJJ/A7398zM8zS3svAjA8Lu3Y9Y8+ZILPQNVXLyhrRi6vwAHvXzRUb1SiyY8z0HEuiG7cjq/AAe85ymeOzQuzDkpQIU9KVijPRKEoTwvzHM9KmFfPbQy6rv6pTM8aUyAPIi8grwOP1278OvuPD3epDzlEQC8oa0YvCdESzzaGJ2649GxPJs36DtK1we7MP1fPY5EKzwCVdw6UosmPERdET2kBFW6GP6XPVSouruOQ/u8Q1OlPR1aSr3j7sW8PN10Pceuf7qcQoS7GPmhvPqXgbuUuPu8QlL1vKLAwLs5lRo8JRNfOd5wibtnGxS9QA8RvcEnhzzlAe66YczjuXHxPLyeaYS9SdHhvBogIj02TBC93m/ZvL7sLro7tyQ9cOdQPeYMir3I1f88RGZNvKp5VTyuvek7VKi6ukv44TuzH0I9MvkZvVF3Tr3W01i9+qUzOz8KG7xnGxS9jTBTPNw/HT0uq5k6XFgTPY9NZzzGkhs9a3MAvcwRCD0rfvM8vet+PAneNLxv0/i8lulnvGLDJzsfeA67qmV9PcrgGz0MBbW8H30EO8NJET1HquE7pOfAvBW+STwqYV89HVGOvLICLr0qa0u9622yvPHsHjwyG6S8xXARvN1l7Tv7wke8rJbpPII9ljxk6ie7JxmFvTZVTLsfi7Y7gB/SvNkOMb3+5QG8SLCHvD8FJbz6pTO9k5wXvW63FDz4m0e9uZRCPD7xTLwBLww9syh+Oz8FJbwIylw9pyKZO0erET0ZFja9F/hxPJbWvzwMBbW89lezvB1WhDsFhsg8YsOnO/Zgbz2MBY076DOKO+LHRTx4jb07gB/SvMevrzzPSzC7+Y2VO78JQz3Eamu93mYdvEeq4bzDdNc8KU43vfDr7jw0IBo7nEIEu0rudbzfjZ28VtmmvBgCXjybOJi8hpTSvHD6+Dx1P725pg5BvUEsJbyw5Om7iuOCvIrsvr3tnp48kWurvDmZ4DxFeqW6LZy3PClYo7zuxO66bI9ku4Jaqrz71e+7w1fDPTh8zDwNGY07aDgovXVIeTziuRM80XtsPQjAcD3qd568B5+WOy/DN7ucPQ68mQesPP3blTwONiE8+ZFbvX8MqjynNUG9sx/CvNoiibydaFQ9XEQ7vQfK3LsqZwU9dCKpvAwY3bypb2k8D0CNPKlOjztw6IC7EpfJvCG7crwy/g+9IbK2uix/o7wHrci8R6rhvG2aADvglwm9XFdjPNbUiLoJy4y8nEIEPH8CvrwaICK9jiyNu/HsHrzix0W9uqiavM0ksDwDVVy7/OnHvKCsaL1CNhG8jBO/PKTxLLvCTde9t2QGPWUQ+DueZI67mPSDvMAdm7saICK8MxG4PNTAMLzOMxK9pQRVPe/KFD08ykw9hG3SvC2v3zxAD5E8RGbNu9OZML35kos8kFfTPI46P7tcWBM9kog/vbDkab2NOr+8fwyqvPDUAL34aws8r8gFvcaIrzu4ilY9Y9KJvNs+7Tvw8RS8nmSOPPu5izwcR6K7/L6Bvb8JQ7zUwDC8mRrUPLqxVrzeb9m8qnlVu9KPRLyOQ3s9rHqFvZtB1LwaJRi9wB0bvLVP/jxX45K707ZEOwWCgjyY7428RX8bPZoWDr0+8cy8JgqjPLEBfjz/EEg72PGcPNKGCL3pVZS9RGZNPWLM4zxqXyi8swyavEz+BzxIvjm8g0cCvH3lqT3OM5I8JzaZOqciGbxDUyU98M8Kvbd3rjuBIAI9b8GAvHZc0bugmcC8UoG6vPIcW7zPVOw8DBjdvD8OYb11NgG8RomHPPDr7rygo6y87rHGvBbSIb2GlQI9DA+hO9+DMT1LAk49x74RPMAwQ7wZDMq84trtOhKN3bucS8A8OZWavL3UkLyOQ/u6u60QvDMadDwbRvI8L8xzPNXJ7DxrhXi8Y+n3us4zEj1pTIA664DavAwOcb3BOi886C4UPSph3zymIWm8w1fDvIeoKj3Jwwe8QBhNPGPWz7yY9IM8amhkPMvqBz2BPGa9aUcKPEwWJr0K8dy7FLUNvMEnBz0+8cw8kog/vXZJKTyvx1W99TofvdkOsTsX4YO8r76ZPChES70bLwQ9fu8VvTh8TDsJ3rQ7cOMKvc432LzZDjG9n3wsPNTAMLy/En89H3iOvKK3hDwL+0i964EKPJKSqzzfltk7TSlOPQ9Jybx3Zr28I8sEvTzGBr2YBvw8tUbCvGle+DwtnDc8EqG1O//9nzuUuSs9X4hPO/3pR727rZA8yvz/vNj7iDyX6hc9WzETutjxnLzmEQA9GPmhPfzMMz1j4Ls89U1HPFbZJjy/Ev86pfuYPD8OYTxx+vi7Zjf4vI9N57ovwzc8aV74PClYo7xzGD09QCI5PBBccT1FoPU8q42tPJOlU7zy+4C84b3Zu+yUsryiwEC9ixz7vOYRgD1JyCU9ZhrkPII9Fj2L/2a9GQxKvHmEgTzfg7E6/gZcPGcuPL1qXyg9C/vIPGle+DzdXLG8Y9ZPvI06Pz0Fhsi8KUCFPDqakLzlC9q8KE43vBJ6tbvaK8U8V+MSPS2mI7xOUM48d1iLPNSjnDwffQQ9RomHPCCVIjyUrz89UoE6PWleeLuAG4w9ZhrkO0I7Bz2qeVU8wdNXvF9FBDyBoqm8reA2PWSREL3cBzq9kW/EvO2XRLpcmR49KomlvN3KKb2GYZK8+9tCPGHC4TwzlBq7an3DO4ldC7y5YcU5LTULPN4twLzTiei6v/YgvNQyET1PBY270IYrO6DZSDsqo+w8OsmcO99qULz4eCy913JePDJEhzwqiSW9wZbHO0r2kLwhhXQ8t/6uvDnQ4LwduAO9df7RPH98ozvEQq29QELzPKHZSL04bUo83/CvvEsjW70y+7e8vnBBvRn5Gr2NWYQ8GfkavVZB0zzm1Z68MdhuO5IPa7vUMpG8C2xNvSfdv73Yfh28LtWxPOkobz1pNPS7ET65vFgQgrsgSGQ9HbiDPEddrjzEtQm9P4gFvar3wDx5xH486Us4PKxaV7yzLEO8wjZuPTSnnbzF4tO8Bl3RPGm60zzQhiu9evOGOyfdv7oQ9Wm8ZfQmPJa70Dzi2aW7WxM/O6APlTz0Rme9kvWjvOCQ1rsVTbU8Iqv6vHgkWL3gzeY7PgKmvKerND2hvwG99an9vMG5kDz4eCw8YeWqu8WlQ70ooK+7+2EivSxfmD1xLGY9C+ZtPJdbdztojYk8Ngq0PJLiIDx70D09L5ghvdpUkLwnGlC8rmaWuywPBT1cs+W7X19LPAdWDT0k2gK7ZJEQPGZL/rsJg1e9ifHyPC6FHjt0eHK9sMmsPAqPlry0FTk8/YeovF6/pDutUxO8dF6ru58W2TzFGCA9bGY5PIIFwLxTUZm8eJ54PEiaPr1KgzS9hE6PPCS3Ob2bABk8XtlrO6697bsEvSo95oWLPDgwujsvWxE8773KvM967LyUyxY9/koYvBTqnjuaKia8yVGpvJGs1DftTvW8IlSjPYnx8jrxXXE9C6ldPON5zLxy+xQ9eCTYvEaO/7xT3ry81q9uvFG4tjux4/M78smJuwgsgDyFCH09qvfAPHF1tTvoboG9O9wfvVpQz7s73B89D9uiPJ7pjjx/PxM7N6ravM893LvbgVo8BHRbPKC/gbv2xYK8Bfo6OwS9qjyr1Hc9AOs+vQzyLD2oB4c71ZWnuzFulLus1Hc8s3USPb2TCjtaI4U9RbHIPAM3S7npgQS9rH0gvOdiQrze5PC8pAsOPQ+ekrwWEKW8kOlkvd7KqbymbiQ9VkHTPP3ngbxM5sq7wE14vZO4kziJd1I8MO94PIwXeTotNYs8D9uiu/KmwLtUFIm7Nwo0u0tgazy2S4W7Ns0jPQDrPj0u1bG8mp2COsgBlryedrK8zP2OPF+cWz0TZD+7lvGcvHuHbr2bRO27x+4SveKJErxGvQc91EzYPIr9MbwjMVq9gaIpvWqzDzzSrLE8UxvNvLe1XzumiGs9O9wfO+B2jzsqxrW8evMGO0ude7w/iIU7lMuWPceCerz0abA8ixd5PF6/pLymbiS9qESXvAbXcT0Jg1c9Cy89vD58RrxTe6Y8wVk3OvZs7bzdp+C6p/SDPDExBD0qiaU88hmdPM2dtTzVlSe8Q2h5OujF2LsoJo88Cy89vcEcp70amcG8VBSJO2pAszvinBW8IEhkvcuR9jwFQwq8GtbRvGX0pj1/fKM7I5Ezvu6QgDz620I7GTYrvCBI5DpMHBc8u8RbvFxcjrxlS/68eAoRPemBhLw5thm9sePzvBTH1bxpGi28lMsWPZ/8kTzhFrY8CYNXPUg6ZTzaF4A8vb0XPAbX8byOPf88SCAePKbhAD2vQ808iXdSvJRYurwuhZ67YJWXvDsZMD2xaVM7wcyTPOX/qzysujC7LkiOvCrGtTw4o5a8QotCPAhpED00px09WzaIvG1D8DyPvBq8HB+hPFG4tjtiux082ZjkvMB8gDwsXxg9FU21vObcYr3OYKU59i9dvZ6QebyoS9s9OtBgPfcoGTvqlAe8tFLJOyBrLb3nqxE9W/D1vO6QgLzjeUy8GXM7Pdr7+jzS6UE8QcjSvDWE1DxY7bg8ln5APIJ/4DzNEJK86pSHPdwHOr1YKsm8YwsxO/YvXb3hiRI9Gs8NPC+Yobym4QC9LcnyvIgUvLyGCH28kenkvAzPYz0RG3A+9EZnPe50+zvpDii8rB3HPBKHiLxqWno8TYZxvN9QCbxFsci82uGzvJJMe7vCc/47z3rsPPwkEr0ktzm8SJq+vJFvxDzuHaQ8zz1cPcfukjr3L928tpsYPY9Jvrwbdng8Q9QRvXyTrTz720I89AnXvFrK77xjC7G88PMWO1gqST3vvcq8H19uvIEcyjpTWF28an1Dvb6tUTxfRYQ80cM7vJSOhjwenH460aDyu/iSc7w+Aqa7vzMxPB/lTb0D1LS87zfrPHR4crwCCoG7fJOtOgVDCjyjha48WCrJvCTaAr0TZL88pqs0Oz9lPDztTnU8LoziOw5VQz1Kg7S8m8rMuyHOw7yEix87an1DvbLvMj0ghXQ99sWCPTWE1DzSrDG9ax3qO5rtFTx4JNi8cvuUvNc1zjyBf2A8LxJCvRE+ubxx6BG9rwY9vYGiqbxk6Oc8fiwQPWL/8TyrurA8pohrPB2c/jwKjxY9tfLvPNjV9DsU6h689ql9O1bh+TvYmGQ6uyQ1vYpwDr0Mz2M8SHd1ujhtSryY4da8pGLlu+436zsfX269DLUcPbCMnDzUMhE8GtbRPAbX8bztCiE92dX0vHReq7y/po09xFz0u/IZHT0BTlU9TN+GuxYQJT2bB9272xcAPJmB/Tz+J0+7SyNbvWpAM723eE89kZKNvG1DcDxKuQA8qjTRPO/gE71KRqS9v/agPBSaiz0qo+w8yVGpPNHDuzwANA480PkHPDB12LzBuZC8gzuMvMB8gL1ev6S8izpCPZoqJjxFUW88ozWbvFyZHr3T6cE80qyxPDZAgD2cjTy83lCJu9DmhLsKzCa9oV+ovHvQPTxi/3E8VgRDvACLZTy1mxg74kyCPTpWwDwy+7e8j7waPbd4Tz3IReo87DQuvIYIfbytFgO99O8PvU9CnbyTewM8WGAVOoVhEr1HXS68Ubg2vQIKAT3ZW1Q9lRuqvAJOVTwWg4E8rqOmu/x7abxqQLM82NV0O8lRKTs3zSO8l1v3u9KssT0WZ/y81hsHvVhnWT3IAZY8ffZDPVwTv7tg5So9JT2ZvHjNAL1LzIM7Ns2ju7o+fDm4hI68qAcHvUh3dTyt4La8OpNQvequzjybsIU8i3AOvB1FJ7290Bo8S2BrvDJEB70oJo+7eR0UPf3ngb1LnXu9/koYu7XYKLrmhYu7esT+vBeWhLzcBzo8f9N6uyspzLwuSA69+CgZPF6/JLzQAMy8Q2j5PKJ577wCl6S5Z1e9PMlRqTwJP4M8npB5vBjt27y7qhS96q5OumsDozwLLz27uloBPcUYoLxOz0C9jobOu9LpQTyD4nY8Y36NPOmBhLnYfh09cdUOvRylAL0mGtC6KEBWPfD62ryjNRs8z7f8vC01C71e/LQ7WBCCPOaFizsvsmi8cIy/PHKPfLwJg1c8sp8fvdRMWL0SxJi7nxbZO2akE7xjC7G8cXW1vBaDgbzvN+u8TYbxPLXyb71QMlc7CCyAvY1ZBD2PSb48468YvKf0g7zVRZQ78IC6PMnEBTosIgg8d8HBvMeC+jxr4Fm784P3vGndnLvCWTc8/koYPZSOBr1/lmo9HUWnu6M83zuWfsA7eW0nPUnAxDzmJbK8AhHFPKVbIb0yXs67CCyAvRYqbD3uWrS8AhFFPKxa1zyG7jU8GpnBPGsDI7tyOKW8m0TtvPlVY73tCiE9JxrQPJsH3TzRSZu8ce/VvC5IDj1cEz+9/D7ZPHnnRzxKRqS9cXU1u9lBDbxcdtW7iBS8uyca0DwwOMi8Qv4evB3817q5ntU8R9AKvfWPNj3WG4c8xLzNvPbFAr0nuvY8gBzKvA2SUz1yOKU8ZfQmvX58I72lSB48oQ+VO46WFD2fkPk7Mb4nPVS787xp8B+9dveNvfZSpjwmV2C89mxtPTsZsDznAmk82hcAPbVLBT1negY99GmwvC5P0jv5GFO8/eeBvUWqBD3IK6O8kenkvIM7jD0M8qw8Nn0QPBWtDr2JtOI82vv6vLZ4zzw+39y7E5qLO4AcyjxNL5q8/t5/vZwAmbzdp+C7gaKpvHyTLb10ePI8j0k+PaM1m7yh0oS8djQePYeHGL0jF5O6qq7xvXAs5rztCqG8onnvO8L5XbzvN+s804nou+bcYjtacxg7n1PpvEpGJDz7EY89zz3cPLttBL0mAAk9qvfAPPWpfb31zMa8JpTwO145RT1so0m8WrCovKHSBD1evyS9eJ74PFPevLzmJbK8mu0VvV4WfLtbSQu8F4OBPVQbTb3xQ6o87DSuu+7NkLvakaA8vIfLvAemoLyuZha9TUlhvJe0DD3IAZY8u4dLvGd6hjyrfaA7Et5fPWsd6rxDESK9pDUbvUaO/7zoiEg8k3sDPdr7+jyFK0Y97lq0vIM7DD3DvM07wXP+vKcOy7wJCTc9uWHFuhYQJT2itv+6ZOhnvTrJHLwYqYc8kazUvFhglTvMVGa8U3umvECizLwvmCE42LutPFqwqLzfatA73copvacOyznEQi29AHEevP+trrx1IRu7NP70O+rrXr3SY+I8XBO/OxIBqbvqrk69ipqbvMgIWjyl6MS8p0vbvPFDKr2V3pm8N+dqPaGcOL3uzRC8uz78O+rr3jzWct68afdjvEg65TxfRYQ8b8KLuoeHmLuLF3m9ixf5PC7VMT2Kd1I9Xvy0PA/borvVRRQ9WbAovTeq2ruNIzg7X5zbvKwdxzy1Usm8/+o+PLjBnjyGy+w8xFx0u3vQPbvYu628SJq+vMS1ibwSG3A9qJQqPQRtl7l7Qxo7RVFvPN3KKTpFUW+9tDgCvD4CJj3KJxw9pojrPISLn7xglZc8c498vZL1I7xyOKW82R5Eva8phjzBzJO8ZWeDPN8Kdzwmeqm6onlvvNmYZL38AUm9Oxmwuyh9Zr3W7P68JT2ZPSKRs7xajV89gN85vZJMe7zSH447VwTDOp6zwjvlGXO7mB5nvI4juLxsiQK91PUAPa5mFr2V+OA6y+qLvN8K9zurLQ09rfp9PUTu2LzDvE29bNkVPZjh1roLqV27saZjPVZB0zz1zMY8vA0rPcrXiD2KcI49JLe5PIUrRj1lMTe97lo0u7a137zQAEw88UMqvFErE7zPYCW86zQuvZmkxjw+xRW8O9yfug4y+jzuN2s81xsHvKf0Az12IZu9BL0qPQgsAD2j5Yc6aTR0vA2S07x2NJ67wdNXvDZ9kDurLY28/GGiOhTH1bymbiQ8S+ZKPaRiZT1k6Ge9Ngq0vMGPAzs4bUq732MMvZdBMDzJUSk9PT82vTL7tzzWG4c8WSMFvaG/Ab2Yxw899/LMvIJ/YLkamUG9Et5fvTaEVLw6eYm7jJ1YvTZAADxqsw88gWWZPACLZT3scb68yAEWPRWKRTy75yS52uEzugrTwzwkFzw8RkETvR7aj7yxHEC9FPGDvZUOi7v6dkg9SURAPYZ8TL0V86G8qDfwvJgRODo/lKS8cao0O+0c6zz6Puc83PayO+Ojobs3rsU87VTMvE+MkDy2ZBA9dyBRvLs8nrsUu8C6GGUCPQeZxLznFhG8noZFvfl1ObwIYWO8tCB8vT+TFTzHwRo8RdDBPE8oAb07IbW8pWsVvTnoRD3b9SO9uQMuvUDMBT3P1Da8ZvoYvBkCAr1BaQW9S7URO0jTbr0X9T+9T7nNu3lZwTzlbu08ErkivAbPB71VZa27TouBvczRCb2ehsW9Urx6vEkXg7rsG1w9Lv84veGhA7x26O+78Y9aPbk6gDztVEw9r1KDvGaL5bw5Hxe671bqOzmw47pHQiK68wCsvDID9TwcaT49j/4bvRa9XjwpVOg8q+CivGw3xbzI8PW8oMBEPExRArxfTao82byzvIdQHry/r428i+87vYDPXbyZEke8aTSYuuvtD71ghQs7Yhh2us7TJ72chCc9RAgjvT9cwzqzH228hbKPvMju1zvrGk29cao0vJjaZb2DFAE9N3fzPJTWKT0FlyY8fz0CPWfEVTyobkI9mEkZPTshtbsaME67jPDKO1ykdztbolk8C6eVPEfekjuIfmo9uQOuvLoEPTz5PVi8NawnvepQkDxCziM810tivFifrDy+CPm8iOyOvHSucL3BTZw8Yoepu3hYMjwPGgU8DA1DPX8GMD1AzAW9PpMVvYruLLxLRl47da//vHojfjwQEX+9x+9mOyBterwxOKk7gdsQPOJrwDyLuGk7kTeMus5kdL2W2Me8cOGGPeH6broQG5S7wU2cuvLHu7qRNww9MztWvS/J9TxAlTM8gQhOPSiKKzz2Oiu9f5ZtPeSksLyB2xC9o/rDPMYlKr1AlTO9uTqAvDE5OL17k0A8jLn4PMs0CjwQf6M86LMQvRNUBLw66dO8U/TbPI4qyrxJDe67jirKPBNL/rwmiA072fMFPWBOOT2aFOW8qt8Tvcn7GbsZZpE86BegPT9cQ72Y2mU9/ecZvb0H6ju0xoE8zwsJve4dejyq35M8FLtAPchemjvewX47U/TbvPDFnTtp/cW8a24XveoZPrzgBIQ7Id28vNwthb2l/OG8OyE1PT8vBj3ATA08j2KrO8N897t/BjC9ZFwKPeOjobxe3Wc9/ecZPRGAsrsVhG498I7LPBKBQbq0WN27AlyYPNUScjznp1092r1CvKpw4DwisQ69osLiuoZ8zDyaE1Y8RJnvvHojfrz9gwq9o/pDvTwixLwuyGa8+HQqPXhYMjxFpBO9+z/2vEQIo73rGs08dB0kPCZRO70XyAI9VzD5PA3W8LwaME66mx+JPL0HajziNG68DQ5SPGwKCD2opRS8RkGTPMKxqzvfMcG8h31bvVEqnzyT1Ro917qVPLsFTLy8Blu9T4L7Ok6BbL1Q8a68rbWDPZGcqrug9xY9h31bPbGMAj0gbXo8RAijvHQdpLrchvC8M3M3vJrmmL1R8r298pBpO3S5FDs66dM8KBt4PJtMRr1/BSE9PPUGPCATgLwoU1k96lAQOz+UJL5HC1A8tCD8PJxNVb2nbbO66Khsu+6LHjzBetm82UxxPPc7OjzO06e8D34UvVmgO73n3z68TbcvuuffPrw2dVU8JRhLPWX5iT3NY2W8oYlyu5hJGTyM8Eo8vNkdOtQR47yl+1K8gT+gO3J/Fb2ehsW8av7UvH2VXr3riYA8Lv84u+4d+jvy/5w8USofPeoZvrzG7Ug4oYnyOrOOILs457U88Y/aPGBOubySnTk9HT0QvSrDGz1/zk48fs0/OwQn5Lwu/7i8G2gvPKnehL0IYnK9E7oxO5TWKb3sio88p6SFPX/OTj2HtK08tlr7PE23L7xWZry8p22zOHki77yv5N68bDdFvUcLUD0B7WS7H3YAPbDvgrwFl6Y810viPGwA8zyEeR89vNmdPEAwlT1/zk69uJ0AvUGWwjzFtWe9EYCyPBufAT1AXdI7POtxO023r7zSDra8/oQZPDbkCL2QYzo924ZwPoDagT3b9SM5+3dXvHVVBTzia0C9bnFEPRWPkjvMNRm9/Xn1vOJqMb3U45a7dOZRPDgeCD1Mfj+8kp25vEpFT7w5Hxc8wHlKPTgeiLttAHO7gD4RO2jF5DxgTjm8/K+4vDgeiLxP8J88CdK0PLo6ALw76uI7UcUAvP7oqLyUZ3Y9Uyy9O1G7azz4Bfc8zGJWvYjsDr17XO45V2dLPAC+ibuOKko8TyiBvbmUejymbCQ71H8HvdIOtrzp4dy8ucvMu8zRiTxEme+88f6NPDFxGT3PnWQ8HWrNPIQL+7wWvE+8KYs6uyLeSzyFeq47qd6EPJFkSTxDmGC8uMo9vTmw47xYn6w8Dn0FvEhDMb3lbV48ktQLPS3+KT0dM3s9HTP7vLbInzx7XO48AiS3uwxElbzHXQs971bqPGfE1btFpJM8qd4EvVsRjbwDXae88se7POAFEz3Ftec8wXrZPO1UTDxVLls9ceMkPClU6Dw/lCS8eltfu8j6ijvGJSo9s1dOPOVu7bxCzqO8u81qtxsx3Tvxj9q8FiuDPEOYYLpVLls96Kn7ujshtbtEowQ9+0oavCMWLT0I0aW8OOamPAYzl7xBX3C8sFMSPYd9Wz1jiDi8uzwePbbInzpI1H09WqLZu6rfEz115+C7/HhmPO+NPLxLtRG9pPtSPbvNaju/eLs8jvJoPJSf17zI8PW8af1FvNENpzxMR209jvLouuEzXz0U8pI8sVShvJoU5TwVhX27A/kXPR2hH72QYzq90J5zPH/OTjyHfdu8/OYKvXtc7rzN0pg7/rFWPdy/4DxfTao9JeuNvE64PrvEIwy9lGd2vIm2y7r8rzi8oPeWPCrDm7vGJao8IBMAvQeZxDzykOk7BjOXu4mJjj0dak09ZYpWPWBOOb3gMtC3kTcMvWEiC72Z23S90J5zvJ2Epzsr/Au9AL6Ju6tx77tZaWk9RdFQO55ZCL2CCd07cuSzO2041Dzq7IA8j/N3vE6LgbxIDN88M6oJvU/wH7zgBZM9N65FvTWsp7wEXrY9mku3vHTmUT0ORjM58MUdPegXoLwH0Ba8ie2dPIzDDbwJCQc8WGhavUGWQr025Ig8AlyYvEoOfb1uccS7JeH4PIu4abwgoz28EH+jPJ5P8zuchKe8lxApPbVZbDyp3oS8MjpHve+NPDvSDra8vAZbvJqCCTu0WF28Tu+QPAJcmLwZLz+9A10nvVZmvLwdas27vnYdvJNxCzy4Ap+8CNGlO2FPSD0IYnI8FIPfPFQAD73TEFS8IKTMvEtG3rxih6m7t5JcPRhlgjwEXra8/K84veipe7unbTM92FYGvAVfRbrriQA8G2ivPLHmfL3E6yq8tMaBPGj8tjwoG/i86uwAO5Nxi7znsoG9HDLsOyhT2Twtx1c50w9FOwjRJb0RSeC5lqF1O0+Ce7xH3pK8Vp0OvZYPmjnmFYK6tVlsvd3Ab7vH7te8+HQqOj8l8TxghYu7muaYPGFPSL0457U8cxyVPCOyHbzXS+K7IKTMu7EdTz3wV/k7XK6MPK18E735EBs8eZGiO0Jg/7xMR228iycdPNeCtDxlXRm85d0gvIl/+TxCziM8hUPcO47yaDztVEw8iycdvIAHvzu82Z28wUJ4vAnSNL1mlok9ZcI3va+r7rrr43q8CGLyOwG/GDxjv4o8vhIOvKqnsrxNgN28SXsSPRO6sTzCe2g8hELNvAdsB73qGb48jmGcvMw1GTx2VpQ7X02qvT1ZFjyeWYi8ToHsPOJqsbwuyGY7kZubvFJiALycIJi8p6QFugjRJbzgBIQ95aW/uzz1hryhwdO83cqEPCaIjTrUSDU8AviIPN7Lk7yx5ny8fwYwPPuuKb3C6Qw9U2OPPOSksLu+P0u8ioodvF/edr1f6As9r+Reu64Zkz0uyGY9uJNrO+GhgzyZ5Qm8SnwhurRY3TxDBoU83i+jPFP0WztOgew8LZqavMgnSL0bMV0971ZqPLEcwLv0yui8xey5PHJ/Fb1ECCO8eSLvu6cIFb1SK6489DgNvfuuqb0W9DC8laBmvG0Ll7yT1Zq8F/W/PBB/Iz2Snbm8lNapOmr+VDwlUCy9B9AWO5eh9b2J7Z07kGO6u52FNjzP1La8xey5PPQ4Db3oqGy8mx8JO0y2ILxiI5o8mBE4PfPIyjz95xm917oVPa1yfjyWDou95W7tvPXL9zxvclM8/OaKvK7jz7yKt9o7ZfmJvUbS37wnUkq6Lf6pvEVABL1IQzG8laDmO4omDj0sjme9CQmHO0GWQj1O7xA9pv1wPe4onrxFmv67XROrvO1UTLtQulw9Qs4jPBkvP7w1PfQ7BV/FO51O5Dx0uRS9cuSzvEoO/bv85gq9zZtGvMYlKj3OZHQ8tsgfPTh387q3ya48N65FvC8ASL0HbIe86RgvPXyUz7zAsBw932iTvPBhjr3lpT88PyVxPIomDr3+efU7C9RSPeizkLpIQiK9Z4z0O+rhXDwSgUG88sc7POVubbwUjoO8sO+CvOAy0LyZSii9Q5jgu+I+A7zWSUQ8gwrsPHGqtDvo4E09Id28vBkvPzuoQQU6lQ6LPLTGgb0s/Rq9l6wZvM2bxjynbTO9AvgIPUbdgzzoqfs8sR3PvLwGW70wcIo8KVToPCgmnLydTuS81krTvPOR+DwaMM48u9gOPTivVD2QLGg8A12nvIruLDtlita8FrzPvOEz37xy5LO8NXVVO3F08TpHCsG8w7NJPBSE7ryBCE69Id28vOpRn7w45qY7WaA7PaMxlj2GROu7ozGWPIsnnTyutpI83C0Fve2LHr2T1Ro9hXouPT1aJT0l4Xi93suTPNWAFr2TnTk8q3HvPJPVGr3vjTw72FYGva2qX7spwgw8ggndPIdQHryW2Ee8LwDIvJbYx7z2A1k6EH+jvEXQwT2RZEk6j2IrPV/oi7z6dsi8wEHpOxC3BLyABz+8d/OTvOrhXLxsAPO8HDwBvZcQKT2Ifuq8Lf6pPChTWbxTLL086LMQPR0zez1LRt68tgCBvXiQkzwX9DA9gQjOPFg7HT1iUNc8eiN+PLoEvTyfh1Q93/hQPYazHjxDBgU9da//PIVCTbwXLJK8CwulPFRknjz9gwq8dObRvLoEvTwFMoi78wCsPKH4Jb3hoQM89Jycuss0CjzNm8Y8UsYPvUMGBT27BUw8bG8muy7I5rzhM1+99cv3u5Rndru/QFq86OBNvO4ders0dMa8sVShuiiKqzyaS7e8moIJvbrM2zxmi+W8Fr3ePBNUBLwQEX+8acZzPY3EHL2w7wK7nIQnPeEzX7xECCO95XgCPUKWQjyzKQK8ypcKvbVZ7LzMNRm8q3FvvCbsHL1Nf848TVKRPKtxbz0aZyA9VzB5Oh92ALxWnQ49OR+XvLMfbbnX9UA8BXpgPJjmDb1l2Le8xgiJvI5CdrrOiiY8McEPPVrgLD3+Ig+9WskpvSMRyLyNfi082muuvN6l5DqoiKQ8io+YPHa8nTyL8Tw8C2Y7PXlSYLw80J08vabAPH4+OzwcanY7O45OvPSsfT2pWh49r6idu5DdF70LTzg9Ahv2PBFbaL1KJ5O9OA+PvGg3Ir1PCPe8/A5GvJm4B70cSqE8aIV9vRZeRr0SFt87I2qavFQi2DyaGqy8ravXvDIjtLyHiYC9Ij9OvGZlqLsC+yA8TFsxPI2VsLwv20y6vOvJvGd8K70MITK9DCGyvWhu+jw1maE846hCPayiBb2QFPC8sArCvI1nKj0xUbo5nPX3PKNuw7x739C8orNMvBxKIT0SDQ28UV6PPIdkzLy/Ybc8HFPzPMPJ87z1Rx+8vaZAPaOFxrxgnoE7CpTBOdtG+jwtIFa97s5TO4DLK714aWO8iTZGOxwcG73xLT47s5cyvKNuw7z1fve8lunHvLRy/js7js673qVkPZD0Gr3wcse8OPgLPRL2CT1eMWa86X0avXGivLwRW2i8QkwjPaNuQzunza27lRdOvKe2KjwJMh09JZ64PDc9FT0K7ZO82w8ivc3B/jpkjZa8TS0rPGg3IrxXaj88Au3vPN0BcT2OQna6S7e9u+VMtry860k9KQZ1vAwhMrqaioE6WuCsvPcCFj1ydLa9qKj5PKb7M70FqOa6koELvJZCmjsMkYc8ti11vQSIkTxX8Zc8V9oUPeOoQrz9Zxg9ratXvYh7zzwRJBA9C2a7PBCgcbzDexg8kP3sO89FnTzBDn28LgnTvBnUMz1Z9y+9kP3svHa8nTorXI085qWIvGYaB73B7qc8+NQPPUXi5TvM5rK7eg3XOzT+fz3DhOq8zqr7vNpUKz2la4m8vRaWOjCtxrxq8pi8+ngDPQLtbz36eIM8uKNiui/ESb0RJBC9rpTUvJRF1DzR6RC9nj1fPN9uDD1kHcE8fq6Qux+piztLEBA8/DzMu+s4kby/SrQ7S/mMPKl68zylKbq8NZmhPR3uFL3bD6K87eVWPeEyVTyKeBU8C2Y7PECRrLyyrjW8LGXfPHDnRbwmcLI8zSgCPU42fb2qTG08gm8funMvLT3sE129CPDNuoNYnD2XFJQ81WjQvBlEiTxP0R69rPBgvRgCOj3o2SY8gFKEOg+AHD0ZRIm8xDYPvAu/DTxNRK47AvsgPXDnRbwqihO8v2E3PAkyHb3Itc48yrIUvbIeC71vFcw8H7JdPKDYADvbJiW9eEmOvNpdfTwJG5o82yalvIKGIj07pdE7osrPO+382bzmNTO96NmmPD7tOD3c+J68T9EePRuYfD2tq1e8kPSaup40jTpP0R49rPBgve/inLwkJRE9mUiyOtG7CjyFzom7pRK3vOSRv7wdPPC84gRPPZy+n7wd7hQ8pLASvbI1Dj0GQwg8KeYfvaKcSTyihUa8kaHgOvEtvjyb1aI8eiTaPFyEILzItU68v7oJPFfDkbyNlTC9pRI3vay5CL1g1dm85JG/u6io+TqwCkK9kbhjPSdCrLsyqoy85wetPSbJhDu1JCO+SPzGvKVrCTyBnSU8Eg2NO/V1JT03L2S8zP01vcHuJ70XR0M9hPyPvLexE73S8mK8gOIuvFDDbTyLSo88q9CLvErOQD3qne88cy8tPDFRuru6J4E8TMsGPbCRGj1ydDa9WWeFPEr5DL0qweu68lgKvGOkGb1HWFO9UIwVPVCMlTtZfgi9SvkMPRgCujyksBK96MKjPGO7nLvGCAk7LHziPHeubD22/248bVEDvI8iIb1jNES82z0oPErOwDyea2W9PNAdvfSjKzx8mke9Hg5qvV4xZjsFWou90tINPGQdQT0fkgg861hmvL3oDzw0/v87m970O1M52zwwlsO8MWi9vPSjK71+VT49jjmkPDulUT3i7cu8SCpNPbI1Dr3plJ08c0YwPQce1Dzd6u08Y0vHvKy5CL0jEUi8uLplvZG44zwXoBU9Y7ucPEpVGb3j1si8zOYyvP6yubtztoW8CPBNPejieD6deZY8ratXPWkpcbzNz688iHtPvTTeqrs/1jW8mgMpvDaCHrtPCPe7RbRfu28VzDyUXNc7E9HVuzTHJ7xO8fO8zbgsPFXGSz2h4dI82sQAPKVrCb1Qw+08SRNKvFCjGLx10yC8CAdRvN2cEj0oFKY7+phYvC0g1rzrKmA8Gb2wPLij4rsQoPG80ruKu0FjJjxbsia9SPzGvBm9MLwvxEm75/Apu3eOl7wkPJQ68xMBO1CMlTtdX+y8C2a7vc6KJj3zQYe676DNuxdHQz3yb4284CkDPZsjfjzZ24O9mI07vPDLmTtTOVu77eXWuxJEZTt+Pjs8HsCOvGDs3Lv1XiK8xVZkvdtd/buN7oK9jlCnPXDQwjxMcrQ9Bx5UPdaTHL2L8bw8A58UPY45pLtQjBU7NMenPRuB+bxPjBW8jnD8uzgPD7zTpAe9atsVvQZM2jw80B08uGwKPSg0e7xxuT89QjUgPP+EM73bXX27AFctPcSbbTsoHXg8zXOjPMRtZ7w+Gz+8vOvJvO3chLtJE8q8ncdxvMjM0bxQw2083rxnvDd07Tyis8y8/iKPvA+uort5UuA8WckpPM9FHT2OOaS833devKUpOjweDuo8BXEOPYa3Bj1fGuM7wqmePYQqlrsWXkY7w5ttvPByRz0NYwG9RctivSFt1LvS8mI9G4F5uvMTgTydkBk9/WcYvIJvn7ufPd88zSgCPU0tK7xK5cM9EkRlPJD0Gr1uQ9I8C9aQuB0O6juHiYC9qwfkvNN2gTzaa648vb1DvDxgSLyCvfq8xE0Sumyf3joMkYc8ZqqxPcVWZLpEEGy8Sj4WvUFseLy9psC7d2CRvGy2Ybxv/si7MWg9Peh9GjwOxaU8SxAQPLsw07zn8Km8lRfOPHvITbuE/I+6104TPIG0KL2deZa9n1Riu5sMezrWkxw746jCvH3cFr3365K9ratXPbKuNT2ulNQ7Rn0HPMCMg7xZDrO7ul7ZvDuOzjsf4OO8jBwJPLijYjyr5w48NmubPfZn9LxpCZy8JYc1PeApg7w3PRU9UzlbvaNuwzs5GOE8bToAO2XYN7zdpWQ8eVLgPL+6Cb3LmxG9rPBgPMqylDz0oyu8G4H5O/VeIj106iM8N3TtvKhxobyZuIc88RY7PEZ9h7xpQPQ8deojvbfIFr0mWa88aDeivN2cEr0CMvk88yoEPd9ujLo54Qi8McGPvZiNO7yOh/+88HLHu2aqMTvdAXE7F6AVvbOALz1stuE8g2FuPGg3Ij0puBm9NP7/vN9XCb2URVQ9fj47OxBpGbyMBQY9H5KIvAOflLwFWgs9YOxcPdpUKzpXar88rn3RO0TCED2VF069yYdIvZ8dijwlhzU8JDwUvecHrbyFBeK7cFcbvdYMRL3TdgE9FrcYO4D5sbuwehe9wvd5u2kgHzx6Dde8ltJEvW4sz7zWI0c7/4Szu4NBmbwcSqE8nJnrur29Qz0rXA07Y18QPX1sQbzybw29KBSmvH7FEzvzEwG9hu5ePKUStzttiFs9PnQRvWfsgDyoqHm8SxAQvEnOwLoz9S28LQABPf4ijzsFqGY7OcqFPN68Zz3gSdg7QXopO3kbiLuHZEy8MO8VvejZJr0tN9m8EvYJvY9C9rvj1si8eIBmPST3Cr3epeQ8ZpMuvbNSKbxaUII6VPTRPHeOF7xO/6S8XT+XvSrBaz2aGiw92Me6O+VMtrrh7Uu8KP0iPHG5v7wSLeK8vv+SvEonk7wMIbI7t7ETvcxtCz341I87yLXOvD+/srwcSqE7puQwvAL7IL0bYSS9Y18QPbOXMjwxaD28zqr7O8Rt5zzrOBG8+oHVPMDXpLx+Jzi90BeXOko+ljw3dG07RasNvEM+8jxUxsu6dAEnvUj8xjzRCWa9tQ2gO+PWyDxWHx49atuVusEO/Tvs84c8o96YOxFy67udx3E8OEbnPGx/ibunn6c5RmYEPcbxhb02gh49yxS5vAnCx7zo2Sa8KO9xvb29wzyURVS9ZAa+PGQdwbl1Ifw7OrxUPD+/Mr2eNA29rpRUu+ji+Dyn1v+849bIuUXiZT1aUAI9vb3DPMxti73fjmE8kcaUO6ioeT2EM+i92msuvTFoPb02VJg88HLHvMorvDyLYZI887quPG1Rg7w3PZW9WDy5PC0gVj0AbrA8ofjVvAce1LyA+bE8J0KsvUT5aDz+ybw8O6XRPLUNIL3TpAe9Hg7qPNSW1rx23HK83OEbPCQlkbxL+Yy8kebpvKbkMLzX3j09ZpOuvAvWkDxmky49Tjb9vGg3ojwGQwg88S2+vI8Lnjx+xRO83QFxPOBgWzyr5w48DfOrPGVIDTvFP2E9Ahv2vBphJLwwBpm8EhZfvJJTBbyChiI9fJpHPaAPWbygJly7yrKUPK84SDwcana9RoZZvQZjXTqRmA69SWwcPeBgW702ovO8JYe1PIQTk7ve0+q8X8wHPe63UD0kPBS8x/pXvEgqzTwfqYs7pZmPuwZDiDyA+TG95/ApPQkbGjy6JwE9xVbkOluyJjmaGqy8+N3hvFMLVbp283W6aEB0Os989bwbr388we6nvABuML2Dj3S97POHvHokWrxzRjA6eIBmvYeJAD1Wr8i5pWsJvKNuQzyLYRK9v2E3PK590TyFBeK79jAcvF8a47zZmbS7OeEIPT25mjx23HI9qjVqvEGafjuKjxi90tvfvHyxSjw0ToC8ofjVueirILxZZwW98LSWvOQBlTyqY/A8NN4qvaUStzy1W/u7ingVvX4nOL056to8EhZfPFglNry/SrS7dAGnu7hsirwBSfy8z1wgPY1+rTz0jCg9fpcNvXESEj0k48G83tPquxPR1Tvaay69S4m3PCgUpjsxOre7P0YLPaNXwLokJZE7uxlQPD7tOL1SOVu8aIV9PPj05LzfjuE9JsmEvNnbgz0DnxS8m+wlPI8iobyTil28pMcVPc3PLzzbJiW8H+BjvcL3+bxO8XM98Ra7vK84yLzpy/W8Py8IPVkOMz0/1jU9WsmpvE20gztaySk9tDumOzMMMTvZ8gY9ka8RPYK9+rrX9cA8DQqvO4buXj0QUpa7rPDgPHyaRzpl2Lc880GHu+fwKT0jU5e73Bj0vDxgyDyR5mk8H+DjuxZ1yTyDWBw8Z+wAPGJ5TbwxUbo7uzBTPbhsiryESus75WM5PKNuQ72z2QG9m+ylvC0gVrw3dO28HGr2OrijYjzfd9686MIjPBS60jz1fne6HGr2vA+uorzDyXM9K5PluXBXm7x6JFq8SPxGvM6KprwkzD48QkwjPPmmiTxpEm48wNekvCS1Oz2DeHG8wQWrPKPemL21RPi8sHoXvfSMKD2cpxy9vng6vOcQ/zzo+fs8r09LPIG0qLxaUAI8NlSYPHLkizw5ygW9Y7TsvN3yGT1m/8q8VyGHOmIDEr374G+9yzdUOjLQMj2NYU+8lL1dPMkuhLyH0oK8jWFPPKumKr11onC9kiJqPKOasbyn5v88FrCOumrAZTvTLlY8bOUcPbF3hT18c8u8A+1oPb+HlzzRHaa7XJP8vKzMUbxHCZW7n59ovGtw0DvO0ke9XqM8vFlPjrxrNTK8qJbqvAupTLwlo0m93SVYPfS+D7yBWZ29Kk/tu/+Lo7wneVs7035rvN7VQr2BsZK6R5RIvRmbl7zbT8Y8YXnOPMhhwjzv2D29YQOSO9+FrbxeaJ69KU9tve/Dxr1zLLS6IG3iuwKySj3+tRG97xPcOxpM8jy+f7c8l32IO9N+6zzQbbu82opkvTksQbo9Yig7rZmTvOaRJr1xHPS7Aj3+OkHopDtCQJq8gR9vvF0IyTtOtTi9Rqm/OmevNbz5arM8vOTDu73PTDzVGd+8NabEPAeYHL2rVhW9haVrvfDDxjt9mXI8nI64u/jPP7yvLKc7UFiMPDzt2zytzNG6ggkIPSVTNL2YCLy7tnM+vFoyt7z9tZE3W1hevWU66TymjZo6ViEHPbOdLDptW1k830v/PM7SxzzNXXs94Vu/u5eT77x/Sd08azUyu6ts/DxpD4u8O+QLPCv/Vz3sspY8T6DBvC3q4DwFTT68d88Hu/NeOj0ClAO9jdYbO+8TXL2cjri7YN5avb/1cz0IXu47gMYJvFMRx7iZ88S8aF8gPOamHbsdDB29Kv9XPOJbP72kShy9aCXyOtWOq73unZ88MQIBvHjtzjpzfMk7BThHOmpSibx4zwc9JaPJOvtVvDxBc1g9HzLEvNHNEL1y8RU7IghWvE61OLtxkcC8+WozvH2ZcjwP9Co983uRu8kuhDyitwg9IeIuvRjzDLzwiKg8BMKKvG3QJb0sr0I7uUnQvLWItTxL3yY9OqL9PLkWEr1gU6e8niksvVE7Nb34z7+89BaFvefMRL0Rjx49kKwtPNHih7xXrLq65aYdPR68B7uiryi9Rx6MupFy/zw85Is9IZKZvVuo8zyQh3a8lPcLPagLN7x3KG26AMdBPHBWIr0q2bA8vORDvccB7Ty02Eq8dKEAvIbKorzJfpm81lT9PGJbh7qIQN+8tRNpvaumqrzqolY9aJo+vRO1RT3AGqs7rEGevGO07LzunZ88pNXPvHxzSz063Cs95laIvIbKojwx5Sk80ljEOBVQOT2fMYy8Si+8vLpuBz0lyIC88DgTvTsXSr0QGtK7fkldPETbDT1hW4c7AQLgPCBtYrzF28U8iqA0vD3PFL3pt009x+uFPGbELD32qZi80c2QvTr5gjwb/Ny8tNhKvUsaxTwGc+W6KsQ5vc690Lyk1c+2oTpcPOzttLzqZzg8ejitPEhhirw8PfE8yLHXPHwjtrxBVRG8Iy2NOhibFz08z5Q9FliZPEHoJLvpZ7g7REnqPM6Csr1D0608KSnGvL5EmTyJ8Ek9EecTPZVtSDyaaBG9UBUOPNVp9Duit4i8zV17vYfKIr0ns4m67XjoPCd52zvuY3G8+mozvXK3Zz2MdkY8aF8guzDlqT37Vby8mWgRvsxycrxBc1i8CEiHuYqgNDuZoy88sXeFPCYDnzvmzMS7Uya+vDrcq7z/+A+9bD2SvaY1JbvYgRS7p+UPuzpn37q6boc9ib0LPSYDn7tDXmE6T9tfvApuLj2Ohga82WS9vFlkBbwRyjw8J3nbvEPTLbwkaKs7rQdwvPCIqDzu9RS6L/ogPMINFD0wNT+54wuqu+mEDz0JDtk5JGgrvTS7uzyKFQE8ViEHPE0FTjweDB28V+fYPL2cDj2szFG8rQfwvHShgDzRzRA9rxcwvXDhVb0e9yW8K69CvSJCBLsuZw099lmDPa6iYzxRWAy9nMnWu021uDui6kY8GkxyvSvhELzKGQ29LCSPPfDDRrts5Rw9ztJHvazMUTx76Je7maOvOxusxzy/hxe89fmtPZUdM722w1O9AIwjPUCIT719XtQ7NNgSvM8yHb1b4qG7B5icvNoUKL1zfMm8lW1Ivf/4jz3cdW0+zSJdPCXIAD3PMh08gkSmOx+CWb2i6kY95ld4PYMKeDyj1U+8/bWRvIe1KzxTJr489BYFPXUXPb0crEe9KSnGvAboMbzvE1w9+S8VPaaNGjsl3mc7g0QmPfCQCLzhq1S9FKBOvXQXPTwEapW7gDTmO52WmLzqZ7i8i8ZbPK3M0TuzugM8ehP2O58UtTw5LEG8t3O+OzwCUz0Df4w8AQLgvDrcKzx7pRm8RPnUPF59Fb0os4k8k7SNPNgpH7wZmxe8EnonPZ+Jgb3Q4gc8NICduraQFTzlMdE7gwr4vK8XMDvi0Au99h9VPOGr1Dy1E2k9RuTduzkswbrYKR+8p9AYvRxcMjz8QEU8Y9kjvA5EwD15nTk93HVtPSO4QD2eKSy9oq8oPVhHLj0a3hW8QK2GPOlnOD3cdW27ntkWvPQOJTz74G+8e+iXOxc7QrtSsfE5ib2LO2kQ+zzqZ7g8vc9MPM+fCbz4z7+8M/bZug5/Xjzq3AQ9PWIoPACMIz1kZFc8dgLGvENe4TuYuCY7rywnvLiZ5bsIXu48jHbGvCuJGz06F8o8ysGXPEGudjzRWES7FRUbPWSJjrtCmA89tq7cvDvHNL2n5v+7Z1+gvHLM3jyPLhE9Lg+YPKvhSD05oQ29tq7cPIDGiTlnX6C6OvkCvFHG6LwUoE47W23VvOpSQTzPMh09QuikPAhe7rwSQPm7nI44PBawDj3F20W8PWIoPQN/DLzWPpY7CF7uPEqkiLzMcvI8eLKwvABSdb0+EhO8U5sKPMINlLyqMd470pPiPHN8yTxC8IS7vZQuPRIqkj1hyWM8Pp3GuxxcMjxxQau8BYjcPHWMibzqolY6gZS7uwYjUD2YuCY8pNXPPAKySjzq3fQ8UrFxPUapvz30vg89+EQMvcnXfjzjRsi7yodpvVY37jt4Ypu8g3/EvM/47rwk8948Ic23O9yvGzu1OCA949H7vPPUdjo+nca7lljRvMaoB71czaq8GRFUPA/8ijwyW+Y8EVXwO2J5Tj3tKFO8zg3mvEHoJD3hcDY7HvclPT/9G71PFY49ol+TPK18vDuH0gI88TgTPMxy8ry4I6m8cOFVvbKyIzxt0CU9x5MQvfaUIbwr/9c8glmdPLMoYL14zwc8EQXbvP1747toSim7TXqaPG72TLxfGAm918lJPJku47zehS06FQCkvBqGoLzEoKc82WS9PBqGoLxaMje9J+6nPBexfjlEM4O9e+gXvaXA2Dtj7po8QDi6PDLQsjylhTo9h8oivOKW3TshWOu8i8bbO7iZZT3+8C89NTF4OcRm+bz2lCG8MXDdPIeQdDwVFRu8WILMvKwGgDzULta7OCzBvD2yvbxNBc48xCtbPJSCP72HyqK6jdabOMfrBb3SJQY7S48RPCw6drrTQ825KsQ5vUGudjyV9wu41GgEPXrDYL3heBa98tMGvTbh4rtV/E+95PayPAm+Q7zTLta8w/C8vMjWDjzmzMQ880lDvayuCj3hcLY8Ecq8O8FVSb2itwi9lDIqPX7bgLsqT+07MPogvYi1qzuCWZ08gakyvOKWXbzQbTs7700KOhRlML3drxs9DAkiPJK0Dbzg5YI60pPivInwyTsQGlK7Vd4IvdRoBD1CmI+8Pp1GvZeT7zzzhOG8oTrcu7EfkDukShy9cOFVPD2dRjxGlMg7mENavLgjKb2znSw92Smfuh4Mnbu85MO8BYjcO6xBnrxqwOW86x8DvEqkiLxWN269ZyQCveDAyzxGxhY8azWyO/NJQzyBlDu9OCxBPcbGTr2xdwW76AdjPF/Akz1TJr456m8YPL/1c71lin48gn9EvRaL1zxwaxk7q1aVvBxcsruBqTI9AcdBu5RHITwDEiA9nzEMvXvoF7xKLzw95PYyvU16mruH0oI8WqeDPcY7Gz1iKbm8EBpSPayRs7xl/0o8DFk3u5cIPDyBlLs8+X8qPGXhgz1F5N28kiLqOxjrLDxSsAG9dGfSu5RHobxNBU49SxpFvUsaxTu50xO8J8lwu8XbRTzQ4ge83a+bvZvezTmdlhi7uCMpPGeavrzhcDY9EvBjPX+E+7oIgyW9vJSuu663Wr09J4o8ZurTvaK3CD18QA29J1uUPCYDnzuy7cE7nu6NPPLp7ToRVfC8RsYWvbU4ID359eY8CTMQPd9KD71XtJo76hejPA4vSb21w9O7FQAkPTDA8jn0FoW7TMovPJ2WmLwnyfC8Z681vXcCxjsOYRe9jbFkvLeuXLxv9sw50eIHPaRKHL3iKAG820/GPJbilDpGqb87xwFtvJSCP71sq+68vkQZPSd52zuq9r87Si+8vG3QpTyRcY88ATyOPWRP4LyQh3a9Jz69vB2XUL16w+A8SqX4PGUUQr0F/Sg92orkPM7SRz2zugO9X2ievF59Fb24DjK8/2ZsvUWpPz3U3kC9r9wRvWbMDLzWGV+74MBLvBax/rzemiQ8pnDDPLWItbwx5Sm8haVrPH6ZcrspKcY8kpc2veDlAroq4RC9FGUwO0GudrxKLzw8rXw8vIi1qzt1jAk9gMYJPbACubu5vpy8MwtRvR+997skaKu8LSSPvKn2v7wOEYK8Kv9XPA4Rgr3uY3E9su3BPJYdM7z1+S28s9jKvJyOuDzWVP26dNweO74vIr3jRki8zFyLOSVwCz2k1c882IEUPXiysDyxAjm9xKCnvI/BpLxXrLq7NTH4vOvHjbyKoDS8qsMBPGevtbqxAjk8fQ6/vBjrLLwIDtk7izuou2kQezvmVog8XJN8PWU66bzWVP27rfEIPfX5rTwdXDK9UnbTvAA8DjzTfms9ur4cPZEiar1lMRk9H733vKzMUbxxkcC8vc/MvHc9ZDx5Ega9l32IPNEdprt6iMI8HFwyvByOALzi0Au9CIMlvRkR1LuH0gK9VyL3PSII1rw0gB09QK52vRVtkDz4Cl48gwr4PG2AELuSDAO9hEwGvSYDH72JK2i8BjhHPSRoK731v/+7Jz49vA8a0rysrgo9hyKYPLJiDr38kFq73xDhPL+61TyLOyg8h5B0PeFwtrwiCFY8dccnPWAZ+TybA4U9Drr8PC7V6TxTTGU9WU+OO68XsLvPMh09CA5ZvOMLqryLUB88yxkNvMnWjjjsPUo91aMiPXxVhDzmzES8vJSuPEbkXT0JvkM8tv0BvKSikTuRcv+8RTTzvOh8L70Ryry8WUeuPECIz7wL5Oq6Bv2oPGO0bLh0SQs9ZE/gPFF207rhcDa8OCzBPCTzXr0HI1C8w3twvO0o07wpT+08bgvEu+9O+ruj1U+8QSPDvP17YzmrVhU913m0ulJDlbvrjd+8MDW/vDP2WbwG6DG8K4kbPOWmHb09zxQ98IioPBysRztUEce7DmEXPcINFD3WVH08h9KCvcWhqjzF+Bs92WycvT7BBTwIaa68KkzbvJWnrTw4uXI9sCkAvLfhSzyPnq+80w5CvS6mi7yeC0c8wvGyPNpusTyhEjA78cGWO2gGN7vqX5I8+1FevREipDzRDC09JkXyvDdhFrx7JgW86uAcvG9q0LxEdac8x/zFvPLvWTxCHja7/f/AvAViRTzbcMa8pGmhvAWNCD0vJxa9UzkwvdVnSD2H5868ikBVOnEWHrztkf+7mlvPPMajP71cn9686DK6uj7C8Lx7pw+9LSWBPPn67LzUEFc9A16bvIQ1wr1CdP28QBt3vafGUbtMrZK9XJ3Ju8oAcLzKqqg8BmZvu5oGc71oCuG8YHoZPfef0bv0RDY9cRaevK36Er0Nxl4790mKPItCajx1yCq8M1qtvOfdXTxEdSc80AiDvVrx+zmLl0Y9R/sFvToSeTzcHim7B2UEvfDpGr0onQ09GjHhvN7N9rwX1sU7DG/tO0clnzsBsk29xfgbPbMtqjs4uXI87Tu4vH9XB72xgdw8/gHWvCGRULyO8mG8PsLwPHZ3+DwABRW9SHyQuYGH37vj1N88qR1DvHNvpDsgPHQ8SivePMKeaz2AhUo9Q3OSPOUt5juoynu8wkaPPLQx1DyiEJs8E3mVO+cwpTzKV+E8ESCPPLGD8Ts4ufI8j/T2uxvdrjvYFSu8gDDuvB3fw7zA7x29S4TkPBR5Fb0f4gI9Qx62vFlCLr0TJDm8HuFYPKVrNj0KwJ+8VZI2PergHD26OtI86NvIuxAh+jzbHX+9+EmKPXolW71bm7Q7PsLwvNx0cDupdLS7ArTiO0IcoTwiP7M5VOh9PWWvxbzyQiG8sNa4O7DWuLzAReW7ObgHPIuXRrwnRpw8fizEPJ64/7wN7wy9+qSlPRmEKL02CqW8qSHtPPaf0bz6+YG8UDbxvDq6nLy8vAY8x0+NPSA8dDxoBje8C8K0vIa5Czx0RYu8W51JPTuQAzvVvKS6+6a6vH9Xh71JfiW8V+u8u7g4PbwBss07K6PMvJgCSTsSIiS7HuNtPf+tI73HT4080uKTvLSGsLxqY2e8qnbJu4IxGD2STBI9fSqvuxyK57zabrE82cT4vE7darxj/807k04nvcNIpLw6Enm8S4JPvYCDNb3fdy+92xyUPSG8kzslbAu9UTWGvIIzrbs7EQ695YLCPF5LrDxJfJA9ng1cO6LoFrzA7x08Rc4tPWq2Ljy0hrA8r30yuuw5Iz3ecwU98JQ+vShIMT09wvC6wUf6PDoS+TwYKyI8BxAovAa5tjw2CiW907llPdnE+Ly8vAa8s4IGPXol2ztybQ+8yVGivGq2rrw9E6M8f4O1O67Teb2M7je9T9//PF9Nwbx70ag8De+Mutob6jti+6M8sCmAvD9sqTyiEBu8Cb4KOf5WMj1Wvw690uITPJT7X7xPh6M81GUzPUYjCjzUENe8hWIaPa4o1ryTTBI8VeeSPQrAn7zKrL28P8GFPaoh7Tsv/uc8De+MvKsgAj3cdPC71GWzPCZEB71JfiW9/ioEPfXyGLx+gaA7HgoHPdQ5hb2seF49abSZvOqLwLz0SGA8IDrfPPmiEL4TdwC8mAA0PKdxdbuIOhY9Za/FO2atsDxRNYa8QMWvvMf8RT1e9s+8IDx0vXol27zRDC09eXiiPAk9gLyNRSm9+qY6POzkxjzUZbO8UF2KurvotDwEYDA8cRaePIg8K7zskf88T12KPE+HIz0eCoe8m4YSvZxejr2VUlG8/VQdvO9oED1nXH48KqE3PRkvzLwGZNq8QhyhPIXhDzz39kI8RXc8PemJKzzPCW48tDFUvZit7LwUeyo84tLKOwi9YL1AQhA8AV1xPD0VOL06uhy9u5NYPSTsa71Edae8xPfxu0Z50TwSIqQ5lqnCPKp0NL1lWFS9Z1sTPJCeL71X6zw7bzyNvMPHGT2ocp+84HlEPQ4dUL0+wnC8L6ggPKzNOrnk1vQ8HTa1OrApAD0ro0y8a7jDvPlNNL1TDYK90AqYvEqAujxj/00825uJPDYKJb1qti68cBQJPAdlhLrLWfY8cxpIPoCFSj1EygM8Sy1zvTk5kj2Zrha9eiVbPbvmn7vH0Bc7+/sWvdLiEzzmhFe8Ma7fu9QQVzxlWFQ6x6VUPUXOrbzo33K8nw1cPUEcobufD3E8gIO1vBAhej2nxlG9Qx42vUwuHT0HZYQ8ObiHvMCYrDycssA8MQEnvIk+QDydtmo8VucSPNM5BbzBnFY9qsslvKt43rznhuy7kfe1PIxE/7wBXXG89Up1PBGhGbyhu767562FvM3ZFbyoch+92MJjvCI7iTwHZQQ92GycuvHtRDwEYDA8hY5IO83Zlbt2c069IDz0uw9IE7zQXko9Y1IVPZktjDwaMWE9YabHvH5/C70gjzu8KfVpPULJWb2vKFY9N7ddPNpwRj3O2ZU92WwcvGatMD3tO7g8VZAhPNWSCz34o/s8UjmwvPahZryeuP87VuknvReB6TsqTNu8XaHzPLuTWLzpiSu7RMqDPeDQNT0EDWm8VpRLveMnpztfTcG89XEOO7k4vbzCSCQ76jbkuyhIsTxi/Ti9LaXhuqAOBr3gTZa8uDg9vKrLJb3vkJQ92BUrvMmoE71ruMM8gNqmu2gGNz0tUS+76jh5PGRWv7xNBIS83yLTPAZm7zw6Z1W8TgSEPYQ3V7s/GWI9cuwEvR9jDT06Enm7pMF9PQMJPzyfDVy9GlqPPD4XzTvLrD27+EufPJgANDw9E6O81DkFvfOa/Ty02ww7iuv4Ow9Ikzwe4+08sCrrvDu+xjzq4By8AV3xPHp6t7xU6P28ikBVvCTrAD0EtQy9LqYLvChIMb2gZE09KPXpPDIBp7sPH+U8W/CQvMxYizzRChi8L1NEvcVMzrpSNQY8AV3xuiSUj7u+QTs9IZHQO+8/YjzBbhO8NVxCPYg6ljyENcI8O5CDOxGhGb0Z2u+8bWQRvTcMOr0HEj23I+zruq9/x7uroQy9WkZYPMwDLz1NBAQ97+jwPIVghbzPXDU9Bg6Tu6MUxTzHpdQ7RqQUPFydybyxqoo9yCcJvX/ZfDz5TbQ96IcWvUTMGL2x2E089XGOvRHNRz0Xgek53cnMvHUe8rwu/FK9Qx62vG+9F7y13aG7OmXAu9pEGDw6ZcA8/gHWO89eyrxkVr+8NDCUPeeFgb1MLh29FCZOvGcEoruZLYy8r1GEPQK0Yj06EGS9CGkuvZdW+7vA7x08FyuiPOfZM73YFSu9CmtDPfHtRDx/gaC8GYITvWdc/rxwlZO7gzVCuXbKv7yGjsi7xEq5PA90wTwCB6o8BLchPB7jbbte+GS8+EufPBqEqLypHcO8zdkVPYMJFDuW/p68xB6LvAm+Cr1iqNw8JZaku4IzLTzD80e8O5ADPNCJDb2fNoq8verJPD0VuLzq3oc7Z9qIvAm+ir3+VJ28Vj9vPM0FxLy+lIK8eiXbvHEWnryVfZQ8VumnPIeQ3bysJKy8lfyJOwW1jDwS+Aq8wEVlvIaOyDu54+A802MePLApAD0lQ108lv6ePZGkbr0Guba7BLehO5GgRDsRdla8QnR9vIiRB7z5TbQ9dso/u/4B1rx2d3g9aF2oPFPkU7yhDoa8gogJO6dx9TynxLw8i0LqO6dwirzMsOc4HuNtOpsHnbvedy+7u2WVvBuI0jxRi807StUWvPREtr2RpG49ryhWvRaogrzIp2m9dMQAPSG8E7zBnNY7OhBku5b+njyft5S9T9//u9sclLu2Nf68w/PHuYprGL34o/s8eCGxPKl0tDyM7re8JBWavdVnSLzwQXe82UKDu+P9Db0jEwW9WJj1u2UCjT1uPA07NLGeO6Zv4Lwwfoc8CL1gO3ZzzrxVkCG81bykPTFWA7yAMG490Qwtu8RKObxrDSA9V0AZPZ+5qTqzL788oxTFO2RWP7y4Nqi87+eFOHRxObyyLSo8zgfZvFiY9Tx0xpU8FqoXvaFmYr3mhNe7YtEKval0tLy0AxE7kJ4vPMNIpLwQyR28V5bgueElkrcNxl68eU6JPNa8JL2t+pK8x/zFPBPP3Dr08IM7/60jvfb0LTx/Llk8U+RTvUwuHb0j6lY8XEkXPeAmfb3PXDU8SX4lPf5UHT1LhOS87DcOvRuI0js8a388EMmdOzfgC763Nig8OhL5O/5Wsjs5Ds+8psKnu0aklLwDNAK9qXKfOlPk07y1iEU8bA81O4zwzDxc8iW8lwJJvWWvRT22XJc7/wNru8wDLz2+7N48MFXZvNIMLTyy2M26/1ayvOR+GDx7fMy8WEIuujpnVbxQNvG8sYPxvEBwUz0v/me9QcdEPD3AWz1uZJE9sdhNPQ4dULuJk5y8SVQMPaISMDwbsQA9j5yavB3fQ7weNrW8tt+2u04wMjxpCMw8r39HPCgcA70yAae7SHyQPPb0rbzn2TO7FHuqPC1RL7x+1+c7J/PUvNrFIr3kK1G9Tt1qPZwHHbxxw9Y7IOYsvSCPO70RzUc9TS4dvJ5gI71lAg07ygBwvGP/zTymGRm9TQQEPUjS1zxZ7+Y7c8XrPFtIbTy0WgI97JF/PGiz7zv9/8C78b+BvBktN7yMRH+93vSPvJCeL70BByq8mAA0vUHHxLvvP2K8Brk2vZ8N3LzfJOi89JkSvbvmHz0/QpC9AgcqPVQPFz0jP7O8LPo9O82wZ7vq4By8BmRavJ+5KbvjJyc9iZOcvLMtKj1N21W6psInPMNIJD1GIwo8IGONuql0tLuRoES93yJTPYAw7rwRoRm8PsLwPH7XZ7y/Q9A8aAa3Ok803LxxwUG9WZcKPdob6ryoch+9EncAvYyZWz3gTZa8D8mdvOfZMz3nhuw8v+5zvfQYiDtlAg094tJKPIQ1Qj19Ki+87ujwO+VWlL16J3C8tojFu4U3V70H5g69QsdEvfuoz7xFzq289Ur1u2y4Qz3n3d28pGu2ukssCL1TOTA8uQwPvN4gvj20Lz+9b72XPCqht7xptJk7KBwDvSSUD7yzLSo97eZbPOjbSLxamR+8r3udvcuADz2PcoG8zQMvPELyh7uRywe8EMkdPZuwKzz5+Ne7tt0hvUTKAz09wFs912vyu5NOJzvZbjE94iWSPIAw7jzLgI+8KPG/PIY4gTylF4Q8jOwiPAprQ7wYg348KJ0NPcxZdjrZww29RCLgvIIzLTxIfJA8DnAXPDIDvDyhaPe54dA1vAvEyTzIp2k6UzkwvcqqKD2W/h49kJ4vPMPHGb12npE8lKWYPMGc1rxVkra8cGxlvFMPl7u5YwC9HjY1vAGwODtQNvG82BUrvcFuEzyUowO9R3tmPGdcfjw5Ds88HjY1PY3wTLzBnFY8mrAruZB0lry75h+959kzPAxuAj0o9ek8tt0hvcoAcLt07pk8kcsHPUd9e7tD8oe8/qsOvdx08DwPcqy8hDVCPPfKFD0pHhg9o+YBPSp1Cb3khgE9SV0EPIOR2Ly9Avg74A6du7ExVb2S9PA8QDNTPa0TMLwB2xM98HSYOPSSvbywaFq9rNbkPOmHMjxTKOE7RsuOvLNUD71Y3ZC8WYa0PBCViLzzzCU91AMSPVUuJ7zSN7Q5WhJkPEYa8ztc3kG8c7+EPB/bLLt4Ev08TXupvOeET7zD7Pq7M5m1vPaVIDtIdxU9AfPyvHFi4ry8OX092CG3vHY0hrzUA5I8F+5Gus/iCT3OpT68UyhhvNYb8byxaz29HxWVvEldhDt7VQ69mx6iPRLNvrz0Bo69cWJivOFg5LzPMW68Lnitvee+t7wy8BG8WEnpPHYXkjwo4PG81Y/BvPWyFD2HJjG8VYWDPIp7W7y3rJy9KK6BvDi6vTyedi88sjS4u7ywsLwbRlQ87aXXPM78mr2wpSW9F+5GO/EDK7zbduG7d4bNvKpHUr1kVPS8v18aPFNlLL3Opb48X6ofPQT2Vbyxa708KiCgvMiBUz33ew88hpqBPL4/w7ukXc+8aXV8u8sTybt+cFC81AMSvOAOnboJGkE8njnkvMIOhLy6quo63s5uPKd7dLYcEjI8jAruu4SUuzznvjc9HA/PPPt8QD1SX+a8FV80uvt8wDtL7JY7XBgqPehK57v1shQ8zhmPu3ynVTxz8fQ8IGfcPEH56ruRaME8+CQzuzOZtb22jEU8HthJvdBuOT3TiXu9x/UjPVhJ6TzPxZW7BvybPGCtgjzS/Us9p+/EvNLD47uW/Zk9muFWu552L7xTvIg9cfaJvU21ET2HJjG963CEPDOZtbz68BA8DKnTu7P6T7sIFPs8RlRbvK5ldz1DiP08vgVbu+w2nDuRayS8f/x/vMtNsbw8Ess6914bu/gkMz3qihU8bg24vO7lhT0LIIe9DThmvd4I1zwfZPk6+j91PLJuIL3xAMi7rEq1PL08YD1suA08PfucOuaB7DtvSoO8ZFT0vP+dSLzBCyE8YlkJvDj0JTxK6TO9SJQJOgCeyDs6g7i8jxMXOiwGD72+BVu8Dq8ZvID/Yj2zhn+9vgVbPUyyrrscg5+7Z12dvAum8DsLV4w8gMhdPI8wizwo4PG8tYniO89rVr1f5Ic8ZyDSO6A/qryXT+G79SFQvLVP+rxc3sG8eYwTvRxJNzylJkq8ZpSivCZR3ztYSek8/H8jvHsbJrwwzde7xxKYPb9fmjx6GEM8ChpBvazWZD3iY8c8VYWDPLZS3bwL4zs9XzNsPd/RUb3UUvY8PE8WPZWG5jyNhIQ8rBDNO3b6nbzF7907Ts1wvTxPFj0EUBW988wlvFJf5jxDOZm8tcatvB7bLLzwN828EJUIPT41hTxqe0K9IMEbvef4HzxNeym7pWAyPZfjCDwRXoM8kWskPJb9Gb1w1jI9sGjaPECnIzwMAxM9mlgKvVoSZDw+3qi8bNUBPaPRnz0VthC8uyQBvTtMMzwyXOq8lTcCvWl1fD1DVo08OfeIPNI3ND0/ati88MN8PGl1/LwsrzI9Jf+XvGWRPz0q49S80G65vCw4fzvsGai74mNHPFVoDz3WzAy95hUUPW4NuLvKSk699bKUPDZlkzt/rRu+8yOCu2eXhTwN5p68wEUJPW1+pTzzyUK8kmskvTAHQLyroRE9PGyKvBGQc72eOeS85S8lPWMCLT1I4+28xvJAvcNgSz3hmky5Z3qRPPPJwjtHHda86ErnvCiRDbzJhDY7p7XcPBcorzyhXwE9uR67vEx4xrxORKS9jtZLvUmsaLzJhLY8IaSnPJwhBT2n78S8aeyvvC8E3TsKVCm7i7uJvPSSPTzgDp28zhmPPCogIL0n5QY7LOmaO41KnDuU+ja9/y4NPce4WLzinS+9lG6HvVBHBz2O1ku9P2rYvOTyWTzo3o48s/0yPcoQZjwEbYm9YsVhvSl0GTwi9m68BPbVvP5lEruxMVU9NmUTvLM3Gz1U7ni9MM3XvBIkG7zOpT6888ylPBsMbLx6Uis8vHZIvfaVIL1D/zC68yOCvSJtoryZchs9MM3XPGy4jTwUImm8OEbtuwIt27zAKJW8ykpOPesWRT59bW09uySBvLI0OL1r7xI9R1c+vH85Sz049KU8s/0yPbCoCL1SEAK9G70HPAY2hDxfNk+8Q4h9vJpYCj2j0R+9IWo/vDrVfz2Lfj48t4+oPEbLjjzmMgg9914bvYA8Lr0Y8Sk9IvZuvEojnLzxA6u7vLAwO6jyp7v+DjY8bAfyPDQlZTzAzlU7DumBPBqAPLyedq+8PjWFvIgplD1i/8m8lPq2vDm9ID2nuL+6IN6PvIyeFT1grYK8B+KKvbdVwLyQK3Y6qCwQub2zE7wQx/i8Pt4oPC07Yjzctg+9IC10vWXOijxXg9E7BG0JPWI8FTyAPK67vTxgPJpYiruMgaG8pmOVPKVgMj1tRD28RcgrPbNxAz2lYDI9xiypPTINBrwQlYg9Ai1bPDbxQrwtAXo89nsPPTd9crtmlCK8J+WGu6HLWbzluPE8QPlqvNSPQTwIi668DztJOybFLz2YUkQ9SeZQPAdO47y+eas8uj4Su/u2qDzvqx29nHBpuSjg8TwE9lW6dfe6vSx1Srzgl2m8GCuSvECno7yhkfG8YsVhPf+a5TwVthC9WcAcPaVgMryhkXE96qeJvHzhvTvYeJO8BG2JOl2k2Ty4WKM8A2qmu/1FOz3vyBG7OIBVPd/R0bxrB3I8YTmyvBLNPj1UK0S8FNMEvT41BT2KuCY8GHr2u10bDT0B+Ac96RPivKRdT70aQ3E9J44qPaAFwjxPCrw8NvHCO5rhVrx5T8g8QKcjuyogID22Ut27s/pPvZmPj7zeRSI8V/ehvOzfP7uWwzG8mqfuPCWI5Dyo8ie8piktPcxtCL2feRK7UZlOvKPRH72KD4O7ggWpvEFwHjy0/bI7h30NPY1KHD3+ZZI8ZCKEvD6hXT1ZwBw8sPyBPOhK57uqR1I7O0wzvUOI/bz2lSC9PNhiObkeu7vrUxA98P1kvYdgmTw/pMA8CasFPIPrFz3YITe9/Q42PQyp07ulJso5LTviu6PRHzyOELS8fueDPTpJ0LzoEP881pKkPZ8C37zFZhG9uwcNO6PRn70T7ZU9b9NPvIwNUTznhE86s4Z/vHoYwzppr2S8bEFavM6lvjt84T07mIwsPPfnZzypRG+97BmougItWz1qeF+84NQ0vaOXt7wSzb68i0RWuxGQczyhCCU9A4eavIyBIb08Txa9dTEjvMCUbTsN5p69NksCvdZYvDsEM6G8LAYPvKS3Dr1iWQm8E+0VvDdLAryuZXc6dvodPN8LujzsGSg8SnVjPXveWjxfxxO9/AhwvMzZ4DyqR9I7+3xAO9x5RD2CBSm8ysGBu2A2zzvHuFg7NxEaPYMIDD1QDZ88cWLivCJtojo0uQy9LAYPPOf4Hz1+cNA8ZrGWvMXv3bwRkHO9UCoTvUFwHj3oSuc6pel+vBFeA72SwoC7EgcnPcsTyboyltK8NWIwvfu2qLsqrE88fW3tvNI3tLuesJe7Ob2gvLP6T7vPa9Y8Pt6oPBxJNz0G/Bu9kPmFvPIDqzxuDTg8vHbIOSMzOrsi9u67x0yAPXukcjvTAC+98ox3PF+qn7xgcLe8Jxd3PJvkOTti/8k8gP/iO4m1wz1TKOG6O9V/vHb6nTwNrLY8NvFCvI3TaLxlV1e8qA8cPYZdNrv9Rbu9fOE9PQDYML1jVHS8FCJpvUnm0Dx44Iw8GbfBOWZdHbwyXOq7CzqYvSogoLzbduE7RMVIvFb0PjwY8am8BDOhPKGR8bvG8sA788ylvL98jr3yWgc9SumzPB9k+bvdfCe83NMDvc02g7wLVww91syMvLgb2DyPYnu9wAi+PC07Yjzbsyw7hullvNqwST2mgAm9KJENPWLF4TwkNh27LHLnO8wWLD3sNhw8tMNKPczZYDy/Xxq9qdgWvNnnTjzyAyu9Y8hEPMSdlrwoVMI85S+lPDnaFL3oSmc8RcirvFqJF7xTnxQ8y00xPPJaBzzdBXS98yOCvZmPj7wRkPO6cJxKPOJjx7wL4zu9NLkMvVVLmzvQbrm4HdXmPPntLbzHuNi83ZkbPGlggL2CBSm9zdxDO+twhDpw1jK9cJzKvCUcDD1oI7U8NWIwvEBtu7wfFZU8J+UGPal+VzxJrOi9HxWVOuf4HzxnIFI8tU/6vJxwabx7OJq8RcgrvEeRJjwhMNe8OIBVOx3V5jw/ali7ASr4vJ2tNL1MPl493QX0vEx4xjui7hO8XN7BPBTThDwzmbW5qruiPPmzxbssOH884ilfvHrbd7y6PhK9fOG9vNJXi73zj1o9FV+0vVKcsTqqgTo96ooVvLw5fTwbDOy8md7zPBYlTLsbDOw7GrqkPOa71DynSQS9zBasvF3+GD13/QA9hunlvAdOYzsvmAS9EgcnPduzrDxdOAE8qX5XvLesHD2uFhO9EHiUPMCUbb18p1W82CE3vaRdzzxf5Ie8BhkQvLCoiLxsB3K9aWCAPSvmNzzeCFe9h32NO0x4xrv/Lg094A4dvZfjCDyTNB89fsoPvVKcMT3/Lo08Ne7fPLCoCLxMsi66JPw0OwEq+Dxpr2Q87N8/vdM6lzwTk9a8j9kuPAtXDL3AKBU773G1O6e4v7xuR6C7MQqjvBax+7yHYBk9f62bvcAIvjzoSmc9hunlvOJjx7y1iWK8SHeVvHIr3bv4sOK7g1fwPMd+8Ly9PGA8WUzMvH+tGz0B83I9Y8jEPKFCDbxmXR28QKejvd5iFj12vVK98TqwvNTGxjuCy8C8fKo4PN4I1zuI7Mi8BDOhvJMxPD0hpKe8nAQRPFlMTLzUAxI9NWIwPNGrhLt1Tpc8QXAePPLGX70yDYa8m+ccvBcoLzzBCyE9zFAUvGE5Mjvta2+9K+a3PMdMgLyx9+y7bkcgvZ88R71QDR+98oz3vHuk8ruTNB88TgdZOyogoDxgcDe9YsXhPJmPD7zxOjA9muFWvZseojwLHaS81ukAvFLzDbsjcAW9E9ChPIyeFbzrU5C8KuNUvGLFYb3gDp08fjbouxA+rDsEbYm8LgF6OylXJT1b2168wvEPu5XATr3HuFg9UEcHPXOFHLz3ew88gHYWPc02g7yYjCw91x5UvITOIzyfyPY83QV0Pea7VDzphzK9yhNJPEkguTxmHe+8G70HvcoTSTwokY08fnDQOxxJN7zgK5E8y9b9uwItWz0j+VE9qPInPOKdL70fFRU8xe/dPL4/w7zDJmO8963/PD6hXbuVwE69GvSMPCyvsjnPMW67d0zlu6jyJ7ylJsq7VCvEvF2nPL0RBES7I7/pvMe4WLzt4iK9ZZE/PWnsrz3i73Y6dTEjPFTu+LsEUJU8QG07vXre2rnCDgQ9X+SHPLJuoLyIeHi8a3tCOVUuJz0agLy6q6GRvHgS/bxOmwA9XaRZPTuGmzw3SwI8n3mSPGxB2jzAztW8"} \ No newline at end of file diff --git a/dsRagAnything/Topic/Chemistry/vdb_relationships.json b/dsRagAnything/Topic/Chemistry/vdb_relationships.json index 434d6c43..2703eccb 100644 --- a/dsRagAnything/Topic/Chemistry/vdb_relationships.json +++ b/dsRagAnything/Topic/Chemistry/vdb_relationships.json @@ -1 +1 @@ -{"embedding_dim": 1024, "data": [{"__id__": "rel-64070e3f65ba14529879be04181b2124", "__created_at__": 1751960218, "src_id": "氧化铁", "tgt_id": "硝酸", "content": "氧化铁\t硝酸\n化学反应,酸碱反应\n氧化铁与硝酸发生化学反应,生成新的化合物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-160441d147cfe7777a9723167faeb22a", "__created_at__": 1751960218, "src_id": "氢气", "tgt_id": "氧气", "content": "氢气\t氧气\n氧化还原,燃烧反应\n氢气与氧气发生燃烧反应,生成水。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-89de996c1ac0d9375ac2f28f7315c37f", "__created_at__": 1751960218, "src_id": "反应方程式1", "tgt_id": "氧化铁", "content": "反应方程式1\t氧化铁\n化学描述,反应过程\n反应方程式1描述了氧化铁与硝酸的具体化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-2b005872ade90234265d9d7031008a53", "__created_at__": 1751960218, "src_id": "反应方程式1", "tgt_id": "硝酸", "content": "反应方程式1\t硝酸\n化学描述,反应过程\n反应方程式1描述了硝酸与氧化铁的具体化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-6e002e667ffc30da8df0ed400a489773", "__created_at__": 1751960218, "src_id": "反应方程式2", "tgt_id": "氧化铁", "content": "反应方程式2\t氧化铁\n化学描述,反应变体\n反应方程式2可能描述了氧化铁与硝酸的另一种反应条件或产物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-0f07e8ce3801e170143e080da1445eb8", "__created_at__": 1751960218, "src_id": "反应方程式2", "tgt_id": "硝酸", "content": "反应方程式2\t硝酸\n化学描述,反应变体\n反应方程式2可能描述了硝酸与氧化铁的另一种反应条件或产物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-3670a6e1927ce96e31f2fcbc8c8c6b17", "__created_at__": 1751960218, "src_id": "氢气", "tgt_id": "燃烧的方程式", "content": "氢气\t燃烧的方程式\n化学描述,燃烧过程\n燃烧的方程式描述了氢气与氧气的反应过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-1ec968c7c4aba271617f5f969c9577ae", "__created_at__": 1751960218, "src_id": "氧气", "tgt_id": "燃烧的方程式", "content": "氧气\t燃烧的方程式\n化学描述,燃烧过程\n燃烧的方程式描述了氧气与氢气的反应过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}], "matrix": "2EEmPRPejzw9L5G9BqHau2cJkrrXLye5bjtDvH+Gqz22khw98jF0vJBIFL1X+2C9kCQWPF+WHjviTxg8HL0+Orkpz7q0q9W8AiNhPOIrGjeaEfi8cae9PBfawzxNiO28dYo4PXF8hTxh3po8Te1uu/Auhj2EjSS9rVzgO/idbr3AZkW9aeHHvCMMtDxzxAE95qmTPLC2W71V1+K8g3slPa1c4DwrWym9ojxvux8Fu7zZZaS7qQJluiODtLx3nLe8GDgLPO9geL1eOFe73IkivE6IbT0vUKO8HuwBvbrETbx/mKq9u6sUvBwbhr1UxeO8epGxvKfM5zx/mCo9xxo8vX3ZrbyswWE9uk3NPHfANT3Gbb687eYJvVMYZjnzH3U9YpJSveapE71qase6XBTZPA1n0DwD0N68D/BPPM5FszxgVZu8we9EPMh4A7waIsA8AO1jPKa66DxSfWe8P2WOPCVCMb0GBty8Wbrdux6Oujsczz088x/1uyxbKTzZUyW9XSbYvEN6+zweBTu8ErqRuxYtxjzXHSi9axfFux4XOr1m7M28ry1cvXJCvDuEe6W8RhmFPEeiBL1CrQo9X+VUPRPeDz0NZ1A6H7I4PEEy/zuydVi6FMwQPGOk0TxN/+086ycNPCh4rjpVYGI9W2fbu6PX7bufS4C9RgcGPGFnGjvYuKa8JTAyu57iczwQDRS9AO1jvez0/bsfh4C8tPedOxadDL35XOs8LRomPS9QI73PV7I8sD9bPcnHuT1gbtS8ly79PLz6yr0/3I48cAy/vNcdKD0jlTM9wdaLO5SiD71uO8O7MeshPVVOY7z3AnA9kmwSvIGqqTwwx6O9oI9xvEIkCz0PAk+8582RO9llpLs3BBo9g1cnvbzWTDwqSao9AZphvWICmbyfa/M8yCw7vfnBbLxW++C8nrABvDF0oTyAM6k9y/22O2ygRDveSJ+8ltiMPH+GK70Godo8rMFhvVgxXjwi+rQ8eNI0vVioXrzFQoY7CVkdPNjKpbx+dCy96+J+O30+Lz2Vxg09NLydvbs0lLzSKK68aljIu16oHTu+Hsm6lKIPPGVKlTzciSI86ycNPHTdOjzaUyU8xuQ+vMXSPzwd8zu9dV+AOoPyJb1Q4mi9Hym5vJ4nAr0eFzo9dRO4PKfeZr3HCD27obPvvN2/n7wdfLs8mruHOwprnD1Us2Q9FBtHvc0PNj1+66w8reXfO7JRWjy3fFG8SMaCPa1uXz3FQga9ZGNOOxy2hLxjJpe8DteWPC6jJTuHTCG9w/oJPY1lGb2wG908QO4Nu89FM7zNDzY9mNt6u9KxLT0LqFO9GOxCvbgXUD3cNiA8E1zKvGpYyDwYOIs9Ho66vG0iCryZUnu6tSLWvHEevrsWtsU7uzSUPLrETbz13vE8kn6RPIbDoTzOzrK6YLocPB5qvDxrF8W6eW0zPO1diryfa3O8BipaO8t0N7zWgqk6wXjEuxWkxjx/D6s9IKC5PEbUdj0SQ5G7bP4LPULNfTy94RE8rMFhve1dCr1qasc44SuaPBGoEjvzuvO8me35vLL+1zxOiG08EZYTvTH9ID1qase72EEmviFfNr0+uJC73BKiPA5OF7t4STW8gmmmvMklgbzvYPi877N6vJAkFr0oiq28DMxRvZ2MAz3e0R49QO6NvBUtxrsViw09Y8hPPGQ4Fjtkr5Y7l7f8vDDHIz3uxXm72neju5JsEjzffpy6aJIRPRdjw7xE44e83BKivdReq7vU56q7BgZcvIPypTwHPFk95yAUvLbP0zwwx6M8M4agO/jBbD111oA942EXveueDTuj6ey84JAbPUqlcj1GGQU9vWoRvXp/sjztofs8EuVJvBCdzby1ItY8AZrhvB1qvDrA3cU8bP4LPQ95T7t5bTO8TO3uPDnDFr3gBxw8YMwbvedEEr2rOOK7ehqxO2V1zTzJEwI9DCqZvfYCcDxf5dQ8cGqGvJ019jxrF0W8jNyZPeCQm71EsPi8Zf5MvJHjkr0qrqu80Y2vu2wFRjydNXY8RysEu4NXpzwMzFE8dAG5vBCLzjyjcmw+8g12Pd2/nzykluq7Qq0KPX7rLL3SFi89UyrlPDifmLy489G8g1cnvYfVILxDjPo73uMdu7siFby9DEo9tCJWuhoJB7ye4vM8hbEivZaB/zxwg787hSgjPehokLxUs2S9SD2DvM/gMb1rjsW7Mf2gu2PIT7wI11c8JcswuqvB4TxrdQy8SIH0PLFj2TxqWMg8we/EvCcBLj00RR29Yz/QPJiXibtbVdw7YMybul2vV7zRezA8MGKivNYLKb294RE98+0CO78FELzDAUQ800wsO3OygrwvUKM8xn+9vB8pubyD8iW8t9qYvKZD6Drgfhw8OcMWPPJShDyN7pi7smNZvf5R5btFnnk9hbEivaUf6jz3Ju48t1jTPKhn5jxE44e8p95mPZ2egjwedQE9YnkZPfrl6jzvk4e8y/02u8ZUBbzK2bi81DotvBYUjTykcuw8Yd6aPOYgFLvHkbw8TO3uPNp3Iz2CRai8yce5PIHOJzwLH9Q7gCEqvXRmOrzPRbO7RAP7vLHa2bwx/aA8VCrluxRVELx/mCq88+0CvZiFij2cAwS9XpaeuwlOWDqvLdy7diW3PHYTODwm3S88/BvovBn+wTvAO408e7UvPVIYZr0Ea108ZFFPvNGNLz0bNL+8hHulPPrT67wNVdE8ESbNPBhcCb1BzX07n2vzuyQMNLzxQAU9/AnpPCtbKb1wccC8FPfIPCZmrz2vLVw7R291PcyGNjzwYHi7XSbYPPD7dr2S9ZE8eyywvKAYcbzwpYY7WR9fvNEWLzxN/+08XGdbO4fVoDwzhiA91fkpvHCDvzxrYw29Tf9tPH50rDvElQi9hY0kvHCVPr0LhFU8lCuPPMHvxDxfMR29iy8cPIy4mzt1Ezi6yAg9PcBUxj3vYPg8OCgYvZp2ebzjYZe8wyXCvHzHLj3draC84JAbO8bdBL1FOfg7MpgfvW0iCj3HGrw8F6+LOhh1wrzbmyE82tykuxcmDD0Gj9u71fmpvLfIGT3PV7K8Kq6rPHlbtD2x2tm8P7iQvATiXT22NFW9vPpKPTSqnjoRJk08Qq0Kunn2sjzxDXY8dHg5PJoReDxoGxG9keMSvXRmOr2fBnI7wLINPAyhmTu+DEq805+uvJUKf71VYOK8UL7qvCCgOb2Wgf88fVCuvBOAyLxX6eG87oEIPNKxLb2+MEg8vEaTu44SF717ozA9fWKtu87OsryswWG9xdK/u0pA8bsYwYq7VnJhvIdMobyWgX88LQgnPb+5x7udWfQ8IKC5O7zWzLuBvKi8UeLou0tScD0XP0U88YT2vBkQwTyV+H+9cac9O8kTgjvGfz07yAGDPKGzb7zQaTE9tIfXvEI2Cr3FQoY8LZGmu9wSorzEHog86/T9ugYqWr0K9Js7GP5BPa3lXzwtCCe9s5lWvWikkLyNd5g8SZNzO6Ux6bxgzJu6luoLPEAAjbtm9xK8yAg9vVH05zpZul28uAVRPHsIsrwcWD06I4M0vXCDvzx1ijg7MyGfO/OodLxnIss7ZDgWO82qND0ZdUI8vYNKvb1qETyAD6u8iYKeO51H9Ty1gB09Ivo0PGgbkbuukl09LqOlO7MQV7zbmyE8JlSwvF2LWbw4KBi9snXYvA08GLvXHai7ZplLu4fnH7xA7g29hZ+jO16onbzYpqe8n0uAPIhwnz0YOAs7n33yPHoIMr1D8Xs8OcOWvDXgG70ejrq8rOVfvR4FOzwWFA28M4agvH+YKj0yD6C7XkpWvREmzbyb3wU8EcHLu1iW3ztIxgK9gmkmPRmHwbwdfDu7bClEu7Nunj3HZoQ7/3Vju7A/W70DWd49CmucvGS20DyKLxy7E4BIvXu1rzwNPJi8lLQOvONPmDxGOXg8aKQQvQ7XFjzV+Sk8eggyvYqmHD29ahG9rVxgPb2VyToEa927mIUKPBFKS72y7Fi9EGAWvLo7zjzWlCi8lcaNup1H9TwT90i76XqPvPOodDyiPG+7t3zRvNWCKb1M2287nTV2vMHvxLdv+j+9DVXRu3sIMry9lUm9ECZNvdZwqjw2e5o8cQWFvR18u7vJPjo9EPuUPNrcJLx1E7i8F9rDu5gOCrwZEME872D4vUAyfzyjTu68FZLHO0B3jbzV+ak8uWMYvNReKzze0R66ZzTKvNwkIT2QSBS86fEPPRadjLz13vE8m5p3PPSIAb0mZi86B7PZPDcWmbvrJ428rfdevJ3QdLwuoyW8NEUdvADtYzydjIO8abaPvM68Mzz8pGe7LQinPAIjYbxYMd48ac9IPbfamDxf5VQ9alhIPNjKJb3AVEY89EPzPEDuDT2CVyc7hSijvBRnD7zIo7s8kCSWvCa5Mb1tTUK9OJ8YvNOxLbyk+2s8lLSOu6a66LzQabE8qyZjvAnQnTyaIIm9BgZcvZwjd7z2Z3G8t3xRvU6a7DwOxZe8aUZJvLWSHLwT00o88mSDvPPtgjy3URk8DnlPvMcaPL0ymB88czsCPWbsTTtt/os7d0m1vKPpbLoJ0J27vzDIvOhoEL1pPw89eFu0PBn3B72au4c8Ivq0vJmpCL1D8Xu8aUZJvMvrtzvILLu8XqidvBqZwLz+P+Y7Q3r7PHzHrrzz/wE9QzYKPCklrDse7AG849gXvfGW9TzBxAy80gSwu/Te8TteONe8v7nHPMXSvzztBn08BOJdPTHrIbtQWWk8s26ePDOGoLyOiZe8zrwzvIn5nruFKKO7nHoEva8tXLp/mKq8E27JvPZ58LwUbsm6egiyu9B7MDvhGZu8WTFePY13mLwuLCW9XZ3YPIWfI7zcNqC9ZCYXvMRJwDwh1ra7YouYPLOZ1rxrfEY8bKBEvevQf7yCaSY9S2RvuvH7djsdajy9m9+FPCvkqLwedQE9pJZquSA7uDtzVLu8WlVcvSQeMzzVcKq6HfM7PW7WQb3GVAU9WUNdvWgiy7waIsC8tj+aPKl55bocWD29kxmQvILgpjsLqNO8V+lhPIPypbtc8No8i0GbucFmxbxlXJQ9f4arO1XX4ru381G9UFlpPeErGj3KYjg94iuau8cIvTzx6Xc8yRMCPbAbXbtw8wU8DnnPu9wSIrwd2oI9a3xGuyDEt7srWyk9fMeuvCA7uDvAxIw7RAN7vGBu1Dt9UK48ts9TPFiW37sctgS9b0aIOmm2Dz2aMoi9IV82PfeLbzwSwcu883YCvTXgG71Q0Om8c8SBO/D79rvtGHw76fGPvJ598jtfQxw9qp3jvGVcFL1C3/y842EXPZS0jr01Vxw9h9WgPIvKmjxjG1I9hRakvMb2PT1wccA8V+lhvJzxhL0K+1U9qhTkOSUwMjvGbT6925uhu04j7Dxvz4c8/rbmu7uZFbznRBI8c926PMm1ujx3Nza8RysEO9rcJD1I5vW725shu1FMKT3GKVI9Mqk4vfoIwLzbF5e8BcccvTzZIDs1jhY9OOEKPUAIQrzCaMe803UjveypNjyjjku7HxsOPHK0mbzX20+8RxzBu8ZgXbzp+2M8KVV9PE75tDshLkY8E4GEvEo4qjxTluy8KHlQvDrdFb2bnh89F2x0vfNi1zzIaY68kC57vTahTr1ur927LQwBvKbKkrx10AK9uQoFvYRmFz02/Cw8crQZvabhvzyGYiK8sEgzvCw6W7wjbgK90ZBFO+vNCb1KOCq8ckaDPPcjYjyV4Yk95gNOPAB4HbxunCU6GaywvU8wQLyAboG99ke1u8u8AjyLpHs9CqiFvTwQrLv6CMC8hpmtPX8XGD2HrOU8+SyTvJ4oH735mqk8BVmGPXuNGL2N5Le8E3RePEQAWDp2Phk8wcOlvLQJvjxvHfQ8hFlxu5AAoboZPho84rBZPAfDJ70xzYu8URWeu/EcCTwEOSi81jauvPwbeLwHjJw7vPnpvAkaEb2VGJU60MfQu/VriLy4ykg5BXCzO2a/sbyGmS09gCpQu4YHRDyMbXC9gmoMvZ26CL2aMAk8cnBoO9rALT1gBhG8BDkoPeaobzzUv2Y8C7s9PHXD3LyIddq8S6bAvOaobzy0myc87bzuO+wXTTxgyxA9mII2Pf0kqTtfdCe7KLBbvUumwLw8EKy72i7EOojwFjvPIq+8ZlGbvF90p72JI608gTOBO1006zt9fP07S1gIPYeCAD0giaS83UotvJmV7jzC+jA9Zy1IvZleYzwTPVO9tSmcu5hribyhe5M8nl+qvPMrzDw97Ni8KicjPY4ElrozF0+8yS6OPWzKf7sgiaS8KrkMvTn0wrz5mqm8+FrtvPAPY7p5FtG6lxSgPKyHqLyy9gU663IrPSonI7337Na8Mqm4O2oSpjskM4K97fP5OnwyurwxzQs99Ad5PaaqtDw1xSE88/RAu1ayVb0Aryi9a1xpOyhCRb3j5+Q8XcZUPYBhW70Bzwa8LDpbvAI9HT3+kj8863IrvY4Elrv+RAc963IrPd0Tor33MIg81jYuPUEb+ryt9T48Ud6SvAEdPzyummA8lQtvOtsXlzwTKhs9fqkBvSCJpLyGma08LX4MvIBh27y/FVO93ApxvX1Fcry8+Wm91x8BPTXFITuMNuW8jG3wPM09Ubzo6Cu9U1/hPP0kKb1fBhE90H2NPVGDNL1jo8g8msz5PFYg7LsCwmA9F2z0OaYYSzwZrDA9ZuOEO9vgi7rXVgy9t7cQvM+0mDyyW2u8CRqRvD4jZD2AYdu8JEqvvPx/Bz0NbYW8+SyTPTWOFj1EyUy8WbeRvBk+Gr26eBs9yfeCvINGOb3WkQw9KoKBPUQkK70sOlu8krj6O+S5CryCoRe8S6ZAPCtHgTuqVBK78NjXPNxuADt3Axm9Ld/8u1b2hjxk2tM8PNmgPHJw6LuLbXC7s5unPFYg7Dy+Oaa89n5AOiMTJLzbFxc9maIUPdQDGD09Rzc91cwMvAxgXzyQkgq9WGCou8Xfjr3NdFy9t5M9vDXFobx1Hjs9o/zhvLUpHL0nCzo9o/xhPedDCr1ZBUo9lPi2O/JPH74sOlu9JEqvPIpauLzGpI68oantvNOsrjydVvm8BXCzvKfhv7sWkMe8VUS/vNIHDb2xJGC8OtBvPNPjOTzZUpc8Q7YUPaodhz31awi9Y6PIvE8M7bzrO6A9pqq0vFCnB723JSc82eSAOpJuN7zz9EC9ZNrTvAqohb3FTSW9SjiqOxPvmrxur108m54fPT61zbvNuA06aduaPISQfLtfdCc9BAIdPWlthLyBBv08r9HrvLzC3jzLKpk8H+SCPRz/pLyJfgu7f7w5Pf4A1jpLpsC8WJczvDtrCr2xtkm7wB4EPea1FT2r4ga78k8fPTZqwzv4kfi88/RAPQceBr0epEa8H+QCvU9D+Ltnm948bJP0uor/2by7zwQ9Ez3TOSwDUDz/buw8xd8OvStHAT0kgbq9UYM0vdrALT1EJKu94dQsOdWIW7wYbHS8F2x0tjh9+7scyJk7AzD3vFRoEr3DUZo8vMJePjn0QjzB8X88/Bv4u+L0ijw0IAC9iPAWvD/1CT3W/6K8xm0DvY/NCr39JKm8Zy1IPd/LezvDRPS89NDtPJT4NrzFTaU8AHgdPdALgrww++U7yUU7ug+zUzyqVJI8ESHqvGtc6bzHznO8EyobvA6gGzyH4/C897XLvHm78rqAz/E8eh8CvXeVgryLNuU7QfGUPNB9Db3NdFw9yNckO1K6P7z/N+G8VUQ/vHRCjju/FdO7TjDAPHRCDjxueFK9wuODPEkveTyi6Sm8i21wOx1tO7sD+Wu8p+E/PLObJ73gJlq8FbSaO/BTFDxBuom8lQvvubG2STx4ca88X3SnOnmE57xjbL27KvCXu4QvDL1rJV49HaTGPLUpnDxKAZ88hpmtvOySiT2NdiE9sEgzPBfHUryR3M08u88EvR2kxjsACge9LugtvGaIJjyELww9cnBoPL+D6TwwMnE8jolZPJ871zzxRu48ibWWvKn9KD0PfEg9cnBougHPBr0jCnM8wmjHu/BTFL3SPhi8vPnpO6k0NL2mGEu8kTesOmzKf7y/3kc9I6WNPO8ztjs7meQ7FUaEO5WdWD3+AFa86cRYu5sMNju7HT08wVUPPQu7PT2lang8FiIxPTXFobw9R7c9EwbIvK31PryXS6u8jgSWuxbH0jwBi1W9CtZfPW2cpbyg4Pg72+ALPY7A5DufBMy8qcYdu6rZ1Tywfz49fdfbPLz5aT28PRs84nlOumSMG7wWIrG9eZENPYVZcbzP4vK8jRtDvCfUrruZJ9i7gZhmvK31vrzYgHE8cLgOPXIC0jy1HPY8iv9ZvVbp4LzXVgy9sEizu+WVt7wdpMa7mww2u8kOsLvFuzs9D/eEvEG6CT0JMT49yfeCO2Ta0zyr4oY9/SQpPQu7PTs4TyE9KLBbOqByYrwLu726ukEQvcMNaTxwgYO9kxwKvCyocbwFg2s9eTokPEeuqjyWQnq89WsIPc+0GD2mk4c8ahKmvAXeybyTjhU9oumpvOyptrvS0AE+3Qrxu964Q7ydVnk9E6vpvC/7ZT0O16Y8yUW7PBOBhLuMNuU85LmKPH9OIz3oVkK8uAHUvBwt/7xZc+A8DGDfPCw627yRE9k7ldTjvLhv6rv3tUu9ppOHvFIo1rwKDWu9UvFKPLp4Gz375Ow8cIGDu6t+dz2t9T69nHpMO0dTzLqfzUC8P2OgPMkOsDvXH4G8bnhSveTwlTtMgu27IZxcvaYYS70sqPG8qI8SPVqqaz15kY08BJSGPFSfnbz5Wm28rhWdvJA3LDyaXuM8QGOgPSxeLjxLWAg9L41PvVEVHj215Wq8AzB3POS5CjzcCnG7eh8CPf3tnbzsTlg8l6YJPOixoDwGkBG9p+E/PGEZybwPs1O8EyqbvPQH+TxSo5I7ux09O114HL0K1l887Kk2PD6R+jwTPdO8ww3pvH8XmLx3zA09LwgMvbhcMrzh1Kw8Urq/vAGLVTzI16Q8cwuDvTUzuLzflPA8kRPZPIpDiznBw6W8KiejvPTQ7TymqjQ9JDMCPQpRnLzIDjC9MuBDvfP0wLftyZQ87U7YOgB4Hb1Zzj48cgLSPG8qmrhTluw8uq8muVFMKTtp25q8ckaDvE4wQL0PRT072xcXvdr3OL0kuEU9GgOavHuNGDyeX6q8XQqGvIr/WTxI5bU4W3wRPfMrzLtnm1695jrZOxHqXr3yhqq8oukpvaYFE7yUiqA7nehiuzQgAL3SPpi8XwYRvehWQr1Suj+8WuH2POdDCr3kuYo82I0XvfutYTrC+jC9yyFouWaIprset/48h9A4vak0tLxZzj69oOB4PcgOsLzflHA9OfRCPPNiV71ERIm7VvYGPccFfzxdNGs8ieyhPLjKyLwBVMq6uHyQvBG8hLxoCfW7PezYvFe7hj3aiSI9yA6wvOIrFj1kf/W8RZJBvIIPrrv5mqk8+gjAPF00a7u2txA9LrGiPL45prz6CEA9oukpO/x/B713zI29uDjfPDAycbwAeB091v+ivP834buGB0Q89hAqvcjXJL1KOKo8L8TaurJokTpVMQe4zkYCPcuP/ju8MPU8SsoTvTI7IrzHMgM7unibPEA/zb2FKxc9682JvOixoDyQACG8j82KPNsXF70WIrG79hCqvI3kN7yCagy8qhDhvKoQ4Twly329L8TaOsWEsDzlfgq9K8zEui7oLT05K068Lh85O9RRULyNdiG8i3qWvEjB4ryuCPc5krj6vM+0mLy8+ek69kc1PQ1tBbxwHXS8AlRKvLwGkD0XNWk8lMErPQMw9ztycGi7RADYO88irzw1xSE9msx5PKZP1rzYt3y8eHEvPXYeO7xI+G29J2YYvWDLkLxKAR+7bgq8ujUzuDyvo5E98721PDE7oryj/OE8+fWHvWAZSbxACEK8y7wCvEVubr0LFhw89kc1vfFG7rwJMb4719tPPJNKZLwlXec86FbCuneVAr20QMm8eN9FPIDzRD2jV8A8GpWDO6eGYb3bqQA9FpDHvHVVxjzkuYq8svaFu+ZxZDrNuI28RncfvBwtfzwcWoM74GaWvIhHgDyuFR09GeO7u7sdvbsOaRC9Urq/u1lzYL2H0Di9q6JKPFk8VbwyqTg8K0cBPF7GVLw9Z5U8r2wGuzmGrDu0CT68hgdEvL5wMT0gwK870gcNPWgJdT2/TN46IIkkvP3tnbyVZk29GKN/PKoQ4bzisFm7eDqkvGH1dbyLkUM9nLHXO+zgwbwjEyS8byoaPdQDGDtXu4Y6EerevFiXMz3bnFo8svYFveJ5zjyb1So9SwGfvayHqDuNG0M9TEviOnR5mTz2RzW9gGFbPNaRDL2/WQS8h7kLPTdG8DtY8pE7OfTCvONVezzZUhc73ROiOxqVgzwovYE8AsLgvK4Id72EkHy7LQwBvd6BuD1YlzO9vgIbPbwGkL02oU68bWUavbUc9rwHHga9ZogmvP0kKb0giSS94GYWvdiAcTwFcLO8KPQMPFayVTsaUVI8XOqnPLL2hTxFN2O8IeCNvMcyAz0h97o89JniPIw/FryZXmM9mSfYu5hrCT2AYds8/bYSPcl8xrxhvuq8cwuDPVQxh7x1VcY7sEgzPft21rxt0zC7R+U1PNQDmLyvoxG8HaTGPEHxlDwDMHc8W0UGvawZkroaUVI9kDcsvYDcFz0WCwS9gM/xu23TsLzW/yK9mIK2vEj47Tw82aC8M4VlO13937zSB428KoKBO31SGLut9b47FiKxPACvqLyJ7KG9S93LPPJPnzplSOo7raeGPLgBVL3UiFs9lZ1YPJgn2Lz3MIi9qcYdPSOljTuxtsk8CTE+vfD8KjxZc+C8Hrd+O9N1o7x+qQG77o6UvEPtHz1ur908nLFXPXC4DjwhFxk9trcQPS7orbyYSlE9bcXuPAMyY73Qace7c3eQOxHbEb2gTAy7Hc0YPeOqTj3Iyq28oJH3vKHlfb344/s87PyiO3HIwjxFSzo9cHQ8PGkee7yNpHa8PUl/vI1QcDuZURK83APbPB1q97sEE447FXfXOcy6+TxYjMG8xlCRPQ/QY7wELnY89Ec2vSdkWL14a0m8byQjPbSJJj2y5QY9qzNlvXAgtrwYzjE95gEpPU5JiL1Mmro82187PPTvQjuhSB88/hcUvT0AJ71F9zO8gGkXvf/edTzQueC875xVPYysULy3Kdm8pB0DvAY1t72Atty8F6ibvaqPxbwF5Z285qm1PLLaWDzqgoa9d8O8vKszZT26efI7WOQ0PV6Hu7xD8HK8P6RGvNwDWz2yu4O9ESD9vE/mZrsjHJk8oPQYPcsW2rzx7G678ZT7PAXlHb2SWgU90Q1nu74gZjvSGJU8MeScPMakF7sDlYQ8N7EmvU31Ab3RHAI8gmUqPYZZYzy/rYq8SPqHvGCDTr2OpPa8QpxsPcF7rTwyBkY7BGeUvFmIVL0KgeM875zVvDJeuTpzbGK98/OvPPNHNrwxV3g8KbjevIat6TzMEm08vdDMPGIn7jwKtpQ802guvEmTebs7XIe6DYS3OyN0DDzTaC49S0Y0vT1J/zwXKpI6rT4TvEP7oL23CgS86FFCuq+KP7uHVXY6JWwyvOv8Ir1pKSm9Ecz2O7M5Db3PFcE760V7vL+Dhz2LBEQ9OjKEvb3QTD1URII9TepTPVU157pj2ig9OwgBvpzxxDxpKam8R0PgPBLXJD2i8Ku8hAnKu2XWO7159AA93LPBvLK7gz2g5X27aNUiPKzfXr3Ex9k7WzuPu/BEYrxJopQ7iKn8vMF7LT2Qqze9yyEIOvdKij02qmW9Nf5ruzdZs7vmWRy8FtaLvFREgr2DtcO8M165OyBtyz1dM7U8CtXpPPCY6Lt5u+K7xRtgvPeT4jz8jly9n+nqPBpyUTwQLxi9bhn1vFThYDuyLt88GSK4vBHbEb0hGUU8Hb79PDCr/jynNP68QoEEPBnKRL2m4Pe7UO2nO+tJ6LsA5ja7rLycPMjKrTvAfxo7mdMIPdBpx7xtddW8nu1XNoWxVr1dN6K85IcMvf+RML39G4E7J7xLvPyZij0CitY8WDROvYRhvTgYzrG8gLJvO8jGwDyxMsy7l04+PXsPaT2MVF29ppDeu8nCUz3IxkA8d2+2O8F7rTt6HgQ9pcUPPQOG6by6hKA8BzFKva7iMruQV7E5HXkSPSNl8bxsddW690oKvcx1Dj3ZsG06SaIUvNNCGD1qfS89rNtxPAI2UL2fzoK9xsPsPAJrgTyT9+O8UuVNPKKcpT1oynS80ByCPLleirpiz/q8fmbDvDmtuTx8Fio9hbHWu7JjED0uC8y7KAxlvBgmpThdNyI946ZhPJ5B3jzGv388W48VumjZD7y+dGy8emPvO4FeaTxQ7ae8dPUZPYS1wz2yLt88zsG6PetJaLzSxA68iQgxPFy5mDzz86+93oySvUfvWTtCgYS7YrSSPOOHjLzgsqi8td0sPfxvB7xYjMG8lVIrPcd2p7yCESS+vdBMvXxqsDtV6CE88JjoO5uhqzs7TWw8FctdvKYZFrzGIqG8wXstvW3J27yX9sq8TR+FOgHiST3nUcK7CzQeu6vACT2y5Qa8R0Pgu9QUqLo8+eW85dsSPQo4i7vtpK+7opylPPH7CbwM2L0812sCvdNorryeRUu9ESD9vFplkjpOPlo8XYe7OwSC/DyYnte6dsepO7cp2TyW+je8ELGOPVq9hT39bwe9LlvlOxCDHr3070I9EisrPYgMnjxweCm9us14PJP3Y7ysbAO8/j2qvIyoYz3zSyO9EIMePJrucDxITo47oPQYvWnVIj2V+jc9BzHKvN44DDtb2G28a3lCOuCyqLwnvEs78UTiusx1Dj2WpjG9qOslvDtR2Ty2Lca7Ynt0PIYF3bwRg5496aXIvOCnery+IGa8L1tlvXXHKb3fjJK8kvfjO+GuuzxHm9O8rT4TPVmMQTzySyO8szkNPeT6Zz4wZpM8xfwKPDCr/rwKDog8rza5vIC2XDyu5h89Zda7vKAiCb1T5U29iwTEvLKRgLl6bp06UuVNPIFeaTytkhk9VWoYvIwLBT385s+8n5XkPBCDHj3tUCk82bsbvOOmYb0WgoU7GSI4vekuAD3OGa68KpWcvCnDDD0hbUs7udHluvJA9bqRT1c7ibSqPHsalzxyzwO9gVp8Pb14Wb2/HHk8rjqmuopcN73OGS69EDOFPE31gbyBWny7EMz2vKabDD18ajC83qvnvLKRgDx/ukk8IsgSvZGnyjt0d5C8opylvP/edbxbLPS8nPWxPM7BuryBP5Q6lqaxPIep/DtF80a9MgozO4DBCj1o2Q+9v8jyPLM5DT38OtY8dsM8Pb907LzTaK48qjfSPM3FpzygoBI9vdDMPCZsMr0xYiY8BbsavRIrq7woENK8td0sPNyzwTyp48s7eh6EPDituTp/DtA6/jJ8PbIq8rxHQ2A8wCuUPGl9L7xDU5Q85lWvPOvWjLwPCQI7o5RLvQOG6Txmfsg7NQ2HujFXeDzG+B29rNtxPQY1N71f11Q8yMZAupWqHrzEqAS8JMQlvR1PDzvzn6m8qOslvCTylTxjLq88Z3pbvbK7Azx9vra8r95FPTWq5TvrSeg8OqlMPJ3xRLqv3kU9tDUgve/0SDyNiY68y3WOPKyHazz4yBO8ZdLOvFy5mLw8+eU8tIkmPXEcybuT2I493qtnu28kIzyR+1A5J7xLvRAzBTsZykS8+uq8vPFA9Tu6hKA8cchCvOatIju21dK7lCwVPRV3VzvxT5C8ovCrPMu+5rx9Ej0808ChPJr5nrzFF3M7/hcUvYXmhzzNxac8gRURPYi4l7yMrNA8mk0lPItYSrvBey09WmWSPbXdLD08ofK89pdPvK82Ob3+7RC9WpMCPRF48Dt8Fio9HaMVvcvNgbyjlMu8c8DoPAQ5pDwrZyw7jjEbvTtNbD3n/bs8p+D3PKy8nDvYXOe8n+1XPRkiuLzm9vo5IWnePXTAaL2a+Z68AopWPdK1c70WKpI95q2iPC4LzDvoUcK8pjjrPHgT1jzVvDQ7sS5fPSZsMr3yS6O8NFZfvSTyFb3RYe2521+7u5Kj3bu6MBq9mk0lvfpCsLx6HgS9spEAvdFhbT1lKkI78pR7vBCHC73RcIg80UYFvU6SYDw0Wsy83ANbvb8ceT0K1ek7+5LJvEdD4LwlDX68nfHEu8PH2Tl4F0M8TnOLvBYf5DrMHRs9cXDPOkjr7Dw6qUy8Q30XvevxdLuy2ti8fBYqPdARVDwdoxW7LV/SO6iTMr2Vqp68MgozPWOGIrjHcjo8rMCJvKwUED0EZ5S8s9L+O4Rd0Luug368fBaqu4ys0DwA5ja851FCvZRH/bqz0v48laqePP5BF72aQne9mX+CvHIYXDxkgrW8PViaOyMcmbwFuxq83ANbvEPwcjxhNom9rY6sOxLXpLxHl2a8Zn5IvO1QKbuf6eq8VYltPIY6jjsIhdA8m5b9O5v5njuWpjE8Fxv3PMxxIbyRU0S9OwiBPAq2FL3tUKk77khPPasz5Tt6HgQ8bnwWvHRNDT0BjkM83LNBvPVDSTxY5LS8p4zxvN5iD72NsxG8l0pRvJCrtzw+UMC7Vjwou1/bwbx1FO+7p5efvOatIjx6SAc8an2vPM4ZrrwuB988p5efvO+c1Tv+Nmm8ym5Nvf+VnbyHAXC9NlJyPGPaKL2rM+U7fmJWPQMyY7wqXP68Cgobuvcgh7vUZMG8TxsYPHvCI7w6CAE8GnLRvDIKszo/qDO9pnGJPe6gwrxYODu88ZR7vZp7lT3aty68mUZkPXB4KT3TaK68YOKCPFQWkrwYJqW7hxALPff2Az2f6Wq88/MvO35i1rwyXjm90sSOO8geNDyULJU8cs8DPbGGUjo7TWy8td2svIRdUL3f4Jg717TaPHTAaDzcA9s79O/CPFqE57yaQne9Ynv0PF2HOzwQLxi8eg9pvNa4xzxRPcG7EiurvKdDGb3o+U48f7pJvJCnSr0zXrm8gEMBPW4oED1/l4e9yBpHvHln3Dxv0Jw70GnHu9FwCL13GzC8t9XSvI2zETsL0fy9FHtEPIsExLxvJKO8mdMIvGSCtTzQueC8ELGOO3Vo9bxvJCO9udwTPVngx7uhHpw8PAQUvGJ79LqemVG86qyJvCe8SzxaMGE8PYKdu1VqGLxiz3q8FnNqvGgDkzyimDi88dGGPN+n+rzLzQG9gMGKupVSK7r3P9w8cMwvPMBVFz1xdDw9CIXQPEKrhz3lTm47Yt6VvDFipjtN9QE9/j2qPJyhK7uX9ko7rbwcvUVLOjy1hbm8xRvgvBIrK72Vqp68pxmWu5z1sbz9GwG9LV/SOk0+2jxI+oc7tynZOzv5Zb0xDiC9JHCfvENPp7sNhDe9+OP7PE+O87yf6eq8KQh4vJIwAjx6Y2+8uyF/PA2Etzz9Nmm96iqTu32+Nj1MQkc8jgMrux2+fbytPhM7Kr+funAgtrt6SAe75/27vMSohLt0yxY9YCvbvDsIgT0S0ze9OQHAvHPA6LzRDWe7bhl1vOvx9Lu4Jey85IcMvXpj77wGjSo94LKovJn9izwjZfE83+AYPfeTYrxpKam8ttXSuzK2LLy5Xoo5vlmEO5L3Y7uUn/A8YjIcPeaptTyMqGM9sDLMvEdDYDtyxNU8ekgHvWUqwjybzxu95q2iu1ncWrmICDG9UUGuPNjpizvQueC8vlmEvF/bwbx7wqO8EXhwPH9DAbz+7ZA95FLbO75ZhLx2vPs8SPqHPPnje73QEdS7uiytPHpj7zrn/bu7KWDruiu7sjxycE+9aAMTvNIJejwEZ5S7QlMUPBXL3bzppcg8CzQevEOcbDwjcB+8sdrYO+6gwry6eXK86oKGu1RAlTscp4I95fZ6vVKRRz2vNjm9aFcZvRV3V7xf20E6fhK9O0PwcryRT1e7NeMDPVQWErzmraI8wCuUOzhZMz1mfki8rOqMOhwlDD3dV2E8Z1sGvGshT72zt5Y9GXorPeatIj2lkN66FcvdPDIKMzxOPlo8mZrqOx0hnzyrQoC790qKO9gIYT1+ZsO7Hx2yvMX8Cj38mQq8nZ0+vBfSHjpH79k7m/WxOyN0DD2AFRG7xW9mOxHXJLzx0Ya8JmwyPdljqL0Uz0o99j/cumUm1btK8i28uyhAvRAzhTzl9nq8lVIrvVqTgrvIHjS8xRfzu9Bpxzw+UMC8RE8nvWkpKb3hAsI88/OvvGhXGT1b2G28xRdzPOQvGT3XXOc6GM4xPBdvfTyAP5S8bhn1vDmtuTsfySs8dMsWvDQCWb3/3vW8JHAfPTIGRjv+lR07T+bmPDRW37ybQvc7p0MZPLOJJjuH4ho8e/ATPX66yTyimLg7P2UtPeSx1TxtTj+9DRgvvIn13rpLwTu9tlNaOzY7FT07f0k9B1+RvF5rCb2x7229G3DOPHzGFjwQJn48SUMzPSHdWTygrXu8HJCGvNhVx7xOvUw8H+rnu//RzTwHKay7pf8pPCF/CTsfVjI8kNdTvArQiz2ED3u8Y+7BO3C/Ob0Fym+9Xv8+vMUXRD1FyRk9TUjjPO6PW70F4Yi8tko7PYL0HT3mEJK9Hk2TPKj7OjtG21c8QNqWPPAN5LwqqSG98mwgvGUXGb1i3AM8bcOovIvoUD1Vn0G8jGbZvHaYD7xbA6697hpyvG35jb1G29e8/EqmvFWfwTxxqYw8CtCLvSxdj7xOvUw99H5ePM/sKj2il868/b8PvKcogbxD30Y9q/dLvZDX07zNbqK7BiCNPINyJj2oZwW9IlJDvKsA6zxBWB+9VJYiPZbP9bvQ/mi7BrTCPBehgzwRm2c7R1BBPAxOFL0haPC8L7dwPBf2ND1CzQg8c2aZvH0Fm7yBE2q9G3DOvEbbVz1Oxus8juThOwgyS7x3oS69xwEXPVG53byLioC7ifVevcC8djwVrhG85B2gPHox9bxDat08vOSMPHzGljxfdCg9YgTvPNrTT7z+XOS6EzAJu9WPmzqjoG07CpomPWPuQb1LVfE8rmjGuob5Tbx5yoW9VZ9BuzoKYDs4g7i7v7PXu84Ld7wb3Bi9w5AcvTKUNTw4Lge9c7tKPCVOVLyfRow9l01+PWo8gb2oj3A9E/qjPVElKD1q0LY7v6o4PRjgB77NbqI8wCjBvPfv2Dze7xg9hAbcvO7yBryzTiq9rX7zPEw/xLzEBYY9+Pj3uzYFMDtIWWC9gAEsPP98nLsd93W8TmibO3PE6bzNbiI9S8E7vTmVdrvJ9Ig9fnqEvTmV9rvkHSC7kjYQvCi2L7wqyG29F//TvENq3Ts7f8k9/siuPMMk0jy/Pm67Jm6MvC+YJLxqW808AkNIvXuHEj3bvaI8qHAkvVkZ27za0887lLSYPIEKy7wEYwC9W5djPKx11DypDfk8fMYWvU3qEjyPYmq9ongCvB/qZzuH4yA7CpqmukrugTwe2Kk8QE8AvM0C2DzhtcS8C7nyvAU/2bq9wGW9kl77vFcdyrxBjgS9F2sePJRIzrtfqo09y3uwPPriSr2aISQ7tOv+vMgBF7pZGds8hOcPvJM/Lz2Jakg9PJ+BvdnKsLsurlE9rl8nPNfXPjxAd+u6rpUMPaZ9Mj2qJBK9RIqVPCwwSb2EBtw7s1fJO1KaET15KNa8crKrvKzhHr1wvzk9OQHBuasAa7y40eI8PP1RPZ4m1DyjoG29gRNqvXPE6Ty0YGg8oIUQvQinNDxa+o49bkGxvAbK7zvgNzy7drfbvNXt67zP9ck8qARaPc1uojtDDA09O/Qyuwe9Ybx8JOc7qeUNPemXOTyzwxM9iZeOPFI3Zru06368rmhGvObRjTvweS48MRYtvCZX8zz2cdA993rvPOuKqz3gN7y87o9bvDMJHzx8JOc8eB+3vbxLfL1EVLC7APIFvNfXvjyhImW8zITPvJohJD3/0U288HmuvGrQNj2t6j28IUkkvmSZEL1Nqw48umaEPBMwCTxJ1+g79vxmPIbagbx0xGm86QyjvJRITr1G29e8VyZpvJB5g7uUKQI90/r5uHMwtLvQ/ug8DRgvvBgfDLwGSHg5CbDTvNKTCj2Rwaa7qHAkvJLKxTzm0Q28sdChPOiOmryXsKm8FI5ZvfdSBL0C1/07OQFBPNBqMzv95/o8oBAnvEj7DzzbUdg8o4GhvKimiT3AlIs9nR21vEbb1zpjWgy9/0Y3PRauET2Bf7Q8508WvUBPgDz/0c28ErKAuzEWrbx5KFY9NYcnvcoGRzxOaJs8PeckuxMwCb34+Pc8gvQdPebRjbwCrxI8se/tvDWQRrtJ12i8aEkPPBvcGLsOn1Y9BGMAveJgE7x7r/08RmbuuiFABTwQHd+8BaujPTqsj7zCUZi8Rn0HvN9kgr2GAm29gX+0vMPGATy5u7U8tGDovKOBIT0nQcY7vK4nvLDHAj29wGU+wyTSPCZXczzNbqK8TmibPCHd2bxDDI08wRIUPQI6qbxG29e8sdAhvecZsbw2O5W78e4XvGXhMzzQiX88tUEcPcQtcbwQiSk9ogOZvO+Y+jyR9ws92MERPOSx1bsf6me99OqoO4TnD73pl7k8zPCZvD3npLyANxE9LCeqO0lDMzqfL/O7sQYHPCYvCDzNAtg8xYMOvRMZcD3S6Du9GHQ9PENqXTt7G0i9vqEZvS8sWjvLezC8mE1+vBbtFb2hji89vjVPvHC/Ob0Xax48tt5wPMuxFb0sskA8xAWGvGJwubzIlUy84SEPvbEGBz1FyZm8/z2YuqU1Dz2PBJo7+uJKvTaZZTzz4Qk9/0Y3vf2/Dz0luh49SdfoPGZWHT0CQ8i8cT3CPBAd3zxl4bM8nVMaPURUsDy7pQi9TD9EPLy3Rr3DJNK8JldzvGlSLrtOMjY8lWiGO9tIuTyEBtw695EIPDGqYj3379i8bOJ0PFS17jyJYSm8A+6WPCrIbTwFNrq87Ag0OjOdVL1EVDA9ZGMrPEfk9rgvI7s8A7gxvaCtez1nXzy9kNfTPIvo0LrgN7y73y6dvIXwLr0QHV87vuCdvFONA7x/jMI8tOv+PG5BMb0F4Qg7Mz+EvBJ8Gz2VMqE7ljvAPBMZ8Dv6jZm79WgxPZyfLL3gQFs88gBWvAPuljwf6mc81eRMO0yrjryR4HK85qTHPENLET3BMeA7lyWTPfkPkbv06qg6oY6vuo5QLL00pnO6aVIuOibDvbwzndQ7z+yqPNjg3bt3NWS7OW0LvK78+zxnaNs7kEOevBP6ozw2BbC8IUkkPEs2pTxnaFu8h+OgObfIQ72kHnY8rVaIPHhVHD3X1z68Bkj4PPENZDwnzNy71s4fPSmggj2l/yk9HHntvJ8vc7yPzjS9USUovftg0zw1hyc8tMwyPSwnKr0bUYK8s1fJvARjAD0Z6aY82cowu+se4bxk92A9cFNvPLpmBD1sTj88yBPVvJq1WT3riqu8OQHBuXum3j3ksVW9K7LAvJ2oSz1yRmG9gbWZPRx5bTy8S/w7/9psvCDLGz2ldJM8bVdeO/zVPD25uzW9F2uevLg9Lb395/q82ODduxf2tLufBwi8AnAOvU4pF73Od8G82rQDvcaMrbw/m5I9gvQdOocZhrze2P+8qiQSPC5QAb18JOc7sWTXvNNmRL2vcWU9FAPDO7lGzLwyKOu86Zc5vA8UQLu2U9o7qXlDPFaJlLuAlWG71mJVPWTYFLzksdU8vx+ivIZuN70C13288mygvOwIND2BfzQ829zuuzv0MjsurlG9SkzSvN07Kz1mVp278HkuPDuIaLyG2gE9eB+3vGfUJTxIzkm86aDYvB3PirtG0rg85hCSvJY7QL0hSSS7jGbZPLg9rTw4Lge9fyB4vTfvgrxzu0q6AjqpvFOsTzvBpsm8rHVUvINyJrzuMQs8e4eSvffmuTs/Za28XAxNvN9kArwWgcu7QVgfvUnX6Lse4cg6CtCLPHDI2LlFXU87xsKSPJHBpjzVj5u8QOM1vVx4lzwfjBe97B7hO7+qOD3vcA88OyoYPIfjILxGRyI9DY0YPJu+eLw+XA480XPSvK/dr7yRwSa9mdmAvEs2pbtxqYw8vuAdvK3qPbzksdW8NKbzuwU2ury3yMM7umaEPJbP9Tw/Za28Pd4FPaKXTryaQPA7qu6su1KjML0otq+8qQ15vc4Ldzyekh69wLz2O/SHfT0Bxb+8y7GVvO8ExbtYm9K7usTUvGOC9ztQRHS6cGoIur7gHb0Z8sU6fhdZvRJ8mz2DaYe8DE4Uu8/1Sb0gy5s9ZReZvKj7Oj3AlAs9QmG+vO59HTzbSLm8/siuuyQ8Fj27pQg9USUovKO3hjvLD+a8USUovT3eBTy2U1o8xwGXPHc15DzdOyu84Ul6vFmk8bz0fl69/0Y3Ox3PCj03uZ08X3QoPPPhiTx4iwG9BT9ZveIqrjxD1ic891sjvIcZBry2U9o8Czf7uwLO3rwGIA29Z2hbPDgX7rtJQzO92QCWvDSm8zxYBx09pB52vddrdLz+yK48ZNgUPGTYFLwrHgu9OZV2vHum3rz7zB06MgAAvq5fJzwBxb+8GmevvPriyrtp5mM8DcycvMt7sDrAKMG8xowtvb8fIj31/Ga33c9gPG1gfbse2Cm5ZWxKvNxa97tlbEo8xwq2PGdoW7sBWXW8O39JvA6f1rvRFQI8gJVhvBCJqTx8xha9TD/EvDp2qrvfLp06KaACPUPWJzyPBBo9vhYDPeK+4zzItYQ9EP4SuzX8kLxtV167+Pj3PBKyAD1LVfG6cycVOra/JL0kPJY8ErKAvH2Z0LwWLBq9I8csvKEi5buBf7S8X6oNvVBE9LvTZsQ8kz8vPLHQITyybXa9keDyvGLcA73pl7m7it8xvelCCD2xBge9ForqvHGpjLx5s+w7phFovG/VZjySysU83th/vbdc+bqbKkM9XO0APLDHArz81Ty8uUZMO+JgkzpXkjO7fg46vHWuvLydsWq73XEQPcC89ryfRow9MRYtvSrfBr1ajsS89If9Ol7/PrwMThQ7DE4Uvc4L97yX5g69ihUXPXwkZ7zHQJs8h+MgPXA0Iz3TZkS8UbndvPvMHbzSfHG8tkq7uzIoazxgKBY7s4SPPJclEz3GwpI8YgRvPa9x5bzXQwm71cUAPTKLFr2BCss8gX80vRxaoTsh1Lq7fJAxvc4Ldzx5KFY8bneWvJH3i7z23Rq9UByJvHQ5UzzlJj+864GMPZUyoTt7SI68npIePR339TuNb3i94iouvDuIaDy5J4C7wZ0qvLBSGbvZXuY8/lxkvaV0k7u7Ob48AFDWuvB5LjpXHcq8IX8JPS6uUbxBjgQ8uzk+vDqsjzv7YNO8zGUDulr6Drs0Ej48cuiQPVcmab1i5SI9h3dWvR3PCr2hxJS8+lc0PB7YqTvm0Y28PXK7O6kN+Ty7pQi8O/SyPJS0GDuDciY9nJ8svL7gHTxk2BQ9oSJlPAZI+Ls1kEa9hGmHPW53Fj30IA49CDJLvENLkTzCOv87iIB1PIhYijwXa548W5fjO1cmaTxUtW49Gp2UOyuywLxdLAU9idYSPH0Fm7u8t8a719e+O3umXjzAlAs9F2ueO6l5Qzv+XGS8ZXVpvG1OPz1rRaC9z/VJPdZi1bvnT5a7QOM1vI/ONL17r/07vcBlvADyBb3V7eu7UxgavO8ExbvCr+g8EJLIvIA3Eb3eREq9QY4EPe8ERbxN6hI9pn2yvKv3Szw6dio9WRA8Ox1jwDwTGXA8YuUivB9WMr1a+g48rmjGOl8IXrxD30a9RmbuvFSWIj3cMow5l7lIO18IXjz088e8G1ECOuet5jrbSLk6NYcnOzsT/zyDcqY8WzkTOwE4CT2NCy09ZJQqvaEYTTxF2fK6LfrivEFkxbxBgKk9X8tQPQTgorsc6Qi9eb0uvTwUEjzumjq8r8LrPEq+MD11LB08/HwhvLwmD72HZ028sdW5u65gjLyB+zU9BOAivL/qDL0Lyn26GshIPH9hjrzcX4o9tWZLPLAkCjzyR7C8ufdcvYeDsbyAPBQ93QLIPB22nDxW6gu9aQDCvN0CSD2x1Tk81Iz4vMTr7zwJdhC9QWRFPE2ekjsOuFG92kw8vfso9TwE7hS98DRiPM4E/bxWcWU9E2XHvJ9iQb3utp68hqirvfUZIL1NkKC9bO4VveRJ5bzOBP07y6szO3TY8Lwk/Tm5H1BEPRf22DzyD+g83FGYvFTXvbxwf6e6ToeKPVTzIb2NNYO8VPOhOwqEAj1wR987YfqCvBkXmbuOyk48rzsSvW+IvTz8fCE8xQfUPBSrgTykOY08NjjqO/CRpLwN3cu8z1ipvNmbDLxwfyc5xSM4O7aek7ynvCy91MTAvC0WR71Vll8973XAPMxhPzy5cAO9Zko2vQT8hroNwee8NxNwvHihSr0bv7K7clotvKb9CjyD8h+8vDQBPcJRSDyC1js9y07xPCfdm7zPM6+8OzmMutAXSzus8Hs6VnHluwZ6yjsdtpy87n5WPUEsfbzBroq8kzZmvTyba7yY/z+8F+1CvX5FqrzT6To79RkgvdQhg72ckFE8+tQHvZvtEzwOuFG8MmZ6PdbJnDzNKXe9Meg2PX/oZz2vSYQ9f2GOO4+J8Dzwn5a9YIpyPeZcM731GaC8juayPDrl3zvQM687Wzo/vNsLXj2O5rK8xluAPTpehjuXQJ48lS1Qvae8rLvOixW9ZUo2O/KWALy6S4m8uVSfPHJaLb2PifC8FzyTPVL8N73Brgq9U7tZPFEhMjxU86G822ggvaegSLxMF/o7BnrKPYo5vTypVtQ8IA9mPAITDzy3eRm9v5u8PLd5Gb3byv88YrkkPJbscb1IJAm9WgJ3O8nQLTwZCSe9zn0jvecb1TsSpiU9jQstPdd6TL1GLR88C0OkvHGbizzBoJi7jSeRvMOXAjwa5Ky7HnW+u9TEQLpNkKA8Tk/CvDlCorydhzu8uVQfvUth7ro0uia93EMmvSB6mrtOaya9P1F3Pcm0yTzyRzC90PtmvDRd5LuylFs8NF3kPJn2Kbzbyn894ueFPRftQr1incA6TmsmPUBt2zwj4VU8ZJQqPIpVIT2nvCw9jgIXvXnZEj0RLf+8YrkkvVEFzjxJDQE9mBskvbYlbTxviL282ZsMPU2ekjw3E/C8C0OkPf0f3zxgZXg8attHvaLzUr32NYQ9y8eXPGM3aLyB+zU8zn2jPU95mLwSpqU8zKIdO9xDJr0LQ6S7JhCIPGNcYj2d1gu8a5rpPHYjBz3KTnE8XjaFvCJxhDzUqFw7uDi7OsA++jxdTQ07gMNtO90erLvPWCk9nrGRPMbG9bzESDI8GcjIPeJSezz8fKE9ukuJvG+kIbw+dvE70U+TPDCwbr12jny9/xbJvHBjQ7zc5uO75auDuwKM9ryM70g9UEYsPNmbDL1wf6c86UoHvMcaIr6aIIC9AyGBPDcv1Ds0yBg8OEu4PIVwY7uKVSG9qnI4PI7mMr3At6C8mCkWvf76ZLyJAXU7JDWCPOvISrwJMFa847QZPeyj0LrUIQO8HOmIPA3dy7x0EDk9I8XxvKEYzTuXThA8CUy6PDLDPD0lvNu8Njjqu1TzIb1SxG+8jQstO5VJNDr+ZZk7Pu8XPdXgpLzKc2s7Ocl7PPiOTbyXTpA9QpyNPS0WR71S/Lc8BnpKvUtYWDygPUc9e3M6Pe2/NL0Geko8Sr6wO0Ij57yevwO9IgZQPVepLb1NnpI8RhE7PUQa0TzjisM7jSeRPEM/yzx4hea88kewPH5FKrwBsXC6SeMqPNFdhTzlQM+7CWgePW5sWb2z2pU847QZPQqEAjtkvoC7PdOzvMrHlz3Mhrm89f27vJzIGTyW7HG9RIUFvdHy0DxaHts88DTiPAvm4bsx6DY8Z12EvDrl37xVzic94ZNZPvqhmzu/f9i7WokPvbKU2zzPPMW8eP6MO4k5PT0ayMi88DRivIbSAb0Qy5+8+6+NPPx8oTwznsI8ojSxPO/EEDwiIrS89CI2PdQTEb2hGM07foYIPL/qDD25cIO8liQ6vfIrzDwCEw+99nt/PNweLDpGO5G8x71fPBRcMTvlqwM7+XLpOXp8ULzcQ6Y86+SuO55G3byy8R099jUEvZNSyjwXLiE7rx+uu9IOtbw2OOq8NbGQvEKOm7veOhC9byt7PI2uarvxbKq7Pe8XPKpyOLvkSWW9M4LeO5VlGL26LyW9ayECu3wW+Lxp5N08vK1ovBrkLLyda9c8b4i9Org4O71CnA08htIBPYhCU739A3s8zzMvPWzSMTyxuVU9VnHlvBY3Nz2eox89DRUUPXbrPjwpTe088wbSvAEqF7vOBP2882OUvF4Mr7zo2na8PNzJPPPq7ToXEj090wUfPatNvjyTEWw9fwRMvfMGUjro9to8OuVfOlaNyTwdPfY8WSfxO4swJ7x48Bq9VtyZPJ1P87ryD2g82RR0PIAgML1GSYM9ErQXvUGAKTzOIOE8CTBWvIvT5DuQ64695EBPPIzT5Ly7GJ28TZAgPK9JhLwwzFK9RkmDPDOC3rxs0jE966zmO+nR4Dy6PZc7Xq/sPMgRDD2oe0695lyzOzhLODzlqwM8GEoFPBK0F70HOey89jUEvc90jTy70uI7Fy6hu3EiZT2UipI89EyMPDTImDwhY5K9Uvw3u4o5vbwHVVC9f+hnu+LnBTvBoJi7cSJlO7J497zFB9Q8/R/fPN46EDtDW688Vc4nvYa2nTzhd/U895fjvCfrDbzR8lC9F/bYPAaWLj0lvNs8FFwxvUqizDxt/Ie7dUiBPDOCXj23XTU9DB4qPfIrTL3utp6715YwvHydEL0FXuY8cGNDuSNMij1hZfi8kltgPLasBbxzGc88AgWdPNbXDjw3mgi8fU5APX1qpDy+wLY8/ETZvJGhmrzX5YA9CgvcvBbadDvQF8s9wm0svQoL3LzV4CQ90jgLvc2+gT0rA3k8juayO2zuFb15vS48ZgnYPPX9uzwd0gA9elfWvMj1p7zRT5O9edkSvT528btfEYs5ar9jPDiDgL1jQH69yY9PvLPoB724APO8H1DEPVhoT7xApSO9f+hnvdSoXDxf57S82LIUPKA9x7tTn3W9jgKXPcDThDzZFPS7UuDTvCT9Obx8jx67nKw1uoK61zsVG1M6TDx0POJSez07OQw8SKviPDjudbxTn3W9WomPO9hVUjwgD2Y8Jdg/PXRfCbxeDC87jEyLvQlMOrxVll89YseWPDLDvDkrYLu89xAKPb+3IDyEsUE8/lcnPCAP5rt1Oo88diMHO36GiLyLMCe94sshu+LZEz2ffqW7fg3ivAibCr0bh2q73EMmPJYkuruWCNa7ydCtvK8frjuUEWy4NjhqO5oggL3OBH28hNuXvALpODvnG1W9LB/dPM59I73g/o08pOo8PNHy0DzOBH27xk0OPDW/Aj3YwAY973XAu4Kec72u5+U8KKovuyZ7/btwY0M9axOQPJ9+pbvFB1Q78wZSPbNT/TtKosy8q6oAO58Ff7xd1Ga8gfs1vcZNDr3TBZ+8S+iGuHGbi7wSgSu8B7ISvR+flLxKoky9xxoiPMGSpju6LyU83CdCugoL3Dzjpqe8fWqkPPCRJL2sDGC9TmumPIMOBL1ENrU8VHp7vKJQlbwXPBM9DiMGvdzmY70qr4s7e8IKvM8zL72PZHa8HGJwvO5+1jyHZ028aqP/O2KBXL2VSTQ9O8Dlu2hBoLzPPMW9zSl3PdIONbwhRy498JEkPSM+mLz39KU8byv7vG+IPTxkohw9AgUdPHXP2jl7woo8Lk4PvdxDprxhwjo8I0wKu3MZzzxoJTw9oD3HONt2EryFjMe7GNFevfjrD7zDl4I847QZPBQk6TzSDjU7RVKZvNa7Kr0E4CI9bZHTPGK5pLx/BMy8bLZNPaBZKzyKcYW8H1DEvJ1P87rufla8mfYpvcBaXjy4HNc8wD76PJ9iQb3dHiw8V6mtPEiG6DtoQaA8DB4qvThnHLvOfSO8aeTdOxEt/73byv87FFyxvFJLiLwxZnq8t0FRPJ1Pc7xR/Dc8DpztvFTXPb1AiT+6MQSbu8b+vTzX1468/YoTPEnjKjv8fKG8v39YPP07wzyoe8673yMIPClpUbtbVqM8XHIHvG2tN7yHgzE8SI9+vPIP6LwMHio8ajgKPITblzzMYT+8xygUPem1fD25YhE8FEDNPM88xToJTLq8fJ2Qu0Bt2zwGeko9AA6zu90CSLzTzda8fWokPfRMDLyRP/y8wm0svcDTBL0dtpy54tmTPOPCi7x98X28TayEO/5Xp7xNF/o8T4cKvS/xTL3DLM68uDg7u/jPq7zGxnU883EGvHqYNL0ncmc8zn0jvG11b7yw+rM8P23buzDMUr198X2819cOPZDdnDzpF5s6eb2uu54q+bvEcog81Wd+PNeWMLz4s8e8b4g9vAfABD2shQa9G4dqPI7KTr3V4KS8IA/mvNPpujvEZJa8AyGBvPRMDL12FRW9ar/jvMqPzzyrjhy9NlTOPHMZzzw1sZA8cnaRuIMAEryF6Yk6zosVvU10vDwdxA48HdKAu02QoDwgiAw9SeMqPI6lVD25VJ+8BnrKuypE17s3jBa9+XJpPKFnHb2hGE08+M+rPCwf3byDeXk8ziBhOnaO/LwN+S88Dd3LvKtNvrwy36A88YiOOoXpCT126768ufdcvKOydDxrE5A72kw8vTeaCL1rIQI9pe+YPATgojt09FS72+95PNSo3LyDld28uBzXPM9YKb3zBtK7Aoz2vBUb0zoqKPO86PZaPOD+DTwBsXC8nYc7vP8WSTzWn0a8fg1iO+rtRD32e/+80BfLO3XPWr1lmYa9ZJQqvLG51Tz/Fsk8yPUnvdmNmrxCWy+6kbiivOO0mbqPZHa6+LNHPDY4arxer2y8YIryPPYnkjyjD7e7/TvDvJ+Mlz0oqq88t4cLPWPViLz7KHU9N5oIPeWrAz2Xx3e8I+FVPCt8H7xhZfg7bLZNPaI0sTushYa8zn0jPTiDALxvpKG7SqJMO0qizLwKJ0C8n34lPc59I7wpaVE8X6ZWvK4Dyrx/6Oc8jO9Ivc1FWz2Rd0S8v+oMvEYtn7yDDoS9fI+ePK4Dyry2gi+9uBzXuqegyLwy36C8Ri2fPDkK2rxp5F28n34lvdd6zDw5yXu8rmCMPbnb+Lv39CU9tIvFPHbrPryiNDE8KcaTvPuFN7zZFHS9PdOzOpdOkDxieEY8s7C/vLytaLwjPhg9aQDCOwBPkTv9O0M91CGDOsOJkDyZ9ik8RBpRuxJJYzxENjU8ar9jPLHVubsrs+A89r0yPdwq47yT07W6yIh7vA9GEL0LW5K8SEGoPROWUT3gy4k6BXUcvSx5A71of406KNjcu7gHizz/jiY9EpZRPOVWq7ut6zy9SebTvPQdjzudZEG8JVgtPR6iJby0RvC8NYTUOVvTFbwmOLm7limCPeC7DzzFzeu6IELJvMWzgr0HJbq8+pg2PTBkgTwaTFk8iof5vHAlm7zFKEA9eXtGPMDy57w0ZOA8uXxIvZhO3TzG6Fc8e5Yyvfa9Mr3+7gI9rGsNvWeZ9jtqL6u80nljPVMSnLy5fEi9F6y1vOlRo72NYv28TneAvbIRG71pTx+96NbaO7FrbDu0LAe9z1QIPGZUJz3RFCA9jb3RPPLirrwZ15u8SIEQvMyDcz18+3W8PZUwvBUcjDqYLuk8bO/CO3f7lrxq1Na7wpiWPKhwFb3PZAI9K14Xu8VItDwrDrU8wciEPNVUZzxs78K8YsN6vNavu7wKAL66zGmKO1qIO7smnXy8F6w1vWt6Bb1jHk+9Ag9WPSHi7DzurFY84xvLvMHIBL1LXBQ8zp7fvKQ6vbwzxDy9qTAtvJcz8bs4X1g8kphVvF7o9jwjeCE8+PgSPe7sPj1Epoy7mYm9vE2hYzsM4Ek6fcEYOzyVsLylGkk75rvuvIExTj2gf628GqetvESGGL3LeQS80zn7u2E+Q70fYr28N+qau49jAL2QfWm9OvWMPPWixrzgxX48Z9levHJqaj3CqBA9cmpqvT81VD2LXZY9F3FVPZYpgjwFr/k86VGjvZGYVT3CTTy9F6y1vLpcVDyNWI670FSIOePGAbxTd189ufeQvKe6bD1LjAI7yz4kPK2wXL0tWY+6qFAhvWn0SrrQmde7fdGSvG2vWjxgfiu9JaMHvbnnlj31Yl69gMwKvQNqqjyEZ6Y8yIh7unl7xrx+cTa88yf+OxpszT1wJZs84XunPKeQiTyqe4e767HevILxZTwf3QW9U/InPV9jvzy4F4W99YLSvOp8CTyvZoU6bSojva82F70pEz08U/InPXmbOj2QXXW9SgFAPOPg6ry6t6g8vbIgvD3girvXb1M8aw83vH+RKjzpETu8QhBYPKUaybx+Nta8wrgKvCwuKb39syK89EfyvDYaCb1DsPs6rkYRvQG6jD2zAaE841szvQpgGrwJQKa8ZlSnO4aCEj1LwVe8XghrPV4Iaz26PGC9aPRKO5zEHT08Gug8rLDcPDrVmDkbpy09t2FcPRTRMb2AzAo9z1QIvfQdD70YFwQ94sD2PNFZ77zc8AW87XcBvVTSMz0WDJI8EjEOvZBDjD0EtQQ9VzLvPAnFXb0U0TG9tDyBPbgHizzpUaO8oroNPOebej0zxLy8tgwTPN/F/jqDlxS9KDMxvOpsjzzqXJU9AdT1OzWE1Dz/jiY9IQJhPLdB6Lttz847rZBou9+ALzxJpus80fSrOwtrjLtvNRW4USIWPS8JLTyfv5W8EfatOi7OzD3MSZY8v82MPRU29bxLjIK8B0WuO/RH8jziwHa9CCU6vYdiHr0taYm8bQqvu9ePx7ry4i692oo/PRMhFDwh4uy8xujXPPICI7r8syK+6TEvvasQuTynoIM87QwzPDPEvDwoU6W7Udc7vdiqszsO20G9eSDyvAWVEL21ocQ70nnjOhf8F7zngRG7XKOnvA5WCj0sLqm7FHZdvMWTjjyYyaW83KUrPQeq8bzG6Fe7aJ+BPDx1vDzvBys9kEMMvM05HLwsLim9mC7puyaDEzwVHAy7YcmFOwSlCj1QfOe8DKBhO3MQmTzbSte86oyDPRn3jz34+BK9Q7B7POM7P73+2P07A5oYPQJPPj2a5BG9nQltPCmOBbx3gM68kEMMvWNZLz2dhDW9I5iVPI3dRT1iw3o8129TPBiMwTuoUKE8sea0vPNn5jx1Re68o//cuxfMqTz1gtI8VFfru372bT104Cq9ktO1PD3QED37/Xk8MMlEvC4JrbwFhZY9eLuuvAegAr2xa2w8ky6KvSYYRb08lbA8a7TiPCP92DwMewa8eLuuPB6CsbzT1Le8W9MVPQnlUT4UPIA8iz0iOfidvrwVLAY9jP25vNavOzwFdRw928WfvMdzGrygX7m8QPVrvEZmJDxR17s7ySO4PLv89zy4vDA8y3kEvdtKVz3IqO+8PfAEPNwK7zvCqBA9mC5pvGzPTr3G6Nc8naSpvJJ4YTvWCpA7F+ydvEtMmjyXbtE7deCqOtMfErwpmPS7iz0iPEhhHDzTOfu8GecVPf2Trrxc05U82oo/PKegA7yeJFm8Ij1Bvcs+JLxT8qe8MDQTvaDaAT30LYm7t5y8vO53gTsAb7K7jKJlvXZgWjz70xa9VLI/vUHVd7sqTh29gFFCPQpgGryAEVq8Vs0rPa+LYLy3vDC9oR/RPOIA3zyd74O9PzXUPCQdTT3QmVc8WsgjPX1Wyrwt7kA9A5oYPYdiHj3gxX484SDTPN9gO7xIQai6A2oqvQYKzrxeQ8u7ZP7avCXdZDwpbpG6mC5pPcRoKD3jpg098odaPdqKP70c0pM76mwPPQsAPrtOvM88kTOSPE78Nzu7lzS8makxvZXuIT2xBim6XgjrOzVE7DxUkku9zHmEPc9EDr3CTbw8+/35PKWFl7tKhne7TleMvdavOzxQfOe8OlpQvIaCkjxb4w+88SIXvei25jstKaG8vt0GPT5VyLniAN88kEOMO2Q5uzwfYr08XShfvUDV9zuxQYk8S+FLPLgHCzyhH9G8/bOivBUsBr00ZGA8pvpUu3mbOjz++HE9oaqTPA3A1Tu3QWg8B8plvbzyCLy04Sy8kXhhvZAzkrupYBs8La5YO4sdrrvzPQO9HaKlPBIhFD3ZL2s6c6XKPHMAH73kOz88bzUVPQWVkLyKTRy8Q7aGvWsPtzzqXBU93CrjPFcYBr2UOPk8GAeKuwbqWTzE7V891xT/PFrIIz2P2D29oD9FvFetN7yffy29Q0u4PPPCOjoPJpw9W+MPvbtXTDxhXje8CJAIPUUL0DxvysY6LkkVPEZGMD2NvVE86tHSPNb6lbzTD5i8c1CBPRiMwbynkIk7uHzIPdMvDL1mlA+98uIuPfDHwrwf3YU9JRjFO72SrDsbh7m8FRyMPL8yUDx1KwU93kXPPGlfmbw8taS8ScZfvWW+8rzsTJu8OuWSO8XNazz3Ina9xuhXvQbqWbzpUSO9+H1KvJZT5T3705a8LC4pvXx2Pr0JQCY8MESNvINMujuQYwC8fjZWvTYqgz2GrHU8dgsRvEyh47zIA0S7tDyBOtcaijuDxwI5UbdHPKt1/DtON5g9La5Yu18j1zxk3ua8QbuOvRVWabwS1rk8h2KePHi7Lj3E7V+839sDuMZjoL0zP4W8gyxGPQYKTjwaTNm69aJGvA9mBD3egK87jWJ9PETGgDqvi+C8lP6bPIRnpjnzZ+a8RWYkvdvFHzq0ZuQ85dviuypOnbyqewe9VnJXu7zyCLw4P+S53GXDu1ltz7zUlE+50y+MO50J7boLhXW9FdExvJtJ1bwLILI7hic+vcgDxDxZTVu9xIgcvC/puDvFs4I8Jjg5vO8HqzsSMQ499igBPVIykLyj/1y9ezvePBTRsbl9dj68SJEKPZvUlzzZL+u6aU+fuoPRcT0Eaqo6ZN7mvLk84Ls6/3u8Nn9MuxpMWb2wBim9KY4FvMgDxLvAMtC8VS2IvJAzEr29kqy8b29yvWS0AzwHJTo8rFuTPFdS4ztElhI9zp5fvKWVkTzYqrO8pDo9vSa9cDzrTBu9zTmcPL2yILzAjaS8Dvs1PUcGSL3vByu9jViOulgIDLzLHjC9L+m4vCYYRbtA24I8JB3NvFfNKzzVKoS9DcBVPXkAfrstrti7sCadvT3whD3v57a8J9jcPPwY5jxzAJ+8jWJ9PNXvI71qLys8duscPRF75TuOGKY7iSK2PKWVEb1aDXO8X+6BPDJp6LqOGKY8dOAqPWt6Bbyhmhm8hqx1vK5wdL0W/Je8zFmQPHUbizzMSRY9hUcyu1Pyp7xrdPq88GzuPFxoxzyr8MS8rmaFvN1lQz3Kfow7qxC5vL2SrLwgIlW6X64ZvGh/Db11oMI8hgfKPNjqGz1TEhy9nYQ1PIWygDyltYU87werPIoCQr3R9Cu7u1dMvCSYlTtIi/+9clCBO6ZVqbxIYZy8YV43vJG4yToVLAa8KY4FPPWixrx3gE698cdCO0HLiDu7V0w8tGZkvP8z0jtAu446MMnEu1lNWzwPJhw9sWvsu4aCkjoDSra714/HPBvHobxuKiO8YANjPLMBobxof428EBaiO3sBgTzhe6c88mdmvBzSEz2mVSk9f8wKPAZFrjy7HOy741uzvImnbbzFKMA8CouAPfm4qruxQYm8UpfTvAJPPj2ZyaU6gvHlvB+9Eb0PNpa8w+3fOYfn1TwJQKa8VJLLvDkfcLscDHG8mPkTPbIRG73Vzy+9H2I9vVtox7tQ17u8uTxgPNkFiLwpEz29o3olPEQrRLw+wJa8zvmzPAHU9btD0G+9daBCvOkxLz1keaM8tRyNu0eBkDuAvBC8A0q2PF/OjTxfI9e8Lq7YvKY1Nbz2vbI8TlcMvfEykTy+UkS9jVgOva4Lsbz8WE48ZlQnvDr/e7vR9Cu9hqz1vBIxDr3Lo+c7u/IIvZWTzTy/zQw9Ve2fPKwrJbnUlE+8PBroO0s8IL1mVKc8vFfMPA07HjzqlvI7KX4LPVAXJDzMg3M9nQntvOPGgbyoUCG8WsgjvY44GjydhDW9p7rsPE2hYzzVKgS9Jd1kPNFZbzxwJZu8RuvbOxnnFb0t7sC8QFDAPIx4Arykv/Q8Jr3wvPBsbrzfJds8fPv1uzLkML274g69zb7TPC3uQDzLw9u6eNsiu0BwtDwKYBq9rLDcvAKKHj2ffy295YaZvKea+Lx5mzo85LYHvVCcWzsoM7E7EiGUvLsCg7zyh9o8B6rxuyY4OTyfRE09UHznvFwo37uaDnW9AcqGvTr1jLwBugw9sQapPGZUJ726tyi81/oVuxkHirxT8qc7TMHXu53fiTm74o68gYyiu+8nHz01D5c8SuHLukhBqLwc7Hw9sqZMPBzs/Dyrdfy8/1NGPVxoxzyyUQM9V80ru99gOzw94Io7BmWiPEPQbz2hmpk8G/KHvHAlGz1R1zs88mfmO9zwBby2/Ji81VTnu0psDj2KjQQ6tYFQPFj4kbw6mri8bM/OPOp8Cb25fEg9HNKTvNrFH7wb7Hy8fPt1vZykKTzeRc+8tCwHvQsgsrs3f8y86lyVvCEi1TyNgvG8nyRZu8kDRL1iqRE9/46mO4l9ij05FYG88gIjPWAD4zzjwPa75xbDPIGcnLzByAS8aV+Zvf7uAjzRWe87c1ABPJ2EtbxoNDO8pZURPZYpgrqK4k08E7bFPCajBzyhygc86LbmO6E/xbsSERo8envGOxzyBzyReGG8E8jBO4Y8xDzVuxq9PUyRvFSarryyyYa9grBjPPiwxjyZOBE99qrrvFzyBL03fVi9WazpPCH47Txab2y7cj3fPP8FWjw7TGa8H2y4vE5FG7nOafQ6uyeNu2ofmTyXO/46LdkMPEXnFL3hJaw52Ae7vHgMGD2P2t+89WGOPILti7x+pFi96fqUvCR+njxFJyq8S3w9POp9grwi9YC825PwPBgXpTypa4C9kqO9PDV3fbxc9fE7pd8fu1DLIL2C7Qu9PUwRvcL/Db3JlLY7O4ljvCCvkD11ww87kubquwfhcjwDT429/LxRvA553r21UiS95TdnvFVdMT1o3EC9odOUvGFE1bxn1pA9Fxf6PIW8bjzwVdi6/LxRvdCszDrjqBk9n805vAqq0LxhxCq8wfxKO2UT4zu6J2K9XTjKvIY8RD1T1BO9PI++PDkD3jt94dW6uF4vu0ctBTvemcs7YkeYPNjEDb3sSc28SXYNPF64nzzGjlu7Z5novDV0EL1F5xS9280AvP08pzzjK4e8bSukvK13izym5c+7b64RPeNoBL1Gqpe8jtQvvV31HD3xlZg8kyOTPSR+nrzERVM9ReeUPO0M0Dwu3zw97Ml3u5WvyLzHDrG8vPA/vIY8RDuVaYO8v7nyPA72m7zTdSq8PlLBu4S2vrzqQ3K9tZVRPPNh47uvg+u8crocvXH0Ab1EZCe8sQlxvcfOmzwiNZa83BNGvBPIwTuLi6c90bJ8PGQNM71de/c8uy09O+vDR7w3+pW8P5UZPfYkkb2LS5I8DvYbve3JojxD5NE8FcuEvLLMHjoP+TM8ReosPMPFfbxq34M9/4WvvHzbpbtc8oS83tkLvO7P0rv15+i8qS7YPJtBWbuA7eA81oE1vY0RLbvrQIU9qnEwvYuLp7xlE2M7NzqrPBrgV72dBAe8V6CJvLxqujwanao9dsm/PGONXbxD5NE6OP0tvTmDMzofr2U8o5xHvRzjmjy0Tww9r0A+vUOhJL0JZIs78p5gPJDaCjsARhq9mv4rvHzbJTwqkAQ9KpCEvdiHZT0k/kg8T8t1vMcOsbustAi8OP2tPL4wALp/Z9s8eJLyvFsvAj1X4za93JADvSeK/rtjjd28qnEwvJd4+7xTV1a9UA5OPEk5ZbwtnOQ8HuziulNXVrzDgtA85GscvWkcgTqlIs07m36Bu50EBz36s4k9vK1nvRSR9DvkbjQ907jXu+FiKT15kp28ik7/PPs8fD3BuZ28GR3VPAqqUL0TyEE9NDTQPCYEpDwXF3q8gzZpu104Sr0MMFY81r4yPCE167wPPGE9HuxiPZ/Nubw/lRm92lBDvaq03TzjK4e8JLsbvYxOKjsNcJY9Y0qwvE5Cg7udiuG7YgfYvO7P0rzbzQC7280APVsyb7yIxQw9LZzkO9/co7xMgm28YwobPVfjtjweqTU9xctYPLgemrwMMxk9cbocu7eYFLy8ajq6l7V4vAYecDzECFY9Xz6lPKjokj1DoSS9kJ1iO9R7Wr1Fatc8Zla7vQNPjb3ckxu9B94FPLFGGT3iJSy7u+rkuyYEJD08D+k77Yz6vBYRSj3qAMU8iEIfvpyEMb19nig8PI++PM0glzuVr0g81gHgPBgXJbyCsGO8+G0ZPNjEDb0bo9q8HSngvJ8Q57wVC5o8aeLwPCoQLzveXM48RWpXPV17d7vCPyO8RqqXuiK7cD1+pAM8eY+FvOn6FD2HBXc8xAhWu/NhY70EVb28pF9KvRaOB70UznE7wDnIO9qNQDzlseG7dwmAvLkhsjuEtr48iD8HPHUMbT3ynmA93RkhvH/hgDwfbLi84iUsPQmkID12hhI9M65KvBla0ryLiyc8ich5vBLCEb00NNA8nIQxvW/01jt8nn07pd8fuQytk7xAVYQ9Ll9nPM6jBL1rogY9BqR1vMA5yDx3jMK73pnLPOzJd7yEvO48VyZkvCZH0TyG+RY92MSNPWaTODzz24i8UIsLPQvtKLxiR5g7w8V9PY8XiL1L/JK80vXUO6murTtTV1Y8i87UvN1cTjyUbPC8D/mzvF8B/TzFy1g+LiJqvHK9tDtWY+G8hvmWPML/jbztiQ28wr/NPMMCprw7TOa8HeayvOf66bzjqBk9QV5MPCYEJLv255M8Hqk1OnzYjbtkUOA8XgF9PGfWkDyKyKQ8xUiWPNS4grwP+TO9k2bAvIDt4LxA2Ea610povNkN67wzLqC8ollvPRpgrTzp+hS9PUyRvJ1HtDvXAYs7PpVuvZh1Dj0lQaG8ZVCLOfGYsLzp+pS946uxvPl5eTwnx6Y89mc+u/5CArxQiws97E99vI9atbxT1JO5fZ4ovM2m8bzEwhA8M/F3vIGqs7ystIg80rInvD1MET223tm7fNslvDuJYz0xpYI8A9Xnu6NWAjwMsKu8Gp0qvUy/FT24Xi89sw/MPN7ceD09TJG8ReosPWQNszxjjd28XvtMu6ouA7wD1We94iWsPEw/QL0i9YC8PMy7O3mSHTtvsSm8pqKiPAVb7TsL7ag8NbQlO6YofTwu37y8LZzkPKTcBz0/lRm9q3fgu6Ic8jyWLx69EP/jvIY8RL3ERdM8odMUOuWx4bupawC84mhZupGdjT1ublE7crcEPdYB4DzNIBe9rf3lPJm7U73bzYA8mbtTPIKw47ubQVk9jpeyPH6kWDzwEis91fuvu2fWkD2UpoC8Q6GkPFSarrtmkzg8R3AyPWIHg73S9VQ9WemRuVzyhDztySI7BFttOMmUtrwzcc28My6gPBzggjw08aI8dMOPPdqNwDwzNNC6WCaPu7KMib1+pNg8mLWjOs/pSb09j7461fuvPN/cozyD8zs8gjA5vfnz8zyOlBo9kJ3iPIqIDz233lm9tI+hu6w647zfYn68yteOugBGmrz/i188tZXRvLVSJD30nos8Vt0GPfASKzzPppy7iQUiPflzyTxpn0M9YkeYvERkpzvJGjy8+rMJvZ0EBzybwa45oJA8PV6+T73WAeC88x62vLVSpDzqgBo9hPnrPP+ClzuMTqo9bjFUPX1eE7z58/M59yrBvF64Hz3fYn68TcVFOyO4Az6Etj699J4LvesGdT1r4hu9bGWJPVNX1jyfigw9m76Wu9EyUj2Iwsk8keC6PL4zbTr+wiy8cTevvIM2aT2WLAa8dEO6vF8+pTymKP27gGeGvNU+Xb3CPyM8b66RuxVOR71VGgQ9rDpjPQUYQLr7dgy9CSp7PDIu9bxJOeW7x8uDvNU+3bwQeQk9iD+HPCbH+7z04Ti90a8POytTB7x9nii9UA5OvA222zsdKWA7yRQMPRQIAj1/Z1s83VYePIqL/LzQb088TQLDPBgUDT3ovWw9Z5loPLNSeTurNDO9IvUAvTR0EDvSsqc818TiOw/5M73rw8c8IbXAvFAOzjwd5jK7RecUPMeOBrwlPok8A08NvalrAL0IZ/i5jRGtPMI/IzzxGNs8N/oVvUEbn7yJxYy84GL+unkSSL0mBCS9JgQkvEfw3Dz+wiy9AhJlvbKP9jws2WG9aZ9Dukn2tzu/uXK9ZtZlvWslSTxeeIo8COGdPDd9WLpHcLI8PtIWPM1jxDz9/BE9EDwMvIlIz7wWEUq8XPXxuy2c5Dx2SWo8qrRdO9yQg7yr8YU8Hqk1PEIhzzy0T4y5F1SivI6XsrzTdaq8QJvJu4PzO7z7tiG8G6PavHpVID2exwm9dEM6PDW0Jb1zAOI6so/2uWUT4zrajcA8qOiSPDQ00LzEhZM8uBuCvARVPb2EcxG9vjPtvM/pSbz47UO91HvavF8+JTvSsie9MWvyvFVdsTtHcLI8E0hsvfy80brZyj07lClDvdjEDb1euJ88JHsGvS3ZDD05QIa92o1Au94Zob0P+TM9uF6vvGJHmD0lBHk84ysHvR0p4LtQiws9ZFBgOxfUzDzntzy7wbmdvASY6jxV3du84OLTu8jRs7wnxI47bm5RPUPkUT05g7O7BRhAPCO4Az36Nky6x1Heuy7fPDxxNy89UdHQvJbyID2Q2oq8/0KCvRja/Dwzrso89OG4vNdK6LyHQvQ7Wy8CvQUYQLwmhM68Bp7FOsaOW7tAVQS9NbSlvIV5QbwMcy4839yjOBYRyrygEBI9r0ZuPDi9mDxKdg29mPhQvIT5a7xX47Y7Wm/svV31nDy76uS8GV2VvCwWCry/dsU84J8mvQzz2DzTuNe6nEEEvV17dzzrw8e8JP7IPAaeRb1yt4Q8vGq6PMygwbwJ5008exgjPCS7G7wpDRc8pBydvPGVGLyprq28ZtblOZeyi7tgASi8ttWRvbstPbyApxs95TG3PBVUd7y0jyE7m/4rPfXnaD1ytwQ9mDt+u0Kh+bxR0dA7qjQzOQ1wFj2VL3O6lCnDvHWG57tHcLI8jVTavPVnvro6Rja9CedNvBqdqrqO1C+9PlLBvKy0iD3xmDA9l3j7uXpVILzHjga964bKO5VpA73M4248ZpM4vZQpQzwkfh69ZdZlvN3WSLr583O8aqVzOhB5CT0u3zw8P1hxvG0oDL2lYo09v3ZFvB6ptTxspZ66z2kfvYf/xjxp4vC7HWaIPECbybv9PCe9qCioPDFr8rzR7Aw93hmhuxQIAr3ipQG95HRkvI6XMrztyaI7rwPBvGaTOL1LfD29bKUevYkCir3/gpc8UlEmPc3gAT3syXe7m0HZvOpDnbre3Pi77ckivJ/T6bq8cOq8cfSBPYU2FD1VWpk8bSiMPdeH5bvHywO8Kc0BO7on4rwZXZU84OJTveoAxbxmk7i7UY6jvAVbGD15kp08BViAvK26OLoQPAw8xw6xu4T5azxRTo45wbkdPavxBT25ZF+9UdHQOvz/fjwFGEC9JH6eO6Tchzxxety78mFjPCuTnDptKIw8t95ZvdYB4LvI0TO7Ry2FvOzJdzua/iu8tRWnPGUTYzuQnWK6puVPPNF1f7yOVIW7FJH0uyL1gLwR/468XwGoPYdCdL1K/JI9HeYyvaDTab0IJEu9jJHXvKz3NbxRjqO5GpoSvOxPfbxCZPy8+zx8O41U2rzxmDA9N/qVvH5hqzyjHHK7r8ATPQ+2hrwE1ZK8VaBePd1WHjvV+6873BPGPFfjNj1gAag7iot8PPSeCz04QFs9Bp5Fu7bVEbxOiEg9nIQxveV05LpR0VA9LFm3u1COI7zQrMw6y5qRunuYTbtSFCk9pd8fPfDVrTwxpYI7lezFOs/pST30JGa93Rn2PCS7m7xnmWg7YP6PvB9sOL233tk8elIIvcB8dbw5gBu8C+2ovJl4Jr1yPd87TYIYPI6XsryWL566IzvGvL/zAr0jO8Y8PA/pvJYvnjwGG4M8fNslvZc1zjxwt9m7tZXRvI/aX72C7Ys8zWPEPBzjmjyyTEm9nUe0vO9PKLov5ey7lfL1PL/zAj28arq89y0EPWuihrzvDxM9Xj76POm9Fz0xaAU9ytcOvDNjFzvrb9E8NOI9vQTgCL2iDMe8RIeDveCmkjwRKO48T18kPcYprLwu9wa9x31fvfZH8jxrorU8MgACPGw97TxaRPQ7wBOCvD663rztNXw7Ic0zu7xCqbt0XsU8q4HSO3LDDTzqGx69c98ePDzYIr0/q/w8R1rdvKzIVjzYhbq8Rts2vUSHg7xPpig85WgJuz0DljxZfkm8s+muvDVF0zyrOs48Pp5NvQj65jzNSoS7xre0O5vA+7vtwQO9thLvvGCuA73qNy+9yUGJPCv7Orz3No89P49rucfTRbzEY4E8f31qvWrNqLw+LNa9fFQqvSteULxAfgg98hGDvSPa4rwsT268BOCIPeuaxDwqmKU8pKf+uyIwSb1R63k7ztgMPXNRFruRduO8CemDvKP9ZLsHUE08/6BsvYYQurz9IUY9V+MRvRJeDz2kGXY84ZcwvDcLfrz1cuU7vV46O4CzizwkhPy8tEzEvKHwNTt8fx08c22nuxFT4by+T9i8lxgVvcmIDbzQj1U8IbEivD30s7wq36k8TkMTvBgttTyOvxq9Ilu8vGJlTL1Zfsk8vPukPIg5ej2Xpp28dF5FPZtMAz3qYiI9M/EfPZlBVTqOv5q85oQavGz2aLzgX467yAtovKKazzyJU4q8WkT0OTRUNTxJ14K8GqxbvVDeSjyXioy8Rmm/vK0A+bwr+7q8UUHgu1EWbb1tWX484ojOvCNMWrzkXds7GBGkPVHPaDwBrBq9RRUMPSH4JruQWlK6arGXvBzTGj1bpYi9qTyBPJEE7Lz8op88dmv0PEZNrrw+AWO7MxyTOzcljjxhu7K85WiJPauQtLy0BUC7T8K5vHRCNLxqsRe8InfNvFkM0jwYLbW7s6KqPG3L9bzsttW79o52PVj/Ir1lYZi8BwlJO2xoYDwQflS9+z+KvKPScbzY97E8/DCoPX3isjytR328j2k0vFgbNL03UIG7pBl2PKLhU72IOfo8GsjsPL9rab3JswC9z8mqOhEobjz+y186NDgkvW5Im7sTM5w8v87+PMc2W71r6Tk9j7C4uT07uLwPuKk67afzupATzjxqW7E7fozMPP13rLxZU9Y8vG0cvWvpOb3y5o+7EkT/vNlax7sQftS8UaR1vUaUMjwqUaG8v4f6PBG2djz+aMq8kBPOPLsKB72FSo+6Rz7MO8ZFPbvhwiM9YIOQPfQ6Q710ibg8mnn3PHvVA7w0t8o8rMhWvDJHBj0bKYE9fDiZvIlTCj2+eku9PnNaPa2MAD1Qs1c8YPWHvI4Gn7stlnK944hOPJdDiDz/dfm8WVNWPYjWZD3HYc68K20yvTXTW7082KI8kVpSvEV4Ib337wo8z8mqPTbEebxOihe7yhYWvBH9+rxyNQW9YXQuu3xUqjylwQ69m5MHPWM62TtZU9a8on4+vMSqBT0ZkEo8rMhWPSwIajz3No+8PRDFPC3BZbzKFpa7jRUBPOvFt7zqGx48mhZiPYjWZDxAU5U9T18kvVJ3ATt9RUi9zpGIPA9Gsr1pI4+9YZ8hveJsPbo99DM90pqDulqLeLzYIiU9fH8dO0o6GL0ivlE9PYI8PMG9G75GIju9bGhgPNnMvjyqLR88PQOWPFx6FT18qhC8WEYnvHOYGjwz8R+9fmHZvI5cBb2kMwa9UFDCPJmzzDx88RS6PgHjPKO2YD20dze6hsk1u642Gru1aFU9+7GBPGM62btPNDE97qdzPMZwMLu/QHa9kC/fvONdW7100Dy9UkyOOysXTDk8dQ080WTiu5EgfbyOeBY8j02jPGlOgjx3PoA9x+9WPUZNrryHLMs8ximsvI4GHz2R2fg8IYYvPXwNpryq5hq9fbe/O2G7MrwgwAS9Gp35PFjUL72u7xU84vpFuiJ3TbqGnkK8YMqUPcfv1jo/q/y8c9+ePP13rLxIkv88SOhlvGHmpTw8Spq8GUnGPM5mlbwsM108IfgmPUnzkz0kV4g89PO+vMZwMD1hLSq8Km2yu74kZT2lCJO9hyzLvOlxhDujKFg8jz5BPBJE/7wF/Jk70iiMvCyl1Lyaefc8I5NePliNK7wjr2+7dIm4vJrP3TytR/28PuXRu0ZNrjw3JQ69LWv/vD663ry/QPa8dNA8PbsKBzxPXyS7RIcDPI8isDvFmyO8PuXRPKKaTzwRU2E8dxMNPLfWmDy0BcC8Kt8pvVkM0rz8oh+9jRWBu4gd6bvQusi8PgFjvNkTQz1I6GU8xzbbvICzC71kRYc8xuInPD5zWr2AbAc90cf3vOxEXjs8Zqu8IbGivSNM2rxhn6E8CPpmPJmIWTskEAQ77P3ZPOFQrLwZZde8kOhauzdQAbtthPG8l6YdPH7TULx9m668d1qRO3UIX7zbyAo9f1L3u+vFN7ypPIE98lgHPKotH7xAmhk7zjuiu9FkYr2ZbMg8qREOPQ/UujzbOoI9wFoGvH0pNz2H5cY8mutuvIir8TsZkMo6yJlwvfzpIzylTxe9UN5KvEh27ju/zv675NoAuzRwRjwYWCg7EeHpPLdzgzv0rLo89GW2vBLQBj3BvRs968U3vWvpuToJBRU9K20yvcaMwbyhYi29RIcDPb56yzvqGx46dTNSvDXT27rXBpQ9ofC1O6wPWzy1y+o87ggIvasevTyGEDq9IgVWPAYYqzyllhu82gRhPb3QsTyGOy08M38oPa0A+btgEZk9DiqhvD7l0TwPG786PQOWPM+eNz2JU4q9tDAzPfQesrv0HrI8dBfBu2M6WbwcRZK8u1GLvIg5+jyXpp08biyKPNjboD27Coc8GsjsOiEUuLojaGu9cu4APSXlEDvs/Vm9ZHL7um4sCj0Yyh88NsT5OpMPGr22WfM8GBEkPZuThzz8FBc9WBs0vY/3vDzsttW8ZCt3vODtFjvQSFG82NsgPC2wgrwuzBM99blpPI/bKz29Xjo7LswTvMZFPT3XeAs9PTs4Pca3tLzS4Qc7RTEdvCxP7rx1elY8WNSvvD30Mz02NnG9x2HOvD3JwLzHfd88YS0qPYjW5Dy/h/o7YealPZlBVT22oPe7ZHJ7O4Y7rbws7Ng8hLyGvM1KhDk75wQ+68U3vVJ3Ab1yNYU9jgYfvUSHgz2ZJcQ8CkwZPc9XM7nQc0Q9BYqiPMeo0jzjwHC7pGB6vBnXTrxhdC49vezCu4aeQry0MLM8NajoO6q7p7zOOyK9K/s6O/W56bthdC69tDAzPcgLaD2zzZ27hR8cvSIwyTsOKiG946TfOSPaYrxyNQW92CIlPdO2FDySrAS9o29cvWIeSLy3uge8NYzXvETOB7y+CFQ8GOawO5dDCD0Hs+I8M2OXPIdzzzvpRhG9WKm8PBrz3zyYCbM84ohOPVPaljvR8uo7K20yvTQ4pLyqAiw8vgjUPHTQPDyZbEi93J2XPBifrLw/q3w8NahovE97tTsGNDy8GlZ1PEi98rwPcSW9ULPXu/Yc/zx71QM7vghUPI9pNL3AE4K8Tm4GvKotH7yHLEu9BsJEvU0ngruq5po8hwFYvRFTYb2rrMU89IFHvVfjkTqq5po6tctqvbTaTL3P5Ts8CTCIPCqYpTyYNKa7R6HhPPdhAjxYRic92GkpPSUslbzRq2a8tJNIvG4BF7yz6a48/+dwPPcLHDuKDIa8/6BsPAbtNzxiZcw8Ngv+uvzpo7xSBYq8hwHYvGS5/zignIK8f+/hO9GA87xs2tc80cf3vE+mKDxSMv68SjoYPKQzhjsz8Z87iGTtPMYpLDz3C5y8NDikPFipPLy31hi9wFoGvb2YD70XIAa8ftNQvQDXjbwGprM6d1oRvTfeCb2/+fE7qnSjPHVPY72Hj2A6yl2aOxxFEr1GlDK9BntAPHWW57yOXAU9UneBvbQFwLsaD3G99GU2PWFYnbxF6pg9xozBPPbV+rzstlW6W6UIPaq7pzurOs48kUvwu6kRjrwYLbU8DlWUvMdhTrxFeKG8mhZiO6xycD3G/jg9ByXaNZp59zvGt7Q8olNLvM9Xs7tz35487BnrPCzsWLyHLEs9/j3XvNJvkL3ZL9Q8odSkPDPGrLy+JOW8UV1xOgkFFb3Pgqa8fZuuvFecjbqZiNm7DscLvbRMxLzYaam70uEHPHfMiLwXPJe8PTs4PcAvkzz0OkM8SAT3vI8isLwRU2G8SL3yOuxg7728bZw8IRS4vOzSZrxggxC8102YPGEtKr3YsK08vG0cO2lqE70sT+48EkT/vBll1zzhex+95E55PNq93DxX45G8PB+nPMB2lzwOnBi6mJc7O1Bs07wriUO8Ykm7vP6vzrsu9wa8D0YyvOVoib2GgjG8Bl8vPVoo4zzAEwK8WkR0O3O0Kz32AG49V5wNPb3QMbx13Wu8zmYVu87YDDwA1w09PfQzOqQZdrxGlLK6qp+WPGMP5rwZZde7zxAvvUbbNrw4s5Y7LlocvbsKh7z7sYE9BUMePS0kezvOO6K7qcoJvYgd6TtYRie9hsm1PFhGJ73q8Co86jcvvQWKoryzP5U7WkT0uZoW4jvbOgI9178PPBDwy7xOQxO9M/GfPXtjjLy/+XE8/FsbPHehFb0tsII8NUXTu2DKlDx+Ydm7Uc/ovJvPXTz21fq8XMEZPc0DgLxObga9PRDFvDQpQrps2le8gEGUum7lBb0iWzy9iuESvTOqG70+LFa9EPDLPA6ABz219t08NdPburWE5ryP97w5nCEQvJdDiLwZkEo67qfzvInFgT2ims88qkkwPCXlkD3QAU27iLpTvM/JKjsRKO68GZBKO6O2YL10XsW84QkouyE/q7xk/gI9q5C0POm4iLwrtDa87TX8O3c+ADryEYM8mMIuu5FaUj3rmsQ8oakxveJBSrurrMU8EGJDvUgv6jt3E4084iU5uxEobjyscnC7UCVPPEjoZb1JZYu8RgYqPDbvbLzbZ3Y8Ykk7vCttsjyGgjE8LbCCOxjKnzw9A5a82D42OpoWYrz3YYK8YvNUvEbbtj1sr2S9PJGePUnzE702xHm9fMYhvdl22LxTkxK8tExEvL/58buAmXu8gPoPvc9XMzzPV7O8fA0mPRFT4byHLMs8NbdKPKVPFz2XGJW82XbYvKIMRz3Yhbo7P2R4PC1r/zxhLSo9v85+PBrzXzz21fo8pGB6PYWRk7thdK68Bl8vPe7dFL3zuxw76yhNPT+rfDkFiiK80sd3O86RCLoSF4u6GUlGPc4fET2GO608MxyTur8kZbq8+yQ9EeFpvZg0Jj02fXW8D3ElO/6EW7wauz29kb3nPNzkG72q5pq8xv44uxcgBrwXZwq9UCXPO7fWGDxk/gK9tYTmuzdskrzpKgC9j7A4PGRy+7zAE4I8R1pdPDQpQr12JPA8UFDCupCh1ryHSFy9WuFePKs6zjxhWJ08z+U7va2MAL2+3eA6/FsbudLhBz3Ibv08mhZivGlOAj2aFmK8RVwQPTWo6DzgXw49GjrkPBFT4bw="} \ No newline at end of file +{"embedding_dim": 1024, "data": [{"__id__": "rel-64070e3f65ba14529879be04181b2124", "__created_at__": 1751960218, "src_id": "氧化铁", "tgt_id": "硝酸", "content": "氧化铁\t硝酸\n化学反应,酸碱反应\n氧化铁与硝酸发生化学反应,生成新的化合物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-160441d147cfe7777a9723167faeb22a", "__created_at__": 1751960218, "src_id": "氢气", "tgt_id": "氧气", "content": "氢气\t氧气\n氧化还原,燃烧反应\n氢气与氧气发生燃烧反应,生成水。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-89de996c1ac0d9375ac2f28f7315c37f", "__created_at__": 1751960218, "src_id": "反应方程式1", "tgt_id": "氧化铁", "content": "反应方程式1\t氧化铁\n化学描述,反应过程\n反应方程式1描述了氧化铁与硝酸的具体化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-2b005872ade90234265d9d7031008a53", "__created_at__": 1751960218, "src_id": "反应方程式1", "tgt_id": "硝酸", "content": "反应方程式1\t硝酸\n化学描述,反应过程\n反应方程式1描述了硝酸与氧化铁的具体化学反应。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-6e002e667ffc30da8df0ed400a489773", "__created_at__": 1751960218, "src_id": "反应方程式2", "tgt_id": "氧化铁", "content": "反应方程式2\t氧化铁\n化学描述,反应变体\n反应方程式2可能描述了氧化铁与硝酸的另一种反应条件或产物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-0f07e8ce3801e170143e080da1445eb8", "__created_at__": 1751960218, "src_id": "反应方程式2", "tgt_id": "硝酸", "content": "反应方程式2\t硝酸\n化学描述,反应变体\n反应方程式2可能描述了硝酸与氧化铁的另一种反应条件或产物。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-3670a6e1927ce96e31f2fcbc8c8c6b17", "__created_at__": 1751960218, "src_id": "氢气", "tgt_id": "燃烧的方程式", "content": "氢气\t燃烧的方程式\n化学描述,燃烧过程\n燃烧的方程式描述了氢气与氧气的反应过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-1ec968c7c4aba271617f5f969c9577ae", "__created_at__": 1751960218, "src_id": "氧气", "tgt_id": "燃烧的方程式", "content": "氧气\t燃烧的方程式\n化学描述,燃烧过程\n燃烧的方程式描述了氧气与氢气的反应过程。", "source_id": "chunk-f77d33d8abf6748445c076e3e4c9b1e8", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-795fb16a20c34228b2302f23639b7ba4", "__created_at__": 1751960617, "src_id": "FeO", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "FeO\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity FeO belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-47e64bf633812aa9a1107dd8f736c579", "__created_at__": 1751960617, "src_id": "HNO₃", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "HNO₃\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity HNO₃ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-f8808e92cc42fdabedafca47b54c509f", "__created_at__": 1751960617, "src_id": "Fe(NO₃)₃", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Fe(NO₃)₃\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Fe(NO₃)₃ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-750ebb205a37cc56ef2558ce6bedcf3c", "__created_at__": 1751960617, "src_id": "H₂", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "H₂\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity H₂ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-8048bbc2be5b42c555ecc2e45ec2873f", "__created_at__": 1751960500, "src_id": "NO₂", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tNO₂\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity NO₂ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-cddfb5160c7ecf981a2857e42a01fdca", "__created_at__": 1751960501, "src_id": "Redox Reaction", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tRedox Reaction\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Redox Reaction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-a6ef7bf6fe39631606bd8133cd4dbf7d", "__created_at__": 1751960505, "src_id": "Stoichiometry", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tStoichiometry\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Stoichiometry belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-d520fb340011b8b4d94e2ce1a6926033", "__created_at__": 1751960505, "src_id": "Δ (Heat)", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tΔ (Heat)\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Δ (Heat) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-916a250cbe1907d62857268f6d8f7ade", "__created_at__": 1751960366, "src_id": "Oxidation", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tOxidation\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Oxidation belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-97e0160193bdb78aa35d464ea05f97de", "__created_at__": 1751960366, "src_id": "Reduction", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tReduction\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Reduction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-944fb092fed36175787424cd34720538", "__created_at__": 1751960617, "src_id": "Gas Evolution", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Gas Evolution\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Gas Evolution belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-10d4c9990087bf6c4cdf31d0d9fb366e", "__created_at__": 1751960617, "src_id": "Acid-Metal Oxide Reaction", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Acid-Metal Oxide Reaction\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Acid-Metal Oxide Reaction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-bfd73b5c6c7bdb60b8c8e771e09061c3", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Combustion Reaction\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Combustion Reaction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-4028c3aeaf47c385cdbd2beaafb910c1", "__created_at__": 1751960368, "src_id": "Laboratory Synthesis", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tLaboratory Synthesis\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Laboratory Synthesis belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-8b6b16c41fee66b8103b8d99214aa7e3", "__created_at__": 1751960617, "src_id": "Industrial Processes", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Industrial Processes\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Industrial Processes belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-6183c88d5f623054b339d31c32100622", "__created_at__": 1751960617, "src_id": "Environmental Chemistry", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Environmental Chemistry\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Environmental Chemistry belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-a9aadf17cb70c5bfa7321a984189cfef", "__created_at__": 1751960617, "src_id": "Inorganic Chemistry", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Inorganic Chemistry\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Inorganic Chemistry belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-09780f7e12f085fb9380537ff6007bb4", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide (FeO)", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Iron(II) Oxide (FeO)\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Iron(II) Oxide (FeO) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-8e7da974914f0b6805d63808fef73023", "__created_at__": 1751960502, "src_id": "Nitric Acid (HNO₃)", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tNitric Acid (HNO₃)\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Nitric Acid (HNO₃) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-4410c7f90e977e65dc9f4f91725e70cb", "__created_at__": 1751960503, "src_id": "Iron(III) Nitrate (Fe(NO₃)₃)", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tIron(III) Nitrate (Fe(NO₃)₃)\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Iron(III) Nitrate (Fe(NO₃)₃) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-5cc783ce03c14ff1a6b690fdf861b6e6", "__created_at__": 1751960617, "src_id": "Hydrogen Gas (H₂)", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Hydrogen Gas (H₂)\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Hydrogen Gas (H₂) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-0636918c47c7c7cc6608dfab4b49b0f3", "__created_at__": 1751960504, "src_id": "Nitrogen Dioxide (NO₂)", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tNitrogen Dioxide (NO₂)\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Nitrogen Dioxide (NO₂) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-d720b297deaa16620d5decdbbd33dc67", "__created_at__": 1751960617, "src_id": "Environmental Pollution", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Environmental Pollution\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Environmental Pollution belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-b28e807697466b209de0c3031b6a2164", "__created_at__": 1751960617, "src_id": "Industrial Synthesis", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "Industrial Synthesis\tIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nbelongs_to,contained_in,part_of\nEntity Industrial Synthesis belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-4c1e1f08abd339cc0ecbb9abb649c492", "__created_at__": 1751960507, "src_id": "Laboratory Demonstration", "tgt_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "content": "belongs_to,part_of,contained_in\tLaboratory Demonstration\nIron(II) Oxide and Nitric Acid Redox Reaction (equation)\nEntity Laboratory Demonstration belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-8b9ce9013354e576ab16879ead6c81fc", "__created_at__": 1751960608, "src_id": "Hydrogen Gas (H₂)", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tHydrogen Gas (H₂)\nHydrogen Combustion Equation (equation)\nEntity Hydrogen Gas (H₂) belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-25847f916e398604ae6b5740821d6486", "__created_at__": 1751960608, "src_id": "Oxygen Gas (O₂)", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tOxygen Gas (O₂)\nHydrogen Combustion Equation (equation)\nEntity Oxygen Gas (O₂) belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-d728bac916a5da661d0daed79b91409a", "__created_at__": 1751960609, "src_id": "Water (H₂O)", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tWater (H₂O)\nHydrogen Combustion Equation (equation)\nEntity Water (H₂O) belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-7562ce6b6809ba1876d227e6ecd98302", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "Combustion Reaction\tHydrogen Combustion Equation (equation)\nbelongs_to,contained_in,part_of\nEntity Combustion Reaction belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-4c89654e15c4e416efa362d8e3241179", "__created_at__": 1751960610, "src_id": "Stoichiometry", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tStoichiometry\nHydrogen Combustion Equation (equation)\nEntity Stoichiometry belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-1d33c0b090fd03d86274b930de448db1", "__created_at__": 1751960611, "src_id": "Redox Chemistry", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tRedox Chemistry\nHydrogen Combustion Equation (equation)\nEntity Redox Chemistry belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-3728d45608ae5f031145299df1c1f826", "__created_at__": 1751960611, "src_id": "Hydrogen Fuel Cells", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tHydrogen Fuel Cells\nHydrogen Combustion Equation (equation)\nEntity Hydrogen Fuel Cells belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-18ee9bcdff20c81654b9561655b97317", "__created_at__": 1751960612, "src_id": "Law of Conservation of Mass", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tLaw of Conservation of Mass\nHydrogen Combustion Equation (equation)\nEntity Law of Conservation of Mass belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-57d4ac2da709b2c73021f771cb5d44d0", "__created_at__": 1751960612, "src_id": "Thermodynamics", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tThermodynamics\nHydrogen Combustion Equation (equation)\nEntity Thermodynamics belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-2bf80761f357a8c73d45830d8dfb99d0", "__created_at__": 1751960617, "src_id": "Exothermic Reaction", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "Exothermic Reaction\tHydrogen Combustion Equation (equation)\nbelongs_to,contained_in,part_of\nEntity Exothermic Reaction belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-d06f2e0d5235482c1368ddb997c8fdb8", "__created_at__": 1751960613, "src_id": "Rocket Propulsion", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tRocket Propulsion\nHydrogen Combustion Equation (equation)\nEntity Rocket Propulsion belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-4709a63ea9049b2ec3a863b2214712fb", "__created_at__": 1751960617, "src_id": "Clean Energy Systems", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "Clean Energy Systems\tHydrogen Combustion Equation (equation)\nbelongs_to,contained_in,part_of\nEntity Clean Energy Systems belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-c12f2f0750d234f75640da585ed95e1d", "__created_at__": 1751960615, "src_id": "Iron Oxide", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tIron Oxide\nHydrogen Combustion Equation (equation)\nEntity Iron Oxide belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-b262f6496bf90befef9d44bfc45bf920", "__created_at__": 1751960615, "src_id": "Nitric Acid", "tgt_id": "Hydrogen Combustion Equation (equation)", "content": "belongs_to,part_of,contained_in\tNitric Acid\nHydrogen Combustion Equation (equation)\nEntity Nitric Acid belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-3d9f690efef085255e356762e65046c7", "__created_at__": 1751960617, "src_id": "FeO", "tgt_id": "HNO₃", "content": "FeO\tHNO₃\nchemical reaction,redox,redox process\nFeO reacts with HNO₃ in a redox process to produce Fe(NO₃)₃, H₂, and NO₂.FeO reacts with HNO₃ in a redox reaction to produce Fe(NO₃)₃, H₂, and NO₂.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-787261416adbee609424ff557e3ff3d8", "__created_at__": 1751960617, "src_id": "Fe(NO₃)₃", "tgt_id": "FeO", "content": "Fe(NO₃)₃\tFeO\noxidation,product formation\nFeO is oxidized to form Fe(NO₃)₃ in the reaction.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-58fffd070d74b73c5cb8bc12ce48069f", "__created_at__": 1751960617, "src_id": "HNO₃", "tgt_id": "NO₂", "content": "HNO₃\tNO₂\ngas evolution,pollutant formation,reduction\nHNO₃ is reduced to form NO₂ gas in the reaction.HNO₃ is reduced to form NO₂ in the reaction.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-e369e9e653911081890c109f32b79fbf", "__created_at__": 1751960617, "src_id": "Redox Reaction", "tgt_id": "Stoichiometry", "content": "Redox Reaction\tStoichiometry\nbalancing,conservation laws,quantitative analysis\nStoichiometry ensures mass and charge balance in the redox equation.Stoichiometry is used to balance the redox reaction and understand the molar ratios.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-bf48607c7787f8ef82414c2f14888d46", "__created_at__": 1751960617, "src_id": "FeO", "tgt_id": "Δ (Heat)", "content": "FeO\tΔ (Heat)\nenergy input,reaction condition\nHeat (Δ) is required to drive the reaction involving FeO.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-a7220efdb99a544bfee83c89c348a4df", "__created_at__": 1751960617, "src_id": "HNO₃", "tgt_id": "Δ (Heat)", "content": "HNO₃\tΔ (Heat)\nenergy input,reaction condition\nHeat (Δ) is required to drive the reaction involving HNO₃.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-78a36907ebd9deeee858fafcde7cbeea", "__created_at__": 1751960617, "src_id": "FeO", "tgt_id": "Oxidation", "content": "FeO\tOxidation\nchemical process,electron loss\nFeO undergoes oxidation to form Fe(NO₃)₃.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-63efd70e949b954968157ed4ffa69621", "__created_at__": 1751960617, "src_id": "HNO₃", "tgt_id": "Reduction", "content": "HNO₃\tReduction\nchemical process,electron gain\nHNO₃ undergoes reduction to form NO₂.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-70ee5a8941d3abcedd087aae10fc8a4b", "__created_at__": 1751960617, "src_id": "Gas Evolution", "tgt_id": "H₂", "content": "Gas Evolution\tH₂\ngas release,product formation\nH₂ is one of the gaseous products evolved in the reaction.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-052f4a706787afd3648dbce0f0334008", "__created_at__": 1751960617, "src_id": "Gas Evolution", "tgt_id": "NO₂", "content": "Gas Evolution\tNO₂\ngas release,product formation\nNO₂ is one of the gaseous products evolved in the reaction.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-5c731f32fcaa665cd037d14ef5680209", "__created_at__": 1751960617, "src_id": "Acid-Metal Oxide Reaction", "tgt_id": "Redox Reaction", "content": "Acid-Metal Oxide Reaction\tRedox Reaction\nchemical types,reaction classification\nThe reaction between FeO and HNO₃ is an example of an acid-metal oxide reaction, a subset of redox reactions.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-e571cb4c08d6001b11407f3b84cc903e", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Redox Reaction", "content": "Combustion Reaction\tRedox Reaction\nchemical types,reaction comparison\nCombustion reactions are another type of redox reaction, contrasting with the acid-metal oxide reaction.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-48686460302f6fc9de4dfc3e1d116d58", "__created_at__": 1751960617, "src_id": "Fe(NO₃)₃", "tgt_id": "Laboratory Synthesis", "content": "Fe(NO₃)₃\tLaboratory Synthesis\nchemical synthesis,practical application\nThe reaction is used in laboratories to synthesize iron(III) nitrate.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-6ccb8172d63ab133b19ea86ac7685682", "__created_at__": 1751960617, "src_id": "HNO₃", "tgt_id": "Industrial Processes", "content": "HNO₃\tIndustrial Processes\nchemical usage,industrial application\nNitric acid is used in industrial processes involving metal oxides.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-d1f3b6d77e49387b0ae0a93b9a4c6004", "__created_at__": 1751960617, "src_id": "Environmental Chemistry", "tgt_id": "NO₂", "content": "Environmental Chemistry\tNO₂\nenvironmental impact,pollution\nNO₂ is a pollutant studied in environmental chemistry.", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-75a2b78b4bbece4a4270453e7d255a0d", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "NO₂", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tNO₂\nbelongs_to,contained_in,part_of\nEntity NO₂ belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-639d2c07bc1184fcfe1e59b4e585b1a5", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Redox Reaction", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tRedox Reaction\nbelongs_to,contained_in,part_of\nEntity Redox Reaction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-9f9586ba959a0190c6b81aa54107f172", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Stoichiometry", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tStoichiometry\nbelongs_to,contained_in,part_of\nEntity Stoichiometry belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-44d4291c39d664861561080b2027cbb5", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Δ (Heat)", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tΔ (Heat)\nbelongs_to,contained_in,part_of\nEntity Δ (Heat) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-9ebfc13477f8ca940653d8964a894f99", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Oxidation", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tOxidation\nbelongs_to,contained_in,part_of\nEntity Oxidation belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-47c9db88366e9bb678f7f47671f42d63", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Reduction", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tReduction\nbelongs_to,contained_in,part_of\nEntity Reduction belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-5a44b893acc243f62c937922e39f8990", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Laboratory Synthesis", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tLaboratory Synthesis\nbelongs_to,contained_in,part_of\nEntity Laboratory Synthesis belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-d50f1a8dad9b33fc2a6c7c3359220e5a", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-bfab7ef272969b7a5ced3044b74a07a8", "__created_at__": 1751960617, "src_id": "Inorganic Chemistry", "tgt_id": "Redox Reaction", "content": "Inorganic Chemistry\tRedox Reaction\nacademic discipline,academic study,chemical principles,chemical process\nRedox reactions are a fundamental concept in inorganic chemistry.The redox reaction is a fundamental process studied within inorganic chemistry.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-1a90955fe6941105263c6e88ef76fd69", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide (FeO)", "tgt_id": "Nitric Acid (HNO₃)", "content": "Iron(II) Oxide (FeO)\tNitric Acid (HNO₃)\nchemical reaction,redox process\nFeO reacts with HNO₃ under heat to form Fe(NO₃)₃, H₂, and NO₂.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-9e49dcc7e42dc245b14ba8dde41adb18", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide (FeO)", "tgt_id": "Iron(III) Nitrate (Fe(NO₃)₃)", "content": "Iron(II) Oxide (FeO)\tIron(III) Nitrate (Fe(NO₃)₃)\noxidation,product formation\nFeO is oxidized to Fe(NO₃)₃ in the reaction.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-47fe1858b6fbdf417be9b92a9736eeb4", "__created_at__": 1751960617, "src_id": "Nitric Acid (HNO₃)", "tgt_id": "Nitrogen Dioxide (NO₂)", "content": "Nitric Acid (HNO₃)\tNitrogen Dioxide (NO₂)\npollutant formation,reduction\nHNO₃ is reduced to NO₂, releasing toxic gas.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-8ee9b5d1847ac2a128e4598763f08357", "__created_at__": 1751960617, "src_id": "Hydrogen Gas (H₂)", "tgt_id": "Nitric Acid (HNO₃)", "content": "Hydrogen Gas (H₂)\tNitric Acid (HNO₃)\nacid reaction,gas evolution\nHNO₃ contributes to the release of H₂ gas during the reaction.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-57c8f10d36492528029be0daaf4de7c2", "__created_at__": 1751960617, "src_id": "Redox Reaction", "tgt_id": "Δ (Heat)", "content": "Redox Reaction\tΔ (Heat)\nenergy input,reaction kinetics\nHeat is required to drive the redox reaction forward.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-7b3d0e3b694cabf283d9ec6ceca17b9d", "__created_at__": 1751960617, "src_id": "Environmental Pollution", "tgt_id": "Nitrogen Dioxide (NO₂)", "content": "Environmental Pollution\tNitrogen Dioxide (NO₂)\nenvironmental impact,toxicity\nNO₂ is a harmful pollutant contributing to air quality degradation.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-9b1d4584208e1d814d6976672d3a4881", "__created_at__": 1751960617, "src_id": "Industrial Synthesis", "tgt_id": "Iron(III) Nitrate (Fe(NO₃)₃)", "content": "Industrial Synthesis\tIron(III) Nitrate (Fe(NO₃)₃)\nchemical manufacturing,practical application\nFe(NO₃)₃ is industrially synthesized using this reaction.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-10666fee4a106648c71843a1d1ccbcee", "__created_at__": 1751960617, "src_id": "Laboratory Demonstration", "tgt_id": "Redox Reaction", "content": "Laboratory Demonstration\tRedox Reaction\neducation,experimental learning\nThis reaction is commonly used in labs to teach redox principles.", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-1a09f84a9d366a5e95a89b94301a9fe4", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Nitric Acid (HNO₃)", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tNitric Acid (HNO₃)\nbelongs_to,contained_in,part_of\nEntity Nitric Acid (HNO₃) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-1de17c2ad5f69f51aca368e72ff09a5e", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Iron(III) Nitrate (Fe(NO₃)₃)", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tIron(III) Nitrate (Fe(NO₃)₃)\nbelongs_to,contained_in,part_of\nEntity Iron(III) Nitrate (Fe(NO₃)₃) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-5ed5e1e499a561515fec81c976f80f96", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Nitrogen Dioxide (NO₂)", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tNitrogen Dioxide (NO₂)\nbelongs_to,contained_in,part_of\nEntity Nitrogen Dioxide (NO₂) belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-2b1316e474e1e3938eac2c8e0f6ebcc1", "__created_at__": 1751960617, "src_id": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "tgt_id": "Laboratory Demonstration", "content": "Iron(II) Oxide and Nitric Acid Redox Reaction (equation)\tLaboratory Demonstration\nbelongs_to,contained_in,part_of\nEntity Laboratory Demonstration belongs to Iron(II) Oxide and Nitric Acid Redox Reaction (equation)", "source_id": "chunk-1b444c5f7dfe95b7dde27447f21214b5", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-d820d76cf93122c2f5282b8920c2dd56", "__created_at__": 1751960617, "src_id": "Hydrogen Gas (H₂)", "tgt_id": "Oxygen Gas (O₂)", "content": "Hydrogen Gas (H₂)\tOxygen Gas (O₂)\nchemical reaction,stoichiometry\nHydrogen and oxygen gases react in a 2:1 molar ratio to form water in a combustion reaction.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-9a039fd4274f6d0b3beb2ed55453b6cf", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Water (H₂O)", "content": "Combustion Reaction\tWater (H₂O)\nenergy production,zero-emission\nThe combustion reaction produces water as the sole product, highlighting its clean energy potential.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-206df8358bfc73a346e9dcdd4e94d46f", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Stoichiometry", "content": "Combustion Reaction\tStoichiometry\nchemical balance,quantitative analysis\nStoichiometry governs the balanced molar ratios of reactants and products in the combustion reaction.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-7a18867d1e2b87236d23c777b0ebbace", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Redox Chemistry", "content": "Combustion Reaction\tRedox Chemistry\nchemical transformation,electron transfer,oxidation-reduction\nThe combustion reaction is a classic example of redox chemistry, involving the oxidation of hydrogen and reduction of oxygen.The combustion reaction is a redox process where hydrogen is oxidized and oxygen is reduced.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-05d2e65a96f3a2fd3ba59bdd64c5ec79", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Hydrogen Fuel Cells", "content": "Combustion Reaction\tHydrogen Fuel Cells\nclean technology,sustainable energy\nHydrogen fuel cells leverage the combustion reaction to generate clean energy, with water as the only output.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-3d759c834312e77ba93c26f691dcb4be", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Law of Conservation of Mass", "content": "Combustion Reaction\tLaw of Conservation of Mass\natomic balance,chemical principle\nThe combustion reaction adheres to the law of conservation of mass, with atoms being rearranged but not created or destroyed.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-1aac1659db1620fef8a23846c6476668", "__created_at__": 1751960617, "src_id": "Exothermic Reaction", "tgt_id": "Thermodynamics", "content": "Exothermic Reaction\tThermodynamics\nenergy transfer,heat release\nThe hydrogen combustion reaction is a classic example of thermodynamics in action, releasing heat energy.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-279dcd448c5a605faafaf5f2e680827b", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Exothermic Reaction", "content": "Combustion Reaction\tExothermic Reaction\nchemical process,energy release\nThe combustion of hydrogen and oxygen is an exothermic reaction, releasing significant energy.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-2d2f8c9f45932f6b9b3537956150c947", "__created_at__": 1751960617, "src_id": "Combustion Reaction", "tgt_id": "Rocket Propulsion", "content": "Combustion Reaction\tRocket Propulsion\nenergy application,space technology\nRocket propulsion systems utilize the hydrogen-oxygen combustion reaction for thrust generation.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-f416ef7e097f7c6609c3c27d1b8e5b72", "__created_at__": 1751960617, "src_id": "Clean Energy Systems", "tgt_id": "Hydrogen Fuel Cells", "content": "Clean Energy Systems\tHydrogen Fuel Cells\nsustainability,zero-emission technology\nHydrogen fuel cells are a type of clean energy system that uses the hydrogen combustion reaction.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-19fc003f86fe0ab223780b80bb3cbdcb", "__created_at__": 1751960617, "src_id": "Iron Oxide", "tgt_id": "Nitric Acid", "content": "Iron Oxide\tNitric Acid\nchemical contrast,reaction types\nMentioned as part of other chemical reactions (acid-base) in contrast to the combustion reaction.", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-b322517117c951423584317273dc9707", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Hydrogen Gas (H₂)", "content": "Hydrogen Combustion Equation (equation)\tHydrogen Gas (H₂)\nbelongs_to,contained_in,part_of\nEntity Hydrogen Gas (H₂) belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-8d777ce01ab97f8dda26e5f8c4b60de2", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Oxygen Gas (O₂)", "content": "Hydrogen Combustion Equation (equation)\tOxygen Gas (O₂)\nbelongs_to,contained_in,part_of\nEntity Oxygen Gas (O₂) belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-166ca6f93a3e015e0363300db5fa4396", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Water (H₂O)", "content": "Hydrogen Combustion Equation (equation)\tWater (H₂O)\nbelongs_to,contained_in,part_of\nEntity Water (H₂O) belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-c8f68652d11568459d379fba00c063a2", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Stoichiometry", "content": "Hydrogen Combustion Equation (equation)\tStoichiometry\nbelongs_to,contained_in,part_of\nEntity Stoichiometry belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-658775a1a638150d2af3dcd7b0a03be5", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Redox Chemistry", "content": "Hydrogen Combustion Equation (equation)\tRedox Chemistry\nbelongs_to,contained_in,part_of\nEntity Redox Chemistry belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-9fad68d9714cd54ad78e9b89d26fe933", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Hydrogen Fuel Cells", "content": "Hydrogen Combustion Equation (equation)\tHydrogen Fuel Cells\nbelongs_to,contained_in,part_of\nEntity Hydrogen Fuel Cells belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-cdf1dbc9f0ecd48c890e4634e0e599d8", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Law of Conservation of Mass", "content": "Hydrogen Combustion Equation (equation)\tLaw of Conservation of Mass\nbelongs_to,contained_in,part_of\nEntity Law of Conservation of Mass belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-7195b33f7de7cded5c4fad7a8e1b4e0c", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Thermodynamics", "content": "Hydrogen Combustion Equation (equation)\tThermodynamics\nbelongs_to,contained_in,part_of\nEntity Thermodynamics belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-9311c94b02e434f876b0ac5dcb81aeea", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Rocket Propulsion", "content": "Hydrogen Combustion Equation (equation)\tRocket Propulsion\nbelongs_to,contained_in,part_of\nEntity Rocket Propulsion belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-d840d91cc07db20d2a843eef55605d10", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Iron Oxide", "content": "Hydrogen Combustion Equation (equation)\tIron Oxide\nbelongs_to,contained_in,part_of\nEntity Iron Oxide belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}, {"__id__": "rel-5d709852081f1d1346732fa0470f5aac", "__created_at__": 1751960617, "src_id": "Hydrogen Combustion Equation (equation)", "tgt_id": "Nitric Acid", "content": "Hydrogen Combustion Equation (equation)\tNitric Acid\nbelongs_to,contained_in,part_of\nEntity Nitric Acid belongs to Hydrogen Combustion Equation (equation)", "source_id": "chunk-160631ff58dfd24b89716cc26d0a4b6e", "file_path": "化学方程式_CHEMISTRY_1.docx"}], "matrix": "2EEmPRPejzw9L5G9BqHau2cJkrrXLye5bjtDvH+Gqz22khw98jF0vJBIFL1X+2C9kCQWPF+WHjviTxg8HL0+Orkpz7q0q9W8AiNhPOIrGjeaEfi8cae9PBfawzxNiO28dYo4PXF8hTxh3po8Te1uu/Auhj2EjSS9rVzgO/idbr3AZkW9aeHHvCMMtDxzxAE95qmTPLC2W71V1+K8g3slPa1c4DwrWym9ojxvux8Fu7zZZaS7qQJluiODtLx3nLe8GDgLPO9geL1eOFe73IkivE6IbT0vUKO8HuwBvbrETbx/mKq9u6sUvBwbhr1UxeO8epGxvKfM5zx/mCo9xxo8vX3ZrbyswWE9uk3NPHfANT3Gbb687eYJvVMYZjnzH3U9YpJSveapE71qase6XBTZPA1n0DwD0N68D/BPPM5FszxgVZu8we9EPMh4A7waIsA8AO1jPKa66DxSfWe8P2WOPCVCMb0GBty8Wbrdux6Oujsczz088x/1uyxbKTzZUyW9XSbYvEN6+zweBTu8ErqRuxYtxjzXHSi9axfFux4XOr1m7M28ry1cvXJCvDuEe6W8RhmFPEeiBL1CrQo9X+VUPRPeDz0NZ1A6H7I4PEEy/zuydVi6FMwQPGOk0TxN/+086ycNPCh4rjpVYGI9W2fbu6PX7bufS4C9RgcGPGFnGjvYuKa8JTAyu57iczwQDRS9AO1jvez0/bsfh4C8tPedOxadDL35XOs8LRomPS9QI73PV7I8sD9bPcnHuT1gbtS8ly79PLz6yr0/3I48cAy/vNcdKD0jlTM9wdaLO5SiD71uO8O7MeshPVVOY7z3AnA9kmwSvIGqqTwwx6O9oI9xvEIkCz0PAk+8582RO9llpLs3BBo9g1cnvbzWTDwqSao9AZphvWICmbyfa/M8yCw7vfnBbLxW++C8nrABvDF0oTyAM6k9y/22O2ygRDveSJ+8ltiMPH+GK70Godo8rMFhvVgxXjwi+rQ8eNI0vVioXrzFQoY7CVkdPNjKpbx+dCy96+J+O30+Lz2Vxg09NLydvbs0lLzSKK68aljIu16oHTu+Hsm6lKIPPGVKlTzciSI86ycNPHTdOjzaUyU8xuQ+vMXSPzwd8zu9dV+AOoPyJb1Q4mi9Hym5vJ4nAr0eFzo9dRO4PKfeZr3HCD27obPvvN2/n7wdfLs8mruHOwprnD1Us2Q9FBtHvc0PNj1+66w8reXfO7JRWjy3fFG8SMaCPa1uXz3FQga9ZGNOOxy2hLxjJpe8DteWPC6jJTuHTCG9w/oJPY1lGb2wG908QO4Nu89FM7zNDzY9mNt6u9KxLT0LqFO9GOxCvbgXUD3cNiA8E1zKvGpYyDwYOIs9Ho66vG0iCryZUnu6tSLWvHEevrsWtsU7uzSUPLrETbz13vE8kn6RPIbDoTzOzrK6YLocPB5qvDxrF8W6eW0zPO1diryfa3O8BipaO8t0N7zWgqk6wXjEuxWkxjx/D6s9IKC5PEbUdj0SQ5G7bP4LPULNfTy94RE8rMFhve1dCr1qasc44SuaPBGoEjvzuvO8me35vLL+1zxOiG08EZYTvTH9ID1qase72EEmviFfNr0+uJC73BKiPA5OF7t4STW8gmmmvMklgbzvYPi877N6vJAkFr0oiq28DMxRvZ2MAz3e0R49QO6NvBUtxrsViw09Y8hPPGQ4Fjtkr5Y7l7f8vDDHIz3uxXm72neju5JsEjzffpy6aJIRPRdjw7xE44e83BKivdReq7vU56q7BgZcvIPypTwHPFk95yAUvLbP0zwwx6M8M4agO/jBbD111oA942EXveueDTuj6ey84JAbPUqlcj1GGQU9vWoRvXp/sjztofs8EuVJvBCdzby1ItY8AZrhvB1qvDrA3cU8bP4LPQ95T7t5bTO8TO3uPDnDFr3gBxw8YMwbvedEEr2rOOK7ehqxO2V1zTzJEwI9DCqZvfYCcDxf5dQ8cGqGvJ019jxrF0W8jNyZPeCQm71EsPi8Zf5MvJHjkr0qrqu80Y2vu2wFRjydNXY8RysEu4NXpzwMzFE8dAG5vBCLzjyjcmw+8g12Pd2/nzykluq7Qq0KPX7rLL3SFi89UyrlPDifmLy489G8g1cnvYfVILxDjPo73uMdu7siFby9DEo9tCJWuhoJB7ye4vM8hbEivZaB/zxwg787hSgjPehokLxUs2S9SD2DvM/gMb1rjsW7Mf2gu2PIT7wI11c8JcswuqvB4TxrdQy8SIH0PLFj2TxqWMg8we/EvCcBLj00RR29Yz/QPJiXibtbVdw7YMybul2vV7zRezA8MGKivNYLKb294RE98+0CO78FELzDAUQ800wsO3OygrwvUKM8xn+9vB8pubyD8iW8t9qYvKZD6Drgfhw8OcMWPPJShDyN7pi7smNZvf5R5btFnnk9hbEivaUf6jz3Ju48t1jTPKhn5jxE44e8p95mPZ2egjwedQE9YnkZPfrl6jzvk4e8y/02u8ZUBbzK2bi81DotvBYUjTykcuw8Yd6aPOYgFLvHkbw8TO3uPNp3Iz2CRai8yce5PIHOJzwLH9Q7gCEqvXRmOrzPRbO7RAP7vLHa2bwx/aA8VCrluxRVELx/mCq88+0CvZiFij2cAwS9XpaeuwlOWDqvLdy7diW3PHYTODwm3S88/BvovBn+wTvAO408e7UvPVIYZr0Ea108ZFFPvNGNLz0bNL+8hHulPPrT67wNVdE8ESbNPBhcCb1BzX07n2vzuyQMNLzxQAU9/AnpPCtbKb1wccC8FPfIPCZmrz2vLVw7R291PcyGNjzwYHi7XSbYPPD7dr2S9ZE8eyywvKAYcbzwpYY7WR9fvNEWLzxN/+08XGdbO4fVoDwzhiA91fkpvHCDvzxrYw29Tf9tPH50rDvElQi9hY0kvHCVPr0LhFU8lCuPPMHvxDxfMR29iy8cPIy4mzt1Ezi6yAg9PcBUxj3vYPg8OCgYvZp2ebzjYZe8wyXCvHzHLj3draC84JAbO8bdBL1FOfg7MpgfvW0iCj3HGrw8F6+LOhh1wrzbmyE82tykuxcmDD0Gj9u71fmpvLfIGT3PV7K8Kq6rPHlbtD2x2tm8P7iQvATiXT22NFW9vPpKPTSqnjoRJk08Qq0Kunn2sjzxDXY8dHg5PJoReDxoGxG9keMSvXRmOr2fBnI7wLINPAyhmTu+DEq805+uvJUKf71VYOK8UL7qvCCgOb2Wgf88fVCuvBOAyLxX6eG87oEIPNKxLb2+MEg8vEaTu44SF717ozA9fWKtu87OsryswWG9xdK/u0pA8bsYwYq7VnJhvIdMobyWgX88LQgnPb+5x7udWfQ8IKC5O7zWzLuBvKi8UeLou0tScD0XP0U88YT2vBkQwTyV+H+9cac9O8kTgjvGfz07yAGDPKGzb7zQaTE9tIfXvEI2Cr3FQoY8LZGmu9wSorzEHog86/T9ugYqWr0K9Js7GP5BPa3lXzwtCCe9s5lWvWikkLyNd5g8SZNzO6Ux6bxgzJu6luoLPEAAjbtm9xK8yAg9vVH05zpZul28uAVRPHsIsrwcWD06I4M0vXCDvzx1ijg7MyGfO/OodLxnIss7ZDgWO82qND0ZdUI8vYNKvb1qETyAD6u8iYKeO51H9Ty1gB09Ivo0PGgbkbuukl09LqOlO7MQV7zbmyE8JlSwvF2LWbw4KBi9snXYvA08GLvXHai7ZplLu4fnH7xA7g29hZ+jO16onbzYpqe8n0uAPIhwnz0YOAs7n33yPHoIMr1D8Xs8OcOWvDXgG70ejrq8rOVfvR4FOzwWFA28M4agvH+YKj0yD6C7XkpWvREmzbyb3wU8EcHLu1iW3ztIxgK9gmkmPRmHwbwdfDu7bClEu7Nunj3HZoQ7/3Vju7A/W70DWd49CmucvGS20DyKLxy7E4BIvXu1rzwNPJi8lLQOvONPmDxGOXg8aKQQvQ7XFjzV+Sk8eggyvYqmHD29ahG9rVxgPb2VyToEa927mIUKPBFKS72y7Fi9EGAWvLo7zjzWlCi8lcaNup1H9TwT90i76XqPvPOodDyiPG+7t3zRvNWCKb1M2287nTV2vMHvxLdv+j+9DVXRu3sIMry9lUm9ECZNvdZwqjw2e5o8cQWFvR18u7vJPjo9EPuUPNrcJLx1E7i8F9rDu5gOCrwZEME872D4vUAyfzyjTu68FZLHO0B3jbzV+ak8uWMYvNReKzze0R66ZzTKvNwkIT2QSBS86fEPPRadjLz13vE8m5p3PPSIAb0mZi86B7PZPDcWmbvrJ428rfdevJ3QdLwuoyW8NEUdvADtYzydjIO8abaPvM68Mzz8pGe7LQinPAIjYbxYMd48ac9IPbfamDxf5VQ9alhIPNjKJb3AVEY89EPzPEDuDT2CVyc7hSijvBRnD7zIo7s8kCSWvCa5Mb1tTUK9OJ8YvNOxLbyk+2s8lLSOu6a66LzQabE8qyZjvAnQnTyaIIm9BgZcvZwjd7z2Z3G8t3xRvU6a7DwOxZe8aUZJvLWSHLwT00o88mSDvPPtgjy3URk8DnlPvMcaPL0ymB88czsCPWbsTTtt/os7d0m1vKPpbLoJ0J27vzDIvOhoEL1pPw89eFu0PBn3B72au4c8Ivq0vJmpCL1D8Xu8aUZJvMvrtzvILLu8XqidvBqZwLz+P+Y7Q3r7PHzHrrzz/wE9QzYKPCklrDse7AG849gXvfGW9TzBxAy80gSwu/Te8TteONe8v7nHPMXSvzztBn08BOJdPTHrIbtQWWk8s26ePDOGoLyOiZe8zrwzvIn5nruFKKO7nHoEva8tXLp/mKq8E27JvPZ58LwUbsm6egiyu9B7MDvhGZu8WTFePY13mLwuLCW9XZ3YPIWfI7zcNqC9ZCYXvMRJwDwh1ra7YouYPLOZ1rxrfEY8bKBEvevQf7yCaSY9S2RvuvH7djsdajy9m9+FPCvkqLwedQE9pJZquSA7uDtzVLu8WlVcvSQeMzzVcKq6HfM7PW7WQb3GVAU9WUNdvWgiy7waIsC8tj+aPKl55bocWD29kxmQvILgpjsLqNO8V+lhPIPypbtc8No8i0GbucFmxbxlXJQ9f4arO1XX4ru381G9UFlpPeErGj3KYjg94iuau8cIvTzx6Xc8yRMCPbAbXbtw8wU8DnnPu9wSIrwd2oI9a3xGuyDEt7srWyk9fMeuvCA7uDvAxIw7RAN7vGBu1Dt9UK48ts9TPFiW37sctgS9b0aIOmm2Dz2aMoi9IV82PfeLbzwSwcu883YCvTXgG71Q0Om8c8SBO/D79rvtGHw76fGPvJ598jtfQxw9qp3jvGVcFL1C3/y842EXPZS0jr01Vxw9h9WgPIvKmjxjG1I9hRakvMb2PT1wccA8V+lhvJzxhL0K+1U9qhTkOSUwMjvGbT6925uhu04j7Dxvz4c8/rbmu7uZFbznRBI8c926PMm1ujx3Nza8RysEO9rcJD1I5vW725shu1FMKT3GKVI9Mqk4vfoIwLzbF5e8BcccvTzZIDs1jhY9OOEKPUAIQrzCaMe803UjveypNjyjjku7HxsOPHK0mbzX20+8RxzBu8ZgXbzp+2M8KVV9PE75tDshLkY8E4GEvEo4qjxTluy8KHlQvDrdFb2bnh89F2x0vfNi1zzIaY68kC57vTahTr1ur927LQwBvKbKkrx10AK9uQoFvYRmFz02/Cw8crQZvabhvzyGYiK8sEgzvCw6W7wjbgK90ZBFO+vNCb1KOCq8ckaDPPcjYjyV4Yk95gNOPAB4HbxunCU6GaywvU8wQLyAboG99ke1u8u8AjyLpHs9CqiFvTwQrLv6CMC8hpmtPX8XGD2HrOU8+SyTvJ4oH735mqk8BVmGPXuNGL2N5Le8E3RePEQAWDp2Phk8wcOlvLQJvjxvHfQ8hFlxu5AAoboZPho84rBZPAfDJ70xzYu8URWeu/EcCTwEOSi81jauvPwbeLwHjJw7vPnpvAkaEb2VGJU60MfQu/VriLy4ykg5BXCzO2a/sbyGmS09gCpQu4YHRDyMbXC9gmoMvZ26CL2aMAk8cnBoO9rALT1gBhG8BDkoPeaobzzUv2Y8C7s9PHXD3LyIddq8S6bAvOaobzy0myc87bzuO+wXTTxgyxA9mII2Pf0kqTtfdCe7KLBbvUumwLw8EKy72i7EOojwFjvPIq+8ZlGbvF90p72JI608gTOBO1006zt9fP07S1gIPYeCAD0giaS83UotvJmV7jzC+jA9Zy1IvZleYzwTPVO9tSmcu5hribyhe5M8nl+qvPMrzDw97Ni8KicjPY4ElrozF0+8yS6OPWzKf7sgiaS8KrkMvTn0wrz5mqm8+FrtvPAPY7p5FtG6lxSgPKyHqLyy9gU663IrPSonI7337Na8Mqm4O2oSpjskM4K97fP5OnwyurwxzQs99Ad5PaaqtDw1xSE88/RAu1ayVb0Aryi9a1xpOyhCRb3j5+Q8XcZUPYBhW70Bzwa8LDpbvAI9HT3+kj8863IrvY4Elrv+RAc963IrPd0Tor33MIg81jYuPUEb+ryt9T48Ud6SvAEdPzyummA8lQtvOtsXlzwTKhs9fqkBvSCJpLyGma08LX4MvIBh27y/FVO93ApxvX1Fcry8+Wm91x8BPTXFITuMNuW8jG3wPM09Ubzo6Cu9U1/hPP0kKb1fBhE90H2NPVGDNL1jo8g8msz5PFYg7LsCwmA9F2z0OaYYSzwZrDA9ZuOEO9vgi7rXVgy9t7cQvM+0mDyyW2u8CRqRvD4jZD2AYdu8JEqvvPx/Bz0NbYW8+SyTPTWOFj1EyUy8WbeRvBk+Gr26eBs9yfeCvINGOb3WkQw9KoKBPUQkK70sOlu8krj6O+S5CryCoRe8S6ZAPCtHgTuqVBK78NjXPNxuADt3Axm9Ld/8u1b2hjxk2tM8PNmgPHJw6LuLbXC7s5unPFYg7Dy+Oaa89n5AOiMTJLzbFxc9maIUPdQDGD09Rzc91cwMvAxgXzyQkgq9WGCou8Xfjr3NdFy9t5M9vDXFobx1Hjs9o/zhvLUpHL0nCzo9o/xhPedDCr1ZBUo9lPi2O/JPH74sOlu9JEqvPIpauLzGpI68oantvNOsrjydVvm8BXCzvKfhv7sWkMe8VUS/vNIHDb2xJGC8OtBvPNPjOTzZUpc8Q7YUPaodhz31awi9Y6PIvE8M7bzrO6A9pqq0vFCnB723JSc82eSAOpJuN7zz9EC9ZNrTvAqohb3FTSW9SjiqOxPvmrxur108m54fPT61zbvNuA06aduaPISQfLtfdCc9BAIdPWlthLyBBv08r9HrvLzC3jzLKpk8H+SCPRz/pLyJfgu7f7w5Pf4A1jpLpsC8WJczvDtrCr2xtkm7wB4EPea1FT2r4ga78k8fPTZqwzv4kfi88/RAPQceBr0epEa8H+QCvU9D+Ltnm948bJP0uor/2by7zwQ9Ez3TOSwDUDz/buw8xd8OvStHAT0kgbq9UYM0vdrALT1EJKu94dQsOdWIW7wYbHS8F2x0tjh9+7scyJk7AzD3vFRoEr3DUZo8vMJePjn0QjzB8X88/Bv4u+L0ijw0IAC9iPAWvD/1CT3W/6K8xm0DvY/NCr39JKm8Zy1IPd/LezvDRPS89NDtPJT4NrzFTaU8AHgdPdALgrww++U7yUU7ug+zUzyqVJI8ESHqvGtc6bzHznO8EyobvA6gGzyH4/C897XLvHm78rqAz/E8eh8CvXeVgryLNuU7QfGUPNB9Db3NdFw9yNckO1K6P7z/N+G8VUQ/vHRCjju/FdO7TjDAPHRCDjxueFK9wuODPEkveTyi6Sm8i21wOx1tO7sD+Wu8p+E/PLObJ73gJlq8FbSaO/BTFDxBuom8lQvvubG2STx4ca88X3SnOnmE57xjbL27KvCXu4QvDL1rJV49HaTGPLUpnDxKAZ88hpmtvOySiT2NdiE9sEgzPBfHUryR3M08u88EvR2kxjsACge9LugtvGaIJjyELww9cnBoPL+D6TwwMnE8jolZPJ871zzxRu48ibWWvKn9KD0PfEg9cnBougHPBr0jCnM8wmjHu/BTFL3SPhi8vPnpO6k0NL2mGEu8kTesOmzKf7y/3kc9I6WNPO8ztjs7meQ7FUaEO5WdWD3+AFa86cRYu5sMNju7HT08wVUPPQu7PT2lang8FiIxPTXFobw9R7c9EwbIvK31PryXS6u8jgSWuxbH0jwBi1W9CtZfPW2cpbyg4Pg72+ALPY7A5DufBMy8qcYdu6rZ1Tywfz49fdfbPLz5aT28PRs84nlOumSMG7wWIrG9eZENPYVZcbzP4vK8jRtDvCfUrruZJ9i7gZhmvK31vrzYgHE8cLgOPXIC0jy1HPY8iv9ZvVbp4LzXVgy9sEizu+WVt7wdpMa7mww2u8kOsLvFuzs9D/eEvEG6CT0JMT49yfeCO2Ta0zyr4oY9/SQpPQu7PTs4TyE9KLBbOqByYrwLu726ukEQvcMNaTxwgYO9kxwKvCyocbwFg2s9eTokPEeuqjyWQnq89WsIPc+0GD2mk4c8ahKmvAXeybyTjhU9oumpvOyptrvS0AE+3Qrxu964Q7ydVnk9E6vpvC/7ZT0O16Y8yUW7PBOBhLuMNuU85LmKPH9OIz3oVkK8uAHUvBwt/7xZc+A8DGDfPCw627yRE9k7ldTjvLhv6rv3tUu9ppOHvFIo1rwKDWu9UvFKPLp4Gz375Ow8cIGDu6t+dz2t9T69nHpMO0dTzLqfzUC8P2OgPMkOsDvXH4G8bnhSveTwlTtMgu27IZxcvaYYS70sqPG8qI8SPVqqaz15kY08BJSGPFSfnbz5Wm28rhWdvJA3LDyaXuM8QGOgPSxeLjxLWAg9L41PvVEVHj215Wq8AzB3POS5CjzcCnG7eh8CPf3tnbzsTlg8l6YJPOixoDwGkBG9p+E/PGEZybwPs1O8EyqbvPQH+TxSo5I7ux09O114HL0K1l887Kk2PD6R+jwTPdO8ww3pvH8XmLx3zA09LwgMvbhcMrzh1Kw8Urq/vAGLVTzI16Q8cwuDvTUzuLzflPA8kRPZPIpDiznBw6W8KiejvPTQ7TymqjQ9JDMCPQpRnLzIDjC9MuBDvfP0wLftyZQ87U7YOgB4Hb1Zzj48cgLSPG8qmrhTluw8uq8muVFMKTtp25q8ckaDvE4wQL0PRT072xcXvdr3OL0kuEU9GgOavHuNGDyeX6q8XQqGvIr/WTxI5bU4W3wRPfMrzLtnm1695jrZOxHqXr3yhqq8oukpvaYFE7yUiqA7nehiuzQgAL3SPpi8XwYRvehWQr1Suj+8WuH2POdDCr3kuYo82I0XvfutYTrC+jC9yyFouWaIprset/48h9A4vak0tLxZzj69oOB4PcgOsLzflHA9OfRCPPNiV71ERIm7VvYGPccFfzxdNGs8ieyhPLjKyLwBVMq6uHyQvBG8hLxoCfW7PezYvFe7hj3aiSI9yA6wvOIrFj1kf/W8RZJBvIIPrrv5mqk8+gjAPF00a7u2txA9LrGiPL45prz6CEA9oukpO/x/B713zI29uDjfPDAycbwAeB091v+ivP834buGB0Q89hAqvcjXJL1KOKo8L8TaurJokTpVMQe4zkYCPcuP/ju8MPU8SsoTvTI7IrzHMgM7unibPEA/zb2FKxc9682JvOixoDyQACG8j82KPNsXF70WIrG79hCqvI3kN7yCagy8qhDhvKoQ4Twly329L8TaOsWEsDzlfgq9K8zEui7oLT05K068Lh85O9RRULyNdiG8i3qWvEjB4ryuCPc5krj6vM+0mLy8+ek69kc1PQ1tBbxwHXS8AlRKvLwGkD0XNWk8lMErPQMw9ztycGi7RADYO88irzw1xSE9msx5PKZP1rzYt3y8eHEvPXYeO7xI+G29J2YYvWDLkLxKAR+7bgq8ujUzuDyvo5E98721PDE7oryj/OE8+fWHvWAZSbxACEK8y7wCvEVubr0LFhw89kc1vfFG7rwJMb4719tPPJNKZLwlXec86FbCuneVAr20QMm8eN9FPIDzRD2jV8A8GpWDO6eGYb3bqQA9FpDHvHVVxjzkuYq8svaFu+ZxZDrNuI28RncfvBwtfzwcWoM74GaWvIhHgDyuFR09GeO7u7sdvbsOaRC9Urq/u1lzYL2H0Di9q6JKPFk8VbwyqTg8K0cBPF7GVLw9Z5U8r2wGuzmGrDu0CT68hgdEvL5wMT0gwK870gcNPWgJdT2/TN46IIkkvP3tnbyVZk29GKN/PKoQ4bzisFm7eDqkvGH1dbyLkUM9nLHXO+zgwbwjEyS8byoaPdQDGDtXu4Y6EerevFiXMz3bnFo8svYFveJ5zjyb1So9SwGfvayHqDuNG0M9TEviOnR5mTz2RzW9gGFbPNaRDL2/WQS8h7kLPTdG8DtY8pE7OfTCvONVezzZUhc73ROiOxqVgzwovYE8AsLgvK4Id72EkHy7LQwBvd6BuD1YlzO9vgIbPbwGkL02oU68bWUavbUc9rwHHga9ZogmvP0kKb0giSS94GYWvdiAcTwFcLO8KPQMPFayVTsaUVI8XOqnPLL2hTxFN2O8IeCNvMcyAz0h97o89JniPIw/FryZXmM9mSfYu5hrCT2AYds8/bYSPcl8xrxhvuq8cwuDPVQxh7x1VcY7sEgzPft21rxt0zC7R+U1PNQDmLyvoxG8HaTGPEHxlDwDMHc8W0UGvawZkroaUVI9kDcsvYDcFz0WCwS9gM/xu23TsLzW/yK9mIK2vEj47Tw82aC8M4VlO13937zSB428KoKBO31SGLut9b47FiKxPACvqLyJ7KG9S93LPPJPnzplSOo7raeGPLgBVL3UiFs9lZ1YPJgn2Lz3MIi9qcYdPSOljTuxtsk8CTE+vfD8KjxZc+C8Hrd+O9N1o7x+qQG77o6UvEPtHz1ur908nLFXPXC4DjwhFxk9trcQPS7orbyYSlE9bcXuPAMyY73Qace7c3eQOxHbEb2gTAy7Hc0YPeOqTj3Iyq28oJH3vKHlfb344/s87PyiO3HIwjxFSzo9cHQ8PGkee7yNpHa8PUl/vI1QcDuZURK83APbPB1q97sEE447FXfXOcy6+TxYjMG8xlCRPQ/QY7wELnY89Ec2vSdkWL14a0m8byQjPbSJJj2y5QY9qzNlvXAgtrwYzjE95gEpPU5JiL1Mmro82187PPTvQjuhSB88/hcUvT0AJ71F9zO8gGkXvf/edTzQueC875xVPYysULy3Kdm8pB0DvAY1t72Atty8F6ibvaqPxbwF5Z285qm1PLLaWDzqgoa9d8O8vKszZT26efI7WOQ0PV6Hu7xD8HK8P6RGvNwDWz2yu4O9ESD9vE/mZrsjHJk8oPQYPcsW2rzx7G678ZT7PAXlHb2SWgU90Q1nu74gZjvSGJU8MeScPMakF7sDlYQ8N7EmvU31Ab3RHAI8gmUqPYZZYzy/rYq8SPqHvGCDTr2OpPa8QpxsPcF7rTwyBkY7BGeUvFmIVL0KgeM875zVvDJeuTpzbGK98/OvPPNHNrwxV3g8KbjevIat6TzMEm08vdDMPGIn7jwKtpQ802guvEmTebs7XIe6DYS3OyN0DDzTaC49S0Y0vT1J/zwXKpI6rT4TvEP7oL23CgS86FFCuq+KP7uHVXY6JWwyvOv8Ir1pKSm9Ecz2O7M5Db3PFcE760V7vL+Dhz2LBEQ9OjKEvb3QTD1URII9TepTPVU157pj2ig9OwgBvpzxxDxpKam8R0PgPBLXJD2i8Ku8hAnKu2XWO7159AA93LPBvLK7gz2g5X27aNUiPKzfXr3Ex9k7WzuPu/BEYrxJopQ7iKn8vMF7LT2Qqze9yyEIOvdKij02qmW9Nf5ruzdZs7vmWRy8FtaLvFREgr2DtcO8M165OyBtyz1dM7U8CtXpPPCY6Lt5u+K7xRtgvPeT4jz8jly9n+nqPBpyUTwQLxi9bhn1vFThYDuyLt88GSK4vBHbEb0hGUU8Hb79PDCr/jynNP68QoEEPBnKRL2m4Pe7UO2nO+tJ6LsA5ja7rLycPMjKrTvAfxo7mdMIPdBpx7xtddW8nu1XNoWxVr1dN6K85IcMvf+RML39G4E7J7xLvPyZij0CitY8WDROvYRhvTgYzrG8gLJvO8jGwDyxMsy7l04+PXsPaT2MVF29ppDeu8nCUz3IxkA8d2+2O8F7rTt6HgQ9pcUPPQOG6by6hKA8BzFKva7iMruQV7E5HXkSPSNl8bxsddW690oKvcx1Dj3ZsG06SaIUvNNCGD1qfS89rNtxPAI2UL2fzoK9xsPsPAJrgTyT9+O8UuVNPKKcpT1oynS80ByCPLleirpiz/q8fmbDvDmtuTx8Fio9hbHWu7JjED0uC8y7KAxlvBgmpThdNyI946ZhPJ5B3jzGv388W48VumjZD7y+dGy8emPvO4FeaTxQ7ae8dPUZPYS1wz2yLt88zsG6PetJaLzSxA68iQgxPFy5mDzz86+93oySvUfvWTtCgYS7YrSSPOOHjLzgsqi8td0sPfxvB7xYjMG8lVIrPcd2p7yCESS+vdBMvXxqsDtV6CE88JjoO5uhqzs7TWw8FctdvKYZFrzGIqG8wXstvW3J27yX9sq8TR+FOgHiST3nUcK7CzQeu6vACT2y5Qa8R0Pgu9QUqLo8+eW85dsSPQo4i7vtpK+7opylPPH7CbwM2L0812sCvdNorryeRUu9ESD9vFplkjpOPlo8XYe7OwSC/DyYnte6dsepO7cp2TyW+je8ELGOPVq9hT39bwe9LlvlOxCDHr3070I9EisrPYgMnjxweCm9us14PJP3Y7ysbAO8/j2qvIyoYz3zSyO9EIMePJrucDxITo47oPQYvWnVIj2V+jc9BzHKvN44DDtb2G28a3lCOuCyqLwnvEs78UTiusx1Dj2WpjG9qOslvDtR2Ty2Lca7Ynt0PIYF3bwRg5496aXIvOCnery+IGa8L1tlvXXHKb3fjJK8kvfjO+GuuzxHm9O8rT4TPVmMQTzySyO8szkNPeT6Zz4wZpM8xfwKPDCr/rwKDog8rza5vIC2XDyu5h89Zda7vKAiCb1T5U29iwTEvLKRgLl6bp06UuVNPIFeaTytkhk9VWoYvIwLBT385s+8n5XkPBCDHj3tUCk82bsbvOOmYb0WgoU7GSI4vekuAD3OGa68KpWcvCnDDD0hbUs7udHluvJA9bqRT1c7ibSqPHsalzxyzwO9gVp8Pb14Wb2/HHk8rjqmuopcN73OGS69EDOFPE31gbyBWny7EMz2vKabDD18ajC83qvnvLKRgDx/ukk8IsgSvZGnyjt0d5C8opylvP/edbxbLPS8nPWxPM7BuryBP5Q6lqaxPIep/DtF80a9MgozO4DBCj1o2Q+9v8jyPLM5DT38OtY8dsM8Pb907LzTaK48qjfSPM3FpzygoBI9vdDMPCZsMr0xYiY8BbsavRIrq7woENK8td0sPNyzwTyp48s7eh6EPDituTp/DtA6/jJ8PbIq8rxHQ2A8wCuUPGl9L7xDU5Q85lWvPOvWjLwPCQI7o5RLvQOG6Txmfsg7NQ2HujFXeDzG+B29rNtxPQY1N71f11Q8yMZAupWqHrzEqAS8JMQlvR1PDzvzn6m8qOslvCTylTxjLq88Z3pbvbK7Azx9vra8r95FPTWq5TvrSeg8OqlMPJ3xRLqv3kU9tDUgve/0SDyNiY68y3WOPKyHazz4yBO8ZdLOvFy5mLw8+eU8tIkmPXEcybuT2I493qtnu28kIzyR+1A5J7xLvRAzBTsZykS8+uq8vPFA9Tu6hKA8cchCvOatIju21dK7lCwVPRV3VzvxT5C8ovCrPMu+5rx9Ej0808ChPJr5nrzFF3M7/hcUvYXmhzzNxac8gRURPYi4l7yMrNA8mk0lPItYSrvBey09WmWSPbXdLD08ofK89pdPvK82Ob3+7RC9WpMCPRF48Dt8Fio9HaMVvcvNgbyjlMu8c8DoPAQ5pDwrZyw7jjEbvTtNbD3n/bs8p+D3PKy8nDvYXOe8n+1XPRkiuLzm9vo5IWnePXTAaL2a+Z68AopWPdK1c70WKpI95q2iPC4LzDvoUcK8pjjrPHgT1jzVvDQ7sS5fPSZsMr3yS6O8NFZfvSTyFb3RYe2521+7u5Kj3bu6MBq9mk0lvfpCsLx6HgS9spEAvdFhbT1lKkI78pR7vBCHC73RcIg80UYFvU6SYDw0Wsy83ANbvb8ceT0K1ek7+5LJvEdD4LwlDX68nfHEu8PH2Tl4F0M8TnOLvBYf5DrMHRs9cXDPOkjr7Dw6qUy8Q30XvevxdLuy2ti8fBYqPdARVDwdoxW7LV/SO6iTMr2Vqp68MgozPWOGIrjHcjo8rMCJvKwUED0EZ5S8s9L+O4Rd0Luug368fBaqu4ys0DwA5ja851FCvZRH/bqz0v48laqePP5BF72aQne9mX+CvHIYXDxkgrW8PViaOyMcmbwFuxq83ANbvEPwcjxhNom9rY6sOxLXpLxHl2a8Zn5IvO1QKbuf6eq8VYltPIY6jjsIhdA8m5b9O5v5njuWpjE8Fxv3PMxxIbyRU0S9OwiBPAq2FL3tUKk77khPPasz5Tt6HgQ8bnwWvHRNDT0BjkM83LNBvPVDSTxY5LS8p4zxvN5iD72NsxG8l0pRvJCrtzw+UMC7Vjwou1/bwbx1FO+7p5efvOatIjx6SAc8an2vPM4ZrrwuB988p5efvO+c1Tv+Nmm8ym5Nvf+VnbyHAXC9NlJyPGPaKL2rM+U7fmJWPQMyY7wqXP68Cgobuvcgh7vUZMG8TxsYPHvCI7w6CAE8GnLRvDIKszo/qDO9pnGJPe6gwrxYODu88ZR7vZp7lT3aty68mUZkPXB4KT3TaK68YOKCPFQWkrwYJqW7hxALPff2Az2f6Wq88/MvO35i1rwyXjm90sSOO8geNDyULJU8cs8DPbGGUjo7TWy8td2svIRdUL3f4Jg717TaPHTAaDzcA9s79O/CPFqE57yaQne9Ynv0PF2HOzwQLxi8eg9pvNa4xzxRPcG7EiurvKdDGb3o+U48f7pJvJCnSr0zXrm8gEMBPW4oED1/l4e9yBpHvHln3Dxv0Jw70GnHu9FwCL13GzC8t9XSvI2zETsL0fy9FHtEPIsExLxvJKO8mdMIvGSCtTzQueC8ELGOO3Vo9bxvJCO9udwTPVngx7uhHpw8PAQUvGJ79LqemVG86qyJvCe8SzxaMGE8PYKdu1VqGLxiz3q8FnNqvGgDkzyimDi88dGGPN+n+rzLzQG9gMGKupVSK7r3P9w8cMwvPMBVFz1xdDw9CIXQPEKrhz3lTm47Yt6VvDFipjtN9QE9/j2qPJyhK7uX9ko7rbwcvUVLOjy1hbm8xRvgvBIrK72Vqp68pxmWu5z1sbz9GwG9LV/SOk0+2jxI+oc7tynZOzv5Zb0xDiC9JHCfvENPp7sNhDe9+OP7PE+O87yf6eq8KQh4vJIwAjx6Y2+8uyF/PA2Etzz9Nmm96iqTu32+Nj1MQkc8jgMrux2+fbytPhM7Kr+funAgtrt6SAe75/27vMSohLt0yxY9YCvbvDsIgT0S0ze9OQHAvHPA6LzRDWe7bhl1vOvx9Lu4Jey85IcMvXpj77wGjSo94LKovJn9izwjZfE83+AYPfeTYrxpKam8ttXSuzK2LLy5Xoo5vlmEO5L3Y7uUn/A8YjIcPeaptTyMqGM9sDLMvEdDYDtyxNU8ekgHvWUqwjybzxu95q2iu1ncWrmICDG9UUGuPNjpizvQueC8vlmEvF/bwbx7wqO8EXhwPH9DAbz+7ZA95FLbO75ZhLx2vPs8SPqHPPnje73QEdS7uiytPHpj7zrn/bu7KWDruiu7sjxycE+9aAMTvNIJejwEZ5S7QlMUPBXL3bzppcg8CzQevEOcbDwjcB+8sdrYO+6gwry6eXK86oKGu1RAlTscp4I95fZ6vVKRRz2vNjm9aFcZvRV3V7xf20E6fhK9O0PwcryRT1e7NeMDPVQWErzmraI8wCuUOzhZMz1mfki8rOqMOhwlDD3dV2E8Z1sGvGshT72zt5Y9GXorPeatIj2lkN66FcvdPDIKMzxOPlo8mZrqOx0hnzyrQoC790qKO9gIYT1+ZsO7Hx2yvMX8Cj38mQq8nZ0+vBfSHjpH79k7m/WxOyN0DD2AFRG7xW9mOxHXJLzx0Ya8JmwyPdljqL0Uz0o99j/cumUm1btK8i28uyhAvRAzhTzl9nq8lVIrvVqTgrvIHjS8xRfzu9Bpxzw+UMC8RE8nvWkpKb3hAsI88/OvvGhXGT1b2G28xRdzPOQvGT3XXOc6GM4xPBdvfTyAP5S8bhn1vDmtuTsfySs8dMsWvDQCWb3/3vW8JHAfPTIGRjv+lR07T+bmPDRW37ybQvc7p0MZPLOJJjuH4ho8e/ATPX66yTyimLg7P2UtPeSx1TxtTj+9DRgvvIn13rpLwTu9tlNaOzY7FT07f0k9B1+RvF5rCb2x7229G3DOPHzGFjwQJn48SUMzPSHdWTygrXu8HJCGvNhVx7xOvUw8H+rnu//RzTwHKay7pf8pPCF/CTsfVjI8kNdTvArQiz2ED3u8Y+7BO3C/Ob0Fym+9Xv8+vMUXRD1FyRk9TUjjPO6PW70F4Yi8tko7PYL0HT3mEJK9Hk2TPKj7OjtG21c8QNqWPPAN5LwqqSG98mwgvGUXGb1i3AM8bcOovIvoUD1Vn0G8jGbZvHaYD7xbA6697hpyvG35jb1G29e8/EqmvFWfwTxxqYw8CtCLvSxdj7xOvUw99H5ePM/sKj2il868/b8PvKcogbxD30Y9q/dLvZDX07zNbqK7BiCNPINyJj2oZwW9IlJDvKsA6zxBWB+9VJYiPZbP9bvQ/mi7BrTCPBehgzwRm2c7R1BBPAxOFL0haPC8L7dwPBf2ND1CzQg8c2aZvH0Fm7yBE2q9G3DOvEbbVz1Oxus8juThOwgyS7x3oS69xwEXPVG53byLioC7ifVevcC8djwVrhG85B2gPHox9bxDat08vOSMPHzGljxfdCg9YgTvPNrTT7z+XOS6EzAJu9WPmzqjoG07CpomPWPuQb1LVfE8rmjGuob5Tbx5yoW9VZ9BuzoKYDs4g7i7v7PXu84Ld7wb3Bi9w5AcvTKUNTw4Lge9c7tKPCVOVLyfRow9l01+PWo8gb2oj3A9E/qjPVElKD1q0LY7v6o4PRjgB77NbqI8wCjBvPfv2Dze7xg9hAbcvO7yBryzTiq9rX7zPEw/xLzEBYY9+Pj3uzYFMDtIWWC9gAEsPP98nLsd93W8TmibO3PE6bzNbiI9S8E7vTmVdrvJ9Ig9fnqEvTmV9rvkHSC7kjYQvCi2L7wqyG29F//TvENq3Ts7f8k9/siuPMMk0jy/Pm67Jm6MvC+YJLxqW808AkNIvXuHEj3bvaI8qHAkvVkZ27za0887lLSYPIEKy7wEYwC9W5djPKx11DypDfk8fMYWvU3qEjyPYmq9ongCvB/qZzuH4yA7CpqmukrugTwe2Kk8QE8AvM0C2DzhtcS8C7nyvAU/2bq9wGW9kl77vFcdyrxBjgS9F2sePJRIzrtfqo09y3uwPPriSr2aISQ7tOv+vMgBF7pZGds8hOcPvJM/Lz2Jakg9PJ+BvdnKsLsurlE9rl8nPNfXPjxAd+u6rpUMPaZ9Mj2qJBK9RIqVPCwwSb2EBtw7s1fJO1KaET15KNa8crKrvKzhHr1wvzk9OQHBuasAa7y40eI8PP1RPZ4m1DyjoG29gRNqvXPE6Ty0YGg8oIUQvQinNDxa+o49bkGxvAbK7zvgNzy7drfbvNXt67zP9ck8qARaPc1uojtDDA09O/Qyuwe9Ybx8JOc7qeUNPemXOTyzwxM9iZeOPFI3Zru06368rmhGvObRjTvweS48MRYtvCZX8zz2cdA993rvPOuKqz3gN7y87o9bvDMJHzx8JOc8eB+3vbxLfL1EVLC7APIFvNfXvjyhImW8zITPvJohJD3/0U288HmuvGrQNj2t6j28IUkkvmSZEL1Nqw48umaEPBMwCTxJ1+g79vxmPIbagbx0xGm86QyjvJRITr1G29e8VyZpvJB5g7uUKQI90/r5uHMwtLvQ/ug8DRgvvBgfDLwGSHg5CbDTvNKTCj2Rwaa7qHAkvJLKxTzm0Q28sdChPOiOmryXsKm8FI5ZvfdSBL0C1/07OQFBPNBqMzv95/o8oBAnvEj7DzzbUdg8o4GhvKimiT3AlIs9nR21vEbb1zpjWgy9/0Y3PRauET2Bf7Q8508WvUBPgDz/0c28ErKAuzEWrbx5KFY9NYcnvcoGRzxOaJs8PeckuxMwCb34+Pc8gvQdPebRjbwCrxI8se/tvDWQRrtJ12i8aEkPPBvcGLsOn1Y9BGMAveJgE7x7r/08RmbuuiFABTwQHd+8BaujPTqsj7zCUZi8Rn0HvN9kgr2GAm29gX+0vMPGATy5u7U8tGDovKOBIT0nQcY7vK4nvLDHAj29wGU+wyTSPCZXczzNbqK8TmibPCHd2bxDDI08wRIUPQI6qbxG29e8sdAhvecZsbw2O5W78e4XvGXhMzzQiX88tUEcPcQtcbwQiSk9ogOZvO+Y+jyR9ws92MERPOSx1bsf6me99OqoO4TnD73pl7k8zPCZvD3npLyANxE9LCeqO0lDMzqfL/O7sQYHPCYvCDzNAtg8xYMOvRMZcD3S6Du9GHQ9PENqXTt7G0i9vqEZvS8sWjvLezC8mE1+vBbtFb2hji89vjVPvHC/Ob0Xax48tt5wPMuxFb0sskA8xAWGvGJwubzIlUy84SEPvbEGBz1FyZm8/z2YuqU1Dz2PBJo7+uJKvTaZZTzz4Qk9/0Y3vf2/Dz0luh49SdfoPGZWHT0CQ8i8cT3CPBAd3zxl4bM8nVMaPURUsDy7pQi9TD9EPLy3Rr3DJNK8JldzvGlSLrtOMjY8lWiGO9tIuTyEBtw695EIPDGqYj3379i8bOJ0PFS17jyJYSm8A+6WPCrIbTwFNrq87Ag0OjOdVL1EVDA9ZGMrPEfk9rgvI7s8A7gxvaCtez1nXzy9kNfTPIvo0LrgN7y73y6dvIXwLr0QHV87vuCdvFONA7x/jMI8tOv+PG5BMb0F4Qg7Mz+EvBJ8Gz2VMqE7ljvAPBMZ8Dv6jZm79WgxPZyfLL3gQFs88gBWvAPuljwf6mc81eRMO0yrjryR4HK85qTHPENLET3BMeA7lyWTPfkPkbv06qg6oY6vuo5QLL00pnO6aVIuOibDvbwzndQ7z+yqPNjg3bt3NWS7OW0LvK78+zxnaNs7kEOevBP6ozw2BbC8IUkkPEs2pTxnaFu8h+OgObfIQ72kHnY8rVaIPHhVHD3X1z68Bkj4PPENZDwnzNy71s4fPSmggj2l/yk9HHntvJ8vc7yPzjS9USUovftg0zw1hyc8tMwyPSwnKr0bUYK8s1fJvARjAD0Z6aY82cowu+se4bxk92A9cFNvPLpmBD1sTj88yBPVvJq1WT3riqu8OQHBuXum3j3ksVW9K7LAvJ2oSz1yRmG9gbWZPRx5bTy8S/w7/9psvCDLGz2ldJM8bVdeO/zVPD25uzW9F2uevLg9Lb395/q82ODduxf2tLufBwi8AnAOvU4pF73Od8G82rQDvcaMrbw/m5I9gvQdOocZhrze2P+8qiQSPC5QAb18JOc7sWTXvNNmRL2vcWU9FAPDO7lGzLwyKOu86Zc5vA8UQLu2U9o7qXlDPFaJlLuAlWG71mJVPWTYFLzksdU8vx+ivIZuN70C13288mygvOwIND2BfzQ829zuuzv0MjsurlG9SkzSvN07Kz1mVp278HkuPDuIaLyG2gE9eB+3vGfUJTxIzkm86aDYvB3PirtG0rg85hCSvJY7QL0hSSS7jGbZPLg9rTw4Lge9fyB4vTfvgrxzu0q6AjqpvFOsTzvBpsm8rHVUvINyJrzuMQs8e4eSvffmuTs/Za28XAxNvN9kArwWgcu7QVgfvUnX6Lse4cg6CtCLPHDI2LlFXU87xsKSPJHBpjzVj5u8QOM1vVx4lzwfjBe97B7hO7+qOD3vcA88OyoYPIfjILxGRyI9DY0YPJu+eLw+XA480XPSvK/dr7yRwSa9mdmAvEs2pbtxqYw8vuAdvK3qPbzksdW8NKbzuwU2ury3yMM7umaEPJbP9Tw/Za28Pd4FPaKXTryaQPA7qu6su1KjML0otq+8qQ15vc4Ldzyekh69wLz2O/SHfT0Bxb+8y7GVvO8ExbtYm9K7usTUvGOC9ztQRHS6cGoIur7gHb0Z8sU6fhdZvRJ8mz2DaYe8DE4Uu8/1Sb0gy5s9ZReZvKj7Oj3AlAs9QmG+vO59HTzbSLm8/siuuyQ8Fj27pQg9USUovKO3hjvLD+a8USUovT3eBTy2U1o8xwGXPHc15DzdOyu84Ul6vFmk8bz0fl69/0Y3Ox3PCj03uZ08X3QoPPPhiTx4iwG9BT9ZveIqrjxD1ic891sjvIcZBry2U9o8Czf7uwLO3rwGIA29Z2hbPDgX7rtJQzO92QCWvDSm8zxYBx09pB52vddrdLz+yK48ZNgUPGTYFLwrHgu9OZV2vHum3rz7zB06MgAAvq5fJzwBxb+8GmevvPriyrtp5mM8DcycvMt7sDrAKMG8xowtvb8fIj31/Ga33c9gPG1gfbse2Cm5ZWxKvNxa97tlbEo8xwq2PGdoW7sBWXW8O39JvA6f1rvRFQI8gJVhvBCJqTx8xha9TD/EvDp2qrvfLp06KaACPUPWJzyPBBo9vhYDPeK+4zzItYQ9EP4SuzX8kLxtV167+Pj3PBKyAD1LVfG6cycVOra/JL0kPJY8ErKAvH2Z0LwWLBq9I8csvKEi5buBf7S8X6oNvVBE9LvTZsQ8kz8vPLHQITyybXa9keDyvGLcA73pl7m7it8xvelCCD2xBge9ForqvHGpjLx5s+w7phFovG/VZjySysU83th/vbdc+bqbKkM9XO0APLDHArz81Ty8uUZMO+JgkzpXkjO7fg46vHWuvLydsWq73XEQPcC89ryfRow9MRYtvSrfBr1ajsS89If9Ol7/PrwMThQ7DE4Uvc4L97yX5g69ihUXPXwkZ7zHQJs8h+MgPXA0Iz3TZkS8UbndvPvMHbzSfHG8tkq7uzIoazxgKBY7s4SPPJclEz3GwpI8YgRvPa9x5bzXQwm71cUAPTKLFr2BCss8gX80vRxaoTsh1Lq7fJAxvc4Ldzx5KFY8bneWvJH3i7z23Rq9UByJvHQ5UzzlJj+864GMPZUyoTt7SI68npIePR339TuNb3i94iouvDuIaDy5J4C7wZ0qvLBSGbvZXuY8/lxkvaV0k7u7Ob48AFDWuvB5LjpXHcq8IX8JPS6uUbxBjgQ8uzk+vDqsjzv7YNO8zGUDulr6Drs0Ej48cuiQPVcmab1i5SI9h3dWvR3PCr2hxJS8+lc0PB7YqTvm0Y28PXK7O6kN+Ty7pQi8O/SyPJS0GDuDciY9nJ8svL7gHTxk2BQ9oSJlPAZI+Ls1kEa9hGmHPW53Fj30IA49CDJLvENLkTzCOv87iIB1PIhYijwXa548W5fjO1cmaTxUtW49Gp2UOyuywLxdLAU9idYSPH0Fm7u8t8a719e+O3umXjzAlAs9F2ueO6l5Qzv+XGS8ZXVpvG1OPz1rRaC9z/VJPdZi1bvnT5a7QOM1vI/ONL17r/07vcBlvADyBb3V7eu7UxgavO8ExbvCr+g8EJLIvIA3Eb3eREq9QY4EPe8ERbxN6hI9pn2yvKv3Szw6dio9WRA8Ox1jwDwTGXA8YuUivB9WMr1a+g48rmjGOl8IXrxD30a9RmbuvFSWIj3cMow5l7lIO18IXjz088e8G1ECOuet5jrbSLk6NYcnOzsT/zyDcqY8WzkTOwE4CT2NCy09ZJQqvaEYTTxF2fK6LfrivEFkxbxBgKk9X8tQPQTgorsc6Qi9eb0uvTwUEjzumjq8r8LrPEq+MD11LB08/HwhvLwmD72HZ028sdW5u65gjLyB+zU9BOAivL/qDL0Lyn26GshIPH9hjrzcX4o9tWZLPLAkCjzyR7C8ufdcvYeDsbyAPBQ93QLIPB22nDxW6gu9aQDCvN0CSD2x1Tk81Iz4vMTr7zwJdhC9QWRFPE2ekjsOuFG92kw8vfso9TwE7hS98DRiPM4E/bxWcWU9E2XHvJ9iQb3utp68hqirvfUZIL1NkKC9bO4VveRJ5bzOBP07y6szO3TY8Lwk/Tm5H1BEPRf22DzyD+g83FGYvFTXvbxwf6e6ToeKPVTzIb2NNYO8VPOhOwqEAj1wR987YfqCvBkXmbuOyk48rzsSvW+IvTz8fCE8xQfUPBSrgTykOY08NjjqO/CRpLwN3cu8z1ipvNmbDLxwfyc5xSM4O7aek7ynvCy91MTAvC0WR71Vll8973XAPMxhPzy5cAO9Zko2vQT8hroNwee8NxNwvHihSr0bv7K7clotvKb9CjyD8h+8vDQBPcJRSDyC1js9y07xPCfdm7zPM6+8OzmMutAXSzus8Hs6VnHluwZ6yjsdtpy87n5WPUEsfbzBroq8kzZmvTyba7yY/z+8F+1CvX5FqrzT6To79RkgvdQhg72ckFE8+tQHvZvtEzwOuFG8MmZ6PdbJnDzNKXe9Meg2PX/oZz2vSYQ9f2GOO4+J8Dzwn5a9YIpyPeZcM731GaC8juayPDrl3zvQM687Wzo/vNsLXj2O5rK8xluAPTpehjuXQJ48lS1Qvae8rLvOixW9ZUo2O/KWALy6S4m8uVSfPHJaLb2PifC8FzyTPVL8N73Brgq9U7tZPFEhMjxU86G822ggvaegSLxMF/o7BnrKPYo5vTypVtQ8IA9mPAITDzy3eRm9v5u8PLd5Gb3byv88YrkkPJbscb1IJAm9WgJ3O8nQLTwZCSe9zn0jvecb1TsSpiU9jQstPdd6TL1GLR88C0OkvHGbizzBoJi7jSeRvMOXAjwa5Ky7HnW+u9TEQLpNkKA8Tk/CvDlCorydhzu8uVQfvUth7ro0uia93EMmvSB6mrtOaya9P1F3Pcm0yTzyRzC90PtmvDRd5LuylFs8NF3kPJn2Kbzbyn894ueFPRftQr1incA6TmsmPUBt2zwj4VU8ZJQqPIpVIT2nvCw9jgIXvXnZEj0RLf+8YrkkvVEFzjxJDQE9mBskvbYlbTxviL282ZsMPU2ekjw3E/C8C0OkPf0f3zxgZXg8attHvaLzUr32NYQ9y8eXPGM3aLyB+zU8zn2jPU95mLwSpqU8zKIdO9xDJr0LQ6S7JhCIPGNcYj2d1gu8a5rpPHYjBz3KTnE8XjaFvCJxhDzUqFw7uDi7OsA++jxdTQ07gMNtO90erLvPWCk9nrGRPMbG9bzESDI8GcjIPeJSezz8fKE9ukuJvG+kIbw+dvE70U+TPDCwbr12jny9/xbJvHBjQ7zc5uO75auDuwKM9ryM70g9UEYsPNmbDL1wf6c86UoHvMcaIr6aIIC9AyGBPDcv1Ds0yBg8OEu4PIVwY7uKVSG9qnI4PI7mMr3At6C8mCkWvf76ZLyJAXU7JDWCPOvISrwJMFa847QZPeyj0LrUIQO8HOmIPA3dy7x0EDk9I8XxvKEYzTuXThA8CUy6PDLDPD0lvNu8Njjqu1TzIb1SxG+8jQstO5VJNDr+ZZk7Pu8XPdXgpLzKc2s7Ocl7PPiOTbyXTpA9QpyNPS0WR71S/Lc8BnpKvUtYWDygPUc9e3M6Pe2/NL0Geko8Sr6wO0Ij57yevwO9IgZQPVepLb1NnpI8RhE7PUQa0TzjisM7jSeRPEM/yzx4hea88kewPH5FKrwBsXC6SeMqPNFdhTzlQM+7CWgePW5sWb2z2pU847QZPQqEAjtkvoC7PdOzvMrHlz3Mhrm89f27vJzIGTyW7HG9RIUFvdHy0DxaHts88DTiPAvm4bsx6DY8Z12EvDrl37xVzic94ZNZPvqhmzu/f9i7WokPvbKU2zzPPMW8eP6MO4k5PT0ayMi88DRivIbSAb0Qy5+8+6+NPPx8oTwznsI8ojSxPO/EEDwiIrS89CI2PdQTEb2hGM07foYIPL/qDD25cIO8liQ6vfIrzDwCEw+99nt/PNweLDpGO5G8x71fPBRcMTvlqwM7+XLpOXp8ULzcQ6Y86+SuO55G3byy8R099jUEvZNSyjwXLiE7rx+uu9IOtbw2OOq8NbGQvEKOm7veOhC9byt7PI2uarvxbKq7Pe8XPKpyOLvkSWW9M4LeO5VlGL26LyW9ayECu3wW+Lxp5N08vK1ovBrkLLyda9c8b4i9Org4O71CnA08htIBPYhCU739A3s8zzMvPWzSMTyxuVU9VnHlvBY3Nz2eox89DRUUPXbrPjwpTe088wbSvAEqF7vOBP2882OUvF4Mr7zo2na8PNzJPPPq7ToXEj090wUfPatNvjyTEWw9fwRMvfMGUjro9to8OuVfOlaNyTwdPfY8WSfxO4swJ7x48Bq9VtyZPJ1P87ryD2g82RR0PIAgML1GSYM9ErQXvUGAKTzOIOE8CTBWvIvT5DuQ64695EBPPIzT5Ly7GJ28TZAgPK9JhLwwzFK9RkmDPDOC3rxs0jE966zmO+nR4Dy6PZc7Xq/sPMgRDD2oe0695lyzOzhLODzlqwM8GEoFPBK0F70HOey89jUEvc90jTy70uI7Fy6hu3EiZT2UipI89EyMPDTImDwhY5K9Uvw3u4o5vbwHVVC9f+hnu+LnBTvBoJi7cSJlO7J497zFB9Q8/R/fPN46EDtDW688Vc4nvYa2nTzhd/U895fjvCfrDbzR8lC9F/bYPAaWLj0lvNs8FFwxvUqizDxt/Ie7dUiBPDOCXj23XTU9DB4qPfIrTL3utp6715YwvHydEL0FXuY8cGNDuSNMij1hZfi8kltgPLasBbxzGc88AgWdPNbXDjw3mgi8fU5APX1qpDy+wLY8/ETZvJGhmrzX5YA9CgvcvBbadDvQF8s9wm0svQoL3LzV4CQ90jgLvc2+gT0rA3k8juayO2zuFb15vS48ZgnYPPX9uzwd0gA9elfWvMj1p7zRT5O9edkSvT528btfEYs5ar9jPDiDgL1jQH69yY9PvLPoB724APO8H1DEPVhoT7xApSO9f+hnvdSoXDxf57S82LIUPKA9x7tTn3W9jgKXPcDThDzZFPS7UuDTvCT9Obx8jx67nKw1uoK61zsVG1M6TDx0POJSez07OQw8SKviPDjudbxTn3W9WomPO9hVUjwgD2Y8Jdg/PXRfCbxeDC87jEyLvQlMOrxVll89YseWPDLDvDkrYLu89xAKPb+3IDyEsUE8/lcnPCAP5rt1Oo88diMHO36GiLyLMCe94sshu+LZEz2ffqW7fg3ivAibCr0bh2q73EMmPJYkuruWCNa7ydCtvK8frjuUEWy4NjhqO5oggL3OBH28hNuXvALpODvnG1W9LB/dPM59I73g/o08pOo8PNHy0DzOBH27xk0OPDW/Aj3YwAY973XAu4Kec72u5+U8KKovuyZ7/btwY0M9axOQPJ9+pbvFB1Q78wZSPbNT/TtKosy8q6oAO58Ff7xd1Ga8gfs1vcZNDr3TBZ+8S+iGuHGbi7wSgSu8B7ISvR+flLxKoky9xxoiPMGSpju6LyU83CdCugoL3Dzjpqe8fWqkPPCRJL2sDGC9TmumPIMOBL1ENrU8VHp7vKJQlbwXPBM9DiMGvdzmY70qr4s7e8IKvM8zL72PZHa8HGJwvO5+1jyHZ028aqP/O2KBXL2VSTQ9O8Dlu2hBoLzPPMW9zSl3PdIONbwhRy498JEkPSM+mLz39KU8byv7vG+IPTxkohw9AgUdPHXP2jl7woo8Lk4PvdxDprxhwjo8I0wKu3MZzzxoJTw9oD3HONt2EryFjMe7GNFevfjrD7zDl4I847QZPBQk6TzSDjU7RVKZvNa7Kr0E4CI9bZHTPGK5pLx/BMy8bLZNPaBZKzyKcYW8H1DEvJ1P87rufla8mfYpvcBaXjy4HNc8wD76PJ9iQb3dHiw8V6mtPEiG6DtoQaA8DB4qvThnHLvOfSO8aeTdOxEt/73byv87FFyxvFJLiLwxZnq8t0FRPJ1Pc7xR/Dc8DpztvFTXPb1AiT+6MQSbu8b+vTzX1468/YoTPEnjKjv8fKG8v39YPP07wzyoe8673yMIPClpUbtbVqM8XHIHvG2tN7yHgzE8SI9+vPIP6LwMHio8ajgKPITblzzMYT+8xygUPem1fD25YhE8FEDNPM88xToJTLq8fJ2Qu0Bt2zwGeko9AA6zu90CSLzTzda8fWokPfRMDLyRP/y8wm0svcDTBL0dtpy54tmTPOPCi7x98X28TayEO/5Xp7xNF/o8T4cKvS/xTL3DLM68uDg7u/jPq7zGxnU883EGvHqYNL0ncmc8zn0jvG11b7yw+rM8P23buzDMUr198X2819cOPZDdnDzpF5s6eb2uu54q+bvEcog81Wd+PNeWMLz4s8e8b4g9vAfABD2shQa9G4dqPI7KTr3V4KS8IA/mvNPpujvEZJa8AyGBvPRMDL12FRW9ar/jvMqPzzyrjhy9NlTOPHMZzzw1sZA8cnaRuIMAEryF6Yk6zosVvU10vDwdxA48HdKAu02QoDwgiAw9SeMqPI6lVD25VJ+8BnrKuypE17s3jBa9+XJpPKFnHb2hGE08+M+rPCwf3byDeXk8ziBhOnaO/LwN+S88Dd3LvKtNvrwy36A88YiOOoXpCT126768ufdcvKOydDxrE5A72kw8vTeaCL1rIQI9pe+YPATgojt09FS72+95PNSo3LyDld28uBzXPM9YKb3zBtK7Aoz2vBUb0zoqKPO86PZaPOD+DTwBsXC8nYc7vP8WSTzWn0a8fg1iO+rtRD32e/+80BfLO3XPWr1lmYa9ZJQqvLG51Tz/Fsk8yPUnvdmNmrxCWy+6kbiivOO0mbqPZHa6+LNHPDY4arxer2y8YIryPPYnkjyjD7e7/TvDvJ+Mlz0oqq88t4cLPWPViLz7KHU9N5oIPeWrAz2Xx3e8I+FVPCt8H7xhZfg7bLZNPaI0sTushYa8zn0jPTiDALxvpKG7SqJMO0qizLwKJ0C8n34lPc59I7wpaVE8X6ZWvK4Dyrx/6Oc8jO9Ivc1FWz2Rd0S8v+oMvEYtn7yDDoS9fI+ePK4Dyry2gi+9uBzXuqegyLwy36C8Ri2fPDkK2rxp5F28n34lvdd6zDw5yXu8rmCMPbnb+Lv39CU9tIvFPHbrPryiNDE8KcaTvPuFN7zZFHS9PdOzOpdOkDxieEY8s7C/vLytaLwjPhg9aQDCOwBPkTv9O0M91CGDOsOJkDyZ9ik8RBpRuxJJYzxENjU8ar9jPLHVubsrs+A89r0yPdwq47yT07W6yIh7vA9GEL0LW5K8SEGoPROWUT3gy4k6BXUcvSx5A71of406KNjcu7gHizz/jiY9EpZRPOVWq7ut6zy9SebTvPQdjzudZEG8JVgtPR6iJby0RvC8NYTUOVvTFbwmOLm7limCPeC7DzzFzeu6IELJvMWzgr0HJbq8+pg2PTBkgTwaTFk8iof5vHAlm7zFKEA9eXtGPMDy57w0ZOA8uXxIvZhO3TzG6Fc8e5Yyvfa9Mr3+7gI9rGsNvWeZ9jtqL6u80nljPVMSnLy5fEi9F6y1vOlRo72NYv28TneAvbIRG71pTx+96NbaO7FrbDu0LAe9z1QIPGZUJz3RFCA9jb3RPPLirrwZ15u8SIEQvMyDcz18+3W8PZUwvBUcjDqYLuk8bO/CO3f7lrxq1Na7wpiWPKhwFb3PZAI9K14Xu8VItDwrDrU8wciEPNVUZzxs78K8YsN6vNavu7wKAL66zGmKO1qIO7smnXy8F6w1vWt6Bb1jHk+9Ag9WPSHi7DzurFY84xvLvMHIBL1LXBQ8zp7fvKQ6vbwzxDy9qTAtvJcz8bs4X1g8kphVvF7o9jwjeCE8+PgSPe7sPj1Epoy7mYm9vE2hYzsM4Ek6fcEYOzyVsLylGkk75rvuvIExTj2gf628GqetvESGGL3LeQS80zn7u2E+Q70fYr28N+qau49jAL2QfWm9OvWMPPWixrzgxX48Z9levHJqaj3CqBA9cmpqvT81VD2LXZY9F3FVPZYpgjwFr/k86VGjvZGYVT3CTTy9F6y1vLpcVDyNWI670FSIOePGAbxTd189ufeQvKe6bD1LjAI7yz4kPK2wXL0tWY+6qFAhvWn0SrrQmde7fdGSvG2vWjxgfiu9JaMHvbnnlj31Yl69gMwKvQNqqjyEZ6Y8yIh7unl7xrx+cTa88yf+OxpszT1wJZs84XunPKeQiTyqe4e767HevILxZTwf3QW9U/InPV9jvzy4F4W99YLSvOp8CTyvZoU6bSojva82F70pEz08U/InPXmbOj2QXXW9SgFAPOPg6ry6t6g8vbIgvD3girvXb1M8aw83vH+RKjzpETu8QhBYPKUaybx+Nta8wrgKvCwuKb39syK89EfyvDYaCb1DsPs6rkYRvQG6jD2zAaE841szvQpgGrwJQKa8ZlSnO4aCEj1LwVe8XghrPV4Iaz26PGC9aPRKO5zEHT08Gug8rLDcPDrVmDkbpy09t2FcPRTRMb2AzAo9z1QIvfQdD70YFwQ94sD2PNFZ77zc8AW87XcBvVTSMz0WDJI8EjEOvZBDjD0EtQQ9VzLvPAnFXb0U0TG9tDyBPbgHizzpUaO8oroNPOebej0zxLy8tgwTPN/F/jqDlxS9KDMxvOpsjzzqXJU9AdT1OzWE1Dz/jiY9IQJhPLdB6Lttz847rZBou9+ALzxJpus80fSrOwtrjLtvNRW4USIWPS8JLTyfv5W8EfatOi7OzD3MSZY8v82MPRU29bxLjIK8B0WuO/RH8jziwHa9CCU6vYdiHr0taYm8bQqvu9ePx7ry4i692oo/PRMhFDwh4uy8xujXPPICI7r8syK+6TEvvasQuTynoIM87QwzPDPEvDwoU6W7Udc7vdiqszsO20G9eSDyvAWVEL21ocQ70nnjOhf8F7zngRG7XKOnvA5WCj0sLqm7FHZdvMWTjjyYyaW83KUrPQeq8bzG6Fe7aJ+BPDx1vDzvBys9kEMMvM05HLwsLim9mC7puyaDEzwVHAy7YcmFOwSlCj1QfOe8DKBhO3MQmTzbSte86oyDPRn3jz34+BK9Q7B7POM7P73+2P07A5oYPQJPPj2a5BG9nQltPCmOBbx3gM68kEMMvWNZLz2dhDW9I5iVPI3dRT1iw3o8129TPBiMwTuoUKE8sea0vPNn5jx1Re68o//cuxfMqTz1gtI8VFfru372bT104Cq9ktO1PD3QED37/Xk8MMlEvC4JrbwFhZY9eLuuvAegAr2xa2w8ky6KvSYYRb08lbA8a7TiPCP92DwMewa8eLuuPB6CsbzT1Le8W9MVPQnlUT4UPIA8iz0iOfidvrwVLAY9jP25vNavOzwFdRw928WfvMdzGrygX7m8QPVrvEZmJDxR17s7ySO4PLv89zy4vDA8y3kEvdtKVz3IqO+8PfAEPNwK7zvCqBA9mC5pvGzPTr3G6Nc8naSpvJJ4YTvWCpA7F+ydvEtMmjyXbtE7deCqOtMfErwpmPS7iz0iPEhhHDzTOfu8GecVPf2Trrxc05U82oo/PKegA7yeJFm8Ij1Bvcs+JLxT8qe8MDQTvaDaAT30LYm7t5y8vO53gTsAb7K7jKJlvXZgWjz70xa9VLI/vUHVd7sqTh29gFFCPQpgGryAEVq8Vs0rPa+LYLy3vDC9oR/RPOIA3zyd74O9PzXUPCQdTT3QmVc8WsgjPX1Wyrwt7kA9A5oYPYdiHj3gxX484SDTPN9gO7xIQai6A2oqvQYKzrxeQ8u7ZP7avCXdZDwpbpG6mC5pPcRoKD3jpg098odaPdqKP70c0pM76mwPPQsAPrtOvM88kTOSPE78Nzu7lzS8makxvZXuIT2xBim6XgjrOzVE7DxUkku9zHmEPc9EDr3CTbw8+/35PKWFl7tKhne7TleMvdavOzxQfOe8OlpQvIaCkjxb4w+88SIXvei25jstKaG8vt0GPT5VyLniAN88kEOMO2Q5uzwfYr08XShfvUDV9zuxQYk8S+FLPLgHCzyhH9G8/bOivBUsBr00ZGA8pvpUu3mbOjz++HE9oaqTPA3A1Tu3QWg8B8plvbzyCLy04Sy8kXhhvZAzkrupYBs8La5YO4sdrrvzPQO9HaKlPBIhFD3ZL2s6c6XKPHMAH73kOz88bzUVPQWVkLyKTRy8Q7aGvWsPtzzqXBU93CrjPFcYBr2UOPk8GAeKuwbqWTzE7V891xT/PFrIIz2P2D29oD9FvFetN7yffy29Q0u4PPPCOjoPJpw9W+MPvbtXTDxhXje8CJAIPUUL0DxvysY6LkkVPEZGMD2NvVE86tHSPNb6lbzTD5i8c1CBPRiMwbynkIk7uHzIPdMvDL1mlA+98uIuPfDHwrwf3YU9JRjFO72SrDsbh7m8FRyMPL8yUDx1KwU93kXPPGlfmbw8taS8ScZfvWW+8rzsTJu8OuWSO8XNazz3Ina9xuhXvQbqWbzpUSO9+H1KvJZT5T3705a8LC4pvXx2Pr0JQCY8MESNvINMujuQYwC8fjZWvTYqgz2GrHU8dgsRvEyh47zIA0S7tDyBOtcaijuDxwI5UbdHPKt1/DtON5g9La5Yu18j1zxk3ua8QbuOvRVWabwS1rk8h2KePHi7Lj3E7V+839sDuMZjoL0zP4W8gyxGPQYKTjwaTNm69aJGvA9mBD3egK87jWJ9PETGgDqvi+C8lP6bPIRnpjnzZ+a8RWYkvdvFHzq0ZuQ85dviuypOnbyqewe9VnJXu7zyCLw4P+S53GXDu1ltz7zUlE+50y+MO50J7boLhXW9FdExvJtJ1bwLILI7hic+vcgDxDxZTVu9xIgcvC/puDvFs4I8Jjg5vO8HqzsSMQ499igBPVIykLyj/1y9ezvePBTRsbl9dj68SJEKPZvUlzzZL+u6aU+fuoPRcT0Eaqo6ZN7mvLk84Ls6/3u8Nn9MuxpMWb2wBim9KY4FvMgDxLvAMtC8VS2IvJAzEr29kqy8b29yvWS0AzwHJTo8rFuTPFdS4ztElhI9zp5fvKWVkTzYqrO8pDo9vSa9cDzrTBu9zTmcPL2yILzAjaS8Dvs1PUcGSL3vByu9jViOulgIDLzLHjC9L+m4vCYYRbtA24I8JB3NvFfNKzzVKoS9DcBVPXkAfrstrti7sCadvT3whD3v57a8J9jcPPwY5jxzAJ+8jWJ9PNXvI71qLys8duscPRF75TuOGKY7iSK2PKWVEb1aDXO8X+6BPDJp6LqOGKY8dOAqPWt6Bbyhmhm8hqx1vK5wdL0W/Je8zFmQPHUbizzMSRY9hUcyu1Pyp7xrdPq88GzuPFxoxzyr8MS8rmaFvN1lQz3Kfow7qxC5vL2SrLwgIlW6X64ZvGh/Db11oMI8hgfKPNjqGz1TEhy9nYQ1PIWygDyltYU87werPIoCQr3R9Cu7u1dMvCSYlTtIi/+9clCBO6ZVqbxIYZy8YV43vJG4yToVLAa8KY4FPPWixrx3gE698cdCO0HLiDu7V0w8tGZkvP8z0jtAu446MMnEu1lNWzwPJhw9sWvsu4aCkjoDSra714/HPBvHobxuKiO8YANjPLMBobxof428EBaiO3sBgTzhe6c88mdmvBzSEz2mVSk9f8wKPAZFrjy7HOy741uzvImnbbzFKMA8CouAPfm4qruxQYm8UpfTvAJPPj2ZyaU6gvHlvB+9Eb0PNpa8w+3fOYfn1TwJQKa8VJLLvDkfcLscDHG8mPkTPbIRG73Vzy+9H2I9vVtox7tQ17u8uTxgPNkFiLwpEz29o3olPEQrRLw+wJa8zvmzPAHU9btD0G+9daBCvOkxLz1keaM8tRyNu0eBkDuAvBC8A0q2PF/OjTxfI9e8Lq7YvKY1Nbz2vbI8TlcMvfEykTy+UkS9jVgOva4Lsbz8WE48ZlQnvDr/e7vR9Cu9hqz1vBIxDr3Lo+c7u/IIvZWTzTy/zQw9Ve2fPKwrJbnUlE+8PBroO0s8IL1mVKc8vFfMPA07HjzqlvI7KX4LPVAXJDzMg3M9nQntvOPGgbyoUCG8WsgjvY44GjydhDW9p7rsPE2hYzzVKgS9Jd1kPNFZbzxwJZu8RuvbOxnnFb0t7sC8QFDAPIx4Arykv/Q8Jr3wvPBsbrzfJds8fPv1uzLkML274g69zb7TPC3uQDzLw9u6eNsiu0BwtDwKYBq9rLDcvAKKHj2ffy295YaZvKea+Lx5mzo85LYHvVCcWzsoM7E7EiGUvLsCg7zyh9o8B6rxuyY4OTyfRE09UHznvFwo37uaDnW9AcqGvTr1jLwBugw9sQapPGZUJ726tyi81/oVuxkHirxT8qc7TMHXu53fiTm74o68gYyiu+8nHz01D5c8SuHLukhBqLwc7Hw9sqZMPBzs/Dyrdfy8/1NGPVxoxzyyUQM9V80ru99gOzw94Io7BmWiPEPQbz2hmpk8G/KHvHAlGz1R1zs88mfmO9zwBby2/Ji81VTnu0psDj2KjQQ6tYFQPFj4kbw6mri8bM/OPOp8Cb25fEg9HNKTvNrFH7wb7Hy8fPt1vZykKTzeRc+8tCwHvQsgsrs3f8y86lyVvCEi1TyNgvG8nyRZu8kDRL1iqRE9/46mO4l9ij05FYG88gIjPWAD4zzjwPa75xbDPIGcnLzByAS8aV+Zvf7uAjzRWe87c1ABPJ2EtbxoNDO8pZURPZYpgrqK4k08E7bFPCajBzyhygc86LbmO6E/xbsSERo8envGOxzyBzyReGG8E8jBO4Y8xDzVuxq9PUyRvFSarryyyYa9grBjPPiwxjyZOBE99qrrvFzyBL03fVi9WazpPCH47Txab2y7cj3fPP8FWjw7TGa8H2y4vE5FG7nOafQ6uyeNu2ofmTyXO/46LdkMPEXnFL3hJaw52Ae7vHgMGD2P2t+89WGOPILti7x+pFi96fqUvCR+njxFJyq8S3w9POp9grwi9YC825PwPBgXpTypa4C9kqO9PDV3fbxc9fE7pd8fu1DLIL2C7Qu9PUwRvcL/Db3JlLY7O4ljvCCvkD11ww87kubquwfhcjwDT429/LxRvA553r21UiS95TdnvFVdMT1o3EC9odOUvGFE1bxn1pA9Fxf6PIW8bjzwVdi6/LxRvdCszDrjqBk9n805vAqq0LxhxCq8wfxKO2UT4zu6J2K9XTjKvIY8RD1T1BO9PI++PDkD3jt94dW6uF4vu0ctBTvemcs7YkeYPNjEDb3sSc28SXYNPF64nzzGjlu7Z5novDV0EL1F5xS9280AvP08pzzjK4e8bSukvK13izym5c+7b64RPeNoBL1Gqpe8jtQvvV31HD3xlZg8kyOTPSR+nrzERVM9ReeUPO0M0Dwu3zw97Ml3u5WvyLzHDrG8vPA/vIY8RDuVaYO8v7nyPA72m7zTdSq8PlLBu4S2vrzqQ3K9tZVRPPNh47uvg+u8crocvXH0Ab1EZCe8sQlxvcfOmzwiNZa83BNGvBPIwTuLi6c90bJ8PGQNM71de/c8uy09O+vDR7w3+pW8P5UZPfYkkb2LS5I8DvYbve3JojxD5NE8FcuEvLLMHjoP+TM8ReosPMPFfbxq34M9/4WvvHzbpbtc8oS83tkLvO7P0rv15+i8qS7YPJtBWbuA7eA81oE1vY0RLbvrQIU9qnEwvYuLp7xlE2M7NzqrPBrgV72dBAe8V6CJvLxqujwanao9dsm/PGONXbxD5NE6OP0tvTmDMzofr2U8o5xHvRzjmjy0Tww9r0A+vUOhJL0JZIs78p5gPJDaCjsARhq9mv4rvHzbJTwqkAQ9KpCEvdiHZT0k/kg8T8t1vMcOsbustAi8OP2tPL4wALp/Z9s8eJLyvFsvAj1X4za93JADvSeK/rtjjd28qnEwvJd4+7xTV1a9UA5OPEk5ZbwtnOQ8HuziulNXVrzDgtA85GscvWkcgTqlIs07m36Bu50EBz36s4k9vK1nvRSR9DvkbjQ907jXu+FiKT15kp28ik7/PPs8fD3BuZ28GR3VPAqqUL0TyEE9NDTQPCYEpDwXF3q8gzZpu104Sr0MMFY81r4yPCE167wPPGE9HuxiPZ/Nubw/lRm92lBDvaq03TzjK4e8JLsbvYxOKjsNcJY9Y0qwvE5Cg7udiuG7YgfYvO7P0rzbzQC7280APVsyb7yIxQw9LZzkO9/co7xMgm28YwobPVfjtjweqTU9xctYPLgemrwMMxk9cbocu7eYFLy8ajq6l7V4vAYecDzECFY9Xz6lPKjokj1DoSS9kJ1iO9R7Wr1Fatc8Zla7vQNPjb3ckxu9B94FPLFGGT3iJSy7u+rkuyYEJD08D+k77Yz6vBYRSj3qAMU8iEIfvpyEMb19nig8PI++PM0glzuVr0g81gHgPBgXJbyCsGO8+G0ZPNjEDb0bo9q8HSngvJ8Q57wVC5o8aeLwPCoQLzveXM48RWpXPV17d7vCPyO8RqqXuiK7cD1+pAM8eY+FvOn6FD2HBXc8xAhWu/NhY70EVb28pF9KvRaOB70UznE7wDnIO9qNQDzlseG7dwmAvLkhsjuEtr48iD8HPHUMbT3ynmA93RkhvH/hgDwfbLi84iUsPQmkID12hhI9M65KvBla0ryLiyc8ich5vBLCEb00NNA8nIQxvW/01jt8nn07pd8fuQytk7xAVYQ9Ll9nPM6jBL1rogY9BqR1vMA5yDx3jMK73pnLPOzJd7yEvO48VyZkvCZH0TyG+RY92MSNPWaTODzz24i8UIsLPQvtKLxiR5g7w8V9PY8XiL1L/JK80vXUO6murTtTV1Y8i87UvN1cTjyUbPC8D/mzvF8B/TzFy1g+LiJqvHK9tDtWY+G8hvmWPML/jbztiQ28wr/NPMMCprw7TOa8HeayvOf66bzjqBk9QV5MPCYEJLv255M8Hqk1OnzYjbtkUOA8XgF9PGfWkDyKyKQ8xUiWPNS4grwP+TO9k2bAvIDt4LxA2Ea610povNkN67wzLqC8ollvPRpgrTzp+hS9PUyRvJ1HtDvXAYs7PpVuvZh1Dj0lQaG8ZVCLOfGYsLzp+pS946uxvPl5eTwnx6Y89mc+u/5CArxQiws97E99vI9atbxT1JO5fZ4ovM2m8bzEwhA8M/F3vIGqs7ystIg80rInvD1MET223tm7fNslvDuJYz0xpYI8A9Xnu6NWAjwMsKu8Gp0qvUy/FT24Xi89sw/MPN7ceD09TJG8ReosPWQNszxjjd28XvtMu6ouA7wD1We94iWsPEw/QL0i9YC8PMy7O3mSHTtvsSm8pqKiPAVb7TsL7ag8NbQlO6YofTwu37y8LZzkPKTcBz0/lRm9q3fgu6Ic8jyWLx69EP/jvIY8RL3ERdM8odMUOuWx4bupawC84mhZupGdjT1ublE7crcEPdYB4DzNIBe9rf3lPJm7U73bzYA8mbtTPIKw47ubQVk9jpeyPH6kWDzwEis91fuvu2fWkD2UpoC8Q6GkPFSarrtmkzg8R3AyPWIHg73S9VQ9WemRuVzyhDztySI7BFttOMmUtrwzcc28My6gPBzggjw08aI8dMOPPdqNwDwzNNC6WCaPu7KMib1+pNg8mLWjOs/pSb09j7461fuvPN/cozyD8zs8gjA5vfnz8zyOlBo9kJ3iPIqIDz233lm9tI+hu6w647zfYn68yteOugBGmrz/i188tZXRvLVSJD30nos8Vt0GPfASKzzPppy7iQUiPflzyTxpn0M9YkeYvERkpzvJGjy8+rMJvZ0EBzybwa45oJA8PV6+T73WAeC88x62vLVSpDzqgBo9hPnrPP+ClzuMTqo9bjFUPX1eE7z58/M59yrBvF64Hz3fYn68TcVFOyO4Az6Etj699J4LvesGdT1r4hu9bGWJPVNX1jyfigw9m76Wu9EyUj2Iwsk8keC6PL4zbTr+wiy8cTevvIM2aT2WLAa8dEO6vF8+pTymKP27gGeGvNU+Xb3CPyM8b66RuxVOR71VGgQ9rDpjPQUYQLr7dgy9CSp7PDIu9bxJOeW7x8uDvNU+3bwQeQk9iD+HPCbH+7z04Ti90a8POytTB7x9nii9UA5OvA222zsdKWA7yRQMPRQIAj1/Z1s83VYePIqL/LzQb088TQLDPBgUDT3ovWw9Z5loPLNSeTurNDO9IvUAvTR0EDvSsqc818TiOw/5M73rw8c8IbXAvFAOzjwd5jK7RecUPMeOBrwlPok8A08NvalrAL0IZ/i5jRGtPMI/IzzxGNs8N/oVvUEbn7yJxYy84GL+unkSSL0mBCS9JgQkvEfw3Dz+wiy9AhJlvbKP9jws2WG9aZ9Dukn2tzu/uXK9ZtZlvWslSTxeeIo8COGdPDd9WLpHcLI8PtIWPM1jxDz9/BE9EDwMvIlIz7wWEUq8XPXxuy2c5Dx2SWo8qrRdO9yQg7yr8YU8Hqk1PEIhzzy0T4y5F1SivI6XsrzTdaq8QJvJu4PzO7z7tiG8G6PavHpVID2exwm9dEM6PDW0Jb1zAOI6so/2uWUT4zrajcA8qOiSPDQ00LzEhZM8uBuCvARVPb2EcxG9vjPtvM/pSbz47UO91HvavF8+JTvSsie9MWvyvFVdsTtHcLI8E0hsvfy80brZyj07lClDvdjEDb1euJ88JHsGvS3ZDD05QIa92o1Au94Zob0P+TM9uF6vvGJHmD0lBHk84ysHvR0p4LtQiws9ZFBgOxfUzDzntzy7wbmdvASY6jxV3du84OLTu8jRs7wnxI47bm5RPUPkUT05g7O7BRhAPCO4Az36Nky6x1Heuy7fPDxxNy89UdHQvJbyID2Q2oq8/0KCvRja/Dwzrso89OG4vNdK6LyHQvQ7Wy8CvQUYQLwmhM68Bp7FOsaOW7tAVQS9NbSlvIV5QbwMcy4839yjOBYRyrygEBI9r0ZuPDi9mDxKdg29mPhQvIT5a7xX47Y7Wm/svV31nDy76uS8GV2VvCwWCry/dsU84J8mvQzz2DzTuNe6nEEEvV17dzzrw8e8JP7IPAaeRb1yt4Q8vGq6PMygwbwJ5008exgjPCS7G7wpDRc8pBydvPGVGLyprq28ZtblOZeyi7tgASi8ttWRvbstPbyApxs95TG3PBVUd7y0jyE7m/4rPfXnaD1ytwQ9mDt+u0Kh+bxR0dA7qjQzOQ1wFj2VL3O6lCnDvHWG57tHcLI8jVTavPVnvro6Rja9CedNvBqdqrqO1C+9PlLBvKy0iD3xmDA9l3j7uXpVILzHjga964bKO5VpA73M4248ZpM4vZQpQzwkfh69ZdZlvN3WSLr583O8aqVzOhB5CT0u3zw8P1hxvG0oDL2lYo09v3ZFvB6ptTxspZ66z2kfvYf/xjxp4vC7HWaIPECbybv9PCe9qCioPDFr8rzR7Aw93hmhuxQIAr3ipQG95HRkvI6XMrztyaI7rwPBvGaTOL1LfD29bKUevYkCir3/gpc8UlEmPc3gAT3syXe7m0HZvOpDnbre3Pi77ckivJ/T6bq8cOq8cfSBPYU2FD1VWpk8bSiMPdeH5bvHywO8Kc0BO7on4rwZXZU84OJTveoAxbxmk7i7UY6jvAVbGD15kp08BViAvK26OLoQPAw8xw6xu4T5azxRTo45wbkdPavxBT25ZF+9UdHQOvz/fjwFGEC9JH6eO6Tchzxxety78mFjPCuTnDptKIw8t95ZvdYB4LvI0TO7Ry2FvOzJdzua/iu8tRWnPGUTYzuQnWK6puVPPNF1f7yOVIW7FJH0uyL1gLwR/468XwGoPYdCdL1K/JI9HeYyvaDTab0IJEu9jJHXvKz3NbxRjqO5GpoSvOxPfbxCZPy8+zx8O41U2rzxmDA9N/qVvH5hqzyjHHK7r8ATPQ+2hrwE1ZK8VaBePd1WHjvV+6873BPGPFfjNj1gAag7iot8PPSeCz04QFs9Bp5Fu7bVEbxOiEg9nIQxveV05LpR0VA9LFm3u1COI7zQrMw6y5qRunuYTbtSFCk9pd8fPfDVrTwxpYI7lezFOs/pST30JGa93Rn2PCS7m7xnmWg7YP6PvB9sOL233tk8elIIvcB8dbw5gBu8C+2ovJl4Jr1yPd87TYIYPI6XsryWL566IzvGvL/zAr0jO8Y8PA/pvJYvnjwGG4M8fNslvZc1zjxwt9m7tZXRvI/aX72C7Ys8zWPEPBzjmjyyTEm9nUe0vO9PKLov5ey7lfL1PL/zAj28arq89y0EPWuihrzvDxM9Xj76POm9Fz0xaAU9ytcOvDNjFzvrb9E8NOI9vQTgCL2iDMe8RIeDveCmkjwRKO48T18kPcYprLwu9wa9x31fvfZH8jxrorU8MgACPGw97TxaRPQ7wBOCvD663rztNXw7Ic0zu7xCqbt0XsU8q4HSO3LDDTzqGx69c98ePDzYIr0/q/w8R1rdvKzIVjzYhbq8Rts2vUSHg7xPpig85WgJuz0DljxZfkm8s+muvDVF0zyrOs48Pp5NvQj65jzNSoS7xre0O5vA+7vtwQO9thLvvGCuA73qNy+9yUGJPCv7Orz3No89P49rucfTRbzEY4E8f31qvWrNqLw+LNa9fFQqvSteULxAfgg98hGDvSPa4rwsT268BOCIPeuaxDwqmKU8pKf+uyIwSb1R63k7ztgMPXNRFruRduO8CemDvKP9ZLsHUE08/6BsvYYQurz9IUY9V+MRvRJeDz2kGXY84ZcwvDcLfrz1cuU7vV46O4CzizwkhPy8tEzEvKHwNTt8fx08c22nuxFT4by+T9i8lxgVvcmIDbzQj1U8IbEivD30s7wq36k8TkMTvBgttTyOvxq9Ilu8vGJlTL1Zfsk8vPukPIg5ej2Xpp28dF5FPZtMAz3qYiI9M/EfPZlBVTqOv5q85oQavGz2aLzgX467yAtovKKazzyJU4q8WkT0OTRUNTxJ14K8GqxbvVDeSjyXioy8Rmm/vK0A+bwr+7q8UUHgu1EWbb1tWX484ojOvCNMWrzkXds7GBGkPVHPaDwBrBq9RRUMPSH4JruQWlK6arGXvBzTGj1bpYi9qTyBPJEE7Lz8op88dmv0PEZNrrw+AWO7MxyTOzcljjxhu7K85WiJPauQtLy0BUC7T8K5vHRCNLxqsRe8InfNvFkM0jwYLbW7s6KqPG3L9bzsttW79o52PVj/Ir1lYZi8BwlJO2xoYDwQflS9+z+KvKPScbzY97E8/DCoPX3isjytR328j2k0vFgbNL03UIG7pBl2PKLhU72IOfo8GsjsPL9rab3JswC9z8mqOhEobjz+y186NDgkvW5Im7sTM5w8v87+PMc2W71r6Tk9j7C4uT07uLwPuKk67afzupATzjxqW7E7fozMPP13rLxZU9Y8vG0cvWvpOb3y5o+7EkT/vNlax7sQftS8UaR1vUaUMjwqUaG8v4f6PBG2djz+aMq8kBPOPLsKB72FSo+6Rz7MO8ZFPbvhwiM9YIOQPfQ6Q710ibg8mnn3PHvVA7w0t8o8rMhWvDJHBj0bKYE9fDiZvIlTCj2+eku9PnNaPa2MAD1Qs1c8YPWHvI4Gn7stlnK944hOPJdDiDz/dfm8WVNWPYjWZD3HYc68K20yvTXTW7082KI8kVpSvEV4Ib337wo8z8mqPTbEebxOihe7yhYWvBH9+rxyNQW9YXQuu3xUqjylwQ69m5MHPWM62TtZU9a8on4+vMSqBT0ZkEo8rMhWPSwIajz3No+8PRDFPC3BZbzKFpa7jRUBPOvFt7zqGx48mhZiPYjWZDxAU5U9T18kvVJ3ATt9RUi9zpGIPA9Gsr1pI4+9YZ8hveJsPbo99DM90pqDulqLeLzYIiU9fH8dO0o6GL0ivlE9PYI8PMG9G75GIju9bGhgPNnMvjyqLR88PQOWPFx6FT18qhC8WEYnvHOYGjwz8R+9fmHZvI5cBb2kMwa9UFDCPJmzzDx88RS6PgHjPKO2YD20dze6hsk1u642Gru1aFU9+7GBPGM62btPNDE97qdzPMZwMLu/QHa9kC/fvONdW7100Dy9UkyOOysXTDk8dQ080WTiu5EgfbyOeBY8j02jPGlOgjx3PoA9x+9WPUZNrryHLMs8ximsvI4GHz2R2fg8IYYvPXwNpryq5hq9fbe/O2G7MrwgwAS9Gp35PFjUL72u7xU84vpFuiJ3TbqGnkK8YMqUPcfv1jo/q/y8c9+ePP13rLxIkv88SOhlvGHmpTw8Spq8GUnGPM5mlbwsM108IfgmPUnzkz0kV4g89PO+vMZwMD1hLSq8Km2yu74kZT2lCJO9hyzLvOlxhDujKFg8jz5BPBJE/7wF/Jk70iiMvCyl1Lyaefc8I5NePliNK7wjr2+7dIm4vJrP3TytR/28PuXRu0ZNrjw3JQ69LWv/vD663ry/QPa8dNA8PbsKBzxPXyS7RIcDPI8isDvFmyO8PuXRPKKaTzwRU2E8dxMNPLfWmDy0BcC8Kt8pvVkM0rz8oh+9jRWBu4gd6bvQusi8PgFjvNkTQz1I6GU8xzbbvICzC71kRYc8xuInPD5zWr2AbAc90cf3vOxEXjs8Zqu8IbGivSNM2rxhn6E8CPpmPJmIWTskEAQ77P3ZPOFQrLwZZde8kOhauzdQAbtthPG8l6YdPH7TULx9m668d1qRO3UIX7zbyAo9f1L3u+vFN7ypPIE98lgHPKotH7xAmhk7zjuiu9FkYr2ZbMg8qREOPQ/UujzbOoI9wFoGvH0pNz2H5cY8mutuvIir8TsZkMo6yJlwvfzpIzylTxe9UN5KvEh27ju/zv675NoAuzRwRjwYWCg7EeHpPLdzgzv0rLo89GW2vBLQBj3BvRs968U3vWvpuToJBRU9K20yvcaMwbyhYi29RIcDPb56yzvqGx46dTNSvDXT27rXBpQ9ofC1O6wPWzy1y+o87ggIvasevTyGEDq9IgVWPAYYqzyllhu82gRhPb3QsTyGOy08M38oPa0A+btgEZk9DiqhvD7l0TwPG786PQOWPM+eNz2JU4q9tDAzPfQesrv0HrI8dBfBu2M6WbwcRZK8u1GLvIg5+jyXpp08biyKPNjboD27Coc8GsjsOiEUuLojaGu9cu4APSXlEDvs/Vm9ZHL7um4sCj0Yyh88NsT5OpMPGr22WfM8GBEkPZuThzz8FBc9WBs0vY/3vDzsttW8ZCt3vODtFjvQSFG82NsgPC2wgrwuzBM99blpPI/bKz29Xjo7LswTvMZFPT3XeAs9PTs4Pca3tLzS4Qc7RTEdvCxP7rx1elY8WNSvvD30Mz02NnG9x2HOvD3JwLzHfd88YS0qPYjW5Dy/h/o7YealPZlBVT22oPe7ZHJ7O4Y7rbws7Ng8hLyGvM1KhDk75wQ+68U3vVJ3Ab1yNYU9jgYfvUSHgz2ZJcQ8CkwZPc9XM7nQc0Q9BYqiPMeo0jzjwHC7pGB6vBnXTrxhdC49vezCu4aeQry0MLM8NajoO6q7p7zOOyK9K/s6O/W56bthdC69tDAzPcgLaD2zzZ27hR8cvSIwyTsOKiG946TfOSPaYrxyNQW92CIlPdO2FDySrAS9o29cvWIeSLy3uge8NYzXvETOB7y+CFQ8GOawO5dDCD0Hs+I8M2OXPIdzzzvpRhG9WKm8PBrz3zyYCbM84ohOPVPaljvR8uo7K20yvTQ4pLyqAiw8vgjUPHTQPDyZbEi93J2XPBifrLw/q3w8NahovE97tTsGNDy8GlZ1PEi98rwPcSW9ULPXu/Yc/zx71QM7vghUPI9pNL3AE4K8Tm4GvKotH7yHLEu9BsJEvU0ngruq5po8hwFYvRFTYb2rrMU89IFHvVfjkTqq5po6tctqvbTaTL3P5Ts8CTCIPCqYpTyYNKa7R6HhPPdhAjxYRic92GkpPSUslbzRq2a8tJNIvG4BF7yz6a48/+dwPPcLHDuKDIa8/6BsPAbtNzxiZcw8Ngv+uvzpo7xSBYq8hwHYvGS5/zignIK8f+/hO9GA87xs2tc80cf3vE+mKDxSMv68SjoYPKQzhjsz8Z87iGTtPMYpLDz3C5y8NDikPFipPLy31hi9wFoGvb2YD70XIAa8ftNQvQDXjbwGprM6d1oRvTfeCb2/+fE7qnSjPHVPY72Hj2A6yl2aOxxFEr1GlDK9BntAPHWW57yOXAU9UneBvbQFwLsaD3G99GU2PWFYnbxF6pg9xozBPPbV+rzstlW6W6UIPaq7pzurOs48kUvwu6kRjrwYLbU8DlWUvMdhTrxFeKG8mhZiO6xycD3G/jg9ByXaNZp59zvGt7Q8olNLvM9Xs7tz35487BnrPCzsWLyHLEs9/j3XvNJvkL3ZL9Q8odSkPDPGrLy+JOW8UV1xOgkFFb3Pgqa8fZuuvFecjbqZiNm7DscLvbRMxLzYaam70uEHPHfMiLwXPJe8PTs4PcAvkzz0OkM8SAT3vI8isLwRU2G8SL3yOuxg7728bZw8IRS4vOzSZrxggxC8102YPGEtKr3YsK08vG0cO2lqE70sT+48EkT/vBll1zzhex+95E55PNq93DxX45G8PB+nPMB2lzwOnBi6mJc7O1Bs07wriUO8Ykm7vP6vzrsu9wa8D0YyvOVoib2GgjG8Bl8vPVoo4zzAEwK8WkR0O3O0Kz32AG49V5wNPb3QMbx13Wu8zmYVu87YDDwA1w09PfQzOqQZdrxGlLK6qp+WPGMP5rwZZde7zxAvvUbbNrw4s5Y7LlocvbsKh7z7sYE9BUMePS0kezvOO6K7qcoJvYgd6TtYRie9hsm1PFhGJ73q8Co86jcvvQWKoryzP5U7WkT0uZoW4jvbOgI9178PPBDwy7xOQxO9M/GfPXtjjLy/+XE8/FsbPHehFb0tsII8NUXTu2DKlDx+Ydm7Uc/ovJvPXTz21fq8XMEZPc0DgLxObga9PRDFvDQpQrps2le8gEGUum7lBb0iWzy9iuESvTOqG70+LFa9EPDLPA6ABz219t08NdPburWE5ryP97w5nCEQvJdDiLwZkEo67qfzvInFgT2ims88qkkwPCXlkD3QAU27iLpTvM/JKjsRKO68GZBKO6O2YL10XsW84QkouyE/q7xk/gI9q5C0POm4iLwrtDa87TX8O3c+ADryEYM8mMIuu5FaUj3rmsQ8oakxveJBSrurrMU8EGJDvUgv6jt3E4084iU5uxEobjyscnC7UCVPPEjoZb1JZYu8RgYqPDbvbLzbZ3Y8Ykk7vCttsjyGgjE8LbCCOxjKnzw9A5a82D42OpoWYrz3YYK8YvNUvEbbtj1sr2S9PJGePUnzE702xHm9fMYhvdl22LxTkxK8tExEvL/58buAmXu8gPoPvc9XMzzPV7O8fA0mPRFT4byHLMs8NbdKPKVPFz2XGJW82XbYvKIMRz3Yhbo7P2R4PC1r/zxhLSo9v85+PBrzXzz21fo8pGB6PYWRk7thdK68Bl8vPe7dFL3zuxw76yhNPT+rfDkFiiK80sd3O86RCLoSF4u6GUlGPc4fET2GO608MxyTur8kZbq8+yQ9EeFpvZg0Jj02fXW8D3ElO/6EW7wauz29kb3nPNzkG72q5pq8xv44uxcgBrwXZwq9UCXPO7fWGDxk/gK9tYTmuzdskrzpKgC9j7A4PGRy+7zAE4I8R1pdPDQpQr12JPA8UFDCupCh1ryHSFy9WuFePKs6zjxhWJ08z+U7va2MAL2+3eA6/FsbudLhBz3Ibv08mhZivGlOAj2aFmK8RVwQPTWo6DzgXw49GjrkPBFT4bzeSjI7Zd0YPTI4F70n+2q71ni5vGz/Qb26SaI8+QyVPTnZ5DwK2Z68/GFqvekGg71l5vW8DUt4OylxsjxCvwQ8GAdJvWC5uLy0dXK8jwDSOg1L+Lw9uCi8M/xXu8BrS7zgA1+78y8IvDEHbDwqKl+8zpssuq7JkDwP+8e8ufKVOuiQu72bgOO8+XnJPGuAHTvuqQc9nPRzvMKlU703n9w8cSOivIV1rLw25q88uyGKvPxjoTyBRji83g5zvOOx97tSznO80wQpvXAjIr241RG6K+XCPM6brLzzL4i9tHXyucTUR73apXa6D7arvZZTprwdcEU8BLW+OeB5JjyrpbC8g9kDvOZWszz94sU6CWNXPGBD8byQuX68YH+wO53rFjvYKAm9I4kRvSDkVbw8QuE8AqWFO+35Nzy43u66vjxXPfUFuTylAiw9G/p9vH5TA71O5lK8c9G6POAD37teikQ825EFPZYXZ73FSo+9x410vQZwIry16zm9Y64kPI9/djuKtpC9n/0GPLnT2jyx+AS9KHEyu1lAAzxQliI88tbEvIHkFzwsWVO87fm3vLN3KTzf+gE9VhEPu0stpjqNR6U8bTlKu25zUj2p7AO8iCNFvUxnLrwyfbM8zGy4PDkVpLwWThw87D5Uuq/SbT04WkC8i5dVPTDhCrxb3Ks7RFCZPHtpq7zC6u+80Y5hO/spmTwQ8DO9q9+4vKuanLzwp1C83BCqPJQZHj1M6Ik8udWRvdwQqjzAp4o9AvyRPOLttruuU0k9iaJpvQMF7zymAHW9lKPWu2cgfr0U2os8DxqDvPjSDD2/bQI9ePUaPWkKVj2UGR483Y/OPFR+w7sb/LQ5dVDfvBPufLxPlqK8Us5zPEysyju4Gq47T5//vHkvoz21r3q8SP4xvZTd3jrDYLe8evPjvBMqPL1z0bo8eS8jPU/bvj21JUI8WtyrvEquAb2aWoI8WK03vb4817yRsKE867+vPHfE7zx1UN+776dQu+0zwDvkqBo9+ykZvEysyryxPSE8NEqHvPCn0Dy+97q8/GOhOwBMQrxj6Kw8FRSUOzN7/LyX0ko7lSL7PO2XF700NuA7SP6xO4HQ8Lw0rKe8kLl+PDkVJL0DwNK8VMNfvUPciL15uVu7x4SXvS3arjxyIWu7LwmjvU8g2zy4X8q8xRnkPJReuryrmhw94rMuPWz/wTz4NC29iF3NPKINwDzYYhE9qupMvZz2qrzCJi89KqCmPFu0E73ujIM9UDSCu8Jgtzv1hpQ9X0UoPT+tlL050Ic8sEg1vd2PzjzWPPo8HDa9vOSomjx2xia8ccEBuzhaQDzl4qK5PbioPKxeXbzL7ZM74bOuPGs7AT0OGgM8P3OMPF/ETL0o8g08JsHiPNjsyTxDW608qDr9OJGwoTsI5LI8h+k8vaSMZDvvxos9CZ8WPSZ8Rjx+3Ts7sT2hPIYu2Tu7IQq9ldSBPP/XMT0TZES9gMcTPKkJiD0wws88aoAdPSQINj0iWGY9jOWEvZz2qjxZXQe8JkI+vYIBnLzYbSW6m7GOu4ikoLzyVyC9Xs9gPVLOczycumu90tN9PHrz47gLsQa+G7cYvZ/p3zxOXJq8FjGYPImi6Tycums8TlwavR21Ybt93bu8rXKEvaujeb1OIFs8Z9vhPNinrTzsg3C69WmQu0MWkTzRaAA9ukkivKLTN7shMgW9xY8rPRdX+bxEH+68QfB5Nz+QkDypJgw9SrmVu+pJaLzvsuS9bTlKvLWvejzLMrA7wqXTOm8uNj1OIpK8R4qhu0DysDyUXro8RZU1PTnQBz3Emr+85/QSOsrQD71K/Pq8vrv7PKEY1DwKsQa9dornu9TcEDxPlqK8wyR4PKe7WLwa/DS9I4kRu/g0LT0m1Yk9BSsGPVA0gjt5dD+9nTAzvebgazy8yMY8Yf5UvF8Jab2zd6k8nTCzvFCWIj35+G29jYEtvBcS3bvCG5u85Se/OoAMML1uuG480BrROy2T27zRDz29PriovWQiNb3FGeQ8lhfnPDbmLz33vuW8HapNPOJRjrvt+be7uQ8aPdAaUT4ahm09a0Reu1itt7vw7Gw9PUJhvTYgOLtK/Ho8hq39PG/ydjwHbmu9RRTavOYcKzx4uxI8V0sXPa3UpD2Ax5O8MUMrPJYXZz34NC29UqiSPKBfJ72axf88J/tqO/xjoby9vbI8HfEgPY0L5rzZJtK7XQugvDfbm7yczpK7e2mrvK6N0byhGFQ87L8vPbiZ0rylxuw8HfEgPfl5SbwfKXK9ScLyvLWmnTy7IQq7TGeuPNOFhDxMywW84rOuvXi7kru+W5I8ukmiPEIhJb1yIWs7/texPIWvtDxRlOs8DcxTvchI2DpCZkG6HapNPIcjRbwBy+a7TC2mPCPMdrw1K8y8yfinO+6pBzuzO+q8iHwIPc7gSD2YSJI8nHVPPW4uNryrmhw9ETXQPM/VNDz3wBw94vhKPRWeTLy75wE7xY+rOtinLb1GKIE6/hxOPBTaizyYgpo8VvLTPONukjw8fqA8HfEgPew+VLxURDu6CtmePLrngTwd5oy87+MPvUicEbz5NK08fhdEvX6YnzxM8Wa9iJmMOn9wh7zDGxu9t6TmPEWVNb2axX86z1aQO5GwIb0d72k84rMuvMFrSz30y7A8AsIJPGOGjLsrZOe7cl0qO61yhD31Bbm70sjpPPd7gLxYcXi80Q+9vEDysDzgvkI8KLZOveqFpzwK2Z48WxY0PPWP8Tw3ZVS8hNmDvFTD37wAzR09HcmIu+A9ZzyoMSA7kYgJPQP8ETvv4w+7Oe2LvcvQDzyRL8a8q2nxvIdfBD3vxos8nmq7O/k0LTxNZy47dFBfPNp/Fb1DoMm7EPAzPcNgt7wDNho90wQpvXBoPry43u67Kj4GvZt1z7zteNw8UqiSujDN47vstBs8qOwDu4oYMT2lAiw9DcG/ugmfFj35eUm9+6g9vaWBULye4IK94APfvKulMLwuFLc7OwhZPNhtJbtHiqG7wurvO5ZTpjzTg827FlmwPIWvNDxIQ848ChMnPfGcvLwL6w691b1VPRC2q7sjku65DkKbPeUcqzwd7+m8RVl2PZJpzryFEww904UEvGe1gDwnN6q81NyQvQ4GXDxEH+48f42LvMrQj7wt2q68MjiXvCbViTs1Zws7nTAzPVREOz21YYG8/nURvQqxhrvpD+C8hi7ZvDDN4zwhHl4964PwvOZhx7tjrO06A0EuvXVQ37z0y7A6R4ohve6phz3TBCk8yfinu43lBLyYDNM81zHmuw967LoqKt88a0TevOZhR7wMJRc9jsbJOoEK+TzE1Ec7DYe3PL6ynjymu9i8nuACvXkvoz14Ojc8Wec/vO7uI72yFQm90tN9PAW1Prulxuy6GUHRvOAD3zyr3zg8078MPX3dOzzRDz091zHmPABMwrytcoS9bbolvSX9IT3y1sQ8A3u2vJSj1rzs+Te6CB67PEDnnLzEmr+70ZAYPLkY9zkDNho8bq8RvQoTpzsamhQ9yD3EvMrQjzwRqxc94zLTO6t9mLx93bu88y8IPIIBnDw5FSQ9ypaHveTiIrwEP/c8Jgb/PLzIRryFday8kbChPIKAwLzEEAe9fF4Xvb29srxAtvE7MM1jPfspGbwFDgI730j7vPJg/TvpBgM8OU8svPc/wbwmfEa877Jku0GrXT0iT4m8ka5qPNqcmbyd6xY7sMdZvZgMUzy5VLY7BkgKvL5bEr0yQXQ9x0hYvRcS3buMjME7lg6KPPUFObyVIvu8sEg1Pfwn4rseA5E67L+vO+AXBr0dteG8F5O4u1DbPr2vDq07P5AQvb52Xzxuc1I9q9+4PBdX+TtaIUi8j1mVPQUOAj3N61y8dAtDvf5W1j2DgEC8IFodPSTDGT20sTG9WxY0u0FmwTuLDR08iGjhPN8FFr2WDgq8oZmvvPLh2DzpBgO7QeXlPCDk1bqkoIs8VnOvPJYX57xbFrS8nesWvIDHE73pIwe9wcQOPVtb0DxhdJy9ZeZ1u2x+Zrlu9K27FVkwPOJ3bz2hN4+8MQfsu66N0Txdz+C71zFmPOUnP72dzhK9He9pPNgLhb3isy69Svz6OzFDKzzHhBe9U6iSuwDNHT0fKfI825EFPSyebzyD9oe5/VgNvG05Sruq6sy9VES7vPIdmDwoDxI99/qkOxmIJDx2gYq81jx6PA98o7wdyQi9b2i+vJFrBb3jMtM8Ugqzui2T2zcHKU88dsYmvPJg/bye4II8vb0yPZo7R7xyXao7ZKMQPd9I+zuYUe88MM3ju2pPcjwBy+a7SJyRvNhtJb1fRag8XVA8vY4CCbwT7nw9My0DPd1KsjwBy2a8K2TnvFza9Lxtc1K8SvOdOzFDKzysXl28zLHUvKkv6Ty6SSI8dNE6u9liETwwzeM64HmmvMNgt7zfSHs7tHXyPMrQjzx5L6M6aQrWvJlG27zRVFm8gzskvROp4DyblIq9caLGPHWMnjqwx1m9rVWAPFldhzwQ8DO9lBkePeUnv7sE+lq87L8vve35Nz37J2I8kmnOO2cXoTxjcuU8jgKJPB8p8jwAzR29kWsFPTDCz7yd9HM7ey1svU5cmjw50Ic7WK23vI+7tbyp6sw8AAemOkzx5rtirqS80qKIvYIBHLybsY68iaJpvMn4Jz0S5R+7QcqYvM3rXDzVMx07eweLPLdfSjvXKAm8tGwVvf9WVryaxf8851azPcLhEjw1Z4s9YEPxPCtbCj3kgIK8EbR0vZLqKT1D+Qy9UNCqPAQ/d7tnFyG8HI8APbFGfruMDZ296oWnvABMQr36Mva80gSpPJFOgb02ZdQ84L7CO9vf/rtIQ049ro1ROqhrKL1Yrbe8UJYiPdW91TzZa248K2TnvBlMZTwrH0u9lphCvaa9D7384sW8zmGku9t0Ab2bvKI8od7LuwNBrjy0dfK7N59cOzJB9DzzkSi9cpcyPYdqGDwTKjw9N6ETvQCRXju43u68adDNvIhdTb0F78Y85/QSPUzLhTyFr7Q65xEXPXDehbvZJtI85Z0GvXIhazyEO6S8R8SpvFKLjjxnUak8QeccPWC5OL2fpMM78KdQPTcguDwNwb86h0KAPWfbYbo52WQ8AobKPCqgJjwI5DI5euoGPAEHpjzbkYU8bfQtu5A62ru0bBU80sjpvLZqXr3yV6C7kLl+PJ5quzxU1wY9xFUju4hCgLxsuqW6vYFzPMNgN72+PFc9C9dnO7SxMbshMgW99z/BvL2B87wToAO9Q6DJvIWvtLyW0sq8dBbXvOuD8Lxxosa7qS/puxE1UL3phSc9od5LvQ4G3Dxn22G7rw4tPYT/5DxAtnG82G0lvPvtWTxGk367eS8jvSjw1jz/zB08Lk6/u7N3KbyyFQm95KiavKY8NLzF1Me8Pv1EPef0Er2+u3s85RyrPJYOiryRa4U8vb2yPL5bEjy/igY74clFOn3uOD0fifO84yREO0DfHb3EvyS9tZKdPH9JNz1yxxs9AH/SvCWabr16mGG9XN6tvOjfZ7z6cn48hwUePL2zUL3q5dG8hq2UvEibhLwSt2q9bQmDvLExtbykWoW8SmD2vEalUjxG9T89mZi0PCxJkrvynBG8YPn2vB3Egbzu67u93AMRvZIsuzvBtBO8X4wOPYgIkzudTjG9EgIxPSLSB739Y4m8zNuwPFZ9xbwsVlU8gKlcO0lg9rvNLpO8jtZjvJyjRb0f2eA7/LsSvDwpITwDJZc8zjavvVUVBLxz11O9HH5iO99hhL1OBAm9uE1BO79ZlTqO1mO7wG70u/wYQ7usezg9h2VDPJo7BD3gHtq8JDUiPBQNwjotAcE8t6d8vW0RH7yLY5G8EPefOo3GqzzKgLI8Yp+7O32eSz1uFkY8AnqrO2f4B7tKqzy9ErfqvPgFFj2nZZY7uZiHvMAJKD3ONq+9dNIsvY3Gq7y9Uyu7XjksvZCBTzw7frU8D0y0vf4WEbxc2Qa8MlqNvK2L8DvJeBa78fGlPCtb/Lp+nss8jyGqvHQ3eTzJII26grTtPJmYNLkgL7g7XEP6OV85rDwploo97pvOO7nwEL2EUha9IX+lPPdn7TwUXa+82J0BPdLsq7mgDnw9gVTIvPZcXD3pOua7a7agO2CZ0bq8Az69bWEMvW4mfrcLkZA8599nveyQPTua6xa8NW26O4dlQzwu/Bk9cncuPb++Yb3eDqI89aeiPRBHDbyf+Zy8KqtpPV0xEL3DyXI8Ye8ovUSawTtntV29CDu5t8vg17xG8Jg8pg0NPCKKNj1XeB49dDf5O+9LYT0yspY8xxojvHPKEL38GEO8o18svN4OIryWkko8WoOvvP0THLyA9KI9jGutvBFSHr17jpM8PXyDO4/W47ySJxS9Rap5PPhVAz2nGtA9XjksOwDUZjxeNAW9RwV4vNyzo7zPltS8DPG1PKcVKT3DxEs9/hYRvPCRALuHtbA7OHMkPBUIm7yNdr68HiQnPM7r6DzaDV88hq0UvFFnozwmRdq7ANTmPOTU1rt+nsu8LFGuO02xpjwQpzK9JDUivP8j1Dwi38q8K6ZCvAjrSzuvNly9KZsxvS0BQb1Td1u970thvLX3ab2GrRQ8nv5DvOgqrr2FCsU8eIipvAJ1hDyjFGa8mJAYPTRyYT0eJCc8t+0bvXxDzTqS3M08DvxGPVbNsrzX9Qq9bRGfPEJE6jxra1q9OoNcPdFBwLthP5a8Z7VdPS78GT0ok5W9Yu8oPMZ/b725mIc8G2mDu0DfHbzM5X48EFdFPGdQETwllce7AcoYvOrl0TwXuC27euMnvZyjRT3W9zw94myVPHpI9DpuuRW9tJfEOylLxDvsleS6pboqPczbsDxxFwk8Os4iPYnAQb1xfNU85NRWPcLJ8jwAzz896NUZO+LEHjzVp089+7idvPwYQztUwiE8X+m+vBCnsjzL5X493raYPFXSWTw2EIo82FI7PZ7xgL2Kuxo9lt0QveEZM70+OVm7duJkvEal0rsq9i+8orRAu5CGdj0LQSM88PZMvSSa7rtsy/86loUHvs8xCL2+rqm7/BhDO9my4Dx524s8KT6BuuwzDb3x8SW8XUN6vI7WY72ti3C9t0IwPGZVuDzTP448H9Q5vKOvmTuIFVY8dYK/PI8hqrzR9nm7EQz/vFG3kDqsgF+8Z1ARvM+JETxgj4M8XI7APC78mbwbzs+8ErfqveowGLx9nks80uyru+jaQLpSx0g9oQSuOw/3n7wAzz89It9KPE8MJT2HBR47xHRevCKKtrmNwQS9Sk4MvaEELjzslWQ8mJ1bu8h1Ibwcebs7Gb4XvGGPAzzjFwE6NhgmvS78Gbxyxxs9KZaKPQo5Bz1LVqi7CTaSvA2cIb0Hi6Y8LvwZPOHJRbwQDH+93LMjPRVYCL3r4Ko8a64EvR4kJzxeOSy8robJvASFPDsJ5iS9PoSfPAqWt7x646e875anvHo4vL0wB6u8X5lRPDAHK7tlr/M8xc9cuzwpoTyiZNM8sOFHPOvgqjt6mGE+JzuMPWiwtrz3srO7ycgDPSjrHr2FX1m8ytAfOzgo3jyeoZM7nFNYvZAx4rx42BY8/cMuPBgTrDxOEcw9OShevExRgTy192k93GhdvH2RiDxmnQm9zutoPJvzsrvcqwe8ZwCkPGZaXzxBMgA8zoYcvPitDDsSpYC8Rap5vK12kTumb+S8lt2QPIgafT0ddJS8HS51PCLaozzZYvM7QJl+vR0pzrzZUAk88JGAPDJn0Dx6mGE8NW06vNasdr2Nxqu7UsdIPR7EAT3zAV69kXcBO7RM/jw1wk48Xp54PFsum70dxAG8OHhLvGSv87rEvyS93g4ivGwbbTy3otW8xHRevLOHDDymar27/BjDOxVYCD1kQos9ZK9zPJB0DD3Vlxe9+giLPQzxtTzvlqe7FBJpPVnLgD1z11O8jBaZOocafbwRXOy8KFDrO7n9U7wENU88bBttO5QqiTyqw4m5pb/RPNsN3zw5Ize8TLZNO+QfnTz09487zTtWvIGp3LxD79U8pg0NOyLfSr1flCo9svF/vQDPv7whf6W8gVRIvStb/DyBqdy8WdOcvGHvqLrsMw29DeyOPCf1bLw7M+889VzcPD45WbwvEfk6qBACO2WqzLpXLVg96NWZPDzeWj1CP0O8OoNcvL6pgrzx8aU8h7WwO1vjVL2vgSI93rYYOeowGDvIdSE9qcCUvP8erbzcsyO9jMvSPHHMwruqa4A6HGkDvKJXED02HU28TFEBO/3N/Lzq6ng8WjNCvCWIBL1UcjQ8/24aPbenfDxmVbi8BpDNvBnIZbyHWAC9uZiHPBBXRT2VMiW9zYvDPJB0jL3O62i7hVqyvFEcXb1uJn68SvYCPYnAQbz4rYy7SfspPEb1P7u7WFI9PN7aPO/7c7hMqYo8Vy3YvBRdL7214gq9Fb1UvblImrxDn+i8dSWPPGkQ3LvM5X477jaCu8+JETyFX1k8r+ZuvG1hDD2Ku5o8pxWpPAqWNz1sG228/cOuvKprgD0CKr689aeiPMjFjj3gaaC8FMJ7Ox/Pkj1hpGK9L1y/PP0TnLq1R9c8ezYKvcBudL2jFOY8lTKlPGRCi7wyWo08kXcBvbaSnTrQ4Ro7H9ngOzC8ZDz4t1o9UhIPvRQNQr2DT6G4Xd4tPFBsyrzq5dE8DKFIPXTSrLzr2I66zNswu7OHDL3AuTq8q8ulvLxY0rx2Las8KOuevMC+YbwmOBe8rHs4PDJn0LvFH8q7yzBFPF45LDwSpYC8/c18PfgFFryDr0Y8rovwvHPXU7zixJ48NL2nvLHcIL1K9oI9TbGmPNVHKjypwBS98wFevAg7uTs4c6Q7PNEXvPYMb7yy8f88aWVwPFzeLT3I2u08i2YGPTvOIjyoxTu88aE4vX9EEL3sQFA9DZwhPc+JkbxG9T+9m/MyvQOKYzyZmLS5wG70u7wDvjyOGQ69YuqBu48mUTwm9ew7jyEqPdHkj7yhBK48ROUHPTMSvDzYUru8A9pQvXbi5LkVCJs6KFBrPJXiN71CROq8IeRxPBKlgDw+hJ+8mvjZvBFc7Dw7M++8ufAQvZiQGLuq0Ey8FBLpPF+ZUT2HtbA8ZaUlvFcgFb1n+Ie8NW26O+vgKjsFMCi9ZgpyvEI/Qzt3jVA8TmE5vKnAlDzRQUC8/M38OmZVuL0VvVQ7XEP6O/q9xDsP95+7RkWtPVvoe70FMCi9Ku6Tu5UyJbxjmpQ5HSlOvcl4Fj0GkE07Q+quulFno7zT5wS9SUsXvben/LzhvAK9WoOvPMwrHr1AlNe6T8FePQIqvjufqa87TmG5OxFSHj3+c0E8p8pivRxpA72HZcM9ZlU4vBoj5DwCKj491qz2vM2QarzKgLI8vhP2u48hKj2SLDu9hgUeuUal0rz8u5K8Y5qUunqY4Tw0tYs86+AqPV1D+jyak42843Qxu51OsbvFH8o765C9vKgQAj1sZjM84LmNvVIXtrzuNoI7/cMuu5Q3zDtHBXg9zuvovPT3DzwRoos7dNKsuxNVkzxCROq8di2rvMglNDxiVHW9HH7ivKYNDbyQdIw7TwylvI12vrySzwo9aqsPPeMXgTyxhJc72WJzPIzLUryP0Ty7c9fTvauA37weJCc7kuH0PN9z7jtrtqA7u0sPvYL3lzwXYxm9G87PvGE/FrzFH0q9o1+sPCWVxzu1ioE8cBywuoog57ycWP+8qxuTO0GPMD0e1Dm7cNHpO8G0Ez0oUGs8Mre9PMMPkjupdc47ANRmvPDpibzu5hS970vhPCMtBr3Aubo72w1fPaK0QDxIUD49PH61uo8cg7yoxTu9r4EivH9JN7yGutc7soSXvCLaI70Bcg893RhwvPoIC71YywC6wAkovERK1Lw4yDi8bRGfPLIvgzxG+uY8r+ZuvK/Rj7t52wu9cNHpvCk+gb1WfcU8KFBrvcbKNT3gHlq7gPQiveQfHbx8o/I7D6zZvJ2eHj3K1ca8nvGAuwv23Lyjrxk9CDs5PbOcazsRB9g7Y0onPZ1OsTtSEo88bRbGvM42rzxMtk28hP+zOgfbE73fvrQ8PoSfNqEErruP0by8oxTmPOvgqjw+ica73LhKvRzJKL3MKx69rdtdvPpyfrzRjAY9gfQivC2hGzxpYEk8m0jHO5dCXTy3otU6sdygvGRFgLvK0J+7eO11PJDMlT1AhxQ8RkWtPYRfWT0VCBs9MhfjvJLcTb2ZmDQ9uU1BvOyV5DwtVlW6p2WWvJr42TzDyXI80EZnvdM8Gb3k1Fa8tZKdvLKR2jv2qhe9YI8DPWsGjjtkRYC85NRWPckgDTryVvK8AM+/uwuRED18Ngo8Y5oUPbftG735XR+7ktxNveyVZLyRdwG9cYH8uxQSabtQXwe9DgHuO+Ee2rqe8QA8P5n+u7ZCsDwpPgE9NSL0vFsuGz0vrKw7whQ5PSaQIL2FCsU7EQdYvYOvRr3w9ky9MmfQPIJUSDxSugW6u/OFvBnDPjy4TcG7aLA2PU5cEr2dU9g8ks8KvcAJqLydU9g8wVyKPNhSuzxLVii9LqSQPEcFeD1AlNc8f/nJPLOcaz3ofRC7BDr2PAtBIz2UN8w7VnCCO/8erTzNi8M8vw7PuxZoQDwBypg7TgQJuxFSnrwUXS+9+nL+O7ZCsDwRXOw8c3KHPQJ6K7uC95c8XI7Au3EXiTyKEK+8rCtLPdGMBrzFH8q7XT5TOlFno7zTUfi8DZwhvajFO7zO6+i8CeYkvQEv5bzcsyO93LOjPFPCoTw6xoa9RvpmPcS/JL3MkGo9k9cmvAyhSD1rBg48o6+ZvDnYcDsuYWY8wRlgOgYrAbx+mSQ9H4RMvATQAjw0vSe9+21XPBl4+LysK0u8XTGQvLFB7TxYjf28Xp54PDh98jqoEAK9yHrIO8LJcj2HsAk92J0Bvak+Y7t0a/s8oCohvRPpljnkKYq8V+A3veZo3jysyFA96q/6PO2AnbwHgnO995hDvZOIDb2RgMW7e4cePECcd7znKXG9PyIavflhnryFn8S7gxk7vXyJkDssbKu8Gba8vGN+57u7Mz+8sRsZPbmxmTsbPEY8IEhZPLbg9rzuQTC6KuahvZQGz7yJLwg9EuUyu+2AnTz208y8tF5RvUGkvzx+DSi9oWl1vKDnzzxTlTe8V+A3u12tXbxkhq+8LjEivOr2r7wcQCq9z2dvuv+wArxNhUA8QemCvO76er2YVbM7myCAvWdPiru47pS9+FnWvGgUgTyCl5U7wsF3PIDOOry8NyO7ePnMPFmpkrq+vaw8Zk8KvbipUbxeuQk870UUu0KoI72pPuO8STrAvDoSozzocKY52QmcPKO2ALt9Tgc9BgDOPOhwpjy6K/c77/5evWIECrxvojk9FzQXu4DWAjy1Zhk9lUuSvbATUb0q5qG8lAozvMFDNr3HWYM85ea4PPUWnr0iyv64CxBFPMmWZbzQsgi8UROSvEdxZTwPGHQ8KuiTPM3h5bwyPTW7G3+XO2mSwjxs1Xq6esKnuwiG1zl0b986FixPPaU8CjzwBie9QSQMvRxAqjwsbCs9om3Zu3Uw8jw0u3a7jC19PeuzXrzS7Xg9e4O6O7el7TwHCog8i/IMvTXDPr3MINO7rAuiPEzELb2sC6K8xktlvM6ieDsX8UU8OhQVPUDjLD2NMWG9QypJPGSGrz0EO9e6TciRu3LpVT3ZBTi9dzg6PF5yVL3kKQq8B4JzvQU/uzvLpAO9iu6oPHBnMDwlVOw8sdhHPT4a0jtmTwo9ArmxPKDrs7ywViK93tLdu/OShryP/p+7y6IRPNN1DbzwBqe82QmcPWH8QbyBVES9OVOCPAfFxLqXkLy8fIuCvfRRpzysSg89E6bFPVilrjsTpkU8KuahvCJSEzt7QOm88YRovIqrVzuisCo9lctFPQQ717tYpa44urMLPKAqoTzezvm8VRvBvBLlsjzdUDg86HCmPAH0OrkhTL07jTHhu6AuhTy9NyO8unKsvJNJIDxkP/o8V6FKvXm+QzzuPcw7dK7MvNrKrrwLEEU83liAvekxubxUWi69Ful9vfUWnjukNjS9DBSpPDuQ5Lt6wqe9ZIYvPak+47vayi48M/rjvAjJKD15Awc9splaO5zjBL2E3rE7zqbcPCklDz0LUxa9esInvW9f6DzHWQM97kEwvZfTjT2wWoa7YPjdu2N+Zz02xyI9wgitvX0JxDxYXnm9Y35nu9xMVDwT64i8U5W3PK1K9joKTzK8G4GJPHkDh7qymdo8Wy+cvGwYzLzhnxw92oP5POGbODzEhu64wggtvZXH4TwCubE8zGeIPD5dIz2ogbQ89pRfPEu85TwmWFC9niLZPDI5UT14+cw8568TPXj5zLuwVqI8fImQPDaItbwS5TI7wIQVPQpPsrzayq47GPWpPWVHwjveVo48n2kOPRftYT0nYoq9n+PrPKpGq7zS7fi8Pl2jvO05aLxOiaS8m9s8vFXY77xK9249iS2WO8ndmr288G08yBwIPPoa6b28+DW9qwc+vCZctDsiDdA8w4buPDkOP7wiUhO9Q2VSvLDQ/7wl3IC93liAvSJUBbr200w8Wy+cPOQlprxkx466HP3YPFDM3DwF/Om8TYVAvPbXML2pPuM8WKUuvHkBlbwJzYw8lEuSOzrTtTyrTIE8r5UPvQcKCL5CqCO8W+hmPNqDeTvbzhI7+t9fPe8CQ7uDHR+867fCPMtfwDmQeP08L3B2PBVvoLx2NFY7VFouvRdxEr2gpP48Cgj9POKhDr1NyoO88MPVu3c4urxDaTY8DRgNvKNxPb0S4c6785AUPWtbnT3XgxI9YH6API14Fr0ZuiC9EiC8PL38mTtetaW85CFCvYMdnzxQzNy84Zu4PNT9CL2O9lc7wIYHO1HQwLxUF127sdjHvLjsojwVrg29ziQ3vJAAEr0sbKu98YTovJnT9DxnEJ07XK3dPDdF5LljxZw8fg2oPOt0cTzKV/g73ExUPnwFYD2CWKi8U1ZKvKFp9TyeZSq9caoBPIdkOzx8Afw8ROtbOyrmIb3obMK8HgmFPAK1TTryRXs8fsrWPSrqhbxdsUE7Ep59PdyPpbzq8ss8l5QgvS1ygTy1I8g8TMStvOFY5zwqYP88STpAvLmxGbxDbZo8Q2VSvD8imrzvAkO8r5cBvR4JhTzvR4Y9gpcVvZlZlzzLohE92AHUu7KZWr0Dv4e85eqcPCMVmLspn+w8dG9fPCZY0LyPPY295CUmvNCuJD363988Q2k2vVfkGzzvAsM88ohMPGsU6DwpJY+9iOL8u2/hJrxwJF88wsF3vNT9iLznsQU9Y37nvIajqLxs2d67pHWhO51dYjkY9Sk9OhKjPRVrvDu4qVE9QSQMvaO0jj3wBqc8hN4xPPoeTT1eclQ9F+l9vKmHijtsXwE7en/WvD0W7juxGxm8y6IRPad57DtbL5w89FGnPDdJyDw6Fgc94qEOuhVrPDw3RWQ8GjR+Oe6Egbz+bTG9o7aAPIhsAzwX8UW9YUEFPRc2ib2NMeG5ierEu7crEL3208w8R3HlvBYsz7yVx+G8U5U3vRc2iTxkQ168m9dYPeQhwjwyOVG7O9O1u+hwJjwxNW08aNEvPdV7SrsWcwQ9Red3vDoWB72szLS8IxUYPO49zLlHsFK9nFn+PMWOtjwOmjI83lYOPQpLzrvU+SS8vPi1vD4etjy2Jyw6mJSgO7/DArzYAdQ8TkZTvCEJbDuMtRG9b6adPK3QmLz6Y5C8LersPFHQQDxTlTc8hN6xOsOGbrzLpIO8wggtvZOIjTv/LkQ9YT+TvP/r8jzrdHG9CY6fO59pjrw1wz6985KGvJF84TwXrvS8/OcnPAZDHzyGo6g8q8TsPIDUED1ORlO8eLb7PAiG17yKq1e9Br18vAcIFr0qo1C8Y8G4vNM6BD2h75c8axRoO/RRpzr217A8gM46vCMVGLzwBqc8Zk+KPBm6oDyF5Ac8XfYEvSZcNLyHIWo9Iw3QuxLhzjx7xos9kHj9ucSKUryWz6k967dCvS/2GD3yz4G7r5WPPEbzI7247hS9K6sYPY45KTsjzuK8R3VJPHc8nry6s4u8SHktPPGEaDx9xvI8R7BSPSIN0Ly/wRC9ydm2ul5yVLzag/m80nUNPVbcUz2E2k29o7SOPAEzKLyltHW8M0GZvAL6kLzvRRS9ydk2PVsruLtjgsu8Ph42vD5hBz2QABK8fEixO0zErTx4tnu8rchQumlPcT12NFa7F670PCWXPbz5YR68TkbTO/XP6Lw+XaO8G/l0PR+HxjqRxYg7A70Vvehwprr9qLo8+6Byu9qH3TuisKq78MNVPRz9WDkHCgg9l9MNPNCuJD2P/p88XzfLvDP+R70aNP68qYUYPVhi3Tw1BhC9A3pEvWTJAL0q6oU8TMQtu7HUY7wXNBc8BvxpvO6CD7xt3UK7ZUdCPEo+pDwXNBe8vnpbPD/fyDxIea088s2PvB4HE73/63K76jePOznL7TxeclS9M0GZvMJJjDyZFsY8nOESvPlhHr2P+rs8mtfYvLOdPr0nYBi9K2jHvK+XgTzmqy89TkLvu4y3A7zX/W+9Ph62u6d5bLq4rbW7Re+/vC41Br3xyx27NseiPFvsSry0XtE8FzAzvICTMTt0rky9IZEAO9/WwTqEl3w8JNYqvR4JhT3ySV+9FW8gvW6e1Ts6Fgc8BsFgvOanS70eBSE9TYVAvEdx5bs8VVu72ESlvDxV27yLsx+9KCErvb9+PzxcMY68QKDbPNS2Uz0IySg8DlN9Oxq+hDxVG0E9BvxpPK3QGL32GJC9w8m/PbBWoryc4wQ9l5QgPbjsorz9qDq8U5U3PHyLgjvmp8s8jjmpvMnZtruZWRe9RC6tO5sejjtF7z89BsFgPOPe8DyaGqo8Gr6Eu401xbuYVTO8JNaquzyUSL3AhBU9vPTRPHd7i71ZqwS8dzg6uqR1Ibzrs147K62KPXUwcrxzqmi8oKR+u0p/A7xlipM8jz0NvfbTzLzKnq0763RxvfRRp7zxhGg7O5TIPM0om7zS8Vy81/3vPIenjDyc36A8BgBOPFsvnDztgJ28p7w9vEd1yb2gLBO96/yFPLw3Iz2Goyi8Y4LLu8SKUryt0Jg85OLUvMmaSbx5vkO8mFFPvZD6Oz0LUxY8pfPiOzlRkLvTdY27tGI1vQtTFjw1gO08ZksmvJHDFjv6ZQI9e4cePF32BDx+Dag8f9KePCwp2juFXHO8M0EZvQM38zyhLgW98ojMuuKhjj2Wz6k8QyrJPLAXtbsWMLO8rw/tvCafBbxrV7m8KqNQuwZFkbw5Dj+9v8MCPearrzx5A4e8oCohPKe8PbvU+SS8bNX6vDG7Dz2wF7U824vBPGcQnTxgdji8a1c5vVsvHL278G29kcOWPM6ieL0PV+E8LXKBuwL8Ar34nCc8pHG9u2PFHL3uQTA9sR2LvKjEhTvAgiO9gxk7PVBQDT04Bvc6cGcwPHW4hjwFQ588TciRPHwF4LzYRCU98AoLvFQXXTsX7WG9H4NiPIdgV7tCqhW8B4LzvPrfXz0IySg7b6I5vNP1wLxUF129bNV6vCroE70/Ipq8ZYoTPUMm5bdumnG8FGfYOx2+a7v32xQ9JhV/O1hi3bzLX8C86C3Vu4XkBz247KI9oaxGPPOQlD3HWYM9sFYiPSTWqrytjUe9gJOxPAtTlrz6ZYI8zqJ4uNf9b7wUqqm7cjCLvKJpdb35oIu86e7nvDnL7bxjwbg8Mj01vaCkfjy1Zpk7Noi1Oi1ygT19BWC88oywvKKo4rt8SDE9NskUPZiYBD1E5/e8a1sdO8tfQL1fN0u9ZYwFvYXilbs6EqM7BYIMvZXLxTzYRKW7d3uLPHLp1bw9Wb88dPMPPR0BvbxOiSQ9om3ZOzaEUT0fyhe9pbT1O03Kg704jgu97HhVvVUbwTyh8Qk9eQMHvCGRALn7oPI8yp6tun8RDDwSKAS9YgCmPNCuJL3eWAC9R3XJPAsQxTz6IjE92cZKvTI5UTwFggw9U5U3PAfFxDzVe0o9IxUYvH1OhzwCuTE9QypJPNLxXDwZ+Y08V53mPNV7SjojFZi691VyvG0ihjyUTYS80GtTvZ1hRju+ets8PFH3PG+iOT25sRm8EF+puoji/DvioQ493RFLvQ6aMj1b7Eo8g9ZpvOQlpry1H+S8PZwQvYhsA708mCy8ZMeOvBVvIL2isKq88csdvaR5hbnOJLc72squvUMmZT362/u8GzhiPZzjBLv+KmA9bd3CPKQ2NLpELq26z6pAPLvw7Trp7ue8rAsiPZ8mvTtR0EC7sBe1vAE3DL2kNjS9/ag6vINcjLyogbQ8LGwrvY14lju6s4s8p7y9vJG7Tjw0u3Y98s2PPAR+KLutt5y7nalRPWJ8zryqhrU82L0Nvb+VNr2lMDc8+8I5PfKWhD3Vyc68nQSCvRi7X73MnZm8odo4PI12bzwNWNs7G68evZQ6fTwCh8e8lnc0vDWIFb1Khd68KbcBvYayYbyS2D299qnjusspojyJ48g8aijLO7CH67vGEMy8sRODvGaJ1L3WQy697+VVO4/kfrtnidQ8sUrDuSiAMr3esvM8KyURvUPTiLwxdSc8+s4JvY0t9zwADWi8bV+avEdgR7zUT++7OadEvTKmDjsEb7a8vHAfPHvV/btNbc29J3TivMbHU72fLwE7ji13vToV1LztOp48ZScVuVT0sjs38Dy8ZpWkvOGmMj1EihA9+loSPSM2BL1J2ia84DgjvMiKqzxuTWK9KPqROi2NuLtrZXM8C3y8u9Hh3zxNf4U8aA+EPVFVvDwa4HY8ETT6uho1v7w5ahy9IAsFPQemhTx2i0+8EEwaPcwdUr2Ndu+806Q3vbWgwTv1bDu9YcVGPBdfiDuA+qO9s3sqPFOGo7uBtxO8XqAvu1fiCboG6RU7Ubd7vHgLl7rBrv270Taou9KY5zs8/cI81clOPKhnBjw/fQo7cNORPCF5lD2+TL67MHUnvXaLz7yYqJs8SRfPPM/OAL3L4Kk8BhruO4bEGT1toqq8y1p6PWbkBLzA9/W5zNTZuyyZCL0YzZe8+M76u53meTx4vDa9hrJhvFLDy7xKkS675YLRPDlqHD0g7fw8Xt1XvQeI/Tyj/089M1FGu1wyoLyNgj89VisCvZ21IT1QYYy9ojz4u17pJ72DKwu8v5W2vOVLET0p7sE8sQ0bPR0R3jyx9fo7JFsbPfidojzpLZg61Ab3vOhqwLyJpqC8eLBmO+anaDxtoqo7MeO2uyRbmz00Rfa8WVAZvQt8PDzg7yq7LjjwvJW03LzlRak8tCbiPKyrzD0p4nE8vRtXvBr4lrz6WpI82ugMvQS4rrxr8Qo9/2cYPTQITj1QnrQ8cruAvLaU8TsQUoI8JJhDvIwI4Lya2YI7Z9JMPDEgXzzUBve8nDtCPIGl27s5IaQ82R9NvIh1uby7cJ87kS0GPb9MPr1Kka67vCenPLMysrxV6OI7rtwzPOTdgb2iSEi9LB8pvWdSFL2Fn4K8MKZ/vRCJQjwypg6825msvbcOUTxJzta89rWzPInX+Ls8jzM9IO18PRvsxjzsCTe9M/z9Om2iqjw9Rjs9ms2yvNKY57vTmOc81Ab3PGhAXL0KfDw9oZ2Qu5Z3NDvErow9iaYgPYSfgr0rHyk88KgtvUWEKDxNNg09+ZHSvN6BGzxL/z08RMFQPHFBIbwcHS68qwAVPe46HjtIVPe7JgbTPMdNAz2du4k7XTIgPGvrIr2v0OO7TbbFO8YcnDsYu988vtJePEs8Zrk+qPo8ZpWkvBJlYTwdEV495I4hPTubgzzGftu4PP3CO5yEOj1/N8y8/HnBPI0t9zx3VA+9OhVUPPxtcT3+86A8UgD0O6dnBj2aFis9C3BsvTyPszxo9+O8VxlKvTaCLbwTrtm8bWUCPGs0G709Rru86F5wPejqhzw6FVS93J+UuzhqnLu41xC+TW1NvZ21oTzIkBO80LB4PDlqnDx91Qw8s8QivW/TETxYmZG8VPQyvZQ6fb1D/vg7RUGYPPxt8TwSdxm8/rCQvEV42LuNy7c8IWdcvOGmsrqbzTK9Kpn5O1G3+7zhpjK8Njk1PO/l1TxTPSs9D9K6vFclGr1/dPS9baIqvG1fGjzu8SW54DgjvKeeRj0y12Y8IAuFvG4Eaj02gq08ny+BPdju5Tvp2M+8AgEnvGzrorz5kdK86OQfuosUsDyY5cO7nfLJOg5kKzwJAt282Vz1u8qvQjru8SW9JUN7vIg4ET0LJ3Q9ZpUkPffmmjv5FwK9S0g2vXA1UTx2nYc8iGlpO4SBer2vnws9IXOsvNjuZTziUeq861IvPLxwn7zykJy84xTCupTALL0G6RU9BLiuOyYSo7ztQIa85UWpvSSM87wNWNs8QVNBPCtoIT2V/dS8LlCQPGaJVDxPqoS7Km6JPEQvYD63DlE9Rp1vvC5EwLyAN0w9D8Zqvf35iLwPJ4M8L74fPFQ9qzsP3oq9eSrGvMAPFjySj8U87XdGPSnuwT2DK4u8wzQtPEGQaT19BuW8sRODPHFBIb1Zk6k8axx7u6bbbrwD9dY8U4ajPFfiCTpr8Qq8hFaKvHdUD73stO47td3pumbG/Ly06bk8v0w+Pf35CLw8Rjs7oZ2QPKILIDz6/2G9RrUPvfFT5TunVU688sH0O390dDwL9pu7d8iGvbJv2rvOTjk9StomPVclGr2wkzu8mZxLPKILoDwtjbg7HuCFvXTIdzye8sm7mQrbuTEsL72m5z68vd4uPLjRKL2A+qO8iqyIPJmuA7xNbU284l06PJ7yST2+0l48AwcPPaHOaL35VCo9QV8RPcG6Tbt14Bc9gyuLPQqIjLzYpW26rZ98vG2WWr1JIx88hIH6uhJ3mTyoYR48JgbTPLCTu7s0yyU8YogePZmQ+7zHkBM6qoa1PFKGIzvOTrm8GM2XvOsJtzxy7Fg8BhpuvXL4qDwEe4a9OadEvcDMhbzoM4C9u+rvPOIgEr3vrpW8IPnMPNvipLyudIw8K9YwvD066zx0Zrg8hsSZvOpYlzvQvMi7InMsvCUGUz1EwVA8lnc0PbOBkrzqm6c8MeM2vOz9Zjsff+07Crlkvdf6tTxD04g7MCyvO+Dj2jwWTVC8f0OcvGp9E73U1Z48gDdMOnB+yTxs66K88pAcPSd04ry5Pzi8p5J2vYk4ETsLJ/S8JFsbvdm9jTwTKDk9rLecPE4wJTxzWmi9kKfWvBWWyLwWivg8iyCAPeMIcr17qo08mZB7vV+gr7yCH7u7MHsPve3MjrwXxy89tw7RO5hTU7xLPOY7SRdPvG2WWj3XN148azQbPOCsmjxSAHS8fQblvAddjbz2YGu9m8HivFLPm7zndpA75YLRuvpIWjz1eAu8VDHbuw/Gartd6ae7s2/aPNCw+Dy+0t48wX0lPVlKMbt68wW9kHCWPcvU2bzgLNM7qGGePdC8SLwkjHO8EzSJPY+zJr1II5886lIvOzKmjjwCe/e82LE9vU1/hTvmCIE8nyOxvBXfQLzINeO8QZw5O62rTLzrUq+7Z0ysPKz0RD0j7Qu9tqBBvTubA7vIQbM8fGGVvEbm5zyaCls9M1HGvE7tFLyLGhg8Eyg5vb3errzPf6C5evMFvT80Ej1Kzla8qBgmPJc6jLtmlSQ8NXbdux7I5bwfQsU8U3rTO4SB+rrbjVw9B0tVu2/HQTzzO1S8bN9SvBXfQDwOJwO7ayhLveqhjz3pFfg8GTU/PJRSnbxJ4A69lMCsPJci7DvwqK27pG3fvBxmJj1vHIo85UUpPWO5BT0cWtY8ma6DPN91y7ya2YK9gDdMvZjlQz0Ch0c9gLGrvAhXpbxoQNy8m5CKPP2qqLoCUAe8zCmiOw/G6rtU9LI8Mtfmuy++H7xxQSE9ny+BvPYjwzxEhCg9c1poPEDlMbxbrHC9yezqPO06njxicP48HshlvdyZLLxvu/E8yniCPLh8YLxoQNy8QhaZPH90dLygF2G8tqBBPOjMf7xFO7A6TjaNPRZN0Dx5Kka8nHhqvC44cLzyloQ5Fl+IOfCoLb1qNJu86HYQOYF0Azu8cB+81oDWPJ5g2byHsuG76punvbtwnztWq7q7WVCZN7Cfi7xUMVs9PsAavfBrhbw1iBU7aijLO3uY1bvLLwq98KgtPcg14zsk1Ws7PfHyu650DL0U6xC9D9I6vDTLJbwctQY8ApMXvYPK8jvY+jU96qGPO+YIATw4Xsy8qQxWPXlzvjva1lS9WvVovHvhzT2UUp28qs8tPeSOIT0dIxa9u2RPvDQUnjzXSZY6z/nwPCvWML3p2E+8bWWCvBEJiryRzG28VmLCPNfu5TpB8QE9T6oEPd1QtLw5cIS7+VqSuzEgX7slQ/u7B4j9PDF1pzxWJZq9u/a/vK+H6zyFUKI7qBimOg8PYz3M4Cm9i10ovAz8Az1DCkm8fBK1PIqaUL2+3i69c1roPAsndL28cB+9RUGYvGzfUjttZYK8zhGRvEMKyTyrPT09o8InPdgGBry13ek7uj+4u8bZizuzuNK95Y6hvJZr5LnA9/U80H+gPAv2mzwB0L+87joePA5kK73ywfS8OWocvEAiWr2/lTY8L/tHvIwIYDoB0D88DaHTvN6+w7zegRs8H0JFPX+MlLrozP+7j/wePbcaITxJ4A49mFPTu/EWPTxuZQK91kOuvCC8JL2P5P48u/Y/vWPqXTzrFYc9cfgoOyziAD3lAhm8Mpq+vEVBGL1nidS7oOYIumYnFTyEmZq8RrUPvRIDIj0BPs+7hETSvDZFBTx+yby8gaXbvKrD3bk8jzM8z84APcvgqTtKkS68bl+au91QNLwSfQG9I5hDvfFT5TzKr0K9t8VYPb6JZrw1yyW9vtJePISZGjwQfXK8jUUXPdE8kLxWVnK8uHzgvMspIj00FB49LBNZOz93ojwk4Ts9XTIgPK8rFD17T928OtgrPHdCV7xrNBs8H04VvUhsFz1Rt3s8iprQOzmb9LxY0NE7R2DHPDc5tbmVCSW9EgkKveqbJ7276u877+VVvA/Sujz2I0O8J3RiPJvTmjwk4bs8OSEkPOGmsrz2qeO7VlZyvKkM1ryIaek8PFKLPTvMWzulMLc9J4aaPHNa6Dz5EZq899pKvbE+cz2qkoW8tCbiPMKDDTw+a1K8bKgSPcADRjzXN1692R/NvHMdwLzR7a+8AkqfOwKHx7xGtQ89iHW5u2Mz1rxWn2o9opFAu3OvML3Y7mW8FOuQPEy2xTwdIxY9nTvCvCbJqrvo5B+9MLLPvAbR9bxHYMe8FZbIvJHkDb0EvpY6kS2GOyGwVDz2YOu6TnmdPKHauDzYsb28iqyIPCGwVLlJF089xVnEvGvrIrxvx8G805jnvBujTr1Y3KE8IE6VPGyokjwqbgm9OScMPB0drjr9+Qg9aEDcvOezuDyzb9q8T9vcumHRFj2l8448EropPE1/Bb2g5og8l9lzPaS21zzG06M8uTNoPaU8h7u4fOA8SGyXPN3KEzvb1lS8kCG2PNlcdTwwxAc87veNPJ5ykTxgGo+8BhpuvLiIML2LXSi7Ww0JPNcGBj0kWxs9c1roOmfSzDwbo867WqxwPGooy7tCR3E9lbTcu5uEurttlto7HpcNvQgUlbyLIAC9cDVRvIjX+Ly3DlG9m80yvaXzDr2AN8w7MDKXPHTId70gNnU91oDWvNjuZT3Mi+E6qpKFPfmRUjzvnN287XfGuwhXpTymJOe73BOMvBaogDz2bLu7nyOxPEPTCL1AIto802ePvGRwjbzML4q8EzQJPRtsDr39qqg8NYiVuzEg37wAxG88RM0gPX6MFD2u3LO873UfvI9PMT0odAu94SH8PATkG709tzC9qcXHPEw+RT28M0Q9AiW/vJVXS71CkGa9PbDXvE21pTvP4uM7NqFkPGokY73V+K88Uk04vd6xdLtb9wm9hRgzvK6l1ryZeP26ASyYvFJNOLwj8sQ8yov0uwJtOzwxUc47sLeVvPd2YLwb6qq9bjovvadcmTykLTU8ky9APE+n87tj2yW9TrUlPYmwxbx0kR68jZetPK8cN71vdPk8E3IJPCxqZrwelHy8Tu9vvC+Scb1zIZc76O9LPMD9BjuMngY6tWzNvXDr2bv+xna9mvY2u5Gik716Y/u89r5cPGa7tLkNFEG7jN+pvGVE1Lt+yBw9tSuqOx3jUTxXLce8i2Fwu1+sQTtLx+Q8/kuJvSqD/rvAIYW69E5VPEEOILz/Pdc8d/pMPOTOGT3+hdM71TnTPI6Q1LwK8w69AJgSvVyENj2a2RE8eSmxu5h/1jxhXWy9dNkava5kM7172ls7axIkvcEM+jzLStE7Na+WvdPJy7qZhi86zMGxvGRLrTuNegi7GAqcu7VldLxPLAY8048BvZ4X6TsHywM8rLOIPGSF9zu968e7OXKAPHRb4Ty0u6I95jdIPGqiHL2968e8BNbpPJI2mTxcr428Ax7mPFQFvDyPSFg9AW27vATWaT2b9ra71IgoPAl8rjp64TS9pC21vIOh0rvTj4G7oAUqvW90ebuh/tC8poCXukS48TyKaEk9048BPboEYL3yH/E8ZlaTPR/Rkrwp5BK96KfPPEemsrwZwp88FtRevWdWkzuCKvK8yNrJO7UrqrzD3RU9qh+DPNX4rzyU4Go8d8ACuzqB8zy0VoE8ALU3vE39obxj1My8WlXSu+BpeDwkaaU7zRQUu953KrxpDpc9nWa+vIKoK70E3cI8eWpUvKt28rwUBg+9OI+lPKNYDD3F+ro9CjQyPP2Thby1DgW9xbkXPdews7xfrMG8J9LTPF+zGj1sC0s97HGSPE39obvgpo480WCdPP9++ryI+MG8OXIAvOIhfDx+EJk8ppZju4VS/TkFju27KUJbPOjvS7wOiyG9HlNZPIUYszyhP/S8YV1suy0i6jy0rfC8tmxNvF37ljx/umq9KSwPve1GO73/u5C9jwe1ODFRTr2E1488m/a2PIwnpr2mluM8IzNovE+n8zyFsxE8KYP+PDKHiz0Jtvg8/98OvT1vtLuB94A8ZC4IPX/InLzB2Yi8q7MIPZAA3Dwhe2S9Mzg2Peq5Drtsyie8x2NpPepY+jx2SaK9/m+Hu+EhfL2itlQ8YRzJO/2MrLwCUJY8Y5oCPP2MrDnhKFW8JWJMvNDpvDzJkk07k6agvKv0Kz1CSOo8ZOaLuxm7xjzsKRa925BCvDXTlDvUwvI7cPKyPIeIOjwoile7oUbNPJyn4bur1wY9MsFVPfAtIz0zedk8yBttO2nqGDslaSU91CMHvZ4X6TzC0i89fUpjvTHIrjxtrYI9ocQGPYwZdDzJ2kk8JevrPJjAeb00rxY90lLrvGcyFb1i26U8nR7CvJLuHDspg/68vuTuvIzmgj1bzLI7WpZ1vblMXDtjjFC8oAwDvtFgHb0eYYs8h/+au6Qm3DypzKA8AZiSvFlcK706QNA7iyemu4B5R72NVoq9AmZivOoXVzz/u5A8eyLYvIzfqbytj4o7d7mpPMAarLzCxH25gXLuvPg8Fjv8HCW91Xp2O/qlxDr+bwc9/YwsPdrR5bzOKuC8XjXhvccixjt7Ilg8BN1CvOyONzuKaEk9FnaWPAw/mDq7Oh09cqq2PGOMUD2EQwo8sM1hvDjQyLuX1QS9uVO1vIUYMzoiOsE8WvcJO6K2VLyb7907Pie4vJ+Vorujblg7McguvdOPgbz0DTI9LSJqPSYhKT2tZDM67gUYvcBUdr2TpqA8DdMdOzN52TpEd069th14PdLQpLzcByM9bYIrvT2wVzxxo9286O9LvGa7tDvzOAm9MQnSPPOABbsrcT+8ChcNvevWs71FcHW8wQz6PI9I2DynXBk9XjVhvOeRAzzVevY8QQ4gvDAQKzzGq2U+mXh9PaWdvLzi2X+89QZZPTO6fL2hoAg8C2OWPI3Y0Dz0TlU76OhyvSx4mLu16ga87NazPJ4X6TxrU8c9IkGavGAjojtivoA9u4IZvdrRZTw+5hS9Yy6IPCjLerwR9M+7q3byPEhX3TwElca7oIfwu3aKRTsyAvm8xEK3O+IWlrv2qBC9BkZxPO1GOz34Nb28gdOCPCx4GD1aGwg7eat3vZC/OL2itlS7fhCZuhhLPzy9LOs7mXh9vBzjUb2U4Oq7D4RIPXxRvDxzIRe9OoFzuy4iajxj1Ew88K9pOlergL02oWQ6d4Psuk32SDt1ikW9n02mvB49jTzTCu+8/FZvu2rjvzwMXD28g6HSu2IV8DwAtTc9gfcAPPaoED1w+Qu9XMwyPcZxGz3rlZC7S0UePeNQYD0rnBa8NqFkvPrmZ7f59Bm95YadPCGJFrvXqdo8YtulO2ytgjztRjs8rO3SPCYhKT1HiQ29EN6DvNEYIbv+zc87hsndvGdWk7zf7go9r559PE72SL2WUHI8Qg6gvWxM7rw3Wei8J5EwvfNVrjxqohy9JevrvOV/xDzQ6Ty9p07nPPHlJrySL0A9lwj2Oj8gX7z3duA74tl/OZWYbrwUZFc9aeoYOoXXDz0W2ze8850qPMGRjLz/A4274tn/u8HLVr0pLA89MquJuwIlvzwYA8M80VlEvFmkp7yQxhG9xbK+PLk2kDvJWAO7ugu5vOTOGT1UBby83ncqOmIVcL2YIQ47ZEstve7+vrwMP5g86G0FPcMlEjzsz9q7XMVZvUeti7ywzWG8AbW3PGrjPz1jmgK9q9cGPa0jkL1r3Ga89A2yO3iyUL0zY428ZURUPWBrHjwvkvE7+2QhPGUKCjy6wzw9G3PKPAxcvTvWMno85cDnvFToFr2LYfC8WeVKvQfEKr1ue9K8Tf2hOtWBz7tNtSU8w4qzvPwVTDtU/uK5nKfhux4ZjzxBT0M8TP0hPf0VzDz0Va66gICgvKr7hD2I/xq7hRizPPc8lj3fcFG8g+lOvNMKbz2TKOe8OwYGPcWyvjvQoUA9GzInvRH7KL1zGr48eLLQPCXra7wywVW7LuHGvJh/VjxIHRM7+TU9uxUcWzwOiyE9j0jYvMMBlL31R3y7LuFGui9fgLxBVhw9WlVSPdepWr3TiCi5xbmXu+XAZ73X6v28ydpJvOseML0oy/o83n6DvHYBJjyFEdq7hdC2Oyuy4rvJWAO9R62LPDZnGrvGasK8ADd+PbUrKrwJtvg8pCbcvNtIxrwE1uk8mv0PvAo0Mr1syqc9ZURUO9jfFzu/aQG9sYVlvD4KEz3cQe07GyvOOlEX+7zTyUs98PdlO79FAz1nc7g8rxy3PB5T2TweYQu9VMSYvZFBf72k5Tg9NPA5PZhFDL2z9ey8WOwjvZdpijyM3ym85zDvusz7ezsElUY6/wMNPeHKDLyMJya7eHEtPWdzuLy0VgE9ZFIGPYKoqzxuZQY8MUp1vRJOizx1E2U8v1vPPIpoSb1dBv27BNbpPFJ4jzyk5Ti8XMXZvHvEDz1+EJm7X+3kvFW2ZjxIV927RRmGu3mrdz2UXqQ8C6sSugfLg7wCJT88lF6kPOM6FDyNly29ePrMvIi3njufTSY88eUmvE/kCT0+5pS8iPhBOqysr70zOLY7yhCHPJr9DzxgZMW8F1KYPdbxVr2Zhq+8M3lZO1ctR7wFnJ862CA7vU9mUD3F8+G7tuOtPBhLP7wZwp+82CC7vEhBkbzciem88eWmPGCl6LxgI6I8iLcePbebsTu24y08xEI3vI2XLT11y2i7YCMivda3DL1LhsE9teoGvECXvzwquTs9wtKvvHGNkbxbi488q3byOkVw9TxrEiS9t5uxu/LIAb2KaMk7RH6nOrfc1Dz18Iy8nG0XPRyirjwl62u8TnSCvMpRKrxNmAA8YGRFvHRb4TzcQW08V+yjvQ7TnbzXaLc8/BVMvITXjzy8M0Q9B8sDvVsN1rwSs6w8vLzjvBtzSjwfC928JWklvQl11Tz8FUy9ZeYLvQA+V7xRwAu8ibDFuwB0lLwlo+88rqVWPS7a7Tycp2G8Fb6SO5IvwLyl3t87gTHLvaDohLwBrt470WCdPLDNYTtyYro6brz1vI9PMTyJ8ei85MdAvT1SD71Orky9dJEePQf+dDubrjo87HGSOxyiLrzrEH68LtrtOtPJSz2gBao7JKpIu2d6ET12Qsk7SB0TPYJniLuPxpE8JltzvKo8qLw7/yy912g3PY/qD73zVS48C2OWPYTXDzwBbTs9m646vKw1T7zA/Qa9gtOCu8oQB7yzVgE6KUJbvAoXDb39kwU9gTFLO1vTi7xjkym79v//vEJIarzOKmC8jBn0PJF3vDuw1Do8XX1dvI7R9zpw+Qu9ECaAvEx/6Ly968c8uUxcvUeJDT0nmIm83r8mvagNRDw6iMw8Nai9vDI/Dz0Zu8a8gfeAuxyFCb0elPw8mT4zPTYfHjsqAbg8Yr4APXxYlbz/uxA904iovIHwpzw09xK76l/Tu8rICr0wF4Q8MBcEPKkG6zuDodK83AcjPH/BwzyCKnK8OuKHvF08Or1XJu68o1iMPAJQFjyYx9I87UY7vGBrHjzzgIU8jZctPGAjIj0R+6i8KMt6vAdNyrz9jCy8f8HDPA/Faz23Wg6812i3PZ6VIj1hHEk901JrvPqlRL2i9/c81vHWuSr63jziXhK86rmOOqgNxDwwEKs6tiRRvevdDL2PBzW90JpnvC4iajzUgc+8J5gJPYzfKbzTyUu8PbcwPeTOGbzNcty8euiNux5aMj30DbI8e8QPPbUyA71bDdY74ShVvblM3LxG59W8bnvSvGBrHrzMXBC9hFnWOxWalLvz13Q8eiJYuzz40zysrC88M7r8vIdrFbt5MIq8oT90Pd6/Jr1Dfic8mXj9vN53Kr3dogG98S2jO+euqDx6oBE8HxK2vFoUrzwn0lO7gosGPTzx+rz1xTU7BJVGvd8vrrrpoPY8+uZnPBbbtzwquTu9mdkRPZZQcj3OKuA8wwGUPN1+gz0A4I68vSzrPK+TlzwiQZo8knDjuyxq5jydHsI80GAdPOKYXDwwzwc8vxosu/IfcbyvHDe9hFlWuo8HNTypzCA9Y9slPdyJabziXpI8gDgkOjP3kjwmISm8zXJcPRgKnDtCB0e833BRuwrstbwbK068sM3hvILTArwatG28MRArvQJm4rwqnBa9SB2TPC3oHztRwIu9H/UQPTDzBb1AwhY9xyJGvCbghT1rWiA77M/avC+ScbzruY48QU/DvC/zhbyB94A8DD+YO5VeJDzzXAe9XQb9O/scpbzlf8S8JltzvHMhFz18UTy9i8IEPHvaWzxPJa28NxhFPMer5TvxLaM809Akva/KADzMw1s9jqnOvOrp2zzv1ja9hJU3vayrsjygMBU9e5dlPcr1zrwQMkq92D55vWW377zR+G4806JfPLe/STsiAUm9wQCGO52qwLy08Tw6RkWAvF4FEbx3+8u8iKYuvPAHE72GY0S7zZ8/PCLdLLzK9c47ZjmNujbC8LzcoLG8xTWZvTlIRbykZSg8gi6xO3/M+DylQYy74RgvvZvcMz1iDf+8ukWevAeFOT0g6wO92fZAPDR2gbt3+8u7McwQvP7XqLuL/129f4RAvKMiPjy97448nmKIvL8F1L3UWic8BzR4vZbLvLsgD6C99bW6u8FIvjx6MF87+TsPu7M59bwUZ1282q4IPYy3pTxiDf88GQwAvWqArrxKX3y8CD2BPFPocL1Fw2K8m9wzPO4e7zv7CRw752yQPC98ZjzFWTU93GqHu8EABj0UQ0G8JsH+vNLzoLt5yVg8u6ykOgLFA7wUZ908CBBcvYssA70E/+S8getGPDBlCr0BDbw888ORPMgDpr30clA8pvBKPA2sdbxxX7I6s2aaPIa0hbxDrZ28lWQ2PMaKkbx0CSM8h8rKO1+0zzt5bxI8nnSWvNx8lTz5KYE7/V6UPXmBoDzuHm+9uErsvI1m5DxmHvY84y50vNPPBD09NaA7yLJkPbppurvqKI89Grs+u6iauzu24+U7mXWtvOSeA7ovEJK7CBDcOwLpH73LOLm7qWSRvKfic7w0rCs8c36APJHsOD36dXC9SPj1PGyWcz1h0x2851qCvD9LZTwgDyC9wmeMPEp6E7293QA7XXFlvYAzfztaGDa9aoAuPZ6GJLpOiwo9RfAHPT94iryZmUk9LEIFPQT/ZLw+wEK9e3PJvC+/0LyzrtI7getGPH+oXLvM53e8X2yXPQboCL2qyxe9Tyi7uyO5kLxMfsq879Y2vZ/Jjjzq6ds8lCHMPWH3OTxvQOS641sZve+gDD3opvG8wq9EuyIByTyTlqk8yI5IPW0YETv/hmc8IA+gPDK6Aj36kAe90EmwvBRDwbr9TAY8xQj0PCm8sLw4kP08ZMXGu/PDkTyOqc46eBoavciOSDxzLb87AtcRvZA08Tu79Nw8qSXevDHeHrwphoY8W8d0vUp6E73kwh+9DYhZvUFqs7vUNou9dPeUPFw3hDyKdLu9Yab4PADK0byQpAC8o/6hOj4RhDxGKmk9vVtjPDqvS72xa+g5+lHUPD01ID38cCK9q92lvI808Tyn/Qo9i1AfvVAEHz1jDX+7vPRcvBI/ij14CAw9UwOIvQCmtTxVBz+91Z2RPA8chTxQ4AK9a+c0PIxm5DvVcGw8qL5Xu5OWqbz/Yks8VU/3upX9rzp1H+g8SG3TPFMVFjwRmdA8NsLwvPlfqzr5KQE7pGUoO9nSJD0vEBK8f6jcOmZvtzyhA/C87ZPMPKPahT3QJRQ9Fc7jPBXOY7ynDxk7eAgMPQuWsLyPzWo8Lc0nPZ3OXL0C6R89CcijPWZvNz1zdXc8JYedPFduxTxY+We9dz42PVCzXbwCxQO9XDeEPMR9UbxkxcY7r3m/vLLtBb3gjYw9JA4JO756Mb3z5627n7eAvG0GA75Qs129VMTUPIX8vbvxyN88B0+PPJo/A7ypZBG9wRIUO+CNDLzf+WC9UPKQvRYNl7smNtw8uiECPTK6ArwMYIa8gA/jPKG7NzycZ1a8UxUWvHCDzrwpmJQ7zgbGvPyUvryQYZa6nc5cPb5EBz3Txvu8tjSnvKXwyr1tBoO8kt5hPFcmjbxbfzw85heYPeMudLxSRwm8Q60dPd0HuDyUrG49KDEOPVtbILwbcwa9O4uvvCuKvbuaANC7eYEgPWI6JDzopvE7dXApvIXGE70I7L+8YFoJvCYSQL15pTy8TwSfPDuLLz1ukSU9MHeYPDjhvrxjoSq9o63gOzTQRzxAJ0m8X5AzvRG9bD2tWvG8l6cgPTsWUr3bFQ+82xUPvdOi37vifzU7yUYQvdGMGj3u+tI7PPI1vOCNDL2DUs295rTIvF9slzw7Ou47k5YpPaB4zbxa9Bk8r3m/PIp0u7uLI/o8YYJcPtXlST2AYKS8CXfivLbjZT2UrG69l4OEPOoNeDwuNK48xKHtO2AbVr3pXjm7eBoaueE8yzwkIBc9KFWqPXmlvLwt8cM7nll/Peo6Hb1swxg8fBkDvWHTnTz73Ha8tc0gvH75nTyZveU8HqgZu1mNE7vJRpC64LGovAWBAjwXUAG8Ju6jvKJq9jxJ1Fk90XqMvIHHKrty6tQ8dUwNPOoNeL1r5zS9Ej8KvDAmVzwWqkc87CzGutI72bzIjki9GR6OvJwfHj3REwY985bsvHVwqTs4bGE8kt5hPPDs+ztRGmS9ppYEOyjgTDt7MF88fZIXvWg9xLw/nCY83SvUvIa0Bb2nV9E8o/4hvLw3xzoPy8M8SPh1PY808Tw9NSA9V27FvOSV+jyAYCQ9nnQWPEOtHT0ZHo49p1fRvCvS9bzYax673Qc4vXE7ljz5Dmo6v+G3PIa0hTwSURg9GoWUum0YkTyZdS09hofgvNfyibxGV448rtwOPEoXxLxaGDa7gpEAPUQ4wDxKX3y9gqMOPGW3b73nbBC9GTAcu/yUPr27rKQ8getGvdsDgbzjWxk9VXwcveuPFT0crWe7pfBKPVbjojtDiQG9dfcUPKbwSjvUxnu8vlaVPZzy+DsPpyc9IP0RvCWHnTw9NaC8OgCNuzkkKbsOZD29tc0gPSjgzDtzUVs8TFquPAVm67sldY+8ZksbvcqtljwM/Ta8CBDcu73vDrwzRSU9+F8rvJLe4boCmF69BWbrPIhV7by3v8m86igPPIHHKj0zaUG8hCDauhG97LwoBOm7yLLkvDNFJT2DuVM9dLjhvLM59TxvQGS97FBivN6S2ruwvCm9ZGuAvNPhEj1a4ou7awvROg3ZmrsZHg68vDdHPSVjAT1P8hA8qHafPFriC733y/+8tFQMvZ+cab2CkQC9x3iDvIXYIbuLLAO7egxDvAT/ZLx++R0841uZu++yGr1w1A89fZKXu/fUCD3s5A09d2LSvMH3/LxZPFI9l3r7u1KcAbyWLow9RBQkvM1pFbt7l2U9kLYOvREOLj208Ty7wQAGPf0fYb2D3W+9VViAPBJRmDw3RI67n5xpO2RrALyBx6q7BZOQvEx+SrznP+s7m9wzPQz9trxVK1u9Q4D4uvT98jvut2i8J3lGPQdhHT21fF+9DhN8O6tErLtzUVu9lMeFvFKB6rw2eji9ru4cPSLdLLwh6wM8WLGvu49hFjucH567fE+tvCuKvTzMFB27OOG+u/AHkz1XJo27RDjAPOVNwryXpyC8XU3JOwEx2LwyaUG9PLyLPbpFnjsmNly8FKYQvXUfaLzMAg89zgZGOxHqEbvxyN+8FIv5PCmYFDzgsSg9iQ21PCO5kDulFGc89bU6vRv+qL14Gpq9FR8lPbe/ST1VfBy9GoWUvGzDmLygVLE8McyQvEV7KrzRjJo8Zh52O3mBoDyTRei7rhK5OyWrOT1KjKG82WsePOwIKjwsQoU8COy/u1bjIr1Fe6o8AYIZPK6d2zwO71+97jkGu5oAUD2kZag8nGdWvOMK2Lx++R09vwXUOm0qH70g4nq7FQ0XvYHHKjzksJE9RirpO3c+Njt++R28PX1Yu8KvRDuu3A48yI7IvBiccLwkDok6COw/PH8dOrzQJRQ94GDnvMVZtTunD5m9L7/QPLRUjLt47XS7pNF8vLagez3JNIK9PPI1vCvtDDxRGmS7f+ePuQovKr1eKS0999SIu3VwqTyqjGS77ksUvTHenrsPp6e8FqrHvNsVjzxpyOa8OtPnOyuKPT1IJRs863R+vBiccLwhZBg9XXHlO/Ry0LylQQy9gi6xPRIk8zcKL6o8u9BAPXN197wi3Sy8xH1RPDD+g7vqxb88ZksbvXwrEbuomju8PLwLOnVwqbz35pY8FqpHPISVtzwX7TE9W1sgvNDU0rzdBzi8UVkXvLM5dbyUx4U8xeTXPG0qn71pGSi8IOuDPDNFJbwkz9U7UfZHPQ8cBb3qxT+8WqNYPOeQrLyrIJA85OY7vYtQH73Eoe08r3k/vaKFDb1pyGY6h+5mvA5kPbyuErm8/tcoPdxqBz13+0s9SEk3PClrbzzxgKe8Zm+3O8Fs2r20VAy90vMgPIsjejzHnB88rM9OPGAb1rxosiE8iTFRvXlvEr113P28sZgNvdBJMD1kfY488wtKPNGMGrzZ0qS8G/6ovB4UbjzIAyY9nEO6u/enY7wuWEo9yWosuixUEzxkCLG5umk6PMwUHbycZ9a89SoYvabMLj0ufOa8IOJ6PCmGhj1/54871ig0PVV8nLxP13m8d2LSvCd5Rju53he7KFWqO1ixrzty6tS8nPL4PLXNoDukicS87W+wOzirlLxohfy8Tp2Yu4Pd7zsLusw8kXdbvPRONLwELAq8Y6EqvR0vBb3BSD69cy2/PLOuUr2bi3I951qCvNquCL3fJoY8UGulPC+/0LzbXUc9TPMnvOimcbuJ6Ri9OJB9PMOLKD1RGmS6eclYPN0HuDwiAUk8pRRnPLDgxbwIYR08IDM8vJgOJ7wYnHC9hCDaPJok7Dzd45s78cjfvKh2HzyJDbU8+caxvJ4147xTOTK9YFqJvNQJ5rsACQW78D29PH+o3LvZwJY8Z7IhOk5MV7qSCwc9Ul1OuUOA+LvWTNC8SbA9vEht0zxMomY9qrkJPGI6pD2cH548T9f5PMgDJjumlgS9mXUtPe+gjLx3+8s8xlk1uqBUsbutWvE8KB+APHroJr2QyBy9umk6vWAb1rw7ZxM8uiECvYPdbz2y7YW80JFovMEkIj3uOQY7Bh6zvLW7krx7l+U8iHCEPEXD4jwBDTy9GyLFO918Fb1TFRa9R6wGvTiZBr3jLvS8mOoKvRkwnDwR6hE6N55UPIRfjbqwBOI77ZPMO9N+w7zNTn48WY0TPHeGbj0SPwq906JfOwmb/rxswxi99E40vZNF6DyNZmQ88wvKPDP047ysq7I8rEQsvBO4Hj1g9zm9FYt5PKlSA728N0c6FmKPPDjhPjykZag8PM4ZvRY1ajyFq3w9rVrxPM7iKT2Ipi49X7RPO82fvzw0W2o8xm/6O41CyLy1fN88QkaXPJCkADxZjZM8wzrnu7gCtLshZJi8+epNvfZ/kLeh31M7qb5XPRXy/zxOcPO7kXfbPPy42rzvYdk82D75vBPcOj2SAv67Zh72u97RDbw0doG80bA2vB1BE72y0u68RfAHvZl1LbtTAwi9q90lveoojzyAYCQ9i1CfvWGmeD0FZuu8x3gDPR6oGbzEoW09GJzwOt3jm7weZS+8I6cCPPPnrbxxX7K8qyCQO3EOcbvu+lI8BCyKvKvdpTzGnJ+8J3nGvO760rsT3Do9j81qvX8dOjwC15E8tPG8vLIjsDywvCk8ytGyPDuLr7zq2cW7JRkrPTOMGr22Ra48AFcMvSzqkrzIIbY7YB8hPdt5Yz3nXSC8PiUkvbaIZL0mGSu8mqG8PB1aBzxKTeC7LyMCvV8fIbkclPe8jEHavAlZ5rzYguG8mRKKvOtUorzvE/68UpkkvOQIXrstqKW7+JixPMENGDywFb28CPkTPO20dL3+kPy8Q3svu6oCaDweijA8dW0HvRZaP70k6YE9+9EgvCX917wepgM927tQvXsGSTxX76+6eOmsvEnROry+F9+7AMkivfl8XrwpsSO7CLemPMDV8btmT5K9gRrnOzldgr1ewJc857ypvRqvAb3HZGy7I52FO5njKTz1ovi8YB+hvJglFz2VL147UQL1PDuO9LyswHq8Kp6WPArUQjwlXGG9HJR3u+tUIruYJZc8/gqQvKFyJD0nlAe8qUTVPMfCrDvOUSc9BR+uusamWb27ypm8ORLPPMx3wbsAa+I7gAYRPYX9kr0zXTq9pmmmuxe5yDyYJRe9yokFPCGnTDzeEJO9+9EgO3wPj7un5IK8jf/sO3qnP7wvggu8MYPUvIF5cDxr6NO8TuXYPAQD2zzxTO27WAuDPLdFrrv+kHw86r3yPEe1Zz3xxoA8FpwsvfloCLv70aC7C/AVPJ4dYjwTf5A9Oi4iO2tHXT3QUvC8Flo/PfGrdjx1sL0800gpPFiR77z6VkS8Zw2lO9SnMjvLuS69CkUQvLvdpjrsVWu8W4eoO1ceED3dlv88WQxMvd/9BT1BAFM9bKbmu/iYsbyLJL48LevbvMSJvTzPlF29I8Rour11n7z8MCo8BR+uvHWwvTwzjJo71MMFPPFoQD2Au928ogCOPW49FjovZri8IKdMvRN/EL0neDS8yT7SuxN/EDzRPpq86r1yvJXspz3NkxS9VRXKvArUQrwmpxS8MYNUvRFH6rwH3cA6Hum5PDAkyz0D5r48ylqlPKzcTb0e6Tk9u5s5vWvo07upAR89HJT3PF+tCj0X/P67KfTZu1xFuztSOps54kpLvamjXryqv7E8h6iYvJrk8jzhqAs7d4ojPcy697t0kyE9BR+uuw0NMr2JxTQ8bKbmuysR9rxhm0Y83rLSPMMqNDs8L+u8iiS+OzeXcr2fOv68z/NmvVQUAb0fLHC8YvpPvVUVyjyTEsI8T2C1vbjAiroAa2K8chjFO+KpVLyJqeE8Jng0PVcekDzaGtq8UL8+Ozf1srwRBLQ8l0z6vPloiLzoShM9CRawPLEeA71KTeA8C/AVu2cNJbw+x2M9eup1Pc/fkL0hw588GvI3vQlZ5jzpHHw8ORLPvKDbdLx01tc88KotO3VRNLs/4za74S2vPIoIazumC2a87bR0PCIj8jw5Es88D8vEPGZPEr0iZd+6f1zUPBacLLxHQgg9yfubvAbdwLvRPho9UXwIvb4X3ztm8VE9dw/HPKw6Dj3lg7q8bQVwPEN7Lz38FFe8e7AFPNu7UD1cRTu9EejgPM5Rpz29Wcw8kDhcPNj9vbwlnk48yD2JvW3COT35OnG7sNNPveXiQztXdFO81SIPuwG2FbyswPq8RhOoPSe7arqw00+9c5OhOz5oWrtO5A++miZgvcdkbLrDbKE6pye5PMFQTjzfziW7RZhLvRtRwbx1sL06H4owvZ3aq7273aY78+OcPMx3QT3N1ko8yMP1vBAqTjwVKha71SIPvRDLRLyClUO97i/RPMKvV7toyze8FioWPG5keT3QUvA8vtSovNJ3CbyZ46m9EqbzvEBCQDw9xho62gYEOwoXeT19bhg6Kp6WvAq47zzf/QU9/LVNPfsAAT2M4tC8aSrBvNnh6rxugEy9eup1O9c/qzyOXnY7MxoEPcGbAbz2HAy9fcRbvAsyg7uSEkK94i74u5JUrzwNDTI9BTsBPW8qiTvMua67t0Z3vYB4pzxVFco8QhwmPJgll71Mavw861QivdErDT3IgD+9aW33OvMm07xB5H+6+JixuzhwD72deyI9/Y+zPCpvtrx0kyG9gBmevdoaWrwbsMo8SO2NPEFeEz1LmJO8kJYcO249Fj1bFRK8Mi0ROiyMUj5SfVE9TAtzvBnCDr022V89CFgdvVYxnTvpN4Y8PxKXPEQ5wjvGBWO9gz8AvJjH1rseGJo8384lPZ+0kT0rzj+9NjhpPIRvqT0zXbq8kdlSPJL27rz9jzM9rprgvOVnZ7yf98c884QTPRDLxDseirC4o9L2vD3GGr2X7fA8FMJGvOo4z7xuPZY7Iz9FPUJLBryPN5O78UxtPLdhgboUgFm9PrMNvVfvL73qvXI8QELAPCpTY7yefOu7LpUYvZD1JTz+kPw8DfHePJy+2LxEvmU8+DkoO0AmbTwObLs8y+iOvfW9grpaagw9hRAgPFgLA72rHru8Dw77u+eg1rwsjNK8FT0jPOxBlbuyTqy7PcYaPZKzOD0zoHA9b5wfPSiVUL0NDbI8WgzMPJhMejv5OSg94Yy4PWhsLryLQBG9yfsbPA3xXr1Qv748iJWLvEG9HD2Vjue6GzXuOyW6ITyG6gU9chjFPOBcD73Cy6q7yIC/PJnjqTzmjAC9nmiVvNHNTDzYnjQ8F7lIvfDZjTwBhzW9mISgvHfN2bzqvXK9v5K7PPvRoLxB5H887+yaOxQh0LxSfVE8huqFvJA4XD1Zaow8r1jzuzDhlDzQzIO8se+ivLvebz29dZ87jzcTPTcRhryv+Wk8DJLVvMjD9bpS3Nq8xmMjvSa76jz0Qia8mIQgPJD1pTzFzHO6CRawvJVLMb1nPAU99l9CvD3t/Tukj8A6NsUJPaWs3Lxd53q8ZzyFveZABLwZky68qUTVvI8bQDzq2UU90W7Duymxo7wBthW94Iy4vADJorxrBKc8BO8EPbMMP71obC49x2RsvQq477ztcb66/Y8zvCjzkLzdEBM9VJrtvK07V7yWqro7i5+au0tpMz3GYyM9vwMJPNfNlDyYx9a846nUvEru1rzN1kq9xkdQu9TDhbyNXS08EgQ0vDAkyzttZHm7bPEZPB9IwzyLZ/S8L2Y4PRk0pTrQDzo9JUgLPTU3oLxdpES8uGEBPeBJArwneDS8XWGOPQBXDLzDDmG8azOHPS6VGL1pDu48Oi4ivFceED0DpFG9HVqHvT0J0Tv+qwY8hs/7ukO+5buABhG85eJDOoZw8rw7S768fxmePJ17Ij2ABpG8P6CAvUdW3jy4Ysq8Levbu4QQID0UPSM9PQlRvb4DibrkU5G7esMSvdE+mrwnlAe9Wq1CvZyqAj1xWrK8ZRfsO09gNTzYQHQ8h+vOOmxjsLyJCOs8zDSLuqlgKDzVBjw9pI9APAszzDxy1Y68V5CmvLJ9DD1bh6i7dPIqvfFoQD0ObLs8lBuIvF2kRLyw08+8gja6O4NT1jyaXoY8BTsBvSRbGD3cUoA86tnFPIYtPDwUPSO4sHRGPNXETr2ioYS9aQ5uvciAPz02lik9yomFvDtLPrxv31W8NpapPL11H7w6vAu8BANbvGpGlLx08io8NHkNu4bqBbsAySI9wmyhvP3S6TyU0NQ804vfvL7UqLt4LOO8n7SROvTkZTww4RQ8moVpvfUAubxBXhM9umsQPIb9ErzL/GS8ucFTPbhiSjvYuge9rppgPL4WFr3TSKk8hoxFPSmxo7s1ZoA7oaGEO6FW0TpZrUI7cIkSu6q/Mb1gDJS8QeT/vEehkTu6IN27krO4PDtLPrwAa+I7u8qZva7lEz0TfxC7/THzvNn9vbuQOFw95kFNvSqeFruVjmc8RDnCvAXAJLwW+zW91QY8PSYZKzzN1so8jYyNvAG2lbwQiVc7yT5SvQqRjLz00A899EImveq9cjssLUk9hW+pPM6TFDxYke+8kYMPPWhQWzwMTx+9i4NHvYAZnj2kq5M7zHfBPHSAFD0uB6+8cbk7vCEiqTwiI3I8K86/PJdM+rxtZHk8L8XBu7hiSrz+MfO7IMMfPBIgBzy9dR89M4waPV+tirtMyDy8lwlEvIokPrwAV4y8M106PNcjWDwo17294S2vuxQ9ozwsEXa8PcYaPb/VcT0QiVe9FxeJvO4TfjwDYZu8gtj5OwoyA709xhq9lY2ePDOMmr3Md8G8Pe39u2ulHTtSYX689l/CvKeGQj1MC3M9L6luPRnWZLkbNW48CnW5u77UKL0wCPi9dbC9vGAfITvuL9E8f7qUO9hAdDykCh29ucFTPC+p7rzxaEC9STDEvD4lpLxbtgg9leynPG0hwzvtEjW86vUYvf9pmbznvKm7ojA3PW1kebnxOJc7n/dHPfn3OjwOr3E8+fe6vHCJEjzE6Ma8x6bZvEPaOL2Rgw89T2A1vVSa7TsscP88QqoPuxY+bD2+Awm9m72POs/zZrwzXbq832+cO83WyjtPAaw7x8KsvKmPCD14zVk6DlBovPShrzvYnrS8dCGLvMn7m7rsQRU9U4aXub11HzzcUgC9NRvNuInFNL31ovi8ylolvYM/AD3mjAC9+JgxPWQXbLvkJDG97RI1Ox7N5jx6SDa9pgvmPOxV67uABhE7Jf3XvJvkcj3WgRg9jP4juleQJjyD9Mw8aQ7uPJFUrzuClUO8+3KXPER8eDxo+hc77VVrvThwjzwAa+I8TSdGPMkif7yfmL47mwDGOxnWZLyYhCC8YTw9vYB4p7vxOJc7ucHTO1Jhfjwjgvu77+yaPBgYUrosEfY58I5aPQ08kjxLrGm8yIA/u++OWryaoTw9UWF+PctbbjwEwKQ9mMYNPVN90TwMktW8dJRqvUys6Txmksi873qEPBqvgbwUgNk6Mi0RPTbFiTrHZOy8zNUBvVSa7bxYCwO9kCSGPIaMxbtXkCY9tkWuvNzY7DpYTrk8DTySO62ZF7khIqm8Vx6QPL4DCT2HqJg8D8tEvZNxyzyd2iu9QQBTvUT2C732vQK9b99VvABr4ryPG8A8BE6OPHwPjzzXzZQ8gvMDPc41VDxspua7MUCeuz7GGrzbeWM9y1olvKYnubrHwiy96+ILvYB4J71MyLw89r0CPfy+kzp08iq9OryLPBB1gbyV7Cc9BMAkvQszTDxD2ji9lNBUPBPCRj022d88iErYO7VrSL0vgos8LC1JPaPS9jwlGSs9eOksPctaJTzb1yM9dZRqPGAfobtSmaS7h897PGK3GTtgfqo8Qb0cuek3BjsvZji7CFgdvLGQGb30oa+8KDZHPGDdMz0QKk492gYEvIlmqzxMC3O8d4ojPSSeTr1SyIQ9vLeMvDuO9LzAkrs6CRawvK8VPbyZ4ym9Iz/FvCEiqbzxq3a8nQkMvTizxbxmTxI9gpVDPQq4b70pPw09CaQZO4gHIjwt61u8aQ5uPbWHGzwmeDS7y7muvB0rJzzRUvC74kpLvMn7mzyd2is86BuzOxohGL1F99Q7zLr3vJJwgrzbNq28PsdjPWszB72xt/y7njm1PABr4rxWMZ08gWUaPGAfIT3n6wk8YpqHPNKDIj3T7Xq9GOKKPJJ/Tr0IY3G9yDQsPcSvtzxvCFE9e/zgvGEqGr2lfUe979U3vditMLuTiok8kD9nu19P5bwIOQA8AC8XvO219ToAj6O8voADPJNag7yYSVC8umBBvJlUi7yDBso64fcAO22+nTyxrBg8kX9OvN03S7xUZpC9LfUKvSfwRzxj1Nk72ldwPLbbTLwkSy69oL6APLbWprtZheO8ITEBPdGuAr2qQiM9YpqHvNFDu7ytjNa8lwnpvBCoG71DPTe7mOlDvEV9Hj28BVs6qM2PvUbtCzweRmu937w/vEUiuL1e5Yy8FP2JPOCB/rykeKE7V6DivDlOTbwn8Mc8S+cTPU3suTykfce8PhhPvFfgSTpKrNI8IxaCvSlAkLzFtF28zwPUPD0OgzybLtE8srE+PB+BLD168hQ8ggZKPB5MgLvXEuO8odMHvJDVjjx3fYE8gIb7vIaLPj3si4S94qFAvejGKL0Pbdo8X+/YvLWbZTtMh4c7ImatvbdA/ztStrs8cugrvGsZBLxktLQ8s5GZvNzXPrxJp6w8+E8OvRLtqDxXQNY8Bn5wPIIGSrmUXyk62L0RPQZ+cDzRroI9lj+EOsp5Ob1PNu28OK5ZPIiQ5DzKOdK8lgTDPEaH6rxrSQo9TSwhvGdedD1Olvk7yxQHvN3c5DsxpPC8P7McO9XIrzynYsg8wIUpvK6Xkbx+ofq82LLWvOXhpzxhKho9Gvy3POpwaL0hMQE9JEuuPLWb5bygvgC9hKY9PRAIqLwseuI8KxpWvdyiErxZgD29d92NPIsQs7sCme88B/mYOnm30zxdqss8cugrvH7h4Tycbjg8uHtAvBi3Kr0tWj29h4u+uzFE5LtxSLg80A6PvKBY37zXrbA9kRqcvJxuuLxAuMI8DjMIvSVQVL3MuSC9s5GZPPYE7DzQA9Q9WYA9PKoHYrzsGxe99L/ePCeQu7yh8yy9qqKvPBpXnjtFgsQ8ERgJujRkpjy7wE08Bn7wPMt+37yuMfC8ImtTPIcrsjseRus8CuM/vNcS4zzDaiq8cKjEPM5jYLxG7Qu9OU7NPGhkCT1zjUW9X+9YvCaLlTwhK2y9gmbWPPF60Tw3CUC9SqcsvR5BRb0JA2W9NgSavNetsL1uA6s8VjuwPB8hoL0Jo9g81xJjvVwFMrzi/Ca8oz1gPC/aiz0vBH085iEPvf9T4rtBmB09itsGPZOKibx0yAa81I3uPJxpEj0H/j69xBRqPQPZVrytLMo7xUqFPdzSmDzULWK9CQPlOhbSKb0pcBY8yxQHPaL9eLx5F+A8HeE4usRv0LspcBa8nk4TvcLP3DxPnI684mb/vA5oND1Yexc69L9ePER9HjxWO7C8zSN5PLGxvjy3e0A7IctfPefGqDxCmB08DIjZPNpX8LwHWaW8IctfPWk+Tz27m4I8tFt+vCk1VTyO9TM8Sqesu6N4ITxVAO88ogMOvU7x3zwX4oo9pX1HPQYe5DzAhak7xNoXPdQtYr1IcgA9uisVvMZPK71VBoS80ahtu2V/iLxr3kK9KtruvFUAbz2PpQg8WOVvvUbCqzxDnUO9QtgEvg4ozby8oKg8wSpDvJ6unzxStrs8sawYPG7DQ72ulxG846FAPAPZVr2i04e9rOxivAH5ezw56Ro8bCPQvEjMd7sdPJ883JfXPPYKgbzNHlM7fDxIvd08cTxk1Nm8lGRPOyu1Iz0Cme88aZ7bPIgrsrqnXaK8PDPOvW2Ol7zs6xA8GHfDPInVcTwdfAY9e/c6OYgw2LuK2wY9YjRmPLNRMj1qQ/U8ofjSvKpCI73xetG7BHSkO2qpljwaVx49ZN+UO8QUajxKDF89ZBTBvDmONL2pAjy8cUMSvTDaCzxU9iI9GBxdPZLf2jyGJgw8q0dJvQLPir2JcL88IYv4PMEqQzzgIfK8opjGPFrApLw5jrQ89z8tvZRkz7znK1u8c8gGvVERIrq+4A+9Hab3PIu1zLxZIDG8IMa5vDhOzb2RGpy8CF7LO8dfDD0iZq08F9fPvFNWLzx91xU8Lv/Wu7DR4zxHh2o+bl4RPR08n7z8zu28E+0oPV1qZL0JA+W6Afn7OqAY+Dtuw8M7bwhRvaa4CLlAvWg70oMiPNLjrjz1/8U9vBAWvFMbbjxOPII92lJKvTlOTTymvS69mIQRvB8hIL0nKwk8ojg6umLPszwJA2U8Smzru0RCXbzBKkO87pXQOy+fyrs3dAe9B/6+PEyHhzwOyMA77ZCqu1Y7sDymuIg8QCOKvbvF87xk35S7NwnAOh8hoDwNw5o7cu1Ruyrabr0hy1+80oMiPTzOGz2ayZ688x9rPINBizzVyK881WijPOy1db3zVYY8gcG8OeoQXDzi/Ca890+OO5i0lzpn+cG7jcCHvDOJcTxsfra7QFi2vKkH4jxIYh89qW0DPISrYz057kC9J/sCPfmJ4Dz4fxS7ca1qPbB8kj3GVFG9aDQDvAUZvjy21ia9P1OQPOXmzTxzyAY96MYouhXNAz0R6II8umBBPIkLjTy7mwK9o3ihuaYduzsremI8hoaYO0I9t7yc0+o8n7PFPP5OPL03DmY8quIWvfkkLr067kC8PRMpvYbrSjwH/j69yxQHPF6v8TzjbBS9IMY5PH7cuzna8j09NwnAOzA/vrxwox66Hab3uRm8ULymiAI9WHuXOzopAj2Iy6W8tTazOojLpTyJa5m8qW0DvQV5Sr2jeCE9+El5vNHeCD0jq7o8QjiRvJO/tbw2pI29YI/MPOSmZjsyhEs8pOgOu2QPGz1xQ5K80oMiPPT6H71vox48Mx8Zvfb/xbrLFAc8C34NPRY3XLxqQ/W7A9lWvQKfBL2hA467rOziPB18hj0pQBC9Bn7wPGQUQb3cMiW8SAKTvM/+Lb3AhSm8FZfoPIp15TsbYWo8RYLEvM8OD7v57wE979W3PFzQBT1D2AQ9c/gMvbugKL1oXvS8na4fvWdZzrxLrFI8QmgXO5jknbwJA+W7bH42O69nizzgJwc8yjnSvBWXaDx68hQ7rpH8PNbN1TzZvRG8ydnFvHethz1iNGa8s/ZLPCDBkz3dEgC9wWWEu6qnVT27xfO8jZUnPX8hyTtD3ao87LDPvDdJJ7371II6vQXbPOBcMzxDomk7u5sCvWQPGzyajt07LwT9u2JqgbsnKwk9prgIupekNr1ltDQ7iQsNvGmeW71UlhY8koR0PU2RU72F5qQ7Ou5APOYmNb38CS87C6j+vNKISL1ziB8758aovOurqbz0+p87vECcPLP2S7vt9dy8KxWwPEL9T7ySH8K7cu1RPWdZzryjowE9mOSdu9ryvbxqQ3U8eBI6u8y5IL3t9Vw9VjuwPLJRMjvOY+C8Zdn/OjXO/jwy6f06O84bOq8Mpbx3rQc9LwT9O25jtzyc0+o8PhjPPKlnbjzvmna9HKFRvd08cb3v0JE9z/4tPTJE5Ly3RpS8N6mzuxgXtzx6kgi9EU21u4BhsLu8ALU8b3MYvAhj8TuWPwQ8zl46PQa5MbwAj6M8V0X8PExR7Dz2Oge8WwUyvU/RujzytRI94fcAOxOyZ73uMJ46G5eFPIIGyjxz+Iy8ZNTZvJwz9zzukKq8ZRnnvPMlADyfs8W8MJ/KPFWbPD0ksGA8mLQXu3hSIbw3RAE8dm0gvDbUk7woMC+9PJ6VvLNWWLyxfBI6WEsRvM7+rTyIy6W8FjfcOxbSqb1h+pM8zcNsvPsu+rwEFJi8gIZ7PYiQZL3dPPG8dxI6uXONxbtIZ8U7XuUMvVmAPT3GVFE7xHT2Ow9t2jqY5J28YcoNvL/ltboFGT68OU5NPGqplrxZheM7/M7tPIAshDx4UiG8/hkQvLvF8zycCYY8X+/YvKGTIL0kS649WOVvOwhphjzt9dw8wWUEveXmzbxJzPe5srZkPEbtCz26K5W96gs2PC1avbxCmB28V0DWvEjSDD0Xch0805MDPTMfGT3cnP28EM1mvIBhsLuxEUs8P1MQvFBxLj1X4Mk8SaesvZRfqbvBis88F3IdvD3YZzzedzI9A9lWuSDGOb1/vJY8v+W1OqC+gDydDiy9Mx8Zvbi7Jz0drIy9LbpJvf9TYrwaXMQ716gKvYVWkrxxEww9qW0DPSDGOT28QBw8uiuVPIOhl7zc0hg8RofqvfAVn7yes0W7tdEAPELYBDy3dpq7lgTDvC+apDyR31q8xA9EvVjlb7wdPB+90Ah6PdYNPTwLTgc9hyuyOwWEBb1VYHu88xpFPEBYNj3574E7OzNOvCSrOj26Wxs85ya1PFIWyLzMvsa5vKAoOjruQLwFubG80a6CPXiyLb1MUWw77zVEPTGk8Dx1Mt88WiVXuyf7gryfE9K8B1mlPF/v2DuJcL878/qfvEC4wrz1X1I8WiVXOxtharzcQgY8qkIjvU/MFDtKbOu8esIOPRNSWz1fiqY8pYLtu3GtarwYF7e8xUoFvTOJcb3vABi7XaUlvfMaRTzuVWm7KRAKvXhSITw8Pgk9v+rbvPvEoTwo0CK7Eu2ovEfHUb34Sfk8X4WAPV2qy7yh+FI8SGKfPKlCI7ys57w8sGwxvUu3DbzErze9W8VKvNcSY727m4K76GYcPVmAvTszifG8XhWTuf5JljwM6GW8XuoyvI31M70p0CK8WOXvvOMMCL3uNUQ8JBaCu4CGezsTsuc8CuM/vDhJpzw9DgM8FtfPOhh3w7zO/q28HkHFPPh/lD0yHxm8EeiCPSSwYDza92M9fXwvPR8hIL2WafU8cKhEPAk5AD1bYBg8KPXtO0tHID3qCzY9eldHvZ4TUrsgxjm9gIb7vKWCbbyMGn+8poiCPZwz9zvvcAW8EU01Pb6AA7uCZta8Af+QOp1zXj2CxuI8ydnFPJnu6bzMWRQ887o4vX+B1bzDb9C8vBCWvCnQory/6tu8Nm7yO/Y/rTuo/RU8DTOIvKH4UjpKDN87W8rwvJrJHrykfUe82vdjPZLf2rxD2IQ8xHqLvEICdr3lgRu9d62HPJX/nDzcl9c89p85vJmJtztz+Iy8QLjCO5Lf2ry+5bU83hemvLSRmboyhMs8otOHPMy5oDzRqG29XUUZPDQpZT32pN882l0FPYSrYz3UyC+8jCCUPCt64ru6KxU961DDvKH4Uj1q2Zw8nrNFu5uO3Trru4q8DihNvMvkgLxFIri8HTwfvRbSqTyyHAY9opjGPHT4DLw9eNs7kD9nvHcNFD24uye9b2hdPRUytrpZIDG8wsq2vI3AB72MGv+7MKoFvOKcmryPpQi8B/kYvVswEr3L5AC9iCuyPJvOxDyZ7mm9rIIKPYRGMb193Ls8WesEu0BdXD3s6xA9g0ELvTZucrtnudo89WR4OyaQu7vXbck8Nm7yuw4zCLyFRrG8MyQ/vPvEIbwB+Xs8RsKrOwdZJT2WCWm9fty7upIfwjyShHS85AbzPHyc1Dxu/gQ9w2oqvI1YizvA0SU9e/EnvbIh3DwTlUG9l882vYKxuTxqohc9pGB2PV+p57yl20O9ApiPvXsal7xmcLA7PemOPNzpPzlnmR+9pE9aPCguDL108NO6RC7TvBqnsbzAqLa8X17Au1mNEr3n8wu8uW1XPKUchrt7Zb48bqsPvD3An7x0QrK8//GRvelA9Lz4MQA7BcM/PFK1LT33Uzi845g1vUsvJz1ucQS93Ey6vPC13jwoyxG9PZewPJQHAbxRY8+8KMsRvPUoCLyQlFe9xMmBusCQ47r1KAg9dDt7vJ4szr1YTFA847ptvXTOm7ohHJy9ueHtvJDVmTzVKa67zu7Ou+P7r7z+TdW8wPPdPGpojDyQYQM9OqYLvdXehrwhoU47nT3qO8DiQb08LX+8l6bHuxQQjzx0pSy8IkWLPFEAVTw2hUA9Iex1O1LenDzcEi+8rO0zvQwPu7wvegc9qDaauT3AH7uU3hE9NgpzvQYVHr3qNg+9UqQRPIapFb3jgGI7OmwAPDbXnr3OtMM7IaHOOtXXz7uNkpY7nkShOkvMrLzcAZO8EM0Lu+ppY7wv52Y7X5jLO/9UjLvqu8E68TCsu/4TyjzVKa48DWGZPVhdbDykYPa83NijvDMgBT25v7U8L/85vOPBJD2Xlas73CNLPTbGgrwQMIY91VKdu54bMjrikf67szmvvMfLQrzB+pQ7BTfWO21S+rx7AsS64/uvvAYmurvqaWM8RJHNPJdbID2JDlG9Bk+pPBQQjz0v7h28l+DSvG0wwjzZWxW9wKi2PEsGOL1ttXQ7cbQHvUoo8DsNYRm9IfMsPVk7NDz/2b48iQ7RPKvmfLzuPwc9bTDCPBMyx7whFeW8r6uEvKyijLwoOHE6HmUCPFGdWryQCO66x7qmPblE6Lz/nzO9BdRbOw3Vr7wenw29uflAvdw0Zzy6OgM9+CrJPTZLNTxmu9e7dN83vcf0MT3+sM+8E74wu1+p5zz32Oo8kHIfPUTSDztmHlI8dM4bPPdk1Dx7K7O8SijwvJDO4jttkzw8IkWLPJ4Klrz/Zag8dGuhu+qS0jzIRpA7L7QSveq7wTwz95U8iRUIvV8MYjw2rq88iQ7RvMe6Jrye4aY8/sFrvSw3BL3jgGK9E/g7vZeVq7ydd3W9asuGPLmWxjyseZ29x4CbPNmEhLzBXQ88bc3Huwwg1zw8LX897haYPLo6A726rhm7IXhfPGMcET1cloq8L4sjvMcFzjxt7/881YwovRp+Qj2Qcp+7giwHvOndeT0enw09zqOnverksDwM92e9Df4ePAZPKTwMINe8L1v9uvhCHDu6S588sjL4uygn1bzH3N48wAR6O0HyhrzjRtc8myoNPS+LIzxV55Q8IbLqvBDNC7wJRwU899hqO09hDj09HOO7DEnGutV01Tz/Zai8wNGlPMBWWD2U3hE9l8+2PKTsX7ylZ605S7sQPVER8bwGeJg8S2kyPaWhOL0liA49FOefPdWMKD3AqLY8/vt2PAXldzyrD2y9dFNOPdWMKLy5lka9KAWdOiWIjrykw/A71SmuvKzExLzABHo9NnQkOShyfL0zIIU8GgN1vMuJE750MRa9RJgEPZCUVzs2v8s8jfWQPHsaF7xByRe9WK/Ku7qFKjuCTj+9T2GOvRRzCbuep5s8pInlPKRgdrxnwo68nlW9O1ivyjyXfVi8/odgO723Eb0o7Uk8+BmtvKtJd7xfHX48gk4/PfwRCT1SzQC9s8WYvCib673qNo87gnD3O2fTqrptGO87Nad4PV+A+DsTpl27IWdDPZchFT3HUHU9WBLFPAVgxbz3dfC8QwXkvGqil7zBNKA7WQEpPbOcKTxDouk76oG2uihh4LzqqqW8iYJnugzmS70U55+7gj0jPc9YgD2z1jQ91a7gO/H2oLyCTj+9AvuJO0TjqzuCFDS8S2kyvSjcLT3/nzO93NgjPURXQr0hfxa8x4AbvZbIf7s2v0s8x9zevFyWCj34fKe7pWetvP/xEb3cr7S9kOY1vILC1TzcbnI8z5ILPbl+87zOLxE8j6XzPD1FUrye8kI8WMBmPvDGej2CLIe8KNX2vPjHTj2JeIK9DPdnPOMd6Dxtzcc8PUVSO2Yvbr3jJJ+81ejrOxNs0jxZx508Bom0PTaur7xSjL47q+Z8PeNeKr3qBuk74x1ovZSkBj174Iu86pJSu9XGszzO7s48HtkYu2ZwsLs2hUC84pH+vImyjTuy51A7PbnovLOcqTyd2m89XDMQvDaFwDshHBw9/BEJOyEVZb3VS+a8WSqYvIKxuTtmgcw8416qO8ezb7zACzG9r4IVvEq0WT09ueg8iYLnvKQmazwoOHE8pP17OmYGfzwTVH+9pCbruVKMPjyzYh46zlHJvFGudrzVjKg8EyGrvM5RSbwhuSE81ehrvJBraLxYI+E8WWQjPXh0mTw2ESo9FxkHver1zDzOBiI9SNsHuiibaz2eZlk9PPNzvJDVmbx0a6E7S0BDvUHyhjuX54k7q6zxPEg+gjsaLOQ849JAuYmrVjyXlSs96mnjvOpp47u6hao8SBUTPPDv6bzABHq8bUHePKRgdjxtzUe9Zi9uPOO6bb37rg69DZukvM56OL1Y+vE8Y7kWvUSAsbzx3s08jbsFvVl1vzxYr0o7SwY4PWZwMDyxMni8BhUePGaSaDuyz/28E1R/PUujPTus3Bc9pGB2vJe34zwap7G8BTdWPJ4bMrxELlO9G5YVPV+AeDzHP1k8bVmxPAUO57svhGy8E5VBvb19hjxjRYA7pE9au0q02bsMcjU9GmbvvIlxyzvAHE29l0PNPIIsB73qaeO8/uraO6v+Tz0abSY4/upaOzZ0JL0oUMS76i9YvILC1TzcXVY9bc3HvH/AFD2Q/oi9UsbJvHQBcLx7txy9L1t9vHRrIT021x46/2UoO3/AFDsTCdi7uksfPav+zzyJJiQ8GtCgPKTs37xmR8G8dPDTvGYeUr0aRLe8XDOQvII9o7uCjwG8GtAgvKwnP7wN1S87955fO1l1v7wvhOw8Sx6LPHvIOD3qzN083MBQO2bkxrz+wWs948EkvGYGfzxgE5k9WDR9vDbXnrsoOHE9ibzyvAyswDyQSbA6zrRDPbkzTL0hsmq9M/eVOi+cvzyJiR68E5VBu1J7IrxE9Ec8kKyqvOP7L7t1lJA8iSYkPdVjubxtpFi98TAsOvillrsTbFK8YOopPS9zUD25vzW98c2xOok3QDw9f129if20vLlcu7y5+UC9L3oHPYKZZrx7txw8PahMvBP4uztEmIS7dZQQvW28KzyCLIe8nvLCOiibaz3jum05j6XzPCjcLbxn0yq8nqebPNxMOrz/PDm9x/SxPYmJnjyhTRm88YIKvbqFqryUB4E8S2myO2B2Ezw64Ba9e3ZaPWA8CDzqqiU96jYPPImaOjz4Kkk8bfY2vS++d70hf5a9X8E6PfGTJj0b+Q+9pT4+vJf4pbzqklI8lHuXvBMJWLxEqSA83CPLu3SN2Tyefqw7yKmKvC96Bz0zvYq8BavsPNzpvzykT9o8IQTJujYRKr1t9jY8z1gAPeOA4jzOi1S9Bk+pu3VaBT0TlcE8shBAuoIl0LxfmEs9L90BPFFjz7wvIXK8+LayvAzOeDx8Q4Y9AjWVPJBhgzsG7K68fEMGvLPFGDzcl+G7PekOve+Mb7ttQd67ujqDPDqmi7zVeww9E1u2vP5NVTtxUY29WPpxPM9YALyCTr+7QSySvCgnVT1te2m9lHsXvMdQ9bqsirm7Al6Eu21ZMb254W093MBQPCgujDyCmeY63F3WvNzHB71DBWS8NhGqvPXFjTwN/h69FIQlPLm/NT0Fw787l4SPu/tLlLyziw09gsmMO+MkH72WK/q8DIPRPZ0DX7uX4NI8lo70PHG0B73EyQG8e3baOyHzLLco3K08zrRDvQlHhbsMrMC8kP4IPM459rvEoJI8bVJ6O6ty5jxBjww9SrTZuzxW7rxj4gW8xAMNvJ09arwhkLI8iUhcPG1Zsb0hVqe5zlFJPBqgerxEurw7LzlFPeCnEL094te8x1esPNw7nrwMcjU8ewJEvdXGM73EZgc9lo50vfGTJr2sxES8VRCEu5cJwrxZ2Lm8kIM7PZeEDz3qklI941dzPNI4iTvACzG8/58zu7lE6L2Q1Zm8Zqo7PC/Frjxmkug6XNCVPJAI7rxfDOI7gsJVvZfPNr10CKe8ZuRGvShQRD25XDs8be//O6/lDzyJN8C8be9/vNXeBjtE4ys9NteeOgysQLwsDhU9L92BOWYvbjwa4Tw6e8i4O3vxp7z76Jm83DsevdzAUD1S7zi9Zh7SOzMghT3qBuk7E89MPT2oTLzjh5m8bVL6vGaBzDt7K7O7dCpfu5CDu7s9TIm80nKUPJcyMTwvtJK8NoXAOwVI8rz8dAO8ZrtXvBMadDz4Qpw8e4d2OlHXZbw2Eaq7boIgvQLSGr2l20O9e9nUPOqBNr0vSmE9L0phvNwBE72kw3A8ROOrPKzExLwom+s8bWrNuzYAjrtLaTK9NlzRPG6rDz0GsqO7xwXOPBCTAD0QzYs5UUt8PBPPTLw2M2I83AGTvHymALxKUV+9IRXlPFGdWjykstQ7S1gWvZfnCTyss6g8WOnVvHTOG73A4kG9/hPKvHTft7n/2T46Us0APZaO9LshHJw8BdTbuaWQHDpERiY96ljHuw2bJLyCPaO8KBY5vPFqNz3c0Ww9bd5ju8dXrD1nNqU8L5w/PQayI7xfHf68KfQAPRq4TbyylXI8e/GnuxRKmrzAof88JcKZO3FRDb17ji29NnQkvSh5s7yXlas8ewLEvFEAVT3c0Wy8iRWIvGc2JT1clgq7YCQ1vbPuh7yeZtk81YXxPJd92DyC2qi8KFDEOyh5M72NWAu9GrjNvJDmtbx/6QO9pGD2vJ3abzzS1Q48KfSAPLKV8rv4Ga08+LYyPHRk6rzARTw8IWfDO1+pZz3n8wu9Ico9PJD+CL3A8928RFdCvayKuTyQSbA8wNElPAaJtLyNHoA846lRvMe6Jj2J/TS9yEaQPJcyMb1mcDA8QY8MPcAt6Tysoow8e44tvXX3ijyxMng9skpLPHTOGz02ri89c/DTu8cuvTzgRJY8BXHhPF/7Rbzq9cw8KNytO0FVATzVtZc7zt2yO+qqpbwvKCm8iSYkveoNoLx0a6E8L+4dPXu3HD3HFuq7L4TsO/8agbx7AsQ8uuikvMBWWD1uDoo7Q3n6uz1MibyNuwW9KC6MvFFjz7z3Adq8wMruvJdDzbwvhOy8naDkvFJqhjyeZtk8M/eVvf6wTz2QYQO9IZCyPMeAG7xEmIQ9KZGGPInsGL2eLE66kGtoPNXvorw9+qq8NnSkPJfPtru2lIU8L4TsvOMkHzwhoc68x2hIvOPBpLwGsiM93CNLvShh4DtZAak4bUHevM6LVDy54W08l8+2PBoD9byMX7a714ZLPeV8Er24Afk8U1kevVj3UL0XNfI8qfkhPV97fD19H0S8nlJ0vVmYjL3bTc+8hNacPMw2LjzLNq47wb0/vdZBjjyxgru8CC0bvIaEerysUpe8MKmVvKn+j7vyPyy9j0Uvu84mAzwsImG8q9osPK2SZjt3EwO9D7FGuxaMgr3UYIO8XtIMPB7sSjxCOCE98To+vFn8Pr3dUj09FYcUvTZWkrxhYfU8HRAuvfPy9zwILZu7BGGpvEudV7z8qVC7wccbvR0LQDtPacm7GGifPE9pSbwRktG96MsrPEFchL3xDH+8fEiVvT1sL7wEYak8HuJuPJOogLsIBMq8RvXIuUQZLD2B4dk8/3DUPNpD87wKE5S8Nr8yuyDSwzxWFka9/2tmvHsQ+ruyWWo8WguJvOAZwTzMCG88uhofPTPP3ToVjII8yFC1vKvaLL1u6a28q3EMPWNwPzyImLK7sVR8PMKZXL08lQC9Z2UCvT52izyJNAC9iaKOPFQwTTxo05C9FRQYPDOPDjy753G55eBEPCLhjTw9YlO8qtU+u0udVzssUKC8R9ZTPJAcXjyq1T48fSQyPPjsqLy+rvU8WM7/OwVHoj19JDI8/5klvUrqi7z/Kxc9N8kOPTESNryl//A8Liw9PHGmVT39Soy8U1SwPdtI4Tu6PgI8GEQ8PMOoprwXNXK8x0Hruztd5bvKLFK9K3SDu5fTtrz0ILe8mpDePA2ifDwvMSs9qqd/vZAmujw5fFo9iXRPvCd/wLweGgo8ls7IvIPC5DwwrgO9yOeUu6y7N737aYG7BRnjvF7SDD09A4+7YHv8PDxnwTxZ2Nu8IdcxPfn2BD3LzY2849tWvaIZeLwHvwy9Y2vRu8+UETwNy028b7tuvO0Kmj0BUt+8l9M2vcs7HLwwF6S76o3BvM0cJ70raic8XZrxPIHh2T0ApAE88hFtO1t5F73i0fo8jfsDvZ6FIbzXIpk8SOCvPMKZXD370qE67XioO8UgkTwkwhg8DO+wvDCuA71X7XQ7KY6KPFJKVDxd8YG8yw1dPPnxFrxbeZc8/iuXu30a1rwUFJg8cJx5PMdvKr2stsk6QS5FPNK62byRIUy8yVWjPOPWaL3Gkw29xmo8vdKw/byU6E+823EyvfPydzxD5n679guevbUg7jxZ0+28zbOGu7VOLby4AXk8LSJhPWJhdTvSsP28FBmGvEysoTzS4yo9oGG+vBGN47wmnrU8P1IoPYWtS71SVDA9q9qsu5nigDvOIZU99S8BPYmdoL1wnPk8a/RqvTeRczxmf4k8A1fNvJMRobuTqAA6uhWxPArlVLxxYZi8JZTZPAXegTx9Gta7/ID/PMN/1TzZmgM8vty0PAXeAb1zgnK8zRJLOxpOGDz3EAw9kL0ZO7P/EzyMiAc9uQbnvOP6yzwNonw96NUHPcki9jyIk0S8jVrIO/rIxTzNHKe8NP2cO5MMMz16OUu9J1bvPBsvoz1s1fU8nzN/PHSRPDzBnso8YiuCvdHUYD1y2YK8u+xfvfm+aTvaQ3O8tHIQvCtGxLwp/Bi9V0SFPemiWjxRSlS980kIO1BAeLtS6w++23EyvSO4PDzZlRW7BGGpPLg0pjyFqF28bNX1vN4uWrtztZ+7VdGIvSFukb0FZhc7ZHqbPFn30DyBFAe7ayeYvJBPizz8rr485ASovJjYJDp3fCO9AldNPETm/rx0tR+8WZiMO+QOhDyz/xM9a/TqvOL/ObzcKey9FllVO02nMzwwF6S7Y2tRPHcTgz1GzPc5LFCgunSRPD1Qbrc8r3hfPTMCCzw9cZ28mbTBvHGm1bx8Q6e8GeAJuQz0Hj3xY488yEZZO+XlMrytjfi8IuGNvIDcazyxhym9w39VvI1kJD1quYk9uhofPTpY9ztTJvG8hGgOvR7sSjzmwc87HaeNvOLRer3l5TI9+2kBvYGCFT3O81W9in4rOq+hML2V7b271116vCxQIL14gRE9mYvwO5q+nby+AJi8dIzOvejLq7ztc7o8UXMlPO0PCD2ttsm8xjz9O7kQwzyKFYu7nHFpOx7nXD7Um2Q9Tl9tvBQZhrwFOFg9+2mBvc0Xubo3luE8/49JPOlDljt3DhW939SDO2KZELz/cNQ8p+XpPCaokT1beRe9boCNO54Xkz12mxi9qPSzPJXE7Ly0P+M8rN8avLJe2LtqIqo8wb2/POPWaLri9V28okc3uotQ7Lz2AUI87QoaO2ct57xxxco81aVAPVFFZry1ST88DPSePAzqwrrJIna9HRUcvUjlnbzdM0g8vuEiPAVCtLs3m0+8pgRfve0KmrtkdS094bUOPUxDAb2iRzc8UlSwOywdczzO7mc8OXdsvZsxmjxeyDA8sYepO2Yo+bzBmVy8VdGIPNZBjrzP/TG8avRqPOLRerxF+rY5iJgyPeW8YT0YFv08nDYIPZXoz7xkR+48HAtAPQESEDzpsSQ9LSw9PSxQILvcVyu9cs8mvLJeWL0uVY48m8OLuS8D7DxmKHm7G8YCPQz0HrzFYOA8RSMIPdwk/rzwXiG8zhynOyaokTovA+y8meKAvMlVozxRc6U8VCtfvRb6kDz34ky9HefcvAP4iLyNO1O99CC3PGk8Mb3Co7i8Tlr/PImiDr09Q948nJ8ou45AQT2Wydo6sHNxvCZ60ruV7b07XsiwvNTEtT06r4e7VdEIPfnIRbyChwM9Iq5gvG6ADTzoy6u774IEvXs03TzEeuc7fwDPPKMe5jyLUGy80rB9vI9KHb1wyrg89fdlu8GUbrtOjay8buQ/PWz+RrwEZpc70AeOvdpxsjxhhdi8ls7IvFu0+DtrHTw9zRc5u6UJTTiavh29XsgwvMwIb7yB6zU9T2lJPanG9LzuT9c8cJx5veu7gLyPF3C87JwLvUIFdLxw8wk9nzN/vLKMl7s7i6Q7u+zfu6FCST2zXtg8NlYSPPjsqDzZZ9a83TPIvAkyCb0pN3q9iXTPvGdlArp+KSC8Nr+yuwoTlLpctHi83WEHPB/Debs/Tbq8LjGrPIWtSzwbLyM9pCPUPLqskLy77N+8BDNqPfyk4rtI4C+5qfmhPdJ6irxI4C+8qcZ0PXiBEb1dXxA9vdfGuyLhDT1VEVi9GSBZveDwbzycn6g8r8qBuxsvI7s9PvC6PXEdOufGPbwi3B+8fSSyO+MEKD2n4Pu8c4JyvZQMszlhuAU74SOdvPYqEz1Lxig9PF1lvQgtm7qBFIc7bd9RvVn30LzrKQ+9wLhRve5P1zxRcyW8uxUxPN9CkjseGoo8SLfeuzPK77wCTXE8J3/Au/m+abyddlc9nlfiuy0i4Tw9PnC82nEyvIayOTwChYy8V7ITvdp2oD2PRa87NHUHvKE927yTNYS8hk4HPVn3UDyYquU55sY9vXwaVj29+6k7Zla4PCo86Dw6hrY86kiEPB0QLr3cJH69k95zvdxXKz00z109mNgkvR6ImLzVpcC8N5HzPG6Ajbxs+di71MmjPJm5Lzy1RNE84tH6uZiv07vBxxs9ot6WvGyalDz+K5c85eqgPFNPQjxfqTu9CPX/PLoVsTwN+Qw9/o9Jvd0k/rvpolo9zEAKPKzkiLximRC9noUhPQ5siTuToxK91GCDvMUgkbyPHN46QVyEPeEjnTzcJH67iI7WvCajo7uC5sc7c4JyPEX1yLzteKi87kX7u3aWqjz8syy8ot4WPdHjqrzTW5U7jfaVvWCzFzywfU07ZHobvMRb8rs8YlM9BThYvdG167tNpzM7eVPSOzW1VjtCOCG9EqEbPQ5sCbqpi5M8H4gYvD52C719H8S8RfVIvLCrDL3JS8c8ZvIFvQrlVDwjuDw9meIAPKrVPrx7Prm8IdcxPdTtBjyQvRm9n1xQvfMbyT3GYGA7bumtPCDSQz2p78W82Iu5vPEM/ztyz6Y7Tog+PNHePL2LS367VhZGvDT9nDsqaqe8ZlY4PF+f3zzzIDc9vnMUPY32lbz3EAy9GyXHu45kJLwJoJe8jF+2PGoiqjw6HZa98DXQvLKHKTyuxRO8xITDO/+eEz24Lzi9RfDavEIzszxD6+y8GU6YPOAeL70WWVW9t1gJPTqBSL3XXfq8XH6FukEzs7tAKde79xCMvOlDFj3v8BI9OoFIPYlvYTwBdkI80rB9vN1XqzoOp+q9ip2gvPjsqDvZmgM9soyXOzyLJDxdvtS8gNf9OU2nM72TAle9SbfevAnbeL1xzyY9m8OLPEqTezyvnEK8bumtvH32crwyIQA8u/Y7PbUg7jpeyLC7vc1qPb54Ajypi5M8GBtru1+fXzxQbje8IqnyvGhBH725EEM9N1YSveuSLzypxnQ9nqkEOxjgCT2GToe8VRFYvLgB+bxyptU6N1uAu5b3GTxpRo06BGGpvD/kmTxCOKE8r6GwvChbXbqZr9O8wZ7KvM74Q7z+lLc8N8mOPNTEtTsSwJC8b8Bcu0I4Ib2i4wS9AVJfve1K6TzLOxy9k+NhPbNoNLyADxm94v85PPQgtzxI4K+8/ysXPZEhzLvqiFM6w3X5vNWlQD0K4OY8KjzoO0BXljxWFsY8aRjOO+XqIDxnN0O8rZJmPFLrj7rfFNM7PF1lvbYlXDxhJpQ8R9tBO0b/JL0HKC083VyZPAMu/LyLUOy814s5vRKcrbw7HRY8yzauO8/z1TxHCQG8AYCePJx2VzzsZHA7Tlr/PNSgUrxilCK8ls7IvHFmhrwi4Q09CARKPfAwYroaJcc9xYTDPJfJ2jyZ4gC8d3wjvY07Uz1kDA29kzWEPCU1lbuegDM6Lw3IPDAXJDw/Uii9/r0IvbGCO73lgQC9+9cPPFJUsLwK5VQ9wcebuzT9nLw02Tk9ahjOOrJjxryiTCW8cJz5PMC40TzO+MM871TFvE2D0DusUhe95bzhvK84EL2+eAK9dYzOvNln1rzP/TE8mNgkO2KUojyrp387jTblPFAFFzyGsrm8rziQO0qTe7xSfYE9oT3bvLJZarwSoRu9QjghvdeLOb1Kk/s8G8YCPQoOJjxST8K8D9+FPAkJOLokwhg9NM9dvTT9nDuQJrq8IAADOzqGtjxeyLA84A9lPG2fAr32BjA8xHpnPfYLnjwkiv08P+kHPfb8U7zpQxY9yw1dPFUwzTyHToe7CPV/PHd8IzyykQU8CC0bO5XtPbgYG2u8vq51vDL4Lr1u6S28S51XPHn0DT1XGzQ9XqRNvITWHDx5WMC8t1gJPf1KjLwz1Es90rB9vA+s2LzUoFK8AldNvB0QLry3WAm9cJz5vBGS0bwaIFm8I7POvAj1/7xPX+08wccbPZH4er3taV49eVPSvLoaHz1CPY+8xpONPZ6AMzodEC68S5hpOclVIzw9bC+8+2mBvMC4UTzAWQ28V+10PPIR7bzLDV08wLjRvArg5ryA1328hGgOPcG9P73f1AM8mVAPPOG1jrxZ0208p+VpPIHmxzxVPxe90CPBu/KIGT3JuOm8ZDs9PAtga72NWCu9SXuLujPSNz3fYT09QVyNvHJVJb1UQXq9bWNAvbkAFrxF8A48L/Lcuz6Ft7wT3cw8X+EKvdXAxzuUbqS8kqDTvK9xKjuQjkm87vQXvdRZ37vBkGY8UKTzunadzTwpmCo8CN0OvboSoDzPEbe9z10QvZ4PGrujV8K70t8HPQbD5LvGgku9keMnPb4Farxh8xS9JfujPMsf0ry8NrQ8hTCovO+xw7zCjwG8mQurOo7A+LxncVu8InAnvLV2fjwjP108fKE8vWKwwDtD3oS9UmC6u3himb0WE+u7dlp5vOoCszxIJi283ZKHvF/hCjoWvSc9hMm/PM3/rDzZ9QC9FnpTPH5vDbpcrFG6q39FvY/IGLrUrr06MFnFPJlpDjwArAY9kTiGPFSEzjyvcSo8iRkIPdZzibzXObq8KkPMvLYyxTxm+Gi8TQ8NPCWmRT2/wTC9vZ0cvfoOgL0gtOA7uQCWvK1NlrwxAwK8s7lSvRIgoTwteIU8vhYPvRJ+hDwU79Y8VITOvA3Z3bw6PQ86TAYIuxk2mjzqYJY85P5DPANAiDwyKHs8naixPPiMiDu+r6Y9596evNUVJr17OtS8Q81fO35wcjzck2y8QVwNPedGbLyZC6s9FhNrvBOIbj0u8lw8tctcPIp40Du0udK7/kQevPJ/FLwmY/G5fPYavXvl9buZc/i8zxE3vIm7pDxfjKw86UWHPRwpZL3LyY48zUIBPbYyRTzVa+m8rfg3PPcupbzVFaY82QhwvefeHjyAk6G9Wt0bPJ/MRbx40+s8V7mHPHrSBj00j+M8w6JwO8lQnDzVa2m7Fzd/u1qIPb1amke8C2DrvMS0+rv9iNe6nEHJO6AzLjw5PnQ9LvLcvCv/kr3md7Y8eckBvJ66uztnAAm9y8mOPBqdAj1HauY9q9SjPDiBSDt3r9e8y9KTO4oijbyYtky8+ECvPIm7JD1uH4c8SHzwvLbcgTw5PnQ8Is6KPLskqrw2s3e8nro7PWZNx7pQC1w8xcWfu8S0+jzpVxG650ZsPKspAjzCOqO8H6JWO8SzFT2CA4+8VOs2OLirNzwFsdq87p+5OYp4UD2uX6C9B8uEvcNMLb1oHP289nJevTN9Wb2LNBc9i4paO8HlxL2SSpA8gvoJvVe5Bzx4wWG7kwe8PKMCZD2ROAY92hAQvZ93ZzpwOhY9lpI4PcvJjryPyBi75KgAPXdQDz2JGYi9cyRbPR+i1jzLyvM83IFiPY62Dj2V5xa9pRwOPNRZX728NjQ8XWgYPaGb+7wWCQE9DdndO6nCGT1893+8M9I3uzRLKjwPUlC8Ves2vIgR6Dz1tbI8w6LwPI8n4TtcVg69tA4xOuPsubuuX6A8V7kHPY5qNTzH6bO6uzY0Pb5aSLy37os8wuVEPZHjJz0hXp08xXBBvKY3nbz+RJ489Av2vB9DDj1s/Fc97CbHvGKwwDxuH4c9fV7oPPSjKLxB/qk8tXb+O8rAib1VN5A8tXb+vHbyK72EdGG8lBnGvJf5oLsXzzG9fPd/vXZQjz1daJi78n8UvdF4HzvHPhK89QEMvjBZxbwDjcY8zNx9PNqyrDw2s3c87OINvGPCSr1+Gi+8EiChvKaNYL0yHpG9Odamu0cUozzzkZ65VZZYPJA567xF8I66f+lkPN2ldryHqRq8wpiGu8vSkzznNOI7F88xO9wrHzyR46c8V7ACPXp9qLyx2BK9yPu9vR3lKrwa80U8n8zFunY+hbxr6k09OT50PN09qbs1oAg9ho6LPKt/RT0WCQE96fAovTWXA7wuig+9WCHVvKrUI7z0+AY9/CCKPEH+qTx50ga83k8zvOpglrzmzJS7N8QcvQ+nLrz6Urk8ecmBPZsvPz3j7Lk8JnX7ujy2Ab3bxLY8yg1IPMNMLTuV5xa9QEoDPR9Djr2zp0g9PAzFvHJVJTw6RpS8ALULPW8xETwlpkW9Ans8Pb4EBTnhHQS8QKlLvfpSub2Ju6S8j9EdPfqnlzwhXh09MsCtvK/ZdzvhJgk9e+0VPOoCszzuSls+K1XWPMQbY7xm9wO8rsdtPZ5lXb0TkA48Qf6pvA2Dmjw51iY7Iy1TvaJFuLyhiAw9DIR/PMVwQTyfIaQ9fLPGuw5ARrx3Wnk9BsPkvCtV1jykCoS9N8ScPH5miDwN2d28RfCOPMKYhjwWGwu8pAqEvOlODL1OKpy8oInxu1QuC70XzzG8jVgrPJlpDj2ux228BsPku8imXzxBXI261iewvemtVLzVwMe8v8EwPK34tztez4C8x+kzvF+MrL0YjN28CJE1PQjneD1V67a8X+GKPCHG6jrL0hM9CeYTO5zsar1ZiD28f+nkO47A+LtKjRW9SNFOvNkIcDyNrQm9HML7u1VBejvdk2y7Vw9LvXVIbzzT8nY9q9SjPEatOj2+Wki9Mij7PIyc5Dyfd+c8aS0iPTBZRT0VVr+6FasdPP3dtboESY29TzwmvNF4n7snytk8VC/wO1xWDj2GlxA8HML7PF/hijwAaTK8jhVXvNUVpjw05EG8KYYgvXrShrx6fSi7ZqIlPCwRHb3p8Kg87euSvcim37xcATC8/d01vebNeT12R4q8eMmBus3tojwtbwC9ymKmO6aN4DzD9049Wt2bPD4wWb1f4u87Zk3HvKyRT7w3uxc9hpeQOP0z+TwmDS68QhC0POIvjryhiAw7EQ6XuwVSEr03uxc97CZHPMfpszuBkyE8oH8HuqgGU7ydU1O7nf70PJMHvLvgc0c8Y8LKPG+HVD2B8YS8hu1TuzIoe70En1A8ggMPOjk0ir3L0hM8zf+sPOhGbDukaUy6UmA6vL2dHL2UbqS7jmq1PN5PMz0mY/G8BPQuPRRENb3TnDO85RDOu4Klq7xtrxm8Y23sPJXVjLzCOqM7jaQEPHNnrzyVzAc9ggMPPZ30irylHI48fQglvW8y9rt75XW88G5vvasyB72vvQO9L53+OaGIDLxTcsS86fCovD0ezzyfIaQ8SY56vIgR6Dw6UH67cO48PUJlEj2y6py8LoqPvAEmXj1BU4i8D6cuPGR+kT3Xjpi8w6ELvMzcfT11NQC9u89LPHz3/zuDtzU8CJG1vPPnYb02CNY7Wt2bPH1dg7zQI8E7So2VvIZCsrzEXre8WYg9vOIvDjkC0Jo8vOHVvHTPfL0na5E7MycWvM2YxLw3GmA9eihKPSHGar1l5l68eBbAPIZCMr2lJZO83IHiu9DOYr1vh9Q8zv+sOyOCsbo3u5c7nf70uxEgobuBkyG8XdBlPEWbMLx3BDa7iGZGPQwcMrwc0yA8E91Mvfmo/LvKYqY8DS68OvVg1LwTiG49BVISPJziALueuru8ESAhPA7qAj2SoNO7PoW3O1TZrLxB/ik9nf2PPDqTUj3hMPM8EjKrvFGskzzM2xi9zUNmvRYJgb38IAo88YD5PIqK2ryCUM28RgP+OoJQzTzVwMc7EQ6Xu2R/djyc4oC7rDzxO5L1sbxvh9S6wo8BPfcuJToxrqM8s1oKPEXwjjv7uaG7VUAVvYoiDTxI0c48CU7hO7DPjb37yyu9BJ9QPRJ+BDx+bw076UWHvPIqtjyh8Nk5BVuXvKS+qrwO6gK9NOTBPPvLqz2ROAY94SYJPJJdf7xCZZK77OINO2s/LLp5yYG99hOWuxMyKztRrJM87uuSvH1dgz2M8cI7okW4PFK1mL34QK88t+9wvPiMCL2UGUa81+RbPfoOgL37y6u8bWPAvBiM3TolUee7pjcdve6fuTy0Yw+7zarOusimX7uySIC9L5yZu+04UTvyiJm88W2KPKS+Kr3GI4M8tA4xPY2tiTzEtPq8OlD+vKYuGD3u6xK8iisSvc3tory/07o9HML7u40DzTwd0yA91cBHvbvPy7sq7Yg8aouFu8vSEzzS3we9qcKZO7yM97w4LOq7nVPTvCVQAj1Jews9Ke7tPNpdTj1v3DI5j9Edvbq9wbzZ9YC8QRA0vNAjwTzaXc48ABRUvTxho7xGrTo8nOxqu9oaejs7pVw91zk6vKDez7vck+w8BsPkvJ66Oz02bz690oopvVgh1Tzunzm9zUPmvKS+KrzwW4A8MsCtvPcupTxrle88/6xrPRPdTD2RS/W7bQ5iO3GzCDz8FwU85s35vZdh7rzVFaY81K69PA/9cTyXpEI7kvUxuxzBlrxkKbO8dj4FvSWmxbvLdDC971zlPKY3nTvyf5Q8pBTuPDLArbyy6py8MsCtPF7Q5TyHqZq8En4EvQM3Az1BXI087NHoPHuPsjyjFG48HjqJvKef6ryvvQO9TAYIPcB+3Lwq7Yg8dvIrPXuPsjxHv0Q8bbgevIDp5Lw2b768qm27u85V8DuPyBg8lG6kvGotorwlUWc90CNBvNyB4rlUhE47XuJvvCFeHbpDdxy8c2cvPWMXKT1w7rw7TdW9vB0pZLt3BLa828S2vEufn73k/kM9HuUqvaAzLj1g9Pm5aBKTve8Gojy6vcE8jVgrvWaipTyoBtO8cxLRuhPdTLzHP/c8DYMaPZ8hJDxcVo48xiwIPAr4HTzWc4k83CufvP0pj7ule1a8+ECvuwEmXr0+2/q7RxSjPAZ/K7x1NQC98RgsPUN3HLx0ebm8gxUZvLskKr1pLSK96U6MvACsBrwURLU86Fh2vGaipbxdaJi8FhsLvNyTbDwiG8k6fsXQvLhW2bzOVfC8q39FPS+TlD3FxZ885sOPPfwh7ztzElG7BEkNvHdaeb0OlSQ9hdtJvSYNLj3BkOa7DHoVvFQuizvvBiK5S58fvVGjjjuPJ+G8skgAvcc+EjzbGZW8ABRUPb6vJjwj2PS86DwCPVCRhLyzUuq7V7rsvPqnlzx77RU9FauduxLLQr0u4NI85RBOvWxRNr1tuJ68SePYvGgcfbzlEM68bWPAPALQGjwk6Zk8RN4EvMB+XDxyqoO8HBfavIR8AT34gwM83vpUPY4V17w2s/c7KeQDvJ2osbxOIZe9M9K3PFQlBj1xQ5u8QVMIvUG71TyGl5C8wjojPYIN+bxgSVi7InAnvZpyE7nSiik9sIO0PG4Wgjxa3Ru91icwuymYqjwBxxU9eGIZPfBkhT0/QmO8rl+gPHA6ljwD4qQ8vq8mu4O3tTxdaJg83vrUuz+XQTxP58e8cQBHvP8ByryachO9JfujOwd/qzwSfoQ8MyeWPKgGUzz9MhQ7GOG7O7UguzxCZRK8hB4ePUFm9zwQBZK8807KvIZCsryrf8W8FyX1vFK1GLzmIli8Nl20vKyRz7uRQYu8aBITPW0OYjzlu2+9fKE8PRtaLr2skc88C18GvKQUbj0asPE6pSWTvHp9qDtNwzM9keMnvJ5lXb3VwEc83wxfPA6VJLuEHh692PblvK2j2bwBx5U8fnDyu8vJDj3GIwO8YPR5OxzTIDyW3hE7QRA0PH5mCD3VfA49Jg2uvPcU+ToCzB098MBavRqcqzwXchy9xW/IvFbfbjy4Ykc9eNxiPcpIELwgEC+9pbaUvXUcrbydrYm7UNVEPKL8kjue0gO9UfQKvJs+m7ynS5y7CLbivKL8krlQGiS8aFQLvCgTBr36wpK87btFPBTdlLvmZ6c8ELm5O/jDsbzXhvO74/KEvQY7DL2/QKQ8l4QZPAFcED3FtKe8/BI7vVhOXT1JNpO8PCkSvUqmID1T/9O8iQeLPNoPk7zZ0Oe7cB7ru56NJLu6h0G9K9O7vAFckLpBfs88IMtPuiqojb1EqF48aukSvZzZVjysv5+9VklIOquaJTwu9xa8AD1KPIyC4by5XJO8R63zPEJearsTee88OEoWvds0jbwm7gs8aXmFPMMl1LzOlxm8g59vPJI7xDsuQqq7xNSMPC2T8blypwo9zE0lPP3N2zyDk4e826SavI3mBr3tu0U99nMJPM1ynztz0jg9KWlivekn3bxtXjW99u/+O8TUDL3s2yo9tX0XO3//nr2itzM8ucygPA+UP7zAtmW7bK/8uiXV+btV0wa9PLkEPKp1q7z7MqA80+aiPHUcLT0LAFc70jfqOuyWyzwanKs7NkWBPTgFNzvNch+9hS7DvFiTvDwAgik983SouuoH+DyhTdo8XGyEPUuGO7wD/X89fXDLu7HJSTyVIHQ60HEAvSXJEbscm4y7qVCxOgllG720Ez67jxE1vK8JlLv2cwk9L6wDPbOpZD0ksH+9wGUePUEtiD3c1Xw8LxwRvKW2FD2wX3C9FcPjPHwG8rwQjgs7IhVEvQ8qZjyr6+y8mm/9PGhgczx39hM8ZaA9Pct58rwUnuk8dDwSPBF0Wjo/nrS8UmSYvGx+Gr0oEwY9RgwEPLumh7vc1Xy8fbWqPXz6Cb3luG693Bpcu497Dr19cEu7e9UPvZhq6DwoROg8AWLEPbQTPjzobLy6ZAUCvQ0F7Dx6ixu9OwQYu44LAT3IuTw93h9xPbf4bTu6h0G7w2qzO98TCT1XKeO8oG2/vKcACTxKHOK7l4QZPfB7+7xQ1cQ8k1oKvKxPkjy68Rq75qwGvQOBCrsiFcQ8Ycf1vLHJyTy+Gyo8gJrauydembtPa+s875tgvWVb3rzOLUC9YjFPveNu+rxwXZa9Ge3yPCLwSTx7kLC9zXIfPIZTPbxEqF683FkHvHUcLTtJgSY9fXDLPJ0jS71l5Zw7dRwtPbeCLD0a4Qq9lhSMvNh6Cz0UbQc9IMtPva16QD3gOIO7mm/9PN5kUD1YCf48v/tEvfktizzwbxO9+Z2YPBVNIj0ePPy8fSvsPIQJSbvj8gQ8U5X6u6q6Cr2LnJI8jszVu0AIDjp0stM8RKjePMPgdDum4UI83F87vXmLG7xJgaa7cc0jvM1yHz0th4m8H6bVOwfQkzwoROi8mx42PF2dZj1nxTc9WwKrPJqPYrxzjVk83qmvPAxqML1JNpM8xAVvPV4BDL3kk/Q8DY+qPTBHPz0Gqxk3WnNXPEAIDj3SBoi9UJDlPNkVx7w2dmO9zAhGPEocYryRxYI695iDvFx47Lw9Tow9xh6BO6q6ir19apc8CLZiultHCr6203O9BYzTPAT9/7nl/c081TAXPajm1zsprkG9ZVteu8JFubzj+Di9bK98ve125jrQcQA9L2ckPQDHCL22XbK8jey6PIF69TuVZdO8jILhu9369rztAKU4STaTvGyvfLydaCq7384pPfh+Uj0prkG8ptsOvTl7+L0K29y7A/EXuuknXbt5i5s8Ip+CPdmfhbvrtrC8QJgAPT5zhjxGiHk9BP1/OyiJx7wE/X+8no0kvVOV+rsl1Xk7NkUBPS79SrxS2tk6euF3OC9npLxYTl28mF4APJ1oKr25Heg6PLmEPIdygz3CPwU9dpLut+KO37xhdi69nWiqOyN/nbwqjtw7Vyljvbf47TzXy9K8N5vdPJsYgr22XbK7ROeJvGbFt7vGKmk7zpcZvXqLGz3i0767Pnm6vGmF7bzl/c29UM8QvfDAWjyZ1EE8Qw0jPUKjybz5nRg6JVmEPAiFgLynBr08YAxVPhcnCT3gOIO8lH8EvdAyVT0vIkW9OAU3PMi5PDyHcoM8+MMxu3f8R72203O8X+faO0Y3MjwSVPU8iQeLPbxH97z5o8w8EXRaPXJoX73PUro8ItBkvc7o4Dx1bXS8X+favOOzWTx2hoY8SBfNO1RprbzQ7XU7mc6NvBm8EDwogxO84PMjvR4wFD2m2449LZPxvNp/ILzVxr08BvYsu1YE6bzXy9K8UZDlO8bZoTqab308b6gpPKW2lLyS9mS96LEbvNp/ID0H0BM9+lIFvcJFuTqYr8c8erCVPEItCLx4IUK9RVcXPM9SurpmgNi7sVOIvKowTLzkHTM8d/aTvAoaCL0ksP86LZNxPG/tCLxeTJ+7TIY7PTS2LT2NYnw9OSqxvP4xAT26gQ09jszVO+X9TT1LQVw9808uvFJkGLyvCRS8+V5tvXQ8ErrO6OA78qD1PEphQTxHrXM875tgO6tVRjxeAQw9t8eLvCb6c7uFLsM84s0KPN+Jyjom+vO7mGroPAi24jvCRTm9VGmtPA1El73D4PS8NgCiuFYE6bzY6hg9T0bxvIOf77wANxY88SQAvfD/BT0bBoW8XLcXPSCG8DzkHTO8cxcYPPyoYTxbmFG8f7SLPZFbKTzFtCc9G3YSvb32rzydI8u8Huu0OgAY0LuumYa9jgsBPYh4NzzgrsQ7DGqwPEmBJrwbdpK8iJ2xvCGr6jzNAhI7kxtfu3mLm7sdxjo9Ip8CvQi2YjyTG1+92RXHPCDLz7wlyRG9qnUrPLZdMj0bN+e66pG2OWF2rrzTdpW7p8FdvDZFATxQ1UQ9ADcWvTKRszwbwaW9W0eKvFoueLvFb0i9/je1vPrCEj1T/1O8H6ZVu5OlHTviPRi84DgDPb9AJD3zdKg8mGroPAllm7wI+8G8z1K6vMlUeL09D+G8ZVvevC4dMDxcvcu6FU2iuwGno7xIEZk88Xv7ugdgBr2ld+k8tqIRPA+UvzzNAhI9BxunvB/lAL3IdF09Wi54vOI9mDxaIpA9GpwrvNemWLwin4I9KIlHvUBZ1TxPsEo8DY+qPLTO3rzcGly9y+PLOycf7jy1MgS7W5hRvEXN2LwePHy8iiwFvUk8x7uhCHs8SYEmPVhO3by5EYC9hJMHvLBfcDvizYq8+egrPZPW/zw+eTq9rXrAOqJy1Lzz6mm954whO7nMILzToUO9STYTPZ2tibxLhru84WnlvOQdszlsr/y78MDavPW+nDzGaZS8Ycf1Omwzhz0rSX28W0cKPXONWTtbmNG734nKPKd8/rzkHTO91qZYPQkgPDum4cK8iFjSvBQoqLzDarM8MWw5PEOD5Lua+bu8Pnk6PWBRNDwU3ZQ8g06oPIZTPTwOKuY8lopNvewscr1NpYG9VSTOPLzRNT3MCMa80DLVvOqLAr1P9ak8wLZlOzkqsbzt26o6SqYgvNLBqDwdxjq8Pnk6O13ixTx39pO7G3YSPY7MVTyo5lc8EwOuvNOhQ72a+bs8+MOxPNBxAD3+rXa9gNmFu7YYUz2Cbg09wPUQvL/7xLybHjY9ZsU3vCLQ5LzcGly8XgEMvXomVzyEA5U9ITWpPHPSODzA9ZA7PQ9hOvW+nDwi8Mm7pbaUvLnMoLzkk/Q67CAKPJNgvrzToUM96WYIvQLMnbsr+LW9V/gAPQLMHbz+rXa89N4BvdJ8ST1n6jG96Ww8vGtZoLsgy088PCkSvPvtQL28FhU9OpSKu3LynTwc5p+7bDMHvVYE6bvVCx28HsAGvEn35zsqGBu9IfDJOQqW/TzgrsS7MbEYvMwIxrygbT897NsqPBC5Ob3SfMm7cc2jPcxNJbvA9ZA82RVHPa7kGb2daKq87JZLOqOXzjsGqxk9kxvfvI82r7prz+G8DypmPEzwlLwN4PE8AsydPJivxzw5wFc9jew6u44RtbylJqK7xirpvKy/n7vQvJM8cYjEuT2Zn72GDl68iuelPAkgPLwXchw8uVwTPRvBJb1ct5e89FRDPIZTPTv8Ers8nSNLvaV3ab0j9V48lH+EvRl3Mb1NFQ88tl2yu1NEs7wf5YC8j/FPPU9G8TzOlxk9vIxWu/h+UjxeB8A6xmkUvMhP471ZsgK9PC9GPEuGuztiMc87bRnWPFtT8rxP9Sm87NsqvTCMnrxbIhC8gCSZvKEI+zw+vpk8MEc/vDfgPDwrSf28JF+4vPLF7zzaOkE9wkU5PGtZILw8dCU9NCAHPIVzIjwEFpI73NV8PJAWyrxP9Sm8lIU4vWKbKD2NMRq9j3uOu0aIeT0MajA7EwMuPV8surxbU3K8qVCxvNnQ5zp43GI7nIiPOGfqsbuDkwe9384pPe4lH7wHGye9Ig8QPCiDE726QuK8ynlyu/2I/DwK21w7BvYsujhW/rtIXCw8JV84vUCYAL15QAi9incYPSlpYr3fEwk9AswdvFmyAr1Pa+s8H1UOPQhAIb3hqBA9yd42OM9SOrvjs9m8F1I3PNxfOz032og7u6w7POgC4zzA9ZA68+rpPDVR6buiclQ8UT+eO7+Fg7uOETW9PQ/hPDfgvDwsYg+7BCL6vMHb3ztQGiQ7rXpAvOZnp7w0ti29B2AGvbwWlbuI4hC8aqrnPCqojbxJgSY8TtAvN9OhQzzqB/g8JF84uzhKlrzlQq28tX0XvOEYHj29jFY9HFzhuvmdmD3bNA08eCFCPBpXzDvnR0K9nEOwPKpQMbywpE86++3AOxzmH7yfQhE8PC9GO/V5Pb2S9mS9JRrZvE0Vj7yUhbi7DY+qvCCmVT1YjYi5kBbKvHe3aD3xJAC8U0QzvYbJ/rzdhLU8aYXtPFXf7jw9VEC9mBkhvLOpZL3we/u8Et6zvMf+m7z+MQG9qZUQvfEkgDywOna8+H7SPD40Wzk5KrE8qnWrPPTeAb0U48g8Mwf1O8aUQj2bHja9z0wGPNHhDb2un7q81qZYvc9SujxPsMo887mHPI0xGr2gZ4s86SfdvDCMHjw9VMC8KhibPPpShbzzdCi76LEbPesHeDx3t+g8nP5QvaowTDzREnA9BUd0PIVzIj3pbDw9ykgQPJWqMjyMDKA81YFeO5BbqbxQkOU8EbOFPGTAojz5Xu07oU3auqQBqLt/uj+9LyJFvVgpYzxxzSM8xW9IPcvjyzxi7O+7uofBPOlsPDyr34Q8Et6zvHwGcj2Amlq7i6LGPK5a27qA37m8JKSXuzy5BL1gDNW8yC/+vFDPELwOaRG9vbHQvAHsAjybHrY8onJUvcBlnj3bNA29yVT4PJdF7ruYXoA9yt42PL9gCbxjEWq8gCQZPZf0prtwEgO9T/WpPCKfAjyld2k8zXIfvVcpYzuFKI+84s2KOnlmIbx4IUI9s6lkvc/I+zuDk4c8vbHQvKbbDjxLQdw8dWGMPOX9zbz1H+s792QjPd65Eb3UDBk8/ItQvbfRYr1Z2w49/JUpPWaEYj0SS5S85OA+vaq9iL0yE/q8K+aYOv3glTxg4iE8ajD8vCVqJjznCxG9z+ufu2delLxBRj68RlcqvCKUmTsl5Tm9q9l9vC4xBT0l+/o7mDX/O0ZXKjqMouy81Y1gvFyxm73Tt9O80ddtOTNYsjuKphE9YOKhu/urar0arSA9ITmgvDUoC71FcRA9ZaT8vK6P8DzP65+8I4SMOvm/nLy3QA47NS4/vbIflby94s67+a+PPFF5Ar1NXr29fhmzOgbOQr1IsiM7RIGdvZp6N7wFUy87hpvZu+XApDxVupW8QxxLvKGLozzRXNo88e7kPKWMAr221Ye8Ty6WvBjXE7sQi0i9h3s/vHqD2rtQKnE8mpB4PMLzOjzr3fg5/ItQPZv/IzxcsRs9A30ivNjIv7wGzkK80OHGPMrw9DoNOqi7njAqPSmlhb35UPG8mZpRvdHX7bqKtp683zQlPEMGCjxu0K294MX5O3IX9btwvHu8w9MguninGTz+0Ag842WrvABCw7vxU7e8428EO23wRzyPxwo80OFGPPWa/rjEswY9i6xFO010fj3Ako08/uZJvR3+wLxn6bQ8l64DPWFdtbz5vxw92xlguh/eJj1QKnG705GFPX6enzqge5Y842UrvDu6vrxCPOW7qGIPvM4LOrvvAhe9nFBEuxjXE70q9iW83XTZPAxawjy94k49EzuHvXxZ5zwJhDU9zoCZu5RzpLz98KI8LFEfvaGLIz3K8HS9zoZNvPaEPb3m1mW8J1b0vApkGz11UlQ8vV3iPDeJOD3lNQS8b1UaPWUp6TxsbwC88A7/vPqfArypzZW8caY6PJDTcjxfGH26bfDHuzYOpT2iYbC8rvRCvbdWTzxyGxq8NoOEvCbFH70vor88OlXsPEdt6z0Y15M8ouYcvEMGCr02k5E8E9zovGk6Vbt4jbM8UXkCPQG9Vj1WoK86Dct8PPq1wzwT3Og8NMnsvNZtxrx5CEc8WlYiPNZtxjxsbwC9Gz71PEImpLswmGY8Yx0BvKHmHL38ED08zZCmPGZuobzOIXs8zRWTPPow17xiU1w8TsOPPLsCab3YyD+9A30ivTWzK72/opq8M72EvYpH8zzansw70GazvY54eTwL3y68p/eIOjw1Urm5Fps8PRU4PXqD2jzW8jK9XwI8O2D44jwQBtw8FgEHvWSIB7yNgtI8CQkiPW9LQb2YpCo9RXdEO9z5xTx+L3Q9R+j+PNkdhb1zZoY8h/ZSvSKqWjz5vxw96IzYvAv1bzwcjYY855axPL/Ydby3u6G8Zm6hPPyVqbt2tyY7GsPhPJ/BfjyWSTE8nqs9PIYW7bzqbD67fLgFPDvEFzyP3Us9eQITvPsKiTxxC408CI4OvVWqiDxTAH49N4m4PHIBNDwEXYi7oAY3PCr2pTyISxi9ofzdPAxUDj1b0TW9NiTmPJGdlz3zMx0925RzPLFlfTz9a7Y89BODvRM7Bz12zee8OV9FvRhcALybcF68HYOtu7FlfbwkBVS9PnqKPV8CPLvBE1W9gs+lO1mMfTr/Ow++3dkrvT9wsTyu7o48diyGPA4wzzwfWbo7QOFrvWFdtbvD0yC8lVOKvXnyhb2Sk767B8RpPEg3ED277Ke8rTR3vMckQTz3VJY85zHfu7Evojqqw7y8xyRBvJSJ5byBVBK8Mt0ePGqfpzzhCrI875PrvFCZnLy4sci9/mHdvM/rHzuu9MK5hYUYO80rVD0tR8Y75OC+vCKUGT1/lMY8DNVVPQRdCD1qFIe868e3vLixyLyI1ri8q7ljvAN9ojwHSdY7rJOVu66ZybtXBQK9fLgFvc0FBrs1Lj+9PZDLO9ORBT2v6mk9SS03PekHbLm8ffy8d5cMvbbVB7vPAeG7H1MGO3ThGb0DfaI8cnYTvQiODj1s+iC92p7MOuKFRbzHBKc7OV/FOwbOQr1IsiM9w1iNuy+sGL3EZPW86my+vR/eprwD8oE7mnSDPAxEAT0araC842UrPFj7qDxqMHy8prJQPP0GZD7C8zo9KSAZvHqD2rzk4D49DyZ2vel2l7rvfao79982PHgSoLu/opq9DjDPvLfR4jxOVGQ84aXfPJRjlz1WO107M72EPGkklD0iGQa90xwmPNuUc72227s8NMlsuwc/fbwvPW08yzWtPGz6IDv6MFe8NiRmvFXAybw6+nI8tWCoux9TBr2GAKw8uwxCPfyL0LxWFQ+8mBkKPQc//bhYEWq9MhP6vP3gFbxCJqS7tHqOPG/QLTu28Xy8FDdivVl2vLyrKA89mBkKPagD8bwWF0i7/fAiPTu0Cjvk9v87lkkxveGPnjsWAYe8oWsJPPdkI70Ntbu8Tj6jPLBl/byq2X27pDGJPFCvXbw4aZ68fhkzPE+5Nj1U4OM8dHJuPTLdHr3Cbs4868EDPVQ/gjysHjY9hxZtPexiZbwAQkO81m1Guz2QS716/u07sUVjuzyaJD2cUEQ8RBLyPNZtRrvyzko8yk8TPStxObx8uAW8wJjBPN3ZqzszvYS8mpB4vKq9CD3Hn9Q8RvJXvXij9DruIjG9DwoBvWbjALp9OU29jYLSPCZKDLzuIrG8KRAMPQICD7277Kc8vcwNuyuHej0Q8Jo80OHGvAr/yDxLA0S8kDKRvLR6jj29XWI8S4gwPexi5byH4JE8GNeTvPWafrqlnI+7cSFOvZGdFz2Pxwo8lWnLO+2XkDwOGg47YFcBvPfZgrwBOOo8omEwPAGXCLssZ2C8g8VMPbqRLrz26Q881Jc5vXArpzxKI968KvYlvVYlHDwVISE94oXFu2Diobu3uyG90xwmvKlearxoWu88ViWcPZToA73hjx49DToovUzjqbxOXr278zMdvd65kbw1sys9mZrRu4jWuDpFcZC7Kgznu1RPDz1h2Mg8ZQnPPCtxuTwaMg28k6l/vIusxbzuh4O9UXkCvdQSTbzNBQY8HAiaO9dNrLzwDn+8oHuWPGjfW7wUvE68P9UDPaQxiTy+2PU8vjcUPSOKwLx0cu68buZuPQ1Q6brXTaw7otaPPdmoJbxGVyq80xymPYFUEr3d7+w7VxtDPKnj1jzRXNq8MnhMvYCK7bujxgI92EPTvMAz77sT3Oi8ZSlpPEvtAr1+nh+8e2NAPEsDRD0Z4/u7uwxCvYhbpTqeqz08o8aCu9t+Mj2a/yM90OFGvcGOaLxcsZs7mv8jvY9CHryxyk+8iHFmvXTRDD05+vK80MsFvPSk17yXxMS7juekuytrBb3B7QY9u3GUO3xZZzy1+1U9I4rAu1TKojxBRr46ATjqu0SBnTwK6Qe9pdJqvaujoj0qkVM8Um8pvB5jE736MNe7j8cKPZGdlzxVqoi8o1fXvHtjQD1t2oY7JO8SPUmiljxBRr48iFulPK7uDr3C7Ya9Dct8vTjuCj1nXhQ99X4Jvanj1rz5OrC8d5eMPDrEF73lwKS8uDY1PI7XFzvX6Nk8pLwpvFcFgrzFwxM9xE40vHYyujyoA3E89CnEPJzVMLw1Lj+9GkjOPCkQDD1iU1w8WJZWvTYOpbsPJnY9DjDPPJxKkLtUPwK9btCtPGfpNLz61d28m9+JvOnxqrxsi3U8k/iQPW9LwTxQHgk8R21rvARzybtiLQ68LexMvLBPPL2zD4i8zobNuznkMTzYY2272aglPXA1gLwurJi7Cv/IvdZnkjzPAeG7fSMMvK9Zlbz/xi89qkgpvUZt6znddFm80UaZO7bllLwMWkK9ugYOPTCCpbvVjeA8OGkeOy8nLL1Os4K8NNPFvF99T7yZFWU8BF0IvY/dSzyepQk9tuUUvM0r1Lx/+Zi8zwFhPZ8QED2AdCy99QmqvMCYwT1ynOG3M70EPbX7VT0k7xK9l66Du+bWZTxS9BU6HAgaPdZnEr1JQ/i7oYujvKNXVzzvAhe9bmvbPOgRxTwMvxQ64aXfPPuVqTrgxfm8zoCZvKFribuCz6W8DbW7POGPnjvCbk69+p8CPJQE+Ttg4iG8ViUcPHgoYT0XbA29TdnQu4Dpizwaw+G7iOx5PDn6cr0Upg29/zuPPCX7er21BS+9m/XKuxYXSLq69gC9DTqovHArJz3q51E9XLEbPdzjhLvKVUc7ylXHvBNBOzwT3Oi9g8XMvHA1gDuu7o48qO0vPL49SDyr2X28GO1UuuXAJL28ffy8ViWcvJC9Mb2B7z89blWaPC3sTDwbPvU6fFnnvApkm7xJLbc8PZBLPb7CNLvyzkq8vOwnPe/yCTtkE6g8xS4avHetTTy69oC8wm7OvA+FFL0fb3s9P3AxvWSIhzvJ5Iw9MJjmO5RzJD0wB5K8SS23vKNBlrwWF0g7EPCaPHmDWrsM1VW7z3z0vAOT4zxh2Mi8SMjkvLbxfDvw+L28yvD0vC3sTLyjQRY8iraePCbFn7uo7a+7vGc7O4Fq07wPlSG9sE88vSG0Mz3vfSq99oQ9PZa+kLwGSVa9a5XOPOvHtzzRway8aLkNPQeuKDv/3PC6VwUCvel2lzwE7tw8F3JBO9UI9Dw62lg8XwI8OzCCpTw7P6u8coagPGQTKLwhtDO8DhoOvQkJIj2YpKo8QUY+vPUf67xpqQA8rD5QPLMPiLupXuq8K3E5vdQSzbyMAYu74Y8evEVhAz0XbI27ZQlPPJp0gzp2Mjo7Ii9HPIyMq7vavma8VaqIvDCCpbxWO9088U2DPaH83buCSrk98dijPEOhNzz26Q88cnYTvTpV7Dwm2+C7otYPPC8nLDzwDn+7P3CxPEmSCTxHbeu8O7q+vGhELr1VRba88zOdOzWzq7xcLC89oeacvFl2vLxH0j09oCZRvHkIR73Akg29KvYlPZkVZTzJ5Aw9tuUUvUktt7tyhiC9WHAIvcd5Br14EqC8EtAAvS3MsrzrTKQ8QpsDvOCvuDsHrqi8axo7PGz6IDtlCc+7SE3RPEMWFzqP3Us9GVInvfowVzzU/Au91Qj0vD71Hb3uncQ8xUTbPH+Uxjw4f9+8fL65O8s1rbwzbvM8GkjOvHnyBT18Wee8+6tqvESBHT0ZUqc84X+RPAkJIr0HP/07nyZRPdMcpjyH9lI90jxAPdfCizwTxqc8aTrVPGK4Ljzj6he8BcgOPcNYDTzMS+47c3xHPGUJT7xXG8M7t9HivCZgTb3TMuc77wIXPMTJRz3B/RM9BrgBuy3i8zxUyiK7OVmRPPQpxLxYEWo9fi90PHnyhTo+C9+8100svanNFTtzZga9h/bSvEktt7wfedS82ogLvblMdry7cZQ8eQjHPPMznb13l4w9LFEfvfdUFj3iCjK8DjBPPbFF4zvAggC9mZrRu5Zf8jz6n4K8KDbavNHBLDzy7mQ82ailPL+imrx9Oc07xh6NvPBdEL1fZw68VcBJPTWzK71yAbQ82xlgPOAUC720gEI8XSJWPLVgKD24mwe9m6UaOrP/YT1x7z698RbfPNA/Db1AnbG8P8g+vB00Rz0JOjI94puivIAbO71lvGi9+BSQvHDX8ju2+IY8r3QiOVVNEr340bY7PW0YvSFdBbtBL8u8db3XvFJIhjtd3d28fvcHvf9t6LsxA888i/Prue/a3zy8s9+82ch+vD5Ci7yx2669rQ2Wu6QWv7op4Wo8HOUGPQuJ8ruenkC98PIrPYg9n7xD5Za8xWfdPMjmtbwCZw09LXiPu5QV0Lz8XPa8d/lWvMpNQr3uix88E+6vu/3DgTyOIwS97basvV3dXTxEa0q99/zDO171qb2uXNY6u95sPHpg4zvVJfO7FrzIvGp3QLxIvxU8G826O5w3ND10K768mGmbOx9Y+jvO2AA9AG5ovd4cSrvXVQu768ltOkOWV7xcjp27xjzQPFCqhj0Ykbs7FMMiPFLCU7yUZA+9uTSGvAYpwDvCK9469ZU3uohJBT3nSpS90MVAvXpg47xjVdy7p2oKvZRYKTyensC7WFKeve5IRjyvdCI8zzOnu8AHqzvk44c8ZbzovJL9Ar3OXrQ8S7g7vEYVsDuuXFa8FPoVPMRPkDqFe+07nRgNPbshxjwTaH09zqENPJhpG729yyu8ac1avKtjMD25urm70RQAPWzeTDzG+XY9LgqpvF1jED23lga9NywNuwPtQLzul4W8CrT/OwCxwTtSEZM8SVEvvRCyMLxG0ta8IUW5vL4a7Dl4tn27cJQYPbjlxrzngYc8V6g4PR9YeryNC7i860+gPKDCc70hRbk8d2c9vUFypLw0/PS8DfB+PEPlFr1gnw89CN+LO3t4Lz3hCQk9srChu72IUj2jQcw8goJHvLY7Yb2D0Ya8PEnmvMOGAzzkv9U8kEe3u5t6DbxyxLE94VhJvbdTLb1Eugm8vPa4OsO997xFQD29n7aMO2s05zxrd8A9N+mzueliYTz/2069mtAnPWyPjLynMxe8xn8pPSZiETz2J9E8eh2JuVIFrTrGfyk86r2GO68xybywBry8WImRPAq0fzw10Wc8IhqsvKqOPTrAgXg8i+eEPK90orvETxC9PNv/PMSSajxVhIW8ukxTNcOGAz3KTcK8YxKCvOo31Dzul4W9VGw5vYTpU72c9Fq9jHmevDDrAb0FlyY9ztgAukxKVb2UWCk8AhjOvPo4Q7pRMLo8YoBpPc7YgD3+20684EB9vT0e2Tvw/hG8Vbt5PQHJjbxR7eC8HXegO0CpFz3ojW69CToyPYs2xTu/7967gj9uPfEWXz2p/KO9hTiTvKdSPr3ngYc6yOa1O0dk8LwW51W7GeD7PKn8o7rw8iu8C4nyu6gzlzw2Y4A8wugDPFdl3zw4Dec8mo3OPMZ/qTz1lbe8TvS6u3/AFDyWAg+7ALHBPNh5vrv0D4Q7z/DNPHIHi7wPVwo8VYQFPX/AFD1RcxM9u5uSPErjSDvbWhc9CWU/vA0z2DvvYBI9MlKOvNh5vjw0gqc95AKvPHbVozzMtE47qKH+PCZiEb1zmSQ99VLevOFYSbwFVM08gNhhvGg7QbvQCJq8cBpMvQHJjT28cAW85/tUvS01NjwVEmO8zcwavrbNer3q9Ho77khGvPCv0jzoHwc95OOHu1ozeL0QLH68Ha6TPF44g72ysKG9CN8LvELB5DwLifI8xxFDvGZOAb1V/tI8sduuOqh2cbyo5Fc7yOY1vfDyq7suQZy8NPx0u3/AlDvR3Yw9ovILPbohRr13+Va83C+KvUlRrzxBciQ88Meeu2epJzsYC4g9ihISvILFoLunlRc96WLhPJ5bZz2yKm89LgqpvB13oLyO4Kq8s0I7vK4ZfTwCGM48KJIqO8OGAzzhCYk8KE/RvN0E/rzOXrS8s0I7va+ACL29Rfk8juAqPTGJgTx4i/C7l5SovDzbf73Papo8ji/rO/6MjrzimyK9jHkePY0LuLwH/rI8+I5dvbWpRzvgNJa8o/7yuGkQtDzgNBa9g9EGPTOtNDwEBQ28F/8hvccRw70VVTy9UhETPWrxDD3sJBM9xrYcvNIsTTxusz88fd+7O6Y6cjw2plo+4y08PUu4O7yFASC9WMCEPQKegL2A2GE8iHSSuikkxDxCBD68DTNYvXvy/LudT4C6XrLQPLZ+ujwZ4Hs90qYZvXBdJTt1en49izbFvO8duTzsJBO9rDgjPagzl7wRvha6xaq2PKsg1zyVLRw8PrByu3h/Cb20F668BH/aPLgoILxVQSy9jHmePKz1ST1s3ky8TNCHPNpOMT1AWtg8SqBvvWj457xYiZG8SjIIPEQocTwgv4U78P4ROsoKab33SwM7I6zFPPR9azxF/WO8dQAxPIdoLDz5sg88ZbzoPC5BnL1tISY8z2qaPBakfDwHu1m9xaq2vKUuizwLRhi8EYejvLiibTt+cdW8uOVGvJEcqjyl6zE9OiUzPRAs/jx6YOO86I3uPM92AD2Fvsa3TWKhPeQCrz1S2h+8Hgk6vKqOPbw6JTO9Q9mwPMrHjjrnSpQ82OckPFeouDxiBpy8S7i7O5AE3jylqNi8juwQvBf/oTvXjH88nPTavIU4k7watW48UpdGPDxJZr2O4Kq7ygppvRT6lbxXqDi83QR+veq9Bj3uix+9fd+7vDxJ5jzXEjI6LfJcPXu7CL3dijA9k0Ddu3bVI72vMck883EEvJtDGryTQF09fSIVPLEeCD3XEjK8j0e3PJL9Ar0Rvpa8Un/6uyboRL33/EM9Y5g1Oj0e2TxKoO880ixNOzfps7zHVJy85EUIPQdBjDvSLE084dKVOzZjgD0WvEi8iPpFunI+f72Rlvc7LKOcvKGXZrwJZT+7zqENPQ4IS7xpzdo7aYqAvKK7GLwj7x68OZOZPJEcKj1cS8S80m8mPZ2GdL1KJqK8cazlu0oyCL1dIDe8QsFkPVVBLDz/28486r2GO1g6UrvM96c8emBjPBr4xzw0/PQ8caxlvSuL0Dv+mHW8nU8AvSCzHzsWKq+8u95svECpl7wNdjG6Lgopvf8qDru1I5Q8k8aPvKBIJj01FEE8psCkPFIRkzwSGb27JIG4vMNDKj0vnMK7tsETvHFpiz2ZuFu8xvl2u49yRD1CweS8f0ZIPWyPjLwQ9Qk9IpT5vKHaP70cHPs7DXaxPLyzX7xCBL47aqLNvPCvUrwoT1E8qUvkvGKA6TqgVAw91j0/vW9F2bwGKcA7c1ZLvJ1b57veHEo9iD2fPUg5Y733/EO8PaQLPLxwBb3xhMW7IpT5vH60Lr3xxx49goJHvFOXxrz6h4K7OiWzO+asFLyGkzm9cF2lPKVl/7vMLhu6365jPVEwuruDFOE7qOTXvMfO6bsvLty77x05PPmmqbxl1LQ99idRPBzlBrzYeT69lJuCvNXimDxdY5A83tnwPFszeLyR2dA8mo3OOZGWdz3TRBk8VtPFOkg5Yzvq9Hq96WJhvZU5gr3I5jU9fApJPRSAybws2o+85ZTIOYDYYTx7u4g6TWKhvHdnPTuEb4a7csSxPNh5vrzwbPm7JuhEPdGas7y1Zm47rquVPMWqNjyvMUk7FiovvdFX2ruoJ7E8BinAPL1FebyKYVK8KrbdPC6E9juJz7i7ZpHbvA0z2DycQ5o7M600vaz1SbzrWwa9UhGTPHnOST3McfU8/XRCO8DE0bzLZQ66/CUCPWLDQjx78vy8J723vEi/FbxGj308Xd3dvBSAyTz87g47hlBgPJEcKr2Q2VA850qUu/gUkDtY9/g6mtAnPZYCj72WfNy7PIw/u2j45zt1ev474INWvY1OET1vRdm7/OKoO6rd/bs6JbO8vzI4vOTjh7wsHeq8LlnpO5ulGr1/Rsg8o4QlPZZ8XDxmFw68xvn2uk1uhz3m+1Q8v+/evN5fI73yWbg93c2JO4W+xjw0gic9UhGTvFPmhbt/Rsg7FPqVvEyZFD04Dee83UfXPP/bzryCmhM8h+J5vAjTpTy7ZJ88mtyNPLn9Ej16o7y8OuLZvC5ZaTwt8ly8juCqvCSBODxeb/c8VGy5vSala7vIeM86LQopvKihfjxrCVo95L/VvLrShby0Woc8VLt5vFX+0jx8Ckm9AmcNvQGSGj0Pb1e9JdD4vMnyGzzNA468077mu+XXobwlVis9LgopPUPZMD1o+Gc8sm3IOkbS1rxCBD48NdHnvYDY4bzhFXC8yk3COyCznzu89ji81SVzvM1G6DtDU/68htYSvQ0z2Dvc+Ba9cxPyPAsPpTuv7m+8KeHqu6Vl/7xIv5W8nQwnPHqjPD0gsx86La8Cu8LoAz1PQ3s8MOuBPLcQVLxNYqG58y6rvCOsxbygSCa9y5yBPeRFCL05aAw8PKSLPXh/iTs6+iU9h6sFvTBxtbzQgue8nMnNPPzujrxRwtM6xaq2u8k1dryrINc8i/NrvL7XkbxNH0g73LU9vI9yRLzynBE7hyVTPD6wcjzqeq27+WPQvHVDirxSBa28nDc0vZcO9rzKCmk7dpJKvYvzaz0tTQK8X0TqvEomIjxx7747MC7cvFJIBj2WfNy8BaOMOwIYzrxuLQw9MthBPcjmNbyEvkY7KZ4QPEyZlDyDLK08zLTOu+o3VDyjhCW8Pdv/u+XXIb3AmUQ89q0DPYPp07tMjS690ZozPI4jBD0QLP680ulzvT/IPr1Hp8m8IhqsvO1z07zvHbk8HKKtvNWrpTsZZi48UTA6PPVS3jw1FME6E+4vvDDAdbz1Ut66/CUCPVIRkz2XoI66K86pPR9YejzayP4861uGvBD1ibwFl6Y8CToyvCzaDz07Sea7O0lmvMhgAj0d8W07FzaVvGfgmrxPhlS90RQAvUCdMTz3ueq8SuNIPTpoDL2jhCW8Fc+IPbKwobz40ba8BH/avM2JwTxJUa88fvcHPaqOvbyzQrs814x/vaZ9S73jfPy83l8jvZegDr2Rlve8WicRPR9Y+jvk1yG8T0P7vMjmtTwOghe8CWW/vNgemDp6o7y6VK+SPU8MB7yrbxY8l9eBvOq9Br3/Hii9vDkSPabMijyc9Fo8WV6EvMNDKj0NdrG8caxlPSq23bxQGG48DghLvdtalzyA2GE8T8ktPFaQ7DzOXjS9YKt2PNsjJD2h2r887khGPWCfjz0+sPK58RbfPNY9vzs0P048lr81vC7HzzynJzE8ezVWPNtalzyUWCm62ch+vPVS3rvt+QW9DgjLvE/Vkzx6YGM9QKkXPe/aX7rayP48fMfvO9pOMT3bWhe9AhhOPeBAfbxcmgO8QsFkvAki5rz5Y1C6MQNPvfXYkLy5NAa9w0OqvDOtNL1/A++8ZpHbOgllvzwQLH69hG8GPZsfaDv3/MM8P8g+vJcOdj0fm1O78RbfvKGXZryooX48iYzfvBZtCL2v7m888PKrOs5etLsA9Jq84upiPOc+Lr1SBS08a7qZvC7HTz1zmSS9tviGuzgN5zpTVG28eRGjuvKckbs7dHM8mfs0vCyDK7xomjQ9LGQkvWPYxzyMmhG9bXuovELgrDvyY1s9tNA1PQqLkLwi4Eq9CouQvc/vo7sR4Nm6DEU7PcUONbyVOZG8KIeRPMXvrbyvkqw6ISqBvKuWEruDmhu8BaqcvJ5ULb3wqbC8xUzDuwvopbx1kuM8ttSWuv7+9Lw4PUy8yZKTvf3f7bznjpQ7SffnOxl7+DyJNbq8B2RHvaTQxDxHwaC8QEUJvaRUKD33Y9a8OeSXPF0eIji/77K8hdyKvM1Ed7wG6Cq9QaIevAFFxbzxyLc8q7UZvZ+xwr0zPVE8pql2vXg1yTxjucC9UaKPPN2C9jupDs47oHcVPPHnvrzMyNq69WsdPdmxCzz2zBM968i8vH/vbjsYaJm8mPecuSbgRb1/noG8vnOWO6OxPTy0DsQ5YLF+OyhoCj3mb409alTfuzg9TLx10HG74EwqvOWKM7yO2J88er0Nui6aa7yA+xY9lfsCvT09x7z2yDK9dJ6LvJO5E72rWAQ8eHueu017xr07Joc7vlSPuz1czrsJPXm8m2tyvDl7WrzOc4e8/GPRPB+qgzvRqc67SdjgOsRzET0KTQI8/cwOPDAHijzMMZg8HUmNPf+pITzAa0+9ESYvvEQWdLmeNSY9h9ikul8W2zxZFmC6wchkPdWpybus5389U1w6vJg1qzyo2Ia8Z1wmvAvoJbxN2Ns7hkz/PKjYBry7yOk7AmTMvMHUjLyHXAi8W+ATPJP3IT0NwVe9ozUhPX1ckj1KFm+9hkz/u59ztDwTPW+9GyYlPcAOOr2asce8schzvQ0qFbrooXO9XzViPXn3ujzTkgk9oO9QPWOaObyJFjM9Q1zJPPeOBb3aLSi9QsElu7u1iryeNSY8HmiUPFL/pLv9zA68gS19PWHBB726sSm9zWP+O6PYi7zr58O85udIvQ0LDj0oHtQ80MjVPQvopTxgsf671qlJvbwl/zyvkqy8sYrlOhCqEj009/s88IqpPBeDv7wSg8Q7lQ5iPKAagDw8oqO8W+ATvOnQgzwCg1O7itDdPHRU1bwNC448kWv8urrvtzxaNWe8AqLavDKirTxU2FY8itDdvC3/R7yvc6U7Ck2CvCNcZzwnhxE8/v50vV1cML2w70G94Io4vQvopbygTGa91zEOPd8to7ubLWS9I1znuzfBr7yLGpQ61zEOvETY5TwI4GM9mkzruraWiLwKTYI7sKnsO6RUKD2JNbq8SeSIvADJKD2jNSE9vKlivcuKTD1YXDU8frmnPOxjYD3rayc9sed6vSOadTwTXHa9uy3GPHi5LDoN7Ia84CXcPDAHCjzTcwI8qPcNvLGK5bygLd88KEmDuyfBvrzB5+s8rKnxPM1j/jsGyaM8I7n8vPHA8LyuNZc8g9ipu4Dv7jwd/1a72ZKEu2Wx+Tw5e9q87u+Fu541pj1CHjs9MWQfPX9Uy7s8Pcc73EToPIQ1v7wN/+U8Dlz7PCSa9bxvfwk8jxqPPXO5MT0THug7Uv+kPFI9szxARYm91Uw0Pc+xFb2kVCi91S2tvITQYrwNC447eJqlvLXvPL18HoQ9+qmmO9wGWr2QDmc8xUzDu6uWEr7U0Be9o5K2OzDogjxTmsg8hQ7xPPYGwTy6Dj+9FsHNvHOaqrufGoC9IKqDvbup4jqEc808+8gtPetjYLzZkoS8t+f1PKDv0LsgqgO9SFxEuz5czryYVLI6XOATvVLgnbzSRHI8j1Q8Pa/QOj1gkve862unvFw9qb0XPWo8JkWiPCNoDzzE0Ca84Kk/PaVYCbwW6Ju7GouBPcmxmjt09z89PqaEPIh7j7wCCxi88W+DvB09Zbxzmqo8db2SPNYSB72uc6W6uTWNO4pzSLyD2Km7oO9Qu7uKW72lOQK9EguJPGJcqz0t4MA8lFQ3PIYt+Lw8oiO9f54BPNbnV7zsgmc6PrnjvKZ3kDzXJWa8MYOmPAjg47xt98S7c9i4vHO5MbygDtg7XrlFvZPYGj3VLS27hZLUO3qS3rx0Fse9PuQSvdJjeTwuuXI8t+f1PDxklbxE5I08InvuPOUG0DlOe8Y8gLFgPnc9ED1vnpA8trWPvOyOjz0Ai5q9tdA1O/HINzyEFrg8rlQevKTQRL1aNee8adjCPBP/4DzwayI9u0xNPX+9iLzsRFk70edcPfapK73Tkgk9+MDrvBvJDz0+xQs7Uh6sOgdkRzxk9848ZH+TuzOa5rw+XM68urEpvb4WAbwVqo27AsHhvGRBBT1RwRY9xorRvCLgSjzaTK88N+C2O8uKTL1fc3C80kTyurXvPLyvkqw8zg4rPDbBL7zxJU29X1Tpu573Fz0I4OM8QEUJvTOmDjvcJeE86kwgPPqpJjzaij29tHOgvJP3obrEkpg7n9BJvQdkx7ypcyo9clycvC3/x7u1d4E8xHORvD571bzcMYk8LeBAPZstZD3aij097d/8vMHIZDzFTEM9IsHDO4rchT3vDo09xQ61u0hcxLzryLy8my1kvTw9x7tpQYA88GuiPBeDvzyZFqQ77d/8OwCqoTx63BQ9y0w+vPuKH7tXHqc8EqLLuhEHKLxc/5q8uVSUPOuptTxoXCa9zw6rPFCij70ee/O8F//bu7/vsrxhwQc9kPsHvY4WLrw2ZJo81JKJvL+SnTznjhS95O8PPUU1+zxVc/q85UwlPRFFNjwS4Fk7zPOJPVnY0TzxwHA8jtgfvdnQEj1k9868vPOYu+vIvLov2Hm9ZbH5PKAOWDyfscI892PWPOpMoLvVikK8AqJavKRzrzwFbA48DcHXuoOamzrhMQQ9Q5rXvMotNzwVqo28etwUPS0eT7xGZAu9A/9vO+CpPz1HwaC88GsiOmnYwrz6DoO8mDWrvKrvxjwMZEI98oLiu/oOgzwuuXK9VAOGvNUOJjxM4CK9Mx5KuxP/4Dz6DoO8KLl3PFL/JDy177y83u8UPTg9zDx+Fr08mpJAPCJ7br3LqdO8HcHIvNFjeb0noje7MWSfvE3/Kbz1iqQ8Fz1qvJ+xQrwqBw+84Km/PMTQJrwxg6Y8ISYgPQgqmjwmZKk8KB5Uuz6mhLzlayw9TvdivE8ikjxUQZQ9LlxdO4i5Hbz6TJE98o4KvUfgJz0XHmO8v5IdPWT3zrzFDjW9fhY9u9upRD39od+73AbauyJ7brzSRPK7/GNRvD4WebvDkhg9aLk7PddQlbzsJVK9dZJjPFzgk7vWikI405IJPfBMGz0MRTu9bXsou+uptTzq7wq9tJKnvOJj6rzxJU29T0EZPWpz5rvDcxE8jjW1vIg1Oro8waq7lFQ3vY73pjxOe0Y5jVwDvOWKMz1fNWI5C8mePOoOkrvsjo+8SjV2PFIerLzRBuS8lBqKPbtr1DysyHi803OCvXqS3rwMolC7hg7xO6mSsTwzHsq80kTyPAk9ebylLVo9q7UZPHP3P7yPc8M8EsHSvNwlYb2xtZS9Qv8zPRdkuDx+Fj27lTmRvJlUsrwzh4c8/h18vOyOj7yhqfs78EwbvDT3+zsmJhu8gnuUOxCLizx/vYg7IWQuPFRBFD3rayc8FkUxuoi5Hb0ELgA8g9ipPMAOujtYXDW9DewGva5UHj1EFvQ8jtifOnO5sbyv0Do9b5LouxEHqLyWLWm8tmvZvLM1kjyma2g9Hpr6PGO5wLuuNZe8PqaEu6MWGjtMwZu8VAMGvfapq7wRRTY8O0UOPUnY4LyKks88Iv9ROl6aPjyra2O9RBb0PKUO07spppg8iy3zuzNcWD3LTD69WffYOnDvfbwbyQ+7WRbgO0NcSb210LU7wExIvNwl4Tukc6+8ry3QvF7307xImlK8jXsKvcup0zwuXN28MOgCPJf3HD1je7K7qtC/uoc9gbyd2BA9AmTMOu7vBb0FTQe9WJrDPUzBm7xc/xo9glwNPXN/BL3U7x48LqaTO6apdrw24LY8D2wEvSKiPDy35/W8jXuKPFLgnbwCzYk8wzUDu37YLjxJAxA9ZDXdvHJcHL3dY2+8Df/luwVsjrxhHh08WFy1PAboqr1emj47v0zIOjhc07tMgw26/CVDPeyOj7zMyFq8uy3GPH1ckryV0FM8Ix5ZvQsHLb1X/5888QZGvYQ1v7z9od+75sjBvBDoIL3HRPy8adjCPLDvQT0+XM48XiKDPJqSQLt59zq8pQ5TO1o1572EvQO9WD2uPE3/qTzE0KY7mtDOOxEmL7sn4MW7KaYYvYlUwbygOYe7qNgGvVf/nzziY2o81orCvGlBgDw3oqi8v++yuyXojDxYXDU9MAeKvF81YrzJcww9+N/yPIWS1Ds593a8CAsTO8/voztDmte80IpHvQ3gXj1iXCu9b3NhPA0Ljj3XMQ47v7EkPYYt+LzH52a8cO/9vPLA8DsuphM8WQOBOhxks7x6seW8GCoLPeUtHrwS/2C8rMj4u3RzXLz/TAy9528NvHhclzwELgC8EQcovHDvfbsxZB+6KZpwvWWS8rwmZCm9C0W7OlTYVr1eFls97w4NvV1cML1CHrs8LIOruszn4bxfsf48j3PDvJL3oTvATMi8J6K3PJRUtzwTPe+7/cBmPMTQpjy9NYg7LlzdPHL/hrrxJU08BQeyu2Vz67w3wa+9YT0kPUkiFzyzNZK8kC3uvPwGvDzXRO08OKYJvTeiKL3VLS29FcmUvJUO4rwpe2m8Bs0EPUU1+7yjNaE7Zx4YO01cvzuQ7988VXN6OrbUlrz0TBa8v5KdvAboqjx6vY09iRYzvLlzmz0dXGw8n7HCPCGDNTy67ze90fMEPbyp4rwWRbE8D2yEO8lzDLoNotA88ec+PAwmNL0aqgi9RTX7vKoOzrzGyN87J4MwvFhcNT20VJm8SFzEO1qSfD3Qise7b7HvvBxkM70jufw80Ey5PD6mhD2YuY688q2RPLapZ716sWW9544UvQuql7xjmrm8YaIAvRKiyzwxZJ86DKLQuyEqgbwhZC48wExIO9zn0rw4XFM8q5YSu4O5oj1IHra8+8itPNmSBL2asUc71shQvULBJT3GqVg9tqnnubMWC73U7x49LlzdvJJ7BT2vkiy9TIMNPDnFEL2eFh+8fzVEPc8tsjxeIoM8TR4xvTbBLzzXY3Q9F2S4PD57VT3hMQQ9KZpwu3qS3jxNHrE8adhCPKRUKLwAyag80kTyPCNojzzM52E8FaoNO2Jcq7wD/++7OKYJvUOa1ztAJoI8gO9uPTT3+zxiHh06I0mIPPpMkTtc/xo9eJqlvHIeDj0GB7K8M1zYOy3gwLy177y8AguYvDMeyrwwBwq9q2vjvOBMKrxRPTO9tJInu8zzCTtOudQ8LqaTvRqLgT0CC5g8irHWPK5UHrxIHjY9ap6VPHiaJb3cRGi8HeDPPPotiryaGoW88ec+PGGiADx+uSc8XXs3vQCqoTpFNfu8FkUxvMJUCr2T9yE9Qz1CvQ3/5TxTXDq8HT1lvDCDJjwaqgg8k7kTPUaDkrxdSGO8HdNWPQhvmrz1WtE7XNg8vd3tI70KIm+84v8FPUBkSD25zFi8rVghvcMfP70BX+K81QpkvEN6fjzhDvU7gg8+vadGPzykMAm9i6d8O+v8z7xhJNy8dXA4O9viCLxC/RK9F0SJPI/ZET0Mg6a8i9JKug4pNjxYjB298ammvDXQXb3KR9e8oicYvNpHFDyG6zY9X1N+vEJvY71WVjQ9n+YTvf/jIL02lqA8NvkBvcQdlTzKPDy8qhedu9C8Grwli0i7bihtvZB0Br0K3Ra7I1XfPBsC+byqspG9Yy93vPmXgb3u2Mi74tS3vSybAL3WM4g6e8dyvGNaxTsXfJw5t34PvEl/mzzPFgu5KZIPPShnwbxAZMi8JlGLu6pc9bqguRu9jqOovGDu8jnnSyU8iSw7vHpKBzwbLUc8HMg7PZb2DjxhFxc9WjKtO4IPPrzT/8i8qOGzPCzTE7wbAnm8qhcdPT2znb2OeFq92XQMvd9oZTxXxtq8beOUPNJXjzxq52i9F3wcPOnxtDoyKk68Lk5VvHzwFrwtQ7q8+MajuwIlpTrQk/a8k7WKPAxYWDyOo6g8Gr0gPNfbwbqNCLQ8Py5fPHy4gz37z5Q7Gr0gvYun/LueroA8jJgNPQYBHry+0x89OUfLPCV+gz0VRrO8KwCMPTOadLxEFfM8sd79ueQKIbzIMaG8a4LduzyITzxtq4G9WzCDPDYGRzk8iE86Ti6cO3YLLTyPrkM9VitmvZxABD2Pg3U9F1HOu9Zrm7xMzeQ8r44KvUuIDD2/NoG9566Gu9bQJr3WFf+7ekoHvc5DAz2hJxg9osIMPSPlOD3+EJk6jqMoPZQlMTzI+Q29xbgJvVR4kbxffsy8/YJpO7JqgzwDlUu8anfCvHD5yj0gPym9Ut9GvSNIGjzH+ze8V/GovPTqKr228F886FbAPIksuz316IA8IdodvLeL1LxOc3Q8KL+HvBXWjLxKJ9U8i8WFPAhvGj18uAO827e6OsB5rzqEiv88428svEgcurwm++47hsDoOfRNDD1uw+G8TgNOPG9e1jmXO+c8qd8JuxE/7LyiJ5g7fI01PAT2grzuywO8F3wculhhz7x0qvW7N3ZtPEY+l73i1De9fZhQvT9ZLb0eYQa9/xmKvZqnuTzbtzo86IGOvVaBgjyLYiQ7U+rhO4PVgLyeWOQ8wLNsPe7YSDxHgUW8UbR4u58epzydEww9wncFvS7errz4jhA9ol8rPfx3Tr0VG+U8phBWvHsdDzy/bpQ9MK8MPeXqbb24Jsk8Tp5CvdPyA7wZIqw8uYcAvfsHKDs3du26bu6vPF4Oprs10F288hlNPI3dZbtgiWe7jnjaPGp3wjyN3WU80mRUPB3+JL0fCUC72hzGPONvLLzAs+w8Tzm3vHEE5jtDpcw8mGQLvYFJ+zs5R0s9Uk9tPVwS+jzyiXO8cloCuIoqET1YVAq9PSPEuvvcWT2mOyS9I7rqPLPaqT3Mt/08tHUePFlsajwIpQM9JbaWvR7e8Tzb4oi827c6vV0DCzqh74S84jcZPdkRq7zxDAi9rjhuPcgxITxp3E29Pr64OzVeDb0xghS+bbhGve491DoEMEA8zOLLPK/+sDx2bo47fzEbvcl2ebznrga8TgNOvVswg708GCm7Cof6PPYglDxsEA28nROMvFs9SDyfHic7vALCvDifkbyLxQW9lQV+PJLEebz853Q7ZwvwusOPZT19mNA8yAbTvBn33bwgFNu9mQzFvEEqCzxB/zw87TAPOusHaz0QNNE8yqzivMXwHD1kWJs7hVBCPY8+nTzATuG865dEvK/T4rwLvWO8BTtbPDEfszzd7aM7iQHtPB8JQLyoUVq8x2teu1G0eDoOKTa9rshHvLhRFzxiv1A9DmPzPKDENjxRtPi8dUVqvTyIzzvO7ea7Fau+uiAUW72vjgo9JOMOvf+40jwh2h29ipzhu9h2trtrrau7kEm4u8y3/bwLE4A9ZfMPvJLiAr3uywO9s9qpva/T4rzmsLA8czpPPH4I9zy69ya97wMXugTLtDxrrSu8UdIBPdUKZD7GYEM9f/kHvYMNlLsPVIQ9xmBDvaeA/Lv1yvc7fGLnPGZwezsYXGm9EtrgvCTw0zyFe5A8q/fpPOnGZj3fvoG7NvmBPM4YNT2tIA698akmPJdmNb0jEIc8iJFGvJeRA73WQM08A2r9PC/cBLx/MRu8oZlovBJqurzkpRU8ODywuzyIz7yN3WU8bB1SPc2oDr0Kskg7yzoSPcvXsDyERae9pXXhvFknEjxgGcG7NdDdPIyYjTpqd8I6cb+NvYRFJ7vUb289m0KuPHZ707ynRj87n/PYPG3jlDxrgl07566GveRtArySGhY7BgEePJT64ryd6L28DfPMPJO1Cr36QeW7gxpZPNFZObo7qIK8yPkNPdihhD2svSw95G2CPeiBDr2h7wQ9ol8rPQNq/bq5wT09TgNOPd1dSryJLDu8rmM8PPVaUb0rOJ88pAU7O1CcGD1RbyA8oLkbPZNfbrugjk08XBJ6PdSavTpe1hK8B+FqPHYLrTwSlQi9gg8+vEq1BDw9s508vkNGvfZlbDwZhze90vQtvUkakLvytEG9uFEXPaWgL7wPVAS8MIQ+PC8UmLz853Q8jd3luQyDJj31hZ88WFSKvGs9BTxOA048bVM7vGwdUj0v3IQ8qOGzPEL9krysvaw8zxaLvL6oUTrvc707iJFGvXmvEj3+SCw8C3iLPP3YBT0gpLQ6huu2vB5hhry4Jsk8HMi7u3JagjvXsHM72RErPY8+Hb02liA8QGRIvSs4HzzHlqy7dntTvRgiLDunRj89NMOYOlCpXbuLYiS8lIgSuhBfn7y/GPg8HJ1tPTSLBb36bDM9x2tevZCsmbm3i1Q6woTKvB80jryP2RE9IdodulFvILz6QWU7xyaGvPAOMj3GixE9SbcuO0BXAz0y8BC9AvpWvCA/qbwWcYG955B9vOts9rsPxKo8IKS0O8B5LzwnlmO8eUwxPHdBljwKh/q8MIS+PEdWd7uuOO48O6gCPbgx5Ly5wb28X1N+PXEEZrwnJJM8BFuOPenxtLsC7ZG8gUl7PX3DHr1Lwsk8QpoxOX/5Bz19iwu9/T2RvcvXsLsj5bg8vxj4vKjhszvxDIi8HJ3tu0BkyLxdSOO8dnvTPKP6Hz3WQM28yAZTvRq9oDw9ThK82vH3OxnqGD3d7SM9FAMFvQ7+Z7rHlqw8YO5yvVn8Q7sMg6a8welVvVIKFT3X20G8PSPEOofpDLwxghQ7ZmGMOvpBZbzT8oM8EtrgO09kBbx/o2s9jGsVvEmXezyIkca7vNdzO6aehTwAf5W8Z9EyvXQAkj3ACQk9Yr/QvIRFJ72xefK8W6LTO/A5gDyGTpg8VSDLvKCOzTxkIAg8C+gxPUD0ITxqd0I8ODywOxnqGL0mJj29LRhsveSllTxnYQw9czpPvFSFVrwZ99288rTBPPHufrz19cW6yXb5Oik8c7xDmAc81ZgTu9+TMzxzOs88hXuQvI6jKDwzxcI8+abwPJtCLrxI8eu87q16PGabyTtbotM8fGJnvVHSAb0HDDk9LW4IPXqCGrw9+HW8jELxPO6t+juYZIu7zrOpu4kB7bwrnao8g6oyPY0zgjyP2ZE7J1wmu7EJTLyJLLs8CKctOyfBsbwVRrO8uFEXPNUK5DwdY7C8pxvxPBjsQjvcJ+E6a3WYvRQDhTx5TDG8+CmFPFyt7jlZ/EM9QGRIvRdECb1S6mG8ac+IusEUJLyOBgq9MYKUPNoPgbxtuMY7LJuAuwL6Vr0hr8+8PyEavIeGq7ywmaU8mXHQvHVwuDoj5Tg9rL0sO//jILzSV4+8NfsrPSeW4zz5YZi8ycyVvEDJ0z3B3JC7mwobPdDpEj2EqAi9VIXWukRAQTz1hZ869fXFPJ6DMr3/4yC8Rdu1vMXwnDyLp/y7B0b2PJ8epzwFZqk8Tzk3PXyNtbybQq68756LvJbLQLyAzI+8zkODPB6ZGTqTiry9yjy8vEm3rjz8rbc51tCmOgqySD12pqG8VHgRvLlcMjyG9lG8rjjuPCO6ar25wT2850ulPKNdgb18jTW9V/Eou1WQ8brf9pS8gg++tyAUWz3NfUA95oXiPMXwHDu28F86mtKHvLGkwLsgFNu9EfqTvCYmvTv85/Q84TnDPFoH3zwcyLu8NDXputRvb73pVJa87DK5vFUgS72ldeE8CrJIPAdGdjz0spc8yaHHvDIqTrydEww9i2IkPRw44jvGNXU7pjskPRbhJzz5Nso80vQtvK5jPLwHRva81mubvJAe6rzA3jo9f6NrvSpllzs+k2o9KwCMvKrsTj1YYU+7nRMMvX/5B72DDZS8l8kWPCpllzrkbYI7zkODvKdGPz2QdIY75yDXvKP6H7sVgPC8E6CjvIN/5Lp2e9M8A5XLOjYxlTyegzI8/HdOPDzt2rxZbOq86YwpvQQwQD17x3K909R6PYMa2btoNBS9oClCPFoyrTwlYPq80o8iPTuogrtlK6M89ysvvXKf2jy0SlA86FZAPCotBD2x/AY9TM1kvMTlAT2nRr+8VivmOiGvTzxkkC67+WEYvb82AT0Wtlk8iGZ4vB3+pLxsSKA8mQxFPDCEvruN3WW9XuNXvTuoAr3Y2Rc8uVyyvBdRzjxbotO7UbR4PFJ6O7wgPym835OzPEisE7wgPym8b17WvDaWoLyqXHU9i/2YPTPwELq2tqI9mTeTPBqFDTwfCcC8dNVDvVjR9TwMgya9a4JdPDH05Ds+k2q7Tw5pPOgr8jxdSGO917DzvJsX4Lwcne28hvZRPNJkVL2pfCg973M9O9ocxrw6fTQ970jvO2RYm7xxlL+8cQRmPBjswjxi6h49BWYpvdZATbttjXi9BgEevcZgQ73fk7O8ebzXvCQbIr3+SKw8Hm5LOc4YNTxyL7S8QPQhu9ocxjvoVsC8thsuPG2NeDuHISA9DrkPvdhL6DuJLDu91aVYvERAQb1AVwM9/+OgPIo31juVIwe9rS3TPFswA722Gy49HpkZvTnXpDxYVAq9BtZPvGC0NT2o4TM8UNSrPDD0ZL3OGLU8tRCTPaCOTTxtjXg9x5asPN2ImDuDqrI8fSiqO3mvkjzhDvW73iONPNh2tjyBSXs7Do7BPNu3Ojvfk7O8G1iVvIxtP73uaCK8W82hPBdRzjwN80w95eptuyGvzzx5vNc7bB1SuiIf9ryXZjU9eeclPIiRRrsgpDS8DIOmvEbZi7xgRA+9xmDDvJk3E71tuMa86RyDvMdembyJLLs8q00GPZk3k73ChEo9MR+zvB3T1jx4sby8LrNgPUeBxTwCiAa9CUIivJxABDzn5pm8IKS0vPvPFD37B6i7RbBnu3m817xI8Wu7uFGXvL04q7wdY7C7klRTPUpSI72S78c8AiUlPAQwwLxPObc6O+CVPGaOBD2G6za9hsrUOyugXT0IIWG87nMxPC41K716LRe98GljO5GXOj2AIiM92bJluuVdMr3pLGS9mZCHvLFHhTupCoa6b8+kPFP8Gr1NmJs78SWxvEXKD7mHgbu8XcDYu2/PJLz8Nkm8zchNvadTnzzK9DQ91QXNO9BYNDxSAQK8Ozx1vP0x4rwAFIq94c3LvEmZQTyLgBU7bB0lPRsrRrzIPU698GljPTZQkbzLQQ+9aNFwPO+y/Lw/ZhA9MCtdvNPtAbxZYJq7VzpAPOShZL1IwEG8tfQdvMAi6Dy3DGm8UiObvVsXAbz2/Yq99SSLvF9Vpr1muSW8ev3uO09Pgrz8FLA8AOThuzwVdbze+bI8xmm1uxIQ4Dzg0rK8jcgIvTdtQ7wp6fY7XMU/vU12gryWbxS8YgemPJnx6zt9cCM8CP/HPP/GLz0HQ3o8983iPKEMUrre3IC8GyvGvM9dGz2NB1S8vydPvHURCz0uNau9/+hIvR3iLL0xxZE7ZrmlvHuXozw+zFs7vU5PvcL7ZzwcJt87LlLdu83ITbshj8U7kAuVvBxWh7wmRQY8t+pPvJqLIDopzMQ7LlLdPKLqODzlXTI8uKYdPV5ajTyTvZQ9nqyTPDofQ70HUYm88/6wPGW+DD1cxT+8qQoGPZkhlDr7iIo96E59vEcEdD2Y1Lm8FsLfPFrsvzzteBi92dR+vA5jR7w+qsI8hM87vU9Pgjx6vqO88xvju6onODyrALi5gmoWPXhUF724yLY8Ozx1PU1oczm67pC8EWcIPbX0Hb1Wrpo80RSCveTDfTqJOCK9XfAAu7cM6byLgJU8UtHZPK+tUDzlnH093W0NvJ5aUj2oLJ+66QpLvHR31ry5oba85xQZvHqcCrwe3cU7dDgLvaShn7zuUZg9IJQsvaEMUr3/6Eg7xmk1vNPtAb0I3S69ccVWPJMsiDzz/rA9U42nO6//kbxYGCe9XuuZOz/H9LyoTri8+UCXPNIPGz1JmcE8C9NgvADCyDuXHVO7rZWFPIBEvLyNyAi9Tx/aO7BpHrv01zA9+l3JvIjOlTxEUvS7BU3IPERSdDuXHVO8kZe6O0yP8zu6nM+7Y0bxu7MbHjxLckG8MuJDvGEupjyxqGm9N5gEvcAiaL31tZe9mfFrvWsijL2cZKA8X3e/O/jWir1pqnA8wpoDvfimYrui6rg63f4ZPaPDOD19r+488mR8vIhfIrxBXMI7vwU2PYXK1LzX2eW8/ssWPaPDOD0Fb2G9WxcBPX1wI7uZ8Ws8EhBgPWJL2Dy9MZ29HwiHPB3/Xr2fFiA8qkTqPNtHM72efGs8IW2sOxl03zs5JKq7Wc8NvJmyID0iaMU8VKpZOZCcIT3HIBw9AnmvO1rsvzuzihG95TuZvKEMUjwFb+G79Rb8PBQL+bwpiBI87ecLPZxCB73QWLQ8i+8IPQGgLz17lyM9IksTvKV6HzykoZ88Z7Q+vfIgSrxBXEI9XloNvV2evzxvPpg9lgAhPZB6iDwNaC484mcAPbrukL2LESI92kyavHWiF72XSBS8vgodvDs89Txv8T281jAOvUejjz0S0RQ8f2ZVvSCxXjvNprS8/6QWvm+tC73lXTI82VEBPAJ5rzy7WJ08JtaSPBe9+Lwjk4a84asyvIOyib0GeIm9gR08PGth1zwpzMQ8fd+WvJjUObyxZDc80HrNOlY/p7wjRiy8j+BTvYL7IjxSkg68VGYnO8AiaLno7Rg9H9jePMzNNL0d/169YHLYveAR/rxBoHQ7INP3OrtYnTo7Glw9qHBRPDlBXLw4RkM9dlBWPH1wIz05Y3U8mPbSvNPtAbxMj/O8k2tTvGivVzwbSHg83tyAPJ09oDyO5To6OxrcvCrH3bvwmYu8iF8ivfT5ybtfmdg8hqg7Pdq7DT0cBMY65V0yvfxhir1Apdu7Cfrgu+6VSjwsfkS9JxXePOD0y7yTTqE8qwA4vVIBgrx3Kda7cqO9uxLzLbyEzzu9/joKPVkTwLxTjSe8MecqvR3irL21YxG9tPmEPH2SPDwFb+E8fo3VvHZQ1jvOw2Y80RSCvDdtQ7zQnGY+tfQdPeWc/bw5QVy8uISEPRE3YL3JaA88j746PLt6tjzPfzQ8dVU9veRAgLyqdJI77JqxPAr1eTymWIY9IJQsukxtWjxo0XA9PvwDvbuXaDrp6DG8cqO9PLpdhLwDxgm9sxuePLtYnTyTTiG8KO5dvLQ4ULxApdu8tFppO+JngDl6/W68ZiiZPKdTHz3+Ooq9lx1TPDhGQz1bORo6lQWIvU/9wLzkf0u8ZB/xuncp1jxeWo08vTEdPJj2Ur1KlFq7l0gUPbtYHT3iZwC9oQxSPLQ40Dyarbk6yfmbO1Aac72l6ZI83hvMu1+ZWDsT7sa8fNZuvPmhezyHZAm96egxu9oqAT2gETm8BJF6ulrsvzyTjWw9kywIPf46ij3cJRq9xyAcPZqLID2ARLw72ZBMPf0PST2jpoa6lWbsukU5A7zW3ky9/6SWPE0pKDxWPyc9/e2vO/xhijzlnH0820czPIEdPD28Uza8k41svDdtQzyM6iE8Sncovc6hzbwftkU8NNh1PPfNYr210gQ9pH8GvfzyFr2v/xG8HpkTvSnpdj2gM9K70TYbvVSqWTy9D4S8Qnl0O7mhNjumdTg9r63QOq+Qnrwm+Ks8yhZOO4IY1bvd/pk9qwC4PBkwLTwQGq68p1OfPIpV1Lrq40o8aWslueGOgL0UGQg9yTjnOzWUQzw2j9w8WfEmPEQw27yVRNO71p8BPCZFBj2M6qE8+3p7u5gY7DzRpQ68bfaku1dcWb1Vg9k7QxOpuosRIr1iS9g8fo1VPXZybzv017A75V2yvAN0yLshj8W8DoVgPHvbVT10me+81QVNPezeY7145SM7lUTTuRAarrxl2768vnkQPSgehjq3DOm6cefvO3+IbryQ22w9xUwDPUIYED3cZGU8uu4QvdTGAbx2cu+8INN3vdXjM7yC+6K8tBY3vFnPjbpnkqU7HpmTvB67LDx+jdU7vXDovPUW/DydgdI8TJ0CPXCoJD2j5dG8FeT4vE2Ymz3mNrK84up9PLvHkD3Free7ZpeMvP8Fez3svEq9/iz7PBPuRrw/iCk9NJkqvcaGZ713KVa7csDvPH5Jo7yUJyE7kJyhvLXShLxIwMG819llvE0pqDzhzUs9Wuw/vfBpY73VBc07TQePvMkbNbxIwEE9VIhAPZCcIb24FRG8Po0QvCRBxbzhjoC86saYvJUiOr0jhfc8XMU/vHWiF7wudHa8daIXvAYJlroAwsi7pXqfPE4kwbuBHTw7rbeePZFTiLww7JE8LoKFvGqzmLo7+EI8qwC4vEMTKb3TTmY9Gg6UPOJnALyzihG9oBG5vB0h+Dw5Y3U86QpLPE8f2ryJfFQ9FeR4PKWcOD1E8Q87YJTxPMoWzjvW3sy8+1hivWEMjb1S8/I8Wc8NPSRjXrzMqxu80+0BvQHtiTyxhtC7FfKHu3u5PDyrItG6NOaEPKveHrzRNhs8xmm1PHuXI7zf1xk8NymRPIWtojxTr0A83SAzvf4se7pLUKg8tdIEPU5xG73g0jI8i4AVPXYuPT3pCku82ZDMvO+yfDzgH4270jE0vLs2BDxk4KW8NOYEPVLzcj15w4o8zqHNO38niryUlpS8NrH1PO3Z/LvC++e8cvCXvKcxhrtF7Cg9knA6vHN8vTy6nE874viMuxe9eL1DV9s6Ozz1O32SvDr4yHu8iXxUPbX0Hb1Ag8K8UbSnvJfZILwCm0i8NlARvbRa6Ts+qkI8LVdEPNE2G7w90UK9f4juvO7Ai7ztt+O8vgqdPHKjvbx3DCS8ZrklPe3Z/DsBfpa8CfrgvGFQPz2rItE8GDUUvXcMJL1cxb89I5OGu4IYVT1sHSU9lEm6vK+tULyVIro744SyOecUGT1GCVu9BkjhO3dL77zwaWM7JWwGu8yrGz1aPoE8O0qEO/TXMD1ncAy9GyvGu8zNNLw+/AO7y0GPvCFtrDyNB1Q8pXqfvYlaO7z8FLA8uaE2u+AfDTsJHHo9m/oTvaOmhry9cGg8lJaUu9YA5jyLUG29lm8UvdnU/jt7uTy9A8YJvf4s+ztApVs73SCzvIWtorojRiw9BU1IPZSWFDx1ohe8lm+UO1uojbz9MWK8No/cvaEM0rwvMEQ7IHKTPEu/mzywizc8k70UvcSyTjwVpS29sz23vMPU57wHBC+994mwPItQbTt0fD08LoKFPJf7ObyzPTe83ELMPJRJujx5Ata7yF/nu5i3Bz3nMcs8QjopPffN4rxiS1g8QaD0uzHnqryOwyG95xQZPXnDCr2+Ch28Wj6BPY7DobtR+Fk9HCbfuxA8x7z9MWK8fd8WvGIHprxpiNc7k43sulnxprgkHyw9mfHru3y01byUSbo7fZK8vCrH3bxmuaU7Z3AMPZCcIbve+bI8o8O4PG41cDywize9G+cTvQ2n+bzLQQ89bFxwvX6NVT2M6iG8eAc9vXjlozx1VT08d3uXvKlJ0TyPvrq69dLJO/CZC72WACE9SpTaPMvSm7sYlng8/e0vPYUclrzndf081/v+vA8flTsmRYY75ECAu4TxVL3Ijw8954OMPNpuszm4hIS8yhbOPG4TVzxj5Yy7dVU9vbfqT73d/pm8+juwvBPMLby+eRA9iTgiPDAJxDwOY8e7wbwcO8sR5zwYeca77bdjuB3/3rznU2S8NZRDPZbehz2r3h68vydPPTr9qTwPjog8fd+WvCUaRb2ZIRQ922nMvFgYJzyX+zk8WzkaO1yjpjwn88Q8+n9ivWa5Jb3waeO8xiUDvUrEgjxpayW9di49PRikBzxIwMG8HFYHPa6ytzlWPye9qCyfvFow8jxSAQI9DmPHPMErEL37ens7+IRJvcdkTr2svAW9iF+ivM7l/7zd/hm9az++PEu/G7yQeog7FAt5vEtQqDvXmpo8Wzkavfo7sDxk4CU7EjL5PEieqLxojb67p1OfvCCULL2waR69rdm3PHy01TyoTji8ImjFvII67jy9MZ28/8YvPXhUF71XOsA8FKqUvPNLi7w7SgQ9XlqNO2YoGTzEsk69IySTPPW1lz1fd7884shkPYaouzz4hEm8vQ8EPVAoAjxDE6k77ecLvHhUlzycZCA819nlPJfZoDzvTDE80RSCvKgsH70+zFu9ZtbXO9MsTTxWfvI85NGMPc7zjrwtV8Q8IrqGPBiWeDvRpQ6946ZLPYoWiTyY1Dk6ydcCvA1GFb0YNRS8D15gvSuDq7yiyB+9ZiiZvPawsLzbi2W8UdZAPHZy7zwrg6u9FYMUPfxTe7xSIxs9DKxgvArYRz2nkuo7JWwGvXjlo7qyIIU8fycKvdoqAb0g4QY9osifO3q+ozwcBMa83ELMuvlisLxu1Iu8PLQQvRwmXz1Mj/O8kZe6PLMbHjuh7x+9YgcmPDcpkTz19OI8RDDbvERQHLw89gg93p1AvUbrWzuqnuS8btAjvWLe1zyntps9glYVPYrr57tByYC9V8OWvZ6F/bzFHTy7V+veOxPrUjsNBDe95amdvF5Exbwl6qi7r17lvLMe5rsplgW7OF0jvL3DKDu0Hbm7Ud5UO7opFrxOHac8uMmVPCr437wnXaA72wOuvYBF+LyTQ6E80Dj9O7jdOT0Yqqa8HrcwvdxR5DwbMJW8fx5dvJ0QrDxjBfO81KmaPGCS+7taXam63p7tuRsdnrzkbwu9RFAcvXJpCbtykKQ8ecOcvDzjkb1htzy8DytSvTTEvTqXA6K9kEV7vK82HTwKa9G7a4X0O+48Fr0ZH3i8fqq4PIw3RLyA9pQ8G2vUvKjvgLxQkUs8TmtdO+Je7ryVt8W81Ph9u+92qDz24gW80OkZPDJQmbu8nmc9XKqyPA8qJT2+EDK8TUTCvNEPiLzl0Dg9baq1O15rYDzy6R89/QM0vfwEYb0gUnC9kR5gvFzRTb2wSZQ8M2MQO0Cjkr0ba1Q8ybahPC2S8rxxQxu8KdLxu2oQIzySHAa98JyWPLIeZrzC0V+8nOo9PBxqpzxhuGm7vZwNOohQqDwzd7S5VVAfPUXFbbs26iu9R+quu7i2njzIt848crhsvP4qTzw9RL889h5yPWV4arzIt049tpHdO5gpEDyUkdc85NFlvMZqxbyBHbC6IFJwPBVdHb3Cgym8pZHavNBdPrxyfAA95KpKPQpr0TzqfJW99YIFPVG2jD3x6sw8WRAgvFfrXj2U3mC92LdRPddqSL2ZnmG8AGOHvdeRYzzWHb+8/zwZPdx30jwjxec87p5wPVR457oznk88xQmYu7t3TLsRnsm8V+tevOneb7yP0dY8P5AbPGBDmDtJXtO8PB2kPc4R4rwyUUa9Kx5OPKzE0rzyN9a8O9AavVVQnzw7H/48nOq9PbjJFTwf3Z68PWvavDTEvTxHEUq9GdCUvI+WlzyARfg8M2MQPYXJjLuOXAW8X2vgOrIe5jyHUdW8gmvmvIYDHzzFHbw7sNHcPJTe4LwNty0850RdvGMF8zz/PBk7aje+vFMqsTuRHuA8cVYSvX6DHTyUkVc7noX9vHnEybw3I5E8iFAovWqFdLys6229C0OJvTdffbxFnaW9zXYiPegvDDpZI5e9UgTDPLbe5rwFXkc8XuOXvMnJGD0Rn/Y8+97yPLoqQ71p1hA9L97OPD0JAD2x0Vy9J12gvAj3LD0O3Zs8j4MgvYbcgz16EVO7LDCYO1kjlz3/PBk9zDyQvTc3tTzJ3Ty9W9L6PPppIT2Id8O8eHYTPJNqvLslON+55vYmPB63MLyK6+c89KpNvC/eTjnm9qY8L90hPfSEX7tQaYM8MSorvfI31rtv9hE9sITTPFyqsjw/3/67hd0wPOmR5jxYEU29n4MjPOlCgz1B3SQ9VXe6PIz8hDsVX3c8ImONPJzpEL0H0b488zYpPb3EVb1gkU48ycmYPTFS8zz7fBg9aeo0PdoEWz1L0ne9IVCWPGQqNLx9q2W9eHYTvBTqpTvmHm87CNCRvLKpFL0OLH89mnaZPHjFdr1tqjU8E+tSO3AJCb720Du9wm8FPXdQpbySRM48N1/9POSqSjy1akK9MVFGvGyr4rxVY5a9jDhxvWnqtLl1K+Q8vzj6PPI2KbyMN0S8g95dPHKR0TyzRNS8RutbvG2DGr1QkB49pnwJvY/R1rxFEvc7ODaIPKRqPz16EVO8o0MkvK44970845G8TmvdO784ejvyXvE7L95OPRISbrzNdiK8qndJPJrEzzwPUm09cGvjPFgRzbysnAq8/ikivbVDp7xEUJw8BoS1PONcFL1Rtzm873aoO7ydurxAo5I8f/huOxjRQb2jL4A7yd28PDcQmj1IN7g8YwRGt9YdP71cqjK93Hh/PIrDHzxb0c07qCttvUXEwDz39qm8w9AyPXaeW73yXnG8ajjruxswlbxsg5o7hLfCvKudtzyHPIQ7RXYKvXrqN72+ELK95xwVvQtWgDyh+PQ8X0RFPTqWCL3D0DI8AsMHPJYrarwCEus8vzdNPo+qOz3+KaI6ftAmvPlrez0znk+9UJHLu5D48TynBX88GuMLPCTrVb2sw6W8NjjiO9TQNTvE9iA9+mmhPceRYLwH0b47BF90PYD3Qb1FxMA85G8LvRLF5DwSnZw7gRyDvAodmzxPajA9OtHHvKQvgLzYQgC9Gh7LvAWF4ruVt0W8Dt2bvA2jiTxZI5c9dN2tvAj42TzcUDc9xPfNvKfdNr0Z+Ny8p8mSO5SRV7yhvIg81NA1uh63MLyaiZC9PkMSvDFRRjwEN6w8ZXjqvD+RSDnMPJA8mBaZPO5QujyjHTa9ulCxO23RULt8Xa8838RbvKL2Grw/3348eZyBvFuExLzrBF66CjASOyJ3sbzQELU8AcVhPa3qwDyK62c9Ut2nvMrcDz15wxw9oxyJPID3QT3q3m89wF07vEC3tjuoUds3AzhZvQWF4rufXAg7icX5PLkqQzy6KsM8kKmOPGo4azznRN08hgOfvAISa7tUUUw8dSvkPKudN7wheN68HrewPMrvhjzbAy69rMTSPFbFcL27TwS8DbctvD0dpLw6lgg9vIkWvcT3TbzNdqI7zXYivRyS7zxu0KO8P5FIPUEqrjwk61U7YJL7u3iJijvaooC7T1aMPba4eDvdTwo9Pt/+vJlQKzv5a/u8rMOlPLkrcDyrnTe9DyvSPHJ8ADwWhDg8GKqmPG2qNbxA3lG8YyvhvGo3Pj00wxC58l5xPCXqKLvjq/c8w/j6OgSsfTwUOFy972IEPT+RyLxB3aS8DbetPLGqwTzm9ia8MAMQvOhDsLx7ECY81kTavHs4brvgrwo95vamvBGdHD2L6jq96nyVvAM42bvpaR69FOqlvARf9Dzx/Ba8R+kBvDhe0DkBnRk7uN05PSTrVT1rXaw8NMQ9PWZjGb1aNg69ld7gu/Srer0xUvO8bZaRvFGjlTxwHa06J12guzzjEbnMUDQ7vhAyPCXqqLs2OOI8WYXxO2tdrDxSBEM9tt7mvOOr97z20Wg9ecMcvC1qqjurdpw9PQmAPCPF57z6kWk98RHovC/dIT3RNiO8O9AaPNE2I7waRWa9VXe6O8rvBj0Kkmy8s88CvN/r9rtsg5q7WkkFvBZwFLzediU9kNApPaQvgLwPKiW91R2/u22DmryFBMy89xwYPfJe8TzGQyq9BV2au+TRZbtSyQO95IOvu46r6DtaXSm9eemKPZ+E0DuvD4K7x2mYvNordjwra9e7DQS3u1GjFT1X69688iIFPFIEQz31qs26pC8APTrRRzxUUUw8+ETgPNO8Eb2HFha9pEOkPXAJCTy/N828aMMZvene77xi3So8vhFfuv9PELwJHsi8dhYTPZH3RDz7j488mZ00POoE3jyc6r08uMkVvbMJlb0vBD29/e8PPXfF9jwEEJG8+Wv7vDv3tbwq97I8wVyOvDUSdLyW3bM6YJL7O96dwDz34gW9w6mXuzwe0TzuULq8R+quPAtDCT3Q6Rk8ovaavNODLL3ud1U8oKmRPEEF7TwAY4e9fao4vNwpHD3zNik9Kx2hvC/ezrwdkcI8foOdvLK8C73eYgG9UJFLvL2vBDuwq2493HfSOg3wErwR7H+8g5CnuXV47Tqh0Cy81NC1vBtr1LyiHuO7rMMlPSFRQ7zGLwY9QykBvXh2E7wRdoG9vzdNPFR45zomEBe7rzYdvdKrdD12UVK9Nzc1Orkqw7tit7y7jTYXvLBJFL2CkCc95x1CvLBcizcUEUE7MAXqvAM42byo3Am8vZwNvaudtzvUqRq90OkZPKzEUj0xKis8g5HUu5wR2bzKK3M90V2+PHYpirxUKQS9kkTOPSseTryKwx89t3wMPYJWFb3V9qO7pGo/u7GqQTzgwgE9uipDvcZrcrsKHZu8F6vTPKSRWrwCwwc921FkuwodGzxqN748KKqpvK4497zJtqG8XdAgvdGE2bzZj4k8cpFRPPWChb2t6ZM8YqMYPLFvgrzkg688JOtVPQ8WgbxN9ou8j4MgPeUe77qFBfk70oRZvSmqKb1OVgw8ovaavc2dPb1ndhA8FBHBO3rpCr3nHJW7L7czPTXr2Dy23uY8EcS3PPE31rpVnlW8JBLxu6lR273k0eW8E+tSPGFpBj2y0C87WqvfOwj3rLwaReY74TfTvG9Fdbyo3Im86Wkeve0CBD08Rew73TwTuwzeSDyd/Ie8jDfEvNne7DxZNzs9F5aCvK0RXDsRnRw9RXYKO36WlDzHkLO7ZRaQPCr4X7x+g527TeMUvdsr9jwtQw+9SYXuuUhJgj1TUvk8jqvoPOdE3bzrtqe8iXaWvLjJFbyJiY07ZokHPLoqw7wmEBe9E+vSPEle0zojdoS8gmtmPEvRSrwjxee86ZC5vO0pHzwdkUI8+WrOujSdorsPK9K74OmcvGQqtLzr3UK96gTePDXWh73jq/c8nYV9vGCQIb29r4Q8EzhcPPf2Kb0u3/s8gEX4uxswlbz8oga9rK8BPd5iATz6aSE87XfVPEJRyTyqd8k7Zne9PJ049Lyw0dw84emcuuccFToxUnO9Y92qPBTqJTmbxM+7Pt/+vFuExDzMPBA7dFL/u0WJgbzXa3W909Hiu4+DoLyKnIS8CUXjPMVEV7zFHA+83nYlPLIeZjwjxWc8HrYDO/fPDryNXt+8mutqvHAJCT14dpM9ddwAPHFWkj2Ukdc8BBARPehqy7z/UD29VXe6PMoDq7y6PA087QIEuzY4YrwnhLs8PlaJugeqo70rHaG8GdAUvYJr5rx2UVI8fatlvZUF/DwidzG8VVAfvPwEYT3rooO7uipDvU4JA72Tajw9sfj3PKuJkzw7+OK82d7sO/hEYL14nS696o8MveI2prz3ROC7oxwJvYUEzDwXqia87p7wPPzcGDzoaks8vcOoPF+S+7z93Bg91i+JOxMSbj253Ay9RHc3utUe7LzWHb+8c7c/ve5Qujy43Tk9xi8GPP0DNLwVN688GkXmux6jjDxDd7e8XwkGPKcEUrxzt7+8QSvbPDiF6zzbK/Y8bvc+vT/f/jsukUU9OtHHPHKRUTwI+Fk9YJL7O/uPjzyaxM88RcRAPPCcFruNXbI7xPfNPF34aDwZ0JQ5rTh3uuzvDDxc+Oi8V+tevW2qNbtVd7o89+IFPe+dwzyeXmI7B6qju0R3N7vy6R88x2kYvQzfdT1CAxM58JwWuR6jDL1shMe8bdHQvM2e6rxd0CC9pwTSvDmEvrw5q9m8G2vUvIrquruqd8m7Xh5XvQfRPj0inky9y1HhPJRpj7wfBDo9X2vgPNx4/7tNHtS7YJJ7PBQRQbuPgyC9HwS6PALDhzy4yZU7WqtfvC+2hrxOHae8qlAuvIBES7wN3Rs9ahAjvRU3rzxu9748Gx0evIKQpzzenm08JV96PI1eX7wQhHA7OlIEPWXHr7xzLDU7Nm4UvQQzTr2SgvY8OCUFPfo7Kj1reyy86mVPvQ8+Vb3PDBq9PyFivArQczy0AP64hIyBvXWdCr2G1OG8ylidvFVOR72u1C28iC7gvEXV3rtPOxO8Y/lnPKatFj2wYGQ8s7piu+dow7o3tvS8YBOzvL/wo71d/Qq9uTwnOp+h4LpwLyk9/Ti2uBTwDL0RUjg9XOvsvMIxhrw0ngc9k1C+vCyr7TvEHPQ6C547uskSgrwtvYu8RooKvc6bRDz7gcW7BF6IPNdMTTtVTse9dHLQO5E8W72gErY7L6h5vRUdDL0Behg8WEvTu139Cju0iCq8dBVevG54OD3YGhU7T1SvPM4+0ryEjAG6FThtu2seujy8Dnm9GBoYvFFokry6Iwu78LzZO/O55Tudchy8r71WPcGnlDy0b466PtmBuxdMUL0fFLC8jT0KPRFSOLqcpNS6Pjg5PT6Vq71LVyO98i2vvIMd8bqjySa9qSCxPDEZzzwoaMa97HkyvMHCdbtMnb678BnMO+n0ebv34as8HaPauuXcDDyboo+87NYkPJZNSrvet7o8vJYlvN9aSLseKwc72xehPBz+hz1xFo06SxEIvey9CL3oUew8IlUSPdu6rrwlazo9Ea+qu+pjij0GR7G74VWPPWt7LDxv6Q08V6aAPKnDPr3NVSm8y564O+l8pjzGMFe9hnfvOjMUFjy2yQw8jLMYPEYb+jxqrWQ9qFJpvXNwizwyiqQ9qFLpu1aU4rz5EHA9aZIDvXbKCTySCiO9dBOZO0AzgL0Cwng8aGUEvakgsTwHW5S6JJ3yPIN64zyYYS08shdVPQot5jxRCyC8bng4vb+TsbySCiO8NBZbvHJe7TxOKXW8JtyPu/c+nj1YS9O8obVDvShRbzyvdzs8U8IQvUOmGr3Nsps8y+IOPZPzyz2tjhK6PfKdPMviDr1dubS6s13wvKKe7LzMbIA8EZYOPYiLUj1qUHI70fVCPMjnRzyjyaY8AsJ4vB8UsLzuYls6O966PHPmmTyNnEG8l5PlPMbT5Dr5UgE9IaDmugoSBb1dXMI7dHJQPE4OFL2EpR2373a+POsI3byi+9465Gu3OyciK7149wi9zwwavYzOeb1iJxa8xjBXvcm1j7uXBDu8JMisvVpftjzH/p68CUQ9POCgY7w3E+c8XNCLPSQlHzwdoRW93liDvHHStjxueDg931rIvCpjDb3PDJo8LDMaPdpJWb2B7iw9qcO+O0QwjLzitEY9v/CjPO6Nlb0curE8xYuEvZUHrzypZIe7+n+Au4RIKzz6s/060wkmObKfAbvFR668P37UPGZqPbvW7RW9Xv9PPY35Mz3hbqs81+/aO7FyAr0m93A7BHnpO2OzTLxPVC89MgL4PBepQjuMsxg9Ot46vb0gFz2dFSo9yS3jPLmCQj2R3+i7X+h4OyTILD1pZ0m8e5eiuy/qijwYkuu8EpjTPCWvkD1DHm485AyAPK3rhDw/flQ9bapwvQHZTz0oxbi8IcsgvYMd8bn7JFO8oVaMO61jWLysYRO89hNkPdOsMzyDemO91PLOOp7+UrvrkAm+4IUCvQs/BDypZIe7OhDzPNlHlDwWwBm8Gb0lvbVx0zohyyC8GTV5vTglhb0kyKw7nKTUPNpJ2TyAqJG80maYu5q7Kz2I6EQ8MbxcvC15Nbw5hDy9YkL3OxDhYrw4PiE7SkNAPPkQ8DxKhxY9iIvSvIdFt7xLz/a9C/stvNQdCTwfFDC88LzZOxWVXz3h5n47ADZCvCQlHz0qH7c84VUPPaYjJTtZGZu8YkL3u6lkB72xi568cl5tPJZNyjwwdsG6b+kNu0vP9jvBH2i8mAQ7uviEubuYYS29juLcuxNmGz3/qYs9uYJCPRU47bvD1BO9pA9CvQ2ynjyU3HQ8DlWsvCNXV72PUzI9D8YBve4F6TzFRy69Opifuzs7rbzVOOq8ybUPPAWkI70QJ348f9rJvFpftrzYNfa8OYS8vTmEvLwR9cU8sEWDu/Rc8zzecR+7QtjSPAOQwDyDHXE8M3PNOz8hYj6S8YY9tMwAvfXNSLyn9XY86gYYvcB8WrsUrDY8tyhEPanDPrt7bGi9wkqivLm0ejst1qe558U1PCgL1D3TCaa8xo1Ju35pdD0U8Iy84IWCPH5p9LwRUjg8IaBmOGrYnrtj+ec8ooMLPKj1djmydEe7RI/Dur1/Trz9fIy8e2zounWdirweK4c8G9GIPUaKirzH/p48IaDmPBxdvzyEwH69GTX5vIb/m7ux0bk8CrUSPY9TsjwmOYK8jj9PvXWdirz34Ss9FPAMPfltYr0OmQK8M9C/PCOCETwW23o8EGmPvcR55joj+uS4mwHHO5CXCL0xGc+8+picO0E1xbzdRuW7TWuGPILX1TttqnA8wkqiPNd3hz3Uk5c8Z34gPfo7Kr03tnQ9w9bYPPltYrzRmFA9nymNPZilg7yzuuK7TzuTvCD92Lxhn+k7yRKCOyTILDyILmC7hY7GPHdtFzv+28M8PKwCPdU4arxd/Qo8SeSIPAJKpTyYYa28NVz2vMQBEz1lnPU6PWpxvS+o+Tz5EHC9ZZz1vAqK2LywA3K9KvT8PD44ubzdKwS9zbKbPC0cQ70v6go9HLqxu/kQ8DwSmNM8Rht6vIqfNbmOaom60t5ruznKVz0B2U88AdlPPYbUYbx5gz+8iuMLvUjSajzx55O6tIgqvRftGD1lCwY7YxA/PDpSBD2UHoa7gH3XvDyBSL3M5NM8DQ+ROrqCwjr6s3286fT5PLIXVbwT3m48UpURvYYa/TyWeAS8m/8BvcueuDuJtgw9eeAxPC/qiryG1OG8EphTvMNeBb3N+LY8aMQ7PZ1yHL1wjJs8PnyPvQh2dbr3WX+8V9p9vRhgs7vgoOM8SC/du3sPdjtaXzY7jmqJOk+aSj28ObM8xS6SOni1dzx0FV68+CdHvd/91bxiyiO95iKovGlnybxlx688wcJ1vAj+ITpUZZ47M3PNO2gIEjyNPYq88QL1PPItrzskyKw8ChIFPbjL0bxibbG897ZxPRSstrymxrI8DWyDPWfbErytjpI6zj5SPTEZT73wGUw9vDkzuqy+BT2JdPu8C547vbVx0zwyiqQ8oG+ouxftmDyI6MS87o0VvDWHMDwR9cW7DOKRPK8aST2mI6W8IrRJvbjLUbyTlBS7obXDvNMJpjyhVgw9ikLDvMihrDskDAO8mjP/vPb4grzrkAm9sp8BvdhgsDzKWJ28Q8H7u8hEOrwGjUw8E97uu8tBxrueW8U766tqPMXqO7xWN3A9YFcJPGLKozwCwvi88hQTvNLe6zzTrDO8JvfwvGBXiT3ANj88koL2O5yk1LyAqBE8QO+pO8ihLDw9TxC7m/+BvLkR7TySCqM88tA8PV6i3TzAehU90FK1O/ECdbyCkTq9Zmo9vU6GZz3R9UI9i+XQvB8UML3KPwG9YLbAPLAD8jirei+8CopYPAcw2ryrT3W6mEiRO29GALu8liU9CP6hvFXx1DzH/h49eeCxPHmDv7xPVC+9DlUsOwxByTu7UIo8009BvTXkorxV8VQ8RDJRPCOCEbw8rAK9TPqwPIzO+bwqfCm9/XyMu7XORbzIRLo8f9pJPcm1Dz3/IV+8t4U2vcB6Fbwj+mQ6qWQHO2TeBr3sebK8pFXdO/NzyjupIDG76mOKPA74ubwPDB28k1C+vYnR7TvecR88I9+DPLrGmLySrbA913eHvQWkI70R8wC8pzeIu+QOxTsdo1q9lao8PYlZGry6Iws7ooMLvYEyg7xLV6O86dmYvBoDQb1pZ8k8WRkbvflt4rp2W3k9LzAmvKlkBzt4Emq8W6XRPLEurDvgoGO96DYLvedowz03tnS83hStPKNsND0aRxe9Lb2LvNi9Ijyvu5E7ANcKPYKROr1pkoO7BDPOvC3Wp7xWvxy5PtvGPGInFjwmsdU8b77TPPxPjbyHiQ28ybWPu+FuKzxTOmS87b/NPBNmGzwX7Zi94MudvPsk0zsDkEC5+juqO435Mz3JitW8Knypu1XvD7s9x2O7gUufPJcbkrwIdvW840B9PP7bQ71LtBW9BosHvHuXIrzuqHa84CgQvYRIKz14Euo8/Q38PEXVXjwVOG08DlUsvNwASrtpZ8m9PIHIvAF83TuLiN48KZMAPC+o+TufRO68/n5RPHkkCL0nIqu86R80vAbqPr3buq488xbYOwh29TtduTQ7bE1+vPlSAb02bpS7eD0kPQLCeDrpfKa7QGf9PM3NfDwTZps8fH6GO9kDvjuDXwK8rMBKvBCEcL3gyx09X3AlvdVjJDvtv009lWQhOwlEPT0DMQm8ckMMO6RTGL0y5xY7E4H8u+NAfTyBS5+8lMETvUlDQD2/8CM6+t43vbNdcLt6Jk28EwmpvNH1QrzQUrU8RDCMPBZjpzzkyKm81B2JOrSIKr1ZNPy8kWeVvQOQQDw+2YG9c4knPTg+Ibz6s/28ut+0Or0glzxc6+y8NYcwPUw+h7x5xxW81TjqvJD2vzzG02Q9W0jfuqs0lDzK+6o8fSPZOzC6lztxGNK81cCWPAPtsrlswUc7MRlPvfuBxTyVBy88JCWfOxKY07wpkwA9koJ2PAxBSbtRCyC9yKEsvX3G5rwv6oq8UfKDvMhEOjzJilW7/Ti2O1VOxzvNshs7PyFiPLmZGTuaM3+89EESvOaae7xSUTs8yYpVPWTehjxXBbg9htRhPZmnSD2d6u+8SyxpvWD6Fj3x55O7shfVPDXkIrx5g7+89Sq7PHfMzjsyX2q9W6XRvGwH47uO4ly8RqMmPNQdCb0f+xM9SkPAO5gEO7oO+Dk9NcsGOkajpryxLqy7oBK2PEn9JDuPsCQ9EsMNvVulUTsitEm9KdmbvHWdCr0R8wA7KvR8vDXkIr0ZNXk89EESvLTMgDwfFLC4ubT6PGjEOz1aowy9Ve8PPerCQbrbj3Q9UlE7vfkQ8Dvtv029GWAzvXiaFr20zAA8w16FOxSstruZ7WO88nGFPISlHbxvRgA9ixALvXQV3jx9qwW9bTIdvFxzmTy1zkU8H1gGPUE1Rb2DHfE8iC5gPZWqvDz6fwA9jfkzPeERObyNnME87HkyPQaLhzy8lqW6mwHHPOK0xjyGd2+8xKQgPHts6Lsb7Om6aQrXvBh3Cr3I50c8duOlPBuP9zyuqfM8ylgdvDNzzTzkDsU6VAisPPAZzLxkgRQ9iItSOy6/ULzoNos7koJ2vNQdCb3JtQ+9gtUQvE1AzLz88hq9qH2jvPTkH72DeuM7h0W3PFGurb2aGB493hQtveRrNz2yFZC8mpBxPSr0/DxIL127IrRJPD3yHTyjbDS77gVpvA2yHj1gtkC8LmJePLNCD730QZI8NJ4HvQHZz7v05B+8Dvi5PI+wJL2Kn7W727quPE9Ur7w2Kr67kgojPXWdijzKc/68AShLPP/3mzw73ju9B8C8OQ2KybyjTUu9o37wPGwxOD2D9D49XGhtvESlZr2AxQW93AUovQckc7uFJG48+MPgvHMsar1fAku9VzsgvBUkgbyPh2K9fPoCPMjbCL0CxJS86JdVuqnlvLujfvA8Fx7jOoInUDyrgJA8ZGkXvQL2r7xwy5W95WicvOeYyzzFQau52m0QPQ5XuLtIP0S9+PX7PIUk7rzFc8a72AgKPamzIbwpG4+8BcIovK99Lrw4RF68ZpnGvHHKH7263yw7JX71OidKbjwMWaS8tH2IvU+kJDzBRI29oU+3O8vZnL0C9q+8MEuYPN404bmxrGc8klTRvNpqVDq3dvQ8azMkvKwU9jzARQO9bTDCu7Sq+7uAxQW7fVxNvVKiuLyQI6y8/iotPLXjhDv+W1I8F4mHu1sGIz2xe8I8MxiHPMZyUDy7QXe9OEiQuyuBCz3NOvG5rH+aO06lGj3laJy9F4kHvXT5WLwMi786K7IwvSuyMDxmz5M8R0C6vdmb+TszGIc8ci1gu0VBsLv5LoW7kIZsPCkX3Ttlm7I87GYKvRUfWTw7ENc6J+etPCcZSbsMikm8dfhiPNidZTxrMi49KhZnPMRCIb0C9i+9H7ToPAD3JT0e5/m77TA9PX0rqDvsk309IYHXOXQrdD08FIk8I3/rPKJOwTyEKRa99JWdvBq4QDmOiNg8VNLnvF3Sm7wShnG84Z2ZusCowzvk0AQ9MntHPaRMVb0JW5A87y/HPSyxujqW7Ti8n4JIPXHKH71aOL48GrhAvX0rKLuk6ZS9BZCNPL8M+rxmmUY86jKpvPT8jzxnyus8Ln4pO4QpFj0RVNY7AFtcvHfJA73Kbni795OxvHP6TrvAdx48fF65vPf2cbsufqk98/lTvAiOIb0EKpE8AlnwO9luhrwhgVe9OOEdPZS9CT13k7Y91jsbPOoBhDyghQS9jiUYPOoyqbyFwa27quU8O5JXDT2BWmE9m7fFuzjhnTteNGY86wCOPB26Br18+oK8HYS5PNRurDy83cA8bv6mvLJ7Qjxb1Ie8ym/uPCgYU7tUPgK9OOGdO6uyqzyB9iq9YZ4UPCznhzy0fQi9iowwPEOmXDwOuni9Tte1vNRuLL38wH69C4u/OU6lGr3TPYc8dZWiuy7mkb3CQxc9CY2rvJyEtDqI8Oa8gFrhPA5XuDw0q3a7HIUvvVppYzy73rY82gYePetjTr2MikS9zAnMPE077DwmTNq8oIWEPSXpmTv0x7i7/V0+PU077DwssrC9N+ITPepkRL3JDC48PquqOVk5tLsdhDk86MnwvJPvpLtjnKg8w9d8vKGB0jx5YKW8HiADvcPY8jy3SQE9Rw6fPGszJDw7rRa9rBR2PKRNSzzk0IQ7QnU3Pdid5bnqAQQ82mnePDJ7R73O1jo9ZMxXPb8N8Dyq5Tw9JE3QvMk+STxfAks8+S6Fu1w2UrskGzU9C8EMvaCCSDyNV7M9oIJIPHmRyjwIv0Y9RXNLPX8pPL0D9Tk9a5VuvCGy/LxlaRe8LLE6O1sGo7zV0Wy8uUNjvBJYiD3FQas5jLtpvdWjgzyhHRy7HOjvvTQWG72mGcQ6uHV+PE0NAz0C9q88DSaTuoPDGb1Jb3O6ytoSvR9RqL1onIK9xXPGO5VQeTxYCQU8bmHnvOfJcLvFQSs91mxAu6CFBL3mmUG8nbZPvXlgpTykG7C6RRGBu+VoHDqauLs7FFLqPCGy/Duk6RS9/fkHvp60Y7y3RU88A8MevDh2+TuJvks9jowKu1k6KrwkfvU8EiK7OzV52zwX7Ec86wCOvAm+0LylfXq9LBT7vHGYhDycugE9tkXPvDcTObyDJlq8xBAGvGrI/7rmmcE78vpJvTRHQLtU0uc82m2QPZ9QLT1kaZc8E1cSvb4O5rwmfX88iu9wO65MCb1WOyC9i4u6PDZGyrzIDpo8uxQEvSUav7u5RxW7h/HcvP/3GzzZbga9Zv38PJqGoLwhhQm8QHcjvaXonr0GJPO88vpJPEs8YjoVH9k8e5QGPP74ET0hgdc8O0F8PM07ZzxsY1M+MntHPX/4lryV7bi8Q6qOPHWVIr3laJw8zDxdPFWfVj2lS9+7ZplGvZ+4lbyW7Tg8NXhlvAi/Rjxpl9o9TECUvOdmMLy144Q9G+rbvJLwmjy3SQG9f/gWPL8NcDwJv8a8nlGjPCuysDxdNVy88/0FOdqbeTxslHi8LeJfvDfik7x0/Yq8yNsIPQ4lnT1M2Ku8DYlTPJq4uzyCWes7vtxKvVcJhbz++BE8aDQaO8zYJj1vLlY8PuABvU8HZb2wSp28HoNDPcpBBT3s/xe9Zpq8OOiX1TwrFXE84QHQPNXQdr293UC84QFQvPUqeTwfgk28cPy6vFWf1jyOuf28zwhWvBAkpzuyFww8qoEGPJ9QLT0qs6Y9EVRWPOEAWj2G9gS97GaKPcoLuDz8XT48BvJXPdaeWz0igGG82wUovNFxDrt9XM28/o1tPMGoQ7x6wu88FSQBOiYZSTxCRJI83WfyPFpuCz0637G7reHkupcdaDzgBQI8ZpnGvMRzRr2UIcA88fs/PCJORr0NJhM93NOMvTGxlLzWO5s7FFLqvMJ1Mj2UIUC8iY0mvThIELyQIyy9/V2+PAHFiruq5EY9OUNoPF7Sm7t5YZu7CL/GOw9WQjpWOyA9wnUyOQxZJD0/29m73AWovIIrAr2FkIg86pbfO+HOPr0ehDk9metMPJ60Yzvqlt88XtKbu4WQCLweg8O8eJLAPENDnDvlzNI6GOtRud5m/Dy6rZE7T6SkPBXvKb0IXAY99JWdvDmvgryHwLc8QHcjPKZ9ejsOjYW6gCm8vCGFibyfUC29K7KwPIq9VT0NiVO8w9d8PLN5Vr2C9bQ6483IvKgXWL2fs228/yk3PE0NA70Gjxc8pkppu2yUeDxqZEk9QajIPDBLGLyc5/Q8uq2RvCm0HL3c04y8qEnzvD/b2bv5kcW8RKbcPCGFibxu/qY7BsGyuyKAYTyZG3y8LONVvLwPXDxVbrE7/o1tPElCgDz5Xyq95f13vB+1Xj1XCYU7h44cPT55jz0TV5I5I39rvHb4Yj3Q1E69lrsdPSdKbrxgAdU845stvQD3Jb2ntgM9mulgO2X9fLybhao8XTVcvKFPt7yMWR886wCOPI+LlDwhTzw9lx3ovDcTOb19jmi82QeUvIwnBL2eUSM9LIAVPYTCI73D13w8OkJyvKkW4rtAd6O7vaslveTMUr3TcBg9cyv0u3T9Cr2K7no7bf8cPUF2rbvQBuq6M34DPe2T/bvqMqm6DohdPa3mjDv1YwI9ash/O2ScKDzsZgo84gMWvedmsLx4yYM93tEgu4dcgbg/3wu91jsbPN/QKjsSWIi7m7dFu14DwTsgUDI9GLosPJ8fiDxYa088wdrePIxYqTyXHei8aWU/vdM9B70/21k9g8MZPYrBB7073ju96pbfvGTMVzw3Ezm8ztY6vJQhQDw8D2G8Swu9u7GsZ7zrY046Rw6fPJ+4lbzjm608sa3dPLXjBD1Hcd+76pbfvEpBijyyeky6483IPPqQT72wsoW84pyjPMZ2gjwhgVe8rH8avfVjAjzIDhq9ib5LvYru+rwL73W8e5DUPENDHD0NWK672m2QvPyOY71EpWa8BCqRPMVzxjsNJpO8VjsgvR9RqDtvYPE8bTDCuw+MDz21Rzu8tH2IvHyPXr3PCxI89Pjduxkd7TvLCkK9YZ2ePe8yg71qZEm98C3bOvOWEzz59fu6t0mBvTjhHT20eda8TQ2DurSq+7slUYI7ORLDvIQpFr1zyDO9q4AQPUs8YrsdhLk8ilqVPenI+jkEkYO7k1JlPNY7Gz3nZjA8vqovve8uUb3tML09R3aHvBm5tjy4Ej49+4/ZvMjbCLwJvtA7q4AQvCfnrTz8K6O8Jktku1s3yLzeOBO83mZ8u4D3ID1A2mM8w9hyPK+vSTzFDxA7joyKvJjswrsVUuo7StoXvTGu2DxMO2w8+i2PvbQVILxuL0y8g1d/u6EdnDwrFXE9skknupjsQrwvfTO8qRdYvGlmNbp++Qy9BFh6vJRR7zs3RVS9bGcFvW3NgTw0eVs8WJ3qu7B8uLxzyDM9dP0KPDveuzwvfbM8cfvEPLJ7QrxCRJK8DIrJvV+fCr1qlmQ8reLaPLEYgryFJO67rOPQvPLILjztYeK8f4x8vDB8vbv3xFa9ok7BPGAzcDz9Xb48hiN4O+yU87qMu2m9hvJSPF4DwTzfNGG8s6vxuxqHGz2zSDE8t+GYPFJxEzw+eoU8lCFAPOc1i7zXa0q98sguPQbBsrxyyh87NHpRPedmMDx9jug8acj/u1DVybzLbvi83QM8ufteNLybVIU6RHTBvC2wRL3V0ew8Ih0hPJrtEr0UUmo8z3IEvDBLGLzWCQC9MEuYPIf1jjznNQs8ir5LPGMEEbzrlHO9XwJLvb4OZr0C9i87BZCNvWZoIT2jTkG8tH2IvKNNyzsssbo6e8H5vJTuLj2VUHm8+i0PO6e2A705RN48h8A3PYT0PjzEQqE8aGcrPMZAtbtrY1M8DFmkvBTvqTwV7jO8dWOHPNY7m70UIE881aODPFee4LlM2Cu9IbL8PN1n8jvkaZK8OkLyvOeYS715Lgo7fisovddryrwGJPM8iPBmvN0DvLsHJPM752awvM4I1jyGwS08WG+BvI4lmLyhgNy6S9khPU6lmj28E447ut+sPS+zgD1IP0Q92tSCvNEG6rxSBXk8zDzdueIxfzzQoym7RnLVvOmX1btzyam8dCt0vTFKorvW0Pa8y274vKN+cDzYOS+9VW6xPJTvJLpqm4w8oB6SPX8pPLuXiQK9xkC1u06lGj0Dw548fI/ePIMqDL2JW4s6KeY3ve8uUb14LwC99mIMPC/gczt0xz291jubPOGdmbz5kcU8uUNjvKJ/5jy5RxU98fu/vPotDz1ADP87Y/9oPYq9Vb1oNRA8sbGPvauyK73BRA29TTvsPKVMVTwySSy8/I/Zus3XsDzlaBy8KuRLPC7h6bzIDaQ8rOPQvAD3Jb2V7bg8pX16PBfsRz0ySSy998gIPM8H4DwtTYQ8C8GMPGCeFD339nG8v6k5POY2AT2hsnc8MkmsPAPDHj3M2KY8zqWVO+VonDsTV5K8g1f/O8gNpLs6EU29RRGBumOcqDwNisk8gvU0PQby17sY69E6NH4DvKgbCj1hAF+9pRo6PcWlYTzQo6m8YgWHupXtuLxabgu94QDavKN+8LtWnmC7O0H8vP1cyLuRWAO9UqK4O6vngjxLC72962NOPSXpGb3oZTo9r30uvPL6ST1my+E8+JI7PIb2hDv4YCA8Z2ghPASRA73lzw49ZpnGvAzu/zvk0IS8N+KTvMF2KL12lSK8n+b+u2fPEzyHwDe9jFkfvPssGT3eOBO995OxPDB8PT0YiBE7kvAavJUIkroALUE9DXKDvGuAN7vOpbu8f5VdvaJ7GDyobwg9Z8ZJPcfU1LyRN4K9iU52vWFSbrymemy8f090u8bJmbtvgA69VjxKu7qnt7x7IVm7JYb9vCgeDrznF8S8Cf37uyn7hLxO4BO8y6XkO6l6QzwwtEY8XjARvC0poLz4RDi8wY/AvesuPb2mNQY87y4UvMFJ17m9YSW8jpQ2vR/8Aj2mkhG9WWplvLdKVTy5+Ye9YkcKPRhZYLyCw3i83BhCu4l9Pbv4LZa8B/4nPPBolrzhuw086+hTvBiIp73SX6m8lE14vY9aC72yboq9jqtYvBWI0Dyewao6SMlDvNiZArzASVe6b4AOPc9IMD1IbLg8NFcSvYo3VDuv7p47wr4HPUtUar23SlU8QuE6u6ju8DwCRDq8zl/SPEsmpjyaHl89IRJ5PMsxN7tFhIa8JKqJu4W4FL0VcS49IRJ5PHZFjrpPPR89WvY3vc5UF723vwW9LYYrvCIqHr2qQJg66YCNu/5+kb3WAfI7+eesvGgj1bw7EFS6pFiPuqyo3jsoHo68LMyUu4eVizpoab48ZbsOPLxtDD2A20Y8S5rTO4YJuTolQRc8AHOqPTQ/7bx8UCC9u0osvTdW5jtmXgM9TiX6vBrN5Dy+7PS7gCEwPaYGv7xEhIY9pkwoO0TJbDwNQzw7A0S6vNSCibwH5wW9Bri+PBG3QL18UCC7NIXWu7Tt8jr5FfE8E0JnPP/PNT1omAW96+jTPHUiLj1TDi+8gtudvJ6SYz2dzRG9jjcrPV0NMb2vv9c7WWplvY6UtruowKy8j7cWPZuTjztPgwg9vhs8PWENiDx587089YpKug2gR7uXNq28IRL5vIo3VLwhzRK7eMR2PPGKczxtrtK7t9YnPbWFA71amSy9+eesPNNfKTzcAaC8z0iwvBVxrjwaKvA8/FuxPeRGtDzId0m8NChLu089nzzO0/+8WlPDvLvtoDxhO0w9V6WTPV/ThTzQDgW89P53PFo8oTwVca682keyvFIlUTx26AI8clGePANzAb3MGhU96NFavAuVDDyKILK71jC5vBWIULwwV7s8n8EqvdK8tLoozL08sJGTvMh3yTypwCw8eSKFvTez8bwvVzu9s78uva60HL3y6IG9J3uZPBoTTjy+j+m9R+BlOtowEL1yaEA8byMDvGcMMz2Tk2E9mDYtPa00Mb0a/Ks7QT7GPF3HRz2mBr+6z+ukOx/k3TwwnSQ96y49vZeTOD2bBz07PidNuyaHgD3A4RA9tO1yvcJ4njuAT/S8dcUiOx9wMD1hJCq9RVW/PC9u3Tw7+bE8TOC8vCyGq7yJ8Wo9PRCru/hEuLw+ysE8FpQOPaLYIzyQTiQ8394WvZEIOzuv1nk7k/Bsu4JPSz34W9o7PeFjO0Cb0TwALcG8n+/uO8cxYD3oujg9t9anO7NiI7yJILK88aIYPRGgHr2Tk+E8KJ12PC+F/7wqNQc89bmRPQoVoTz5iqE75xfEPAPnLj3HSYW9Nj/EPI6UNr2bTSa9cF2FvBFxV7ypkeU8LSkgvVZrEb1gUm49sEsqPPtnGL1aPKE79H+PueSMHb5SsSO9wAPuPIDEpLyRZcY8JW/bPIeVizylqTO9OaiNPJ57wbzooxa9HkFpvQCKTLz8/qU7Tz2fPMGm4rvkRrS8m/CaPOvRMT06nCa8y47CvPGKc7wm5Is84enRuyJwB7yie5g8s9bQPCh7GT1Zmay8ftALveRd1r1xIlc7YZjXO4Z95jpdmQO80l8pPYZ95ru4VpO6n8EqPTs/mzxoaT49u0osPTC0xry8EIG8DiwavB8TpbyRqy88tNZQPAghCLvLGhU8njVYO8e9srxSgly8y1/7O3QuFb2VH7Q7F4gnPTwckj2okWU9Ug6vunTcxLzr0TG9kAi7PMyOwjt+cwC8jmVvve+LHz27YU68RT4dPTon9rz4RDg8M260vPz+JbytNDE8baMXvV32Dj2Kwya8kauvvM+lOzoA0LW9YTvMvOouvTzh9Q88y0hZPcfU1LtT32c8tpC+Oz5WlDuKfb05U4JcPs8ZaT00KEu8pPsDvSh7GT3a04S9mHwWvQpbijt/frs7Upl+vA8Jkb3HDwO9rWL1PJHCUTxM4Lw8re7HPV4wEbz0/vc7m00mPVY8yrxoab48OspqvD6znzxhJKo7rdclvFJrOjx8lok8dNEJvDy/Brtd3mm8z3b0vDdW5jttRoy7sAVBvcuOwjxn3Ws9ogZovBaUDrz7iXU8t9anO1wkU72bB728MsCEu/v+JTvFd3K73BjCPJFlxrwvqYu9iX09vEcmTz3xXC888v8jvdwBoLxSazo8wjK1PNtqkjuCZm29wANuO1IlUbtIVZY7onsYvT6EWLzdpJQ8EbdAvSYp8rzduzY6PRCrO42r2LzWdqI843R4Pa3AgzxtrlI96/91vQrmWT2AOFI9Y6/QO7cckTzyRY09cvQSvIeVi7q6G2W8QVVovcW9W7pMg7G6wI/APHg5pzyDlTQ9pmNKu8eO6zvBYPk8NigivHRQ8jtcJNM8pgY/PON0+LxTDq+7efO9PNak5js0yz+9zrzdPHmWsr1k9Tm9EP0pvBUUI70fcDA92o2bvPALizp00Yk8zL0JvSSqiTxEsso7qO5wPIOs1jxjDNy8x8mZPCJYYryAxCS8aK8nPe3/TDzB7Es92hjrvFYlqDwKWwq9zKVkvEeyobotQEK9zl/SPHBdBbobWbe7N24LPOYMibx1Iq68MLRGvSJwhzzH63Y8n9jMPEUP1rqoNNo8N8uWvBJ9FbzPGWm9xmyOPMsC8LvLSFm97lxYPAPnLj34cvw7IZMQPK1LU73fJAC9utX7vPhEOD1LmlM9+bhlvZ8HFDube2q9L0AZvNYB8jsKiU69y9QrvAa4vjwQzmI83XXNvHJoQDx3RY6707w0PfK5Oj1MPUg8wIQFPRFatbzWdqK8rcCDuwcVSr1jOyO99C0/vQPnLjsfcLC7H827uj5ttruO2p87RVW/PLu+2TufwSo9baOXPAuVDDyD8j89vBABvGsMCr1S32c9rUvTvFo8ITx/Z5k9yAOcu4W4lLtnUpw98qKYvMCEBT0UFKO7AnL+PN8kgLxjDFy9Nygiu9l19jzMvYm8YQ0IvJ+qiLwbcNm7wnievEAzi7vodM88jtofPZTCqLz7uDy9pXrsulo8oTwtQMK8kdlzPFwkUz3oACK9s2IjvJ57wTywqDW9DJWMvBQrRbyfZJ+8LSkgPRVxLrw3ha08Rw+tvHk5p7r/oO67dSKuvPJz0TtyCzW8y0jZuSlAaz2bB728kAi7PCmG1Lz0fw+8HXyXPEQ+HbtvOiW9umFOPRv8qzz/zzU8jQjkvAzyl7wK5lk8InCHu9bTLTxwFxy9rO5HPeKYBDypekM9g5W0PDuzyDvaXtQ847phvLdhd71HJk+9hVsJPUzJGj0wnSS8tKiMvOS64bzMjkI8Aueuulo8obtkO6O4Jp4ivNwYwrs94eO4+BVxu8Cm4jzj0oa8s2KjPEE+Rj0lb1s82PYNvRHmh70tV+Q7IkHAPJGrrzzHMWC9oQbovBGgHj1/rH88gpW0u6Jj87zruo88+89evLSojLzWdiK6CUNlvF0NsTt5CmA9pjUGPAf+J7lCbQ29kU6kulhIiLzAhAU8HxMlvVaCs7x4rdS7t0rVu+30kbw3P0Q9qXrDvMrgErypwKy957q4u5+S47vWdqK8B8/gOiIqHj1a9je9WmpluRj81Du8bYy7mx7fu9owEL158708Ds8OPB6edLz1isq7RfgzvZGrr7xaU8O7LwYXu09UQTzkLxK9QJAWO6kGFj0ttO87pUyovDqFhLxIVRY9Y2lnvEcmT70TIAq8SLKhPXUirrxM4Dw9PhArPYdPIr2Nwnq8LSkgPEOnDzxOSQY9QJtRvbBiTDyk+4O8pLUavFPIRbx7Idk8Ds+Ou23pAD3y5/48mNmhvNiZArywv9e6yoOHvGSYLruAxCQ9javYPLYEbL0SfRW8m02mPG86pTyvv9e7QT5GPUe+iLwPZhy86qLqPGJHCr1sRgw9vUoDvSWG/bzE1P07VbB3vU/gE72ILJm6ou9FPGevp7ywYky8EVq1PM6lOz3D+Ak9G4f7vCbkCztAPsY6q4aBPGfGyb1kr9C80xnAuLPW0DyArYI8oalcPOcXxLy9SgM8d6IZvQItGL1k3hc8rTQxvShvMjwtKSC8N/naOoYJuTxRvQq9K5KSvEyDsTxcajw9vjJevOkjgry31qc8eWfrO7sEwzzZdXY7S4OxO5VlHb2VCBK8mx7fvKLBAT0owYK9fMTNOO/RiD0OLJo8RLJKPUiafLxA+Ny6QSckvSLktDuHT6K7g2ZtPG4LXry5+Qe96NFaPfmhwztYpZO8tDNcur0y3rxHPfG8cn9iO6vjjDzA4RA9Fc65OwrPt7uae2o84IzGvIN+Er37iXW9ChUhPWo6Tr0s4zY9ReGRu9akZr20M9w7H/t/PGZeA72RZcY8TA+Eu1aCs7zuRTa8rTQxPJ5M+jwznHg7aq77PBqfoDwAc6o869GxPE7I7rwGLOw6JKqJu/xbMbsrkhK9+q0BPZiTuDytwIO7GxPOvHULjDwbQhU9bVFHOwBciLwazeS8jjcrvbfWp7w7P5u8QD5GPEA+RrzFvVs8CUNlPPVEYTx7IVk8mMF8u1JruryR2XO81YIJvUs9yDxF4ZE974sfPGrGoD0YQj48n5JjPFXUg7ypNFq9lB80PcXVAL3qouo8u0qsvFqZLLwtQMI8XcfHPH5zgL1PsUy7h3KCvDOc+LuVH7Q71qTmvNMwYj2DOKm8IPCbvJoHPT3A7Eu8QDMLvaHvxbyskbw8IPCbPMJ4Hj2KZpu8bemAOw5yg71OAx29d+iCvMZsjrx3RQ69EHHXvHBdhTzhL7s7lXy/PDs/mzq+7HQ8ogboO4NmbbwkBxU8eK3Uu/7bnD0f5F28HxMlvOouvbwIIYi8CluKvVKZfjzHbA48E/z9unl/EL3aMJA8QuE6Oh/8Aj0ob7K8rJG8PBbxmbx7XAe8bemAPQDQtTxHvgg8n9jMvCaHgDy97HQ9F0K+PEqPmDyPWos9IioevJ4etjyvHOM8Tz0fPFaZ1byXB2a7O/mxPFsZGDy8EIE8XbAlPCbkC7wVWoy8z+skvQCKzDtd9g48/HJTPWuX2Ty7Sqw8f367O8CmYjpulzA9ufkHvI5OTT1asM47Cs+3vCzjNjitYvW8dNEJvfkV8byiBmi8VdQDvQa4Pr23eRy9rWL1vAQKjztZmaw8Gipwva0djz2tYvW8iZRfPVMl0bxxOXk9MnobPL0bvLybZMi6nDYEPcXVgLxpLxO9imYbPSgejjvX9o08T/c1vULhOruHINu81erPvBTl2zvwaBY9Brg+vVqwTjzSvLQ6jtqfvNK8NDzLX/s8kcLRPI9aC7wGQXu8JAf5PJw9ybwYt4U8DogGvbNbDb3zRC88frskPWL8YD3J00W8WUlOvToxg73cV8S8MO+DO/UeLzyTRt07HONSvTeEvTrgC0S91GDYu6DXjrxRxxS8Y0f0vC1CPjxsiXO83jFEuwKGwTxXK3W6ExaGPPO8/DsRPAa9b6fMvA2iwL3awR29CjIaPNMVRTyE65A8WdGAvEaYFb0g2ys9mqeivO9MVrt1xLg8RHo8vWw+4DydzDU8OUQDvBt+BTvAIDO8Du1Tval3IbtZSc47RlQ8PBXG5jt1gN+9N0Bkux55eb0oQyu8rOCNvRqRBb1B95U8PfiCvBl65jvdXn68nIEivNrBHT23Dw27SQECugUzB70z0L260xz/O7shIDxji0292KNEvKbK27qcgaI8rwUhvPf4rjzwl2k7qsI0PRDHUzwsO4Q8pg61vES+Fb0jRBi9RcVPPRmkBTx1xDg8m/I1PWuvc712D0y93D2KvX4zcjmlO++8Du1TPJyBojqnnaG9BjrBu6+nDTyvwce8yMyLPDGyZLtPvDs87kWcvP3++zt1xDi8EIN6PEDGvDsq2dE8Dqn6O5ofcLviKZ072FixPIrXoz3sJ8M5Y4tNveDH6rws9yo8gJWkPFXZJ70g2ys9lmvwO4kEXj0tQj68nRCPPReg5jqgNaI8RpiVPCO85bx7Uji85ZKJvEzIATxKxOK8FL+suvnSrrwMDJo7itcjPTWQAz3r3C89FygZvZ0QjzyADXI97OPpurFX7rwVThk9GHOsvMFrxjyDdl69cWeSu1ezJ70tQr48dC6SvMqmCz0TMEA8tZOgPNMVxTzGrrI7FQrAPJjNIjyYicm7aRnNvGAi4byCK8u7TJ7iPPxoVTxkAIC8pOmhvHtSuD1FTQK9gZxevbxsszxVHQG87GscvRcoGb09XdA8XG7hPLqSsz3bhH48GXpmvI4tkLzT+wo9LSgEvW3NzLy56Yw8V7MnPbTAWj2vwcc8Bn4auxpNrDxD0ZU8Oz/3vOUK17zLrcW8k86PuwfQ5zyfpjW6dC6SO5ofcDwX5L885ZIJvMkXH72wDNs7bc3MPIO6t7wGOkG7E3SZPDSjA73V9v67RQmpPGb0Ob2rDci82e5XvRGamb0GQfu7SkyVvU9LqDxgqpM8fwa4vUZUvDwz0L28H0y/PKA1Ijzke+o8/LNoPb/VHz1RxxS9ymKyu/L5Gzy5R6A8UlYBvRLlrLy0SA09YCLhPKsNSL2TijY93D2KvJAaELwy/Xc9+dKuPNnnnb0maSs8QL+CvQNZhzqUGaM7Ten1vDqp0Dx5NF88PzfQu53Mtbvsa5y8+h3CPN84fjtBEVC8eC0lPSNEGD0dLmY8VI6UPMOJH71ILjy8WLphPGCqk7tsgrk8QqA8PJw9ybtznyU9/rcHvDWQAz3hVlc9FygZPZwjjzyr8w27ETyGu1N39TzrIAm9MKuqPLxsMz2eF0m9/tHBPPc8iD0DWQc94Zowu59bIjxZjSc9OM9QvWb0uTwu0aq8gDcRvQGzezzTWZ68ymIyPJavSb16B6W8ik9xPUKGgjwu0Sq9LDsEO//Y+7tY5AC+4ssJvZK38DxUjpS7siq0PCPmhDymDrU7R+MovY38tjvF2+y82ap+vTHcg73U6Aq88cGIPAVn+zwdcr+838CwvFHhzjwYL9M7qRmOvLBQNLyiy8i88wDWOr5Gs7wEYEG7RHo8PACSBz0wZ1E9Gb6/vEuXKL1p1fO9X5P0O9KG2DsKMhq8YKqTPJvyNT1csjq7RhBjuyQH+TzKHlk8kbA2Pe8I/TuYiUm8zW2LvGqoOb05ZXe8X1+APJaVjzw5Xr06MGAXvL9N7Tvsaxy99I9CvIkE3joVThm9en9yOYCVJD2YiUk97wh9Pb5GMzuFlDe9KmGEvbLm2jwntD47LtGqu/2GLr0yyYM9geC3vLdtID1nJRO9kGWju2QauryESaS8+6wuPCtoPr1USrs8tw8NPMhE2bqGIyS9RL6Vvc4WsrwiLXk8vkazPNrBHT3CPgy8LSiEPIO6tzzA3Fk7jbjdO0YQYz7oWYk9FygZvYtmkLyt50c9VAZivU1xKLx8g5E8PV3QPJZrcLuuuo29+6yuu8FrxjtNcSg7Sb0oPDJB0T1KCLy7FU6ZO+l6fT3kAx29H5CYPOS/w7xKCLw8bc1MvHm8kbzF2+w8WUnOPL+RxrtL2wE8yh7ZO/CX6bwSoVM7ub/tu1ocFL0vAgQ94MdqPdXVCrwGfho8hdgQPRvFeTzO0li9Q3MCvabDobvttq+6iUi3PJvyNTx29RG8ZBo6vXdaX7wbmD89F+S/PLLm2rzr3C+8s7mgPN51nTth9Sa8RyeCvRXG5rrGalm8VVH1O9mJCr1oimC8r3Y0O/NEL70Cyhq8B8mtPMauMjwJ5wa8IJdSPEDGPD0PwBk8Puw8PT5DFr3/YC49LUI+PQYgBzzedR09JcCEPUMvKbw7OL27pmWOu5AhSr0yyYM8ymKyO9XvxDxN6fU7g7q3PNDwsTzSQn88vLAMPf3+e7xWJDu82eedu139zTxwNjm8DeYZvNkyMT1OogE8dYBfvZLhjzw6j5a9GC9Tvd2i17zKYjK9AxUuPcvxnrxGVLy81TOePHR5Jb06qdA8/hUbOQxXLT3qCWo821CKvKvJbjkRCy07AaxBuh1yPz1ngya6sJQNPcpisrxdQSc8/YauvFCWOzy1NQ2818lEvaedIT36YZu5dHmlPKsNyDx9LLi7Puy8vLUL7rzym4g8a2RgPP6NaDsSXfq6C8hAPQo51Lx/wt472JwKvTVmZDyMUxC9r33uvM1DbDyx3yA9ZNbgO91efru7mW29givLvPUer7yRbN08Wtg6PfnSrrwzFBc9T+2UvRKh07s9GXc7o6VIvS3+ZLxDLyk9adXzO2UhdDwPwJk8LG94PFJwOz2syW48xBgMPOKh6jzKHtm8cDY5vHuWkbz3tFW99I9CvabK27wmrYS7cltMu82HxTs29VC8kN1wPIXYkDuLIre80Gj/PF5yALtY5AA99zwIPQ/AGbxFxc+8W6uAPeSlCTtBCpY8+/CHPS3+ZLwJqme8M4xkPT/SAr2e/Q49qTNIvJ4XST1yVBK9r6cNvTiL9ztSVgE94uVDvBhzLLsb3Ji85AOdO0jqYjv+0cG7cIHMPMGvHz0W3QW9ZACAvQ2bhjkPwJm84PEJvUtTTz1USjs9FlVTvZFsXTxGVDy8pOkhvTr047yBnF68hptxve5FHD3RIYu86jMJPIj9o7vNh8W7SC68u2w+YLtScDs8m/I1O3A2ObxgTIA98JdpvAgb+zy3baC8LbNRvD830Dz890G8oPFIvS5JeD0MrgY8WY0nPMhEWbyopNu7bRGmPPdwfLt29RE8WQX1vH67JD1jz6Y8f8LePDTX9zy+t0Y85L/DPGE5AL38O5u9D8CZvceuMj2jng49SQECvTzHKb3ZiQq9q8nuPKsNSDujWjW6KEOru/usLrudiNw8HbYYvAONezzwl+k8kbC2u7QEND0gU3k8+EPCPJI/ozpVlU69gudxPJH0jzzVM548OqlQvWyCOTyESSQ9L2AXPY+SXbzLaey8+h3CPDKFqrwraL68F8qFPJ9bIrxPB8850fdrPVN3dTt5eDi7+mGbvDyDUDtmOBM86k3DO5I/I73ot5y8ZAAAPCAfhTwv2GS8c+o4PUefz7tz6ji8Y8+mvXCBzLvWfjG7kGUjPO4Bw7yUu489Jdo+vbcPDb2QZSM8APCavL4C2jvZ5x29jFMQPR+QGDycgaI8AffUvAzP+ru9+5+8n+oOvH5dEb1Av4I8bD7gvJUgXTxBrII9HgEsuqbDobslwAS9NZADPeZV6rpZBfW8S9sBvcnTxT2I/aO81oXrPLFX7jxq7JK8+P9ovBvcmDpDL6m5V7MnPdDwMb25RyA8qTPIvOkCMLsREuc7XnIAPTlevbtrN6Y8DBPUPF6MurwEYMG8e1K4vB690jtILjy81xTYPN0TazwBO669uUegvDhXgzyvfW47xz0fPC7RKj3ZiYq8xz2fvCrZ0Tqki468rOCNu/Em1rzVMx694imdPJZrcL19LDi90fdrOyXAhDvXDZ682n3EvADwGj10eSU93D0KPd1e/rvmVWo7IrWrvFmNp7vV78S97fqIvNnnHbsZApk8v5FGu/Yl6Tqy5tq8raPuO+kCsLy4/Ay9r6eNvIduN70s96o8pIuOO4XYELyb8jU8EMfTvBZV07yaH3A8jfw2PXYPTLzZMjG8X9fNPNmJijs1qj09fFlyux5yPzxhl5O8v3eMvI+SXb07fBY9pTQ1vRN0GbslHpg9eXi4uzyDUD2In5C8zcseO8FRDL3aOWu72n1EvLJuDTwHhVS801mevBUKQD2y5to7JEvSvCK1KztFCSm9GQIZu9UzHry2Ig09YkC6O0efzztT/ye7WOQAvP63B71lIXS8g7o3vd3msDwOiIa9uyEgPQ4xLbzw20K9Ou2pO44tkDxChgK9Z4MmPYLncbzOFjK8dQgSvWiKYDyeWyI9EIN6O+m+1jxEvhU92KNEvDqpUDwqHau8ZBo6PK92NDtgImE7AGhovXYPTDzqkZw7uPyMuy8cvrx+uyQ8utYMPff4LrtlSxO8GHMsvUZUvLydiNw7K6yXvLVPxzzNyx68F+S/O7h02jtjz6Y7ZakmPUFVqbuhgLW80obYvC4VhLyBnF48WpRhPeDHarrPpZ49wGQMPWBmOj0vHL68YGY6vQuEZzzVOlg822MKPal3obzDiR+81dWKPIJvpLqhxI69UrQUveuY1rzd5jC8FU4ZPCDbK70Ycyw9N0DkvM6Of7xwehI918nEuwRGB70eRYW8M9A9PeALxDw7OL082e7XvKrCNDw013e9QpkCvTjPULxejLq6wWvGvIj9I732JWk884iIu0Ondjyf6o47/N0HPaNh7zwuSfi8FyiZPGWpJrw013c9tEgNvfXaVTvffNe8HGsFvb37H73uRZw7rwWhPA98QDx9cJG8W2enPKdZSLzawR09DBPUvJeCjzyESaS87wh9u7IqND2fWyI8I+YEPQhYGr1JXxU9Y4tNPadZyDyS+8k8EVZAPfusrrz6HcI8NvXQPJnUXDxozjm8PRn3PF8bpzxbq4A7eC2lPHA98zuwDFs6WY2nvGldJr24uDM8iJ8QPKnv7jyyKrQ8g7o3vLGbRzynFe87y/GePEwmlbyy5lo9QpmCO+WSCbwiLXk7EE8Gvbxss7wk0wS9r33uvEcngrzOFjK9XG7hvA2bhrwraD48Tel1PAhYmr0FMwc9RL4VvTInFz1QUuK8hdiQPYXYkDxNtQG9v9UfvHtSuDxwehK94E+dvAxXrTzDKww8DM/6O4+SXb01qr07KyTlvKA1orz7rC68zLT/PGuv87xr80w6NjmqPMjMi7y0wNo7/9j7Oy0oBDwDjfu8+XlMvJlFOD20iwq9TaMtPA3XKb3CEBK9TzK+vGAACz3kiUE9plDru+y/GL0HGye9sK+XvEJg1Ly0ItU8AV8kOzpeBr0y9588Fh4gvdaGSDxuhZK80yjHvGL11rxBeAq8MPu8vKSIETzgmBI9Tx2CvKIqkLtwlrG7JSEZvU2jLbxJSUm9WOYGvYeCn7xdCMW7d04XPUL6mLyN0U+9OkIzPRtxbb13The9Ice0PALBQr36ecw8Zk+7u5ccY7yKLQO8SqtnvDpCM73J+Ya8kSs0Ow5q1zzCEBK9f2ibvfXuWLwY4ly9HW1QPF4EqL1JFB29WUglu37O1rsCJ367/zVPuxXtELxuNBM97NjxOqIqED0HgeK8Sna7u042W7xbpqa8ZA0NvWZrDrwWa4K8ZCbmulymJrsXnJE8BIwWPNLGKD07QjM8iqh6PHW4bzwikoi8o4yuvGMm5jzbDR87Sna7uzSKzTwuA3e9ZoRnvTcxFL3LP9K70SzkvFPBTjuP6YU8DAxWvZ8257u+0gC8VSNtvHrdp7yKLYO7osX3uopekrvMiJc7MDDpvPxxEj1P0J88GOLcON7RWzsJ32M6LtJnPMqspDvEv5I9pxciPMfl7bwYgL67C6q3PPqRAj2UiTW8Y8AqPXmsmDy9By09DzWrvNS7dD0FhX+8qOYSPcbsBLwhLXC78qgNve2fKLykI3k8UMyCvUrc9jwAmG28oioQPMLDrzwJrtQ8bW1cPfYbS736dS895k1+PVXuQLzd0du8fjcMPf3vA73CkiA9kZFvvUcYOrzqp2K97HK2vKh93bzDjoM9i0I/PVl90TyB+0g94ZH7uza3vzwuuY48aniQvIizrrzmHG88SRSdvEDNpjxOAS88iqh6vHL0Mryofd09IhQXvQh9Rb3VVTk8toRzvH07qbzGg0+9SnY7PIktAz12tNI99R9oPEpFLLxXTMK8iRGwPK/PB71VH9A3RzQNPDNd2zz+zxM90OaYuyBlljskchg8qUgxPaTuzLz5RCC9so8nOnCWsbtzi/08YJfVvMZSwLspLhs8XdOYPNZRHLxem3K8k6UIvDNd2zxdauO8YK+LuxlEezwMCDm9HEDeu6HFdzxkDY29M7/5vAp5KL0aeAS9o/LpvIAwdb0ZrbA8xT2EPGeYgL1E7+Q8bFSDPGney7v81028tumLPLw8WT0Pm2Y8FVNMvJXWF7zu0Lc8P2TxPMbshLwNJIy8EflnPOkUNT2nTE69qd/7PPhMWrzGTiM87D2KPYKO9jxjwCq9uqmrPBBiHb0WHqC8AcXfPD2gNL2A5ow7yXuVu0xuAT3TJCq8XTlUvCyh2DyT9oe8HrYVvJCYBj0aeAQ9G3FtPINxADz5RCC9HZ7fu7DI8Dyqqk85RSD0PJtBG7sQYp07xlLAPGGTOL2s85Q8/jVPPbVTZD0FvaU72qsAvH65mjvl7/w8D8z1vHafljs5RlA94StAvacXojzLqIc9qH3dPHoOtzz4rng8FYTbPIfPgb2UWKY8YvXWuwQjYb1DXLc7qOaSvIizLjwTJtq85k3+vG1tXD15EtQ7UJRcvUkUnbvdb728VrkUvk4BL734rng8iBVNPGtA6jzeAus8JfCJOwS9Jb1JFJ07MJmevFDMgr09vIe9ZVPYu5dNcjzqQSc85LrQvGixWbxcpqY7TaMtOkDNprwTj4+8Stz2vCiwqTtLcp68XQhFuyh/GrzBx0w9DSQMPT7RQ7y6eJy8KBblvWJejLyHgp87wDCCPN06kTyFVS09NFWhPHCWsbw3AAU9H8tRPKPyaT1ixMc8QniKvPTy9bvTwgu98lurvCiwKTwHsvE7gkSOu4izrjxuab+8C/cZvFhIpTqLc8667W4ZvRZPr7ofy1E8YK+LPaOMrjyDJJ48riAHvSH8YL1ZSKU7ChBzuy//WTyQL1G9wt+CPJgYRr2PzbI8VSPtvJgUKby+nne8Uf0RvLVrGjzhyaG80ihHPRTxrbxjwCq8XwCLvKa5oL1T8l28jdHPPOsQmDxMOvg8le/wvB2e37qLDRM9nx2OOadMzjxFIHQ+pe5MPWJeDL13f6a7y6iHPe8yVr2ReJY42kZoPElJyTvPysU6RL5VvRW8gbyum/48/HGSPHw/xjxykpQ9l01yvG5pPzy8PFk9QBoJvV2iiToz9x+9mRSpPLvaOry9VI+8EuAOPToRpDzFIbG7ybDBun3S87wZRPu8x5sFPCMltruc1Mi8Wnk0PArfYz1Wge68NPOCuo6gQD3JKhY804plvb0HrbxHNI27j2T9uzgZ3jz2hIC5hPOOvKHFd71RlFy8Bh9EPavXwTxKp0q8qz39OlF7Az3JKpa8zgYJvOpFRL3dOpG8Q77VO/4gkzzPmTa8B5mYvGmtvDxNBUy9VzeGu1fqozuRK7Q6GOJcvOqn4jxuz3o93jP6PC3SZz10JUK9z2SKPAvbRj1XTEK7lFgmPe4dGj0zXdu7Wd9vvMw7NbuYemS90ftUPKoTBTwspfU8bmm/O7sLSj0FvSW8AWPBOk8yPj2ormy6Rro4vG/L3Tu4mIw8i3POvEp62LxPTpE8I1piPC5sLL2s85Q77p8ovV41N73bPi68hiABvQNbhzxE7+S7C/eZvPXqOzzRRJq8BFTwO2H5czx/mSo9angQPfXuWLzl73y8p31dPDqobrwOalc9SRSdO7eYDD2Cjva8HZ5fO6Py6blOHQI5bTgwvDykUb12uO888P0pPEJgVDwkchg9BCPhuz5riLxqRwG99h/oPE/QHzwn5VW82uAsO6dMTj1P0B+9fWw4PFumJr3TKMc8FPGtvOlhF73XGXY6hLtoPZMnl7tVI228LQoOvXoOtzuL3IO8i9wDPVL2ej3oGNK8ApAzPR08Qb3uAUe83W89vIDKOb1Lv4C8KqwMPRlEezwMDNa7q3UjPPa5rDtnsVk9ia8RPavbXjzfnK88akcBvdEs5Lr0vcm8IOOHvXaDw7xXsv27+eIBPcCWPTyBxhw7XtMYvHGWMTzC9L484ZH7vN/+zTxdCEW7kUeHPAWF/zxk8bm8ztJ/vOuOiT3CWnq85LrQPPvCkT0CkLO7U4yivJXrUz12uO+8ZVNYPAZQUzpTkL88gOYMvaEuLb2+ODy8AqyGPHfMCL2IFc27prmgvKbqLzz6ecy8DQi5vO2jxTv7whE9YDGavAxudL2gzI48fNkKvKQj+TpOAS89yMwUPY5rFL1Gths6fbkaPW7Per2uUZY8/dOwvK+XYb0g4wc9awu+OwH9hTuQmAa8qOaSu77SADtumk68aa08PNs+rjvywWa8LgN3PfWIHbz+NU88VzeGvB0HFTx8oWQ8I4vxuoLGHL0WT689jW+xPFjmhru3Syq9z8rFvOhhl7owYfg7lIk1PFsMYrzpq388eLA1O0t2Oz0nTos7uto6OzSigzzE8CG9v8tpvVUfUL35RKA8aBoPPRiAvrzZrx2804rlvMsKpjwbcW28osHauRoTbLvVUZy87uyKO21UgzlrQGq7KbCpurjidLxQzAI9FPEtPRhLEj3OBom8CwzWvKOMrjzEJU47wyXOPGtAar2OOgW9JlKoPDpeBj39BMC7/iATvJkUKT15EtS7GHwhvEe2Gzs72X27qGSEPG9pPz00Wb48Z4BKPChH9LufHY68PNVgO9rgrDsDwcK8T5j5vOtytjii+QA99PJ1vDS7XD1QlNw5hVWtPDaGsL2k2ZA8l7anvBZrAj2IFU28ag9bPVYbM73KdP68Zk+7vJ8Bu7vt1FS8hxnqvEDNpjwubKy8hCQevMp0frzdbz29Oa8FvWqpn7xS9nq8iBlqPBexzbz9ans6S3IePc2Il7zZETy80fe3vHiwNT3GHZQ8fNmKvFGU3Lypqs89hez3ujkRJD0XTy882RXZvL04PLsspfU8fHDVOOpFxDxMbgG9mWELvGoPW7xbEP88QC9FPEBLGD3C+Fs6i0K/PKcXIj0FCgi9HQcVvbxt6LwEI+G7U9mEvIH3Kzx5rBg7a6mfvfxxErzIsME8QWDUO/Tu2LpPMj49pR/cuzbTkrzGg888lLpEvPBjZTxZ32+9WZUHvQrGijx8cFW9SnpYvY2gwLuFhjy6Bb0lvHa00joONSs9S6dKPQcbpzzNOzW8E1fpO3IQBr2yk0S8ZVPYvXaflrs2UQS6/00FPSfl1TuEu+g8oJRouzD7PLuo5pK9iRXNvKZQa7twsoS9bTxNPdFEmjx2g0M8DQi5PDTzAr1DvtW7Fu0QPR1tUD1Jko64nHIqu+eBBz27pQ48UpA/PCMpU7xs1pG8haIPvVFfsLwU8S29OLMiPQYfRL0rP7o7Z0uePcBlrrxdCEU99Iw6vBOPD72ZFCm9/HGSu/JbKzvHHZS7Cd/jvFl9UbyhY9k84PqwPOSllLyPAt87S3Y7vbh8ObxxljG7LgP3PJGR7ztjV/U5QckJPIboWjtN1Ly8aBoPvT28B73yX0g9DVWbvYL3Kz0YfCG8yd0zvbsLSjyuam88eOHEvJkUKT3MiBc7uEuqPBa1ar2tOeA8Kz86OisOKzxQzAI9sybyPCHHNLyRL9E83aBMvKa5oDxRxes7/jXPvDpG0LzuAcc8fQqaPHzZCrwFOxe9t+kLPSd/mjsBY8G7I/QmvWGTOL1c1zW9NFm+PFdoFb2RRwc9l7anvI/+wTwEVHC8kDNuvAiZGD0N16m8Ol4GvW1UA71ofK28voGBPVpEiD1E1gu7S3KePVdMQjwiQYk7iACRvBjiXL1TkL88VQqUvDS7XDxtnus78JT0u61RFjzbpOk8FVNMvbZPx7xw4xO8lxxjvBh8ITxM1Dy96RQ1PaFfPLzEVt28P80mPYl3azxa29K8/AjdvAcbpzxBkeM8ztJ/PR9ps7w0Wb47IilTvaWIEb0CkDO9jA0TvCmwqbzjvu28mZIaPc6dUzym6q8867+Yu303jDtWGzO75evfvJgYxjxXTEK8et2nPCmwKb0wlQE8tCJVvb80H7pbEP+8pCP5PE/Qnzxb8wg91PMavb1UDzzpFDW9M/cfPbFeGL1sCz48enTyvC/OyrzDJU49oXuPPKe1gzwW7RC9ZFd1PCNBiT1DWJo8NYpNPYzVbDutau87eH8mPPhMWjzm58I8Jp+Ku01ugTyQL1E90V3zuys/OjyspjI829yPvJEv0bxR/RG9P5yXOuaFpDwEjBY98l9IPQa5iDyikEs9+RMRPLB+CDz5ecy7Be40Pf2ioTw3HXu87gHHvFWIBb1PzAK87D0KvKmVE70mgze9JfAJvRLgjrxRe4O8B7LxPNkV2Tx6dHK9TQVMPRYeIL1jwKo8bHF5vEc0jT1s2q48plDrvEWJKbwE7jQ8vji8u81sxLx4FvE83riCPK3TJLpsPM282kJLPKOoAb2gMsq7mWGLvAlIGT2qecC8TaOtPLhLqjumuaC8XKYmO/4gEzwWHqA8RO9kvY7LUTsD8Vw961dGvdhlDD0XuhO9vIvou9JA0rtVnIQ94RVUPRxJYrwuDli97GONvX72T7tnHKi7tBSsPCp/ibz31gS91mHLPBzbjLydc486uOhMvCpfdbzzG9s7tTnqvEc5Gb0i6Li5qt4APf0ogzqYwOs8OlSLvEKSvLyiwcw6f3StvdHzebzfoz08eaiSPKhU3DwKTyK7OFBKvSdWCj1MGQG9bPDIvBzbDD2AM5y8/RD1PChOhLueU/u8q0TQvDZsnbyQCB69yjssuv0wCb0FLqk8pPLRvI0Yqr0ViY46r/MyvaZwrzvJfL298TeuOUGmCTsf7H08C7VxPNw1bLxgUI07AcyePPfKPbmNZQI9uxnSvOlzGTpDEBq89linPGXrIr2OisC7Nt6zulKYwzvUMMa6M3ypOy3pGT3sY409ewZcu1f6zTvq5S+8rA+Gu+hn0rwaGN08c0JHPNdtkjnUfR49kW5tvcANB71ZeCu90Y2qvH90Lb0e04Y8W51pO1nFg71djd07fYQ5vNJAUrzDNoa7An9GPJ5Te7yGLPu8m2/OPBGhIDz4+8I8W/YIvETDwTwLdOA6xJxVPGjbljz9aRQ8jj1oPXtTtDsATkG9QYZ1uhxVqbuHeVM9lPCLO/TayTwZWW48ubOCPcm9Tryx1189vUrXvJS3gDwZso28BW86vJK/BjzHjEk6074vPUxaEr04I4Y8ccTpvPpt2byQbu25eaiSuqTyUT1kshe9p5XtPLqnOz2iDqW86LSqvHkirzyFE4S9NmwdPY7LUb1d2rW8EaEgvZ1zjzsATkG9VFcyPVIaZjupxvI8IKvsPAF/xjpOuFs9/s9jPBbCmbwyChO9hUjOO2NtxbwfRR08Xdq1PDPi+DvdhgW8TsSiPXhjQL0CMm69jtcYO5u8prupxnK8roEcveY2zTy1kgk9l07VPXKD2DsEsMs7zR9ZvcIe+DzNH9m7nCL2u082OT20evs8lwH9PFdHJrz9MIk8xc1aPGdpgDxtr7e8odUZu5Fu7Tx/aOY6YDzAPHcW6Ly9Vp47ENZqPEGmCT2Sq7m8C7XxvEoJ+TzD3WY8GqoHvRqqh7zvuVA8ZCDtvMA6yztdzm48uClevcA6S70oLnC9f3QtvbMI5bwcCFG9IGpbPRimxrv23oq9cJ+ru0WzNbwlXhA7EVTIuxPSJT1Edmk9JMzlvA7+BL1I5Lo77JyYu7dqbz1W1Y+8Z8/PvM8jmjyveRY96yqCvQpDWz1gPEA8TsSiPJXcPj0LAko9Fml6vYAzHLytdVW9wDpLPJ6sGjyrRNC82Z6XPAgenTz73+87Ck+ivHS03byjdPQ8+ziPO2oMHDrdhgU9/HEaPau2ZjxgfVG62EX4vCKb4Lwehi48YDD5u8y5CT06NHe7glhaO+wWtTz9EPW8EaEgOxPGXj0FLik9H0UdPdlFeDw8/yw8tTnqPD+iSLzyfIA8HgwSPRoY3by3t0c8qWCjPexjDT3RjSo86GfSO5COAT0s3VK9MD9dPfq6Mb2JPAO9moObPFtcWDvOkW+8p+LFvPKpRL0Ymn89OQ+5umiCd73R83k8d7AYvKgnGL55iH695jZNPL/ItDutNMQ8AFoIPSXYrDs9fYq9x0u4vP/bKrsb24y9y8GPvbHXXzvOnTY9e1M0Pb39frwe0wa9LU/pPAPxXDt54Z28fvbPu0SCML3MuYm4jQzjvNw17LtI+Ac8jAxjPRwIUT0TRDy9zt7HvKZwr722au+6+IksPD4wMjw682U8G5Y6PeDwFbul/pi8N5FbPbeKgzy8i2g9RzkZPOg6Dr2AJ9W7jKYTvdN9Hrwb45I8eIh+PMxsMbuq0jk8UhpmPEDnmryzCOU6d7CYvDYfRb1HJcy8cAX7PK3CrT1YuTw8Q7d6vBW20ry/yDS9RzmZPP0wiTvh6I87MUskvV4fCD1VnAS8S9SuPK+mWr3ZUT+6AE7BvJHsSrxgUI07SOQ6vX4CFz3D6S2740ZZvLOiFb3hFdS9ne0rvZFu7Tzcjos8liERPZDPErvyfAA9nqyaPJu8pjkim+A8E8ZePhDiMT0nCbI8O/PlvAashj0oLnC9QlEru8xssTuHhZo8uhlSvBGVWb1kIO28d1f5PJ/R2DzyXOw8PxRfPd+jvbzrpJ4898o9PacvHr3JyRU9DT8WvdU8DT2Sv4Y7hUhOuwmQMzxRtJY8GPMevJ+klLzHP/G8a8MEvb1Wnjy0mo+7mv03vQUuqTyPPeg8CZCzvOzVIzy4m/Q8HNuMPKOAO71/tT68An/GuJx7lbsV9+M6pWRoOjN8KbzADYe9DqXlOyaXGz15qJI8jQzjvDgD8jm82MA89OaQO8dLODyBmWu9Y2H+umyvNzwfRR260fN5vfTaybzYLAE9E0S8vLBlSbzrKoK8YoGSvK00xLzfMac8F4EIPRrXSz302kk9JSUFvRokpDyqHxI9PSRrPPpAlT172Zc9rufrOoB0rbxrfrK8QYZ1vV8LOzrD6a07uJv0PKregDwCf0Y8FQMrvEnwATyA2vw8gyOQvCZKQ7ujgDs8nXOPPKTy0Tq/yDS8z1ylPBokpDyzVT29M3ypO2A8QL1gyqm8KHvIu00FNL37/wM9VRYhvSr5pbvz7pY7ubMCOzUzEj3L+hq9KE4EPUJFZDxLIQe9cJ+rPLBlSbtnoos6bWJfPfL2HDxrBJY8p+LFvA8jQzx7U7S8CZCzvHfxKbuGumS9U5jDPBETNzu1hsI8CKQAPOlzGTyn4sW8U4z8OrGWzjxHcqQ8XY1dO6OAu7tN+Ww9CwLKvJ/R2LupE0u9kjmjPDpUi7zMYOq8RIKwu3ERQj0tDli8V/rNOzFLJLzUfZ688qnEu9GBYzy/yDQ9GWW1vNauozw9cUO9nC69vIJkIbv0jfG8FQOruyEpSj1MOv67wj4MO1bVDzz+HDy860v/PIJY2jzjk7E8Uoz8PEmXYr27GdK5ENbqvDFLJL34D5A8t8MOvQpPIrybQgo8TVIMu/ye3ryd4eS7ISnKPBZ1wbyTn/I8fsmLPFPZ1DxjQAE9JMzlvJtCiry6pzs9uHa2vG/gvDs5VIs9gNr8u2KBErtmUXI9+nkgvXCfqzz7/wO8Kh7kPPpAlbwvgG69d3eNvEMQGj0HX668QGE3PLk1Jb2GeVO71AMCvB6GLrxlnso8dcAkPffv+7xE6P+82gRnO1aIt7vk2IO85cQ2PQBOQT0qX3W9ldB3u5Cv/ru/hyO9yu7Tuhlltbx+Ahe9Szr+PPQnoruCZCG8z1wlvDJw4rvih+q7WXgrvfdImzvvBim8wj6MOxcoaT3/2yq8+A+QOztMBbzR2oK8AE5BO+gBg7w6jRa8tgSgPRlZbrrDKr+8zuKIvQUuqbwehi48IjURPGQgbTzUMMa8FbbSPLEkOLwXuhM9BeFQPAP9I7zfl3Y87dUjvYg4Qr1dzm69ldw+PWeiCz33yr27MsmBvDGxc7y9Vp482JLQuUWztbymI1c8glhau0nwATzS/8C8d/GpuycJsjw1rS68xoxJPEO3+jtFQZ87n2uJu8gKJ70BwFc8XY3dPCTMZTx7Bty85NiDvPfWBD3oZ9I8ne0ruo5++byzVT086LSqu/Ar57zvbHi8yXy9vEw6fjx8xUo9wj4MPY5+eTsgq+y8ORsAu8Dt8jzTfZ470ML0vOtXxrx8mAa8cJ+rPBETt7zalhE9+nmguvSN8bv+HDy9YYmYPChOhLt1wCQ8B6C/OdILCD3OkW+9KHtIOfosyLzRjSq6VjvfOiLccb3rpJ47nqyaOoMXSTwiNRG6+m3ZvC5bsLwIHp288J39vP4cvDyE+/W8SyGHPHnhHT0jWk86zGBqvH4Cl7z2C089G5Y6PMaMybyNGKq8nl/CPQRj8zpKYhg9HNsMPXY+grxqDBw7QGE3POaDpbwIEtY8yXD2vAdfrjzTsui8Iy2LPMJr0LzD6S09xBozPFXJyDwaGF09bTUbvSyQ+rwftzO8GKZGvA7+hLxcaJ88eSKvPB3Hv73rS/+7FQMrPL4JRrtcaJ+58epVPahU3Lxi+668OBuAPIyaTLvjk7E82CyBvQUuKb0nj5U8QkVkvSmHD70qf4k7DfI9vPJc7LyuQAu98vYcPQBOQT3ZUb88mBkLPNdtErzj4Im8t4oDPLuL6L0aGN28cV6auwikADzRE448ctCwubJJ9ruFG4q7EWgVvc7ex7y4m3Q8qt4AvSu4FD1E6H88vR2TvGuj8Dp72Re9inUOu90AIjwCMu48Kn8JOfYLT7zdACI9SOS6PAmQszx9N+G8nCL2O1reert54Z28EZVZvQ9kVD06gc+8B8X9O2O6nT3xNy48tZIJPQndC71SrJC8Szr+vB+rbDyhTza7+m1ZOtt2/byXAf28MnwpPYm2n7zJfD282CwBvBLGXrzoZ1K8l1qcOyr5pTsRJ4S7uZv0O0KSvLwl2Cw8lo/mvJdOVb36LEi9ntFYPMMqP70PZFQ9ERM3vLk1Jb04UEo8KncDvB3Hv7zqCu48rLbmvOf1uzvAOsu8SlbRPCoe5Dyswi28redrPJjMMjx0ATY8skn2PHEdibwHElY8sSS4OwjFfTsPZFS9dAE2PakTSzx5lEW8xtkhvTidojul/pg8MgoTvSNaT71L1C69gDOcvBc0MLwskPq8DEecPNpdBr38qqW76phXPFo3GjxLIQc9twQgu7XTmry2+Ni7inWOvBOZmjw2bJ09paX5uIp1jj0RoSC7+nmgPNlRP7wuWzC9gNr8PDVg1rwqX/U8jstRu3KD2DsLdOA87NUjPGiOvry3w468pnCvvPJ8AL1xxOk7imnHvGYcKD01YNa8GqqHuyt3gz04naK8kr8GvY9JL72zohU9JwmyPLzYQD0nj5W8smmKPEbHgr0galu9wazhvMov5bx/aOa8vNjAvGEw+TzpGnq8Mr06vL+HI73cjgs9B6wGum/sA72fYwM9ubuIu5Ofcj3FLgC7BeFQPHvZF716oAy8My9RvTHRBz3rpB49Ipvgu1gGFb3MKyA9lPCLvKX+GD0Bc/+8WLk8PNvPHL31TOC7NDsYPTIKkzySq7k8EaEgvXVGiDsuDlg90M67PId5Uz0V92M9WcUDPEVBHz2B5kM8F7qTPKqFYbxirtY8Y7qdPC5bsDxrMVo8f7U+PK3CrbwzL9G7UEIAvSRmFrzuR7o8TrhbPWL7Lj2nlW06RTVYPIYHvTyQzxI99t6KvEdyJD2wsiG88ISGPKu2ZrzlxLa8dX+TvDeR27wWwhm9hJWmvE1GRbyJPAO9fYQ5vMVbxDsWdcE850KUvY7LUT0VttI7JdisPHiIfrz473s9DQaLO6HVGb0dx7+8c04OPSLc8bxsPaG8py8ePHkirzy9Vp65iEQJvc0rIDzR8/m8RTXYOxuK87wsKis9hNY3vZ9rCTwKT6I7ycmVvMMqvzvO6o48/KqlPN2zybxNbQC8hvgRPfD+m7yt53A8ZzJUvQJJ37xNpzA8zzIYPTxjMz0iD52828cavUjBKL1hFb+8D/8JPAFDGTgKUzI8GapxvB9ZbDyr3ge9gnMoO2wSFr0eUya93SWWO51ZJDyeKF29b0JtvFKKFTwUxGm7M8G0PCsl/LqvnaG7+WkNvPRPm73/GIi8c1aZvK7Rizp0Ii89/oYivG3hTr3Lqgs9jKeMu70lqLytedY89InLvClWwzwqjdC76b07vEGAyLzDCA27rTwDvYhZMDvB4R679VK+PKVmmrw8LKa9V0/1t4f+V71ZPLO8TwjPvWTOErwn8oE7IqECPD5Wt7yKus68l6eGvLfkxzxrgDA8yhUDPeU40ry4fPM7+8orOzQcjTpzH4y9VbfJu/dFwrzvMoY7hsGEvG/ODDyI/lc8syhRPcm3BzuYeeI8Z4oJvTDOsLzzgwW8UNHBPKKtRjye64k7ICLfPMqDnb1K6zm90crDvPgONTy35Me8tIOpu8qJ47pojay9n7pCPA1MfDyBhuq7uUVmvL1cNbvr50y8d6eYvEf1kjpZc8C8rHMQuPwH/zuTyuc7cWx+PIvxW7wt26w80lwpPeywvz05cK88YRW/vO7a0Lzoupi7iSIjPON8W7yGLx89FFCJu75iez0dL9u8x1kMPfPxn7zPMpg8+jjGu7YbVbxMTFg4hWOJO+4R3ruOPzi9ss14vKI8Cb3aNbW8wnnKPNYe5jxEBTI98HL8vDgV1zz/GAg9ZmlhvJAvmbwjFeM8P1MUva+dITtUk369kwF1u3oOfbwm0Vm86JlwvAF3Az0ay5k7C64KPXBmOD1ojSy7nSIXPZKNFD2kmgS8q09FvbkOWb2Z0Ze7zQgHPJsvkzzfiVe60iWcOy3brD1Ec0y9LwIbva15VjwnKQ+61EwKvbzKT71zkMk7X7SgPCIPnT2Ccyg8m/iFOepPIb0vAhs9E76jvO5pk7yR+y49fiXMPFtmxDyJX3Y6V6SHvLHHsjsUxOk8etGpvGbX+7wYoYg8n7rCuzeD8TvzupK8EmNLPLS6NrzMdqE8g+HCO4q6zryO5F8828caPHqaHL1+Hwa7Cln4PDQcjbzSXKk7hvgRPcq6qr1LfR+9WKrNvI4IK721FQ+8l6opvar0bDwXSdO6RmCKvaCJ+zzsPwK9fMGKu6GnADyirUY9xsSDPRSNXDwUUIm98QRivBuXrzyJKGk9oBUbvVtmxLugg7U8tlLiPG05hL3SJRw9jj84vIgfADuXp4Y9F0lTPYrxW73xBOK6KPtqvbtvdzwu4XI8NBwNvf6GIrhg8fM8tcB8PCKDfbwFPGO7JDkuO9cIAT1w1NK8fMEKPZz+yzzWHuY8g7B7PMHn5Lym+6I8gnCFOwwMhjo8YzM8cGY4uuN8WzyEQuE8r9r0vPd8z7s2fSs9DdibPNwE7jzTYm87BgXWvHcbeTw43sm8jTyVPC0SOj0PcEe9450DPWhWnz3jDsE8pEVyO4CAJDysqp0861VnvVZGDD16Dn28eQi3vIajfzzTt4G8jRvtu44IK7ys4Sq9/FyRPbkO2bpshva8U1MIOg1MfLyvZhS+fMQtvaqG0jtwZri8QO7iPO3UCj25Rea8DAyGvfyZZDw3un45Px8qvTZGnr0ovpe8kNdjPDeD8TtkP1C8WTkQveMOQTs1eoi7SRwBvH0yyDuk0RE6G5QMu1k8M7xD4WY8ZAhDPF/oij11fYc8g7D7vJYYRLzR+4q98iitPIKnEjzRykO7eQUUvE5woz2FZqy8TIPlu9VPrTyh3g09MJSAPSMVYz3sPwK9K7fhvPdFwrxwnUW961XnO64LvDzVvUc8C+vdOwVz8LmKus68QUYYvXI18bu/hka9l6qpvM2z9DxZORA9Q+FmPMX7EDzeup68iVmwvbnXyzwQCHO3i4PBvEISLr0DoRQ9CPhZvUbU6jxH+DW9Tz/cOzgV17za2lw8El0FPPwH/7wZbR49rtELvM7Xv7tV7ta8onOWvcJ5SryfSQU9ZiwOPfBy/Dw1kG28G848PDQcDTx4cIu8UGOnPNX0VD7nmXA9ibQIvb/uGr3z92U9FFZPvXbbgjs43kk7n7pCPAVz8LuhUm69qSt6PIlf9ruKus48c1m8PGnKfz22G9W8c1k8u2/OjD0YEsa8LIDUPLh887xqt708VX0ZvOam7Du+K+48+abgPN6DkTxEAg86Dt7hvPo4RrwiTPA8wBUJvObKt7yZ0Rc93JZTPYN57rt/t7E7LdssPdc/Djxm9YC9DqfUvNewy7xm9YA82mzCPA3YGzxRaW07iJA9vQZdC7uGo/88BykhPdaqBbyR+6479VK+u1L7Urqelvc88P6bvQaXuztc+Km6ybeHPF01/byINWW8HlOmu3ssgrurhtK6tLo2PFRccbwZ4X68LwW+PCPeVT14cIs9WQUmPXH4Hb0r7u48FMTpPMgoRbzao08997NcPU8Iz7vXPw687zKGu2Otar0x1PY7HWAiPNX0VDyW3hO7fVYTPdgLJLtxbP46t3YtPcI/mry9XLW6CGb0vNPuDrwND6m8JDaLvBeA4DttcBE8CGZ0vRIpmzwfkHm9tPHDvGQIQ7tthna9HsFAPabEFb3PoLK8p8rbPLaql7w7msA80yviusKwVz1M25q7QLdVvQGxszxbnVG8WKrNvI3kXz1+XNk7LRI6PV1TgryDBQ49X+gKvQy0UDuT64+8AoBsvcWjWz10KPU8my8TPY0b7TwaNhG8qxWVvCUI57yAvfc8ej/Eu//D9TrK8bc8s19ePakrerzj17M7hAtUvdKTtrkN2Ju8I6fIvBnh/jqnyls9aiVYvK15VrzSk7a8YRU/vFToEDwTviM9ZqDuPP9PFb2QoFY9kspnvbjRhbw7CFs8QhIuvQxDE7wZNhE9h/5XO8sbyTzXP447Bs5IuvezXDzmyrc8q0/FPE5wozxQmjS9Lm2SO8Ee8rzV9FS92/6nu31WE7y6oL47GKSrvAKAbLzOnY+84PfxO4iQPTw++9688VwXPZfhNjyu0Ys8D3BHPE1tALwtErq81b1HPdo1NTwvPMu8cjVxPSxJx7ziPwi8nl9qPemDi7wpxF09KCyyvFdP9Tw7YBC9R74FvbVMnDyAvfc8hWasO1vUXrqidjm71b1HvIsShLzuf3i81b1HvNUYID1NpzC85d15vECxjzqQoNa8KyX8OhpzZD2hUm495pMqvfD+m7yoIhE9/fEZve9sNrx/tzG96GJjvUnHbj1maWG74rPovEEPCzyxx7K5gnMovM9pJb2yzXg82Z2JvDa6/jvg4Qw9tUwcus9mgjynylu9zg7Nu1ONODwEbao76CvWvErolj23rbo8JDaLu1CXEb07P2i8ZmnhPLKQJTzXsEs9etEpvIMFjjyA7j68VkaMPR/lCz3SJRw8KuioPGNwl72C4UK9/CWEvc6dDz3SJRw9DLTQvFNWq7wA6EC8ScduOgGxs7y510u8RmAKO1oL7Ltpk/I8QFx9OhUfQrwMRjY9aFafvPODBbuLg0E8H1MmPNYeZrvxlke9yxtJvFDRwbuAgCQ97EKlvAvr3byNrdI8XyI7PKTX17tOOZa8QQ8LPfRPGzwkOS69bnn6ulvU3ryMpww8ZWMbPQQ2nTyCcyg6mef8u01tgDrPaSW8I95Vu8HhHr0CgOy8ON5JvFwvtzx3FTO8J/IBPfcLkrsfUyY8vmJ7vRZDDT3w/pu80lypuh9Z7LvyXzo92Z2JvcfHprst2yw8zzIYvMPUIju40QW9eQg3PQCukLyZmgq859D9OlkCA71GZlA8M8E0vJgFgrxL6zk6F4BgvemDCz1OORY9U1MIPScsMrtXEqK8NMd6PdOTNjxsSSO9BNtEvdpswj0HKaG7hAvUOqsYOD0j3tW8emOPvA5qgTwj3tW8GKSrPC0SOr0zwTQ8fY0gvQaUGLyZC8g7eT/EPOOdAz3H/jM7z2klPHyg4jq/7hq9PWl5PF8iu7zV4ZK8iihpPDGd6Tw89Zi9yM3suoLhwrwqVkO8KugoPXBmOD3KTJC88l+6vMVszjy/vdO8+abgPIOw+7xGZtC8SVnUPHBmOL2OCKu8mHniOxo81zzvNam8QtuguwFDGT1SihU96k8hPWWaKDz/GAg9wBisvLNf3js3g/G9z2klvWp9jbvYeT48an0NPIM8m7t8+7q8bEkjvB1m6LzPaSW9TacwvHBmOL2idjk90spDPB1maDuFZqy7XlnIvB8cmbzTYm+7yF9SPWiNLLzL5Du7tIMpPWiNrDxhRoY8+m9TPPdFQjyidrm8lt6TvGcy1Lx5P0Q9scQPvYFPXTyo64M9zg7NOzEpCT36b9O8v4bGvNvHGr0+xFE8dX0Hu7SABrukmoS60VkGvItMND14dlG8UJcRvZ9JBTyr3ge9/oYiu8NCvbyCcyg9v71TPBuUjLxJHAG9iSKjvLsypLySyue8IkxwvWag7jz5DjW92qNPPXit3rtshva8vSWoO44Iqzzphi69HxwZPTuaQLzU9NQ5M2bcvCj7aj0PcEc9VJN+vHL+Yzx+k+Y8wE+5PFk8szxdU4I7ZdE1PNBv67xUsYO8eOTrvPD+GzszwbQ82vsEvGol2LwgepQ8npb3O0GAyLyzlmu9DLRQvf6GIr2kfH+8PCwmvNjUljwm0dm6pvuiuYynjDy7+5Y8XcGcPJZPUTyR+667VbfJvGf7RrxHL0M9+TKAPafKW7qHjZo9rtQuPeAYGjxHL8O6x83svAlQDz2uCBm93JbTPO+jQzru2lC8XlnIO9Bv67tEBTK8S7pyvMEecr1shva8QHoCPEjBqLw+jUQ9zzKYvMqJ47wUjVw9fVYTvBptnjsRmti8pwHpPGolWDxaQvk8sccyvaY4djxllwW9jj84vYSaFr1ojSy9PWl5vCuxm7zF+xA9cGa4PPzQcTzq4QY7EMufPLg/oDq3rTq7O2AQOzvRTbxwY5U9lhhEvE3ePTz8meS7Eiw+vXZMQL1bZkQ84OEMPLAvhzzyX7q8MdT2PCFDB72uCzw91Ya6vNc/jjxuBRq9NkaePMSdFT0jFeM8OsuHPJkLSL2J65U8TjkWPdMr4jwN2Js9BKp9PSrlBbxBSTs9XyI7PNNib7yTyme8JymPPOGtojwoh4o8i4PBOxcMgLr1GI48BG2qvL2TQr3K8be8oz+sOwx9Qz0lCOc83vErvNO3AT3AT7k7HCkVPQxGtrwFPGM9MvjBvNo1tbzvo8O8/WLXvG3hzjxzkEm9q0/FvIgfAL3KiWO8csdWvaR8f7xc9YY8PGMzPAOhlL2ASRc9ZdG1u+81qTydWaS8au5KPZtsZjxvPCe8M8E0vLd2rTv6OEa8HlADvSuxmzyWGEQ8QO7iu3KKA7398Zk8spClvEkcgTyQacm7NFlgPWTOEr38meS8SRwBPJenhryok847oIn7u7YbVTxUH568ZrcSPS5JJD2uvp07AqmXvGqs57wNAaK9C1aSPCZyDzyE3XE8+6YsvQOTTr3YyCe9AUmJPHscpryZzqW8vZeduyuy5bwksbY7h3P0vIk0TTyao0+8rtOqvBGCFzxIBRO8w8OivH49Db0aRJ88y5q3OvA42buNiuy8jmEOvJV3SrzLsIC9TPpnvZhul7yCMx69YBW2vBCW6LzdCbq8IFrbPL2sKr3dCTq9QmM2PJnOpb0ytQw9uhXsvK39RL3pS3u84QCHvD2tiLyTtvE88vmxvH3xTz3jlom8m45CvYaJvTo/WJi9eYYjvQjAj71T50W9X0AMPDHe6rtKT1i8hN3xu6bmTLs4zAQ954yaPRovErxF+Py8FWMbvCaHnDzURzI9T3yZvcbkiTtRPLa8FsMpPSdcRjt272Q7ydlevBpEHz2qUfm7cMPfvBlD4zuXIlq89mWavGLAxTz0pMG7GeSQuqUldDyNiuy8UGZQvd7e47xyhDi86/iCuwN+Qb3UXL+69XlrvSEaeDzaXW681giLOzm1fzvmtXg873g8u8yFqrsksHq9kJeCvNRG9jwDfsG8MsqZPIfqBzt0GX876cIOPN5qBD26AN89a4MJvS1zvrzFbjK9SHnyO5zvDDzl4Qq9DCu8PFP9jrtv7jU8oOUdvX+HUj3iSsy49XlrvHfGBr2n0T+9+6YsvTcLrLwXmY88sH1+vdGw87xh6t+7R7qRugD9SzzTccw8Vn6EPNTSFr1YyQW8QLfqPF8qQ72pkVy9+7s5PRzaIb1DOZw8Fe3DvBMtpzxv7fm86iHhPBXtw7vJ2V495kGZu8nvJz3s4jk8885bPGqXWrzVMiU8JYbgvOsNkLxybyu9Ab3oO9fc+LyeDvw8mPg/vEVvEDw+9009BFPrvOF1Ir2NoDU9zwXkPIvKT73/Edm6xW4yu+T2Fz2kUYY9w8JmPEJi+ju7Nw+9lKIgPB3FFL3odw29F61gvEPEgDyCMmI9QnjDPHbv5LyZ4zI8KBzjO06ldzre3uO88SNMPNdTjDwZzwO7iTWJvNweRz2AcsW8v7gEvFIm7ToV7UO9igqzu1BnjLohGvi8frKouxQC0TzpTLe8c1qeO2/YbDwQIgm9ky0FvSydWL0Gihu9N/aevIkfQL37uzm8MxUbOjtih72t5/s89KTBvNDxkjxBjoy8wRfXPFyUwD2JNE09fsb5vIFHb7wSzZg8jMsLPYdz9DwA6L47oaR+uyWcKT2S4gO9NUpTPKpnwrwV2LY8q8iMPboA3zxJO4e9dvCgO7eAJb0B0nU8K7MhPPumrLx6W808gdMPPb6BVDwiGzS9Fdg2veFfWT3IA3k7ZwHYvG/uNTwvNBc9A/QYPLTqoju5Knm8kQyePAKo27uWTPS6f50bPVro9Dq6FWw8SHlyPJLMOrx272S8qmfCPGuCTT3k9du6w04HO5lZCr1v2Sg91Fy/vIByxTwgW5e7XQoYvMnaGjxRO3o9uqGMO4TerTy761E8KL0QPfKEFr2KCXc9qz0ovf6yhr1g/2y9Xz/QvKKPcTyBR++8kuHHu84bLT0H/7Y6lw3NvJqjTz08wpU8lyMWvpLhx7y11RU9fygAvDxMPjyt53s8zi/+u2xYs7yrPOy6GG65PMSZCLzRsS+9ydleuiyd2LwiBqc8/JDjOwUp0TtmQTs9VNK4PdmdUTxPkOq8OqEuPZLhRz3OMLq8E0K0vFvUIz15cZY86TeqPB+FsbzMhaq87M2sva7TKj1HpYQ7IEaKPJj4P7w7Yoe7ivWlPGcW5Ts0dSk9DRavPARpND1jqnw93t5jvB/7CLxlbBG8igqzvMnamjw4y0g8rtMqOzVLjzvgnzw7bhjQvDLKGb3zz5c6ZIBivdKGWTwnRzk9kCErPXNaHj2RC2K7lsMHvNjHa73dCTo9aOxKO5OhZL2lESO9CauCPC1zvryf5GE98DmVvPumLD3URzK954tePZcjFj2W2BS9Lx7OPIFHb7sRgVs8GIPGPIBzgb3mtrS6IpGLPIkfQLzLmjc9YsBFO6i8Mrwwf5i8KQdWPD/iQLzYsl4+JSeOPdUcXLwBSQm9m45CPBAiib1h6xu9GVmsOwfqKTzC13O83Qh+vTYgOb2ISdo8coS4PJSMV7xEJI89X0CMPHQEcjxM+yM9ksy6u1BRQ7zJ76e8zIUqPbeAJby3f+m7I/Ddu72sKryL31y7KBxjPMuwALwA/cu8tcCIPMBCrTvpNyq97FgRvPn64DxC2Y06+xyEvHJvqzyiBoU8acH0vNdTjLucZCi9MrWMPLhWCzzcHwM9KQiSu03Rib1M+yO8coQ4Pful8LwkxkO9ca+OvOXLwTuPNrg791CNPKpnQr0q3H+8EJckPHiFZzvZiMS7ye8nvPUFDD3VHNy7xW32O+F1ojtT/NK8PSKkvBQXXj2AXPw8GxnJPNUxaT2qUjW9eltNPVWnYj0SQXi8D9bLPJH3ED0FKVG8z5EEPMSt2bxfKsO8h18jPI2LqDuJH0C8n3ACPRzvLj0gRgo7TqX3O4XJILu06qK8Fdi2PDOfQz05tru6rtLuvI5hjjv1eqc837WFuxlY8LwZQ+M8v1c6vYIzHr2UoqC8Nh/9vJnOJT2gz9Q6Rs8ePET4fDyKCrO86q2BvKl8zzwhGvg8o2YTPboAX7xU0rg8UiepPMnZXjt6W808Kt07PLhrGD3PkYS8LtSIO8JjFL1fQAy8EJckPAb+er29IgI9zqaRPHwGXTyyKco88vj1ukelBL2E3XG9Ihu0PJuOQj1XKFg8r6hUumxXdz2yKoa8b9movJbYlL08wpU7iR9AvFaTkb1Ieq458+QkPZzvjDzhX9k8cm8rvdGxr7z5+5w6BSlRPcNOhz39Zkm9/xKVvKbmTL1Mhgi8RuSru63oN72QIas6iR/AOwN+QT2xU2S8QKMZPEekSLzOMDo9ZivyPHNE1bvPBeQ8b9jsu/gltzx0L0i7PSHovBXYNr2VeIa8IganO2CgmrzbSGG8uSp5vI2LKDyRDB49mc1pPP8nIjzBAwY9Em0KPWLBgbzAuIQ8gFz8vGOqfD1WfoS8QmJ6usnvpz0nR7m8t2rcu3NFkT0H/zY84IovPSgxcLyuveE8lIzXvL9B8bxAot28oaW6PN+0ybs6i+U7mA4Jvf6yBj3njJq7A5NOvEo6Szzjq5Y81NKWupSMV70TuIs8CMAPOz4NF705tX88bFd3PSQ8G73VMWm8CL/TPPA42byKCXe9uhYovMuat7tdf7M7JMZDvL0iAj31eWu8HcRYO6+oVLz7uzm9elwJvdiy3ryCHdW7jRaNPKNQyrzjH/Y8fAbdvLP+c7xLJb48dC9IPdDbSbySzLo9Lx5OPeCJczxIefK8gHLFvMxv4TwXreC7Rs+ePKUQ57yhpH49JnHTu5ciWj3qDNS7QzkcPV5p6jxrgs27gh3VvC5JJL1Ijv88RCPTPMSZiLwYbrk8UhIcvXKEuDvpNyq9tiCXPId0MLyhuse8HHqTvAHTsTwZ5BC9BSlRPEJierwuSGg7RCPTO9+1hTx5cRa9DQBmvXwG3bun0b885PaXPEpQFL2dTxu8ioAKPR/7CLy+gdQ8ObX/vKGlujuRDJ48SWWhvFkTSzzyhBa60ca8u2RrVbsV2LY8dZCSOkzmFr2yKgY8LkkkvcuaN7uOYFK97+4TPOlMt7z1Ghm8eXBavAmqRj3hYBW8GUPjuxlYcL1SEhy9Ihs0PPglt7s39h48XKlNOgRUp7z4m4486/gCPPV6p7s064C8mrmYvGqX2jzYyKe6Rs5ivHJvKzxxmUW96HbRvEz7ozyovDI8HO8uvDVK07w/zPe7Fdi2u1kTyzzDToe8C2pjvJcjFj0UGJq7TqYzvZSiIL26AZs9Q8QAvbCTRz2Y+D89xK4VvX49Db0NoZM8s4qUPMcvizyzihS90bGvPECiXbyRC+K6T5BqvBht/TyS4Ue71EcyPQG+pDwkxsO7NHRtPPV56zw1StM7CGCBvHwHmT2auZg8kfZUvdjH67v9Z4W8V96SPBGB27w7Ygc9WnQVvPWO+LsNFq88CoAsvX3cwjzKxY28T3tdvFg+oTyopmm9lk2wvPZk3rtql1o8bFf3vHWQkrwH/7Y8WRNLPZxjbD2L4Bi9LzQXPOnCDjwQrDE8vMG3va6+nTwNAaK8IRp4PJEMnjwUF148XJTAvBzu8rr7piy8oaR+vVS9qzxT50W9OqEuPVp0lbyieyA8cm5vPIXJIL15cFq88vj1u81GAz0uSSQ8coS4u4r0abqqUjU70bGvPB2vy7u3Cwq7bOOXvd+1hbzGQ1y7EJckPaWch72ZzWm8fdxCPQ0BojyVYj09CNWcPOXLQTzPBWS9xW32POZBGT1qrGc7McnduzjLSLwQrLE83Qm6PBhuuTuVd8q854vevLFo8TuB04+7igl3PCWcKT21v0w94x92OqDP1Lt0L0i86gzUuzxMPr3Th5U8Fdg2vSnySD0ZzwO8tHWHveQK6Tw6oa47BT7eu7XUWTsVY5u7du9kvHDEm7z2T9E8Y5YrPTD0M7zl4Yo8hbNXvFISHD1pOAi75ra0vIvKT7wQlmi9/xHZvDzCFTywfro8ezGzPO2jEr1GWgO9rtLuO9tJHT0zFZu8IganvO6OBb3xDj+9+6XwvNpeqrx93MI86HeNPOJKTDsoMqw8/JEfvB3FlDyBR++6NGAcvZV3SrycY2y8EDcWPc1aVD2ZziU8zjC6PSvHcjyCMmK5OSwTvAtqY7yzihQ9+zERvavIDLoSbQq9P80zO6mSGD3d83A8XmlqvBovkjxN0Ym8qDIKOyBGCj2WN+e7J0Z9PSPb0DrTh5W7Fk4OO9peqrqt6Le8ekbAOtUx6Ts5tjs8QzkcPdNxzLwQNxY8uzcPvfL5Mbw3gQO7BGk0vMnu67w/4sC8YeubuxbCbTzwOFm8SI87vKURIzxXU668O2KHO1BRw7xrgwm9hcmgPa6+nbu/uAQ8o1BKva+o1LsG/nq9W78WPM+RBLw9rYi7zUVHvJSM17sRbM68EkF4PdjIJ71b0+c8MPSzvDzCFbz3O4A9aq2jPD73TbxwxJu8zwXkPFdoOz1AuCa60bDzPAP0GD3vYvO8AUkJPZ4kRT0YhII9zwagumAUero+9808YsDFu24ZjDqVd8o8Fdi2vB9wpLyPTIG8Ab6kvOQLJTw8TD49WSkUPTLKmTzwTea8n/nuu+9jLz0P1ks8xW12PNNxzLwQlyS9sinKu639RL0j3Iy8V2d/vMz7AbwE3wu8wC2gveh20byToeS8HGUGPKUl9DvURzK9cZlFPdRHMr3v7pM872Lzu0J4Qz31BYw8w8MivZCXgjxSnYA8JRIBPEiPO72t6Dc9+CR7PATfizzk9du8D9eHvPBN5rzy+bG8Fdi2vEiOfz1ww9+8m45CPN7fn7zd8/A6jYuoPImVFz2RDJ48BGm0O3aldDzBJQM9+NS6vK5e1rz1iQK9pUCVvWm0qjxI/DM8QOXCPM3LFL0YOE+9PqFavX/GDz2CVbC8nQcwvMyHrDuNwQO9jwCXPApwybyFseI8FzjPvBzp47z+hU885kqmu/NFmrySYR69vsb2PEj8M7w7VqK8BZ3AvMplOLy+s4G8NFd7vc8WTb1PBwC9Z3DCvOLTT7wEjMa8VOsCvYpidzwitRy9LWwovddDjTxbvou9hbHiPL/QIL08RSi9SS8ivFXt/bvqt9K8Ysb9PG1UxbyBAE49LVuuvD2QYL3aq2Q8pi+bvVdCYL3A8pS9/qwYvXevHjztV228IrzsvEk2crw3tgc8Q3TjPIuVZT0lEc874I/nvEN047tEhd080msvPbjic72sJBi8CkcFvK+nEz3rHa87VzHmOEqEhLxH2j89CkeFuyGr8rtyBVo8z/6CvCZmsbyUrNY8PsNOvISgaLtO4LY8NGGlvMyOfL18Tzm9UV7dvNhnfLs6Fw+9qbKWvBmeK719doI8f9cJvAyGGLzx3z08WGTUOfRd5LsN55+8LoRyvRAy2Lzbxog8acz0vNA9ljwtT4k7W8owO+UosjyCVTA9A2rSPXMF2rwV9Oa8DMoAvZ4w9DusK+g7N7aHvJzZljyboVM8oqfKPJ32tbx3tm49rmiAvDIMQ7z9p0O9mX/fvCGa+LzWHMS7WYZIPARqUr18VA69SnravLIP6zoQQ9I8fZrxPDeljTxq5xi9ZPKbu21UxTxDY+m8chZUvSsXRj2EiB69S4tUPEk2crzlKLI8Rtq/vJ9S6Dy50fm7nh96PRqSBrm6DhI9nzoePGPo8Tv5GKO8qItNuxArCL3+lkm8YZEUvQbyojzzO3C8UVeNPBSpLryy7Xa7N7aHPT14lrx9gie9Ya4zPRAaDjwk71q9zcHqvLIIGzu5/Rc9B/lyPaZAFTwvpuY7r4BKvYN3JDy+swG9QBixvDaK6bwdBAg9fXEtPQNIXjxUokW8S4QEPPopnTsy+0g5VhkcvTfOUTwDWVg8vFnKOgf5cru9jDg9NVCrvGm0qrsitZw8Hj5GvR5DGzzSa687rBruvFvKMDsQQ9I8dp6kvDVhJTuugMo8HQQIvesihLxyBVq9fE85ve5o57zpt1K97oMLPCrdBzwJNou9QimrPG+pp7yj3w09zvTYvCGJ/jwtKMA9cMFxPePC1bx9dgI8MNIEPCGa+DyeKSQ8LBdGPHevnrtKURY9zvTYvLjR+TxQJB+9EXbAPNmJcD0OzHs8BrOPvVTaiDwUuii9/pbJOzoGFTy6N9a8zvTYPP1j2zw4xwE8My43vdYcRL2DdyQ9Z5K2Ox8tzLwA7Ks8lc5KPesMNTzScn87g3ekvK08Yjy1Qtm7LBwbux4L2DytV4a8rCSYPGP5azxc4nq87nlhvIgLmjxAGDE98yp2OwzFq7uJPgi9y4csPSvuAb3V4gU9Z1/IO8ElA71MrUg84X5tPSURTzzpyMw8glUwPGiXCz0OCRS9P+VCPe01+bwCQY69k71QvT2Q4LxnhpE8doEFvbMZlbsmRD09q+UEvOoAEL0RdkA9IYn+O90WFr5PBwC9YIw/PR9UlbzgZqM8KuRXPHevnrtj0Ke8kB02PHMPBD2d9jW8vYw4veUGPrwQQ9K8UoBRPGU9VLrGzO07q/EpPSBxtD2oi807Lo6cvHRaPD3SfCk9VeYtvGwJjbyqvjs9NWh1POZR9jxw3BW9nzqevL2MuL0JPds8+eW0O2ZOzjvx8Le7LWwoPDis3TyYRaE7XjANPYuV5TydKSQ9Y9d3PWUs2rwUrgM7sdWsvP2Wybymc4M8nimkPLatijuG3YC8YYy/OmBZ0bzPFs28xZKvux8tTL1vqac8Xg4ZPYRmKj1iog498wYHPJ86HrzFu3O9fGAzPWdwQruTvVC9iUotvYg5Mzwp0928MLdgPc8nx7wkANU89F3kvO+sTz1Ozzw9nOU7vUIpqzyI9Uq8ezIaO2rd7jtrK4G9m9RBO+1hFz342Y+78gEyPfeQ0rs4rN28w1/Buy+mZjz6Ope6HOljPnHLmz0oiKW8ykgZvbtI0Dwhk6i9Mh29vAN7zLsxwYo7281YvJYogr0niCW9AjdkPWnMdDwPEGS8xHWQPfIBsjyAzV88bAkNPWPQp7wNxau8Yp05vffDQD13r568SC8iu2wQXbwGxIm8sv5wOgEVcDyTrNY7LmyovMcaADzgd507fpMhvcf/W7zfVSk96++VOhKHOryG09Y8B/nyurRC2bwKcMm58vA3vUXOmjuYXes8NWElPAJIXjuXO3e9qZzHvNFJOz0hpCK9ej4/vR8+RrxOAqs7sKeTu6U2azz/2jG9gieXvIARSLvEoym8Br+0OoR+9Luwszg9se12vDsjNDxxuqG7I95gvG+MCL2lHiE9tFPTPMpDxDxx0ms9aysBvaiLTT2lNms9KbFpuk72BT1+kyE9Gnw3vN9JhDysE567OMcBvL6uLDx/79O7BGpSur2urDwQQ9I8xrtzPBz6XTwofIC7U7O/vJJymDzmOSw9nR96ukp62ry0TAM8xrtzPDIMw7q8asS8UCvvPJFobr1CLgC9L6bmvBhJybynelM9SBT+O/MBsjmQIgs8f7xlvMSZf7y1hsE8X1IBPVzKMD3EdRC74/VDPKZRjzxQNRm8MerOPJE/Kjxvew49UXmBvCdaDDoMkr28EXbAu/kHKTwnWoy9fYInPTIMQzxpzHQ8Z3WXPISPbrxKetq81z44vRb+ED0hkyg95lsgPH2ToboBJmo9I95gvHx4fbxTuJS9+QepPDebY7yRV3S9MerOukI6JT3B+WQ8d8doPJJhHr1xuqG8LmL+ux4VAj0F1YM9yPgLvQcDnTxWD3K9FyAFvA7nH7xUosW8JOgKO2Y9VDxUyQ49ld/EuwI35DydBzC85UomPVTrAj0tPo+76I4OPfMSrLy/vyY9uLmvOwfQrrwMkj29Vg/yvNlxprutV4a81LZnvMW0o7xFllc8IaQiPYEATjuprUE85mLwPGB7xTwW/pC8HkObPHn61ryrGm492D44vLoOErzrHa89BKKVvLowBrwzP7E9B9CuOwa/ND1O9oW7vYw4Pdhn/LzfRK+82YnwvJ4w9DwWBWG8NXnvu9Frr7yXRaE8qwIkvCUzQzyyGZU88xcBPR5UFbyillC9CAptPKwr6Ltjvy29UoDRPKQDfT2vpxO9IZOovJXOyjzYVAe9Is1mvVqcF7whmvi8Yp25PFFv17zzFwE95QuTvAlO1bt7Mhq8QOoXvRS6KL30VhS9n2Niu+Bt8zybw8e8DgkUPfHTmLw9eBY7pnODPN9mIz3fXPm86wy1Pb17Pj27SNA6PEUovTjHgbwghwM9HQQIvC9zeDzi08+8pTZrPQ8JlLtj+es8Fcuiu586Hj2O6sc811SHu9J8qbxH2j+9MerOPHDcFT3RSbu8dpR6PGO/Lb1A5cI7f8YPvdYyEzyQUKS8W6i8vGP567q3l7s8QjolvXtDFDwVBeG8DIaYPMfu4TtSaIc8wPnkvMgJBr1y0mu7DyHePDCwkDwV7Ra9mXiPu7ofDD1V5i08wPIUPcplOL0PIV48htPWPAuSvbvEgbU8SlEWu7/QILsDN2S7sNWsOwgsYTrSnp28wQrfO8R1kLwJG2e8C19PvYbTVjxU1bO85j6BPPaQ0rwgYDo9cu0PvIN3pLtIDS69zI78vA88AjwCMBQ88xIsPOmfiDv3ocy8Ts+8PFOzPzyQIgs8Hz5GvIk+iLxj4aE8XewkO25lP7xeH5M8/FwLvQzKAL0O7m884sLVO13sJLy0ZM28yCFQvNA4wboPEOQ7CnDJvOVAfLx8VA49mpoDOluoPL3iuwW9OiO0PUtzCr0ePkY9vYw4PbCzOL3Nweq8QAe3PIpz8TzXLb481enVvPLwtzz55bS8SUfsOklAHLsZnis9Mz8xvNJ8KT2c5bs7xaMpu14m4zvnYnA8QNTIu4ARyLzTnp09Bq46PAN7TL2XO3c8MLCQvJKK4juhfga9pSXxPK+ivrt2jSq8dqV0PLWGQb349q48g3ekvCiPdbxKUZY82Gd8vR9UFb1WIOy75jmsPH/vU72y7Xa7zdLkPDfOUT26N1Y9nQwFveZKprs1UCs88zvwOffDwL3iqos8gOiDvJUBuTwakoY8rBOePGUlCr1xuqG7lxeIvLHtdr3d78w8zI58vRBDUj29rqy8TK3IO1KA0Tzgdx29OzQuu1A1GbwCMBQ9VNWzue0/o7sTuii6YtAnOerZRjy0TIO82HEmvK5ogL0jxpa8sdqBOwauOj3pt1K9Kd2HvDDIWj1DY+k88L1JPQtfzzyugEo8sw9rvX/e2Ty44vM84H5tOkp62ru4wH+81eKFPINmqjyorUG7IYl+vPjUurw8Rag7dqV0vLofjDydKSQ9GGs9Pf/Jtzq57B2830t/uxSprrsTjA+9bWW/PJ86Hr3KVD49KHcrvCi7k73V4gU9xsztO+iODrtEfg08KHcrPCPe4LtKNvK8PH/mPHG6IT3O4967KvXRPAEOoLw2iuk8QjD7u3Cwd7w48EW8KKBvvdqCoLwsHBu7LU+JPFTEubk2ee+8IGUPvdvN2Dw+mgo9Y+EhvVSnGr2sJBi9GV8YvYIzvLxXMWa8tqi1PKwkGDy2dcc6546OPA3KALxtVMU8EDJYvOoAEL0+moq8CT1bvFziej3rHS89knnoOfQ0oD1c/Z48vFlKPGiGkbsuSrS8tXXHPJFX9LzzKva7042jvFPEubvBFAk9lQG5PLx7vrzSg3m5vqKHvHQ4SDvO7Qg9SUdsvNYykz0omR884I/nuwa/tDvMh6w7shkVvbxvGbvBJYM8boyIPPRWFD3fVam8FO0WO48uML2NyNO89COmumwQXbxd7CS8j/vBvCiZnzvPJ8c8HRWCupvDR7weQxu7UCSfvI2mX7v49i680Vq1vJJhnj3KVD68k5SMPMNkFr20ZM2730t/vXDBcTrwrE+8YbMIvAfQLrskIsm76KbYvCP5hD1QNRm9FQXhPM3LlLw1UCu8+f1+PQ7nHzww0gS8OhK6vPZu3jzKdjI9H3E0PAyGGD1ogTw9u0EAvZ4w9Dxk8hs9dqV0PZOUDLx9gie8cfRfPMbd5zotLRW8IrxsPCGCrrz2kNK8xIG1vCd8gLyy5qY8jgw8PeUtBz2+xnY87BEKvc8WzbuBIkI9WVPaulmGyDyXNCe8tFPTvEXJRbx46Vy9L3N4vMplOLwCMJS8aaiFOiPXkL1ZZNS8SPyzvD2hWjxUyY68rm9QvVOiRT0rBky9y4csPLHcfLtfaks9Lo6cPFqGSL3eJ5A80DjBPOQtBzyqvju94/VDPfnltDxP8bA7+f3+vNXH4bwsHBu9Fv6QvEtzirzZZYE9pR6hvB0EiDx/79O7Q2NpO1X3pzwV9OY8XMowPIym37y36No8+TpCPSL/MrzS2lC8arP3vOQWmr2lnOE8cs50PFdA/jzuV8a8Vn+fvLY2W70H5rw7pweBvDq0qbzghUs8hdMNvdzkzDyIRuy8aKQYPCWgsTu4mtq8HxA0PFOQoLz6tZG866aXvCRTAj3pK8i7WqR9vHWW87zi2Zq721lNvO8JRr13rHK9EuAIvUf7JL3GRdW7KUGwvM4S0ryba+U8Iu8CvDNLLL2GV+07dkhzvbK83DwmebG8DOs6vXnpcbwTkgi97jDGvOfemDwZWTa8n8WDPfivwrwHvzy9vlFYPO5ulr00JKy8k6WIvaH7Yr1WKv86Lx8uvI/WabylTmG8m0sFvBXPBz0Sojg95BaaupW7B70Vaje8HukzPIuxCz2YVWa9gd1uvM4SUrwBCL88CK8MO7rXWTtmnXi8tCBcPfJcRLyVu4e8NP0rPCXHMb16yRG9fP/wPBKiOLtcD528LbuuPKFQA73Nh1K9uonZvD58KDz/yr+8xbrVvJ7lYzyhKYO96HnIPHiF8jt7e5G7Lx+uPCW3gTzy0US8hBruvOuPR73lFUm8TxYiPZz9BL0ImLw8gM6Pu+4wRrs3xSo8CIgMPa/N3T3im0q8VBsgvMFA17wFwI08GKe2PM/E0bxwkXU8BjQ9PP59ED3dvcy8BTQ9PZbxZrwpGrC877tFvfq1kbxvuHW8RZelu7WE2zoN24q98fjEvJjRhryhUAM7dDkUPRtItTygxQM84F5LvbWEW7tjn5o8KEEwvQ52Or0mQoE95P9JveQmyjuIH+y8Cfy7O6H74rwpfwA9BZmNvLztWD01ryu8WI7+PPifkjsd6oQ7V+OevICAj7tHIiW91aLPvGHmer01iKs7fP/wvNuATTwNnbq843RKPF73ez0drLS8leIHvTfsKj2ba+U8EMqJvff9wrsPGIq8RnAlPalEgD0QfAk7GUmGPAWCPb1gW/u8IU0zvU49Ir0nBDG9OgKqPAf9DD0mQoG8nxOEuxkLtjqTKeg8TxYiPUQMJr3pBEi8b+YVPFkgnjt+kRC9aE/4PDQkrDp4s5I7xUXVOlzhfL1+PHA8l8rmO/3LEL07jam8mTUGPfq1Eb3CpNa89cDDPHEc9bxYZ368XnMcvSDZA7168JG8qItgvY4ECrx4PhK8C4c7veYVST0v0a27eLOSutEoUbziwso8ZxmZPR/pMz2vzd28tPnbvMFA1zx82PA8vwNYPGLGmrwltwG7PcqoPIYJ7bw6tCm85O8ZvaiLYDwgdDM9IJuzOQ5mir0K1bs8lLuHvWZAGT2dr4Q7o40COz2jKD182PA8AuG+O0FEJ73pK8i8cL8VPVtW/TtYjn68qT1gPKQ/Aj2SxWi7YsaaPI2girzBQFc8esJxOyrMLzwZWbY8wsvWPBZDNzzTjNA8KLYwvSFNM7xqs3c8tg9bPewaxzwQszm7arN3vMipVD3ywZS8G2+1uY2gijweNzS95BYaPRf1Nj2wf908/mZAPScbAblOZKI86QRIvWK/ej2DaO68YLCbvctxU70d07S8mS5mOwfmvLxcmhy8AH0/PZku5jsQowm9WJUePb5RWDzq9Be+Hje0vFDIIT0i/zI7QR0nPJ2oZLv+VpC8VEIgvItji7wMObs8axf3vAXQPb2wWF07Esm4umna9zynZGC8i4qLPD/gJz1GcKU9mpJlOkW+pbxBHac8mKqGPXWW87yba+W8fbHwPOKymru00ts8oobivIr/C7z4n5K9qT1gPBlwBjwLYLu7y3HTO5iqhjw8P6k8UVMhOjCDLT1+ahA8C2A7PQWpPT22Nlu71BdQvGtsl7t1+nK82zJNPHes8jy4TNo6UHqhO8iC1DzVos+8IWQDvZlchjqLsYu97eMWPPtQQT0mkIE9fC0RPIRIDjzWVE+824BNvYNBbj37jpE8T+8hvaF3g70ZC7Y8XnOcvA8BOj2Nmeq8QJInPWikGL0C4b48BjQ9PO1+Rr3yXEQ8d6xyvOWKyToi/7K6GUmGvWfyGDzxNhU7cSMVu3My9DyK2Iu8fjzwu5z9BLxZ8n28jZlqPI1yaj7grEs9T++hvK1pXrzq9Jc8H8IzvZIpaLytkF485P/JOyDZg7w0/Su9Dna6vH/HbzzzXMQ88zXEvBEuiT3ghcs6fWPwPE8WIj1/oG88itHrvMk01Lwi/zI9ifhrvFZ/nzslUjG7PBgpPLPS2zlzhxQ8oEnju1fjnrz9fRA8f8dvPAY0vbyLY4u8DDm7u1OQoLxXCp+6fpEQPTLnrDxbqx29Bw29vKlEAL0Hv7w8eLMSPRNrCD34eJI8mIOGvSTHMbxWA/88EqK4vN4hTL0FmQ284IXLPEQMpjsV9oc4f/UPvWWu+bxjAxo8b7j1Oo5LaryRGgm7fP/wPFwPnbtbq506cJiVuy8fLr3FbNW84gCbPZTbZzxXCh89FB0IPaWjAb3S2lA91MlPPchb1LxUG6A8WJUePeWxybyCvQ47C3cLveKbyrufE4Q83SFMPAWpvTuDaG48WGf+PFNpoDx1nRM8nM9kO53WBL2dWmQ8U2kgPYZX7TpP7yG8EGW5OldAfjz3/UK7/+EPvctKUzwS4Ai9lbTnvB2sNLyk6uG8AVY/Pc2HUruBK288ndaEPEcipbzbWU083AtNuxZDNz09yqg8oXeDOeY8STzq9Bc9oPtiPHwtkT1K6qM81aJPPU2yojtJOCS8hdONvBtINbpyp3S6go9uvdQXUD1xI5U8yr/TPAOTPj3v0pW54gAbvZHsaL1lEvk8HYU0PRflhjprPnc82qdNPQk6jLwHvzy8hl6Nvb5RWLrk75m8i2OLvei3GLqdrwQ95lOZu6lEgLt7JvG8cL8VvJOliLwrVy89g0FuPUwnI72F0427SIakvRLJuLtd6By73OTMvKlEgLoBbY87yr/TPHiMErxcNh07mHzmPNQXUD26sNk8vZ/YPNV7TzyirWI8FEQIPCIWA72DIQ69itHrvOE3y7wsCS+779IVugY0vbx6m/G8Qs+mPFOQoDxYlZ47ChOMO+CFSz1N2SI9yTTUvFtdnTzOYNK8k36IPXnp8btmEnk6JBWyPROSiLyBMo+82UNOPbZd2zpf/hs93+qbOlw2HTyP3Qm9XnMcvXizErxEDKY8FwwHvK/03bvkFhq9dDkUPYZejTsnBLG8T++hPN29zDt+FXC7+tyRvaXxATzWLc+8h7tsvX/ub7sPATo9XkV8vFrSnbyDlg49wRnXvIEEb71/oG+8DbQKvYkfbDtSBSE7hxCNPHEjlTuTUGg8KUEwvCZ5Mb25Jdq8hPqNvOWhmbr9pJA8FwwHu45L6jzYkc687H5GvOwaRzw2YSs9PaMovKze3j3YkU49B/2Mu4Wl7bwX5Ya8WfJ9PCM8sjtyznQ8/NvAvBinNj0ULbi7pMNhPVlHnrsbhoU9jceKPPpQwbuFfu28K1cvvBaBBz3gXss8mrllOkiGpDxnfRi9Vc0fPDLnrL2dWmQ8SV+kO2ed+LzJDdS6b7j1PALRDr2LYws84RDLvBwhNTwDbD47e6IROqkW4LuXo+a8GTK2POtoxzwmaYE8nCQFvZ4MZLuwf908TmQiu4w8iztZIB69MKqtO+4wRrwt4q68hdMNPFhn/jsoj7C8+tyRuzZhKz1vuPW7plWBu+Kymjt6wnG8diFzvLNuXL39jUA8WJUevfiIwjvYkU68ZbUZPekbGDtS3qA6Yr96vf5mQL06Aio9Lx8uPCwwrzqtkN48Q1omvVwPHTtwkfW7rbfeuo+Iabzf00u8RyIlPVEsobwDXA68E5IIPAEvv7wFgj297AqXPP8IELyUAug6UHqhvMz80ryoi+C7rAXfuyfdMLxVn3+8XeicPNXJzzyqU1+9X/4bvfD4xD2OJGq7L6otPcq/Uz2UMAi9aH2YvC5tLj3zg8Q8xAjWOol0DL2l8YG6cs70vGBb+7symSw8Xh78POEnmzxUG6A8FN83PPcUk7xK6qM69nJDPBq9tTwULTi8yuZTPbLj3DuVGGe93/pLOufHyLwi74I8p9ngu4G27jxEMyY8uJraOmCJGz3TjNC8kinoOhq9tbngrEu8leIHPTEOLb2Fpe28CsWLu1/+mzyN7gq9oobiu48EijxuBnY9ZNV5PaqhX7zi6co8EGU5vE/vITzYkc69Z/IYPQ20irwNtAo9aQH4O7ti2TxUxv+8tl1bvIhG7LzS2lC9eTfyu2lWGL28FFk942SavBBluTsSuQg86WkYvTOZrLzYak697AoXPQtguzySzIg8DDk7PGsX9ztwavU83/rLvBczh7yhImO9qT1gvJf4Bjqkw2E9jXJqvc/rUbyk6uE8d6xyO6QYgj3t4xY99A5EvB43NL3B8tY8BPe9PEt1IzwqCoC8jZnqvAmuuzoubS48bMn2uy/4rbzv4sW8dkjzu9tZzbzmY0k8UrcgPe2lRj0VqIe8vipYPH/1D70qpa+65D2avJoOBrwULbi8CuwLPduAzbxC9ia9f6BvPDE1rTx32hK8VZ9/vPf9wrvLcVO939PLvDEOLT14hXI9zmDSuQwCizwfELS8JmkBPSQFAryW8Wa8c+Tzu9wLTb0cEQW8Wn39u+LCyjxNsiI8s0fcvJq5Zbx5EHI7cqf0PGfreLxUQiC9DCkLvRrktbxS3qC7mFVmvNQXUDwVaje8yTRUPPf9wjyUMAg6S5yjPALhPjybcgW9RDMmvOzzxrri2Ro961iXPLfoWjzYkc49auEXPVnyfTxK6qO8CK+MvOYVST1a0h29lj9nuthqTryPBIo8f8dvPZ2vhDv6xcG8Yu2auzEOLbyQj4m8jv3pPHzY8LoTuYg9eWUSPTOZrDzv0hU7Wsv9PG4tdrxOZKI85bHJPJqSZbvxRsU8qh0AvWqz9zvmU5m8dnaTPMz80rsAlI+8wUDXu0OBprxUG6C8UrcgPH+g77yi24K8nogEPB2stLwHmDy8Esk4vR5eNL0LYLs9HdO0vAw5OzxeHny9o1/ivHfT8rxbhJ06M3KsvPEfRTtpL5i8+K/CvFwPHb3v+ZU99A5Evcf31DxAa6e7pOphO6ss3zyirWK7+lDBOzh3Kr1pLxi7/hhAPfkTQrv2YhM9RZclPe1+xrztpUY9XnMcPWsXdz2uG947AuG+PAFGDz3XuE67BPe9OpQJCD1h5nq85NjJvPNzlLxEDCa9iR/sukFEpzzhN0s9rhveu+NNSrxvDZa8LbsuPa4bXjt4hXI8XkwcvWNK+rzFk9W7DduKvSQFgryy41y81aLPvBiXBjqgl2O9BcCNvPNcRL3lFUk8V+OeO4NB7rw9yig9LAkvvQn8uzxZ8n07OtspPXhecjwuRi69tYTbPHWdkzuIbWw8UMghvY79aT29n9i5ifhrO2x79rxQoaE8ISazvC/4rbxwvxW95YpJPV2T/LylTmE8Gr21PKQRYjtYbp46STikPCkaMD1X45686g4bPUjuzDy4fyA8kvLpvGcF2byNko+9BB7LPCI+CDwZzxc9NXZevZOTMb2j0Eq91pYsO5T21zqvr4C8GMJ4uzqqebwA43U7yiqIvN86jTwIkIe7uUynvDu1ITxR89y86jravH96+7wSV3Y98UakOrQaA72c+2e9tRFSOk2MyDrndI29+ks0vVvFc7x65ye9bz1ivMW4S7yPYQ29LqF7PF2dIr13rFK9I9aePETmcL0j1p48hSUWvXTmBb3iNcq8i7rgu4lXOr0fZOI7dBJFvJz7Zz1eaim8v01JvWMIJTxGVD+9DPebvDgblL1ULjK9s0sFPOyoKLyFWoa8vh+TOkuIWjyDiwg9LUeGPRL4vbn9URm97N0YvR5tEzocytQ8eOM5vWVrSzv85UG8c68ePRErtzzs3Zi8JtPSvAqJTT2kpoK8eHlZvKYA+DsgOpq8xOtEOxMvpTtMv8G8mwIivDHjCj1OYoC9GM0gvVCQNr0Ukks8uhmuOhHKB72Uyhg8EmKevXjjuTzVX0W8vB0cvG0GezzodgQ9dt/LO5RguLyCiRG9mipzvJ3PqDyeOwA7FMVEPaNmajxVWvE7kSVjPGUBazzfm7w9N04NOk1gCb0rDii9eE8RPCt4CD2uQ6m8ksaqPP0cKToVybI8xL+FvJ0yTz1ULrK8ifYKuxBeML3AhDC9/XthvF/WgLz7rto7fxtDvUTm8LyKjiG98XuUukWHuDywfIc8Q1kCPdqTYL1vSAq8pT4ZPWlo/7yD7De9NhcmPZBYXL1FHdi7m2HavJ1lyDtC7aq8jPHHPF2dorsoqQo9ySgRvP6yyDx+Trw6XtQJudX+FT38URk8IwuPvJ3PKLyyQN28n9OWuUjuTLxhMPY8AE3WvDatRTz9UZk9h+nrvPmq7LyjZmo8nWXIO4okQb2aKvO8oTY9vFVa8Tx2Saw9KkGhPC+h+zsfzkK9fesVvOpDC737uQK8S/I6vMJRNzpLiFo9hhxlOwdOeLzwpVw8PrLVPJT21zxR81y9jywdO/UXmTtH9Qa89a04vYyHZz0EHku7zPkFvM4nPDwIJie9kylRPIHoSTuF8CW8gLyKvGOexDzL9w69RupevAbBCTxzrx69YQQ3vSsOKL0GuNi85XCfvH0XVb3Yj/K7lGC4vP6IgL36tRQ9hLm+vM/IA7yK+IG8qTvNO56crz0VZgw9o2bqvNlceby3tBA9r3qQPEZUPzy4q987nTJPvJ47AD19IAa9RbN3PAbBCb1kPww9Ip83PdH4MD1wdEm969uhOwvANL3jmPA8/E+iOlVa8by25wk9FfyrPDu1oTwLKhW9jywdvZn+szwzP3c8bhGjvNr9wDvv4YY7BetRPELtKju4FcC8WStmPEWHuDkOWkK8IWhQPaSmAjs14L48z16jPJf6xbyr1Vq8ls4GPbniRj2xSQ48Evi9u4G+AbwMjTs9J9yDvICHGjzxfYu7VI3qvLAUHj3qpDo9mjUbPR0BvDxup8K72mchPaKZY71eAEk9JJh9vRn5X72noT+9yfOgu7EJdrvKVse73zHcvFP3Sj2Kw5E7nWXIvGcFWT3FIiw8cBURvi4+Vb2SXMo8LwvcPHRxfbsc0wU84taRPFCQtrzM+YW7LtT0PP9TEL0RwVa92tEBPMOInrz9hgk9Ti0QvFpiTTzkOTg9UsmUPffmFjwFVbK8aQnHPH8bwzxiO568QSCkvG1w2zwh0rC8kTCLPJwu4bx6RmC8trKZvcDuED1Ujeq55M9XPE4tEDvEVaU8nWXIu4aGRbwxeSo9180TPGaiMj095U49kY/DO95kVbxAU527aKagvFH8jbwGuFg8GCzZO6gE5rtLXBs8KaBZva5DKb1+Tjy6+apsvZv3eTyvEDA9yLy5POanBj09e248fa10u8HwB73Zz4o8hCMfO9fNE73g0iO9oJV1PFuZtLz8TyI9Dbn6vEaA/jy7hYW8bxMaPQa4WDzDHj69CCYnPYj0kzvpbVO7u0VtPCtFj736d3M8HwWqO/kUTbyjOis9tXuyvPexJjzRl4G8mWiUPCtDmDz/FW8+7251PXJ4Nzmppa28EP2APLRES73/6S+83ZfOu6GiFLyQWNy80VdpvbB8B73T8fY8qgjUPO/YVbxaOIU969uhPKdCBz1P7249K6RHvF+hkLxo0t+8u4UFPRkwR7tEJom8qghUvMUiLLypO808ex6PvKJtJDo4sbO8QhlqPJbDXjza/cC8aQnHOwpWVDycOQm8LhQNvCgKujtMKaI8ysAnvYVaBrwNLgO9GfnfPMkokTxn2Rk9d6zSuuDSo72AvAq9k5MxPR1rHLzhnyq9QYqEvFC89TxUmBI8fesVPUEgJL2DVhi8rNVaO5s3Ejsj1p67yvUXu+rQ+TxKu1O6UipEu4Cx4jyM8ce8tXuyvOo6Wj31Fxk98HmdPHQSRT1sOfS8eRohPZmdBD08txg42zQoPAiQBz2bYdq8sEeXumg8wLwHTvi7lZcfPIxbqDrOvVu7jZIPPRjNoDxdM8I7DydJPL2zuzr3pn67IJvJO/TgMT01Sh+8L3W8vI2SDzxzrx48JTnFOy+he72+gEI8UfPcvBMvJb1Gvh+8wCOBvOTYCD1kNOS7YwilO4G+AT3SjlC8ngYQvD3lzjz64VM9FckyPTwYSLvA7hA9hFgPPQHuHTy8Uow9a9bNPGjSXz3NWrW8eOM5vLdIObyxFJ68TL9BvGUMk72Q7ns9VM2CPBCK7zhFHVg9N06NOhowx7zmPSa9RYe4PJD5Iz056Jq5w0p9uk1giT03EGy8fYG1vMkqiL0XABo5TJOCvIHoSb3WLEw753QNPUuI2jrUkj48Zw4KvZWXn7qhzFy79OAxPd7OtT1OLRC9jywdvBb18bw76hE7kvJpvNDBSb1Ylca7pdQ4vIXwJT3r2yE74tYRu3OvHrzQlQo94QkLPS6hezzqDhs9Ip83vPsYuzx6RmC8MEJDvW/eKb2ibSQ8W8Xzu1PLC7s74eC8DI27vCAFKj3bysc8U2GrvAuNOzwm09I82c8KPaZ1ADwCuyQ8o6QLveoHYT2KJEG8I9aeOr9NyT1flui8ap9mvELtqj1R/A293s41PGTVK7sO8GE8MaXpvDatRb3RlwG94wJRPJP2V7xso9S7k7/wvIaGRT16UYi8fu2MvJsCojs95c482PlSPIlXOr0EtOo8D8YZPKCgHb3PkxM9mZ2EPVQuMr1tcFu86QNzPJs3Er3FIiy9kzICvCrXwLyVjPe61PyevPYQX7yxFB67fOBtO/6ySLwS+D298HkdvZo1m7zUKN642pwRPdxg57u5TKc8heV9vKZAkLoGuNi7dHwlPAX0grxhBLc9rKsSPTNycLwb0Y68ALc2vWg8wDwtqLU7NKnXO6IDxLwfzkI9hCOfvG15DD3FIqy8DvBhPYi28jwA43W8cBURvYNWGL01dt485qeGPIVPXrxWJ/g7Rr4fvRgsWTwQ9E+9rGt6PNcCBLzMue27CvMtvBtnrjyDVhi9rngZPBHBVrxHwJY8PBjIu9vKxzw7S8G87T5IvfXZ9ztHt+U85nIWPJjHzLwIG387d0JyPeanBjxBtkM8GQQIvcdbCjxRifw7ybV/vO9CtrtfoRC8t7SQPPp38zxlQQM9euenO0B/3LxvPWK86W3TvKZ1gLzcAS+9eRqhPPfmlrwGwQm8yuzmvFecAD0AVoc8YM1PuqjYpr1YlUa8T/oWPP9TkDt/uhM4jvW1OhBesLy4fyC8O+FgOlTNgryLxQi9rQzCvJsCojzezjW8O+oRO+BowzwrOme9lcwPvQK7JDx6UQg8HQE8vCrXQLwFgXG83AGvvGbOcTwel9u8RPGYu7dIOT3fMVw9JGw+vV4ASb2bAqI9AiUFvABNVj3zqUo9I8t2vc/IA70BIw49Ae4dvF3J4Ty/tym8mjWbumlzp7y5gRc68UakvPyEEj0UxcQ8Od3yPFsv1DwyRrG7uq/Nu8Aa0DyOi1U6qnK0vC4UjT3ndA09B1kgvV3SkrphBLe8A/KLPL1J27xenxk92PnSvIVP3jx9gbU7J6cTvZHGKjx2tQO9Z5t4u30X1TzEv4W9hoZFvcAa0LsjbD48aKagvCM117yub+g8MQ9KPfITKz275rS8SMINOuTPV7wWMxM8uXjmvVnMrTz/6a+897GmPJMygjzweZ08c0W+vA+96Dr7GDu8lS0/vV2dojuLumC9nDkJPeAHFLzweZ084QkLPLhBf706qvm8xlmTvG5GEz20REs8zlP7u5gxrTwIkIe8SrvTPLniRrybAqK8r6+AvYYnDb0GuNi8l5BlPe0+SL0L7PM7TfYoPYqDeTz+iAA91cmlPPFGpLpx1++80iRwPHjjOT2aNZs6lGC4u1f0/rxwCum7Bb+SuXKkdryXZKa8Xp8ZvTM/d7zbaRi9jvU1vM4nPD2Dglc9mwIiPC91vLtjnsS8dajkO6oIVL3NWrU8tBoDvdn9QD1cBQy8NkNlvaZ1AD1JJbQ89hkQvPWtuDuXkGU8CBt/uwAhF72sPzs8gh8xPYJLcLzI6Pg7sao9PLoZLj1RXb262tEBvadChzoTjl29/rLIvFsvVLqGHOU8/E+iPBUo67xBVZS8qARmPIC8Cj33pv67+4IbvblMJ70HWSC9uHhmvGlzp7yTkzE9HpfbPEy/wTzSL5g8HaCMvJJcSjy7RW27C+xzvIHoSTyVlx+8Wy/UPH5OPD36d/M7zVq1PcAa0DzkOTg8gb4BPAuNu7tNYAk9nwiHvOcKLbxXXt+7I8t2POh2BD0lnOs82TA6NevbITwgOpq8DvBhvExekjzfmzw8DvuJPak7zTwGjJm8aNuQPDGumjzvbvW83wUdO0xeEjyFWga7sEcXPRGVF73bNKi7lGC4vEKDSrujOqu8LRKWvF+W6LyoDZe8sxYVurPhJLtflui8g+y3vHjjubwLKpW8gomROhtnLjs6HwK9NoGGPfcbB72Sxqo8zr1bvWdvObx4TZq9fErOPPYZkLwQ9M88MQ9KOqzgArzcaw+98UYkPRmP/7xk1Ss9E5kFvAfvv7zqpDo9MeOKPPl+rTnPyAO9MXmqu0a+Hz1tcFs7FJJLPWfZGT2ULT+8CvOtPNjGWT1k1Ss9MuWBvAsqlTzwpdw8D8aZvF2dIjwTL6U8PrJVvFWaCb00qde85M9XO7QYjDxpcyc9tERLPT25jzyRMIu84taRvBljQD0SV3a8Wy9UPCgKuryK+AG8+uHTu471Nb2Bfmm8uHhmvM5T+7xSlKS7E2QVvRMk/bwlOUW9LwvcPMaOgzuZlFO9YjuePdqTYL0s2y49Byanu0O6MT0CsHw80MFJvYr4AT0V/Ks8heV9OkTxGL2obkY9otBKPMSB5Dx05oW8xlmTOwaMmbx7Hg+9T+/uvDkdiz1JhOy8bA21PFwFjDqzFhW85M9XPOyoKD10fKU7uUynu0fICz2MfuA80GxqvFQKz7vCKqe8VjdHvV7OMzySMkE8nwYqPV5Xz7xTZvK8Yt43vdfW3jz5OpM834gMvEYkLzqWQsW8mBOaOW1YsLynglW8IpyMuxPtGb029tU7LxX9vFWT6rwJoBm9NpqyPHMeSDtDQSM8oxauvJAFSbzWxKc81/EfvUIUK70iXNW8HwLlvM/Rl7yDTCG9PGDKvP4KYD0OsB28PqiDvchnozxR8JW9WRrTPKEzorxsKzi9bw5EvDb21bzT4Ru9F/2dPOHHu7yxz1U9axkBvGCfCL3NG4Q8IpyMvdyKP7qMbKm9Ru2BvW5qZ7ywRrq7jZkhu2a3DrzbeAi8Dy8EPdZNQz1mZSC7iK4TvRIu/Lxt4cs8Aq0JPa+iXb1HyAs8D2YxvEh+Hz25L5W875skPJfmIb1cag496rCWvK/iFLyy/M08F2t4vdTz0ruckXg8E9JYvF7OMzy3eYE8rBt1vQ7CVL07M1I7V+3aPCJ3FryyFw+9zADDO76jPr0i5XA8Qp1GvCFc1bt7PtA76BbvOqKyCLurCb68My4LvXDEV7weTFE986uouxT/0DnSxlo8z1ozunq1NDxlihY96DGwPeZ7HLqqZeG89L1fvPnopLvcij88B89Eu8jVfT3A4u27AjalPIdcJb1vDkQ9rUhtO1I5eju+bBG9D2YxvTli/bzF8vG6j0+1O9K0I70i5fC8JuM9vDhQRrwIWGA8bLTTPKru/DuWQkW911/6O40ivTyJiR29AQktvXlt+zwueiq9m0iUO60sAb3OtlY8OWJ9OrI8BT3e5C+7KLQSPVGeJ7zcij+7zRL6PJBFAL36FR094tnyu0xz4rxKNDO9nmJNvfzdZzy9kQe9wqELPdpdR728SU48igiEPR7V7LxwTXO8nwYqPK3akjwlWqK9jQf8uwvfyLzGsQ89iraVPaeC1TyqgCI9t5VtvfhESDx+mEC96xS8u8fDxjqVnmg8h7jIPNBs6rv83ee8TRe/u4YU7Lpt4Uu8z+POvPuwbzx2QYu8OWL9PClP5TpBi489T81SvP93jzx4SY27rWMuvZv2JTwN1ZO8gqjEvHZBC7zSWAA9gbuDu4YvLb15bfu6t7AuvSJc1bwMaGS9DPqJvL2Rh7zp1Qy9m0gUvM4tuzvlxYi9TAWIPF7garxtz5S71SDLvJhliDzgY5Y9m/alPOO9hrw9BKe6w86DvPQ0RDxj1II8xKmNvHnkXzr4RMg7Y/BuvGuH2zuP8xG9u4mFPEejFT1chno94ZCOvbTNIjzubiy9mUASPUJmmbtcGCC8WRpTu6gmMj3qAgU7ve2qvMTgury43aY8MxPKPNRgAr2NB3y6Haj0PEYkrzzVqWa6bT3vvHzHazxL2A88FkcKvKjvBD3nzQq7oBhhu2uH2zxmZSC9z1qzvBR2tTwUdjU96LrLPP6chbzbASS78WNvPWJn0ztchvq6qdxFPEYkr7wLzRE9zvaNPZNfuTyONPQ8USdDvfQ0RDwrlx69n32OPabCjLwCrYm9h7hIvZZdhrym3ni8dDD/OrmBg7zwNnc98Db3uwhzIb1LRmo9nCOePLpcDb69kQe9FllBPP4loTz/wPM6qCayOnLxT7zaXce8Q6/9vJwjHj2gqoa7nJqCvZGOZDznjdO8h1wlPbul8TwF4gM8d6WwPOudVz0ApYe8K5eevCW2RTzdnHY9WtBmueudV7zuEgk9RYDSPKrufDwMg6W7t7Auu9NPdr1WwOI6UPpKPMjwPjw5awc6PXsLO2Gxvzsyb+27LxX9PBEcxTxVk2o9rWMuPT8xH7yrCT68GuApvFEnQ70Q78w7XlfPPF5XT7sxXTY9eW17PCg9Lr3NpB+9ANw0vGgta70Ckkg88WPvPG78DD1cjwQ8oxauO2wruDw52WG9ZcFDPVRKBj1hVZy8sL2evdrUq7oKKTW9t7AuPQ4e+LxtIQM9THPivDhQRj3sQbQ7dHg4vSEv3TyCH6k8HTqau+j6AjqA12+9Aq0JPO8kQDzpXqi7gE5UPBk8TbsW0CW7xjqrPOeN0zjZp7O6CFhgPhx7fD2qZeG5DsLUvHhbxDwIcyG9cWi0vKChfDr6+lu7vqM+vDMTSr1QFQy9rzSDPI0H/Dw2f/G7YVUcPb4ao7yyPAU9v0ebPQqyUDzdnHa8Z3fXvKJgmj0I/Ly85CGsu5011bs15B47xfLxPJNfuTrCKqe8Ae7rvJt/QT1kHee72XAGvR3DtbzT4Rs8QmYZPBcilLy/tfU7GIY5POlD57z3oOu69SqPvZSMMT3WxKc8hi8tPN1A07pPVm69+7BvPDli/TxtPW+8U/gXvZBFALpGJK+74LWEPMzuCz1TVDu9XUWYvFI5+jwA3DQ81haWOqqAIrw15J48KD2uOw45uTdsKzg7w8X5vMB0k7uiYJo9Br2NPEOvfT17LBk9AGVQvcH9rjwbMhg9H7kAvaQo5Txn5IY9L6eivMOzwrw2f3G8FlnBvI/zkTyAaZW8DGhkPCQSaTze5K870gYSPCsOgzzpXqi8frMBvXhbRDzbb3497wl/PJpSybyJm9Q7323Lu4HyMLy1Vj69oI/FPL3tqrwinAy8OgbavOvdDr3lxYg8WAicOREcRT3OP/K7ERzFu9Ei/rs2f3E810OOPQEJLT06Btq7BXXUPGQ4KDwnhxq7ZwBzPTTJXTyeYs08IB0mvN+IDLx6Edi8rWMuvGa3jry571299zIRPWGxPzsFkJU8IwAyPcYf6jv7QhW9eeRfvUTc9TxT+Jc8UsufOp6+cDzdnHY9lFUEvev5+ryN64+9o/vsvIBOVDwYD1W9sjwFPPlW/zzCD2Y7PGDKOjc+D72CqMS8LDJxvD6NQj16EVg9XKE7vS1faTsNDEG9EZMpvJhlCLwbhIa8yeYJvNK0I7z8lAM8NyNOvJK7XDtgKCS7w1cfPcIqJz356CS8pJ/JPBZZwbvhrPo7gGkVvIvjDb03Po+6ruxJO5NfuTvnBLi8WkdLvIPDhbx99OM8obw9PfZzc7yB8rA8lHHwPM62Vj3Md6e8uWbCO40H/Lvmexw9u8CyuxciFL2fBqo9/FTMvKw2NryDw4U99xdQvNUgyzxhw3a89NigPK+QJr13pTC9kk0CvTaaMrpf+ys7tWj1O3XvnLwzE0o9qdzFvPr627y9/+E8DPqJPC+nIjwPL4S9DQxBPTRbA72XOBC9BRmxPOudVz1tPW+9ef+gu3hbxDyxz1W8JuM9vbKFabzX1t68QOcyvGikz7zOP3K6yPC+PMzuizzWFpa6NMldvQfPRLwYD9W8I8mEPHDE1zyJ24s8rDa2POUz47zDxXm8VSUQPV+ExzyGFGy86nBfPZAFST1mZaC8GuCpu6VDJr3I8L46BLULPD5WFT36jAG9SZBWPaTfgLijFi48z1qzvK1I7TzXers8jjT0vKncxbzAmQm9zHcnPaivzTxuaue75CGsPBmY8LxuhSi7NEBCvbkvFTy2TAm9bSEDvWHMAL1/qvc8ouk1vZmu7DjU89K8sc9VPDes6bv4Xwm9/grgvB5M0bwaxWi8d6WwPFgInDoidxa9xrGPuxpXDj3qAoW8dQFUPHCyILwZfAQ9F/2dPAhY4LyjjZI8qwm+vCAdpjxKNLO7lHFwO7JzsjvwPwG8LgNGO4vIzLwmbFm8nr5wvWFVnDxI7Hm9a6IcO8XycbwaV448D92VPHUBVDxvKYW9ItM5vKbnArv9gcS8bVgwPP4lITxyeuu8/fgoOwqyUDznBDi9lzgQvU38/bz7J9Q8vmwRO+QhLDw/n/m7bPQKvblmQrxQg2a8y9NKPLd5gTzRIn68MV22vDRAwrsQ78w8P0NWvNvm4rx+DyU99nPzPIF7TL2+bJG9IpyMPWQ4qLvSxto8UPpKPXssGb1+swG9u8AyPTaasjz7J1Q7jZkhvCLTuTwdjAi8uWbCvCG4eLxlwcM8UDoCPdNPdj2YE5o8hi8tOk67mzzI1f089NggPCsOA70baUU9DsLUPLAPjb2QBcm7l2+9vHq1NDsU/1C5KnxdPR5nEr2/Rxs7qvcGPINMIb1T+Jc7Br0NvIn3d7x40qg8aL+QvQO/QLxiZ9M6DrCdPFI5+rtcag697LgYPdJYgD2N64891JcvvPcX0DwOHni6E1v0vPeg6730vd88qwm+vOVOpDxhVRw7LKnVPI0QBr3LAEM8uDnKu32Gib3oMbA6MNSavCg9Lj32c3M7FkeKPKSfybvDxXm9boWovHCyIL3GOis9ysGTPPnopDsmbNk8yGeju61jLjwGosy82IxyvAz6ib2J2wu913q7vG6FKD0F/m+9mPjYu3hbxDsvpyI8c6djPX/FODxy8c87lkLFvDOcZTpwsiA96xS8O4kSObnHw8a7JxC2u6jvhDyzoCo8JuO9vEUJ7rxhsT+7eyyZvLKFaTybSJQ8r6JdPRk8zbwi0zm8AjYlvZmubLz9gUS9cx7IuvHa07sQ70w9uzcXvEmQVr3LEwI85wS4PEWbE70uA0a8jGwpPAtWrbsnh5q8TAWIPaivTT22TAm8jGypuw4CDDgxU4E9C1atvMGGSrxtWDA8WJE3vYfTibzaS5C8+eikPG+X3zyATlS8b5dfvBbQJTtj8G48ZUpfvGE6W7wVoy299P0WvFLLn7t40ii89nPzPPZXhzzhPiA8yXlaPB5MUbwpT2U9/YHEPKAY4bxI9YM8+owBvE/NUj0ueio9ysGTPMY6qz0nhxo9yGejPERum7zqAgW9Vkn+PDO3Jr3PWjO8T83SvNCHqzy1Vj49XGqOOVm+LzzwyJw7PzEfvBT/0LwdOho9gfKwPNiMcj29/+E875ukPK+iXboqfF08Zxu0PDhQRjtAXhc8gGmVPImb1DzzkGe9LU2yPKTfAL3hrHq8kHytvJvb5Lx6tTS8kHytvFHwFTwcDaI8K5cevLg5SrshL1080ZlivEmQVjwKstC8Kmomva+Qpj3bAaS53C4cPKJgmr2hM6K8Cztsvd+IDDyS1p27cgyROrmBA70a4Cm7b5ffvM4/cj3jBmu9EZMpPKVDJr3zIg27/N1nPQDcNDwQCo67ETcGvd7JbjyKthU9n32OOyxNMj3RKwg9gqjEu4MxYD2JiR09sVhxPf/Aczz+k3s8GsVoPM2JXjv6nrg6FIjsPAEJrbwWWUG8lgsYvKuS2bxb/d47hJ4PPYx+YD0HmJe6fMdrvAj8vLwTW3Q9/UoXvak46Twnhxq9pLoKvbMpRjy8ZA+9Ajalu6XMwbz6Zwu9oTOiuZtIFL0e1ey8JVoivSV/GD29dsY8+XFAvUh+Hz1tPW+8+egkO7lmwjtvxFc9YwuwO1P4l7y8ZI88yPC+u7jCZTye2bG8J4caPVmHgjyP8xG6krvcvIn3d7vhrPq8iYkdvLvAMr0/MZ896V6ovCeHGrxKvU67QhQrvJdvPTzB/a483YAKPUIm4jx+2Ig8dEM+PWm1rzzztsG82yYbvUIUbb2fEo88FYEiPK5eBj1/p6K8jak6vZMljL1u5yE71z4IPPCdyLvCGy+7DGcdvT92ObyN8xm8QY8yPIccOLsCqKi8y5BEPDH5W7y2Q8G8v9gLvEsu8jzfs527VQ0cvEHAmLwynsu8LRHJu/CdSL17vw+99AAhvILAG72ATJI8MODivNZPubxBqwM9+Mj+vONxhr27dbM8QG99vdPbrzwynku8oFHOvNPbL7wD0tK8BzUrvaat6jxjDzS7NoZePVHbqbx6+mq9i8WLu9SAn73c9TS9MxmRva7OK70t0ok80B3HOkN+Ab2PZ6M7haguuoZNHj3Luu48GPUrPEXyCr380Ea9m5ohO8FMFT0vhVK9cEYWvM4kA7y3jaA86iwXOi9GE7xQgJm7rSk8PTHPsbxR2ym8FGgpPD4s2rw0jZq8NTx/O8rBKjyY3Di6CdNePIOPNb2BBhe9WIGlvBxtmTufgrS85WrKu2jRgDw/0Um9d1y3PDrptjw3ht65NbdEOwE0Hzxa9S67Zf4CvJhsk7sKeM68u0sJPTcBpLwJBEU9degtPNoG5rpARVM82xGGO2hr0D0EOIO6degtvaU54bz61wI81KpJPXpVe7wCkxM9JZyzO6SfET1axMi8C62YPd4fX7z+RFA8Cam0vBAv+7yM2qC8vo6suzdLgzzMFX+9PDOWu/IRUry7dTO8oCekO8bZF7yNTqo8QAaUvX7ifbs9koo8haguvdgNIr1Zmp48at9ZvaH2vTtJxYi8hX6EPEGPsryaywc92lcBvevmGz0YhYa7rFoiPWjG4Dybeuy72Ej9PC+2uDzKZhq9NytOvS9bKL1d3cE7/qoAve1apTy+jiy9y+tUvC3nnj236DC9drdHvTClhzyMX9s8GIWGvXARzLwJOY+8FWwNPSrOpT030L074RKSPHSeTr1qOmq8eOFxvPKMl7xwMQG9D4CWu/5E0DxVaCw7/r8Vu8Ibr7pJuug5dhLYO5U+Bb0XywG9lXlgu/rh9zxDA7y8j6J+PSDlhrytuRa8CH+Ku0MDPL3fs508sOckvIFF1rxkOV683T+UPN0/FL0W1fa8NDz/O2/HbL2y6wi9g7lfvb9dRr116C27biJ9vclNIbxAb307P3Y5vVHbKT1Xq0+8oazeu5cNn7wReVo8vWSCPRwnnjqXsg69JmvNvAZmkTwhlOs8BguBPPi+Cb2tziu8HvY3PVQ+Ar2cH1w8F/UrvY5H7jzCoGk9vzMcPcLxhL2XN8k8S96BvffPujxilO67zk6tvBRoKT1aPw49jARLPGSDvbx16C29lzfJO2v/jjxf9ro6tZ5ROyWcMz2yW648Igj1OowEy7x2Mo08PeJ6vAe6ZbxGHDU9aNEAPCLeSjybhQw9wqDpvMrBqjrsOvA89Dt8PXiRAT0GwSG7yXfLvGErhT2H8o28YZsqvMAzHLxk/gK9bPhSPdyFjz1NUgs9+lw9PU3CMLuD6sU8tkNBvY0kgD2pLJS8TgyQve+kBL2ek+W7jd4EPB/v+7zPeNe87DpwPT5MjzuJCwe9jak6PTxdwDvcywq+j8IzvUQ4hjzKRmW7isWLPN2apDrDwJ68IZ+LPLuRBL1srvM8Gg4lvdLsYL1c+RK86XKSO5zEyzz61wI8IZRrPEQtZj28BY49j8IzO6H2Pb3y56c8+egzPdDCNrpV+Ia8ADQfPZhh8zygJ6Q6mYGovLi3SrwmLI69pVkWOfSFWzyQ7N06P6DjOwc1qzybmiG8C62YvCRS1DzSkVC771NpPV4H7DwsGIW72A2ivBRhbbypLBS85rQpPBoOpTx4huE7C60YPUPZkbutpAG9M74AvXpVe7yDuV+9VB5NPCMI9TyyWy490pFQO/rh9zxGHLW7F+AWvXSeTj3lxdo89IXbvFWSVr390EY8pLQmvZqrUj2Iwae8uLfKPFayC72q5hg9wF1Gu0eh77wzvgA9GzhPOZT0pTvMX967ysGqvSi1rDvTYGo8LRHJvOoXAj1Fk5a8a1ofu+KCt7ujakc7VxEAPRUGXT5bDqg9wvv5vDU8/7wxdCE9yKgxvW5s3DvWmRg8EE+wu/CdSLwsGAW9ElOUvMg4DDzcywo9IbSgOlTtZj1Uwzw82TfMPFw4Uj13XDe8y5BEvLfI+7wK0149/NDGO9XUczw8M5a7WAZgPNKR0Dzfngi8fgKzPDW3xLpmIfE8Kim2PHR0pLzvpIQ8TcKwPIV+BL39BRG8lpLZPKqVfTx6VXu95znkux/v+7wYmps8iQsHPRo4Tzyz4Oi5Xt1BvXLPNDzXaDI9nt3Eu6UI+7xx6wU8ZnKMO/Z0Kjxszqg8++wXvWPeTbyBq4Y5pJ+RO0sEyLwiOVs6vo4sPV5ifDwNNre7JkGjPC9bKL254XQ8ApOTPanRgz2xO3k9xOpIPWXNnLwNDI08tXQnPXQZlLxHwSQ8htJYPfl4Dr2uU+a8bM6ovIIbrLzpUl08W8TIOzlExzrQmAw9degtPX4CM7uYbJM7Ge5vOxF5Wrxh7/47VrILPMpmmjyK61G86fdMPAKoqDxJ2h07fG50vQc1qzxJFXm8Y97NvLV0p7vZ3Du9IjlbPYZNnryknxE8C5iDPOwQxrzXPgg8JPfDO0R+gT2bH1y7aMbgvLwaIzzng8M8TaL7PMPAnj2UhAA9Y7SjPONxhrkPJYY87v8UvfbPuruATBI8RH6BvR97cj09p588wCxgPB6bJz2Iwae8V2wQve+kBL2stbI8koCcPGPezbtPYOQ72mF2PWfGYL0/djm8CtNevQuYgzkfIGI8VwZgvenNojkVgSI9sOekO6FxgzxEqKu8Ka5wPMzao7xM85Y9YUCaPTHPsby6XDq8G2J5vdyFj7pSL366nMTLvN2aJLz+dTY7BsGhPA+AFjwZaTW7mvWxujHPMT3vzi49zjkYPBAv+zwee/K7ktssPB3MDbzAAja9ORodvQ5g4bvbVwG8jkduPLMAnrzBTJW8GjhPPJ9YCj1iasS876SEPLyf3TyqEEM9P/tzvIJli7vc9bS85zlkPZdor7vm3lO860GsPfBeCb1T9CK8xzgMPUYcNbwynks9okCdvIrFCz3E6ki9cOBlvXVDvrwhtCA8VxGAvMl3yzxfUcu8xI+4PCtzFbyurva8GMTFPHYyDTzng0O8yaF1vUNezDzigjc854PDvAc1qzxS9CI92bKRvSGfCzps+FI8UDY6vWLFVL3gWA29uLfKvAbryzuxtr681z4Iu0ggmbxE0lU82mH2uz92ubypLJS8zqm9vK3OqzpKqTc9K52/O6fNnzwb3b68R0ZfOzaGXjz0W7E8sNIPvUgVeT2U9CU9nB/cu5NPNr0X9Su9B9oaPdXUc7yTT7Y8USUJvY3zGT09AjC7p80fPb8znLy/XUY9qiwUOqrmGL0fKwK9QhRtvauLCD3g3cc83R/fu48dRLlTmRK96py8PJ3kgL2ZJhg8Kim2vAKTk7xuQjK8/KacPAjFBbzrxmY8PaefvLcS2zrOTi28s4XYPD4s2rwjExW9MACYO7kBKjzr5ps6neQAvXARzLzOqT09KLWsuzuOpjpZmh69c1+Puz92uTzmRIS8+1w9PPrh97wphMY7FYGiO+YPOjye3UQ84RKSvGFqRLtcONK7OnkRuy3nnru7kQQ9e78PvSoptjyuXga9ZBMYPT8bqTvzbGI8rVNmvXoFi7zP3gc8Zc0cPOzRhjxypYq7vo4svYO53zsKLu87D6rAu8mslby0X5K8XPmSO1/MkLyA+/a6JM0ZvOK3gb0q/4u70Efxu197dTxUaKw7qpX9u+nNIr1ypQq80pHQPBnu77zqnLy8/NBGPYDRTLzAkhC9VfiGvZ6zmj2mg8C8zk4tPfd0Kj0Q3wq9ZSgtvauLCD0VBt05Zc0cO8pmGrwqrvA7W2k4vBZQvDrhgre8KlNgPdyFDz2NqTo97VolPdfDQrxHRl+6/homPe8pPzx6+uq8c/lePQlOJD0ni4K9hV5PvNXfk7xdWAc77DrwvEBF0zw9XUC8aZV6u3AxAbx6+mq9Sy5yPNlhdrzB0c+8zk4tPfq3Tb0oRQe9edDAOuBYjTotbFk81z6IvB/FUT1YUD89HVHIPIQU8Ls8jqY8mWHzu7IRzzvbq9W98ncCvD92ubyoUto8rFqiPNceUzzERdm83zhYO/9u+rxH6069kdusvMFMFb3it4E9QrncOE7s2jvkcQa8VMM8vZ2TZbxUaKy8KJX3PMAzHDz46LM30gyWPKw6bbtkCHg8wvv5OhSSU7xSJYm9vPrtvLpcOry6K1Q9ZSgtvTh1LbwiWRA92yabuwUcMj2EFHA702Dqu2KfDr3P85w72gbmPK+dRTxeEow8SCAZvCDv+zstbNk8MxkRvEYctbythMy8AOo/vB3MjbzYaLK7zqk9PfvsFzyoIXS8VQ2cu/HH8rwdUci7ftgIvQuYA7vqLBe9gsCbPfsBrbzSsQW9fgKzPLpcOjyCwJu8nGm7O0GPsjv2pZC7bPjSvCTNmTwnoBc9mvWxvNHsYDwPgJa7ugEqPbERz7yXsg67Gg6lvHdcN72W+Am83R/fvNz1tDxiasQ8FWwNvflt7rzSUhE81z4IPN4fX7yNqTq9PF1AvbdDQbz+qoC80jbAvPHH8jwXy4E8BkbcPMLxhDsGIJa7akUKPcW54jsrc5W8L0YTvJ441btQNjo9p/dJPVEliTwUaKk9s6WNPOEnpzylOWG8RsGkvPLnJz0ETRi912gyOzRDu7z7kYe7TcIwPUBv/TxABpS8jKm6vBiFBr1UHs28R0bfPJw/Eb2GTZ49k082PJAME7yh9r07mQbjOw+Alrsvtrg7u3WzOxwSiTwZH9Y8E8M5vTbh7ju9vxK9t+gwvDRtZbztWqW8ng4rvExOJ7wdzI08lpLZPHoFizuFqK68OhPhuxkf1rzUgB88hDQlvPD4WLyvQrU9IQ8xvK5T5jushEy9WnrpvL9dRr2m/gU9w8CevDUyijyJUQK8StqdPIw5Fb2es5o99VR1vfHSEj3WhAO89nSqu8bZFz23bWu8x6gxPBGZD71H6847n2J/PSOt5DugJ6Q9wvv5PEsu8rwhtCA9sNKPPEiQPj2MqTq82xEGPe06cDySqsY7Ai3ju4M0pTwLmAO98cfyvCbG3by/M5w8Al5JPI1OqjxaPw49tr4GvNSqSTzbEYa7u1X+PGM53ryhrF68pLSmvC9GE7xonDa6vW73vPCdSDrYDSK9xEXZvOtr1rySqsa8IQ8xvAC5Wb3Z3Ls7HysCPV5ifL2y64g9haguvPJCuDxGHLW8Ks4lPV97dbqvGAu9IECXPBMNGbx5Vfu7RsEkvebeUz3DRVm7sRFPuxoOpbx2t8e7xOrIvNpsFr0Audk6jdNkPSmu8LzC8QQ9X6xbOhOS0zoIxQU80VKRPHZtaDzdH987n7euPPbBlTyfty68lOqOvM3DGL0877W9PQp3PdjLTzx+xEM8R5z/vM05R72Ub0u9bgmNPDs527q1Yra8UI6KvDTkI70MMga8Upq9vAdOaDv6GSi8a+wRvSZfbzx2FJ+8dhSfvIbgnbzeqli7+JIxPGsW4bwpF4S8+nQVuwEUcrwt9FK9fh8xvUCitbxMBVq9PZYCO4alBrytRty8C5wBPePJDb372Xu911WhO4alhr1IUlq4ESAdvUhjIr0ZK6+8HM3mvAI2Ar1Rmj08lnEFvbm6SD31K5E8WwA9vayGCDu1rFu922OOvPygnr12uTG9MExlPMnQbLuvcmW86U0pvAwyBrw+0Rk9F3VUPX2z+7s73u28898xvVsRBTy75tE837sgvW1Carwo5uW8rIYIPfs0aTz8oB69vEG/u9DAPT36z4K828j0vAwSMLyz+xW9eQD8utXOqjxbEQW8QP2iPKU7yjup7km9dhQfvb8+5LtqJyk8CtXeua1XJL2K3cI8Ze0yvRQMejwZhhw7VXyhPPZmKLxvyeA8bN2DOwNAezq/b4K9yeE0vGsnqTyMCUy7MV2tuy1PQLx35bq6RXD2OzCMET0Ab989XlhPvPCHn7wkM+a8BjOnO/5xujzVKRi9cDWWPGBaCbsIf4Y81L3ivMBPLD3tSs68Vx5ZvHj2gr1tcwi9AtuUvKTg3LtnNH08vEE/vSoS77xzfGC8vbftu2jACDyneBs968PXO17EhL2W5fm7EhGPPLeuFb3bYw695xBYPb4+ZL21ggw8nteEvC/F7jztSk69uzD3PEOfWrwo5mU9QHNRPN8FRjwG83q8X7O8OxV4LzxRJA89Hq/KvJmOgLyEDwK9Xv1hPHs9zbwfGwA9iAwnvO8ssjzSNmw9m18cvaSFb71AR8g8ODw2PJS5cLwjYsq8vxSVvPCHHz3XoYA9HDkcN9bpaztGgT69uEQavOcSEr2V2wC9g1knvFZtEzxQbjQ9TBaiukhjorzPr/U6zSj/PFKavTqMZDm9oIjKOwKAJzyppCQ87htqvGd0KT1AorW8JV/vuvB4ETyMvya9jXWBO2TcaruH0Q+9wKqZvCWO0zza99i71HO9u/ftnjgXdVS9CH+Gu8wNPr19xEO9FS6KvPq+urzL/PW8BcdxuBgaZ72aTlQ9uV/bvLjprDrZgaq7u+bRPD52rD02K+48tDatvA4+ubyfbQk9ov74PDiXIzv6zwK8eECou5HNEz1g8A291p/GuoLSsLxiZrw8hKNMPV/EhDyYbHC9UhUBvYNIX70dr0o9WdQzu58SnLz1+vI8cQayPKL++Diy27+8m18cvdNi9TyQBvE7xkn2u8RMUTxCKaw8q7/lO8l1/ztOMWM6gEu6OwttHbzqDX278ylXPePJjTzzOp882MvPu2iPajtae4A8KUHTPGE6Mz3reTK7x1o+ul9pl7wDm2g9xF2ZvKsa0zlUxsa6CLodvFLk4jyhmZI9tWI2PF4OKj2MZDk82lJGPRyjl72KOLA9hqUGvar/kb14QCi9sflbu+vDV7wv9oy8QEdIPEShFD1lN1i8tazbvGn7nz0Fx/E7qWkNvh05nLwC25Q8p3gbPMRdmTwK5qY82wihvEqPK7z7j9Y7AspMPaTg3Ly+IyO9RvwBvSjm5bw73u072dyXPIo4sDyhPiU9OsOsPZHoVDxAWJC8N+HIPFu2Fz3R0QW92YEqvU4xYz1/8Ew8Qc4+PC8gXLxgzv06gi2evWjACD1cLMY7Oh4aPO62g7sRlss7My5JPPz7Czw8SiM9SFLaO9mBKj2G4B09D/STu9YaijtnGbw6obTTvMnhtDya8+Y7/EWxO57XhLx+OnI8Z77OvE/4Bb2ft668nB9wvXoiDD1e/WE9j2HePHcFkTw6Odu3MKdSuzxlZL1QE0c9Wu90PFC4Wb3iMwm9StlQO9dVIb0Y0EE9b8ngvFsb/jxxBjK9UF1sPWsW4TxDn9q86x7FPDfhSL1IKAs9ODw2OQX4j70GjpS8tWI2PQRRw7zW6es8UuTivFl7ALxAGOS8Xv3hPIT+OTxzfGA+0MA9PS2qrbt4QKi8f5VfPPhIjL1qJym8xCICPB5U3btTUBi8OJcjveXkTr1lSCA86x7FPNmBqryj4Fw9VsiAPAD5MDxeLgA9J8skvFbIAL0vIFy9tr0jPVV8oTkSO967xEzRuxzN5rxtnVc8sa+2PN3ZvLsh7Ju8oNLvPPJpAz2ZfTi99RyDuxe/+Tw6eQc8QKI1uTlX9zw0P5E8WHlGvbvm0brtxRG9iPvePLSRmjxHkoY8gEu6u29/O73S7Ea7tYKMPD52rLyOsBi9dQNXvPbBFTzwh588jpDCPOfGMr1IY6I7+49WOydwtzuPoQo9I723ukY3mTx8qQI9+O0evHA1FrzEuAa9yFq+vMoBiz07lEg9e7gQPSIYJT2PRh29cVBXPTeG2zwQxS+9dEMDPayGCD3+ggK9FGdnu2XtMr3UvWK8rOvuultbqjppoDI8pIXvPLg1DD0eVN27STQ+vE5CK7xwkAO9icKBPPoZKD1XA5g7kjJ6vNbp6zt0QwO5TwL/u638Nr3tAKk81lWhOnhAKL1SiXW8Cou5vNxUADxEy+O8Sk9/uxmGnDxmCPQ6Oh6aPGJmPDxrcc48ftULPVogk7sm+og8LzEkPA5Z+jumsXg9LzGkPG+fET2FGXu8ePaCvJcHCr0JenG8Zxm8O/4nlb1jC089Oh6aPAttnTu8QT89LaotvELfBr1Bzj6983N8O0y7ND1G3Cs8PnasPG1Caj0Fx/G8HYPBvHEmiL0TAgG8x6TjvIbgnb2QYV66WkriPDkN0jtzfOA88Vi7vMbTxzsHJJk7ba4fPcVOiz2fEhy9TgeUvM60ir0ryMm7Wu/0vKyhSb3QwL27EZbLutpSRj0Rewq8R1JavCojNzyGhTA9EMUvPGE6MzwfZaU8/RZNPKHjN7t2b4y8j6EKvSfLJL0dg0E6oZkSPEqPqzxjd4S8zC0UvSWO0zp2bww9jpDCOhMCgTvKAYs895IxPQ6ZJr2shog86nmyvN6AiT3bYw68DS3xOqPFmz3sLw07oT4lvHj2Aj24X1u8nTA4PYvuiruc1co87QCpvJTqjrzrHsW8/ieVO8D0vrsXdVQ8ByQZvcIxkD34kjG8FknLvFI/0DvGSfY7j6EKPIVKmb3O76E8s1YDO3QDV72AwWi8ubpIPXCrRL0dORy8ntcEPLsw97z6GSi97aU7vJWb1LyAARW8D08BPDwKdzvHepS8GkZwPPOERLxJI3a999xWu5AXOb1EVbU7O5TIO5dRr7tv2ig92vfYvBTCVDz0lYw8MPF3PZUlprna99g9gtIwPWY5kjwZhhy9X7M8O6qVljyCd8M8a3FOO1wbfjzEpz49NVrSu0OfWj2y2z+8SK1HPeVafTxp6te8UhWBvMuXD73iuMU8SCgLPd00qrsDcZk8xAIsvaGZEjopQVO90XaYPJlO1LyN6y+9yWuGvA9Z+jyGKkO99iZ8PBC05ztvnxG7qGkNPKWWtzyt/Da9XNFYvPc3xLt8qYI8sPnbu8uXD70zPxG8wKqZPK8oQDvT/Q48J4t4vGmgMjwIBEM8DcgKvTcr7rn2wZU7gKYnPE3W9bsmX+882vdYu8LWorzFwv87cyHzvO8sMjsrfiS9vW1IPExgx7ynOO+7dOiVvBAPVT2XUS88h9EPO9HRhb0PWfq8LaqtPP8Yhzwv9oy70MC9PCn3Lb1WyAA7FAx6O9+7IDwA+bC832CzvKjuSTwJenG7gPKGu8QCrDw/ke28XeIgvVK6kzwlZIQ8NbW/vHeKTbvU7gC9zR6GvEgoizxGJlG8SjS+vA7jyzy9bcg8ioJVva9IFr17Pc09RaEUO8QCLD1l7TI9QoQZve0AKb3Zgao8hA+CPHbUcryyCiS9NmuaOwKAJ7zqaOo6XCxGvGGVID02EK080ArjPFcDGD1z10285xKSOzITCD2XnQ4937ugvGJVdD0MXFU9Qt+GvU4HlDpjdwS9yBAZPA7jS71S5OI80pFZPCGRrjwni/g8OeMCvdz5kjyFdOi7PTuVvFY8dTx5AHy9zwpjvCLdjbyZM5M8JpCNvNdGE7x5EUQ9V8PrPD52LD2LU3G8TdZ1PFBuNLy9bcg7FknLvRF7ijqIVsy8Bo6Uu5XbAD19s3s8ZTfYu4mCVbz1HIO8GeGJvdRzvTzQGyu9xR1tPYy/prxKNL48OeOCOX56Hr3GLjW8ePYCvMgQGT3XFfU8p2fTu3kRxDxxUFc75ZopPPhjzbuyZRG7QEmCvSlSG7zlP7y8nqZmPZWbVL3q1B+8gAEVPULfhruUufA8gWZ7PEb8Aby1rNu8s4DSPBQdQj3/rou6WS+hvM6UtLynZ1M7qmR4PCE2QTucUA69G7KlvHMyOzvDlva8HN6uOup5Mj2soUk9z0qPPM0o/7zU7oC8hP45u8l1f71fs7y8BFFDvR2UCT3GiSK8g+1xvTjyED1vnxE8pzjvu1ZNvbqJ/Ri8b5p8vCXpQLzh56k899xWPZIyerzhQpc7E0ymvHSNKD2QvMu8d4pNvFQQbDsccnm9Y8GpvEo0vjw+0Rk9r6MDPYXP1bzEXZm8zR6GPEzbijyvKMC8MEzlvCjm5bwIup28RvyBvAvXmLydiyU9c3zgOwRRw7urv2U8c1IRvVEkDz1Qjgq7TgeUvET6RzySY5i8C5yBPLWCDD24NQw9JnC3PTiXozwCgKc8F/AXvAi6Hbsp9y09E0wmvRpGcLtICLW8cKtEvAYzJz3anOs7D/STvKJZ5jwUwlQ89JWMvEp+YzykhW86nnyXPepo6jyJgtW8GkZwPLHPjDwaRnA8BSLfOyE2wTtMu7Q8Qc4+PR/AEr0HJBk8EHsKvSXpwDvEXZm8V8NrvHa5sbtaewC9bZ1XPJesHD0Iup276U0pvX/wTLvaCCG8mX24u8QCrLxoKoS8NaR3PSO9N73fe/S6wE8svTITiLxIKAu9XCzGPJrJF73Ce7W694Fpu6Hjt7wnJpK8rOtuPcUd7bxGgb48mdglvechILz72fs8MV2tPLGvNjzpTam8/oKCPNpB/jykO8q611UhPVV8IT1Qjoq7L/aMPCCAZj1cdms9raFJu3rHnjstbxY9tYKMvLfYZLu+IyM9sDmIvEBJgry+yDW71p9GvClSmzzhjDw9mCJLPQKApzw+0Rk8EuBwvJq6iT0gVpc8fjpyvF2HM73utgO9u2GVO8bTR70TTKa6zjlHO0AY5LyiigS8+d4QvSlB07yIDCe9bXOIPKCISrxXw+u8qUk3PSzKg73QO4E8MKdSPJqpQT1WyAA9WnsAvap1wDztSk68BFFDPOMTM733N0Q9TgcUPOa16ruCLZ47aOpXPCHsm7wW7l28TGDHvNhwYj1sQuq8yFo+u1HJIbyqZPg6emyxPC4FGz0l6UA8XYezPABe0zw09zI9F0EcO2Y1MrwyQCG9AbmzvcXjBzxDrm88Ax7eukCc/bz0uVm9QlI+vbaEqLwk71+84vr0vNkMPDwzpcu8U787POP5I71rrM65bbXHO8AaBL1eWrw8zcOivMODgrzcIgK9hfgVPQbUnrs/krO8Vy1fvI0r6bsj5RU9LSARvQcwUL0JQkK8pRervEGldrzAcRC8JvjYvAaCtzwaqhq9w4OCvSKFkDw4E2+9kqE0PTOly7xpRyS9Oy7avDkcaLxidvi8d6KvPKkyFjvj+nQ9FpRUvCvAC70ihRA9yfoevXXrHb1idni9gNlWvWWHGTsEyyW8qjzgvNSVHzvtiys858InPX10LD2T/WW8Cp7zvHu+a7ypMpY8lGE/PdoQkL093PK7uJfrvGc+qzxY2qa840xcPK2gubydRa48SdECvMhN17uu+xk9nZjmvCgAgbyzcjY7vl+eO46GSbuLdNc8ssVuvRj5/rzv7wS9SB8WPbtRgLy33wi9/Z1IPBoC+LxrWRY87N2SPHM0DD2vBWQ8jNgwPOHrhbx8x2Q76yaBvUYbwrx6tKE8sm0Rus91Dz3dggc8ORsXvHmrKD1W0n486nm5PTA4ebwdvIy85QIdvWuszrvHn748GQGnvFEDBTxXiL+8/e8vPWqiBL2JvUU9lbMmvYoZ97vr1Bm9gIYevTNJGr3AcRC8/vn5OuFDY72CPTC9d6z5vE/6i7xy2as8/kqQu6FY8TyEUPO8jtwEvKd7BDyc4AO9U7oWvUFNmTwWlFS99LgIun7Q3bwznFK7qTPnvH4ixTwznFI8ihgmPbk/jry0ey89LXedPFRsg7waAvi7ow4yvAR0GbwpCku9tX8DvbG8dbyfSYK7vxYwPfgn/bxx0LI83CenPfmBDL083PK8tdYPPV3/2zsmpSC9+zgevfs577s2CSU90IR+PVc2WDzr1Jk6e75rvZZlkzrAIHq8P0DMu8EfKb3mFWA7cofEPIrGvjtc9RG9zh/Uu/YYjjyuBeQ8VG3UvPVmobwDy6W6sA7dO72yVrtZjBM9CIswu7up3ThIdiI95xVgvaNgGbhy2vy7VBqcvG0LA702rkS8bWNgvTrJL7yDR3o8EBQ/vfBGEb3inkO9PduhvD42grzd0Bq9C52iu4RPIryWD1i9YhpHPQg5ybuUWMa8EW+fvCxuJDxc/oo9UmRbPXKHxLyeRv+86R2IPIRGKT1wddI8WeMfvRY4o7zKAxg9JZcCvYE0N7sY8wi9dT5WPRIhjD0TKgU9e75rvZOqLTzwSza9gpBoPFQb7TutoDm8Y9AHPfS52TwJlKk7M6XLuylcMr2lxcM7Y3WnPHaiLzlRAwU8MZIIPLaEqDyp24k8Wj/RvBtd2DzBe1q8jSvpvIcGND1dWjy7fcaTPJzh1Dk8LQm9EBS/O/s4Hrw6d0g9ItycPC0lNjx3rPm85gxnPZRYRjvVR4w8u6gMvISi2rybLhc9gj0wPZ/8vzw7Llo8YGyuvG6+QD25P469NlxdPQACIr17vmu9qOAuvVD/MLtPpFC8kwZfvF+1nLx5Yjo90t6Nu78RC72s83E9CkaWvCq3Er5erCO8XqyjPEQSSTy/aWg8XPbiPAC5M7yWvB+9JkrAvKxECD0BDGy8a6xOvQz4gjt5B9o7ufLLPBtchztIdiI9HcExPacqbj3LDBE8W5qxvJFG1DsJQkI9zh6DO2SHmbqN2DA90Tq/PBoBJzwCFBS9mthbPBbvtL39S2E9EiGMOn54gDsSeek5NQF9u/kw9jx7vZo8iWtePeDijDxHyIk9jSoYPfMLwbxP/7C8UxGjvHKHxLxRCKq7BzBQOvCmljzaceY8kqv+uwFdAr0wNyi9810oPHlZQb32b5o6zMMiPeYM5zx5WcE8bWPgO5w3kLlZjBO9HWZRPc96tDwIizC9OyVhvTJB8jubj228WZE4PfNdKL1TbAM9t40hvQBeUz2LcwY8C6abvSWcJz2F+BW5Te0+vCvBXDsJlKm9ctkrvW8ZITxMOgG8alAdPeGVyrs/7mQ7wXvau9NDODz8Qug8S5JePlrsGD29Xx68lQ9Yu0ZoBD2xF1a9y1/Jul+1nLzLDeI8CZV6vJoqQ73+SpC8S4iUPHsPAj2NKhi9J04UPQUnVzw926E84UNjPbv7RLx04/W8DPgCvXsZTD1gYzU8r1fLO6MJjbyFq9O7D2amPHj9jzpftu26ZNpRu9X6STwoV408+znvvMeaGTx+fvY6vWDvvA0CTby4RLO8lg/YPOzeY70nAAE89m8avXaZtjwJ7wk957muPGEaR7wAAqK92hU1vPICyDz86oq7wBoEvd8wILx7vms8bWIPvRbmOz0pXDK92WjtvIZZ7Dsf1PQ8x0ONPORUhLuLfdA8rq0GPVnk8DsFJ1c840xcvOuCMrw9hJU9rPPxPP74KDwj5uY811UqvQaCNz0Feb488155vBfzCDxXLI48IzhOvVz1kbxXf8a8eVnBvHEs5DxLNq28BzBQvCKFED3tjHw8AnBFPNVMsTxwI2u4Si20vJw3kDsQwlc92mccvF8I1Tv0uAi7juJ6vArviTw2CSW9vxYwPW5s2bwwMgO8Wj9RPIDYBb2NK2k8EnnpPGC/5jur6ac7LXcdvcaWxbw/7uQ8M5xSPYkZ9zzrJgG8YWeJPE0/Jj0xkgg7NQF9PT/tEz3qy6A8DKfsvO7n3Dveg9i8WpUMvKgpnTnocEC9eKx5PRpTjrnMFls82F4jPUFNmbwTKgW9v2gXvRdBnDxqUB09Po0OvY+PwjwRGJM9nqFfvBn4Lbw5HGi9JO6Ou+Lxe7xbnoW9AmfMuluaMbtUbVQ8++ERO/NeebzSjCa9mirDuzSlSz1Mm1c92WjtvOOiF7q/aWi9ftDduw9mprzd1T+9tYX5uyB8l7xRW2I8IoUQvLR7LzwaASc8ZCy5OwFdAj38QZc8OBKePLG8dbxoSHU8AbSOvI7chLxo7MO7PdshvJ6XFTzwnR271qjivIdYG73KAxg9ib3FPNX6ybydjpw8ARVlPPD5Tj1a7em6wM3BPBImsbwKnnM9P+7kuzGSiDuiBbk9u6ldvRfqD7x3/Y89lbOmu4m9xbdJ0QK81UeMPKNhar20doq9yEwGO6k8YDzCKCI7wM3BPF+1HL0097I8HAqgu0CbLLt4/mC5Gfn+O03tPrxvxzm9Dl0tPXlZwbwviQ+90ujXPOA6aj1UG+28wM3BvMdDDT0F1W+8i33QvDauxLupM2e8qduJPE3tvrtWIxU6rU7Su5jGaTukauO7nY4cvY3YML3nwqe8ogU5OyxuJD2oKR08lLT3PM0W2znMFlu8sWm9PDNKaz1erCM8ZdpRPZ2Y5jx0Pla8jM83Ow9hAb3RMUY9g+vIO0VkMDyAh++7j+tzPTsu2jk5Gxc9P5ssvO/wVT2LdNc8Xf/bvG/ClLxiyN+8hKLaPOZezjtM5MW8h7TMPJ1FLr2xab07z83svPxL4Tx1Pta8wnqJvN7Zk7zYXiM8aOxDvZCYuzzinsO7nI/tOtKMprxY2qY7pGrjvJuFI73bzMY8Zj/8PLG89Twor+q8oVegvJFGVD2mIXW87ufcu3HQsrwt0047xkTePDGSiLz5i1a85FSEvCKOCTvnwqc67pX1PBOBETzVn+m8Abmzu6rkgrtDW7e8avkQvUFJxTxDVhK9dkdPPFqVDL26oOQ8MZNZOVnkcDz8lE+957muvBDBhrrJ+h68QffdOxaU1LoNsGW8k6UIvZhujLyeQAm9YsjfO0cbwrovLq87/e8vuxQwe7ymICS8MZNZvSAmXLz+SpA8Q1aSPAEUFDweHeO7XKOqvKQXqzrMwyI9ZYjqvLBgRLtKiWU9UVoRPdlobb2wsiu9fs+MPTVcXbwX7zQ96cxxPWta57zVnhi9zRUKPV2t9DsgeEM7jH3QO+vUGTyxaT29lFhGvJa98Ly7TSw9xel9PPNdKD2M04s7W5oxvIgQfjz9pkE8EMGGPPd5ZLsIOUk9CeaQPJoqQ71qUB29tHsvvPvmNro6ya+8SdLTPDyElTscC/E76HBAO/vmNr1erKM8SdLTvFk1BzwuKQo91JUfvajXtTn4Jiy8/OqKPNKMprxD/wW9EW8fPW5s2TyJE4E9ygwRvStvdTzHQ408alAdPfTC0r35i1Y8xN8zvG8ZoTzSNZo8Po0OPSB8l7w4wDY8mMbpvJyPbb3wnu48pypuvVqVjD2hV6C87kI9PaYqbjvSjCa94DkZvXwZzLw/kjM9PIm6PIrBmTxiyN+8mzM8vABeUzvITde7X16QvAqec73eMfG8kJg7OlaDmj0Vi1u9egYJutGDLT0or+o8QU0ZPQ/C1zwtJTa9cHVSvZ1FLjx/Kz48OGSFuwlCwrxftZy88175vGUwDT1RCKq7lWUTvT7kGr3tOcQ7wSiivDhkhTzBe9o8r2BEPZWzprr/qpW7xpZFvGwCirwCZ0y8HGZRPEotNLxgEU49nTw1OxoBp73Qfgg9NwmlPNLejbxRCKq7oPeaPMj77zvVn+m8f352PazzcT35gQy8aUekvA0CTTvcJyc9WkhKuy/cx7wSJrG8hqtTvTUB/bwTguI8xen9u38rPj0csxO9XKT7vH9+9juHBjQ9P5KzvDUB/bwLnSK9B90XvSHdbTw4u5G8xugsPSWcp7r2cGs8QgDXPDp3yLyNK+k8NxNvO7XWj7xjLDm8nOFUvEGfAD21hfk8kZwPPNOVnz10kL08fcfkPHpmDrzF4we8u00sPdgHF70kQce8D7nevKqOxzsOXS093Sj4PJFFg7xBSUU7AAKiunEsZLw4ZIU9UQiqvJl9ez36i1Y9wBqEOlk1B71l2YA864KyPPmKhTvq1Wq7CeYQup1Gfzz5LyW9kqE0PFtIyrz1FDo89RgOvIgQ/rvnuS68kvObvF5avLmVXBq6JJT/vF6sI73u5ou8uOgBvQ+53rweb8o7yfoevZFFgz21f4O84OcxPKGzUb3BHym8ZTANvRMqBTzwppY8FYtbOcEoorwuKQq9bhAovUOubz1CUj69qTPnPIar07y/EYs72hAQPYgKiLq334g6tjJBveze47sRb588eP7guwnviT2/EQs8TknwvM3E8zz7OW89KreSPcU6lDvTlnC8JveHPIAvkrwkQUc8JvcHPYdYG715WcG8KAHSvMLWOrwNWAg9UQiqPOUDbj0Qwlc8fn0lvDYK9rt+IkU9nOADvDOlS7yWDge8iBD+vPs4njur6Se9RWSwPJ1Aibuxu6S83XkOO7R7L71RCKq8VdL+vArw2jx6tXK7SdJTvYgQfj10i5i8quQCOyWcp7s9N9M89yGHPFMS9LxCUr48Y9CHvA+4DbzJsbC8FjgjPRj5fjxUGpw7nqAOPF+1HDw1Af28U7oWvCGBPLy46IE9Mu65vJnOkTw95Jo8sLKrO6jgLj2kvMo80YOtukCc/bsK4OM8tBPzPE4qsjq5ZBI8TQupvB9Dfb25daY8y0ZvvOKgqzzi+ie9Q8oXvUvhSb3ga/Y8SdZzO6P2orti1jO59ZD9vJmWiDyKfd274bE/uw6AKbuZWxW9464gPE8IirxO2wu9OIylvLZLRz0M3UQ6Y/IdvDgFK73uvxS7TNPUOgxIVb03fjC9+Gu2vHcaxLyfWfy7mcMGvaAK1rz4WqI8zgIfvWFgzb1Kiuw82ceLvZ9Z/Dw4X6e8tqhivUwA07wipbC82bkWvQo9/zwkgwi9TTgnPaNvKLw4Mim94Gt2PPeYNL1iiiy9jcOmveHhXL3jvBU6d/s6POLQyLxhQcS79bpcvMPgFj329U89oflBu6TJJL22tte8Sj7lPJ+G+jy4DTW9Wd6Ku4ojYbz3xTI9d5PJu4wuN7vhdkw7bnwXPaMHt7x3+7q85FGFO/gtJL1Z0JW6ob5OPB9RcrsZUws7iyPhPG4Dkr348jC9Hsp3vA2RvTyLMVa8IxsXvTULaTzE/IC9Xij5PA3aJTmhN9S7YFLYO9hfmjzf8vC7xWeRvDbpQL3g0+e6zccrPY0Bubo4cLs8X+pmPEMklLvhhME8CxvXPDYn0z335Lu8Y2sjvPb1T72izMM8yRnxPPnQiLwOrSc9+qMKPPnTpzw3j8S8ofxgPeLNqbwZ65m7+PIwvc9Lh72iU768WQuJu2IRJzx5BhG9dznNvPeKv7ziZbi8YDNPPEkiezxhm8A8IT0/vXYrWLx3DM88orsvvQx1U71gf9Y8t8RMvWWHDbyicse89k9Mu6LorTsPfQo9YfU8vGSVAj0hAsy7drLSuyKGJ7s1dnm8oA31PPgtpDy1jPi8+OEcvUwt0bygVt08Ii/KvKAb6jzElA+9NP1zPHY5TT3gtN684bE/vfkqBTxhjcs89x8vvbfBrbziGbE34wgdPW5PmT1M/bM8Wd6KPHW1cb2Ner67TvoUvUst0bs4X6c8+EwtPJB0AD1N0LW7OXsRuwkedjsNZL883xH6O3Wn/LxNsay7BCCPO6L5wTx4F6W8izFWPWKptbvjJya8+WiXuqC+zryh/OA8DBi4OotQ37y57iu7ZFqPPLUC37xh58e8rjSVPDhwu7xkOwa943MtvaAK1rxMdrm8t2exvKPauLxgM887i+VOvSHjwjzObS+9oOB2OYwut7xPCAo9N/e1PQqGZzvM98i8IWo9vc/EjDw4JLQ8WoSOPHdVt7z1nvI7uO6rPDePxLxNkqM6ThkevfpJDjz1M2I9Nr9hPQ7Jkb2iYTM8S6ZWvUP3lTzKc2284bRevE2SIzwE8xA9dHp+PB8W/7yhkVC9Snx3PCOzpTxKfPe8ouitPE6BDz1hbsI8btYTvDbby7z0cfQ8uUiouyDmYTtgRGM9+cKTO/gOmzxiiqw8TvoUvYoVbLxPNYg8Wr+BPVl2mTxahI68jmYLO3ZHQj2N8KQ5S4psvMuuYLy4Vp28JAoDPaImQD0he9E8t/HKPDdUUbviV8M8Ycg+vcuPVz3MuTa9uXKHvfXLcL1LXe67YudHu7v5gbwhe1G8zU4mPU4LqTvu7BK9pCCCPSNIlTv5lRW+C9LuvGGNSzxOCyk8hGMMPKKOMTzE4Ja8dWlqvDW/YbwiHjY9Db47vIyLUr2kIII8zdUgvY7irzy1Ieg8NRz9OyNZqTy4s7g9S4psPG6plbyuuw89+A4bPSSwBjoOjp462bkWPWIiOzziKsU8YrcqvDmaGjxgrFS9jfAkPfhMLTojpTA5BNSHO4tQX7shEMG74ABmPA/Xhjx3KLk8uhiLPY4rGD0MRTa8oa26u03QtbmfLP67RNiMPPSe8jzMjLg7zNi/PDR2+TxEEwC9NhlevfX4brshE2C9OJoaO6P2Ij0hiUY9XzZuPIREA7yK2ng7dqRdvdClAz1hIrs7DQckvY21Mb14kKo8jg+uvDULaT04cLu89Or5PB8Wf7zL6VM9zatBPDhDPb2fs/g8Wv0TvLiULzx3Vbe841SkvflJjjz2Qdc7b7cKvUtdbjwbNIK8IVxIu/UUWbxLedg4i5zmOsuPVz7kCJ09o1CfvEXmAbxMDsg8Dd1EvWR5mLy3DTW89X/pO6FFyby2eEW9mNQavU8Znjw0sew8tnvkvOMWEj02c1o8jJnHPAyiUT24LD48IT2/vIoV7Lyiuy89GtqFvMmx/zruRo+7oq06O7fxyjwMRTa7z9KBvHi9qLzjriA9tiFoPDXear0EWwI8No/EOky0Szy19Om7j0cCPTj3NTzNISi9eQYRPO+BAr2uNBU9o9q4PDYL6TzLgWI7ww2VvSN4MryjFSw9zH5DvCIsK71ityo7dsBHPOLePTs3yjc9d8BHveR+AztNSTs8jD9LvDWgWLzfees7t1k8PW8+hTzZbY88pMaFPPiYtLw3qy68WaOXPSL/LD2KI2E95NsePbeUL73iKsU8TKM3PUy0y7wvl5s8jtEbPWEl2ry5coe8SorsvOL6p7wiiUY7ShFnPCL/LDzEzwI9DZG9POEcULwfq+64i+htvKIYS7y2e+Q8NulAPcx+QztufJe8zlybPO9zDTyhUz67t8RMvcR1hjwfJPS8C3XTvDgktLzfeeu85DWbPIs/y7xEjAU9doXUO0SMBTv5pik7+PKwOuQkhz3ePng8ZOGJvFkLCT3aqII8zfSpPI6FlD0NsEY8TADTPJ6G+rvZIQg7WEmbvPaN3rx1/tm8+oSBvTXNVj01sew7Nq7NPKImQD0fjGU8zZotvVhJm7322eU8eJAqPbezODuhRcm6I2eePfnTp7wffvC8jh2jvTlciLzZIQi8YAlwvS7SDruEFwU9+RyQPETYDD3PeAW98M0JvHQB+TogueM8ReaBPfmmqbx0en47NwhKvd8+eDuhsFm84IfgvOE4OrwNCsO8WVcQPfNj/7oOUys8BS4EuwxFtjyj2rg8TDvGO6BI6DywI4G8C6JRu+5lmLziGTG9uUiovHihvjz5owo6dTxsu1kLCb1OVJG8NXPaPPgtJD3j6RO8dVjWu/kcED2PGgQ9TTvGvC/ggzxjTJq8DhUZPaHMw7sNnzK8DVOrPfmjCr0kKYy7YbpJPTrVjTw36cA8i0JqPGIUxjx5Yyy9hHEBvbSa7bxKPmU6Yz4lPApnXjzjriC9SwBTPeMInbsZJo28ybH/ujauTTxZdpk8jgyPvUzCwDxDJJS7TlcwvTjHmDzJOHo9BHqLvcMNFbwvWQk94O9RvCCMZb0hPT+8omGzvPWe8rvgh2C89x+vO+DTZzsjopE8uusMvKBIaL0KpfC8zrYXvbQF/rjfmPQ89xE6POOuID1g2dK8NO/+u+T3iLxf6mY8TxmeO+6Slj0MsEY9ozQ1vEumVr3h3r28Db47POELPDzEdQY9uaKkvJ8sfj0NsMa892s2PYynvLyMmUc9eJ6fPOA72bxfgvW8oDrzvFkLCT2Kfd084wgdvE7snzzLVGS8ODIpu2JPOb2N4i88S1rPuzgyqbyiQqq89PjuPDhfJ72NTUA8C2feuWLIvrsfcPs7eeomvEo+5bx0aWq9RKuOO2OYoTzkJAe8xMENveGxvzx339A8eL2oOXhxoTzNq8G8o9eZPGAG0Tz2MMO874GCvPcfL7tgrNQ8uc+ivDhDPT2vB5e7BFsCveL6p7vMBb66TP0zOrjgNr3EwY08Tr8hvaXlDrwfUfK89zBDPYwuNzoMRTY8BdQHvfUGZLxuqRU8DHVTuyCM5bpOvyG7+pUVvaU/i7rNBb4745K2uvnQiLxPvAK9C9LuPLWM+Lv3Prg79TPiO4yqW73ZuRa9n7P4O85tL7x5BpG6em4CvDfpQLwkN4G8n7P4PGD427v29c+8NmLGPOL6JzyNtTG9YJBqvYwutz3i7LK8N505PYnaeD1K9Xy9DtolvQlq/TxktAs84WjXO4xe1Lz4TC08oa26vLeUr7wKl/u8zeY0PeDh3Dz4eSs9YUHEPOG0XrrMMjw8L7MFPc2rwTwffvC8IYlGPTPv/jyZloi9eCUau4S9CL30nvI6Hsr3u5mWCD3kUYU7ODKpO1k4Bzx1pN28I4anPAw3QbwarYe8IgLMPCICTL1L4cm82k4GvHiQqjz2A0W8OqgPvWUOCD220kE92qiCPSFcSDz5dow8WYQOvM9cGzsLwdq9IJrau2K3qrwMKcw8eHTAPGLkqDzM2L+8DdqlutrmlDjKzWm99XF0uzgWv7z575E9DlAMvGAzzzy3PVK8uCkfvXm6ibw497W8j0cCPeA7WTxiqbW75DWbPGAJ8Dsk4CM8NaP3vA1FNjphYE29D6qIvDoCDLyFNo49Dtolvc7xCjxMDsg8N9tLvAql8DzgxXI8S+ToO06uDb3K7PI8eK8zPTePRDyh68y7uHUmPOJGL7x10ds8iYB8uy/gA72MiDO9uXUmu7bj1byYARk8jR0jPYnaeD0gQF68Y2ujuws6YDrf02e8uZGQvfkqBbyvB5e8i/ZiPUym1rt1iHO9Yoqsurn8IDwZn5K7RKuOuvV/abzE7ou84A7bvLl1Jj31JW09pMaFu27WE7vukpa8Ipc7PbfBrbxOzZa8usyDumDLXb0g9Fa8AxKavDlciDzgO9k8ZGgEvUyHzbwLolG7oCnfPM4Ts7wfJPS8Y5ghvXW18bz1rOc7em6CvK+chjx2lmg8t7O4PDkvijz5/Ya8tuPVPKFFSbuLMda8zi8dvO6SFr33tz09jR0jPeGV1Txviow9xWeRPHj4Gz11WFa8dWnqu3mNCz3J3v28uM8iPLf/P7y20sE6bqkVPfloFzy5nwU7pJkHPC9ZCb32BuS8S3lYPO+BAj1Pj4Q9RAWLPPqEAbzKc208TnMaurndF7u3hjo7tU7mPC7SjjtM09Q8rq0avXd0QDs4bZy8tW3vu+LQyLxhnt+8Y/IdvItCarzj7LK6dR3jPC+zBbxZhA69N6suvAspTLzikjY8hHEBvbezOL0jZ549z7YXvLZc2zzPHom9y0NQuY21Mb2f7ms8owQYvKImQDx6rJS8yoHiO0qK7Lwg93U95FGFvWGbwDzg8vC8YMtdOs2rQT0OnJO7D2+Vu6G+Tr322WU8TewfPRqfErw4QB49X/v6PBrahTwNJi09DBtXPeOuoD0NNCI84EztPJmIEzz06vm7jF5UvLUyfDwv4AO9d/u6vDgyqbtKyP68mAGZPI08LD3v+gc9ti9dPPYDxbxuMJC897c9PcwFPr3jYpk84Qu8vFr9E7yurZq8+aYpvTbby7wi8Te8dVv1vF/q5rvuoAu94tDIvBkYGL2h/OA8CnjyPHU8bL215vQ8YSXavLalwzs4mpq5JA2iPJ/P4jy4Vh294hkxPWS0CzuZtRG7zXskvU39Mz0ZBwQ8+FoiPKJTvryk84O8dAH5vKNQH7wNYSC9Nr9hPc8QFL1L8l28RF8HOzePxLzYjJg8dUphPE6xLDxuigy8oT/dPGoK0TwGla+7bTtPvM4upbwzRKy932ngO9l2yzqhP1094EqCvaumDr306Cq98hdHvIlvRbqITgW8V5w1PDiX2ztse5o6wbUAN4FJ0Dxxv3w63sn6vKYDVjwiCAC9bEsNvcYIsLxG4WM9pwPWOnOfrbxnV4e9lDYRvBF9uzvnz6C9LL8NvXTwersoXKC8Uzq5vKt1kLxlJgm9Uwm7PCp+Ub1O1lq9lyi1PFHYPL2h30I8X8IqvU0WJr2A6TW88LXKvFFpVb2/E7k8x6mGujNELD0r3mu8PZsfvSve6zwelkW9HDTJu6hDob3e6AW90lDWO6E/XbzfOsS8in8DvMpbX7r73SE9VXqEPQPTmDyLsAG9K97rvCset7pLJAI90P8IvdOBVDt8xhO8DrskPfdKpzwpre279Oiqu062Cz1GkYe8l8iavHUBKjziXHW8dECEPIXcSjwqHre8cY7+u+ZuFT2aKpe9dvJcvSktBL2Qcwk76gEQvDkIpbyI3qw8fJWVvZCT2DxN5Se85+/vu3RAhDzxRuM78VUwOg+LF735zPK8OllyvLR8+jwelkU89wpcPZI1oDz5Sxg6RZCWPNGw8DxpSLo9MeKvuxz0/bydjBO9owF0PDO0BD0/jNK7KFygPFfNszrjjXM8hm3ju/oMPj0HJsi8j/NyvCPJJb3bRy+9rVjnuzNErLveSRE85V7XvGMV2rz2iQG9SrSpOgzJgDuI/vs8rGc0PRehTr2FHJa8HUQHPQOTzbzQXyO9VdsPPQBxHL2MQKm89Ogqvfx9hztlhqO8wOQcPV3AyLzx5sg8B8YtvHFuLzy/Ezk80iG6O/l7JT3DFow8rGe0vC3wC7zoj9W8ApPNu3hjpryiEEE95A2KvAUk5joIhmI9llfRvP7/Ur2i0PU87+Tmuy9Rl73qMR29qqWdvHgj2zwXoU49ZSYJPLEafjyae2S9fMWiPAOTTb24T8A7nOytPIbcSju1jak84XsAvBYQNru7sbw8aRkePeFrwrusNja9vnNTPMG1ALyc7K08im/FvHvlcT3SIbq8mLnNu/a5jjz9rgW9DepAPLpAc7v/MNE7Ex4SvPToKjwdRAe9WG0ZvJr6CbyHrS69axoPvR9W+rx3ksK8r4nlvAMzM73GeIi6EEy9uxYQNr3Iivs8rJZQvOAZhLwWsBu8WG0ZvAeVrz0Y0sw8fFa7vH3n07pquQM9Ke24PPNXkryae2Q8RVDLO+cvOz1Vy9G8tY2pPHPw+rwqHrc8rpgyPdPh7jw6+Ve90xLtu674TL0ofO+7zZ0MvBaADr2Qk1g9Zua9Oqfjhjv2Ofi8ic9fvWbXcLuSVW888oYuvQX1yTzUkoM83qkrPGaGI7zi/Fq8Kh63PEyFDTx1wV68XCBjPVYMjrv06Co8xln9O6yW0LyIfhK9SBLiPCK4dj2A6TU8slrJvK+JZbwmKyI9cG6vvH1HbruKAN487vOzvM+OPz1s6oE9I8klPYHa6Dzqkbe7XGCuPDBSiL2yi8c8m7svvewCgb1ixAy9UTjXuuY+iDzRsHC8LE81vf8wUT1NFiY7jEGavBgBaT3SUFa7YZMOvjRErLw/zB09CCbIO7X8kDsnvDo80B9YO1BIlbw52Jc7eyW9PLWt+Lz9roW9ydoEPEC9ULyL4I48PGqhvH6HuTwMWSg962KbPYk+x7prqra8AvPnPHiigDyg7o+7hZx/vLb9gTsLuUI6HJTjO/s9vLy/pNG8wOScve1jDD15lCQ7/K0UOzVmXTk9W9Q8eMPAuz2bHzxJIxE9Z6hUPPJGYz0KKCo9Ex6Su5gZ6Lrq0BG8pnK9u1VrNzlpebg82hYxu8jKRrrowNM8AzMzvbqAPr0QrFe8n65EvTO0BDwlWj49tMwDPe+ETD1tDLM8lZccu0RQS73Hins7AJFrOuQt2bxnqFS9HSX8PHVxgrwore08AkIAvXOfrTymo7u5L1EXPeoBEDyPoxa9lVdRPbJLfDklGvM7Y4RBPD1qob1gwio6EKzXO76znruSBZM8gnrOvLDpf7rQf3I7zi4lPEbBFD3HWX0+hLuKPflLGLygTqq8Y1WlPAeVL73pIO46RbBlvJ6NBLv9DqC8P+xsvYU85bynA9Y8ljcCPat1kLxSCTs9lVdRO904Yj3bFjE9bHsavEVBfryMQKm8D1sKPfoMvrwelkW8W0//u7gugDvNTvQ8YbNdu/kbC7pQeKK8vtNtO8y9WzyUNhG8F6FOPOnQkTpV2w+9ydoEvDYWATuTxrg811QavU52wLsTrjm93LcHPVULHTzFqJU8WM2zvHKfrb26ICS9yVvfPIhOBTzeqSu9xmhKPB6WxTwdpZI8TAX3PPZ5Q72msoi6y2wOPOjA07sx02K8lyg1vM/u2TxxDpW8UWnVvNjlMj0wgpW8YWOBvJjJCz3TYQU9jzM+PP4/Hj0pjZ68l2gAPWxLDT3Z5TK86GC5uodt4zx1cYK8KV2RO8TXsbsQ7KK8g6vMubC647uB2mg6bTtPPUskgjy/c1M7uvCWODamqDwgx0M7dSH5PC+xMT3jPCa73XgtvPkbizx+eGw68PWVu5Gkh73ERpk8Wi+wvGMlGL2bK4g6TdZavIxxJz1R2Ly8VgwOPNPh7jyR1JS8O4pwvF3xRjzd2Ec9RZAWPfrM8rvg2ik9C7lCPXxWOzvhK3c9ZLU/PAECNT3F1zG6HzYrvIML5zppebi8sZqUvKSBir3/MFE9SuNFPNhFTTxVazc9cd4Hu1B4Ir1qClG95G2kPEq0KT3rYps7Iul0PF4BhT23vie9zIxdu7R8er2zy5K7lyi1vGKEQb0c9P07qqUdPUsURDuolG47dJDgvATEyzqPoiW8sZoUPfqsoz0x4q+8NmbdOh82q7zg2ik8CIbivN6pK71ONnU7T0ekvMwd9jwKyI+84NqpvDRELLz/MNE8u1EiPVVrtzxuzGc9HmVHvcubKrsys5O8v0Q3vYlvRb35eyW8qqWdO2GzXbusltC8oR8OvGDzKD3iy1w8bHsavWqqNjxYzbM86QAfPYGp6jvVQ+s7wATsvB3FYT1GkQe9b/1lu/1uuj0u4M28xzmuuweVrz0qjo+8zo6/PAzJADt+hzk85G0kvRtjZb0edQW8C7nCu1yAfTyMQKm8Wk//vATESz1nhxS9RWAJvW58izshmKc8XfHGuwcmSL3oIO48kgWTPDamKL35eyU9agpRPdfzDr1AvdC73KdJOmBTw7zvhEy96GC5up69EbxOdsC7xWjKvHz2oLyLYPi7bTvPuQHRNrxKtKm8H6YDvWIkJ7052Je8RWCJPapFAzrV8p08AJHrvH9YHbkyM328KV2Ru2OEQbyvybA9eZQkPUXwsLxbzxW98MUIvR11BT1X3AC8ti2PPGGz3bzadks9PCrWvFGY8Twhx0O8gBhSPRGMCD3Hinu8HUQHvUgSYr0YQbQ8OcjZPIh+krsY0kw8NOQRvcipBrsZ4oq820evOoatrrupFAW8Wo9KvKqlnTw5CCW9Z6jUOTU137w+7Gw8U9qeO6s2tjuE6xe8J3xvvTqZPTtZXkw9T7aLO1iN6LxQeKI8ybt5PXK/fDxrShw8LI8AvRw0yTzWwwE8RuHjvDwKB7zOTnS8/M7UPBNOnzx6tPM6MVKIPERQy7wtQGg5HESHu0HNDrzeCUa9dcHePKQB9LzPvz284asNvWJEdj2KrxA8PoxSPKThpL0m69a6jECpu5boaTzDN0y7xln9O2gIb7waw3+80H/yO7WNqbzEl+a81oO2vCLpdDy23va7jUEaPMQWDDwD82e9aXm4vFfNszq6QHM7y5sqvH/4ArvZpee87vOzvCQpwDwLKCq8Er2Gu2KEQT3SIbo84EoCvenxUb1c0IY9lCbTu5fIGj1VCx09m7svvZ2ME71wLuQ8YiSnvBqjsDwIF3u74BkEPEeyx7xwnUu8gLi3vC5xZj3d2Mc8dNArPTwqVj0L6N67uO8lPMYIsDwsTzU7BASXvHuFVz2Eq8w8iN4svUZBfjt0QAS8W+9kO2MkJzuUZh49peEkvN86xDsEBJe72tblvNtHrzxVqwK9Qc0OvNIhujxeUWG96CBuvdwH5LvGyGQ7jEApvJ+uxLxLtCk8Dhs/PUmj+jw5yFm7MUJKPNGw8Ly2/QG78kbjvS8hijxDH0280F+jPPlLmDzZdss89ajfvMKmMzrqkTe8KPwFvVUrbDr+/9K8IlhcPaKwprxeAQU927YWPH1Hbr3hqw290xLtu3EOlTzvdX88NeWCvDfXpjykAfS8JiuiPBNubrxVa7e8Z9dwvTg3wbxSSQa80xJtPecvu7y4T0A7zi4lPdFQ1jysNjY9F0G0O8C0Dzv9bjq9CCZIPCoeNz2Dq0w8UBcXvDR1KrzJ2gQ7oD9dOweVr7xjJZi8dvLcvN23h7sm+xS9Z9dwOvk7Wj1+95E9yNmTugm3YDuwKcu8dXARvMs7EL3kbaQ89YgQvbpAcz247yU5+kyJvYXcyjyAuLc8qDRUvJeIzzuQk9g8iq8QvEBdNr21XCs7QF02Pfmb9Ls8aqG7MjP9O/vdIT1U+u05o3Bbvc0ddrx4g3W9y5uqvMfZE7s05JE8NhYBPYZtY7vrYhu8uiCkPGIkJz2LsAG8xQgwvdjlMr1KFES9fnjsu4etrrz+/9I8vKLvPFCnPj0LKCo8HaWSvFGY8TwdBa26YoTBvEBdNrxALLi8eZQkPdKQIT3XVJo8x9mTPXslvTyefcY8vlOEPIEpgbzJKmE8HUQHvU3lp7uC2ug7sotHPG3btDx89qA8IMfDu5eITzxVy9G8tY2pvLT8kDwDM7M8lZecPUD9mzw/nJC6QF02PMvs9zsTvYa88eZIvOAZhDxsS408SfISPWoKUb1wPTE8h23jvIcNSbzTYQW8qmXSvJdogLyjcNu8i7ABvEBdNrxYPYy8LSCZvEaBybzw9RW8o3BbvN/6+DtSqaC86tGCPR9Werx5ZJc8cc5JvRky57xw3Za9ejQKPTamKLw2xnc7TtbauxHd1bof1hC9Pco7PQ7qQL1jdfQ8WM0zvCq+nLuksRc9hg3JPDkIJbxKdF69b/3lOwooKj0nvLo82xYxPdbjUD0hmCc8MKLkPGZ3Vj3Pjj89AzMzvP7/0jwQTL08RVBLvDNELLmKf4M8xshkvLcuAL0pXRG992r2O5dogDwx4i89zZ2MPLGaFDs4pxm6556ivLtRIj2+s568Kn7RPD77Obw3N0E8TEVCu4ZtY72rpo68aeifvEsUxLzzJ4W8iT7HvGe3obyFnH+9TxcXPUGdgTsiOI29+92hPWtKHL2Bqeo8bOoBPOSN8zxZbgo97iQyve91fzxKtKk873V/vKAO37yYyQs9UEgVPAsZ3TxoqNS8U9qevL9Et7zl/ry8PZsfvYqvkD08yru8lyi1PDvZCDxALDi8CZeRO/1uOj3hCyi8PDoUO5C7xzwlLgU9H9qYO/2PATzjbBO9qkcPvd1ztzzyIz+7mAHrPLT0Lb2Dm0K9hMYnvck7XDzVbnC8xbdEvM395zs7vxK8LfodPaFQEbzJO9w8p2tPPGZ6srzGmMo6043quvJtHrz3iNy8/FZTPZbTnTys0Gy8WSoCvetJXTplmSw8dUuSvWgrjb278PG8rNBsvSdLobxiQ2K8y1WQvPR5CT2V8pe9ILuevQ1ykjzoPXK9uAwEPSy+h7zPNDi9KsPNvPgcG73Xetu87emGPI9Dm7wJTPM8KlcMvePY1LwodoY78wRFvRkrnLy3Z5S9c6gAvcPkhzwUyWa8C3fYvAfDlbz6lMe8pXkYPXpJND3P6li8k+asvMp0Cr1ZO7O7jKPxPBRdJb1Ryiq8r3AWvZvD9jzbZ8w83p6cvIK6vLwxNFY9zzQ4vIrh5bw9kk88ESZVvEjFY7xb/b48WBBOvUvRzjkbNwc9HvmSvVRci721i1S8zihNPAceJrwQjy69u4SwPEXYcr3VmdU8Mn61O7Eyojv3Xfc7w2H6PH5hirz5aWI6AW8pvTh3kTzy2d88u/DxvPreJrz/rB28ujrRu74nwjyrOcY8Ri69PU4In7vqoQW99sbQvJsN1jutZKs8MZ0vvB5G2jwNg0O61w4aPSrDzbzWmVU93IGAvLJ/aTyjNH+942/7vJAFp7wJtcy5p/+NPA/7b73uC+k68GEzvZMwDDvIedA80COHOqhM1Ty1xIK9jc5Wug1yEj2aw3a8gpvCvHV7vTzIL3G9/jdZPGkMEzwTfJ88msAOvVROQjxsKa+8e+BaPfD42TwxU1A7AiXKO8TWvrxMk1q7grq8POyfp7oomGi9vwjIvBjvhTyuNAC94ouNPHyi5rxBbg88tiJ7PVqI+rwMoj29ZE/NPFtHnjyzf2m9NwLNvLYi+7uhBjI9Dc2iPYanLTzWmVU88K56vWXEkbqX/gK9WfFTvI/oCrynljQ8QW4PPVFh0TynIXC8Of2GO3KOzDzTxpi7knFovK5FMbzVAi88uQ/sO3wLQLxr/kk9YBWVvPBhM7xO6aQ8adNkvGzfzzpUTkK8l7QjvUIW57w0L5A8ohIdvRmX3btA6Bk8q82EvdiGRrwvKOu8y2bBO8+dkbvW0gO9BX78Ogn/q7z9DHS9qC1bPf0M9LyIlJ684vfOu2RPTbqs0Gw9LUdlPOZ7ZrxByR+91QKvPM+/8zsfRlo9apIIvVtHHr3TISk8Z6j/vL383DwUE0a9y2bBOgvBNz2IWAg9GzeHvbxUhTu6D2y9lZcHPSWrdzzLsCC7EkCJPBaLcjzNciw8oxKdvCfwEL02los85ZrgPNfEuryGp627I+nrPMRLgzzXlI87op3YvGZ6sjwLsAa8fPqOvPH4WT10Md48cPclPNjvnzxfy7W8TggfvD7cLjvCgHQ9+MGKu2iGHTyGiDM6aIadPXCcFbs4LTK77J+nu/Wb67y57Qk9sL1dPYQy6bou26M8lDP0OzkOODyxMiK98FCCPRCPLr3B6U29inUkvVL497yOB4W878oMvJjfCDvWmVU9lok+vBnCwry/95Y9VR6XPCBgDr6tGky8Rx0MPTT24TwSmxk8+d4mPRNdJbxmerK8G+2nvBEmVT38v6y8b8xAvVnxUzxgFZW8JkshPVyumTzSIak8epb7PJricD1blOW75AM6vEW2ED0X1VE98/MTu2ZpAb3j2NQ85nvmO4p1pDxbRx47gooRvBCPrr2pZok9STooPM7e7bt4sg08s2DvPCAn4LsXbHg8WFotPWZpAboaeGM90ctePV1TCTy1i9S8eR5PvK7c17xdU4k81I3qOyUgPLxSq7A61zB8u7o60bz6gxa9FKcEvB4bdb1jbsc8JT82PbyvlTwcWek78hIOPCUuhTuwnuO8Kzv6PLuEMDzZGgW9FBNGvWvfzzyAQhC9WSqCPRkrnLzxrvo8U4w2vW35gz1GLj09vifCvFN7BTxHLj08C7CGPOV75rz4HJu9btoJPcWmEz3Txhi8a5VwPNelwLzA6U28OHp5PAG5iDxNrY48uC5mPpyCmjzk8gi7a5Xwux3OrTyt+1G9b8zAvJwnirzBA4I8JrfiuoxWKr2QbgC94BbJPP6BuDyg20y8c7kxPb2QG7xzqAC7LZ+NPc5TMjzPv3O8O/sovemHUT3Cq1m7f4PsOza4bTvO3m27ujrRPMKA9Dy8sv27C1jevP/5ZDydCBC7Rk03vVikjLxlBe48w+SHPMUBJLwM7Bw7dFDYO2wpr7whUkW8OjmdvS1HZTxTjLY8js7WPAqWUrwM7Jy9XVOJPB2vszxJ35c8z0IBvOZZBLyuRbE8qWYJu2wprzyhBjK927Erumc8vjyXakS6TggfOwY9oLt6SbQ8BFyaPDh3kTxkT028OOPSvKqin7xN3bk9ANgCPbITKD2Dm0I9Fj4rvWKNwTzY7x89Ry69vGGsuzydGUE9qu/mvNTXSbyUtgG9j/m7uwQSu7tvu4+8VZihOy5H5TxYWi09gK5RvMUsiTzqsrY70ooCvVMjXTupdzo99ZtrOxJACbzVLRQ8kJBivOpo1zrFASS9m1c1POhc7LwZK5y8/jdZvFikjLx30Yc8ESZVvHHYq7tnWzi88GGzvCYPC7s7v5K7OByBPYorRT3EjN+8oVCRPFuz3zwLWN48oJFtPYvC6zyFpy09lMeyvJuhlLwo4se8690bPJ+w57yv9ou9xaYTPa8mNz0HHqY8q+9mPdVu8DvZ0KW8RFsAvciTBD1TbTw9LbC+vGmxAj3f62M9XK4ZvYR8yLu4DIS9JmqbPCYPC73+gTi9VE5CPCpadD2YOhk8WTuzPAbUxrznXGy8vGU2vGKNQT0sGZg9Ha+zvDQvELsMOWS9RSLSugqW0rxM6wK9BX78uwNQL7wM7Bw9btqJPDiZc7v+gTi7/L+sPGzfTzoawsK78iO/PJAFp7xAnro7dXs9vflpYr13Pcm8Q4urPKiWtDwenoK8fTYlvewIgb3Xs4k8LyjrPHnU7zt5/1S6690bPR+QOT2N7VC9wqvZPJJx6LxZ8VM9sn/pu6IxlzwyfrU9w+SHvLXVs7tcKCQ99eXKO50ZQTzPUzK97HTCO+Wa4Lzhre+8jYT3vOMDujy4eMU85sVFunWmIr3IDY88o37eO8o73LuQBae8BDG1OPBhszzaHW29DmTJPBnhPLvdCt68nWOgO1iFEj278HG9z79zvOV75jzfNcO8f81LvVXigLpV4gA8VR4XPLNg77yWiT68vt1iPEQiUjvYdRW8NWsmvU8zBLzC9Ti9ZTDTOqaKyTzl5L86abECPV5W8bwQj668Ot4MO66PED2+Uie8YBWVPYc+VD363qa7C3fYvJDawbxmMNM8KJhouWFiXDzwUIK8gK5RPWKNwbwNFwI9S9FOvO1VyDyPQ5s8exmJvKAGMrzjIjS9CwuXPAcepjxT+He8xW1lO3fRB70o4sc76RsQvZJxaDy34R69Cs8AvUF/QLzKdAo9TgifvODMaTxIhAe8EjLAPODMaby6OtE8PtwuvZjfCL3Mkaa8tYvUPAceJrvQgf85tEH1OzJ+NT3kAzq8HFlpPK2PkLtN3Tk53wWYO3KOTLwix4m7J0shuxFwtDu2Ins8tKpOPe9QAjx7weC8KnluublIGr0W1dG8t5c/vSBxvzsTfB+9YBWVu3oqurycgho983mJOw/77zw7hmS9h3cCvJaJPrydRCa6vhaROxFwtDyQu0e9LtsjPFWYoTtwnJW8+bPBu1Uel7x8C0C7z1OyvHVqjLyiNH+8hHzIvOke+LwoLKc7rbHyum7aiTnJO9y80V+dvAw55Lz97fk80OrYvF4JqrypwZk8e8HgPGXjC733iFy9i8JrPc5yrLwzXzs9+bNBPHwLQL0GqeG8vTULPUFujzs+KXa8PEUIu5KcTTz+N9m8qlhAO44YNry2pQg9iJSePM6/8zygvFI8F2kQvPygsjsodgY94czpPAxYXrwQRU89U3sFPQUBir0uJQO8iitFvcKr2Twkq3e9bXb2PKTzorsTfJ+8GEqWPBqxEb3bkrE8a9/PvMPkh7wNcpI8LtsjvR2eAryHPlS8vruAPE5VZrxYEM68iEo/PZAkIT2Gd4I9jTcwvUgPwzy0QfW7y1UQPW6C4b2SnE28iZQevQAzkzw6W/+4pPMiPI2E9ztf6i+7klJuvHVLkr2rg6U8ZhFZva6SeD00EBa59zuVvD7crrvlmmC9z1MyOyUuhbxOCJ887+xuPL67gLzPU7I8SISHPGGbijwf/Hq7yJMEvV6/Sr3sviG9SFmivKGdWD3YW2G95ZrguwQSOz1Ut5u8NbUFPXYSZDx2XMO8HTpvvKnBmTu9/Nw8UDZsu17qrzpZKoK7BtTGvOxjET1rlfA7QmDGu/neJr3ZGoU8FAIVvYTGpzw1EJY9nWMgPXv6jjtaHLm8RuRdvN3f+Lut+1G9lvV/u51jIL1OdGA9FtXRvMp0Cr1Z8VO6gqkLuaRf5Lo/rIM8adPku9aZVbyWeA29lfX/PAbzQD0wcsq7GsLCO+KOdbvQfpc9nIIavMgNjzwyfjU8Yo1BvVQ9Eb2FE2+8gK5RPLfCJD257Qm9vLL9vHqTkzzMkSa7dvABvZbTHb3sYxG9vBvXvJhLSrwLd9i80OpYPQ8a6jsAREQ8M1+7PNyBAL0J/ys9OC0yPG1UlLwHiue7ulnLuy2wvjyntS49kG4APY03sD3kTRk6eR7PO2+7j7zhre+7F9VRPbHXEb2b7ts8Ry69vId3grpeVvE8e3SZu0L0BDy4ZxQ83SlYvEk6qLwoLKe7eD1JvNodbT0YShY9js5WvFIXcrzSrGQ6U208PL5SJ7yiNH88y1UQvCU/Nj1UTsK8XXXrPHcsmLu3eMW62O+fvKQ9Ar3gYCg8dlzDu6e1Lju0Po0827ErvI03ML2WiT68W+wNvch50DuRqpY87QvpvFv9vj1b/T69ebX1PJCQYr2Dm0I7T+kkvT5zVTz8oLI8F2kQuqiWtDu/Uqe86rK2vIBCkD1gFRW9Qk8VO4WnLb3ZdRU7R5r+PHSatzyGXc66glFjvBFwtDwqpNM8k31Tu98kEj0LwTc91i0UvYMvgTwOUxg9qoOlPSBxP7ycOLs8ihoUPYrhZbwFqeE7Bj0gPfen1rzxrvq8N5YLvNPGmDuAQpA75C6fPPoohj0+3C48EwKVvDdMrLzLVRA9NWumuu4L6btjXRa8KsNNvLd4RbxpHUS8jFYqvMHK07wNchK96qEFuw5TGL0Q3HW8UqswvTgtsjyIlJ48B4rnvDHnjj1UTkK8FBPGO1zexDtCTxU9pwJ2u1tHnrwk9dY8t3hFOv8Y3zv2EDC9i8LrPE5V5juVXlk7aQwTvf8Y37xb/T69ESbVOwBExLy1bFo9def+u8GA9Dt6SbS8rxUGvFJhUTw21+c8z0IBPfmiELu884U7SH0rPVGGmryEks282jHKvKkUkr24lSI82JeePKKLkDzRuU28rtnbu8R8B72c8Qk86e59vCaMNL0k8oi8ohyDvA41nzzN7Fy8MLcIu522eDzMQay7Bb2iPMxBLL31RHC8MXx3vCOUAD3w7jO7EuCqvEMFirx++Ma8yWM2PBetG70UYBi9vEAuvNv+X73v/7g7iQrvvE6g/bzIliA94ZjmvNiGmb2884U6pdiTvQwC2jxxs9m8WTEBva8dprzRnw+9Jb+evELjpDw9SR68Wm0kPWhdwrzxmeS8YYeYvI+kdb0CaPi8KmqqvUNs8LwEX5q7PwUvPDwnubzuu268InKbPIH4IT1+1mE90mR+PCwE1rxu98i8+3cQPBWcOzy6UTO97EOovDNr8rxAJxQ9CwoBPQXfhzvIQVG9nbb4PJAKpby5FRC9iBt0u9KG47xeOpW8nxwoPAvom7yAkvI82jHKPNdTVL2EtLK9vrj0u7mmgjvb/l+79d0JvUNs8DuA58G8rGGVO/sIA7xts348K+oXu8ANn7t9K7G7WQd1PDh8Lb0MJD+8SQb3PCGlBbyc8Yk8iEUAPOt2Ejs0rzw9GHqxPPBDAz6httM691XQvNVsALyacRw84MvQPETSn7zVQvQ8q/tlu+JlfDxOFzK95zJtPasDDb3Rn4+7Ozi+vLGVbL2ipU69PfTOvPLdrjxgslu9HCW9O4ZWBb1mVIm7fd4IPZzxibxdKbU8KSbgvALfLLzmZVc83kKFvaALI72mg0Q98pCGvQDwMTuCge28jtffO0LBv7zADZ88pLauvEwGUj3+VYY8EgIQPZVg4TwCvUc5wZZqPPlEyzlWwhi9FU8TvXAIqbwN8dQ69UTwvOt2Ej0TrUC9LsgNPIHWPD0DrMK8DfHUvHHVvjyqUDU7+URLvZPGtbzpQ828yJYgPQesnT3ChWU8FzZnOqPpGL0bWCe9X8NgvbNR/byqUDW948uru8z0Az0U8Qo8nD6yukLjJDvJY7Y8V48uu9mGGb3uVIg8T8LiPKDpPT3KMMy8xHwHPeR+g7sE8Iw84MvQOutUrbyRtdU7oC0IvDLiJrwFvSK9y/1hPManpbwb4XK5zrlyu3heQL2NLC+8BHnYvIPnHL2Jo4i829z6vIs9NLxxs9m8tWLdvBwlPT3M9AO7ZNSbO6mDH73GhcA8Wv6WPQxGJD2R17q6UsI9vHaiLzzNMCc9bO4PPev/3bzDyS+8U49TPbmmAr08Jzm8xWNbvePLKz3UU3k9u3MYPbEuhr2ppQQ8toRCvaZYAT2gCyO806jIvPtVKz37ANw81dsNPZSTy7wt89C8KvP1PCwEVrz1TBe9OSfePD6ffzxj5aA8uB7uu4Nw6LwFRm48Kvucu2Vd5zr6GQg9yWO2u1Aokjx87w09o3oLvXC7gDpTbe484mV8PeXcCz0WNue6G+FyvO8hHj2ncj+7P8FkvOcy7Tt1gMq8QYUcPd8goD1Xj648li13PAkk5LzZQs88Q45VvUr1cT1ZB3W9SmwmvTieEr1vonk711PUvKzq4LxtKrO8koJrPagllzvmh7y8ghqHPVZtyTqi+h2+9O6OvGduRzxAJxQ9TWyBPB3Q7bvlQ/I7pHJkO2/mw7zBuE88OHytvEOOVb3luia9Vm3JvKPpmDzC2jS70bnNPMY4GD2vyFY9exrRvAxGpLxWKf87z6htPRaLNrwZJeK6kOg/PSOMWTwHzoI7TWwBvS8EsTodWIK9RX1QPZAsCjxDdBe7gJJyPIpwHjwuFTY87rtuPOfLhj0hnV68yRYOPUvskzxDBQq8QmzwukEWD7zy/xM8xskKPVg6X7ycx307j6wcPLi3BzygCyO9iYEjvcz0A71LF1e961StO4Ys+TxfoXs9vvy+PPBDA70cA1g8Q47VvMgf7DzP/by7EK3lvM+obb15gCU8KS4HvelDTT07OL68uQ3pPKPHs7xpEBo9IZ1eN1kp2rz9ETw991VQvC5ZAL2SihI8IaWFvZzxiTwKE1+5plgBvcxjkTwA8LG8xHyHvKS2LryzUf07Sv0YPb7aWT49yYs9GzZCu0GnAbweWAI8d29FvQlorjxsXR08Z7KRPIv5abx2oi+9PWsDvVtcHz3rVK08wS+EvJsCDz2xt9E6N6+XPHAIqT2nlKQ8PdLpvEeOML2e2F09/wC3vPzVmLxOFzK8EfGvvJgccrta9u87Oo2NPOaHvLwYejE8cAipPAesHb1nbkc7SmwmPL+n77rIQdE80Ow3PUMFijxC4yS9yx/HO9nt/7y0lUc8mxxNPOiYHD3XdTk7RGMSvQDwsbt+Giw9am4ivQWbPb27c5i5L+JLPMbJCjxN2w4929z6vEwG0rzMQSy7IuGoPEEWjzxsXR28+WYwPGNubDuJLFQ7JGGWO/G7ybyJEha9AZtiPT30Tj26UTM9YqFWPTLAQbwGijg9vQ1EPfrv+7z7ANw8HAPYPKSUSbzJYzY5/CJBvGx/Ar1jBwY8CjXEO0LBv7uIRQA9MwQMPcL8mTvAnhE6dLM0vEmfkLy+4gA94O01PQloLjtwCKk8t3M9PFHTQrxx9yM89F0cvXSztDyfx1i80Z+PvICamTtwCKm8IfKtPOTtkDwqaio9JGGWPJPGtbzijwg7bSozO7sECz18gAA9m5MBvegh6Loqaio8uQ1pPBOtQD0uFTY90Ow3PXIZibx0szS89HfavMgf7LzlS5m7Y3aTvQrx+TzSZP66ZGUOPWCQdj0Fm708URcNvRc+jrxyGQk9YfalPOGYZrxh1MA7rD8wPeoYirxDjtU62e1/vbCdE7zKpwA8eRGYveDLUDv+vGw8tJXHPLCdkzxJKNy7fd4IPHkRmLy+UQ49A5KEPRGc4LwDkoS8NK+8vFSxuDj5ZrC8FGAYvT4WNLxyGYm7ZGUOPbbIDLwHPRA9wZ6RPKmDHz22L3M9TAbSPAOKXT34d7W87jIjPHmApbx1XmW9BU4VvS1IoLwUYJg7MK/hu7ovTruDxTe8j6T1uQ8CNT1v5kM7BUbuu5Nx5jwTafY7FPGKvNVsADumg0S6ulEzPbY3mjxQBi08O1qjPZotUrzQ7De7u/xjPcXaDzuBtNc86LoBvA41nzyGLHm8kCyKvKCcFb37CIM8GzZCvZYtd7xksra8sAwhPRHxrzsHNem8sS4Gu0C4hrrw7rM8ClepvUV90Dy2L/O7N68XvRRgGLmR1zo93txVvT1Jnrz4Kg09HdBtvCGlBb1jBwa9Fou2vHeRKjyr++W7Jb+ePG1MmLwHzoI846lGu421er1wCCm9CJsYvcSWRbwzcxk9uwQLvCGlBT2N34a85qkhPNsGhztts3482CBqPIOSzT2TCgA9hiz5OflmML3fsRK92e1/vGV/zLs6/Bq8uWI4Owh5szlZKVq8sOo7PbdRWLwHrB09PUkePEGnAbyHkqi8kqTQvAxGJD1/xdw74MvQOnkr1jxVfk69v6+WOx8DM711Zgw9j6ycvOnu/bwXNue8Zip9PKKlTrzGpyW8Ozi+vH88EbwcA1i87RA+vMY4GL0+FrS8h3DDu5XXFT2e+sI8y/1hvX3eCL3cZA89z7AUvP/eUTygCyO9vEAuPFCPeDwpJmC8LsgNvK0uq7wJaK48QfQpvGWhMT0VvqA8U4/TvL8epLsq+xy94O21vNPKLb22hEI7C3kOu7amJzzmZVe9MsBBPQ5XBD0/40m8lLUwvXPmHr1GSuY8cYgWvAOsQjzk7ZA8JZ25vM+o7bw3jTK8P+PJvOOH4bw84247iF8+OrJR/bmS+R+8ZkxiO/DuM71C4yS9Z5CsPE4XsjpDjtU7jSyvu3WASr0k0KM8n8fYvO3uWLxmVIk7KUhFPdXbDTwpSMW8XvZKve3uWD2WVwO9WH4pPc8fIj1d3Ay9gokUva7hAj11XmU8Z5CsO4N4DzxRhhq82LkDvHkRmDxksja8goFtPYzo5Dw3jbI8yx9HPcxBrLxfy4c8U+SiO8hB0TyFgci8YAcrPUsX1zy2hEK9kqRQPM/9vLz0d9o8pqUpvStZJT2Ekk28WxjVu9VC9Dx9KzG9Zxn4PFWgM7zkVPe7eYClPOwhQ72zUf285oe8vLdzPbuiHAO7ghoHvODtNT1TBog9qYMfPevd+Lt7PDY87EOovFZTCzwcA9i9ERMVPb+n77wE8Aw9yYWbPBW+oLtQBi082JcePIYsebxrGVO9jPCLPBicFr3kfoM9qaUEvKALIzxe9so6F1hMvSTyiLo2UY+8m/rnPAF5/TycPjI8rS6ruzWeN7vhuks87/84u0tbIb0084a9T+THvEGFnLzsQ6g9dLM0vZDoP7wWi7Y8axlTu9d1uTz/ALe7POPuvP1mi72PzgE9j8ZaPM+obboDrMK6NNGhvKpymrwuNxs9WQ8cPKG207x8gIC86WUyu+8hnrzWqCM7GhyEO9lTrz0JaK48+wDcvN31Ab3GpyW85UsZvbtzGDzqGAq9zexcPXezj7xHF3y9PhY0PHZVBzzaMcq8X8Ngu7pRs7t++EY8CCwLvY21+jxjbuw8NmvNvKPHM7wSvkW8Wm0kPYVnirw/weS8QfQpO5dP3LyPpPW8UsK9PGSyNj0765U8Fb4gvRlprLy+/L68pqUpPSvicLzZQs+81jkWvTSvPL2httO7av+UvFkxgT0g0Mg36WWyPCc/jDxfw+C8soTnPOJlfDy9Lym9ChsGvP4zobznywY9BmhTPS3RazxE0p89+CoNPaN6CzyItA28AZtiPKSUyTxDBQq9HliCvLVA+LyDeI88SUpBPcxjkTwbWKe8QX11PAwC2rwONR+8lqSrPAwkvzxwKo49VaCzPPGZ5LwSApA7/97RPEkwg7zBuE+8qQxrPGRljjzFa4I9YsO7vFtcnzzij4i8+hHhu77a2bxKbCY85JjBu0lKwbyotgk9N0AKPAIBkryTCgC9DhO6vOZlV7y/HqS82LkDvPLdLr3Z7X89pscOvWmhDLsXWEy94brLuyRZb732ZtU8P+PJu7VqBDy/rxa94ZhmvHyAAL0EeVg9S1shvSqMDzwfA7O8ovqdvBtYJz1C4yS8Z27Hu0s5PLx/PJE7OUlDPWqQBzw1nrc9M2tyPKg/1buncj89HANYPdRTeT2pFJI877IQPD6f/zzN7Ny8Wks/u58+DT2Q6L+8gfghu0F9dbvhMYC75oe8PNR9BT3Rl2g9O1qjPB7Hj7xIfau8TjkXPfZmVTw0Wm28zx+iuwXfh7w3OOO78O4zvcLaNLz/s447TjkXvT30TruPxtq8qi5QvFWgM7zb/l88dsSUO0koXL2oHXA988wpvfDMTrxK/Zi7gAmnPFV+Tjv1uyS95qkhO8EvBL01fNK746lGvIWBSD1ZB3U8JZ05vPW7pLyYYDy8qnIavQTOp7yZC228csQ5PZKkULzNMCc8jvnEvL3Am7xt1eM8OJ4SPdVk2TyCGge9ulEjPb/pID3N/hm9uzvjO1e7FL3Fa169Zm1NPT5doTy0XgY9axsLvTCVKL2HGX29OGoEPP6hgbzvXUk8Frt1PLSK5rxP8Zg8GVC0vBVV9rmiZA+9/HLCvFEKGLzLHFu8B1a9vGfpDL05HQQ95EOOPFkLVDyrDeu8jWR6vHabRbycqDK9JnANvS1NarxX8tS8socnPB3osbyamhO9YDgQPQty+7wTiXe9Eew3vDvpAr3L5Ro9of4PvTEy6LyjF487/ovBvEnzG72ujOk8ap/LvB6bMT261WO8UFeYvSFR8Loii4+9Y4hPvJrGc703MGW9QK3gu7fdBL0bHLO8vR2ivDUtprzjYc88AvX/PDKuJzwxBgi9ASEAvCxjqrsK1bs8nvhxvTyRIrsyYae8VlWVPLsPA7yZ5xM7LgDqu/A/iD0m6e27FVX2u67Z6brxKci87xDJvJbhdT35vAM7lpR1u4ExwDwj5i691nsVvdTmVr0jau85Coi7vIdmfbzAhmC8tvBlvVnUkzwmnO06gH7Au41k+roFdP46OoODO/5UgbxrGwu9Yp4PvDJhJzxfHxG9lJE2OlkhFDtAw6C72EcUPb0oAj19/8E9lMj2OxMFt7wQhri8dwHFPCtKqzy56yO8rwgpPUbBHTyNsfo8eRrEvMZNnT2PMPm6jS06vLEhKL2Merq8bR7KvKyUCryef5E7oEsQvQJxv7wjMy+9y+WavLRTpjwfhXE8tvBlPKUlLr3CtZ88pz4tPSElkLxohky9P0dhPUypWr0cufI8Hpsxvcid3Dyh8y+9H4VxPPsiA71K3Vs9QK3gO8aEXTybQrM8y+WavFqHE7xOixm7jwSZvGM7z7yWqrW8JxitPLJFh7uEY748qqfrvDveojxHJ509NzDlvHSYBr35CQQ9+qbDuzhqhL0ufCm9NpOlvFqHEz23H6U9re8pPNh+1DvdFlK9Dm25PJEdmLxUiRY8yQNcPHTPxjx2m8U8kF84u68IKTs14KU60H2YPL6DIbpzHMe8Fo8VvJ0ZkjxND9o8Vz9VvGtSSzx4Z8S8rmAJPB+F8TndY1K9MKCIPC8vKTzIndy89HEGvCu7ijx+LoG8szqnulyK0jw0sWa9HWxyvJdHdb2YgRS9rSbqvHszQ72n8Sw8Ar4/vC4Aar1Ced88NlGFvLzuYjuiZI+8yhkcPaikrD2/NiE8Pl2hvGZtzTtIjRw9D1f5PMMF3zqhQLC8Is0vOSxuijwotey8jwQZPTx74ryM/vo8NS0mPTti4zzgXpC9V/LUPJcblb2YdjQ9qHVtPC7JqbtFDp48QMOgPLSKZjyqcCu9pz4tvf8HAT3Lads6wFoAvbvCAj1AwyA9opBvPPDDyLutc+q8xpodvKXYLTyvCCk7FKL2POH7T7y6iGM8CG+8PMvlGr2TNpc4nnQxPTUXZj0vGWk7WjqTuxyCMrsdNTI99j0FvRKftzyR0Jc8sVjovA54GTxWVZU9vKFiPYZ8PT2Mx7o8JUwuPX1MQr338IQ9JTZuvMidXL31W8a8A1t/vErdW7kSqpe8lqq1vHszQz1hIlC8ulEjvaS/Lj03RqU8J9YMvh+F8bwMoTo9OR0EPUtDWzxi1U88Ly8pPIaz/bz6b4O8LRYqPfqmQ73SgFe9qUFsvIn7O7sgnnA8IdgPvEHcHzxGdJ07cQNIPYKXv7zsWoq8sVhoPNjLVD2Krru8MKCIvH1MQj2XGxU7NlEFPQq/e7y6qYO8hsm9vUKPnzy2o+U6tFOmO5UudjyWlPU8LnwpPCacbbyPBBk9LsmpPH57gT3nRs08sLuovL5Bgbxwnci8orGPvFSJljxCj588cRkIvEqQ27qt76k8K4HrvDZ9ZbutJuo5n15xvaFAsDzlLc48GyeTPZNidzwmcI28OnijOjlJZL0x+6c8Ryedu2VUTrzA02C9kJZ4PBLW97ybeXM9xLjevICUADtnIM28nQ4yPYzHOj2zOie9Fo+VPOlfTLtjBI+8I+auvBp0k72IzPy66ytLPOapjTu4haQ8aE8MvMcAHbtLDBs9qKQsPPtZQzukqW4+GnSTPbsPg7siza+8dM/GPKS/rr0L7rq82mCTO26EyTlUiRa6MmEnvaCYEL1koc48R9qcPAU9PjtKWZs9qNtsPDqvYzz+i0E9DyC5vBq2M7sd85G9rSZqPSfWjLw9RCI7ekkDPN3fkTs4rCQ86RLMOwSKPryYw7S8GYf0PPvVAjukvy69MpjnO50OMj0UuLa6lJwWvAba/TyJSLy8JrItvW3nCbq2dwW93pIRPDSx5jzRGlg8iUg8vGPuTr1dBpI7zwFZPYlIvDsPKxm9sPJoO2vOCj3mXI28wp/fPJ6r8byaTRO9l86UuxkDNDxJQJw7DniZO8XnHT1FDp66rJSKui9m6brIs5y8zJgavSrOaz3+VAE9PqqhPAdAfT1E3968ccwHPVUmVj29KAK8PS5iPZa1FT2nPq28TVzaO2vOCrxp7Eu9lxsVu3xiAjvHAJ08YLzQPIVNfjySr/c5lxA1u2tSyzs+lOG8nGaSPHkaxDynPq07kdCXvIcvPTu8t6K7DvF5PAK+P708yGI8MQYIvdcY1bzj3Q69HAbzvA1UOj2WXbW8b7OIu5xmkjwigC+8PMhiPEHcnzxPKFk9YesPPQbafbyMejo8SlkbO96SkbzFHl49UNvYPJJ4tzwrNOu8pL+uOzxPAr1BKaA8D94YO65gib1IjRw9711JPJtCMzzL5Ro9+FYEO2KIz7yUkTa9YLzQO8tpWzzl9g28a1JLu574cT2fXvG8L2ZpPCkbbL3dLJI8Nn3lvPlARL1gOBC7RUXePDEy6Dt1NUa7qqdrvTMfh7yAR4C6I/GOPDkdhD2kcq68TnXZO/EpSL2WtRW9geS/vLKHJ72dRXK8zM/au7FY6DyzJGe8rlUpPJ/lkLwd6DE9qRUMPYNKPzvMgto8fJnCvG6aibuOnpm8geQ/vYlIPL1AdqC8cmlHPCU2bjozFKe8tcSFOaMMrzw73qI6XfDRu58ykTyGfL08Ly8pPa08qjvmXI07JNDuvFSJlj29VOK7lxuVO1/SkD1vs4i89ooFvPjaRD3nD428QSmgPCya6joJ83w8K0qrvIsUO73/PkG9GmmzPDKuJzy33QS8YojPvJxbMj3m4E28qQosOziWZDwrNOs8dejFu2poi70ymOc6JnANOyWD7rxduZE8BSd+PRC9eL0QCvk7kR0YPTFIqLwIvLy8XwlRvJ8yEb3XZdU8AG6AvHdkBbw1F2a8XqPRu6sjq7scuXK9BT0+PNcY1byxISi7ulEjPWiGzLv4VgQ9yJ1cOxkOFDuHGf089ydFvMECIL24haQ9H78QPTlJ5Lv4VoS8sr7nvMBPoDx9yIG84KuQPEiNHLvcsFI9KpcrvJL89zwyYae68MPIPJt58zz0cQa9oqavvKPKDr3tREo9WSEUPdfhFDrjYU87P84AvZcQNbx9yAG9TdiZu68TCbx7M8O8GrYzOwQOfzwqVQu9HIKyPLzuYjvz9cY8ORIkPFc/1TyTK7e8qqdrvVc/1bpkao48mSm0ORRrNr1aOpM7wQKgPA2LejwYqJS6+qbDvC0WKj0rNGs8qw3ru66MabyrDWu7jpM5PDH7pzwaabO7Ix1vvGEi0Lw996E63y/RvLNxZ7xv6ki9UyOXPBKqF72r1qo8IgTwuyxuCj3EgR67ETm4u5itdL19yAG8TVzaO46TuTs2k6W8olkvPQ8rGb2VLvY6syRnuycYLbs0x6a8VMBWvXgwBD230iQ9JTbuOxLWdztDQh+9//FAvbB5iLzRZ1g6QsZfPIB+wLw+4WG8BqM9PQL1/7tkoc68H06xuzTHJj3Gmp08QMMgvdMz17wUovY92xMTvCKLDz0pG+w8Q/UevRRrtryTFfc84ftPOwEhgDspMay8jpO5Oq6iqbyk9m67DcWZO33/QT29B2I8fnuBPAELQLtzHEe8KALtvC9maTzSgNe7HqaRvCywKj3RGtg8CVl8vRR2ljq4haS6vSiCuyqXq7yhKnA942FPvDZ9ZTs6eKM8B1a9vOh1DDxX8lS9+fPDvEpZmzwrgWu9rqIpvTaTJbxEkt48pL8uvZNid7oR7Dc9qvTrPNP8Fj1DQh86GTr0O/EpyLv2wUU8w1LfvTsrozuisY+7f+GAPIP9PjwNB7o89KjGvCSZrrwmnG27q1prvdC02DnGmh29Wr5TPbNxZzwt1Im7ORKkPMnMG71coBK86kELu03YGT0adJM6xpodu33IATyqcKu6nFuyPBS4trwwU4g4ycwbvTFIqLwM2Hq8jzB5PZkpNL1CeV+8hnw9PYDLQD3zvoY9XQYSPH6ywbxANAC9RJJePFlY1DzeyVG8YwQPvAimfLzKttu7XQaSvBaPlTwgcpC7ulwDvYkyfLs3RqW8mK10vKzA6jyXEDU97JFKOwtye7xRQdi8SpBbvVTAVr3tDQo8ZrrNvPqmQz03RiW9opBvvYcvvTy0U6Y5ORKkvC8ZaTytPKo7AnG/O6vhCr233QQ9socnPbiQBDwcQBI9PS7iO73QoTxJKty4re+pvFFB2DuGs/28OR0EvcyC2rzbxpI8OF+kPIB+QLz11wW97qrJO0faHDzOsRm9IoAvvV8JUb18mcK8lMj2O2xryryvCCk92THUO1Na17pohsw82EcUvFUmVj0ZDhS8sdSnvLRTJjtQjli81rJVPbMkZz3qjgu8Jf+tPTbKZTxANAA9uTikOzKuJ7xmgw09rmAJO0CBgDu30qS6bGvKuiywKj0ufKm8NS2mvIM0/7zjFM+8pQ9uvBzPMrsqoou8NP5mPafxrDwvLyk8M0tnPQvuOrzGmh29kF84O4dm/Tx6gMM7lUQ2PYYA/rxf0hC8hLA+vXh9BL3mqQ29Kperusc33bw2UQW90TCYPEEpoDsWj5W7rmCJvF8JUbvCaB+7LGMqvCFR8Ls0OAa9BT2+PexaCr3L5Zo5Fzc1vVkhFLyhQDC9S0NbPMU0HjwzS2c6LgBqvBlQtDuVRLa8vLciPRKfN70+aAE9yVDcvMK1n7wzS2c9L+2IO56r8Ttrzoq8gTHAPDdGJT0sbgq7JrItPbdWZT07YmO7j0a5PK1z6jxHEV09vyBhPNTm1jwjam88OUnkuhq2M7zTM9c8HlmRvG6aCb0Ibzy9Ly8pvEHcnzzXZVU9olkvPeH7zzr1JAa9A1t/vMZNHT1N2Jm77N7KPMscWzutJuq7RQ6evJ3MEb3I6lw82mCTuqXjDb3V/1W8rMBqvXrNw7we0vG8QWBgPDveIrzzvoa9WdSTPZjDNL1HXl082xOTPLDyaD1o00y8EXD4vFH0VzyUyPY7AVjAu4lIvLydzBE9nqvxO7iFJDwJWfy8axuLvNKA17xYbhS8k962vESoHj2vxgi9pz4tPANbf7zdY9K8UUFYPC/tiDxrzgo9NpMlvVrlwzyvnVM8OkUZPMXcK7xiStC8TSekvTp6QT2LoNs8g4CqPOsaRbyrheG8HK+KvUc44bxKlS46DyYTPBF1irtOrSC99dweu7F0pLy19ua6yKNJvODuGrymfaK75cExu9yhgLyJlOK7epUhPaPrrDyoiRu8SIm1vDXcUrzmR668FrJxvcaXUL2fgma8Bae3vGmj4zydQcW8gXSxvGsAMT0Pnrm83kxyvXX3sjyvnVO9VNELPX2RZ7ziPZK8/vzPvHuF7rwXzh27X04KPQ+eubzkBo09gT+JvB01h72ddm08cRRpvZaXXbx3i4W9aq9cvVD8F7tymmW85EkLuo2s1DuFBie8f3YOPdDhAz2tJ4q8RwO5vMTeCL2l9yW7n4LmPPzwVr17hW68+0MIvdayPTzpQ3Q8yr2YvJAJIr3hqT89MhU1OnsbnryGzUS7oRRcvc8YibtgCa879MDyvIBoODypeWg9FrJxvQ8mE706Nea8u9V2O7wmSzu0SZi8V1NOO2IVqL1lpx28M5uxO6X3pTt1wgo8c+u5O3dtfDyUIRQ6GpU7vUCsgryYbq48QO+AvMjYcTwwCTy8gO40Ok7iSDzMu7s8MkrdPTp6QbtTS4+81uflvMDGljyRjx49cI7svLO1RT3t8RW9VZoGPXrKSbsUPKg9yzU/PKKqi7rtrLq87KBBvXcDLLzqXyC8gPwKPbAjUL14VIA6EGmROyoa+TpAJCk9CXrOPFikIj3v7Vu9ZFbJvIrlNj3yFQG9wHNlvXNzkz2tkVq9DuOUOz+eLL3TZSM8tc8Uve79Dj0ZD7+8KnsAPSikLzwQrA883uKhPOJk5DzwuDM8pNv5PLWMlrtIvl293AtRvXd9Lzx48/i8rNY1PQgp+rylLM4802WjPXX3Mr0kV5W9iZTiPP78zzyUVjy9RcIXvYDuNLrtJj49+q+1PWAJr7lv00c8wtIPvZ9blDlHA7m81n0VvRxsjLwjO2k8P54sPSp7gDxy7RY85hIGPGKdgTzxxCy7/CX/vKCeErx6ykk7Ca92POnZo7wTtis9RDybvHdt/DsnHjO75cExvftDCDyy+qA7/PDWvJaX3bqyZHE8MAk8vYF0MTyPgyU8d32vvMVG/LyV6g69SsrWvB/+gbzO1Qq9oNM6vQ4YvbxDIG+987T5PODSbjqN/4U8Ni2nvH92DjwfaNI9tHDqPGg5Ezt6eXW9wfnhPAHE7TwIigG88zr2vJqvz7tPMx09SIk1vZfosTzB+WE75Ds1PVLFEj265ak80SSCvVM73Dvg7pq9mSnTPK9oKzuwWHi7WKQiO1QGNDu4U7Q78wXOvIDuNL007AU9hs1EPFIIEb2soQ09yr2YPKKa2DxVfH07HNZcvKzWNTznN3u8eL7QvIOAKj1WmCk9YkpQPJGPnjzz0CW9HzOqPLmU1Tye/Gk9HzOqPFTRi7zF3Ku7YJEIPckpxryOhYK8C7tvOzYtJ7zLNT893cZ1PdqVhzp4vtA8ev9xvNMgSD2F9nO9ztWKPR9BALxjBXW9bIYtveQ7tbzVtBo8+NhkOh54hbzp2SM9Sv/+O3MgYr0EITs9pfelO0fOEL5ceRa7KCwJPUyhpztNJyQ8VAa0PDvLlbxKlS69CgDLuzFakDwUpvi8YHN/ve4yNzzJKUa8hhIgPV79NbzytHk7yzU/PXcDLD3iPZI8FSx1vMH5YbyQc/I8SmAGvbL6IDsHszA9si/JPDW1gDyvndO8FfdMuxb3zL3lz4e624VUukvmgrqlYfY6b9NHPOpfoDsn6Yq79mIbPRc47jv0i8o8FkihPPSLyrw7y5U6VmOBuxMgfLxVmoY8ECS2PBQ8qDznfNY7oJ4SOwoAy7x7he68Z+i+vDHEYL10pl48gmT+PGhuOz1wJBw9RKbrOuG3Fb3tNJS9rZHaPJrkdzyKsA699+gXvTNmiTwWsvG8uFM0PYF0Mb1WY4E8VpgpvUGqpTyRxMY8lx1avZZiNTyTWJm8sCNQvATsErx4iai9O4gXu+ax/jzjw467+fSQPLIvSby88aI8Sv9+u8+CWTye/Ok72v9XPphurj2mfaK8+bGSvPs1MrzCf169GIlCvO79Djye1Rc9SURavLJkcb0qGvm8HfIIPWGPqzpOF3G8tAaaPdMgSDwhP6M8MiOLPRkPv7sGLbS6F84dvbBY+Dz0wPI7RcIXu1lfxztO4si8mq/PO2y71btB3028b9NHvLhhijy6T3q7oSQPvYbNxDtWfH08NCEuvO66EDw8hjo92xsEPW3HTr0uMmu8leoOvZezCT1YDvM821AsPcHEObqz6m29XsiNvHtQxjxDth68jaxUvTKdjrxeMl488rT5uxZIITwZDz+97Sa+O/mxkjzkcN07LjLru9RVcLwEIbs8jmf5O5HERjzwc9g8D565vKwLXrxTgDc9bdcBPdVh6TwXA0Y93F4CvbOAHT2SSsM88MYJvSemDD08hjo9mQIBvYO1UrtCZcq8pn2ivL5n7DwfaNI7eXn1ulcepjuA/Ao9BviLvGqv3DsXzp08i2uzvCtrzTwvkRU9pKbRPPyGhrzuMje83KEAPTzXjjzC0o+9Vd2EPOAjw7x9XL+8gmT+vDxBX716lSE9By00PD/T1LtEPBs9qsq8vKc4xzsEVmM8MhU1PfA+MD14EYK8epWhPM8YibunbW8739JuPWm/Dzwd8gg9tke7vGxB0rt2SAe9OfREu5zw8LuJXzq9JIw9PaCOXzwfM6o89ItKPd1cpTybACS9QppyvYgO5jwACUk9exuePINLgjuLoFs97TQUvTJKXTwyFTW9SpUuPAAJyTttGoC9AiOYO65M/zw5vxw8q1C5O/Bz2Ly9rEc60t8mvNpSCT20SZg9PyYGvWn0t7sUcVC9FcIkvPZim7wD0Ga9vmfsOkMgb7trDgc9wko2PGm/j7kdoTS8pOssPYeIaTznmAI6dKZePEnaiTjhMZm8vXcfvEIwIr1j0My8xdwrvB54BTw4bki7zIaTvAObPriovkM8DEFsPLO1RbyMJli7J+kKPCYgED39q3u8wD69OYIIBL2J55M91OufvHsbnjyV6o497jK3ObmkCLwerS09IrXsvKc4Rz01cgI8gXQxPX4XZLtEPBu8pzjHvCUSOjxp9De7hYwjPPRWIr0S+wY9vCbLOx8zqrzht5U8esrJPKlEwDwWsnG9KrAoPBEyDLwIigG9u6BOvJH57jyaeqe8YVqDuhsbODxp9Le8UztcvXXCCr3RjlK8hfbzuyTB5bzn24A6Qd9NvMPQMjtvnh+8cWcavVx5lrwenfq7X06KO1ikojy6T/o8BvgLPVmU77xCMCK79szrPKzWNT0s8cm7i2uzPchuoTxnHec6PZKzuwoAy7uWLY08iSqSPIDutDy6KoW8w9AyPabncrzgWGs9AY9Fu6uVlD2a5Hc8z4LZvDij8Lwz0Fm92PNePWCRCD3APj282sovuz7jh7yNQoQ8KjiCvbzxIjt0pl68qIkbvaO2hLs7DhQ8t803vYUGpzzp2aO8/XbTPPURRzwIigE9zLu7vMHEubwC4Bm855gCPdqVhzzFpwO9Rfe/u3EUaTx5D6W7I9GYPJGPHr1LKYE7EvuGvDoAvrzvgws8tkc7u7mkCDznAtM74FhrPXXCCrz+Mfi85Ds1PJ7HwbzwPrC89x1AvTIVNTqN4fy7BvgLPK1csrwuMms8bwhwu3kPpbtp9Le95c+HvAfBBjyHmJw8bRqAvJZwizw8DDe9eFQAvE4X8bv6N4+8+Sk5vNCeBb3mVQQ9Pcfbu/kpubv42GQ83ZHNvDn0xLoiS5w8q1A5vFdTzjvD0LK8ILmmvDWnKju1wb67aDkTvA6gFr2X6DE9/7f0PCC5Jr22EhO9RcKXPY5n+bz88NY80cP6PG3HTr0Fpze9SpWuPEvmgjzzOnY8/IYGvatQObzJKca8qxuRvB8zKjp1fww955iCPMtDlTwnHrM8MiMLvFqwmzwsvKE80VmqPHgRArvySik9wkq2PHIwlb0G+Iu8ul+tvD9phDyiqgu9qImbPDzXjryHU0G8ul8tOmvw/byDgKo8nPBwvGxRBb1shq08mKNWve66EL06AL68QFlRvGg5E72dDB29MiMLPTGPOD013FI93AvRuzAJvDvPTTE8NOwFPLoa0r3QCNY7WSofvHr/8Tyuaog8jCZYPOeYArwitWy7Q+vGunayV73uuhA8BzktvaiJGz3H6CS8JmOOO+lDdDwLUR+9Epp/umJK0Ly2fOM8EmXXPK5M/7s/CP07ErgIuzVyAj3HzHi8zQyQu7ugTr1NJ6S8/IaGvROBgz2YOYa9FHHQuxkdFT1hF4W7/av7PO3xFbq+MsQ8SpUuvbX25jy52TA9r53TPPzJhLzKvRi86FMnPTfoyzxLUNO8vXefvGhuu7xMC/g7FAeAvBrKYzyBPwk9WxpsPeZ81rz/t/Q5c3MTvTezoztArIK94FhrupGPHr2UVjw9oI7fvFgOc73V95g8X4OyPMhuIbxOraA8w5sKPEyhpzvg7hq9o1X9PNLPcz3j6uC8GUTnPL4yxDsCFUI9WxpsvAiKAb2ovkM8O1ESvZIVG7z88Na7eFQAPTmv6TyxqUy8s+rtvFDuwTxV3YQ8U44NvGQhIb0bGzi9VBQKvWA+1zsV98y8WuXDPAY7Cj3xxCy8/XZTPJHERrwDmz48x1J1vEsbq7yKGl+8prLKvJIVmzyl96U8UCNqPGy71T0f/gE9NCGuPAJKajxc8Ty987T5PNtQrLxml+q7dPmPvD6gibz6Nw89kcTGO8Wng7zJ9J08f3YOPJIVG7yYo9Y8/at7vEayZD1BqiU9nXZtuzm/HDw7DpS7oJ6SvDoAvrtd/xK8d4sFvB6tLT1YDvO8Hhf+O+OAEL0G+Is7hQanvAHE7TyovsO8VUfVvCrl0LtVfP26pHEpvLiI3LzxxKw8Zi2aPG4YI7zqXyA7WSofvVC5mT12SAe9gi9WPGFaA704bsi8svogvTIVNbz+Qau88MYJu6NzBrxKowQ82USzvI5n+TxAJCm9MVoQPV+Dsrxtx048BbUNPfM69rrCSrY7wD49vUqjBD2nAx89muR3OyTBZT1bGmw8xFavvArLIj1TgDc9SmCGPehTpzxVR1U9WZTvPLwmy7x3bXy8IS/wOlkqH722R7u8NXICvFC5GTnhtxU8iNm9PBc4bjwCSuq7iA7mO2A+1zt7he48wMYWu1sa7LtVR1W4eImovN1cJbzcXgK91aZEvIhhl7zxLv272cyMPI7IgL1StV+8zxgJvc783LitXLI6aDmTvcA+PT0jO2m918CTO7L6ILxcJmU9xi0APZn0qrxArAI9/scnu4OOgDxJHQi9pwMfPf0MgzuHU8E8sXSkvJzwcLsxWhC9mfSqvAtRn7x3ONQ8gXQxvWyUg7yVp5A8rNa1PD1di7y5pAg9580qPIvzjLzr2zu83rBmud00Br0LqFS7JtYIvAjKZbxYxBi9BPjAPWLR9LxdwZ+8tlk3vYc9zLxixAu8akNYvJYhkzy8rIK7RL5NvbkGX71Nk9661u2EPE2TXr2UuIA8ZUBsPOJpWLzC2289dZkPvHRJMD3+2yG8G6VOPDClNLzXSs28ACwBu6tT370LXtq8bTp6Ou1vsDmVCX+8bjp6vFn847z14ZM8dYfgvCM8r7si8jQ9QTajvHmKTLwWtJE7dAsAvNrFjrwhj4e92rnEvFx3pbwwyjE9rgzRPHVPlbzAU8W8fPlDPGx6hL2XOsa83VmDvZrOurxqaFU7uOFhPTm49bzsUJi7PCftu0N0Uz1eJM28wGz4PNmUR7yj4fu8NdMCPZD5KT10bi08A9NDva75grxaIeG7UEzQuLgG37w+luS7HO9IPaimN7xZCK67s8XCuZJoobw3MEs7cuYCu/EDpbyC/K87rISmuxbH37wbsRi9IdmBvN+8ML1e7IG9K6JIOAjK5TzulC29gl/du1VPvDyJSRa9SF6MvJ/RJrxik8Q87m8wvJONHj3tlK28u4GgvFK7x7z2aT49X/9PvLejMT3ychy9McqxPDWooDyPirK8n/YjvRU/tbzWwqK89l10PEsLtDuRQ6Q5WdfmPFFYmj0Y7Ny7AEuZvM9p8ry/eEI8NcFTPUAXi7wn0CO9DiOWPJoYNT29rIK9DzxJPN0ovLk5hg889eETvRLchz2L6nM9vzqSvYDLaLobZ549xXuuvFJxTbyatYc9iaB5vSCourmK6nO8EGFGvIz2Pb307vw8vKwCu1QRDLuZtQe8CMrlPCfQIz12vgw8wzG0O6nk5ztQJ1O72wO/PLysgrxROQK9ABrSPOmdizsCrsa8zhIPvb9fDz12rF28CfusvLF7SD1lTLY8B6XoPIW7Br30sEy7ZBtvPa2Epj1whPQ55KAEPZNoIb2Tboa90cuAvJTXmLxXvjO9DLSePBaiYj3zi8+8lLgAveslNjvw99o8g3GMvCgO1LtHXgw9ZBvvPPUT+jw8Mze7OtAJPYDXsjt8HsE6xXsuO07porwCiUk85cWBPN+Xs7wjFzI70gkxO1F9F720A3O9NcHTOwPsdrvfnRg8rIqLvQuPob37IrA7wxiBvTDKMT2rXym8xFwWveIrqDyWLvy7M5zWvEOZ0Dx7yPw6LPgMPXMqmDzl5Bm9vfAXPWke2zuq9pY89l30u8yjF7wMg1c8+czrPHgthLwS0D09PwXcvOvbu7sJFGA9eorMPM51PLzESmc7z47vvLQbhzw2zZ28sVZLOzItXz3oR8c8E/U6vTClNLy2ZYG9IcHtPKDXC70QYUa8KFhOPfinbj1BNiO9qxsUPGZ3GLxXvrM85uSZO4DXMj1vRkQ9wFPFPKZQ8ztWTzw7V74zvfUfRDuLNG48D0gTPS1bujwPPEk8l2sNOuculDwdCPy8jFlrvBB6eby5GA69ZneYO6suYj1ik0Q6hGsnPSk/GzwSxPM8uO0rusgVCL063XK9bSFHvThu+7uDRqo8J9CjvCGPB7yzDz29EYZDPS6Atzwh2YG9QMcrPBGrwDyz0Qy+NjDLvOeFd7wZNle9wISMPKAbITwc1hW9DiOWOkX8/bz5szi9UX0XvfJyHL0gnHC887wWPMPzg7tRWBo8F9OpOikggz1j3T49w0rnvGpPIr1EhgI8zkR1PKUeDTzBqQm9fmg7vGpD2LtWWwa8c0mwPCHytLx0JDO9YdF0One+jDyGtSG8Z+AqPOrnBT0RhsO8iUkWO0xuYTzGyw08PqKuPGf53TwjMOW73mbsPAF9/7ylEsM7vhUVPAA/zzy3yK69VU88vd5ytjuCOuA7wgw3PFZ0uTwUZDK9x6aQvGfgKj2u51M9wxgBvbpcozx3AqK8ntEmvY5lNT2f0Sa8kP8OvY5lNbyNTAI969s7PGVxMzytwla9GSMJPax43DsD+EC9XcEfO08C1jz8R607UCdTvToCcDxgYn08NgvOvXmKTLy3yC49JGEsvNIPFj076bw6hanXPBP1Or1VHnU8lfDLPNXbVT5Iwbk84lYKOzXTgjy7hwU9lS78vDdVSD0ZIwk9a5mcPHMqmLz0sEy8MNCWO9Ns3jwlq6a8JtCjui50bT0X2Y68V5m2PBpnHj1hn468hv8bPer0bjwajJs8FCYCPQAa0rwALIE8U8eRPCVnkTxAxyu9VOyOPHy7kzycYq+84NXju4+vr7yyoEU8p3VwPZ6sKbuSSQk8cfNrPd00BrzS/Wa8qgllu1yQ2DwTGji8XuacPOmRQTeJrMO8TukivWuNUrzJNCC7o4qYvO1vsDyEkKS7kR4nudgSAj0FTgU8cv+1vNxBb7tMSWS8RRSSPLQPvTtFFJI7WiHhPEoRmTokVWK9OXpFvLKsjzuJSRY8OydtPQPsdj3h4S09IzyvPFjjsLvpkUE9DhfMPBGfdrsMtJ48jUyCPRGrQL00iYg8pR4NO63CVjtPDqC8YtF0PNfnHzy1Te08BltuOlJxTT0udO08qfCxPAoBkrxDvk27IGqKvJJDpLvxA6W7xqArvfSwzLuB3Ze8H1L2u4mTkD0c4369TEnku2lD2Dy7gaA8isX2PAaA6zt39le7UCfTvC507bzC8wM9PYOWvJ/RJjyGtaG7ZpYwPPxsqrzhKyg9RjmPPT/sqDxOpY287FAYPcMAbTxDmdC88PdavK2d2Ts6uPU7tChwvSvTDz0D3w08c0kwPHbdJD0Rn3Y7o+H7vJNuhrzxCYo9J9CjO4v2PTs2Fxg9rwxRvMbFKL0QYUY8VnQ5vVFYmjyTboa8cJA+vNWjijyJYkm6NF6mvEXjSryJrEM8dt2kPE7EpbwsBXY8T93YPCRVYjvUkVs6oTRUvQAaUjzQpoM5e69JvR+DPbxmlrC743WiPCzsQj19Enc8nFZlPUtVrrs0rgU91H6NPKoJ5Tzptj69JtaIvBaPlLtXvrO83UHvvPU497xx8+s8KDPRvFelgDxU4ES8D0iTPAtqpDpCNiM8JbELu//hBjyCFeM7A67GOgeMtbyQ1Ky8XLVVPZD5qbxfMBe7IheyPbPqvzqLD/G7LOxCPeNQJbxmimY9/GwquwtqpDySSQm9tqMxujYXGD3M1X08DINXPEdSwjrhKyi9flxxPEY5jz0eXsC7MQhiPWVA7DxtIUe8J/sFvV4kzboItxc8AD9PvZJDJD0FZ7g88i6HvE7EJb2sQBG8kkkJvRttA70QbRA94isovPxgYD0dIBA9gPDlvJid87yz9ok8ollRvCrHRT32RMG8g0YqvQyVBryXU/k8uQZfPGF6ET29ph29KuB4OoNGqjmFkCS8LPiMu/PVST2b87c7tE1tuqnRmb2q9pY7zNV9O/iaBTsD3w28K7v7PKEhhrt4LYS9eScfPDrEP7zfvDA9yl+CvNHkszy3zpO9IY+HvL9He7wGW248YEnKvOJWCr0eOcO9DzzJPMMlarudjZG7r/OdvNbIh7y6dda8TqUNvPxsKrz68Wi8vMuavCCccDz0yf88V3S5u/YfxLxrjVK9wIQMvYNxDL3b0ve7LnTtvH+ytbyPyOI8YG7HPFJxTTwQevm8bhV9PDw/Ab19N3S9eScfvDv1BjtCgB271u2EO2VYgDxdfQq8tlk3O/xg4Ds4k3i8sYcSvDiTeLy6N6a8kR6nu7zLGjwpP5u8jUC4PDNkC72k7cU8Bk4FvTHKMbwJ+yw9t8iuPcQYgbzyeAE9k40evRgdJLw8J+07CiCqvNCBhjuSaKG8ArqQPBQmgr04k3i88S4Hu+hHx7z01cm7zSvCvJD/Dr0EHb686/Ruu58P17khjwc9kPmpOrfILj3l/cy702xePbP2Cb3lvxy8ramjvbt1Vj2RXFe83TQGPQPsdrzptj69Mzkpuy5nhDypyzQ8UnFNPa3OoDxgSUq6cZyIvKdcvTvsY2a8794numuZHLs5ekU9+zvjPJE3WryPirI8mxi1ufEuB72WCf+80KYDPeh4jjw8Drq8+v0yPPEJirzhBiu8QMcrPeHhLTy/OpK8ZnGzvFkOkzs6AvA7ReNKu+JEWzsN2Zs7sXtIuxG3Cr0D+EC93TSGPF3BH7y6N6a8pjdAPDNkCz3GxSg9vMuavBkjCTy/eEI8f7I1vTsnbbxU4MS9G4BRO4gkGbz8YGA9yn6avCR6X7xWaO+8F/imPKFlm7xMMDE8VlsGvIf/G7wc4/48dYfgvBQza7xJwbm7hbsGvX35Q73R5LM86yU2u/Ec2LxJ2uw7LoC3uwuD17zpz3G8R5ByPEdSwrvCwjw7TJPeuc9p8rz1+sa74iuovB5ewDt6o389IzwvPONQJT3IDyO8xsUoPMbFqLy7gSC7JEKUPCqiyDvcKDy9XJDYu9NTKz2cQ5c69eETvUAqWbzhH948f08IvFTsjrzAkXU9nGgUPRaurDyvHoC80L+2POiFd71XvjM5XzAXvanLNDv+tqS9kVzXPFtGXrzONwy9eEBSPBWJLzxmcbO8kPkpPU6fqLvkjtW7447VvF3Bnzw8GgQ8w/ODPFOilLxCT1a9i9HAPCqJlTz3UIu8LBHAPPU497z4szi6yU1TvfJNnzva3kG8h/8bPKtAkbws+Aw993UIPeAGq7skVeK8e9RGvTv1BrxBPIi91sIivclZHT23zhO9jA9xus83jDmehyy88SiiuXa+DD1n4Cq9aUPYvL4i/jzychw83Cg8PWaK5jzM4cc8bSFHPWLEiz2j1BK90LNsvY6jZbwKIKq86wwDPBRY6Lz14RO9EatAPGBJyjw2F5i9gjpgvUdSQrxABdy7beOWPEiQcr31+sa7DvJOOyqW/juV/BU9eAiHPGQzA73RCTG8NcFTPan2Fj1Z1+a7CNYvvcV7rjwfaoq93k25Otz39DxjAjy82rlEPeh4Dr0X06k8bQiUvEUUEj3AbPg8o6PLO63OoLziRFu9pMhIPR0gELyFkKQ9Pn2xvP2qWj3h+mC9KD8bvTReJr2j4Xs8e9TGujqrjLwQevk7VBEMOoInErxYxBg9anSfvKDXizzxQdW8aOaPvLFv/rvYDB08o6PLPHlSgb20Gwc9MQhiPQ3fAD0pP5u8Kq6SPZD/jrtIXow8jooyPbjtK7zw99o7t6kWPQ8wfz0Via+6McoxvH9PCDwLRac80g+WvJIeJ7z68eg8UO8HPFeAAz06n0K7Tw6gPM5Qv7vCDLc8aAuNPTbTgr3ZlMc8/YXdvHcbVbwE+EC7KT+bvPZEwbzS/ea7f3QFvTM5qbuV/BW9Y+kIvRGfdrzIKFY8e9RGvXuWFr3ZVpc8M1JcvUERJj10CwC9G22DPLPFwjykyEg8uQbfO40nhTp0YuO7BSkIvd00Bj0D7PY8DxdMPGoqJb0E3w29dt0kvQjWL7xTu8c6ollROxulTr3L4Uc96Kr0PMgPozyJbhM8FDNrPTHKMTw2MMs8B36OO867pTq5xTW9MRlCvGS7wztbVqq7jfgrvcH4nD28PL68EihavDLnD71sOXa9JVY5PCAwubxezbI8hjzNu7wjJb0DvJa9GN77u8Sh1zwfgUG9/sfIPKtTtTw9+yC8qnILPUE6Ory2Fj49dmxdvNBk4Dxy+xG9oYqTuzGDB72ll9a9bdURveSSvzyyWgM9WMaIvFEpgLwHfg69/q6vuyTZ87yJs1U8um7wPKZf5zvCC3m80LWMu5miG70XAw+80UtHvYZCCr3I/0Y81dsMPOCFWD1TBG07fr4avK/8Ez1flUO9vR0MvSp2fL3XIL+7sHN4uwOdQD0iKvw7+1DAu6kOA732lAU9cvsRvNcgvzq2Fr68Y9oZu2hLCT3o8C49kGn3OSQRB70Ysga9606ePBY1wbzXigS9yuCUu1E83DxffCq87423O3tBVbtlg9S8yOYtPMLZxjq9BM+84+NHPaIHtbzT22i9d2wBvVZJw7xtcQm9CcPAvLdI8LsJqie8pJdWvLwjpTtmnBE8yZUlveYonruFdLw7nsgbPQqLUbylTIs89eUNvd+e8bvKXba81aP5PGhLibxlS+U87fdYvHl/AT1AU1M8aBN2uy9qyroVTlq8WnUAvG4gATwi+Ek7Ka7rvFp1gDuPjoo97RByO5QYkzvLKwS9iFWKPKmkPT20n7W887M3vXPcuzwY5Lg8XFCRvcGUFLtd5ku8AEUOuvSUYbxf/4g9kaEKPbZOLb0T8Gq83dydPerqFT04vIc7UwRtPeYPhb0t2qi56Z+mvOZzjbytNAO962H6PO8QFjys/O861duMvOIVervvjTc9ZWq7OqcOX7yiz0W8fwmKvBmsybsz+o884IVYvJ4Ti7xBISE836SuvHta7rxNFlw9s76LvGqK/rxBU1M9f7hdvMxX+brceJW9kFYbuNqwYD0vcIc9mWqsuaYtNT29BM+8s9HnvPZD2bzyzFC8KmOgvBcDDz3vVUg9f048vTvPh7xj7XU8f7gBPMVvJbuLzBK9tW2DO3z2iTzDwC08rsq9vBEulzxutrs8iATeudBk4DxT0jq9vQTPPMiVJTzKXba8y0SdPLB5NTyuyr27gRyKvXIUK7tQdEs8kTdFPDtMqb0RLhe9ves1vHmYGr1MNbI8t/fnunBls7xVMKo8LdRrvEYuiLzBlBS8OJ0xusS6cD3Xzza76uoVvYEcCj2AZ1W8ITA5PFmnsruHBF66sHm1PAw6STxhKyK8FZ9iPYWm7ryQb7S7WY4ZPcj/xjxo4UO9fCg8OwOdQL30lOG7DCEwvG+X5btD0Bg95yJhvBtCKL1N3uw73r3HvA63Dj2TtAq90vq+uwEmOD2qiyQ9SZ9TvFkqkbtPW7I7hd6BPGj63LxLgP080mSEPGVRojyeyJs7Iv6GPMmVJb1KuBA8bA0BPYqBIzxy3Du8Dpg4PBFBczyDy4G8RXlTPPcLarrnO/o87sWmO4BIf7xy9VQ9t/2kuxt0Wj0yAKk8XrQZPbs8Prdi2hm8YK4AvcxXeb2Op6O87fdYPEeSEL1gdu07CS2GvRL2Jz2N35I8TcuQveBsPz0CIPs8gLgBvoV0PL03IGy7/BjRvPEdWTta2Yg8w0MMvXcb1byewt68y0QdvVazCL1cHju905AdvPqhyDsf6wY8lww9u6DCgjxqqVQ9rbGkPS0ldLv+j1m8JMDaO3nKTD0gaCg7C0CGvY6nI7yewt67FU7aPLSZ+DyjOYu8f5/EvVB0S7umFBw60izxu7B5NTzAe9c7ioGjvJmcXrycAIs85/CuPG4ggTyiIE49e1ruvIKAEj2ksG+9jHuKvFs9ET1Jvik9Wz2RvQTPcr0V8A49VklDvF7NMrxn54A74+NHvYqBIzt+vho9XrSZPRDKDr08Dv08lHwbvS1dh7x7Wu48vh2MvJEYb73hFfq7Knw5PNhSlbsqfLk8M8g5vf3/tzxz1v476bi/vKtszjyMKl68/IKWuzSpY71laru8be6qOD/1h731Yq+87sUmPajDk7xt7io9yM2UPEwcGTuv/JO8X/+IPFYXETuPiE0+iARePWtxZTzPtQw88R1ZPPYRp7y7bvA76NcVPbB5tTx7RxK9r6tnvHYhkjs5IBA9Vnv1vAtT4rwUpR89kxgTvb3M3zyd4TQ971VIvO+m0DzC+Jy8XDdUPXEO7jx1hfa8EQ9Bu5XHCjyIVYq8DreOvIPFxDzyzFA7vdKcvBSf4jn3KsC7lwy9OsxXeT0EhCe8C1PiPLJagz2ksG+8SEEIvBVtMDwBqZY8Q+N0vBvFBj1N5Ck8UEIZvHcCPL0nN+M7Kq5ruVZi3LsOGxc8iFWKO0+NZDz+ri88By1iO2VqO71cGH68JwUxPC0ldLxcHjs9LV2HPEptIT0J3Nm7yP9GvVB0S7zhNFA91MJPvMLfgz1Jvik9SNfCOzOvID0LbHs7JKdBPdWK4DtwMwE8USNDPYE1Iz1PrLq8RMrbPGqKfrwSKNo8lXZevGnC7TwsEpg8+x4OPMkYhLtVaBk9N9UgPY+Oijy9BM86iZo8PO6NNzxVaBm89JoeuvnTer2lfj07kgUTvQkthrxidpE9O0ypvWLzMj1sOXY86NFYOztMqT00qeM7R/YYvTt+W71BIaG8O2XCO9AZFTzEp5Q8tjUUuUByKT1dUBG8vDy+PKtsTj0mVrk8sGAcvZPNIz15sTM8FfAOvfV7SLwWZ/M8AF6nPJ4Ti70bQqg74umEPCVv0rudZBM9hVsjO/9dJ7zq6pW8uo1GPTtlwjwrSoc8hlVmPRXwjrgVhsm8nsLePA0b87xFedM7dVkBvccFhLyVYwI9YgzMvLpV1zvGupS83tbgO5L/VTwuu1K88L+NvF6bAD1WKu08imgKvLS4Tr0LWZ88q9aTvPE2cr0yGcK7nACLOzPIuTvQMi49jEN3PG3uqjzGHh29d2wBPRqTMLsQyg49QHIpvcjg8DuRafc7hFsjvO332LvrTp68FxyoO2J2kbxEmKk8remTPHB+TD0QeWI7jqcjPApyOLtyDu67NKnjOy7Bj7rqgFC9gi/mu5Ghij3Pg7a8NF4YvL+arT2N2VW72Ml5vIWmbj2ZiYK84vxgPb3rNbtku0M8f4arvAct4jvrNYU9U8x9O/wejryGPE27OO45vVPM/bueyJs9tIYcPVSaSz1mOIk8OJ0xvH0JZrz503q7avoAvWw5dr2WK5M99UkWPWBd1LvrYXq8A7yWu3mYGr1/n0S98R1ZPN3cnbwMITA9ZjiJPM+cT704vIe8jqejPFEjQ7wHFMk8QhvkvPE8r7wNAlo86zUFPX3wTLymLTU9JzfjvHRZAbyfqUW8ffBMvDYmKT0sREo9oge1u/qhyDom7Je9UgqqPFME7TyXJda7L6K5PAqk6juEkxI9XDdUvcB7V7wptCi7kTdFPb3rtbssREq85kG3vJR8m7ylfr07/IIWO8wlR71WSUO8ub94vacUnDxj7XU8pV9nvGB2bbr/4IW8vW4Uve90njw8Rmy8OJ0xvBp6F71cHrs8RijLOhgWa7s/9Qe9u6YDvTIZwrzZtp288jYWvHSkzLwy54+8yK6+PF3mSz3cJ2k8ZKIqvUpnZLucAIu8AT9Rvc+cz7tFR6E6gTWjvFtQbbzt91i8ClPiOvSanrxZwEu7vR1oO5qDRbsI9fK8guQau+33WDvdwwQ9sSitvNm2HT3K4JS8yY/oPOther2Fpm68MFGxPGE+fj21bQO9oTnnPPVir7y2Fj68V2KAvCwSmLw6hBi8y0QdvVtvQzw3IGy9f048vI3ZVTv0lOG68TwvvfPlabxq+gC9VASRvJTH5rzmKJ48sGAcPR+BwbhqXgk8qyGDPKVMiz3UWC47rTSDvM67pb1D0Bg9Fp+GvKqLJDx1cpo79ZRhvVdiALwLWR89XDfUu7S4Tj1oyCo8sHm1Oo+OirwmPSA9steku4tizTvd9bY7z4M2PTIAqTxutru3uPdnPPI28rwnBTG9qA5fvXk0Ej18KDw8cS1EvNMslTzxIxa9liuTvFwY/juAgO48M8L8Os6iDL2e2/e6wtlGOzOvoDs4vIc8remTvOZz6bsvcAe9fEHVvHRymjzIrr48ZWo7vRIo2jwjxpc8Jj0gO1weu7lYxgi8pegCPJ7Im7zC2Ua8nqnFvSmVUjzAe9c7RWA6PV3sCL1Jvim8U5pLvDVxdDtsJhq8LfNBOssrhDzhTek64gIePfcqwLxIQYi7j/ISuu8QFjs2P0K9w0MMPDvPhztN5Km8i0m0PAnDQLvRLPG8zD5gvH+fxDzsFq8427AEPXVyGrxQW7K8ioGjvNzcHbyAuIG8KmOgPYL3drmErKs8VhcROxqTMDvnIuG8VklDPBjkuDssK7G7MGpKvbS4TjutAi0962H6PFp1AL1Tmku8EtdRPCxEyjkpruu8ZdSAPXnKTDxYxgg9WNlkOntabrsFz5a9MTLbuyBoKL3EpxS88SOWvfIEwDxAU1O89IEFvahfizzpmWm8tJ+1vBmsSTyN35K7cEyaOvm64byIs1U9Mq+gPDLnjzuiz8U8QFPTvKBYvTy10Yu6VLPku434Kz1/hiu9z5xPu27PVL30gQW8eeNlvAdG+zsaehe9euOJPV98qrm9zF+8DrHRvEm+Kb0UjAa8qoVnvV//CL2AgG498L+NvDBRsbwYsoa7IWLrvMyPDD0xMts8355xvdsUjbxEmCk91aP5PFcqbTxKbaE8sGAcPRCSez3Ud4Q8CXI4vbB5Nb1TBO28gy+KvMPy37vTkB28lHwbvSFJUry2Ti29KbQovaXoAr3BMIy7OAdTvNtGvzzVo3m90mSEvG+wfrs0loc8cS1EPQwhMDzKj2i94FOmO/kLDj3I5i09XAWiPL6zRr2i7ps8FxwovdfPtrxaofU8Tf3CPAd+jjxICfW8chSrPGLzsrzUqTY9ZhkzPGPamTzDwK26f7hdvWjIqj3mc2m8biCBPYE1o7xzRgE90mSEvVjGiLyTGBO9rDTfPG+w/rv4XBa9qdbvPHQOEjxAbGy8b4SJPDcg7LyJBAI9fr4avbf9pLzIrr483dZgPP75+jz++Xq9uY3GPCIq/DxkiRE87EhhvVpWKj29bpQ8P/WHPGIlZT3evUc9/eYePWPamTy8Cgw9WcBLu+Pjx7xPWzK88zaWPEhBiLzLXTa5lisTPEwDAD0Ffuo8CaonO4t75jlMNbK8vuV4PPqILz26pl+9bdURPaVlJL16q3a8JI4ovUPQmLymJ3i9G1vBPPC/jbx3G9U8SAn1vMwMrrxunSK8NlhbO73rNb2N3xK9qQ6DPI6no72TtAo9Ag0fO2p3ojtunSI95zv6Oxw86zxZwMu6xwUEvKwbxrxN/UI973SePJcMPTyIVQq9+4Jyvfo3J718KDw88L8NvRBgyTokjii9PEbsO2cT9jxSCio7ipo8O1DekD3N8xS7p9wsPcy8v7sGnh09iO/tuiQMizy4mjq8vzBAvW18fb2AWWg9IYpuOk9/2DmvqUO94W38vHXIZbu0WiO9ZKHdOyBbKzx23jy9N44Evb6QNL0RGck7NWMNvTVjDTxWQQw8hSAfuysxSDx0KNq7FP7uPEGYZzyuTlK8Fg/DvDpzKrmMoM28tz/JvfpWOL1C81i7G8AivBC+V7xXKzW8oTMbvKzEHT0405689HaVu6Gs+zxpOBq9V4amPMOGrjyOVrC8c+O/vL563bvrtRi9niLHPIHgBz2HqtM8R47hPCSF67w9Qnk7vR9svdMNq7z07/W8BikJvJEl/7zy1ok9e+qNvHFZCzySrJ47LHZiPdMNKz1dUPI8QU+BvALXZjyz/zE9EyqdPcIV5rw/+Fu4WoEjvJ7H1bxpUj29Q2ShOVQwODiivgY8J4Dou/s8FbwvnY08CYPDvCSFazzh9Js5aOF0PAGSzDvdLWU7f/72vOl0yrv7PJW8nzgevRXKKLyEUBm9BS3Vu/RgPjx8GdG8iWA2vHKITr1Ek+Q88wXNO5RiAT30AYG8Ct60PDheCr0HzWA9TITbOU3fTD2RUa27/PZDPd/N8LyExS09aa0uPfjMA7zJfCg81vLQvL6QtLwtchY6a2OROgUtVbxRH2Q8HrufPU3J9TsbSw68iO/tvK2Y7zxq8kg9XCEvvbAENb15SoK8vpC0PFE1u72miQk9kODkvH+1ED1FXx68TlAVPVO/bz3gPjm9SETEvKHCUj1NyXW77BAKvVwhrzyjjoy8hJl/vGZtl7y/oQg9kTvWvHbevDv9O148+REePJoszTvoL7A8/qymPF/w/Tx4lJ+8yXyovHvUtry0WqO8WSayPMNwV70BfPU7WHBPO+mKoby2EIa7h6pTPbok77wblPS8bKgrPdwtZTx4aHE7IC/9vBpPWrxWumw9AkivPWryyDuSlkc9WSYyu9kDJb35+0Y8IzwFu1uw5ry/MEA8dvSTPd/5Hr0FWQO9Fg/DPPXRhrzxexi8KzFIvTvOmzzsb0c9o2LevE3fzLz6bA892kg/PAoNeLzRbR88FIWOvHD+mTpsvgI7O7jEvE/Ecrz4iv48tuRXvJgthL1gAgm8Td9MvEhaG703Yla9acMFvZn9Cb3GDJe8McgEPTPDgbwmJfe8Re5VPe47Ab2Kuye85Gj5PKZzMrzmeU09PUL5OieA6LwGnp08x7DuO2X4Aj3Vl189Q2ShPMB12rxkod08GnsIvaN4tTwaZbG8DO8IvKgTPj3HsO48YEvvvD8Os7yw7l29I0DRvHwvKL2Exa2859Q+PUJkoTtT6x28u6uOvJ7H1bwbSw49yWbRvGySVL1pw4U9F2o0Pbx7lLsUFMa89dGGPDcDGbz+rCa9BdLjuzQM6DpvLhQ9c83oOmTNCz3fVJC8dt48PUTY/jurDrs7rFPVPEBppDxg0g69gvlzPSrAf7tVddK8j7EhOtFXyLx4lJ87yVB6PfRKZ7yaLE08pbmDvCtHHzyXG/m8J/GwvO9Ubb0c72W9M8dNPHvqDby/v/e7cOhCPKBnYb3sWXA9F2o0PAhtbL2Z57K7c+M/PHIpEb4blHS8PW6nvEIfB71l5vc7yDeOO9KyOb16j5y8qlSMvKe4zLxNyfW8ExRGvXoIfby/v/c78gXNvAgoUruRUa08ReoJPFE1uz2/0YK7ONOevGySVDzMXYI8r6nDOy3R07vR+Iq8bY6IvFhsA7wcBT08SuRPvJWRRL0uzYc8tFojPF9Lb7oXVN27kVGtPBLlgrsuFu47xRDjPMkHFDy81gU9dYNLPKgpFbx9A/o7KEwivV8G1bxCCbC8HrsfPCBxgjwXarQ7s/+xPNuNWTzBcY68FVUUPdKyubw9+ZK8fBlRPcOGLj3IIbe70/dTPE46vrqgZ+G8aOH0PNChZbyaQiS93+NHvIeqUz1SkKy8rnqAPM4B2ru6OkY9SZ+1PMHQSzyPm8o8ehoIvTeOhDxl/E69tC71urTlDj3KHLS96EWHvGholDzoRQe9O1mHPLbk1zw9bqc83/meu2NcQztFj5i85MNqPvjMgz23KfK6mIzBPKS9zzsRGcm8j7GhPDQivzyh2Ck8JVElvYvq6rw0Z1m8/ODsPNASrjrKwUK8hSAfPdaTE711yGW7/AwbPYUgnzz0dhU9iWA2PAfNYD2yRQM990XkvP03kjvshR480kFxO+rPu7wmrJa8iwBCuwsjTzy3KfI5E8+rOxEZyTqkvc88VxVePDpHfDt3OS49prhMvBJaF70hQYg8Fp56PHqPnDz10Qa7I7EZPK5kqTv84Gy9VXXSvM9G9DxRS5I8geAHPaZzMjwej3G7tynyPHc5Lr30YD69zby/vFZBDDxcIa+8Mmzcu7VAgDszx009g1TlvDqJAb0ej3E5azfjPEhExLv/Yok9xLVxPaFjlTy1iWY83p6tvIKwDT0ONKO4KXvlvAEDlTzf40c9tvouu+3KODxQ2sm8XwZVPCXg3LwBkkw7/wcYPBn06Du2+i485UoKPfigVT3vVO27WGyDPC+djbspp5M8kqyevPnl77zGa1S9RjPwPMlmUb1cBwy8J/GwPWmtrr0xPRk8nMgMubKO6buTB5A9DB8DvP/bab09WFC8ES8gvZ7dLLxmbZc6dzmuO/uxKTsUbzc7J9vZvJKAcD3/Yok8jRGWPEHElbxOJGc9mhb2OMl8qDsr0oq7luw1ubaFmjyMtqS8KacTPQvEEbwNw1q8HXYFPLkLAzwMlJe8IC/9vDascz2/0QI90yMCvP073jzpFQ08VV/7vOR6hDyfwwm94X+Hu4KwDTznGVm9A43JOzpHfDtiAVI6nt0svSY7zrzr/n69cNJrPHOEAj0SdLo8vPCovF8G1bwMfkC9uTrGO8xhzrwDo6C9IzyFvP8HmLr/koM8ZsgIPRO1iDxvjdE8IC99PNz+IbzLMou8j7GhvISZf7zJZtE8gg9LPOv+frwaZTG9ogftvBDULjwn8TC9fyolOZ0nyjvpdMo73ojWPA9j5js6/hU8J9tZvBXKqDyExa08UTW7vDV9MLukXpI9SuTPvOAklrsDMtg97rAVvee+Z7ugZ2E96RWNvK9KBj2IBcU8sV+mO18yg7yz/zE7SuRPPaFjFT2qnfK5egj9ujbCSr1fMoM8UHuMPT9TTTyhrHu8sTN4OyQMi7wQvle9znKiupQg/DtYbAO90pxiPSVRJT3uD9O8gLRZvK5O0juHqlO99upyvOH0mzohim68xOGfvGG8tzyoKRW8RxWBvM9G9DuAbz+8UHuMPGqTi71ZJjK8XWbJvCtHHz147xC8UhuYPMx3pb0S5QK9qVhYOtc36zwr0oo88gVNPRwFvbvYvgo8rmQpvWNcQz23VaA8c/mWPMwCETx8upM8+4X7PJv4Br0epci7Z7IxPYdLFjzf+R68HXaFO6w9fr2e3Sy8vPAou756XTzttOG8Sj/BvL56Xb0oTKI8I0BRPTu4RDtdB4w8437QvDHIhLz9NxI8Au29vDhMf7waT1q8OF6KvHy6EzyOQNm4EF+avM28v70i4RM6W2eAvG+N0bz9Z4y8ZLc0vZdHJz2NnIG8G5T0PAsjT7x0VIg8NjOTOdpIP70uFu48skWDPGB3nTxl5vc8KEwiPN6erbvO/Y070yMCvLVAgDwkhes8tFojvR6P8byCJaI8hJl/vKw9/ryPsaE9QgkwvGk85jzVw429TJoyPJv4Bj2R3Bg9kqyeOyoCBT1tAx29Cw34vNaTE7yHSxa9mIxBvNwt5bzr/n48bl6OvXh+SLnnGdm8JVElvcMRmrwbqku8VxVevHWDy7x3Oa68egh9O4ZlOT0K3rS8+Ip+OSrW1ruCsI09kzZTve75e7wIPqm9gFloPVDaSbxSetU83/mePCIRDr0r0gq9kAwTPYNqvLypySA9whXmO293erkgW6u7xMvIu60JuLzwIKc8uQsDPTpzqj3wIKc8LIy5u2yoKzzR5v+8Z7KxvNFtH71DZCE9atxxu/6A+DpbVXW88QaEO60JOLw7ou08nwxwuzmn8Lzmec28XwZVPJ4iR73DcFc9eTSrPN5yf7y3P8k7eGhxvI+F87yo/eY8Ivs2PNios7qw7l08I1aoPJzMWD36Vri5lTIHvUfpUrxNyXW8DdmxPHp5xb2rJJI87G/Hu2tjET04vce81pOTvAfjN7wNw9o7fs8zu1XmmrzLHDQ8I0DRvDYdPLxqk4u8Ct60PG5eDjz2AEq85UoKvZWRRDwkhes8U7/vvF1myTtRNTs5Vys1vOCZKrw9bqc8P/hbOwgSe7wq7C28oh1Evf6sJrzbuQe8tZ+9PE+VLz2ex9W8x9ycPJWnG7xHihU886rbvMrBwjxI5YY8S+CDPBOjfb0BqCO87iUqPaGs+zwwzFC9lzFQva5kqbx52bm6MmxcvG3tRT0rMUg8J4BoPOxvR73MApE6KEwivb8wQLsvhza9KNcNOwF8db3g9Bs9cS3dvCLhE71VcYa7FrAFPDmncLzQnZk86rnkvJ8McLy25Ne8jkDZPPWl2DziOTY9m/gGPQg+qbyMtqS7EyodvHWZIj1Eqbs8eO8QvYUKSDzmeU296yotvUJkobsVyqg7iBscvc79DT2UTCo8BdJjvFvGPb2e84O8fYoZvcU8kbz55e+81GicPHy6k7xnsrE86Yohu/IFzbzSyJA8Yby3PIL5c73uJSq88xskPWP9BTxl5nc8qVjYPEM4cz1Ek+Q8tYlmuVPVRr2ZzY+9CW3sO7JFg7wK9As9aTgaveTD6rxql9c7giUiPLPpWr2OVrC8nt0sPP6A+DuGZTk7AaijvHDowjrBcY47BdJjOlw3Bjp1g0s8NwMZvbbgCz1K+qY81vJQPBLlAjzeiFa9pQLqPGnDBb03B+W7TtsAPU5QlTwIPqk8IFsrveTDajxnnFq8oH24PIIPyzyQ4GQ9kpbHvF0HDL3OciI9nsfVvAEDlT2HwCq98K/ePP1njL2+66W8FP7uvCg2yzwQ1K68wxEavWSh3TqcyIy6kOBkvPR2lT1gS++8M7H2umZXQL0sduK8nD0hPQ8aAD2oE746z7c8vXQoWj1t7cU81PMHPcscNLxXKzU9utsIvGB3HT30AQE926MwPVJ6VTu62wg9iO9tPWeyMb1wiYU4RL8SPNFtH7zmec28VV97PHk0Kz1JLm08r7+aPKUC6rrDnAU99O/1O/EK0DwYr049wHXauwZybzy4mrq8SYlevVhwT7xHipU8gFnovFeGJruMQZA7ujrGPKj9Zr19A3q8by4UvVw3hj2xpMC50BKuvN20hLtzzWi9jzyNPYfWAb0eADo9qLSAO4ygzbxI0/s8rFPVu89cy7zEtfG812OZPOUe3DxktzQ8fQN6vTkYubxF7lW9iBucPFkmsjy/Rhc8KDZLvO6wFTwIVIA8H+riPMAaaTxXERI9hmW5PMsctLxoIL24h8JNPBjmP71386i7xXgYvXKZxzsSDkI8IV9KPf1mHz2upve7AjtWvW+tyDt/t6U6gTH7PGeioLyQO1g8pZ+WulI+YrzBUeG60V8FvTmvB7voAmE8RdWCPJykKL0xaSc98H8yvOQaKb2dEos8Ffb5PKwsIjwKxAu9WFGYPCgnDr2cZRo81n4uvH54F7xJQ/S8iSxpvacZ7LxhkzE9GwmwPKhMh7yS8OU8NBpuvXiotjwVs5W8qgVrvMZ00bxeYAe9e00Kvfn8A7xZlHy7v+dFPaH+ibxuL6w7pCmXPPKuBr1Ctug7vrBUvXfzqLx6XUS9LJEpPGNE+Ly1pay81BDMPHW8Nz0N75i8VCphPVmEwrygxxi9oT0YPAmRcDyatOK8hzwUPbx9qryYgbg8gpsHvWV76Tw4eBa7oEU1u67hr7zN/YY9hFAVPVcaJ7w68mu9zboxvH0CmLy9eWM86uqJOjC0Gb1RQik7RJ6RPFXjNTuId1u9SX4svUFzBD331cy8lJkAuwUrnDzb2A+9dIVGPNPZ2rzqKZg8Mx41vUA8Ez0IFxu9gTH7PHtNCj1gXEA9QbISvBpMBTx0hca8E4zePNix2Dy3I0m6ixwvvdgzvLwA0Tq9mrRiPFbjNT3Ra3i74e+bPDsp3TvHLSa9OHiWuVoCX7yOT1k8ANE6PY6GSrq8fao7D6QmPCY7DztNHzm9hI+jO+aICz0+k3g754TEOpH0LD0dBWm787JcvVLAxTuPBGc8DjJ9PKSv0LyHeyI8aNmRvQM3ALwUfCS9qcIGuydyADy2avS7rxghPY4Irjx3uPC7DHkZPbIEoD1Jfiy97KNtPchgUL3VR708KLXkvIkwsLpTvP47hQ1APXlhizzVjui8jwARvdd65z0Y5j+8WYRCPD/Gkzy6D0i98zD5u1kGJrz5CPe8GeL4OyCqvD1Zxxc9WwLfPKKzF72tJIW8Y3+wu4scrzvfOo695BqpvOQaKT1o2ZG7L0JwvRxAITy6jWS7Tp1Vveq3brxG2Vg8SvzIvM08FT3+G60662x8PUsvc7xu9PM8RCTLux9zSzwASwG83NTIvMqXQbtnY5K8Ns/7Ozj2srs+zjC9rCwiuB66dr3RJE08U7z+uzXTwjoQWTQ9QrZovYzVgz2M4fY88ntrvUbZ2DzQKJS8cJ0OvXfzKD3C00S8hI8jO5UPgDyJ9fe8vPvGPNwPAbwNNsQ8B9iMvJPYjru33B08NsOIPGqOH7xcsxY7XPIkvfTpTTwE9Ko8cJ0OPWFMBjw74jG84+M3vUxijjy27Fe8RF8DvTotpDyPPx89dIVGvFALuLwLRn68IeEtPEszOruMFJI8aRADPHa0Gj0XaKM3EoiIPClmHLz/1AE9GlSiusbuF723I0k8GhnqO+F11TyaNsY78ET6um+tyLz31Uy8X6PrPG8nDz0sD8Y7UYlUvKkBFT16XUQ7ZTS+vBoZ6jxULii9Wj0XPaAKfT074jG8OLv6O9d657yyxRG8jdE8vUOmLrxgFZW5PwUivftyA71Ag748agw8vVbbGD3XN4O8LFKbPZjIYzxOnVW9jk9ZPEGykryyBCC+vEJyvWGLFLyi+kK8f7clvFuA+zz/mcm8PREGvaHDUb3sn5c7fMMJvP+ZSb2Ic4W8S60APYpnoTxtP2Y7CgOau05WKj20N0o8DHkZvfE4h72Jrky8gepPPeF11TvHJQm9J7GOu92FAD1Fome82x+7vDwZI7zPshS6PhVcvHX/DDwUw888r9mSPFGJ1DwKyGG83VLlPEbZWDxMYo48jBQSPfXZEz3X/Mo79Z5bPDe/QbzuEVC9V5hDvFQuKDyEEYe8QyiSPNfsEL0qoWO9Ngo0vTWMlzxZx5e9MHlhu/ae2zxKeuU7kfQsvGJIvzx4bf48HEAhvdbF2TwcARM9lk4OvaSvUL3/Uh49zYPAOod7Ijyqvr+8ia7MPLM7ETurc028UnmaPJLsj7zdUuU8e00KvYCz3rwZ1gU9rSSFvZsmjDzg97g8hYvcPI3RvDyatGI8ozG0vBZoIzz0Z2q8Q+kDPf8XZj4dBek8cdwcvJGtAb0tjWI97pMzvDe/QT0MfW88TaGcvFFCKbztXEK9SX6sPHEXZLw2Ahc8RooQvJ9V7zwGJ1W9jwTnPDYClz3RX4U8f7clPRHX0Dx9x988ovrCunJSHL08GSO8gqMkPbQ3Sj0xKpm8HXeSOUxqK7xVKmE8QX93O1GJVDurPNw8UYnUPKBFNTyYgbi8bEMtPH81QjwA0bq74ipjvAI/nbzeQqs86nBDvO0VF73Tkq+8u0a5u6XmwTvcTo88PGDOOzj2Mj0xaSc8TxtyPGuGgjytJAW8fBJSvYKjpDyeUZk8h0BqPeF1VT161wq8TR+5vJXc5LtomoO9iuW9u3kmU7y1bjs8GlQiPYNYsjwKSkU9vXWNPOk5Ur0DO9a7YsqivNd2ETxC8aA7YZOxPeA+5LwaTAW9AzvWulmEQrwXaCO7ovpCvcsVXjxbuzM7CFr/vODzcT26iQ49yClfvId7Ir2M4Xa9D2luO/ABFjtymce73Y2dPJSZALwz1wm9ticQvZbMKj1PjZu8ao4fPLbs1zuKZyG7mjbGPM2DQDuK5b08HyygvKfSwLxd7t08P0zNvJLsjz16WX284mUbPWKPajzIGaU78MKHuyUEnj2bJoy6RGv2PEF/97s4OQg98MZdPOtgibv6+Dy9VSrhvJJyyTw7p/m8PBmju1WsxDx1/ww63sSOvM6yFLwREgk9XSkWvLMA2bwpZhw6h3siu9qhnr0euvY73E6PvS4Lf72As968ZP1MvJeRcrzt2l49UQObOrBPkr3MBSS9lk6OuxwBE73A4348hFAVPdfsEL08GSM5+MUSveIq47wZFZS87N4lvPkId7yj9nu83Qu6vF1wwbzYM7w7iSzpPNZ+rjtjfzA9IeGtPByHzDyR9Ky8nKQoPaRopbtTddO8+nogvFcap7wzZWC7OvLrvFacCj14Kho5QX/3PI6KET30oiK9ocNRPS2N4rpiyiI9dby3u0/URrs4rwc809naPDcG7bzQ6YW8ixyvPYPaFb0BwQC99lcwPSAkA71ZTVE9vy7xvFhRGLtbgHu9QX/3vGeioDzmz7a6teiBPAEIrDymm0+9ehYZPWiagzs2z/u8tLktPHFi1ruFDUA7YsIFvc08FT1TddO70qLpvJGtgT0JTgw8yhEIOkgAEDz+G628SzO6vNuZAbtpEIO8VpwKvSqdDT0GYo26viobOmWuhLpnoiC8aNkRu0MokjzKEYg7y86yvPk/aDxsQy08VPPvO7Zq9DxsQy29myaMu3SFRry/58U8YVj5vAbgKbowMja7naBhvZC9u7uoi5U8UAu4PPB/MjxBui+9HEAhPXaB/zyR9Ky6pC3tvO1cQj1sQ628zbqxOcPDCr2ygjy90pIvvXFi1rvTFJM6jJpLvCIYn7xNZuS8zEzPPGuK2LoZm028MWmnvTl0z7w0Gm67OPayvM26sbw7ZBW8C4E2vO6TszxULig8e9tgvZ5ZNjw9l7+8bi+sO2z4OrwI3GK84PNxvbBLS71noiA93E4PvUuxVrv/mUm8UQfxPP4bLT3I4jO9xq+JPY8/H72/ZeK7mjbGO+4RUL2cZZo8TGIOPT2XPzx8jJg7G1DbvLSxELziKmO8aVcuvbcjybw3Bu28k6EdPdRLBL1tP+Y8ItmQvegCYT09l788P8YTPPk7kjyRrYE8X6PrvFI+4jvkGik9a4rYvIh327zBVai8L0JwvLEEILwkhoG8LY3iO45P2bzzazE9946hvXZ1DD1Hjua7UnmauilmHL1jf7A8zn/5PI8E5ziaNka9lhNWPTh4FjzIYFC95RbivAuBtjzBGvC75RbiPHgqmrzS3aE8sBAEvVbbmDu9Mji8j4bKO5cDHD3j4ze8Mx41vQBLAb2lZF68KaUqPP6dkDz2V7A9CsQLPaWflruyxRE90G+/PD6HBb25kSu9ZXvpOYCz3jwY5r+8e8smPNe1nzu+93+7NYyXPXaBfzyhPRi9C4G2vBxAITwdvj29De8YPJA3grs6JQe8HywgPLQ3Sr27Phy9vELyO/fVzLywkvY7mzL/umWuBD2tqj49iixpOhsJML35Qy89ao4fvcAet7yUmQC+NJzRutZ+Lrs+hwW7g9qVu6MxtDx38yi9B9iMPBuLE70z1wm9nZwLvUvsjjxsQy092mIQvMvOsjxusQ+8e1l9vX+3Jb29Mji60Z4TPV5gB72qBWu85svvu5OpurxGihA9IGMRvY+GyjwPpCa85BopvVao/bw6JQc9JIYBvXSFxjyU4Cu81Y7oOhzCBDxVJgu9SUP0uiLdZjw5dM+813rnPB2+PTxt+Lq8u8RVPKRopTwZm809k17IvKpAo7zH8u28xEEnvUCDvrv3U+k8e02KO0xiDjxWqP28/WYfurRyAr3zsly7IeEtPDSc0Tv31Uw6UnmaPNuZgbym4nq966e0PEGyEj2wT5K9Q6YuPIueEj0Ilbc7h3uivBsJMD3PshQ9BfDjuN7EDjxyUpy8hQ3APE/Qf7x4qDY8nKQovC99qDw2wwi8QIO+vPSaBT12tBo9ZTQ+OszGlbwf7ZG8etcKPEFvPbzKl8G8QrZovBhgBry5SgC8udhWvK/d6LvDCja8Y0R4u6zxaTw49rK8wOP+PIRU67waVKK8fIwYPayuBTzHq8I8yad7PdYAkjxlND49GhnqPJSl8zyuKFu8Wsttve5Ye7stiQy9Zmuvu+opGL1U75k8xT1gPAI/Hbsw9/07VWUZvNPZWrq18B67e8umPLXwnjzcD4E9fIyYu7vE1bvzMHm8e5S1PJH0rLxzTtW86fImO/XZEz1KtR09sJa9vRWzFT0tRre8QX/3vGuGAj0f7RG9lRcdPaKzF70jlrs8qFBdPJB2kDwpanI9+Aw+vLedD7yyxRG8qr6/vD2Xv7yEUJU97hFQu0p2jzyoTAe9/WYfvXyMGL3z7ZQ87VxCPTEu77ytJAW9sZL2vBDbl7ymGWw9CkrFvNRLhLz9K+e7vmmpu8yHhz3uWPs87J8XvKiLFb3Myus8908TPJA3Aj1YzzQ9h3siPdkv9Tz9XgI8uUoAPRcpFTwGYg08QyiSPCOWOzyr9bC7CcyovHiotjxNHzk9d3FFvF0lT7wMfW88eaAZPNGmMD26iQ49l5HyPEzoxzwDvTk8KiNHPckZpbwlgro8d/OovN8Hc71RB/E7kDvYvPTpTT2K5b28XXBBvK0khTxonlm8mIE4vCAkg72t8Wk9lRcdPcPP/byoTAc9FXQHPCc3SDtLKx29zboxPTSc0Tsw93083onWvNuZATzWQ/a89GMUvKRoJTzAoBo8Wj0XvB66dr1Zx5e8AgAPvQEILLy7faq6soK8PExqKzwCAI88L30oPSX8ADu+sFQ9zrKUO0+NmzyOzXU9j9E9POBoZjsRD1e9LIXcvGal9rx8stS8Y+Ogulg+4TzuHqi8KmLPvOys7rytWEW9SDiDPBzGobweU188smSGPKtCgjutIy27e/n3PGal9jzkP4+8nBVGPbSv4TwZ6je94SFDPZW+qbz2LiE7S/rYvL2FgToEYR6922nvu51/9rv+c7K9ZnDevK9GOjvxq2W89UCsvLMQmbzoPga9/YW9uxS2qLwqOoG9HemuPCcctTytWMU7jFYLvSxQRL0tCaG8qO+dvbhEqLzSNmm9lTrlvIB8Mz34hkY853hfPIPCTTyZOdy8kb8yvSD6sL2xIqQ72KcZvDrscTyFsMK7UuIDvUJLFzz9utU4j5wlPPrea7xkJYO8f0cbvdPvRT2qfNs843loPGE8z7xXnxi9vYUBPeQ/Dz35PyO8fDaZvL14Nz2G08+8k0zwPFQFET17nBE9bGoUPZKtJ7w4Kpw6vXg3u7NXvDvrDSa8NZCUvTe4Yr2Jrzm7b25MvZWJkbwM28e8OuxxvG9uzDzEiLA82sqmvNlG4ryuESI9JuccPXBcwbzlLQQ8Gg1FveUgujyQipo8YNIePYPCzbxItL48mvK4PFJrCT2hFL08lYkRva9TBL0hZGE8hRrzO7GeXzwBAXA87XKVvJk53LsxCJg8VbGjO78fCTzd26i7NYPKu9ztMz0McRe9CyLruycctTwM6BE9MQiYvHnWarzLqjS9lTplvEqQKDymSMw9g9TYvN8LgL1kTdG7QG+tOvEvqrpQxLc6ckq2PW1Yib1djIQ8/YW9vLMQGbuoMQC9uEQoPXHYfD3ZEUo8SLQ+vGpv1TyRv7I8fOfsuork0byViRE84J1+up68lzmzwey8dZDQPO1ylTthB7c8+QqLvFuwmrzBdy49AJe/vBt3dTthcWc9MYRTvQi0AryF5dq8dZDQvGxdyjyvU4Q96w0mPKgxAL2tI628gZ9AvRnqt7xiNw69uIYKvRkfULwlLkA8RLCGvJAG1ryFNIe8czgrPaICMrxgFIG9lncGPLHtCzxZ9z09RsbJvAu4Oj0qYk+6SB7vuhf8QjtEbiQ7gRt8uzBcBT1j4yC9wfPpO9GXoDs0ym29EwoWvWNfXD27nE28SaKzPAjc0LwhPJO9LqjpvKDfpL0aDUU9BoSru4rkUb1/w9Y7Aj6RvcbgVbwf1yM7mRGOPGU7xjxJ18s8v1QhvW6A1zwcxiE9qVnOPBVvhby60eU8HPu5PJCKmruGqwG8VXwLPVcWE717nJE8slc8PdWWF7tApEW7I6GCvIPCzbyP0T09F8cqPT86Fbyx03c8X5X9vEqQKL1iKkS7ojdKvRLIszzc7TO8GtgsvTs7Hj1XCck7YNKevLkyHTwM20c8RpExO8vsljxHSo47nybIPFfUsDtPoao82somvCWqe723D5C98AydPNinGT3wQTW827gbPAFQHLyAfLO8bRanPCeGZTtW5js9NgePvFMKUruAsUs9cwOTPCZjWD2mzBA98AwdPQr/3bxskmK8PkwgvUoMZL3f/jW9zvDOO6yf6LwCPpG89nADvepUST2df/Y7rsL1vDfbbz3PJee76775vTY8J710JqA8cn/OO2o6Pbt/w9Y8ceCFvG6A17xgg/K8oFtgvODsKjuPnCW99LxnPDI9MDqTF9i8KcOGO6ZIzDw9yFs9z1p/PTn+fDu+qI68+y2YuzqCQT2Ee6q8/nMyveXroTz7l8i87KxuPEOALzwyPbA8XNOnvT+2ULyEeyo8uePwPK+w6rvmiuo7gWqovIW9jLsuLC66aOIXPYeMLD1gTlo9c23DvK97UjzZRmK617mkPJ5tazw7pU48ByN0vf9hp7y1M6Y9mvK4vJWbHL1Fozy79nCDvZ0Qhbo/tlA9oaoMPX9Hm7yNeZg81csvvfAMnb2mfWQ9u4rCO4eMrLz7LRi8dPGHPNkRyjzMYxE9+5dIvcm8v7zQYoi6NMptvBHaPj16E4w82zRXPIzAO70PlCS8bzm0PG61b73I2xQ8hRpzPHEVnjzF8mA8gayKvJsnUb2mSEy9OoJBOkltGz3bg4M+P+voPPuXyDwa2Kw8mQREPXqPx7xtWIm8FPgKOwQshrwPlCS8DRBgvOcOLzztZUs8IS/JvJiAf7w5lEw6L5beN4+uMDw9k0M9sSIkve9gCjw3pte8rVhFPBi1H7sTRG+8tXUIvfnw9jzaDAm8/brVu0+PH732LiG8W56POlwVCjvfM068tWg+vHJ/zjuFNIc8+6lTPAPd2TxYjQ297KzuvOj8oztp0Aw8z6krvalZzjx6Eww9OzsevK7cib3+tRS9OCocvFIcXTvJOHu8PchbvDn+fDxbGks9C7g6PL3iZ7zDz9M86755vG3HejvP6409dWgCPTNtBzpcFQo9CWAVvbogErx/EoM8I1JWvY/eBz0AzNc8YirEPARhnj2izZm6JpjwPFl7grrf/jW87h6oPAgRaT0/62i9dCagO4W9DDx7+Xc5/BsNvcNlI7tYc/k8aOKXPNYAyDzymVo9GtisPAO6TDwyf5K83dsovO37mjxeYGU8IMUYu/SHTzzHmbK8rSOtvH2tk7wDqME8Wfe9u1NrCTzriWE8o/AmPCottzyPnKW8VwlJPSOZebwH7lu8BQDnPBz7Obp8stQ8KAoqvBZD5jwJla28D8k8PBHniD227II8wfPpO+/XBD0P1oa72RHKvBUg2Ty60eW7SddLvHJKNr1eK0064kRQvLMQGT2BNRA9QV2iuqlZTrzl66G9981pPXEVHjxyVwA7/QmCPdHMuDsItAI8Cac4PUd/Jr1IwQi9qO8dvdBIdLw7pU47bOEOu43107t2Sa28vPTyuwXLzjyXXfI8oFtgPBnqtz2G08+8/BsNPf8+GrxdwRw8UlH1vLV1CL2lj2+8hCx+vDemVz1SHN08yxRlu6ig8TuYgP+7dCYgPVw92DxgFIE999/0vI+cJbwpwwa7KcMGvJKtpzuzRbE8wIk5vMgDY70vbpA8PoE4vFuE+zyTF1g9RaO8ujM9MDy/0Ny8mJqTuydjWLz/3eK8ZILpvMUneT1l0ZW8pwGpvB9B1D0ZH9C8lJucvFksVj0J1w88LveVPYzAO7wm55y8uf0EPSmpcrtQ+c+8kyljPMXyYDw0lVU82gwJvWjilzvrDSY9pzZBu2soMj2BG/w7crTmPFT4RrxOC1u6z+sNPOIPuL0g+rA85GfdPPukEjyZz6u8gawKOwGFtLzQSPS82gyJPEltm7wHPQg9os0ZPVHnRL3CFvc7w6cFvNBI9LtpgeC7D00BPHucEb0aDUU87TCzPLBpR7y1aD49pDKJO98zTrukMgm9KNURu1M/ajxEbqQ7f0ebOw9NAb3HmbK8c21DPe7pDz3UqCI7CKe4vJryuLsVb4W8+qnTvNoMibn0h887FOtAPIl6obvlnPW8VhvUvBAh4rtHkTE8D4KZPCi7/bw4oZa82zRXvUZcmTyv3Ak8pRO0OzQZGr2nASk9p31kvH9HG7ziD7i81gDIuM1RBr0J3FA9HlPfOyayhLz/LA+9v1Qhvby/2jy2IRs8d+h1O4bTz7s0ym079LxnPI0qbD3fyR08T4+fvNMk3jxXFpO85Gfdu3yy1Dv7YrA70cy4vPZjubvRAVG8UPlPO8a4Bz2L35A7+T+jvC73FbycIpC8l13yu+GLc7q/Hwk9D4KZPKGYATyUBc28faBJPH/47rydEIU8gZ/APMjOyjwi6CW9TWwSvOnqGL1vbsy7mvK4O9/+tTy05Hk6sle8ug+UpDyCCXG9EaWmvMSIsDwfGYa6FGf8u/p0uzxhBzc7u5cMvU7WQrx3Aoq80QHRPDiUTDt3fkU8QV0iPPQLlD09oA09fpsIPG4EnL2pw349VmqAu2pHhzwYgIc68atlvaPwprzkZ109Jap7PNgjVT37YjC92UbiO3EVHry5Mp0882RCOzhfNDx+jj48fxKDPPKZ2jypWc689IfPPK1YRbwq+B69whb3vAEBcD1ytOY8SeQVveJEUD0pdNq8xIgwvOgxvDyPTfk87HfWPAGFNL0gxRg9tHrJPLqcTTvuHii8D5QkvDY8pzxJ5JW9VWJ3vWCD8jzMYxE9yxRlvU+hKjxgTlo9s4eTPL6oDjzd2yi8fDYZvO1lS702PKc70BPcvRMy5DtmpXa8VlBsPNrKpjvzZEK8XoyEvUv62DygW+C6Ih2+vMQEbDp8AYE7g401PbcPkLzDZaO8j5wlPf/d4ryuwvW8qd2SPFw92Lsa2Ky8+t5rvNr/vjwxhNO8YvWrvOC3Er0QcI68qCS2u+1yFbzJOPs7t8DjPPGr5bzRlyC8iSv1PI+uMD3ayqa82v++O2E8Tzzg7Cq7XivNPFn3PT0JYBU8RpGxvAGFtLymfeQ7SeQVPWvzmbsYtZ+8hb0MvCcctbv0vGe9RdhUPRTrQD31gg49Nn6JvGRN0TsDc6k7NOSBvB4rEb2NeRi8gglxvQmVLbzUqCK8vYUBvdGXoLskdWM8jMC7vfBBtTyLB9861BLTvKZITL1ok2u86bUAusIwCzwQ+ZO5RlwZvfKZWjy+MZQ7BsYNvcIwi7tIOIO9N3E/PBuRCb3X7jy8cGkLvAc9iDsXeP68gLFLPOcOL7wEYZ68ZzaFvO6aY70Pghk8a/OZvFg+Yb3ycYw7j9E9Oyo6gbzoxws9O6XOvImvOTsqLbc8u1WqvJU6Zb0L7VK8ybw/PIFqKD0HciA9SdfLu4eMLDx1Wzg9HMYhPH/D1rzsrO47D4IZvEXY1DnEiLC6hquBvPS8Zzz3zek85Zx1vWRNUby9rc+7pVUWvEnkFb0+jgK9BJa2PO37GrwPgpm8yxTlPMarvTz/3WK9BoSruy0JIT3YI1U8BsYNPNoMCb3DZSM917mkvMmHp7xnNoW8fiQOvedDxzyOGGG8EFb6PMsU5bz2LiE9qkfDOxLIs7uouoW8N3E/vfGr5TyrAKC8XoyEPcFCljwJpzg9SpCovBBwDr1vbsy8qwAgOr2tzzlcFYq7WxrLPBZD5rxugNe8i9+QvEXY1Lu2IZs8wXcuOwO6zLynNsE8o7sOPQv/XTw4XzS9ueNwu87wzjqx03c8ZE1RvWXRlT2RAZU73VdkO9r/vjtR9I49bgScPKpHQz1ML/E8LFBEvCOhAr39utU8mvK4OyEvSb2evBc8+T+jvBcOTjwsuvQ8UhzduuGlhzyA5uO8lNC0u26AVz1sahS9cwMTPex31rzwds27BctOvfp0O72XrB68xnalPAmVLb0wT7s81gBIvWNfXL2X80G8mEtnOyi7/byoJDa73VdkO7PBbL3KdZw8qVlOvJ440zylVZY9NYPKu6PwJjxwaYs8Ih0+OnMDE71TP+o8se0LvF8mDDs05AG9o6F6vWgXsLx3s908EwoWvY9N+TsTRO+71BLTPHVbuDxXn5g87fsaPdXLLz0cxqE8iXohParyEzwqaQM7LV0RvRmK7LyDkiu9/MWQvAwQ1TthcH88CGQJvDyBCL2APuy8LIghvXmeEjyWlw+975WnO3cwgzwPllO8YqWgvA6zBT2tTQI8UFFLvWTEPj140NG6GBUuvUbS8Dz8mgA7nB/6PHl6MTwUotA7bXVYvdRs17zIzt68zP68vZc33ryZVny8Qj6UvC8OoLwXOY87tgXLvN8usTyW9N68IsZHvR/Z6Dxd3CI8IEDJOmgC+7vzxQW9BJsLvakAcr1a6JS8yM7euqX09LwzcL08wGBEPTlpmbm8VMe7llu/vJQ8Ib0vDqC94q0AvHcwg7wrRaI8u+1mvDNwvbzHfQE7tgXLPF6xkjwRg7I7qwqDu+12ibwUolA9vLsnPWvv2bxh1986r3NPvc3aWzvIzl49yCR/u31Dr7xYYhY9oR0Zva1UMbxJJjA9sgoOPPKCBj3hClC7bNWJPGMrH73ZzvQ8lwUfvff8Er0AQB280WDau8pxD72KJCe8JOXluh6IC70RX1E5TTKtO1u9BDyMQ0W8yWf+PPOQZD1cmaM85WxtPMavQL1iPkA9q0NxPCm/Iz0+Mpe8J9LEPP7r3buMQ0U9VSsJPZb03rx40FG8obY4vEkCT7utkIE8ZoaNOSnx4jsMNLa8ttMLPQTlubtAg3Q6TctMvAhkiTwaWC09MINevVZKp7w6d3c8drEzPdpGFb38D786yMAAvZ3tOjwE3oo8cKW2PSJfZ7utMFC9WL9lO54wujw0s7y8hEppvLI8zT2Bcw29WI0mPGqsWryFSmk7BNT5vK4M7zz2FmM9vTDmu1QribwiX+c8EztwPJPOkTswUR88TpmNPLhISroOU1S885DkvFUrCT3yrZa8zn0MPRoCDb0AC/w7Xg5iPcSQorxPuKs7x32BPcjyP7xUxKi6ieGnvA13tbw0Gp08sWCuPXyZTzxAUbW7FY+vugGDnL2cEZw8o6MXvUIJ87yorxQ8DXc1PcUpwrwZiuy8BH5ZvE91rDz2FuO8lEp/vfvwoDxSPio9WNAlPT/q1Lxsy3g9zn0MvIK2jLeZi528mmCNPEgmMDtuH7g845BOvWvv2btSPqo8y7SOvaTmFrz4RsE8CxDVvFi/5buUSn+8TqdrvfZ2FL0f2Wi9d43SPKJu9rz9qF69+ANCPKLyiL0+QPW84C4xPLevKjwLzdU8GDkPPNobBb2WWz88hbFJPdk1VT3gYPA5KBXEO2lF+rv2fUM7g5KrvE7cDD17+QC9s9Xsu0gfAT2LPBY8wcckvLdIyrzhlRG9aWnbPFu9hDxqvZo6h54oPG/Jl7yQDMO8A187vAORer2N7aQ81ML3u7L5zb15npI9FUwwO43tpDu+qIY7Yj7APAngdroV5U88+5oAvT9RNT0hg0g9Yj7APPXkozuH0Ge9TCHtvJd6XTxy6DU8eGnxPEEtVDs+QHW84C6xO7pn6Dy3r6q8BH5ZPJ0f+juS+aE5BDtaPXrhkTsrm8I8h1spO6OjFz0azeu8/lI+PIClTL2rETK9cdf1vOMbEDoeiAu96UYrvI4wpDo1j1s92yK0u8kDgLwn0kQ9+rt/vGe/+71G0vC8elbQu8H54zzlOq47Pcu2PB6IC73e5AK9fAAwvWu9mrwX0i479eQjvdav1jpzkpW7f2LNvFgmRrxVByg9/A8/PdPmWD0liBa80Mc6vMJxBL34nGE8K0UivKR/trsC+No8dCu1vMmcn7upvfI7z4S7O4EMrb3D5sK8npcaPD4OtjwHj5k6nNx6PPeOg7wsrIK84JWRPA3elTytkAE9SqwuPJWx37yWwh88vCKIvKb+hTxw+1a7y3g+u5faDr0Sg7K8SdCPPbfh6bvM7Xy9pX82uwByXL2thvC7+/5+PdD5+TypAHK8M6yNPKAM2bwvoJC9L0BfPeHYELvSTbm8T3WsvIL5Cz1tDng8lRhAO4cFCb0eIas7yPI/O/k/Er0YfA49E8axPCnjhDw5+4m9NxXau5tnPD0H0pi9bdw4PMGcFDw/uBW8oB2Zu+P3rjpYv+W8PCHXvGKBPzzcZTM8RZmCPpEr4TwiLSg816/WPGwyWTyRtqK81kj2vCq/I7sPOQS82DXVvPYWY7xC+xQ8R79PPJcFn7xqrNq89DrEPJSjgbyR2oM80WBaPZlW/Lv9QX48blF3vDNwPby77Wa8wjxjOtxls7xGOVE8ceEGPVi/5bsoruO8Q0zyuzEmj7uLPJY8N+MavUlpL7xpN5w8rf6QPHtnkDvUwvc7XQ7iuBVFAb1K3m089NNjPO12ibzlOq48Pss2PficYbwlTEa9l3rdvPhGwTxIWO88K3dhvKOjl7z6raE8mOE9Pcqcnzpmhg29vLsnPLvfCL3iG5C7VrEHPaJu9jzTTbm7Dbo0PDYyDL3ytMW67TMKPInhp7zZNVU9OjR4PaPV1jzWD4g9sB0vvfpXgT3aeFS7fdzOvNTC9zyukIE9iBNnvSTl5boRg7K7PsSHOF1uk7zTtBm9p+HTPJFPQryMzoY8GNIuPQ/9Mz1UK4m8qK8UvJb03rsIBNg85WztO9ZIdjyD+Yu6y3i+PGuI+bwxUR+9a4j5PE/q6rtmsZ27hbHJPOAusboIFZg8y3i+uWnJjDxsmTm80Me6vMZswTyvc0+79KEkPKAdGby6eCg7zkG8vCJfZzz2fUM9H9loPFkC5TzSo1k9DlPUuxb2D72FPIs8rxaAvHKB1byXBR+9CUdXPBWIAL2i+bc8Mi0+PR4hK7zk9668hhiqvXD7Vj2SK+E7XdwiuopWZj0FTBo89KEkOvwPPz3hCtA7S0XOvIdbqbwQ2dK76GoMvAFO+7tzKzW8YrP+vFtWJL3rIkq8BeW5PH/tDj1f+8A9zP48vTHqvjxFmQK96ZzLOzSzPL3XWTa9tpCMO3HotbyKvUY9V/QGPXLEVLwn0kQ8YJTgO2YmXDz53+A8H6epPEhY77vmWcy8BNR5u9CEuzooruM7a72aPJcFnzyvQZC9+zOgPPXkI7z2FuM8jaolPYxDRbyovXI8tOYsvB1T6ruEbko5Pf31vPWhpLwxJo89O0U4vc/rGzx39LI9pp5UvUBRtTsbmyw9HZZpvGDJgT2PMKS8k/mhOsz+vDwA/Z07ZAc+u2tWujsF5bk8oNoZPUcVcL2xYK480+ZYPcjyP7wna2Q8TqfruBwQazxK0A+9UT6qOg/9Mz3+Ur69BDvaO+av7Dzi5m48iNBnvIZbqbsbzWu8LSFBvNXTN7y8VEe7sfnNvAP42rkw44+9caU2PIieKLo3fDq8I6Jmu7xUxzvloY654aNvPB0hKz0eZKq7aqzaPAUX+bxC0AS9rVSxvHUHVDyZJD08mmCNu99gcDyOlwS85a9svN7acT1xDBc9TO+tOw/9s7xxpbY7UnDpu0X20bw3Obs8sZLtPDh8Orrs8Iq8Il/nvND5ebzN9406rsnvPNnO9Dx5rPC8AoMcvcTmwr1+Yk08r0EQPfGtFjw9/fW8hAdqPP+5Hr3wx+Y76yJKvMGcFDz53+C8Ci2HPd1ehDxkBz47MZQevZR/oL0gUQk8TTKtOwypdLxxGnU8DlPUu6H5NzttQxk9OQK5upBzo7yBT6w8eeERvW9biLyeYvk8qSRTPP/RjTslXYa7yt+ePCGDSLySkkE8n6X4vNxls7z6VwG83y4xvbQprLroAyw8D/0zvNDHOjxYJkY8rYZwvP6VPTyukIG9KK5jO4OSKz0bNMw8Ii0ovBrxzDu/Fha91PcYvSgOlbpoNxy8TCHtOy6nv7wv4488G5ssveK0L7xYYpa7CK63OiyIoTvuuQg80qNZPBrxzLztdgm8eNDRvLo1KT2uMFC8P7iVPCDqKDwuyyA92c70O1OBKbwW9o+9VTlnPUaZArzmFk27Zko9PMCEJb1FxBK96DVrPbpn6LqO7aQ9qYszvZsAXDz78KC87DMKvU4OTLrcIrQ8XrjBPOu76TwjcCc9+EZBvEI+FD2ZVvy7lwUfu+mti7uthnA9lpePPKI1CL3P6xs9H6epu7LV7Dpw+9Y8zToNPcjOXjzyTeW8RLPSOnrv7zz78KA8Q0zyu1mlFTrIzt48DzmEvcbTIb0rRaI8yqr9PEqsLr3FIhO8tcJLPQ3s8zy0f0y8g5KrvBDZUjwaNEy9fXVuPIVK6b3T5li7fDJvvPEKZjwZiuw3bQCavMpxj71IWO88ZW4evCwakrzBnJQ6vLsnvL/axTzRwIu8kvkhPOKtAD1biGO9ujUpvQzeFTzNZZ06KHykvMkDgLw3rvk8r3NPvGzVCb1pN5y8uhHIvAtm9bugDNm79eSjuwnqBz1sy/i8wi4FPBzeqzwCtVs8s9Xsu++VJzwQcvI8JUzGvLevKj1wngc9iXpHPNFxGr1vyRe9J2vkPK2QAT30XiW9aqzavOuJqrzSCrq8K0UivfdZYj3s8Ao9K5tCPW+U9ryOhsQ8hbHJu/6VvbyMEYa9HiErvCUoZb0N3pU89eQjvHRutLxzxFS9hTwLPAcoub1vyRc9jsKUvLYFy7t5nhK99naUvF2ZIz1uhhg8X1Fhu2WgXbwZiuy5i4uHvJP5obwHnXe7RfZRvUwhbTzN2tu8HsuKvC9A3ztvhpg8PKwYvbJgrrktIUE8igBGvBVFAb1VKwm9nVSbvAXlubzSPHm9sB2vu0vvrTrtM4o7OmkZPcBZFb3AtmS3BNT5PA/2BL2thvC87XaJvBNwkbz7M6A8m6MMPdSQuDzgagE9aUV6PXEadTwazeu8cei1PGl6mzytVLE8Q7PSu7gWC70Jrrc7aUV6PUkmML3Izt68ZuPcPLpnaLv6rSG9+UZBu0mbbjw5aZk6PCHXvHhzAj1Ny0w8yFkgvW+UdjwSX9E8Bd6KOToCuTxQLeq8oU/YPOxlybz78KA8NtLaOq2GcLzAHcU8Yj7AvMVlEjvVOpi8WL/lPLy7p7v3A8I87YTnOuV9Lb1Jm+48qYSEvBLqkj3irQA83MwTPcsRXr28Ioi9YQwBvM5BvDoOU9S8DKn0vBlYLTz6rSG9WGIWvaKS17vuhOe711k2PWvv2bvsZcm8GVitPBb2Dz3EkCK8t68qvSdrZDxx6LU8a+/ZPDYV2rwDkXo9BDtavJyGWjzO2ts7CiN2PSOi5jyDxGo9oNoZPZsA3LwSX9G71g8IPXNPFrvFwmG9iDfIPDSzvLtuHzg8ZoYNPRxTajzQhLs8lymAPGFw/7iYel09E3CRvPDH5jzOc/u8mUievDp3d7yXKQC9WGKWOgmuNzzd/tK8ZUq9PEiNkL3002O9u3iovC4ygTymuwY8t0jKvCMJxzzIwIC9wgokPQFO+7zkKe48Nmt6Pd3+Urwulv88Ii0oPHIa9To2oBu8o6MXPaXCtbzfYHA8LIghvQ6zBb3BPOO8SL/PPAFAnbwOU9S8NV2cu4g3yDzHSGA8AEAdPB26yjyPc6M9PYg3PVwABLvRdJ27YMEdvIaYYL2kdN282VyruxeDO72ypBG9RjSGPQB36rz1GYe8Ey0PvQM5mL2RHkk7OIOLvM8xITwNcJO7UBwUvSpfSL1H1PW6a0cGPQTLgb3ZkzY8f1oePUkvVLxRHJQ8f3KAvIcqyjzfaBS996a+PIVh1bwKX/i8IxWVOu4Nnr2mHim9AA4GPAn2Ez23pIk6NMHdvNbDAr1x81484I58u1KR6boqENs8+QGdPLgeEbxKza66A/YbvYnUlbvP1kK9xDExvbqryDtHd4I8HxxcPYfIJLyH5027pqShPJmreL33ms28RxdyvaS32Tos8TE878ohPeuCe7xSZk+8fLDSvOMNLj1chWi8aCMzusWrOLzBOPg6k0KcPIj/Lz002T88CUWBvUns17whNL48SOBmvEp+wbyITp07fHlHPZP/nzsijxw8NRBLPO8NnrxHNAY8y4AWPdu3ibwLulY9HopyvO2+ML1UiiK9xOLDvJxtJr3AjBe9eox/vEaujbzb7hQ8ueLTu46dAj09+Fi8FjROvOJv07yRYcU8aeynvCMhhjrrP/+85e6EvBgVpbz0GQc9VUemvJQLET1dTt06DeoaPUcj4zxKHJy8rQ3+Ou0Brbyd5607aE5NPKM2E7vC9fu7aFq+O+WTpj3tb0M8M7XsPJqAXrxzkTm8M3LwPNV0FbzOXDu9XwSaPLxJozv/J329UmbPuyuutbz/J307VUcmvJyYQD2lBsc81d15vSx3qryNC5k9XBfSOIgXkjv4pj49/oeNvVO1vDvWb+O89bl2O1H//7wfEOs8XeBGvMKH5boBm728m8/LO2rBjT2YhRC7XHn3vOREubwUlvO8sioKOzZ3GjwNWDG9SFruu7yYkDsWd0q8/q11vJKwMj3gjny89ghkvcUlQD3Qq6i7/3ZqvNY9ir0/zb68DEBPPSyPjD09nXo5ShycPISA/ryEIwu9DWQivV8Emrz4LDe9aKkrOyFALz3OUEq9+L4gvf9QAjsWNM48R9T1Ou44OL0Wd0o8kjarPACPzDxI+Ei8f1qePH0XIjzkXJu8Pn5RPJI2q7zHmIA8DVgxPFTBLbzh3ek8LUCfu9oxkbuJ4Ia9PrVcPFHZl7y6aMw8koWYvXHzXr1y/8+82AFNvaZVND1eI0M8/74YuRgtBzwJ2f+8BEUJvFtfgLydyIQ8UlrePOCrkDzWb+O80CUwPfUZB7uZ7nQ7R3cCu+OHtbqbSdM8moBePCpfSLwDv5A916buvLLnDTycKio94VdxPOF0hb1okcm7Ai0nveWriLzwXIu82jERvHIXsjzOGT+8IyEGvSpTVzxfipK8c52qPHy8w7yZw1q7UYX4PDfxoT2mz7u8k0KcvCnZT7yaEki8Dd6pvGhmLz2HNjs8tpiYO1V+MTyIebc8ShycuzSK0jxUckA91yznPCQhhjxU+Lg8pcNKu9ZvY7y5GV+8MmZ/PJtJ0zw7NJa77oelOl3UVT3ZXCu7spggPVuWCz0yxg89QF+ovJ3IhLhwBAK94w2uvfj1q7y4yvE7BcuBvLC3ybz30Vi9D7MPPZlo/Dx/Zo+9msNaPeHR+DwyTAi+NqK0vKjnnTszO+W8+Ka+O5w2mzxzI6O8Fgk0vIUeWb1RyPS8PKnrvADx8bw/BMq8S9kfOyyDG7wXjyy6h23GPNlcKz1fcrA9A2Qyu/UZhztoF0K79j9vPWt+kTtInWq9+G8zPBfeGbxHI2O8nG2mO1vzfrvuUJq9BLOfPFOpyztvcpi7akcGPFbNnjyZkYG7kSq6PKh5Bz3EXEs8gOwHPf8NBj35UAq9MmZ/PM6TRr0pwe28coVIPbruRD1c/2+9xWg8vRT2Az3/dmo8o0KEudtoHDz6hxW95e4EPAQCDT3On7c9fHlHvQIVxTywPcK8ZwvRvArlcDzMLPe8cbBivThAj7zD1lI6h0KsvPZX0Twt0gi9M7VsPFPg1jwU2W+8h8ikPBcJtLxLa4k8ov+HvYdtxry7jJ88QBysvaYSOL0CFUU9u0kjvGhavjyTkQk7AQlUuxY0zrzYDb48MwTaPOwUZT5eLzQ9AzkYPAu61jxS1GU8UtRlvZyYwDvgFPU8NMHdPB/Z37yP+nW8+pMGvChYCT01KK28recVvUipWzzWmv27jp0CPQ1YsTymz7u7kAbnPNlESbweU2c9Mmb/PLESKLxpciC8KhBbPJthtbxUiqK8m0lTPHznXTydsKK8VHJAvCs0rrk/R0Y7zM+DPdJJg7ybYbU8Pi9kPbwSGL0f5VC8+DioPJjudDwY0ii8r+7UPPhjQjyH5007M7VsvfZLYDzrS/A7cyOjvF1mP7rGVYQ8jXR9vEk7RTylgM66DacevcY9orxm8+66zKZ+vHFCzDxLUyc8hElzPF/4KDsN6hq9LUCfvFKR6TwYFSW8hRJoPUdO/TxJctA8zhm/POOHNTxRKAU9DiGmPNZv47uJWg49GOqKPW/b/LuZPWI89tHYO5DP2zsyqfu8DXATPPAlADwe6gI9kTYrOyv9Ij1AX6g8zpNGPMdVBDzPnzc8Dd4pO9lQujsqX8i8xsMavSi1fLsO9gu94/XLOyRkgj3uh6W94VdxPLEGt7vtezS82pO2PQ4hpjtdZr+8iVoOvZPIlLxWogQ8BLOfO5K8ozzu9Tu6LI+MPPimvrtI+Mg8e6ThPDFAlzxzkTm9uu7EPJj/l7vG+iW9Puznux/N7jynNgs9uZNmvbruxDy54tM8GNIoPM4NTj34e6S7F4+sO/cU1bwJ5fA8RigVPX9ygDwpwe089FCSPK6r2LxdC2E9uZ9XvCj4+DzVt5G72+4UvWhavjw9/Qq9NncaPHRaLrwrosQ8ps87PGYq+rl6mPC6HZuVPANkMj02Xzg8c6mbvUvNrjs02b+8IYMrva1ca7wqU1c8XlpOOw0VNT2S/x89mvrlPNdj8rzrCPQ8fMg0PPgBnT0ewf284ZrtO5l0bTykJXC80QYHuzNH1rzYDb68vB4JvdWafbzaJSC8SUe2PORcmzxAoiQ9y0kLPH0XIj3gqxA8b3KYvEZOfbxWEBu7zAFdPXV+gTu8Bic8Xi+0PYaYYDxTndq87BRlPZEeSbyZdG094I58uz+KwjwLrmW8dC+UOu1vQz3PGT87VRAbvLFVJLuwt0m9+QGdu+/KoT09/Qo9/kSRPQIVRTwMWLG7Ay2nvEgj47v4bzO9IfFBvVO1PD1x5+08aeC2vP/KibxUcsA8pQbHvFyF6Lwy0gA7mTFxvAFAXz3AjBc9uz2yvHlmF71Tndo8+pMGvMMZTzxSZk+8X3KwvOrii7tLza48NRDLvDMEWj1TZs+8ceftO8wGjzqOCxk8jz3yPJqRgT3+J328Z8jUOuTik70LrmU82A0+PEEoHTxmNmu6xNZSPFPsxzyHsEK9cTZbvLs9MrzOk8Y89bl2vMIeAbziAT28Pn7RvGTBFTxpnTo8b9t8vMUxMTvDUFq9CijtO11OXTwga8m7Nc1Ou0ly0LyivIu89VASu3ORubwXxje85eKTvHORuTwpBGo8uavIPFEoBb1o1MW8+GPCu15aTjyd/4+7W/P+vKbPu7zjvsA8Cb8IPeN7RDwYZBK9hc9rOzN+4buYMfG8sqQRunq1BDw4gwu8kSq6vLC3ybva7pS6VRwMvQJYwbqDWhY8hmFVvJw2G7wqX0i89ghku0oQKz1etSy8Mqn7PP8n/bzXpu48SUe2u1rNlrzZkza8wlWMPWf/37xI7Nc71+nqu0oEOryRKrq8C3dau1HZl7zDyuG8ueJTPGlaPr336bq82AFNPDWWQ7xRa4G92tYyvIUji7wW/UK8Vc0eu60N/js9nfo8F0ywOwIhtjw9ug48azuVPRY0zrxpciC9pyqavTM7ZT3h0Xi8kdvMPH/shzulw0q9p5gwugJwIzw0wV08ksgUPeWrCDwntXy8fLDSvHyw0jx6+IC8Cb+IPCl+cbuvMVE9k3knPB1kCrxmBBK89JMOvIY2u7wq2U+9Nv0SPes//zxI+Mi8UpHpPM175Lzib1O9koUYPMzPAz3lq4i7u88bvXRarjyPPXK8C7rWu3LIxDxhEIu870SpO9qfJ7ztIFa9pO7kO7mT5jzgMQm9vZgQPdEGBz2Ez2s8kW02PC0JlDzE1tK89xTVvF+Kkry6t7m9u4yfPChYiTzZh8U86z//vJvPS7ytUPq79RmHPKjnHbxmbXa7qOedPDblsLzNOOg8aJ26vN9oFLxIWu48z1w7PF0L4bxcvHM6BDmYPNX6jbwC0sg7NwkEvbvDKr1R2Re8uavIPEaujbz3pj48AzkYOs/upLzc+oW8pHTdvKK8i7wC6io9hh7ZO+tL8Dwe3pE7VVOXvH6Rqbx/Zg89iAuhO3x5x7uJWg69hVXkO/8n/TxchWg8VIqivJNOjbzV+o08F9KoupnIDL3b7hQ9AhXFPOCO/DzGjI874O6MO39anr1JwT07GFihvL2kAbxWEJu9QeUgPdiy37zFMTG8U1reu0vlEDo0lsO84wG9PHsqWrymScO7VQQqveGabT1HI2M82p8nvAAOhjxVfjG8FxUlOyObDbyJTp02ozaTPEHlIL2Y/xe8rhlvvdC3GTyo552722icO82yb70dZIo90LeZujxAB70z+Oi8LK41vbni0zsFRYm9o0KEvPdXUT1K2R+9KX7xvOya3bxffiG9K661PH1OrTzDymG9uZPmvD0j8zz2CGQ9ALrmPJq36TzYvlA9Uf9/PbxhBT0ERQm9rtbyvFxC7Lz/UAI8sQY3vGBTB72o5x29APHxO+Oyz7yS/5+97b4wvRZAP71LU6e6K/2iPInghr3qn486NRDLOkgj4zr1uXY9httcPAzSOL0OvwC8jp0CPULxkT2xEii8fLBSvYc2OzzWwwK9rQ3+vDx3Ej19CzE7KpbTPJnD2rzEMTE9pVU0PNaafT0JOZC7Fv1CPGaF2LuGbUa9CaJ0PY1Olbw8NJY99xTVvGn4GD1yyES9R3eCu53/D70D9hs9kaTBu5EeSb0f5dA8PnLgPNDupDlfL7Q8hja7vFPsxzzFaDy9IYOrOwsJxDxwO407z5+3PAGPTL00fuE8F48sPf5EkTxfcjC9hvM+PXOdqrwWNM48pow/PbxJIz0ERQk9eviAPFtTDz3lJRC8UmsBvX1OrTs0U0c8pYBOvKQx4TrMpv474izXPOyaXTwhdzq8VQSqPDKPhLzP1kI8iLwzPXK8U70sNC49fpGpvF7gxruvJWC9NV84vSMhBr2mVbQ7QFO3vON7xDv0UBK9fReivP6t9Tsztew7XU5dvVNmz7xHkXk8fUK8vXOdqjwLNF681t15vJ3zHj2jeY88MgkMPQt3WruS57284iBmvEkvVD2jXHs8XIXovAP2G7vPaCy9At45vdriIzubSVO9uB4RPCoQW72d8x49ZrDyPHD4EDxLa4k7iE4dPa6rWLxSC/E8Q4iuvNacATxxvoi8rm57vGY8vbzx+oG9zfg4vVH/Uj0mxZ070dsbPO4MeL3jXAC9MhXlu+0lurxh4Ge80LQ+PGSOUr3S6ba8NNyROqbaObxDYVG9/39BPNCb/DsOpdA6MFnfu/74szzr8EE95hiGOZjDRTyqpFq8vtMpvbuesbulU6y9SPIevccV1ru0htY89kuwO/34M7ylU6y8zy0xPbe7TrxeFsc7gDoNPZymqLzv06Q8ptq5PEuV4ruvrpq8CSQKvdNwRLxzOu88c/OAPBzjoTxGHdc8H28PvMg8s7zYWIe9uXfUvORqG70rCDG8Zjw9OpKUlD1YPgu9Tbw/u9mIHzyqRKo9pCzPPEl5rDy7/uG7XrYWPB7/VzzJtaU9we9fvEAVA73SiYa8wiRYvPBaMrwyFeW6uCuGPI1aPD3KY5C87f7cvOXYZrtsVJi81jplvJwGWT3PjeG7jeHJuy3ENrxY/mu98tiEvB8N87uZYxW97f7cvCPwVbwJO+C6lIAyO1rTM71u0P67GpXnu6VTrDyZugq8lICyPMenCrvpW5k81jplvFzhTj3ZiJ+7j/1/PQoCDTtzOu88WRyOvLkJCT0JSXs9ARVqO+Rqm7uyaiC983ZovEquJD1cgR69lv6EOyY+kDxwHrk9tq0zO+/TpDzleLa8m5gNPTh/1TyFNMa8rFJFvVeF+ThUyXM7LT2pvbWfGD1JeSy9lyP2ujKOV7yU4GI8LktEPTIVZb1yRZa7+Qe2PeJDPr10Ycy8xdJCPXXo2bwD6rG7s//IvKxSxTyMuuy7eI0Ju341rbtkjtK7jo+0vJlYbjwEcT89fa6fuTaYlzqBkQK8jggnvPb5Grwz/o67v1o3vdNwxLyteSK8mUrTvJHErDp5svo8AI7cvJPSR70+fu48VYIFPfC6YjxoEQW8/eqYvLjiKz2NWrw9rQCwu4u67Dyz8a27/MM7vZUHQDvwumK8seMSvfiAKDu/CKI9yC6YvJ5iLr2GyW48RIguO/IInbxIUs+8sJXYOtEykT2iRZE8INSfvOV4NjyU4OK8u54xvIYri7z/doa89jLuO07jnLt+Na28fOdyvNBUjjzqK4E7QbNmvX0Flby0Jia8DX7zvK+umr396hi9pCxPvROWTrz57vM8g4bbvBTkiLvoG3q7roc9vbA1qLzUZ4k8JWCNPMSr5TxKriS8QcwovZbufTtTWyi7ricNPWYj+zvx4b+8YHIcvIh3WTxxHjm9tq0zPUak5LxRn6K73KRVPWFCBD2XPDi9EAGmvJE9H71hMv28OH9VvcI9mrwj8FU8XhZHu2Wc7bu3G/86EAEmvU0c8Dw2+Ee8pbNcvZAkXT2wNSg9fZVdvFtB/7xFNpm8WrpxvGHrDr2KnrY8roc9POV4tjwOzC08lYAyPXiNCbzZiB896LtJPaScBj1/Q0g9rm77PEjZXLwUvSs97sUJu1OkgrwUvas7BZicvMH9ersJ2y89gMrVvNGrg7oaXBS9hsnuPLPY67wGBug7kjJ4vcLEp72jvgM91H5fvN0r47qEDem8D5wVvV+dVD37DBY90LQ+vV4k4jvl8ag88/31vf3qmLpwpca8U5T7vARYfTxP2PU74jUjvZSAsrvXOmW9p+jUvN9JBb2hEBm9KVrGvKTMHrxc4c683lLAOsvR2ztFNpk7ybWlPVeeO7zl/0O8fAC1vJvf+zzN33a8+zyuvMpKTrwavMS7LIYDvVzhzry4W567zgZUveV4tjwPUzs8AtyWu4VbI7zIPDM9kpSUvO4zVTwUBoY9QwEhvFH/Uj3uM9W8bCSAvDgfpTwaNTe9CmK9vNYjjzzWjPo8ZKeUu8RLtbs+4Ao8cizUPAlJe7yB8bI8rxzmvBfn/DsnxR09TH6MPSKkh72etEM8Sq4kvG5JcbyKnrY82t8UvYBqpbxKADq9tk2DPbX2Dbxcj7k630kFvF+dVD1EWJa7SGuRvNMeLzyb+D28cswjPUBTNr25yWm8CC1FPfoV0b2GWyO9ZzOCPCCtwrxqpq08jggnPLuesbpI8h67VvBQPBfZ4blGK3I+8u9aPaOlwTpSrT09MncBvFB4Rb3iQz68k9LHPMu6hTy19g29p1iMOm/gBTz57nM8dHqOO4A6jbzXU6c8EejjvC09KTyhcEk9sKNzPC9yIT2jpcE841HZPORqGz2qFJK8UiYwvN3LsjuN+os8UiawvEClyzlIeaw5818SPHpSyjz/Zn+6NTMHPPZLMD20hta8IqQHPVH/0jwuxLa7JZClvGj4wrlZTKY7cR45ux+fp7xqpq081GeJPNfaNL2JJcQ8+wwWPXEeuTuXFds7QZyQPGoG3rweeMo8ZtwMvVS7WL0W8iM8CUl7vK8Oy7zAdu28Eq8QPIxaPDwfDfO7u54xvcZQFTx1ARw8Kbr2PDeYlz0Dw1Q9dzYUPeriJjzCtgy92GFCPdaM+jxmPL28SUmUO0BFmz2CeEA76uKmvP9/wbycHxu8offWvDBCCbygiQu8AI5cPCHUn7vILpg6INQfPe3+3LqmYUe5kBbCui4k57sv65O7eI0JvZ60Q7zy79o8jVo8vVeeOzzcRKU911OnvX+8uryErTi8pCzPvNs2ij00PEK7ah8gvbFchbxjLqK8crNhO8pKzryjLM87g4bbujBZ37y9rMw7AlUJPXwAtTx9fgc9dpZEvIStOD1qHyC8vEwcPKWz3LwMlzU87sUJPXyHwrwFmBw9yiPxugZoBDy2TYM9AI5cvJMy+LmcH5u8znaLPFxoXDyScpc8gGqlPPs8Ljww+a68mtHgPOIc4bk+Bfw7LsS2PHYPN70j8FU8PEn2vGDEsTyRq2q8PGI4vKdv4rx1b+e7TzoSPeEOxjxUyfO7oRCZu2LJkb1RhuC78o+qvEHMKL2KTCG8fqN4PMZnazth6w48fX4HPR+fpztCOvQ8f2olO3f29DqC/0096K2uvE5RaDuPdvK4JoX+vLWfGLxhMn28dq+GvIRNiL1w99u7/t/xuzrND73QVA48WjPkPPD6AbyFlPY8PHDTPO3+3Dtp+EK8iiXEO1zvaT2uhz28wY+vPHCXqz2a0WA7WIV5u8bJBz0XYO+7Ra8LPSb+8Lt3lkQ9mhEAveNcALxXhXk9L+sTPet3Tzofbw8891lLvazZUjtTTY09mVjuO3TavjxtSXG679MkvHOzYb2DJis7rEmKPO/TJLxnSlg8hPYSPCDUH73OpqO8afjCPF12d70YYG+8RK8LvPZLsLvl2Ga8fKCEO06Rhzymwfe8XY85PTh/VbtB2kM8DswtO5ymqDz1Mu68KoEjPd7yD72h0Pk8/GOLve9MF73Mcas8pTpqPDcRijwY53w9T/E3vJ0ttjzafXi9lPmkPHYPtzxXnru7NUrdvFVpwzvR2xs90DKRvH9ciryJJcQ8HugBPIxaPLzmJqE8EPMKvUBFm7vl/0M8lODiPHUBHLxVyfO862m0vbA1qDxgZAE9DB5DPFM0yzwoTCu9A2Okux3Yejq+oxG9FcvGPCwvjrwuS0Q8dHoOPfbSPT1FjQ68RFiWvc4tsbtyRZa7OY3wu4fisLrkyku9i8UTPS2dWTxV4jU8fQ7QvGn4wrsaHHW7YGQBvVieuzxQeMU8L3IhvNiIH7m5yek8zfi4vP26gLwF+My80WKpPK6HvTwxZ3q8A2OkvLueMTzx4T+7FCt3vJ47UT0RYVa7FUS5PCt2/LxKADq9DJc1PCvvbj0PU7s8JyVOPATRb7vLugW9Y/4Jvdyk1bwoTKu7Gn6RvHNTsTsMECi9JbeCuZwfG73q4qa8jQinvD+ly7w474y8LsS2OzcRCryUgDI8JAkYPdP3UbxuSXE8YvmpO6eIpD24aTm9b3BOvUGzZr0GjXU95p8TvU6zBD1Paqo89cQivTVK3byyytA8jVEBvBHRDT0T9v46/eqYvIzTLrwQASY8YDJ9vdMerzvUHq88Bn/aPaKXJjyz8a28AtyWOwPD1LyJ55A8kjL4vB1qLz0GH6o8g28FvYOG2zoW8iM8AtwWvTpUHTiZcTA8PRAjvf26AL21b4A8KmjhvJrRYLvbvRc94gULvdmInzwz/g68q2sHvRHo4zu/4UQ8yDwzPHtg5TzEq2U8ENpIPXTB/LqiZ468C3DYvA+cFb3dK+O8t0LcvSrh0zwZrqk74bywPK+umrxuAgO9GKAOvUey/zvSSee7gnjAO+V4Njs0nHK9NvhHvIYrC7yyaiA6T2qqu4xB+rxLlWK8kavqO6U6aj0grcK89LYHuxtclLwo0zg6zEETuyOCCj0pUYu8UiawvMDYCbo1cbq8lSCCvMZQFb2+QfU6Rb0mPBSk6byN+gs9m/g9vGgRhTzgJwi9ox40PSIrlTxsVJg8DqXQvALD1LpZlYA9ITRQPPP99bwtq/S8WrpxvCaewLxv4IU72GHCPIGRgrtPOhI9YMSxu+Q6Azwtq3S9UYbgO+riJr3/mAM8zZiIvayydT3fSQW9O+nFOqq9HL1qHyA8H2+PvBQr9zyIkBu9jDNfO2FZWrvWjHo94gULPZHELLwAZ387dYipOfkHtrwbvMS8li6dPL/hRDw474y8rGBgOc8tMb0Ecb+7TH6MPFXiNTttYjO9lMkMPVO72DtUyXO8CC3FvGByHLzPtL68qTYPvW5wTrzCxCc9rFJFvY5o1zzvTBe8YlnavLPBlTwBFeo8fa4fvTD5rrrILpg80Jt8PJp/Szxrpq07VmCIPbYb/zz96pi60WIpvf74M71d2JM8yC6YvEcr8jtcUYa9BmgEvQRxPzyM06488UFwveGVU72wQ0O8yC6YOxmVZztq7we9ZZxtvKeIpLtnY5q8IMaEPdYsyjueFHS8YyCHOw03BT3qUPI8mn/LPK8OS734yYI7vEycvCKkBzrcpNU8B6Y3O+eG0Tw3BuO8sAUQvK0AMDya+L089avgPBgOWj0wWd8733kdvavLNz2/+ga9wRa9PXJFFr0Gf9o7+7WgvRo1t7ym2rm83KRVPWSO0rxj/om9Q9EIvNfatDw2+Mc8x2drPW4QHr2ETYg8zfg4vfCjjDyfq4g7RK8LvAwewzsQepi7xqcKPbNfeT0ESuI8LT2pvH2uHz0E6rG8pto5PTktwDyaEYA8omcOPIqeNj2I8Es9vCW/vKbaOTxNvD89h2CDvHpSyrq0JqY6OI1wPYa7U7uo9m88zfi4O1RbqDxSJjA8QFO2PCAmNT1KriS7SPKePB1qL71xBfe8HfG8OzKO17v0tge8gfEyvEsnFzt+Na27MSAMvQjbL7xV4rW8wAgiPV62FjxSJrC8EPOKPP5Bjr0q4VM92t8UvVIN7jycHxs64CcIu8aALT1uSXE7ZC4ivUHawzxYJck81ox6vCCGZbzfSQW9ytwCPYiQG71rdpW8AdwWvOg0PDpP2PW8uOIrPc/NADxYPou8cB65PB//Vz34yYK8LIYDvTXUjTyHYZs8M8QIvfxDmDwLnHi8ktffvPRgcr3aHaU9ifz3O6xR57wzMGm9DpVEvVBtDLxy4Oi8ErVOO2+5qjzhotu7YRuevF5JB72iEVM7zEjevGbGfzz5n/M7ZARuvKZ3CbybF3S8ERK0u9a/LDywzlY7cT1OvRSumjt6fWI7m/j8vfuYP738WtG8QO3svPX0Eb1nv8u84eDJvLJxcTyNDYe9JQeFO1EvHjyVNVi9k7E0PZmT0Lwyble9Ctpmu2lD77x/vGO8Qc51O0SREbxh5OM8wSfBPNBo6LxBznW8awaLvVFOFb1v2CG9mzZrPIASFb2Clrg9uXMOvJWqALw8ruu86j9VPZOZcT15pBc93gb1vO4ZqjzDq+Q7QAxkPc1gIbuk8ts8LjeUumYcsTyuaaq8tQ3YvIveijzvflY9CvndvD6IwLwc1uu78EBoPPxaUb1QjAO7M8SIvJ3xyLrK47E6PK5rvHxea7z5Ugq9ic4FPHp9YryGvgC9pesnvKCsprsws3k9gkGRvFQ/I72KMzI7TehePQ843zx7feK8ariXPOw4oTzXagU9dNk0PK8rPDv69aS7+BtQPQC5ybmw1pQ7js8YPfj82LwDkx692XoKu1II6bxiiIg8n1b1O2eokrxYnRs9JQcFPaPyW7xbpWK8UWXOvLlM2Tx+GUk9oAkMPJ9Wdbw2KbW8M8SIPDEJq71A7ew8wdIZvTetWDzlCJK88F9fPaZvSz1TJ+C8Gq+tO8wK8DzkRgA95JunvIBf/jxWw0a8ZCPlPIIimrysUec6SOfLvJItkTwOds08x34FPH4ZSbxooFQ8GQwTPcUwkjxWhVi9RJERPB96kDwv0vC6WgJIvKrsOrz+HOO7ITTkPFe8kjytxo+8BOERPSSxU70tTs28oTgIPUxkO7ynUNS7BpvluO6GFLywr988D62HPfcEFzzvflY9rmmqvBKeFb1I0BK949mVvOR8MDqU0Ks83rkLPX4Zybyrrsy85JsnPD0EnbwNEaG6XmBAvbOJND1dnq48peunO2iJG70p8FQ9xU+JPLsOa7wGEA47/DtavXTZNLwsjDs9UYRFPITc7byIYZs7B/GWu5xOrrwfsMA8lJK9O4SPBL0X9M+8x1+OuxXNkb1/4xi9peunPHEe1zvViHK8tEtGvJ7S0bwF+Mq8UYRFPWFZDDzxWKs9s4m0OwCDmbw8rms8dLq9PAzTMj0WE0c9Rw4BPaCsprqN7g89FhNHvYASFbvO7II80GjoPKA3fj3DIA09XmBAuwN0p7wK2ma7h58Jvfw72rtK4Je7j3IzPfBfXz3o+Z+6vYtavTJXHr1UICw9VcsEva3Gj7yxUvo8Hg0mPdMET7zOIrO7yaz3O+LgyTs1Cr68GCuKPDXyejzKjoo8pxJmuhwcGD0NnYK8+5i/vEGgAz00ZyM9Wl+tvBtxPzzKjgq9UkbXPKq2CruBtS88+VKKPCnR3Tvy5Iy84OgHPYb0MLwlsVO8ANhAO0Ikp7x1Rh+8s1OEvGeokr2MFLu9NdSNvNJhtLydEEC6ya0BvaA3fr1mOyg9KdFdPGli5rzzvdc7lTXYPIpSKb6GtsK71r+suO9AaL1azJc8laoAvUqK5rquSjO8S6IpvPt5SL3lPsK8zq4UveSbp7zVHBK7QgUwvCTvwTzAD/67zb0GPcTinj1qJPi6vOi/u965Czz0MgA9RQ33O6IR07xs39U7Ru5/OzRnozz5gPw7z8VNvWS3hL0R3IM8Ax+AO3MXozzC6VK89J7gux/uLjyuSjO9trByPdIrBLwIlDE9UydgPew4Ib3+Ux09W8TZvOp9Q7xP4ao7m6uTPNyKjzzAZa+81OXXPIlxIL2gN/68PY/0O3Ee17ze5/27k+8iPQyceD04rdg8A1WwPFe8kjymjkK9htU5Pf6/fTo+pze8rkozveU+Qj0B8AO7mXwXPBLUxbt34Xs9lTXYu4T7ZDwNXxQ9ysS6vNQMDT13dZu89baju9zAP7pXKHO9XkkHvemcujxbpWK8oRkRPVXLhLyxUnq7pPLbvNgk2Tt+GUk8FJZXPlTK+jwKN8w8p1DUO9UcEj0YePO8DBEhvJaLibx2PuG8Okk/vRqQNr3t2zu9/r99PFCMAz22JZs81r+sPDhQ87yrzUO89ng1PaR2fzt0owQ83MC/OxWPIz2v1hQ9KQ9MvRO1TrxgOpU7qrYKvNl6irxQwjO9N+vGvJ27mLwxy7y8yAldPAuceDrTBM88ODH8PNHdEL2XLiQ7losJPexXGL3yxZW4Itd+u/m+6rsyT+C8sqgrvD6nNztnv0u9VyjzO1kKhjzGKNQ7PiOUPKXrpzsWE8e8mlViPRZRtbyqCzK9gyKaOrEkCD3YQ9C8vuGLvDeO4Tvfex09ixS7vGOASr303E48usEBPTKNTr0v0nA8fXauPDJP4LvXgT49Xn83vUbu/zzeROM8YAPbukjnSzwoLkM9GpC2PBiX6jx1XVi9w6tkvSZz5bzjuh49K7JmO2/YIbsbM1E8AKKQPAfSHz1OPpA8x34FvGnXjjz61q08mbLHvHZdWLwnqh+9b2QDPf8VL73MSF68V/qAPVyGa712H+q8V9sJvJY1WLwuhYc9peunuRO9jLy0DVg7pa05PIT7ZDyvaSq8BptlvO4ZKjw69Be9HHG/PN4l7Dzwlpk86Luxu50vNzxg5GM9ZsZ/PJ+UYzx8Xus7EBlouxrtGzxb41C9L0eZPDAJqzxmOyg8y2dVvKsLMjyes9q8uFSXPEahFj1V4r27Hu4uPQg/ij2yqCs79kIFvfXVGrvLZ1W9zq6UO6ZYkrwj2Ii9cEWMO1PKert+GUm6+VIKPIlxoL1JHga9/xWvPGbGfzwsyik9tiUbvePZFb0ws/m8Ep4VvAG5STznhPe84B64PJmyRzxFiVM9C7tvOns/9DxqmSA5CJSxPEcOgbyYuoW8quw6PDsL0bzUWgA900K9vG7AXry80Qa9pa25vDYpNbxX24m98lgrux7uLrsREjQ9H8+3PBnOJDyf6hQ9ojBKuuD/wDwj1/48/r99vLYGpLwTllc9DjhfvfB+Vrwxy7w9iDpmvYDznbtTJ2A9rmmqvEOoSj02KTU8je6PvPc6R7vZegq4te7gPDpoNj2JcSC9/r/9vLiKx7tVrA28+7c2PfZBe7wqk++8EjErOupezLzM63i8jVrwO9b9GjzqP9W8E9RFPaIRUz19IYc8wGWvvY9TvLvRvhm93P6tvDPEiDzwQGg8pcwwPcCEpjzgHji7ez/0vAN0JzzsOCG8zq4UvRExq7tc+5O8N63YOw44Xz2fVvW8KC5DvOKqmb2llXa8b5ozvWGH/jwrCBg9JJoaPdZp+zskmpo7oRkRvRz1YrxrWzI9E38evBl4czz1tqO76LuxPL3JyDvCyls8M6WRPGQj5bs6Ksg7+HGBvCpGBr1y/1+8CxhVO0uiqTspTTq88xo9PJHX3zvGERs9Tx+ZPKdQ1LwtNxQ9MazFvNo8HLxSnIi80wTPvDjkkjxWbh+5fThAvczr+Dwe7i695gDUu0+Leb1QwrO7NsxPPEuDMryIG2+9v2xjvX+8Yz0DdCc80ir6PNeBvrxEchq8u0UlPGY7qLwIlLE8Y4DKO1DCszt3AHM9Vo0WPbaw8jsWMr46twYkvMVPCbsvRxk9+N3hvM29Bj2/bGM8uIrHvDQR8rx52sc9r7edvDAJqzwQ23m9DxnoOkGvfjw6MoY8htW5u23A3rwqsua8dLq9Ox7urry6g5O73MC/OypGhrxu9xg9ziIzvfrWLTwLGFW7rxSDvdegNbzb/i083rmLu0uDMr2NmF69tEtGOQCiEDz5FJy6RyU6u3B7PLwyV54926mGvAk3TL0B8IO84aJbPcx/GLvXoDU9w6vkO3tea732QoW83N+2PNan6bu356w80b6ZvEclurlPH5k5mdE+vBzWa71MZLu7vZOYO5+zWj0Tllc9t8i1vImvjjssdQK9CjfMvCTQSrxMZDs9glhKPUXfBDyL/QE8LMopvMakMDpX+gA9Xn+3OxNY6bsIPwq74qoZPYP75LyuSjM91FoAvORdubxgWQw9Skz4vKGNL713PuE6jrChPKXMsLz+U508lrn7OsdfDj0jLTA9s4k0vV4LGTzemhQ7J1TuPFyG673lH8s8/rCCO+HgyTzkmye8M1cevOMXBDxPqvC8qSopPCguw7yUPZY9GEqBPGigVLxvmjO9PnGHOniUkjyzar28qSqpvMnjsTwJAZw68H7WvBqQtrsar608w4xtvCJrnriU0Cs9lJI9PGiBXbx0o4S8uu9zvNv+LbzFMBK8/d70O6O0bT1UAbU84viMPBm2YbxBzvU81t4jvcnjsTwMESE900I9O1Zm4bwp0d26zb2GPTyu6zxv2CG8UU6VvNMEz7utxg+8ZLcEPcmtgT3AD/48r2kqPIozsrzg6Ie6xaSwvKIR07yYuoW9JLkRPeRGgL0MESE9Tx8ZvOw4ob1Dx0E9gdQmvMRO/7zUxuC7UgjpuzONzry70Py6T6rwPHgYNjx9IQe5xMOnPEjny7yuaao8xTCSOieqn7ywr9+8x34FvQ2dgrzM6/i8S6KpvAraZjn7mL883kTjvIugnDzBJ8E7vk1suwP//rwDPW07epxZvT2P9LwHL4W92QXiPNa/rLzQh1+8ALnJupwvtzvARji7m4ycPAIedr0ENrm87oaUPJxtpTzZBWI91r8sPQ8ZaD3h4Mm8JLFTvfRg8ry2Y4m9NrUWPTpoNr3IISA9Xn+3vEzBoLy5a1A8TEVEu58og7w4Awo8GNXYPNyKj7zW3qO7TEXEOkPmOD0R87w7QgWwurqiCjtin8G7MOozvYHUprzu2zs8IcgDPW+5KjxvZAO9P6c3PYbVOb3HERu8/jSmPLfItbzlCJK8ZELcvJ6z2rlyVRE9SAbDuzJu1zxkYdM8WSE/vUbfBL2Q9tY8ERK0vAKylT0sdYK78H5WukGv/rwlsVM8Q8dBvUgGw7tn3kK83KFIvTCz+bwhyIO76NqovOU+Qj0lsVO8XBoLvFbDRjt/+lG89ng1Peo/VT2A8x28Vm4fvZIOmjnYJNk8nG2lPC9HGb36n3M9CbMovPI5ND3o2ig9hvSwPMqGzDrSgKs8mXwXPUPmuLx3AHM7kBXOO4231bz1nuC8LHWCvD/Grrsfkcm7ervQPBO9DLw6Ew89OMWbvOJkbTyJkJc7pncJvF5ByTuwr9+8jrChvHd1m7yKUqm8ojBKvfIDhDyPUzw8wwGWvKCsJr06Ew+8jVrwuWzfVTyuSrO7tgakPJUWYTx9IH29OG9qPcTinjwxtAM7/8AHPVDCM70StU49j3KzPOKDZDtPyee84eDJvAiUsTzwIfE8Rw6BvZl0WbzyxRW821sTPToyhrwoi6g8u+9zO2znkzzz+0W7/d70PLLmGTsKVsM8IamMPPlSCj3I5zk8Z65OPJv5Ir0OwLU8Z65OvD82trxNqyi9wHG7PegyDTvp9gG81yAhvQl0V723vAy9SzQevZ+aTTyDIB09yyI5vO+oC7xpgyK94TfKPC/TrrzBCxA94TfKPJ4AeTvXl6s8dhFWvJe+Izytgpm8d8RrPJmb2bzTS008lakTO6/91L04DSK9a2BYvC9tgzxU7f28hIbIvCtLxbyMc9E8JCIxvZnkkjz+XK48S01fvbZaEj1SXbK75XJJvXi8ibyJ4wW9tcC9vEQkSzsSrso8815GPG7owTzI57m8WCh9u20LjL2y0ii9IhFSvaLVTDxMXj69R6y0PaT/bLuwdF+8MJcjvAdKNz2mWYU8T9EXPMBxu7ycCgI9xtbaOx5fSD0avh27H9ZSPNuFQDvh6l88NNKivIcn87xhDSQ73pafPHSJ7LyjTNe7dsTrvMweCLzT5SG9TtVIOmCv2rylEEw8YPiTO4picrxvNay8mqw4ve+oCzwrh1C7vTY8vCuHULuzgY07kW4UPdDDY7z0WpW9pOYrPLLSKD1kN8Q8hw6yvKX3Cj33mcU72sFLPUCc4Tunh9Y7i8A7u0hfSj0avp08xQqEPDxIIT1RlQy8rCAfvQDUuLpxEuK8i/xGPO9wMTx8bhO8/eUjPe8jRz3G1lq8pqqgvGDjA70uwk899+YvPQl017pfONC8XMFFvBL7tDtuNay9kAwaPWVII73awcs8zDv6OkCcYT1h+JM9J7L8vDev2LoWgx49lE/7PE1aDb3uqIs8hEo9u9sKhTt65qm8r5cpPFZHlrxKgQg92ErBPHx29boFhsI7W5elu6PRGz1mSCM8a0cXvZK/LzupS0s8jjfGuukLErzC12a8uOpdPMLkFDzdlh88y7wNvUjF9TwecCe9CoU2vaiYNT0x5I28Il48u2BJr7xj0Zg7OoQsPeuKfj3x5zs8m1sdPaBFAb2FRoy8sjhUvKTmK7w1hTi8h1scPYBHGD0dRge9QyTLvO3oxzwFhsK8S+ezvBGEKr2bX848XMHFPJ1wrTsOr1a8tfgXPc9dODzWbQu9TXd/u2+Clr22wD26c70VPdNLzTwT+7S8YiblOWBJr7zpRx29W/3QPJwjQzwQb5q8gtOyvBUl1bx+7X+9e6oevTb8Qj3Qw+M8VpixvO4SaDyEhki7dOc1OyA0HD0ZJMk6/lyuPaBewjySvy87LQ+6PHM0oDoA7fk88TSmPLu/sTzj+z46SzQePT4lV739lIg88ue7PHozFD2klRA9MkYIPRFIn7wuDzq9i2LyvNcgIb0zwcO8xyNFvKOIYj1h/EQ9LUeUvGauTr3zRQW95+nTPNSx+Lwb1168knJFPQKYLT1G5I68CiftO1qClTv9mDk78NbcvJv5ojxNvAc88wB9PDL9Tjsg5zE9s4ENvGk2uDv7OvA8bSTNPPq7A7zjYWo8m1/OvLxuljzrvqe8j/u6Op7nNz3olIe8uvs8vPRaFT3mJd+7kRR8vBTY6ryqS8u8m1/OvEMky7ytz4O92aiKvVBMUzzzWpW8fYdUvPSrsLxqg6K9lWBaPeNh6jpJIz+9PtjsOxz5nDxDvh++O4QsO32HVLwb1169AYfOPA8NoLzC12a8q8LVvGk2OLwuwk+9N6/YvL02PL2Q+zq9ajKHO9LQkby/YFw7SKiDvCjD2zxycKs9Mf3Ou1vkj7uL/MY80/5iPBnGf7rz+Jo6+V06vCkMlTr4qqQ8zTMYuQXCTb23gIG9CtIgPEtN3zu7DBw8pcPhu0RthLttCww8zYACvX9LST2rC4+8KRDGPJZxOT11APe8a0cXPVTUPL1p6U28HluXu9OxeDw16+M82UYQvYRKPTxMTd+8J7L8vOecabsiAPO80tRCu0/mJz0lO3I91obMPNsKBT2NvAo88NZcvTR0WT2Egpe895UUvFjC0byO0Zo9tQ0oPOAm6zyBdWm8i2JyPT33hbtxCoA8FL8pPb4yC73Sh9g8TcTpvBlxM7t7/+q8i/iVvebYdLyhEdg8uyVdPJFuFD3orci6nMV5vMLXZruQDBo7jA0mPDevWD6ESj09UJWMPOC8jjzz+Bo9sMFJvVBM0zx0TWG8qlwqvKTmK73VXCy9uwwcvbtZBj0vbYM8m6iHPPTE8TwX5Zi8muQSvGsTbj19w9+7CcHBOwNLw7vtNTI9hUYMPRwB/7xGTuu7RG0EPHpM1bsG5Iu8wdfmvLXAvbwdxfO8j/u6vKBFATx3IjW8K0vFPHtMVTuIgYu8eIjgPGU3RDxHrDS9iB+RuoT90jty1tY6hr2WvNLQkbznT387aNhuvcHXZjp+Omo7Z67OOwU52DxmSCM8FoMevCh2cT2mXTa9B/1MvaPRm7wT94M88InyvAiXobz9/uS6X4U6PVyw5ryqD0C99KuwPKkyCj3wiXK9CiftPE6I3jzQw2O85b8zPbLr6bz7bhk9TtGXPDJKubkg57E84TdKPen2gTzTmLc8btfivG+CFr24M5e8u1kGPXbE6zymdne8ufs8O96WHz3h6l89EZ3rO/6x+jsUDBS8Q9fgu6Z297zcONa8DvgPva3PAz2klRC9jFqQvHCohT1iWo69Qq1AO3tMVbye5zc8a2BYPSTRFTyUT3u8btdiu0sA9Toqbo88v/owvKzCVTzlDB688CPHvHUA9zzhN8o8pOYrPKTmK7sIl6G79iI7Pa3sdTwNYuy70/7iuieZO7y/YNy7NIU4vVZHFj01nnk8UnbzPFtKu7tg4wM89KuwvLKe/zwm/2Y9oKssO75PfTzTlIY9WexxOy7Cz7z7h1o8+Xb7vEwRVDsG06y8Hl9IvYFcKDzPdnm8aCXZux+JaLzpYF69mU7vvJYLjjx+Ouo6stIoPeptjLo3/EI7eeYpvTNbGLkQ6tU85rsCvVjTsDyib6E8sFsePc0zGD0EqQw9vNjyPA6vVjx55im77E7zvEMLijvLIjm9UJm9PKwgH70KvZC80SEtvRkLCL0wOVq8vxNyvTCGRDvvcLG8+4daPbEKAz0vhkQ8sMHJPBS/qbxkHgM9sMFJPKzTtLxNXr672Q42PRsgGL1gr1q7pl22PWmcY73PDJ27Sb2TPc0zmLywWx49UqqcPMsiOTwWgx68ulkGPPVvJT2GwUc9Q3E1vcleRLwnsvy7JNVGuxokST3xiXK8Tjv0vCNevLvAcbu7QDIFvf2xejqlqqC61zGAvLsUfj0sS0U93q9gvDm8hr3ZW6C8kSVbveic6byHHxE8d1oPvGH8xDysIB87clsbvKttibxEIBq7WoZGvGnQDL3NgIK8vLsAvXi8CbxL44I99YjmvDb8wjtfhbq9AHZvvIxz0bwUvyk8bzUsPRw1KD3uqIu8LznaO3VNYb28bpY772yAPQqFNjzrJNM82P1WvLLr6Tx0NKC7RG2Eu0astDxycCu7MJcjPG5xt7wmmTu9hr0WvbTjB7wAh067JualvJ00oryKYnK8PgwWPbn3Czuoh9a8RpvVPEsA9by3Mxe7ZDfEvC8gmbzY7Hc8lgsOvAVtAb1CE+w8UlkBvaqUhDx51Uq9vTa8vIpFADz5ENC8E/s0vYZ0Xb2qlIQ9YJ57PG/PAD1IX8q8OoSsOzCXIzy6FP681oZMPDjAtzwjd/07QyRLPdfTtjwfiWg8kW4UPJnkkjzTmLc8pDMWPXGsNr0vOdo84NGePKlLy7sD/li9s4W+PZLQDjw62fg82aiKvVCZPTzAJNE8UV2yPCtLRbzsz4a5vYMmvVTQCzyuOeC8UEzTvGnpTTzrJNO8c3ArPSSIXL3rgpw8l9dkvIwNJr2J4wU88GwAO+rX6LyEzwG9RCAavbxyRzxIcCk7ZwyYvJ0fErzaWyC6KKqaPapcKrz+qRi9PJULvcZwLz1nFPq6lakTPQqFNjwyDi69TyKzvITPAT08FHi8vLsAPZIlW7wZbQK8zDv6vICpkjzvrDy99W+lPCUegLwPJmE97ehHPUuaybvT5SG89+YvvQbki7xOvIe8a0cXPeu+Jz1Rsn47TtVIPBj6KLtgSS+8+yEvPXGsNrvHI8U75QwevLdz0zuK/Ea9CiftPIfBRzy5SKe89tVQPB9wp7z8S0+91Q9CPGjQjDwRM4+8rv3UPPKa0br5dns9HRJePJK/L70tRxS8oFqRvBlg1DyD7PO9P9CKPBaDnjyMc9E8CJehvAbTrLxdJ/E7z124vMyI5DxblyW9koMkPQ34Dzxkne87FoOevLZakjz/wlk8OzMRvLZaEryU+q48dIEKO9P+4ryMDaa71Q/CPJVg2rvHgY475m4YPRqKdDwn9wQ8LlwkvJPpz7yk5iu7ctbWu+75JjwdxXM9vLuAPOfp0zxy1ta80+UhPeNIKb3GcK88aZzjPL1P/btuIBy9tfzIu4aohj1WsfI8IgBzvDb4kbxKmsm8deOEu5EMGjkcNag9VkvHO5EU/DxyWxu94TdKPDo3Qr37h9q7W/1QvV0n8TzKxG+9BYZCPNeCm7wecKe9yvgYPZjPAjwEDzi94dGeuxJhYLzoMg28g8+BvAew4jxhWg48zUzZO+E3yjwtD7q8HDWoOn/+Xjye5ze6nAoCOlv90Lx/sXS89YjmvKPRG725SCe8s0kzPHb4lLwNSSs9gcLTu/Lnu7x7/+q7V1wmvP9cLr2j5qu8npYcvfOrMD2s07S8u7+xvP/C2buAqZK8oR4GPJ4A+Tx55qm9ExT2vALllzwacbM83DhWPS7Czzx4iGA9pfeKO1ZHFr1NWo28g9OyvSh2cTtUbhG9e1kDPYiBC73OmcO7xnAvvDWFOLyhIre8PiXXO5EMGroJDiy8qTIKPJFuFDzURxw9VTrouqEitztVS8c63IXAvJv5Ir2kmcG85dj0PH4yCD1g+JM8OHNNvTqELD32Hoq9vLuAvDOoAj2yhT68bSAcOykQxrw9DJY7SF/KPKYhq7s4b5w6LJivPPYiO70Ubg69lWDaPBUl1bwEXKI9jHPRvMqrrjzGcC+9KiGlO9yFwLwuXKS85L8zO+9sgL2egYy8Z67OPKc67Lz8S089EYQqvBS/qbxf0iS9hydzvGz6LD37IS89h3Tdu0tNX7290JA8Km6PPDS9Ej0Ucr+8PfeFPc6VkrxA0Ao9MIbEPHk79jxLmkk8VO39PNrBSz2AmLO8Qq3AuxaDHryEghe78k3nvEasNLycCoI8mTUuPK3s9TyiiOI7jp3xPPs68Lvn6VM9H3AnPKZ2d7xCqQ88zv9uu+Ou1LwFws28V3VnvCA0HL0qbo88x4nwOoEo/ztO1Ui9R0aJOy/Trro+bpA833PVvHwQyrvkWQi755xpvZtbHT0JdNe7yyI5OyTRFTz8S0+9t4QyPUab1Twq1Dq89MTxvP5crryk5is9GEeTPBMUdr2QYea8HDWovODAvzyy62m7NpaXPMbWWrr/C5M6v/qwPGMm5TyxJ/W47yNHOxJIH7sHsOI74yGZvAVkSrxVFCa95HUovGWz1bxyHE46u526PA/crj18kGC77Om6vCf+XL3tl5S9ZBojPOLJt7xrRUA9VRSmPDMPdL3AL6W9zdluPIJ2Wjz6AI29EiUkPbziXTzSv2i8X4i4Ox7iKzsQNJA7aai7vHr3rTs8QrU7Xu8FvAyPZzxBfD69v3/ivICJGD1ZX4S8ISshO79/4ryZrxi9WV8EPYtCTr3uLt686FsiPWlUrLzXuKC8ccRsvB2dCLwfkIW8G6oLvbyhDL3f0H+8cdkTPGMWUT1LSLI87kMFvSxNDbvtlau86ky2vFLLsL3sPco7rjTCPAIbVT3+OC28NgTauwAqwbyelRI9YSU9vMN6Az2MRqC88xRYvI43ND25rKY8lroyPLqZaLyGCMW766aAvMunibrugu27RHEkvKexQz0lDcm8ny7FOggFobzVx4w60SY2vZzlzzwydkE8EXVhPDs+4zm/6oG9ma8YveN1qLwcRae8+j91vd1KCz1gIes8JxOEvVB+aTyDE188zdnuu7LXgbxEHRU9oiMrPTAxHr0Vbhk9qLUVvSF/sDyd6aE8a/EwPTdcu7zY/cM8P42TvOpMtjut3OA8XD/DvF+IuLwd8wC8TDX0PLv1Gz27ivw7ImzyvAhZMD0IWbA9oyUUvb4+kTyIYg+9hcWKPL8rUz3eO5+8vPcEva+I0TxlW/Q7HyN9vfEjxDuqpik8LpaCu/xHmbvEvT09FltbPXa/jb2anNo8tLNuPZ+C1DzonHM861CIPTEzh70apFA6UdqcO23iRDxoUFq9P4uqOwTLl7yid7q7cJIHvGDgmTt+gXQ97oJtu286Jjz66+W7rO8ePL7mrzwVwqi8/JsoveIdxzxKRGA8vPcEPAGEizmFb5I9M86ivDawyrzDues1iaXJu58qczxHEBK91mC/PDzupTw3XLs9DtjcO+r4Jj0rnzO9xwYzvcN4mrxAOQS8+VKzvLz3hDyr53o90xfKvHib+rzTw7o7sHnlPOb/7rtiEv+8BM0AO3ujHrwFZEo9Ax8nvL9/Yj2lGBE7LegoOzHdjjzUb6u8Xdh1vDLKUDyBdtq8Lil6OiyjhTufKvO7S0gyvQpKRLxnY5i85RKtOwap7bzt1ny95r4dvYcMl72YV7c8iA6APCe9i71vPI87Cp5TvH6B9Lw4toU7qAsOvSyfMzxmC7c8BHeIvThgDT2WujI9RmI4PZS24LzarYa8zt3APFVotTzKoze8j9BmPfqmwrzALyW8octJPYqrBD3ugu28ZRyMPDCFrbxMoBM8m0ydvBWvarxe3Ec98B/yOwmxEb0hK6G7SFNMva3cYDvXuCC9TTlGuyB7XjxNjVU9xm2AvKvrTDzLPOq8MDEePQJv5LsBLhM8fpiEPTkKFbwA1rE8nekhO3b+9bwt6Ki83o8uPSamezwVGgo9TpGnvJan9Dzcnpo8cYMbvfhOYbv83Pk8jPIQvdVvKzwkyKU9vuavPPRsuTyP5Y08BGB4PZS24LySxcy8QXw+veumgL0JXYI8cS+Mu6qmKb0xhxY8dA3ivF7cRz3d4708OlGhvTN6Ez1+gfQ7fpgEvjbDiL0LTpa7G+1FvThJ/TwwMR46iGKPu4GLAbzYUVO8psQBvcFw9rwuQAq9YOICuwhZMD2pTsg89l1Nuxj43zyK6mw9BGD4PIhij7y2YzG9GfwxvBmkUDybTB07tHIdvShWvrxWVXc8YimPPPUF7DzFEU28ZGpgvTqlsLZo/Eo6KAIvPN6PLjwVGgo9h7Q1vauTa7urP9w8x1rCPElXnjzSE/g8VLzEvAGEiztwPI+9VBBUvNlVpTwFYHg8akHuvF6E5rx69y28Cp7TvIvuPjyqUho9RHMNvedXUDxyHE49WqK+PSlakLyZ8Ok7vtPxvL4+Eb1BfD498c80vKexQ7wO65q9NhkBPULUn7xwf0k8bydovbuKfLut3OC8RLL1vNygg7u5BIi84TCFPK2bD710zJC7wC+lvHB/yb2Sbeu8EIqIPLe7Er1GYrg8JCAHvIXFijzbRrm8SkRgPGdjGD33XU0+U3chPeIdx7vKo7e8VRQmPfInlryK/xM8zS3+OhIlJLyGCMW8gnqsvBmk0LvzaGe7gB55uwny4jxJmG89qPZmvDMmhDyMRiA9KKpNvLIW6jx5m/o7+5fWPPpWBT2Zrxi90ioIulEb7jzarQY9plnivCF/MD2LQs48lCGAvHArOjvmvh0874Y/PB2diD2VYlG8JMilvNSw/DzQjYM8vytTuo7jpDtWrVg8OKHePOmzgzsrSyS7nirzvO+GP72lGBG8hcOhPBdfrTz3onA8Ax8nvFizEzzr+CY8MspQPON1KL0zJoS7oDKXvOic87xIEBI8rjRCPBpUE7uAiZg8EeCAvbcRi7s4Sf08GaTQucxAvDx2/nU9qpPrPM4xUD2g2jW8hlxUPbv1Gz3rpJc8AcPzOwIbVT2/K9O7nemhuzYEWjxsnSG80ioIvaAyFz3IXpQ6dr+NPHa/DTwprp88BmgcPVie7DzwihG8dA1ivJRefzvZVaU82Zb2PNzyKby57Xc8foF0vC2QR7x+LeU8cYWEvU6Rp7s4Sf08l6d0PPj6UT06pbC8FnACvPCKkbz/JW+9eQgDPXdW17yjvN08LDjmOyxNjTwAKsG8QDkEPWQaozynsUM98IoRvMAvpTzTa9m8WqI+vNDO1DvoWyI9K4x1PLf8Y705ChU9UIK7O246prvDzhI9qEr2vMcGs7xA4wu9KKpNPY/lDTy68ck86qDFPNdkEbw4Sf28v+oBPXMgIL3OMdA8QtYIvDMmBL3X+fE7khlcuoWw47xRG+676APBu09+6TzoWyK9pWyguif+3DvaQue80tKmut87n72s7567gMppPNqthr1Ftse8HopKvMMN+7sHVd48NWunuu1BnLyDE188Nax4PUTFsztWVXc8+LkAvdpXjrxfiLi7NwgsvVtQGLuVDkK8ktiKPJlbiTs7qQK8rEOuvNxGOT0SJSQ8OEn9vK+MIzyLQk65e6MeOnulhz2o9ua8TtL4vEmYbzwpsIi88c+0u9LUjz2Dv8+8GqgivJr0Oz2eKnO95COCPfybqDvGAuE8vDbtvLIrkb3GFwg9ki4DPfzzCbw2BFq8tcgVvWLTFr2KPvw8HEUnPCQJdzzVCN48MXLvvL7T8byhy8m6KbCIvGZfRr1NOUY9HZ0IPREh0rw3XLu8S/QivQEuE709L/c7VgHoPKDH97zt1nw9dv51uyPEU71xgxu9R/vqPF+IuLtBfL48Wk6vvHEY/LzqoMU81G+rPXQiCbvzaOc8ntbjvIvuvjsEyxe7EXXhvM+JMTvs6bo8G0HVOzIisrzv3qC9w3iavEqrrTwx3Y68WLGqvHTMkDzPibE8q1QDvfybqLwtPDg8gnwVPemzAzw1aye8tg8ivYImnbwSJaS5QiivPIZc1LyA35C8Nax4vTHK0DxujjU9lqf0OKVsIL0lYVi8LegovKhKdrt+2VU7tMYsPPWx3LkaVBO5UTCVPIUbAz3Fqv+8Gqgivan6uDxK8FC9kdS4O9j9Q71M9gu9SP88PUXJBTy/K9M6JMglvRqV5Dy2D6K8xwYzvc3sLLxgNhK9gIkYPRmkUD2weeW7eZt6vFJzTzyvzfQ70oCAPLpFWbxwf8k77zIwupugLLxvOiY8tQtQvbNuSz2/10O9plliO9NrWb20ch09TTnGPLdjMTwVr+q8ezh/PaPRBL1rRUC8K58zuiQcNTt86EG8dMyQvKPPGz1bphC9QigvPLkECL0Olwu9Oz7jO/hjCL2hNAC8akFuvBVuGbxLnMG8FcIoPdpCZzwZpFC7O/2RupugrDx1EbS8OQoVvSuM9bw5CpU98XdTvPPASDzLPGo8Du2DvS/VaryoXTQ8/UmCPOa+HT0xMwc8one6vPhjCL1C1J87vytTvNA3C7vt1vw8kSwaPSiqTT0iLQq8AsdFPJIugzspm2G9QigvvOivsTw/jRM9NgRavYtCTjxwK7q8NWsnu/xHGT3a7lc8Sa0WvIcMFzymWeI7qv4KOsRl3Ds4tJy8ACrBvF3Ydbp7Sz293eM9vRxBVTwsTQ08P8z7uduayLzlZjw9T9ZKvNqW9jpmC7c7OpLyPNPDujwcRae8BLjZvTHK0LzVCN48feyTPLdjMbwFELs8+0PHvFdZSbrkDtu8t6hUvE/piLweNjs9yqO3POO2ebvBMY67aQCdPMxAPL10uVK9B2qFPLQH/rv3YZ+8ZQflPCErIT1TeQq9QtSfvB42uzxM4eS83eM9vGoCBrz3YZ+8FRY4POb/7rzIsqO8BLhZPR+OnDxivu889BiqvIbDITysQ667PO4lPOmzAz0ulBk8RmI4u3ulh7yslz09lMuHulIfQL3mao6743eRPOyR2bzJS1a8m6AsPS6WgjxVaLW8XJNSvGElvTx2vw294ChhvJXJHr3ZlnY8KAKvvdUIXj1ZCYw8mbEBvdUdhTyd6SE7yvuYvS/ZvDw3XDs8i+4+vEtIsrwrjPU7MYcWPbudOjzWYL+75c0JvIXDoTzHWsI892GfOu/eoDx+QCO85mqOPFO4cr2bTJ05Wk6vvDi0nLyFBPO8Cva0PGuZTzyUHxc8e0u9vMpPKL2xfbe8KKpNvBtB1bzEvb08+GOIvLJqebxTeQq8VsCWu7V0hrztlxQ9wcjXvD2aFr3WYD891R2FPFumED3cnho943UoPdqtBj0/jRM9AYQLvVIfQL0VxBE8zzWiu8ZtgDyNSAk3smr5vC/ZPLuQfNc7d1ZXvflSs72t3OA7iE1ouz0vd7vnV1C9/EcZPfEjRDwTJ407X4i4POO2+Txw1yq8f90nvHQiiTwMO9g866YAvEQZw73ZlvY797UuvVIfwLrUsPw8npWSvCDP7bs5CpW8XjDXPLLVGDw4tBw9Q23SPFEbbjxck1I8kYApvTEzhz38myg8xm2APc81Ir11ETQ93PQSvQGCIr3lZjy93UoLvCPE07qP0OY8NWunu9LUDzuHYKa8pGjOPL9/Yrz6AA09+0NHu0e6Gbz1Bew7i5bdPFHcBT3GwY+9JmUqPFatWD1zyL47oIamOkucQT1bUoE7jjc0u5uNbj0WB0w7gB75vKNkfDx+Qgw9kcH6O3B/yTs59W08oR9ZPLyhDL2ZBRG9lF5/PMn3Rrv/kA49HuKrvLrxSTw+h1g89BgqPI3fUj3onHO9m6CsPAEuE7yBi4E80XrFvBWv6rx4Wqm8QhXxvEDQzby7nbq8wXB2PPe1rrxxL4y8LpYCPBRqxztTdyG9/UkCPQqeU72giA892/KpvD83mzxqAgY9Naz4PGAh67voA0E8xM4SPIlROr3IsqM8s27LugJvZLxd2PW8KQaBvZB81zvr+o87DtjcO8N6Az2f2rW80OESPU7S+DzFaxe88n2OvIr/Ez1heUy86fTUPD1XxjscHMW7kn/cvB/0tryQHWe9mmztvKcuKj0ct4k9W1UaPZmRNbyrtxa9ei6mvRIthbyeplS8tRzTOl8IRD0puTm9y3wbvREyerz0aa88bgeuvGDeBj27zLY88ge6O4zeCryM3gq9uUV5OvsFDL38ZwE9WH0oPHZZejuUfJa7OB1fvAYcw7vFkbm6gB79vDJt+7lLRW86kJPjvBuQkjyhaBC9/R3xvON+TD3TLq68cUTbOyDgr7weWXK8d0VzvDMIwDtSy5W90Mw4PGqjiTuBGYg9mI8GvTHLkr1jp2a5wFfSvNZ8HL2nf169c6bQO5xppzqnLio9sUThu88xdLxApbS8tghMPYIKdjtbaaE8LeLfvMnfJ73RQrW7BVWSO5EuqDvPBQi8s7rdO/QwYLxIHMm7u0KzvO1olzx6HeU8ipJLvWFUAz0Ht4c8JldEPI+nar37VsC8SLeNPNuRu7yRpCS8o2o/vVZUgjwe3gC9mMqEu3VoDL2Cpbo8f/IQPSSkGr1UQ8E8d4+DPJ4w2LucRN+8owUEPa8bOz0kpBq9IMyoO/D2eL3VkCM9bC88PG4HLj2XlHs6o7vzPBumSDvXzVA8VZT1PJajjTyXBYO99ETnvIzeijzsV1Y9S0XvOuV7hjybWOY8SfKLPVUZBLy6MXI87c3SvNDxgDyE4mc8YBkFvMKUfzzcLIC7wS2VvDIcR72V3gs9lbcUvEqjBrzV4de8m2mnPGpDQz0FkJC9mgeyOwZBi7yK8pE8//VivKCjjrskLh69iwhIPf9r37phajk6fkGWvM7gP7xpzUa8QC+4u5e5QzzSuDE9885qPbngvbweWfI7N8wqPG9YYjyvGzs88n02vHhWNL3AV1I9dS2OPDW76bq0ptY8dLeRPS0HqLynCWK84XydPDanYrzm8YI7O/VQu7ngvTzc4m88mfbwPVu6VTwwVZY8eh1lvSaQE70yfA27VKj8PJvzKr3rfB688meAPexX1rwAbN87y3ybPK/2cjykewC8oWiQvGZ/2Dv/f+a8dLeRPUtqN70Ku2U99sukOot+xLxiu20827YDuzhCJzxjuKe8uqduPHZUBTt3ars8RhoavYzPeLzIaSu8WvOkvGoee7ynpCa7Q30mvUVpn7zNfkq9kS4oPa4FBbyyRGG9P5TzuyEd3TxoBha9PJAVPe8vSL1jzC49pritPMYHNr19VR09aXwSPdwHuDxLz/I68baFPE3MrDylQjE95yyBO697AT1xRNu8Q+LhO0i3DT1TV0g8jjHuu7AHNDyju3O9zfRGObJpqTt7f9q8aEGUPZJ/3Dy4BQa83c7ovMnfp71/zcg7YVQDvGQdYzw+aIe82vb2PGyPAr1rVIS6xAUHvEEbsTxe8g29cN+fO9cZkD01Re28h9+hPGWTX7jKHNU6Ay6bvCoKbj3FtoE87hmSPJRBmDyw86w6py6qPJJ/3Lxdpk67K5ErPI2PBb3btgM9hFhkPQS6TT1IfA89uUCEvKR7ADyx86y77wWLu7QwWr14u2+9QWxlPPUwYDulzDS9vAlkvChohb3Nfko9NKOEPPS6Y72YBQM8SJJFPMrLIL6ftxW99kGhO697gburuUU8m/OqOwb3erwvRFW7YlYyvLJE4bzdzmi9fkEWvThCpzgbyxA9jeA5PQCRJ7ukewA83c5oPWnNxjwgu2c712gVvZt9LjtqHvu88n02PHcx7Lwuzli7ds/2PCXfmLzvyoy7lVfOvENYXrzJMNw7BcsOvLFEYTvLQZ08ubaAPDsambzSCWa7MabKPJe5Q7zXzVA9xAWHPYhBFzzZVI68PGtNvblWOjv8Mfi8RhoaPTv1ULzbkbu7jjHuu5C4K73YGRC9yxxVPXodZb0wMM48vQlkPT1XRj0p3gE9EVdCPDqkHLwC8xy9xBs9PUa6U73HROO8lbeUvAyT1zzi8hm9olQJPbJpKb1qaIs7z8oJOValtjto4c07yssgvU2nZD2Kksu8iMuavCbLEbwhHd29++BDPEKRrbuvbG+86C6wO4bzKLy/a9m8NPS4uim5ubxlLiQ9ewlePn9XTD3jfsy8dt4IvYlBFz1B9ui8iy2QPBvLkDyN4Lm8VENBvd8wXr1pQ0O8UmvPvPS6YzvM8pc8treXPIlBFzt+4c88wt6PPZ4cUbwnfIw8ekItu6j12jxxulc9McuSvF2mzrxR9dI8JC4ePaR7ADvV4dc8roB2OyFWLDuQQq88QYBsPHdFczzz8zI9UmvPvD7NQr3U9V48kLgrPQZBC7wkf1K5i894O/6kLj16Lqa8ukKzuhNoA72kQII7kLiru/BACTwZLh07NH68PActBLxLarc8MQYRvEFsZbysow+92FQOvO9UEL1DfaY8EUEMvSFWrLsYRNM8TgnauuguML0HWfA8iRzPO8V7gzkGbfc8MwhAPYrykT2Z9nA9t37IvLp7grwxBhE9cwYXPVYvOrxzyxg9LvOgvANpmToGQQs8jeC5vCjNwLxhMWo8pritPHykIj2YyoS8IR3dPCoK7jyNBQI8GM7WvPpqxztSQZI8uAWGPNQapzzXzdA8GKQZPWZ/WLyhWf68+BkTPFyQGDt2aju8buJlPSdXxLta86Q8vwaePB/Pbrz3tx09a4DwvJNrVT3m8QI7Wt+dPVwanLxJ4/k6bgeuPPbLJD10fBO8By2EPYffoTyYpbw8aEEUvUiSRT08y5M8ZEKrPPgtGrysCnq9KhkAPbu4Lzy7HWu8A87UOyioeLpt9uy8XabOvNN/4jzUa1s8YH5AvKvNzDysaBE9rS9Cvd7fKTwf4C+9dhkHPbp7grzFtoG9iuP/OuG3mzx1o4q8wqMRPKekJr1u4uU8mgcyvMJDSz1WCnI9Sn6+vN1prTrOjwu9Z2vRvGwvvDxALzi9VlSCvG59KrzFkbk80pNpPCneAbzRp3C8v2tZPCneAT0Qa8k8LGxjO771XDybaSc8K6UyvNXhV70o8gi8aaMJPMRABbx/Hn08ly9Ava+RN70C8xw9rY8IOUh8D70zaIY8Yx3jPLbylTxg9Dw8iRzPvMSA+Ly54D08TcwsvE3MrLzPQIY9yGmrvMBX0rw+zUI9IcwovWqjCT1hVIO8j8wyPaFZ/rxQpB69iUGXPPfymzzkVA+9OgnYvP6krrzvL8g87S0ZPPJngLwbBo+8bPZsPKLP+rtvWOK8wgp8PJoHsjuOp+q8ti2UPegJaLsJarG7YPS8uzJ8Db0jk9m8S2o3vE8uojzlMXa9HX46PQMum7x4VrS8U3yQvS5YXLzIaSu8VaMHvNejE7xeksc7dX5CPR0thj0UCuw7MnwNPVZUAr1X9mq8axkGvPJnAL15zLC8Ls7YPAfyBbxIkkW9rqW+vWyPAjokf1I9BLpNuoFUBr13ars7Sln2PF58kbygLRK92ywAPVvfHT1zHM07dmo7vKUdab129D69od6MvPPOajyXL8C8FaWwu+EIUL0nvP87ujFyvC+6UbyaBzK93t+pvJriabujygW7TOAzvZEJYLzZVI48zGiUPHR8k7x1CMY8rY8IvEtqN71Z4mM9X1l4vJ6mVLy3oxC9pwniu5zO4j1IksU8prgtPO1ol7xcBhU8v0GcOyJCJb20fBm88n22vIIFAT1SyxU9nxzRPIzKAzzYL8Y8ux1rPETzoryuQIM8HBzFu+x8njrQtoK8kwaau2ExarxFaZ89FC80vdWQozzfy6K9APZiPZYvwLthMeo7daOKvO3N0juv9vK8bfbsPGRCq7xh4DW80DF0u/wx+Lx8pKI8ubv1vL0uLD3bkTu9freSvRrflzwZVRS93WmtOobzKLxjzC47mRs5vTbgsTvFtoG8Cc/svL+QIbliVrI8YPS8PFB/Vr3x8YO8lqMNPad/XrxYByw8F+LdPPpF/7wR4UU8ac3GPNu2g7wfRes8RlWYOjtVl7wfz+46PxmCPFYKcr3TpCo9Vd4FPaAtEj1fLQw98/MyPMMbPTwMp947jbtxvEyn5Lyb86q8XrcPPbm2ALxo4c27DJNXvIbzqDmuyoY9NFn0ublAhLy5Rfm7R8uUujwyfrzkakU87t6TvCm5ubw9QRA8gsoCvS3iX70J9LQ8j6fqu7byFb084Um9L6QbPSjyCD2yROE8H+AvvR0IPr3jGZG897edu08J2r3EBQe8O1UXPJn28Lrok+u7PbeMPCOT2bu4j4m8COPzvPvgQ72f8pO7/i4yPZcKeD25toC8NFn0u6oGnDvabPO8St4EvYqSSz3abHM85vGCvGwvvLsPf9C78gc6vRYHJrzok+s76AnoO1Qti7xqlHe8NH48vNtscz1Qf9a80FY8vH31Vj2rLZM8uqfuPEoZA71XbGc8BcsOPfmjFju4z3w9wOHVO32QmzxJ4/k7pcw0Pc/gPzspQz29F1javMtBHTzmVr68r3sBvaRWODyYjwY93fMwvXukIryabO07rAp6vZL12LwdCL67qVfQPHHfn71I43k9ShkDve/2+Lw9tww9sX2wO/wsA73tLZk897cdPTxrzbuK43+8BkGLvOOjlDxS4cs8Pah6PNfyGL3nQrc8JuFHvIsIyLrwG0G8s1WivMsIzjqV8pK8d7tvPNkKfrwRV0K9ffXWvB0IvrznLAG8R6bMu9xYbLzOVA2925E7u1So/LmpV9C8dJJJPCneAbw0fjw8x85mvNBWvLqTBpq7J1fEPLlWOrtjuKe8PJCVPKaTZTzfplo8jeA5PR+7Zz0W9mQ7t898vHb0vjvd8zC9GbpPPOMZkbsc8oe86pAlvKNFdzqpV1A8XrcPvHnMsDsZRFO9d0XzutkK/rqU4VG83OLvvJiAdD1Q3xy9qBojvPvgQzyXgHQ8tMsevXSSSb29Liw9jeA5PK97AT0rpbK9Ws7cOq2PiLyJQRe7ircTPV/P9Lw0GQG9vholu3dFczz/f2Y8dmo7PJ3fozvHzma7VGgJvDJBj7zdaa08GTBMvIIbtz2Ou3G9lwr4PASB/rxEzlq96LgzvSneAT2kewA8/Mw8PfgI0ryhWf68Q30mvZJ/XD0g4C+86waiPBFXQrwNuJ+8eh3lPPPO6jyz3yU7lmiPvWjyDrwE3xU9CONzO7ox8jwVgOg8eDHsO+ItGLw/lPM8PmiHPCkvNrysaBE9cpAaPHDzpruUfJY725G7O54wWDySGiG9EQYOvYtZ/Dx0kkm8s7pdPfZBoby54D28khohPYZEXTyAaA09j6dqvSovtruke4C88HuHPOsGorwip2C9eOA3PGRCK73uoxW9ZxqdvGRCqzyh3oy82gUJu5oHMjzmtoQ8RERXvXTyDz0ZMEy8B7eHPJ4wWLw/lPM8tvIVPCO4obwGQQs9AeJbvH8efbyyRGG9m32uO6hrV7kmkBO6cd+fvPdoGL0+Q788ivIRvZkbubozCMA8xKVAvEfLFD0K4K08YH7Au7AHNLzOakO8K6WyPDwGkjyN+yY6BQ3LPIxoa71XYTU8Ssu4usEtmbsBF8y886uLPWJpsjzvyIy8slBhvZJ/Jbv4ds681pwTvDcjPjxcePi7hQ+pvHlTLL2IUSg8cK5yvGpQdL3fFpE8PTU8PS6DwLxAUTs7r+hhvDPhPj0r9cA8USR7PXP1rbywe507Rq85vb7Fmb1fczM8UiR7PIOnqTymJ6C71q8TPHVdLb1S/vo86wZSvPU5izwVxAI9ARwIPV2Zs7wrG8G8+I4KveNA1Ly0lxy9Ar0HvLr1mjzwaQw9/f+IPL/m3bxSkba8v58ZPWZadb3qVw48lOekvdArlTzn744886sLPSv1wDyJAOy84NjUO5N6aTwKgwW9ZxMxPQ6MBL0MEQW8HYoAuxZlAj0RuwO9tUucvOStD70/w7u8ARdMvABVCL0uEcA8Zsx1PRAHBLyEVu07+vYJPAn1Bb0Z28U89+jOvOl40ru0l5y7TQh8uvr2ib3haxC96Z5SPGDbMjsN6wS9bUsvvFrEeDxrCTC9KNnBPD7pOzyrPmO8us8avBKCg7rZ7NY79jTPu4CGbj1dvzO9vusZu/cOz7yn2x89irknvNrs1jypsOM777UMPdp6Vjz46M66picgvFADN7xFIbq87OBRPRjNAbzXdhM8HxiAOkO0fj0XP4K8M+G+vN681bwpjcE86KOOPHHU8rzR35S8eS2sO0rLOD3ecFW9IcdDPLUlHDwZuoG8UAM3vQ3FBDymJyA9us+avGbMdTwzu749CqkFvGP3sTx6AnA9ZzR1vX1E7zx4wPC8uvWavK1fHr2otR+72nrWvHSpLbwQBwS92ZKSvJAXJj1embO7Tpu3PBA7SLslvcI6Ssb8vI6JpjsHdcq8UpG2OyclwjxCKzu84beQuxgZgj3sBlK9ZxOxvEulODxuJS87+GiKvBGog71GHP472bgSPTexPT3AwN07gvMpPRgBxryvEx48xeqXO7EvHTxtSy88pAshPB5kgD2TWSW9YkMyvfehijxRJPu7CeIFveKM1Lw7zTw9GAFGPfh2zjxg2zK9cYhyvFKyejwALwg9s+OcOmKKdrwQO8g82N4SPHTKcbz4nE67iCuoPNAm2TtnE7G8zEgWPOTTj73AwN27vuZdvVQa+rydzma8DbIEvM3kWT18kO+8678NvPU5CzzJ8xa9cWLyvP04CTxAnbs8gTruPO1gDb0KqYW9xsSXPBRcgzuMISc9CSnKvLFVHb1yPHK8/TgJPNNalLyqPmM9aML0O6EQ5rz60Ak9KxtBPaGjIb3c5xE8Ohm9vABoCDypaZ+8XHj4uy43wDxhtbK75wIPvdAYFbs5P707UiR7PEUhurv5Kk69B40GPavy4jzLolq74bJUO8xIFryg76E8BsYGvB2wgLsAicw8RvZ9OysbwTuqimM8D2YEvdQOlDzmTo86A5eHO2GPMj0Kt8k7hg8pvPySzbzHZRc90d+UvF9I9zyITGw8uNmbOpN/pT0K3cm7rYWePONm1Dwo2UE94P5UOzItvzyTWSW9EpWDPJhwaLvellU8alD0vBsdxTzElZi9y3xaPQVZS7z0gM+81dUTPTZJPjw/vv+9tHGcvKVzIL1kGHY8itprPPlQTj2+6xm9rYWevRs1Ab3f8BC9uRubvdNoWL183G85Gw8BPfkqzjzElZi8xsQXvZabJD2SpSW8uWLfvHia8DmLkye93AjWPJ3OZjvQKxW8+4SJvbiNmzx0qS08Vfm1O3oHLL2APyq9HiuAPKpDnzpT2Pq7olJlu3DUcj0FDcu8pZkgujYjvjt7lau7fteqPA2yBD3GxJc7chuuPB2dgL0KqYW8ZjmxPLf63zw2b7696ixSvbW44DsJ9YW8+SrOvMXqFzt/Hm+9olLlvJxFIzzn3A49IO3DvGWFMTwIVIa8fG8rvVdhtTyqiuO8rjmevSWXwrulumQ9DCSFPMesWzsIT0q90drYPOWHjzyS8SW9Cc+FPE9PN7vvFA09U9j6vEYc/rsaaUW8Tpu3vVaHNb0fOUQ8Vzu1PPIY0Du1Sxw9VBr6PNgSV7ztTQ08IqFDPDFTPz6uOR49+VDOPErLuLzMVto8rMxivZES6jx8lSs8uvUaPavRHr1pobC7mdjnOzyBvDuYJOi86wZSvBA7SD0ug8C8Voe1utdeVz15wHA8sS8dPXPwcTyBGSo8uvUaPQOEh73JOls82RLXPHSDLTxws668YCczPPhVCju9WF47WBB5u34e77zaetY8U4x6PVPYerxJEn07F01GPdp61jxLpTi8Qt86uUhjOT26Ft+7wSjdO9avkzzLSBa9pZRkvYTIbbzBB5k8VfT5u/rQiTwFf8s7ZNGxPL7FmTzHZZc8ARdMvbVLnDkHdUq82w0SPWyXL7z6BM67rjTiPCizQbwjL0O9rjkevf+giDz1hQu7SF59PVg2eT0MNwU9FZ4CPXD6crzlzlM9qmTjOw6fhDuEfG09wruYPWGw9ryotR+8+lDOuwz+BLpdunc86/iNvLyDmjz8cQm8pOBku5J/pTwuEcA8uIjfPKWZoLvdrhG83QhWvHbrrLt6B6y8z5hZvWTRMTyo/GO88VYMvWZadT2U5yS90CsVPFpXtDvjGtS8qY8fPfVazzhyQa68THr8vEtZuDoo2UE9qj7jvELfOj0fOcS8Z+0wvcVq3Dwll0I6OT89PW//rjz4dk69U9j6PIPIbTp1XS28OIs9vV2ZszwLa0m7rNGevQEXTD3ILBc9N9c9OjexvTzJzRY9xvhbvKlpHzzJ4JY8tv+bPAUShzwO00g9HPwAPMkGFzy6zxo94WuQvECYf7wuEcC8wFOZPB3RRDxqdnS8+70JvFqjNLrR2tg87ODRvPI+0LwRzgO8jfZqPUYc/ru4iN87ARdMvVKRtru7yl68GbVFvdT7k7zCBxk7FmWCvNToEz2XSui7Rq+5u6s+Y7y6z5q8cmeuPBm1xTyFDym90bkUPOg207u0cRy8GdtFPTF5v7xG0H27/9kIvR3RRDweUYC8LV3APLoWX7szu768awT0PAEXTLz9IE26sgmdPANxh71TjHq76OpSPQEXTDz/eog8rlpiPWsJMDtC3zo7nBpnPdc4V70QZoQ9CoOFvHu7KzvJOlu81dBXvAtdBT3qC447dIMtuzoZvTyN1Sa9uUEbvbF2YT1/i6o6chsuPW/ZLj0je0O8Wle0OEk4fbv5Qgq90BiVvKciZD39JQk9PIG8O2P3sbtpnHS8UAO3PEavubthjzK9cPpyvP7UTD3BKN08BX/LvdHMlLyxduE8GOCBvKv3Hrwd0UQ86XjSvK9aYrvSphS8uIjfPBZSgjzc1BG9ZYUxvAn1Bb0Qh0i8oerlPGTRMT0Heoa7N7E9vH8eb71mWnU9/F6JO3fFrDzJOts8b2xzPYqTpzwb/AC9fh5vPOyZjTwUEIM8md0jvLiu37zQJlm90o5Yu8B0XbgGoIY8cPryvHjA8LxgATO98/JPvGmhsDymTaC8GQFGvNde17ymJ6C8Z+2wvNHMlLsV5cY5UJZ7vDCfvzxsvS+80qaUPZAXJrtR3Ta9q/LivOStj7wbQ8U8jEcnPCWXQjzk0w89DvnIPBsdxbsNxQS9MXm/u4+EarsBHIi9zrCVu2WFsTseUYA6FbGCvBppxTqmSOS8HzlEvW9sc7yr8uI8kF5qvFdhtbzFSZi9BVnLPPZMizz69om8FP0CPMO7GLzMMFo8z2SVvL4M3jsxeT8798LOPB3RRLy9ERo9rV8evXCNrrwMEYU7tv8bvClnwTvaela9XZkzPcMCXb2Hnai82zOSvNtU1jsdd4C7FouCve1zDb0tXcA7djJxvFzlMz3PUZU9Q5O6O4qTp7piQzI9fG+rPXfFLD1zGy6879ZQvX+xKj3/jQg8gs0pPN3iVTy/n5m8YAGzPJgDJLwO+Ui9+7hNPURtujwTggM8cvUtvdacEzwnJcK8hQ+pvNBM2TymTaA8cvWtO96WVbyotR87yBkXPIXpqLx+/Sq99TmLPAkDyjyhfSG9e9xvPO/WUL3AUxm8wtxcPEavOT1JEv27T3W3vAdnhjpj97G8pbrkunYRLbyiUuU8jhxrPIxC67z4VYq5r8cdPT0PPDyc0yK82w2Su9Ha2DwWi4K8Gx3Fu6vRnjyOHOs8Xb8zvdToE7wehcS9awkwvZ2o5ryJ36c8678NvZA4arwFf8u8rabiPABViLwAaAi7AKEIPPeOijysq547ONc9PM01lrwbQ0W8y0iWvGcTMb3dCFY8vIOaPAOXh7yz3uA7Wn00PeJFkDv6BM46dhGtPM0PFrw1Sb485qhTvMO2XL0VngI9Rvb9vF9NMzzQTFk9Vs75O/l2Tjz1Jgu8olchvc6dlbz+1Ew8N7G9vGcTMTra7Fa9G/yAvIu5Jz0bQ0U87ZRRvXoHrLtPTze7kRemu7r1mrpuJS89CrfJvBcZgjuN1aY8/vrMO+FrkL1PcHu9y3zaOmsE9Lu1bGC9x4uXPM9y2byG5Oy7Hl/EOn79qryPYya9a+MvPbykXjwg7cM7pODkvLRxHD19au883bzVO9gS1zpjPva8S6B8PPCwULtDtH46iQUoPd9K1bxV9Hk8nxUivY32arytX548rYBiPBzWAL3smQ09peUgO1NFtrz3wk69Yz72vHYycbw68zy9ARfMvdBMWT3Y8RK8/tTMvAOXh7vjGlS89tqKOfFWDD0Lkcm86zEOvKfbnzyC86k8k1mlPYOBKTz5Kk49n1xmPWp29DvhkRC9WO80Ol5ud7v1Ws87N7E9PECdO7wPQIS8EPQDvVt4+LzbM5I7rBhjvH1Jq7wWZQK9lykkOd5wVb1qL7C89tqKvO4njTts3vM9U0W2vA2yBL3mFQ87HzlEPYra6zykCyE86KOOvQq8hTw6GT29tSUcvb03mrw3sT283nURPN9KVb3HZRc8+4SJvLSXHDwFM8u81oTXPI326rvFHty8qLWfPPxsTTun2589rhMevZcppDxJEn298veLvIRbqbxj9zE9jokmPJsfo7xz8PE8SvE4PHia8LygyaE7117XvCGhwzy7yl69Puk7u1nvND2paR88uK7fPHCucr2Czak8Hj6AvB33RLr2Dk+81okTPY32arxOwbc8xJDcPEErOz0v6z89OGU9PRsdRbwr9cA8nBrnPOyGjbsYAcY8Tee3O/S+C7wWeII7uWJfPCjZwTz9JQk9HoXEuQ9hyDztOg092lmSPcVJmL29XZo9lnWkvF5zM729WN68mrcjvKaZIDwuN8C8vuZdO4A/qrvAwN28J//BvGZa9bvvtQw8zneVvNEAWb2Lkyc9Ar2HvC1dQD0K3cm82cbWPN3iVTx+1yo98VYMvGWFsTzKyNq8ayp0vFBKez2C7m27t9TfPHCucrzEIxg8Va01vTVJPj16KPC8HxPEu5Xi6Lz/egi8byDzPIxHJ73UHFi7MXk/PUavOTwmccI8e2EGvbqGtrvu/uS8uBE2PCr87bx5Ewa9PFSjuehhPT0ACkE8jh+JOz5VSr2ssY29sXSOPIMlLr13xQU9no8LvGE29ryftgu950GDvD8v8bzFpxG9htn7unB/eLqZMlg688Hlu26sF7wcwh47hw6IPAsEnDybQQu8esasuy2+xzvIgTi9FYodvHBnK7y4ETY84VA8PQXNQTs/L/G8azcXPdV8ujuGTVW8BdQHPS5ZoTwISYi8iZvVO6H2/7yOhVa88xWFvXgr0zxTiM08BqfovBzaaz3/u8C8UBqTvQaA6DyRu4m9QRekvHTcq73ZjBQ9XVsoOUx3zDwpliA9N0uPvHwUrby1KFw9m6axvLUQDz3X0YC8TVFzuQQy6DtWvgA9PlVKvMBJt7sqng28YTb2vPTo5bt25Bi9QvHKO+0rhD1LVxK8AwtovXBnq7xmmxa8F5KKu5BtCT0hEca8RPLxPG3Lqjzorha9Gy4LPBcX67ylU7O7wEm3u/hd5juGwa48e+0svXW9GLtJTyW84DCCPOhogzydp1i8g9jUPP/iwLz/Lxo9pVMzvHxTejyOEX06IhFGPWdHd7xpo4M8EhUdvQ8Gaj16gJk85HhjvALMmrzUXAA8+iYGO0F98Tx/PNS7g9hUO/Rcv7yM0Yg9eHgsPPhFmTyjUoy8mwx/PEDwozz4hGa8kEewvBf/nTyM+Ag9QKPKvLk4Nj10Ayw9gbiavL1IELxoCKo8QxhLPXvtLL2cgFg8XcF1PV0VFb2BFvu8u/qPPSNmjL1YDIE8e+0svMv2uLxw81G9zEQ5uksDc71k4II7NWoiu60+W7ttP4Q9mwx/vAm2m7zB5BA901U6vEopTDxsXhe88ExlPBxVi7yxmw49e3lTvYXAB7tDRpE9eARTvZZJfr3w5hc9rv+NPOJ3vLq4xFy9PeHwPPn/BT236jU9WXkUO5K7CT0oKQ29Zvl2vDA6Djv4Hpm8oGkyPHTcqzxj4II8hXMuvRRjHb3QLZM8IV6fu4bnh7wW2B29g3KHuyTr7DzMuBI9kyHXvIEkBz3/u0A7ijavPM3Q37tUYnS8SCilPP1H57sDf8G8dBv5vPPB5bpVSqc8NFtvPKihs7wJ9Wi9TZ5MPS1Kbr0q1e28Wg0ovV41T71plfc5ABEHvbPCjrzfTxW9QMrKvEHREL0lrcY6J9RGPLUQjz1dgii8F5IKvQ4Fw7vAvZA86TtkPYbnBz0Gp+i8HLPrPC+AIT3X8Tq9QKoQPQenaLxsCvg8I40MPDMcojtbwE48PlwQPGKEdr3aPzs7PHsjvVa+gLuM+Ag9F2TEu2b59rzL9ji8I19GvGxXUT37RkC6iKKbveyw5DxP7Ew9zfdfvAu+iDtfRAK8XDSovDe4orz4Hhm9qslaPcQMuDxfD/a7n0IyO6oWNL31XL87pQbaOzKIDj1X13Q9h3TVvAhCQjv0XL884LXiO4UtG7yWCjE8AaUaOwXNwby0nDU9fa+GPMKXNzz32IU8drZSPboSXbzjxTw9IerFvF6CKL0EWei8FmsKvGGxlbvSBzo8KIdtvMUMOD04a8k8h01VvZjk1zxHuxE86vwWvghCQrz20Ji8xZjeOozD/DubDH88jtIvvIjoLr1yzXi9PA6QvW3Lqr0HG0K9bcuqu6AcWT1P7Ew9Nh1JvJ2nWLwqSUc9Wb8nO5T7fbyWvVe764lkvehhPTuBkRq9alaqvHkrU7xFZss8JSGgPHUqLL13Uay8VWJ0ve3XZDwAV5q6W8eUu5H6VjuhBIw8+f8FvWo3F7xZMwE9LMUNPJilCjrkzAK9Wg0ovOOePD2CitS8ZZOpvHoF+jzkEpY83LQ7vQStB70cmx48n6h/vMsdubxLd8w7OwdKvUiOcrwP32m8bvKqPeDc4jv4XWa8ByIIvZ9CMr1UthM9sZsOvUVmyzvEWRG929oUPVYEFDzmxuM7oreyvC1xbjzsSpe8paCMvfANGD3hd7y8UxT0PHZpeb0xWki8mcyKPHlS072P+S+9wPzdO32vBruK6VW7Y/8VPRDHnDyN0i87YtiVPJVXijx+FVQ+DVKcPeftYz1yAoW7SE8lPYzRiL1Pn3O8UtUmPLUQDz3Dvre8/LqZOTsOEDyFsvs8uDg2PFLVprsc2ms7H5zFvPI0GDsvEw49i3X8O2UHAz125Bg9AOPAuU2lkjxySJi8CXAIvKBDWbuBJAc9IRiMuwC9Z7uZC9i8gf4tvGpWqjw7k/C7WTOBPGNFKT2dj4u8N7iiuwzeQj13Cxk9T2CmvHIChbsfT+w8i3X8PIFjVDxQxnM8oWpZvPI0GLy8rTa819EAPafuDLyUb9e6azcXvVYEFDyMhC+8HQFsvLytNr0xDW+8qTyNPLIntTvASbe7YqrPuxQWxDqPEX08vK02PAkc6bwiPww98XNlPI+sVj1qCVE8hJmHPVBgJj0oh+289WMFPR6jCz3RB7q8Wg0oPYjJmz1Md8y80VSTvAb0Qb2Mq6+8GyfFOwtq6TttPwS9RPLxvDjforxTiM08ZZMpPRWxHTz3gz88HFWLPOxKlzxCGMs8OB7wu3fdUr00/Y490+HgvKcVjbz0PAU9VHAAvSdIoLtxpni9NpEivUsDcz3GMzg99WMFvb3UNrtjq3Y8l3B+PQcbwrwvgKE8wHC3PAExQb0h6sU8ElTqu2Z0Fj1+Yi09zEQ5uxZrijxyzfi8JfofPDKoSL1IAsw8koZ9vF8P9ry6XzY9UDrNPCxK7jx3kPk8Q2WkPOpi5Lxk0va87ddkO1NJAD3jEhY8s8IOPXQDLLwTPJ281FU6PZKGfTxCPiQ9wEm3u3GOK7wvgCE8ZpsWvNI1gLw+fEq7d1EsvChvIDsF1Ae9eLf5PF1bKD3aPzu86yOXvL2HXb1kH9C8jh+JPBDHHL1N6yW6rmVbuxkmHrxu8io9W0x1PA6gnLxiRak7GLJEvMyREj1C8cq8aMIWvQKlGjzidzw6mVgxvb1IED10UAW918q6vCTrbLw3cg+8oreyPKl72jxVI6c8TuxMvOk75Dyv2TQ7GeCKuUx+Ej1aDag7HcIePP+7QD3n7eO8bFdRPRM8HT2569y7z7k5PDe4Ij1G2iS9m6axPTNDIr2INYg8Mg3vPGoQFzzUXIA8NkRJPZDT1juRu4k8xr9evb5vEL0irB8911bhPPbQGD2SIVc97SQ+PNfKOr3oYb07LAshPGKEdrzJW982cPPRPCPr7Ds9e6O8btMXPFRi9LtuZoS8rLGNvec6vTv2g788+0bAuYgPr7xlRlC9KdVtvGswUby/1d28uhJduS6YbjtqCdE8Ij8MO0opzDxXJM489oM/vQvliLxCZaQ7ES1qPBGoCT0hhZ88NEOiPL2HXbxbgYG9Q2UkPbg4tryCsVQ8DVKcPGwwUT3RVBO8ijYvvW3Lqjx99Zk8uDg2vNFsYLwL5Qi8ed75O/2bBr2569w8bxkru1qglDw6ucm8WuYnva0+W7zX0QA8LL5HvA0MCb3bjbu8g9jUu3QDLLx5E4a8t53cOwcbwrtk0vY8c9wrPTVqIj1oCCq7tl6PvdWjurwGp+g6ZNJ2vAndGzma8wq9VYl0u3oF+jzscZe8TuzMvEx3TDykBbO82Bg7vWjCljwltAw8UtUmPBk+67rYZZQ9D1oJvT4I8bwu5ce8r7I0PUl2Jb2KNq+84QNjvNBFYD14K9M8q4qNvJG7iTzmEz29UBqTPAMLaL0OeRw8kF99O/XoZT0fEJ87CXCIPV/QqLzQ4Dm6cPPRvHd4rLuFwAc9DJHpvEZA8rwXF+u8MzRvvKjIM72t2I28XmOVPAciiLqlUzO9Q2WkPC1ZIbxsCni8wSPePeJ3PL0dAey6Agtou5Ff/TzzFQW96Yg9vQ0MCbxGASU9tJy1vEpQzDtlk6m8Xw/2vKrvs7ys8Fo6HemevMpDEj1nVYO8k5Wwu1MUdLwirJ87Mc6hvFznzrwx9SG8uzndvL1IEDt3xQW9t53cPDwHSju8YF0764nkuyFen7vjxbw7a+N3vTy6cDzJW9+8VrD0uIjJG7tnfAO8FWsKveR447xtftG7EaHDOqH2/7tWsPS7hSbVOsv2ODvl84K8k619O0SMJLwAVxq98w6/vI3q/LxFZss8ecasujM0b7t0aNI8agnRPHEhmDwXF+s8GdnEvR7KC7veKJU7JykNPIDverxdFRW7TxPNvPiqPzzGpxE8XYIou6R5jDzj6xU9dAOsu737tjv/6Qa9n0KyO4Dv+rwZJh65PFSjOyf7Rj0bAEW8EIGJvLPCjjz6bJk8Uq6mu8uC3zsedUW9iZvVPHuIBrwVsZ29eHisPFyadb3YZRQ8uhJdPSkixztwZys8gf4tvEudpTyd9DG9HJsePbr6j7zYZRQ8zLiSvX5DGjyWvVc94FC8O51oi710j9K8hS0bO0YBJTxe9gG8x1o4PZKtfb1UYnQ8wHC3vOGdFT0ixGy9hbL7u2kvKrwltAy8JmDtvD0uSj3ay2G9fBQtvEHKSjtvjYS8k0hXvZzNsTwd6Z48ATHBvFPVpry/Irc7QcpKPGvxA7yFJtU8Es+JPHHbhLwLBJy8kyHXPLgRtjz4qr87Jq1Guj8vcb22Nw899oqFPM+SuTzidzy9XOfOPGLRTzwO3+m8ryYOvc3QX7xegii9Q2WkvIz4iL0wv+48D4EJvBHuHL0wv+68W4EBvFYrFLw0/Q48Z+EpvV5jFTsCzBq8Y/jPuxM8nTwSzwk8ZUZQPaUG2jztJL48p1TavBCoib3WqoC5XvYBvA4zCTx1j1I8tRAPvcDV3bt3USy7bTH4vL3UNr3jnrw8P6NKvANYwbzSohO8JNMfveBQPDsjZgw9N7iiPSbbjLwBX4e8xFkRvc333zvVfLo8AlhBPT98Sr1Hu5E8eyx6vSr8bbuNqy+9pSwzPVA6zblZMwG9MhyiOhWxnTxmdBY8HLPrPHd4rD3WF5Q8J0ggvRSiajzp1Ra9w763PXSP0rwSFZ083LQ7vcH83TyzAVy82ma7O26l0Ts8VCO9QKqQuxzCHrszHKK81fCTPFCHJr3IDV88H5zFvCPr7LoM3kI9PA4QPdmMlLsGQRu9ennTPBSKHT0tvse7+x9APSYCjbzJNN+8j0aJPa5lWz0t5Uc9HqMLPUVmSz3rI5c8ofb/u9DgubuGmi47Xw92vDvgSTvIgbg8VJcAPSA3n7olIaA88luYvPQ1v7xVYvQ8dp6FPTKoSD3Fv168HzcfPUbapLtbwM68xOW3vHIa0jz3Hhm8Dd7CO1DG8zxH28s7bKSqvHP0+Ls09kg9NFtvvJOt/byjBTO9JmDtO15jFb2A/YY8V7D0vJuA2DzMRLk7THdMvMgckrzZy2E85MyCu91A4jxihPY8VSOnPKZ6Mz3qrz29stpbPD3hcL1pu1A9EHpDvOApPL0lhsa8DqCcPB83nzw/yaO7W3P1u7g4tjzCCxE9hucHu7jK27yPq6E82RJTvJLkFbxY8nW8qCpDvamXY71ynB49KE+DvNN0BLsygRa9W44AvQmGfLsxImO934Q7vHidAz2dEka9cFtkOxv6Lr1H3XY8mA1+vXBJlDsquMA8h1eytqGmirqBcOM7/8wyPXDQSr2ioie9skLAO4FasLuznZC8HxmNPJ2HrLweSda8/tCVPD2Zkzzll3C8ZUNnvO7NZj0P+GS8adNIvAvHNjsrJWG9yj6OPMZ6gDsNqb28ApHAvDUnK71zCT+9jlS0vNppQDydEsY8qu5QvZhwlLxcDfG8vUSKvYz9xrxkT5C98fAnvae13Lwam/s8fEOYPBzctToOBI67P3NUPUp5Ab1if9k8U9d6Og2TCr2gYW08ByEiPWaEITzoujG7zQIcvE8FADv8kz69RzTkOVugULwIBww8bYEjvArlLzzFI5M6zQIcO6EtQbxKBJs8lo4NO9EzSjxccIe8A3NHvWRLrbwIpPW8CYb8O+XuXTw8OmC7+OXjPKKipzxoB3U8uD9CvCotp7vUVgu9wDT+OjlgHzx5kdq7EG3LO8GLa7228Jo9B6R1PMAeyzudnV+8tCTHPOsJWbwcUZw97dWsPGnxQbwP+GQ8zKNoPISTpDzlgT272lONvN9uCD3SoGo9p0D2PMPMJb3TbD68msMevYiygjyAeCm8jVgXvWl8W708JC25G/quPDN50L1veV09bCo2vEdADT0IA6m7grUAPU4fljwZGKi8mILkPDY9Xj0ls3i8FskAvbx4Nj170pQ78tIuPGhqC70W9WY8jP1GOjBA3DwUiEY8M3nQPCI0iD3/4uU7AganPGwi8DxKdZ68WdT8u8iIbb1HQA09m6WlvP0AXzwAKIM99pa8PBv6rjvT/x29Z5rUPRzGAr2suiS9/H0LPUexELwlncW8hJMkvRmNjruEkyQ9YIefPancgDyyt6a8W/8DvAF7jbuunKs7qfaWvKkMSr0CkUC6L0BcPQpwSb01uoq9z1HDu3idg7tKbdi8jd9NvXKggbwGwu48zBhPPemgm7yPwVQ8K7D6u7fSIbwcxgK9KkPau+X2o7utPXg7D23LPHtzYbwZEGK8YDCyvP/MMr07xfm7we6Bvet+vzxdbKS7hJMkvTacEb2unCu9Eq4FPUIlkjy6lq88BeDnO0OWlTwjMCU8YYefPKifqTza9Fk9yq8RPaOErjzkFJ08RyIUvPftqTyCtQA9S23Yu/9t/ztSVCc9M+bwvFLfwDvpoBu9hgBFvKZAdj0NNFc8aWaovF5Oq7wfoEO9hotevd2iNL3/xGy9SKnKPN6MATtYxg+6akySuzLYAzwb+q48zeiFvIb4/rztQk08ohcOPbmakrxYxg+7YYuCvAchorx76Ee8MJ+PvP9tf7tJHrG8nRLGu2TWRj19ys68lMacPF3hCrtfu0s974MHPEG0DryWjg294NsoPVLJDb17XS69Oes4PWsuGb3NAhw7RjwqPet+P7vr94g8Itk3vOJefDsuXlU7nIuPvEc8qry6N3y9skLAPEoWa7xpZqg8cpwevEMhr7wfihA93aK0O7XWhL1gpRg9kC71u8F5G76Elwe9+5sEveuU8rsLPJ08+5sEPKzQV70TkAy74jIWvSWz+Lvjnza910b/vN4P1bxcbCQ8oDWHvN0tzrxxupe8mPfKu36sVT0cZ0+8j6uhvCaV/7o//m08CvtivZECjzzjn7a8EIP+PKxFvjtDIS+8i5CmvFaFVb1j3gy8ApHAO9dG/zrPOxA946OZPCLdmjwOACs8akwSPUkesTr/V0w9Ff2sugiOwjs/6Do9ErzyvNG+47xVo848+5sEPUw5LLzWw6u7Phznu6mBsDweK108zvrVPLSR57xBykG8u47pPAs8HT0o7Gy8ByGiPEDSB71CrMi9PCQtPW2BI73pJ9I8wB5Lvezr3zzN6AU7aul7u7SvYDqbu1g9g1JqOUxXpby2ZYE893hDPGWiGj3nTRG9FBNguodXsjyOPoG97rczOz6RTT30tLU8VQKCu813ArxX5Ai8jd9NPEXlvLuawx49K7B6Pqwviz1QE+280v+duIB4KT0JWha9ACgDvG2BIzzeD1U8Y94MvR8ZDb3LjbW7LuluOy7p7jzi02K8pWa1PCGCSrxS30A8gAPDPJpka7xQcqC8t+jUOyotJz3NdwK95AxXveXuXTzg26g8uqzivAU/G7yqYzc8n8AgvQr74jwrhJQ8qJ+pvGnbDjy30iE9/e4OvTDLdbzfmm49KGFTPODxW73+6iu87UoTPfaWPLr/xOw8gI7cO5Yr97tNPY+9BT+bOyLdGj2uERK9hJcHPRE9gjfBi2u6iSMGO5WoI71AVVu9tJHnvCpD2rvCAFI7VRi1PBIfibzAkzE9ZqIaOyEN5DxHx8M89D/PPBzGgjyapaU9HNw1PYlP7DzwmTo9sremvLJY8zywZJw8W6BQvWEo7DsrsHo9huLLum/YkLuDJgQ8kY0ou6OELjysW3G7oDUHPPWeAr0Fzpc87OtfPBI5Hz0xIuM8ZheBPChPA7uOVDQ8GRDiu3KcHr34cH28duP/PJUzvbz/bf+8CzwdPHthEb0Lxza9BF2UvDGtfDsevjw8e10uPQpwybxcbCS8C1LQu1v/gzxyPeu7LXzOPHDm/TogmH28Ik6ePMCXFD1NxEW7tAZOvPubBL1wW2Q8I9FxvN2itLrBeZs8Gv4RPO8ShLwh7+q7bwT3PNlxBj0ZufQ84Hx1PU4xZrteUg69+c8wvT/oOj1Ki9E8fcpOvDnruDyHV7I84NsovZhsMT1SyY28ipSJvIiygrsU/Sw8CzwdPPTK6DysPXg8yP3Tu/yp8bzXpbI8PCQtOw+DfjyShWI9eJHaugU/mzyEkyS9BcJuugtAgDysuiS9adsOvM7kojwaEGI90b5jPKy+Bz3Y/B+8m6kIPbm0KDwt24G8wXU4vM6F77z8Htg7zuQiPMhyOr1eUo67RzyqO3VgLDwLPB29nX/mPLdHiLzVZHi8qJ8pPTKXSbwYNiE8LPWXPIM8NzyAjly8km+vvCHv6rrpoJs916mVu+hb/jth/IU9g1JqvINS6rwRT9I87NmPu55pMz1Zvsm8tCRHPeX2IzxkQ2c6IYLKPBQTYDzejIG9C8sZPCsTkbxKbdg8chEFPSLZt7yd/BI9NUWkvF+7y7yHW5W9UmraOwXKtLzm3I08KxMRPSSlCz1VGLW8dlhmOgPsED0yl0m9PpFNO8s2yLw/6Dq8dWCsuyUo3zxQcqC722H6u4PHULzcwK270hXRu7dV9bwjMKW7r/MYvYfiSz02skS7MoGWPOIyFr3JVEE8Hr68POmgGz14JLq70KyTPS5MhTygwKA6aXxbvSCY/bw7QqY8M+ZwPKBhbT0CiXq88A6hPJCj27ySby+84NuoPDIMMDxthQa8EdprvIwTer14Dge9BOitvBmjQbvlY8Q6ztzcvMhyOr3gfHW7JoeSPGl8WzyIsgK93g9VvGj5Bzw/YQS97NmPuzAqKb2nowy9pHzoO8NXPz2DPDc9GRDiPNXZXr3bxBA8dywAvBQBkDy3VXW8Aon6vDnrODwSroU8EjmfPI8u9bqioic9jHKtO/jlY7yA7Q89qQxKPW9jqrmxSga81jgSPXKcHrykfOg8fcrOu1dvIj0i3Zo7HxWqvPCDh7zg8ds8KyXhPP11Rb2vCUw9lxVEvJ5pM7ziSEm9iD2cPOqGBT29RIo9oqInPNzALT2yWPO6qdwAvZVJ8Lrn0GS9b2Mqu9KOmruY98o7JRaPvdcaGTyytya9yHI6vQnpErx4JDo8QwcZvFUYtby6lq+8IzQIvSGCyjz+6qu7wJcUPbBknLzET3k9Itk3vEkesbwUAZC9Z4ShPV7ZxLyeaTM9MgywPG72CTwhDeS845+2PFLXejxbFTc97WDGvCZ/TLwtZhu9o/kUPdelsjzQrJM8bQw9vWNppjyzLA09V1WMvKkifTzbYfq8n8CgvISp17zll3A8KqKNu979hL3AlxS8yzZIO4M0cbzUbL48q9gdPCcK5rqECAu9c5RYPJwaDL1aGZo8WPL1Ou8SBD2yWPM7yHK6uztCJr3MjbW6JocSPJeg3bu7jmk8CI5CPUexkD0IGdy8n8AgvBv6LryM55O8VRi1OxMbpr0kEiw9e+jHvFD9uTwBp/O8811IPI/BVLwFzhc88tYRu+v3CL3Ob7y8/QBfPLztHD2XoF28OQHsPNSC8Tx7YZG8U0zhPIdbFT1snxw9MLXCPAGZBj1VGDW88JF0vPo80Tx76Ee8QF0hveZjRL1hhx+7PQY0vHBFsTtgh5+99LiYO/9t/zxp8cG8vsfdPOQUHbs8KBA7YDAyveO16buVrIa7OH6YvM87EL2VHYo7C8c2PVPXej1gMLK8bYUGvU4fFr2/JpG7q9gdOk1PXz0ZuXS9O80/PZVJ8DvP3Fw9gHipvEOWFTzUVgs9ET0CPXKggb1ystE8VBwYvQgDqbwUE2C8laijO0oWa70uXlU8wDT+vH0/tblRalq9EU/SPFLJjbzGkDM9ihtAPeknUjzjGAC9xqZmPMyRGD11YCw8r/OYuhIfiTtZvkm7vdMGvZQ7g7ya2VG6SgQbvdCsEz3zXcg6PpFNu2wqNr0+exq9Ff0svWEWHDzQO5C8Hr48PTWyRLzfhLs74PHbvNVk+Lx1dl88chEFvOhFS70IeA+9bYWGO0MHmT0SOR89cNDKOhzyaD2vfrI8pjKJO/Q/T71CrEi9/8RsvLV7tLzwJFQ8XWykvPqxNzyjhK68UmraPIB4Kb1hhx+9y0x7vExXpbkb+q48UIhTveMqULx7c2G8lSt3vDzF+TpnmlQ76n6/uwDF7DtSVCc8RuW8PBbfMz3f+SG7rwlMO7JYc70WVBo8w0GMvAc31bw4lEu6PgY0vaEtQbx4maA803SEO3KcHjx9KYI7JZ3FvE05LL2904a81sMrvfYLozz97g69srcmPeK9r7221oQ8O82/PDlkArwSH4k8uSkPPOzZj7w8r8Y84582vVByoD3Vxw69jlS0u1hJY711dl+8P0MLPfAk1DxTTOE7UzauvKzQVz0//m09e2GRO8wYzzwku768RlojvSM0CD0fihA8ttaEPH20mzyxYDk90/dXPd8PVb2HVzK7mPdKPfS4GL3VZPi8tXu0t3bjf7zxkfQ8R7/9un20Gz1p8UE8VoVVPb1Eij0oTwO8bBQDvRCD/jydEsY8VoXVvL3Po7t76Ee8MCopPJrDHrtcglc8d0IzvYfMmL0Oi0Q7oheOvE1P3zy4P0K94FAPvRY6BL3ll3C9ReW8OwTorbwNFl49MC6MPPjl47ybMD87NEkHvPaWPL0kRlg8L0iiPDY93jyDPLc83g/VvOi6MbxtgaO8HdRvunG6F7wSH4k89D9PO6KIET0z7rY7TOK+vFByIL1MOSy70o6aPGeEIb1puAa8VzlNPR7tD70JPOA8Y1QavVNjLr0UBLk8Z0JUPbWqUD08FXm8Ze9fvVSTZL2xXv+8ZGw1PAuyEjx0yLA8qu0avZAEoDyGdyC9Vat/OzsV+byEuRy8nrqyvKWJrrvTObS8/NjBu9nwlDy/H7U5H8FuPPOGGzs7zae8xIMhvPevrr1h6Qq9BPsxPLbC6zvRzqQ83KP1u6HUDb3ttx89ioiYvC2CpLuQBKA8b0wpve5S5TwuynU6wsUdvLHdlLzQk0u8yHFbvZ+6srv+W2w82eXxOmitY7sDVcm9tD9BvIe/cb2BE7S6mSaQvQ41vbzXYkc84Neru5+6MjsamNu8JwYdvJqpOj2JNaQ7YxuBPDLD0rwoNtO7xHh+uxJGtTwn+3m9LwVPvFHV4Lu+kWc8dRulu1dR6Dxl7187xu4wPcxqODx/wL884iqgvF1MBb2pX828yQgMPXeezzukHh87sjAJPXyvR70+UhK9mANSvTs4tzs/3h+9lNq+PGGusTsMHaK9Z2WSuz3nAjsgqxO9nWe+OywvMLyFJKw6/ltsvCrEIDzfGai8sYE9PMRgYzygPd08TqzNOzwgnDvDjIQ8xu6wPGNUmj0msyg8YhlBvQ41vbw+9ro8xykKPd8ZqLwb07Q8+HaVPJFvLz3Gmzy8ESN3PZ1Po7tcens8GUXnu3ZuGb3Fg6G8F6qhu6ahyTu0Jya9wvVTumdC1LwMBYe7hV8FPU7/QT3bWyQ9B5Z3vSnNAz2DLY899fEqvMbL8rwIaAE9I6KwvO51ozxG9Wy9dMiwu0ClBr3/lsU7cgqtvAJ4Bz0uyvU8P0mvPOnhAD3YtTs72mQHPaahSTzdAY27/kPRvEopo7zV97e7rpODPA/bJTwf/Ee7GHGIvLBpoj1fW728QgczvW1VjDzCrYK8yy/fvAGZBb1W/vM8bAIYPa/DuT2k40U8NGm7vLx5zLydZ748rUCPvJZHjrwHoZo8XfAtPU3EaD3d3k486kwQvEatmzxRjY88H8HuvDg/2rxknGu7TjqbPOavijz7NBm8oEiAPEIHs7t+HJc8SimjvBNgEL2el3Q8AMf7PI0uAb2wLsk5cl2hPAsmBb03Jz+8sGmiPG4pa73Qk8u8MUAovRovjL1bSsW7tW93vSsM8jzjB2I8BU6mvTFw3jyiqGy8Su7JPE4X3Tq7SRY9D7hnPY6O7TxwExC9VQmXu7n/hDw0abs8Pw7WvFxMhbywUQc9kUzxPJD5fL23FWA9YJYWvNJCl7ojf3I96eEAPccpir2YA9K7mBttvTGI+Tp96qA8e5esvN0BjTzovsI7AOq5OwDSHrxqU8y7loCnPIfKFDyODYO8husSPWHe5zzqKVI7Y1SaPBceFL2ZeYS8ApAiPAUr6Du1qtA8zwV+PD1SEjtoxf48CTxgvJQK9Twq3Ds9ptwiPWpTzDxJm1U7z0DXO2YSHj1w8hG9nn/ZPKWJLj33dFW94derPM7tYj1h3uc8Gy8MPLflKTyc2fA8/tqBvXkh+jzLL9+8DB0ivUmDujtK7sm8pDY6Ok7/wbyqYQ29OwiBPWm4hjsPZXO9Bn5cuwdoAbxLEQi+jAtDvZLLhjzSQhe87CuSPOIH4jzx+E28uaMtvULM2ToXqqG75lMzvWb6gr3V9ze8gfuYPGymwDx4tuq8iTWkvKa5ZDuJNaQ8hV+FvDgnv7p0pfK8CUeDuoDw9bzp1l26VznNO40uAT1gxkw9EV7QvC7K9bymZvC9vZwKvIJ+QzwmYLS7F6qhusnETz3inpI8yYn2uqWJLj0CbWQ8eQlfPTP+KzykE3y8C+LIusxSHb00Fse8feqgu2OnjjwGZsG7jC6BvFjHGjxNrM28WjIqvDz9XbqdZz69m8FVvHksHT0kPXY9P0kvPfJjXTxR+B69xx5nvVIQOjxAYco7HpG4O+eDab2LuE49/RObvIzbDD1GxTa9in31O2fZhLzjlS+8HpG4OyT1JL0L4sg8nU8jvHPRk7wI6eu8SYO6vWdCVLzlAL88SxEIPSh6Dz041oq8zxAhO30y8jzRziS8IrpLPLMEaD7iH309z4STvOdTs7w0LmI9moZ8vW3hGTxAEJY8vL2IPGt2Cjy2QYG9DXAWvNW83jpaD2w8DZEUPXpc0z124ou8vszAOzLbbT1IUwS9gkPqPGo7Mb1OOps8aNAhvE7E6LrsnwQ9ESP3PJ6X9LqOdlK852vOu+nu+LyZVsY7mm7huxGiDL20V1w87SIvPS6y2rwjDUA84DMDPfyoi7u0V1y9VbYivdyL2jtMlDK81g/TOwVOpjsSXlC8ICx+vXjBDbzbcz896eEAPTrNJ732OXy6M/6rPJUVmDwPZfO6Xzh/vY4jXjysWCq8+AIjPF8ISb1lhpC8/IeNPHksHb35Gj68VgmXPLsOPbyJ+kq8cjrjPIaPOz2OsSs8TecmPRBPGL2M8yc9m1gGPV9bvTsJXx499wuGPb8HGrwHoZq7wvXTu/vAJr3XMpE8IB8GvAun7zzna047LoKkPEJjijxgxsw8rxYuPbWq0Ly1epq8zaURu0WVgDt9Gte8VCqVvMYGzDwX2lc8LV9mvQIlkzw6zae9Yd7nvD72uryeujK9sC7JPH6xB70UHNS8P0mvPIS5HL3D3bg80Xuwu2OEUD2RNNY7yXFbvAtU+ztwhwK7BhNNvApUez3sz7o7A1cJPWjQobzaIMs7jTt5vH1eE7sCPS68+51ovUopIz2hYBu8DAWHPLME6DzrlGG8jkacvFuFHr0wQKg8+Ro+PCKiMDou1Zi8OFf1PExx9LzvXQg8ww1vvZpu4brZERO9mAPSvNgRkzz/0R49CfQOPADSHrwJJEW9VLaivOy3n7wu1Zg8uyZYPUb17LzGSgg9k4mKvUmDOrzHBsw72LU7vXkhery3FWA9yy9fuVoP7Duj+2A8Ty/4O6sFNj01vK88cyQIPCbugTwvBc+8AwQVvVtKxbzmMHW9tCcmvWpTzLwamNs6fQI8u8bLcjzco3W8pBN8Oi7tszoiuku7/kPRPGOEUDwoWRE9Vn2JPMgIDLyieLa8nRaKPejhALwms6g89fGqPc4oPLwWkoa8ZKeOPTsIAb3OKLw8LV/mO4p99TzsKxK96fkbvU3EaDxJm9U83d5OvLbNDrz4x8m8lNo+PN3eTrvLxg+8LEdLPIErTz3nU7O8XHp7vTAoDbw2vK86lRWYvIZ3ID27Jlg9p6FJvf5D0bqb/C47FTRvvVnftbzVx4G8a44lvRhQCj3OEKG8l9OburRX3LvV35y7U78FvNrN1rxO56Y8NFEgOhYelLwSdms9wzCtu0NapzxS7fu8+HTVvHTgyzxt1na8HT5EvdrPlj2I4i88oSVCOwpHA73iH328FW/IPMRrhjxO/8E68hsMvV8IST2lZvA72eXxPO9dCD0pNtM8M/6rPH6xB71mEp6931SBvfEzJz1KKSM9jS4BvUjfEb0rOBO9z2OVPLFe/7sagMC70kKXO3EKrbu1QQE9yYn2u5Acu7v+Zg89f6ikvDqUDj2TNhY9zFKdPLw+8zvxEGm9hnegPPYLhjyWgKc84JxSvbho1LtUk+Q85uijPKKzD7xdze+8+OoHPR/8x7uZVsa8l8h4PIqgM7wgFOM6pXGTPVIQujx6LJ27EC4avLXNjjv432Q8nDeIO1XOPb1p6Ly8xwbMOwUraDyrtIG8mNMbPU3EaLzEYOM60HuwvZg+KzykBgQ8sGmiO6xYqrzl0Ig9LC8wvfY5fLz7hU07RxgrvJVd6bvBikS9GWglPd9UAbsDwFg8ycRPvIJ+w7xUtqK87J+EvMsXxLypd2g8FNQCvQJtZDz0hhs965ThuisXlTvTObS8XLVUPZFvLzvfGSi9Vav/vOZTsz3HHme8CyYFPVh0Jj2FgIO8oNSNvJ5/WTyIPoc71jIRPVsyKr3PEKG7duILvRqYWzpMfJe7DRL/PGAKibupmiY9XPmQPDf3iLw+UhK8MXuBvGIBprlRbJG8S1nZPIjirzsoWZG9EAtcvHi26jykE/y7dMgwPGo7MT2Q7AS9mqm6vApHgzyGd6C88/qNPDWkFL07ODe9vGGxPHSlcr39Exu9FVctvLw+c7scA2u86W2OvHbiCz183309COnrPGmtY7xOF907VCqVvN8xwzu5aNS9PeeCvMs6gjvRq+Y8hIADOwOoPTs8IJy832wcPI4NA711GyW9V1HovGy+W70HoRo9Sb6TO4qgMzxaD+w7kBw7vAsmhbx4NQA8H6lTPbxhMTj2Ofy7ckUGPZvB1TtC5PQ8YekKvAdogTzjQru80HuwvPZcOr3TIRk9KU7uvDcnPzzobY49wFoOPPSGGz2/Wo68aQBYvE8iAL1p6Dw4j5mQu5QK9ToMyq28qC8XvfN7+Dwy5pA7LwXPvCKKlTsa3Be9fRrXvE8BgrzmGNo89E0CPLx5zDvV1Hm8bKZAO8R4/rzXSqy8oD3dvNh64jyULTO9/toBPaPLqrzfGSi9J3qPPA41vTxH3dG89gsGPbx5zLzPQNe7wsUdvfP6DT3udSM956anu1K9xTyQeBI934Q3vDPmED0qxKC82iDLPOuUYbtO/8G7DZEUveboozzG7jA8QbS+Oyvcu7xOrE08xu6wPBBPGLyVFZi82QgwvRU077wrDPI72zjmOxfCvDwfzJG83d5OPIOWXjxMlDI8H0AEPS32lrzgtG28GBWxvAHquby/B5o8uCCDPfptMrzG7rA9WccaPfEzJz3iEoW8NoFWvc0ZBD03D6S7i6CzPG3hGbqSywa4sGmiPOC07TuWmEK983v4vHZuGb1nZZK8Ya4xPNxzv7zwyBc9zGo4vIS5nLx9Glc9JrMovOKeEr0hq5O8i4gYPTmq6Txgxkw9430Uvbm7SDtjSXe91ifuvBDzwLwr3Lu8YjHcu99h+bxV5lg7gfuYu67DOTw3DyS7NBbHPPYJRjzgnNK8prnkO78HGrxUk2Q9RSEOvfoyWTz5Gr68EE8YvQsmBb38hw087HzGPIgdCTw2gda8OWKYPCK6S7xEit08dmP2vMsv3zuDZii9zfgFvOAzAz33l5M8oni2PFYJF72k48U8NC5iPZtYBj0rDPI8/7mDPdF7MLzuOso88ciXPDs4NzyCZii7rLQBPSN/8jy0V9w7g0NqPOOVrzuIp9a6WffQvIaPO732CcY6QbQ+PM8F/jzlAD8912LHu1oyqjxFxbY7kzYWPOzPursj0mY9NC7iOlLt+7uel3S7n9LNvApfHryahvy8WjIqvAAC1by/HzW90v7avDEHD72+kWc89E0CPOtMkL3Fmzw9S/AJvSwvMD1yIki8XG2DPS7K9bkkPfa8j8nGu2PIjDzfhLe8KYnHvLZBgTz7wCY8b3xfPHUDCr2G6xI8ZJzrvEmb1bw9xoS8q+L3PA/bJb3qKVI8FMlfPHkherzEeH488b10PPjHyTwdeR29G6pEO/KnXj28zgG9HtCUPBzaPL33kw69GJZxPBneZT2iM3s9zNHHvJB8Ur3dTHq94sgSvVhrqDy4Zrw7BjfkOvjDBr0Mm4A8bHIavEAU7TuNdH284JBFvC3NW7yPvPE6kjA1vblOwLv2P5w8RWyLOuI4qjzkIgS8u/akvGviMbync529zUm0vKFjczzinpk7kLjIPIBzDbziUCa9zQFAPVaTy7y5Hki8uw4hPW7YCb18aWI8HF4nvKYHL7xoLk+8QijAuaPzW70vsTa8Vxe2O1mnnjyVJg28kHzSvRm6a7u5Hki99jOeu87xmL1So/K6RdyiPJBY2Du8eo+75DoAvSr1frwycRc94LS/PG78Az3dcPS8vJKLvG4Cg7yVMos8t6ZbvctZW7zgkEW7QijAPAybADyof5s8DImDPBzOPj1sZhw7bvwDPRpiULykO9C8MmuYvFZ7zztDxCY8qH8bvKipFD24+k29o/PbvEUqFr2jw+M7RYoGvVWHzTwu/VM8p0+jvR4whTy7AqM7fcnSvLfWUzvJjfw7uX64u2xCorze6OA7aVJJvAObfTqi2188uoq2PLey2Tu5cjq7pkOlPBzaPDvPIZE9LFVvPC7lV71o2ty8Mr+KPAodFT0yuYu8k3ipPMrhbjsIVzU9Hu6Pu2UOfj1A/PA79cevPPTHLzmQlM68vHoPvPEv8rsdRqs8Ch0VvXxdZDuo2Yy83ujgu27khzySPLM8pvswPUWKhr29qgc9y3FXPQyPArujw+O73gBdPM0xOL3j2g89WF8qvfXHL7yQNF693xjZO+Q6AL28VhU9btKKPLVS6TziXCQ9kjA1u/JraD2RDLs8WlWCu6V3Rr0z+4C8Vp/JvPBHbjzN9UE8HuKRux2ymbynW6E9CucdvW2oEb0Gu067usasvEGk1bzPwSC9RqICPcmZ+jxCvNE9BLN5PDFBH7yit+W8pVPMPD/Y9rz2DyS8pVPMPFP35DxVb1E9WZugu1TT6jtHroA8anbDPCyd47xrpru8HwyLO2k6TTxaN4c8o8PjvGxmHD31JyC8fF3kPGvur7sxQZ+8ubouPKc3pzxFHhi94fC1O6kVgzzkHAW9usYsvPYPpDyVLIy9zp0mvX+tLb3zT0O9VqtHvDLjhL3RhwA9CHuvOy+Bvr2QTNo80EWLvM/lGrz2jQ+8fe1MPLgSSj0aVlI8HsoVvXshbjtVG988qMEQPQlvMb0xQZ+8lCAOPadPIz0u5Ve9kcRGPffPBLwGZ1y7bgKDPc5hMD0uLUy9vJKLPH/FKb3NDb48grsBPfjPBL2QTFo8zQHAO1Jbfjz1x6+8p1uhvJOoITyTeKk70FGJO+M0AT1/0ac8p7uRO6ivkzwYxum8GUrUu5BY2Du7UBY6CQUZPSwN+zpaW4E7gXkMPfJr6LzJpfg8bvCFPUX0Hj0vUUY892MWO4BhEDwF++08vHSQvLZGazxtrhA9lTILvTKtDT32S5o9MPkqPQfrxjtryrU8Gg7ePPd1k71/xSk9zpGovArnHb0fTgA8GSZavGxOoLrfSNG8MLE2vQtriD1XLzI6fjVBvbkqxrswKSO8Mr8KvkGkVb0uOco8Kxl5u+JoojyBfws9QUTlu0H4R71sKqa7kcRGvAe7Tr2p/Ya9BONxOSsl9zxF9B49vciCvKZDpbxCKMA8MVmbO/KzXLzidKC7zUm0vEX0nrsK5528RMSmvN7Q5Dvh/DM9ML00PaWDxLwEs/m8fFHmvRhm+byNsPM7p5eXu3/RJzxHloQ95PgKvJT2lLz2DyQ9ujIbPHshbj0K550845iavIAxmLxHnAO9Z3psujDhLrzh8LU8zRk8vFeDpLowKSO8WekTvcspY7yiJ/26ar43vQg/ObwHo9I8ZlZyPfefDD16Reg8aJ7mvOGAHr1snJO5z0ULPPY/HLz1ozW9CucdPY/U7bw/5PQ8GmJQvYANHjuka8i8QdRNvI6M+TozxQm9lAgSPZVig7v2P5y84ITHvFVX1b2nK6m8RjCVPM6dJjzMPTY9QFzhvN188jsxHaU8gT0WvAeX1DwFW14+kYhQPakVg7zerOq8oUt3Pd2IcL2hP/m6Z5JoPKQ70Du5cjo7aoJBvVdfKrxsQqI7uR5IPAt9BT2nc509gZeHvBdaezyNdH0996ULvZIktzwLLxK9pYPEPFaHTbsHP7m8VcPDPH5NvTyVdAC8f321vN4kV7zinpm8GaLvO5LoQLyBVZK8U4v2PHyNXD3hRKi8z1EJuhqexjxr4rE7L3VAvW7kB71GooK6uxqfuwr/GTsz+wC6MUGfvL3Cg72i21+8QAjvPB1qJT2onRa9BTfkO1arxzxZDY489j+cO1Ojcr3dcHQ8U2d8ugyJgzy4Zjy9y01dvAtlCTxUu+68j+zpvOQoAz2mcx28zUk0vID1oTxozl49HtYTPfRbQT3LKeO88qfePD8g6zxYU6w89bsxPZZ0gD26orK8qf2GvJBYWLxTi3a9o5PrO6O35TkLcQc9B7tOPJVWBT0LLxI7uw6hPBuqRD2lU8y8uR5IvNxkdjxZyxg8kYhQvFcvMjv3XRc8HFKpPKnxiL3KNWE8WlWCvbXO/rzhFLA7MUEfvdAtDz0cIjG9kjyzvNBpBT3QPwy9vFaVPKF77zovUUY9o/9ZPOHwtbyA9SE8LznKO0XcIrwIq6c9gDcXPM/BID0wvbS8bgKDPBwKtbu18vi5yb10O6Ofab0LKRM9tM5+O7ji0brxs9w8Vue9uwcnPbwxEae84GzLPKVTzDnJyXI7fXE3vDDJMj15tX+8e4FeO6LbX71DNL48zK3NvG20D718yVI831RPPcr56rt7/fO5VAPjvFnvErz166m84p4ZPbZSaT3fDNu87+f9PBiKc73jzpG8j+Bru+PaD72pA4a8MSkjPfFH7rvNPba7pr+6u5Ao4Lt8UeY8vbwEPZNsKzyjL9I8QZjXvCsB/bwyvwq9bbqOvTERp7wJn6m89kuaOoFDlbkHA0O8K0lxvAuPAjzv2387ei3svH/RJz2AGRy85PgKPSsB/TwrSfG8F1r7vHxdZD17dWC8LvFVvOPUkD1FkAW8L4G+u5UsjD0K8xu90HUDPfSvM7sfGIk8k1QvvX4RR722Om07WGuoPFhrqLoIM7u7HuIRvJNUL7rJyXK8V/M7vDLXBjx+EUc9QuzJvModZb3ePFO59Ze3OoBhkLzMrU09qesJPTGJE73JvXQ6a/qtOmdubr2TzBu8WMWZvPPLWL2ncx0948KTvMmxdrxFPBO85AoIvLYK9bv0W8G8K/X+PCtt67sbhko79+GBPfRbwTr3aZU8lQ6RvI8QZLypA4Y8MqcOvQmHLb3kLoI9WacePAZnXLz3jQ+94jiqvI/U7TxXIzQ8aSLRu/Ev8rx+WTs9VD9ZPC7Z2Txu2Ak9HbIZPHvx9Tt/rS29ReigvTFxl71aARA9VyM0PdGHAL24Esq8K0nxvKVfyjxF3KK70HuCvKgPBDxEuKi7lm6BPDCxtrtAOOe5Hr4XPUF0XbwvUcY8vcKDPG7Sijyj5128CA9Bvfddlzz3n4w8ZmJwPMtxV7253qi7tjptPVfbvzxotmK6bvAFvVoBED3Qe4K7WkkEvah/m7i2Ou28GE79O5TYmT2U5Jc8QyhAOzPpAzsfJIc6VBvfuTFBHztT0+q8Pqj+u6Of6bsJwyM8pDvQvMy5Sz1Yj6K8bXKauvNnv70ycZc8f4mzu2xCIrxaMYi8y6FPPXzhTr1Y1xa6tlJpukKw07umszy8zJVRvULIzzxnSvS794ERPN7oYLsuFVC93lRPvIANnry5NsS7lNgZPJU4Cr3iXCQ7k5AlPQO/dzzImXq8HsSWvEJkNj31JyA8GH71vBzOvrwxQZ89V9s/OHxd5DwcFjM9Lc3bvKdzHbtaBw88WaceOW2EFz2mBy+9oqtnumgi0bwymxA7kCjgvGi24jxtrpA8HM6+POH8Mz2BTxO8kujAvDEdpbzOkai89dOtvPGz3Dy5frg8e/F1vfi9B7x/xak8y1nbu+HYOTwbqkQ9HV4nvXm1f7y1Umk88WtovAt3Bj2i21+98vtQvaiplDzerGq9fmU5vW2ckzu9wgO8pte2vForibwK5x09gW0OPeQuAj22ml08tnZjPOKAHryp34s7GdLnvdyI8LxDKMA7HjCFPCzBXTwLX4o8PzhnvEeuADum4zS9qLsRvRtuzrzNDT69zoUqPY5ofzxFPBM8WhmMO8o14bxX8zu8MRGnPM1JND0dgqG7gWePvODAPT0Jb7G7Q0w6O8tNXbuBbY48CW+xvKWDxLwJYzO9lPwTPakbAr2O7Gk8WiuJPRzmujuNpPU84YCevPKzXLx94c684RSwu0ZIkTn3z4Q782c/vD/k9LwYZvk8bZYUu2gi0by8Spc7p0+jvEZsC73v2/+7CFc1PBu2QjwdUim8lWKDvC2FZztExCa99QMmvUIERr1CvNE8MR0lvcuhTz2lg8S8910XvR0urzxXg6Q8tkbrvMzdRT0uIU68f9GnO2ycE70MlQE9bbQPPfE78Lup6wk8C1MMPUAUbTwYlnE8RMSmvAm3pTz2D6S7vJILvH35Sr3jNAE94GDNPFJzejvzy9i8fb1UPHulWDwG00q8feHOvLlaPr0atsK8WhmMu0WQBbwHl9Q8LCX3ut1AfDyof5s6gYWKOWi24jyCrwO7bggCvLY6bbxZs5y8kGTWPEAgaz0Z6uM7RMSmPfTfKzx/iTM8M8sIu1bnPb2SbCs98wfPvAkFmTxZsxw7vGITO36trTzQV4g8Hu4PvdAnEL1U3+i8amrFvGqOvznidCC9Zj52PVTrZrwFi9a8tkZrPaWbwLttlhS9zUm0vAybAD24QsI8phMtPX35Sr0JBZk7Q0A8vY2Y97xsZpy85PgKvUaEh7xGogK9RQCdO49AXLzgYE088WtovIFPEzy7Jh08WiuJvOH8szykC1g8GGZ5PeM0Ab0bqsQ78UfuvDEFKb1/fTW9Pqj+PH+5qzxEuKg8oVf1vPWXtzxZDY68HpqdPKn9Br1Tl3Q8GUrUvArbn7sEK+Y8bDakPNBFizxEiDC9y91FPBeWcT3dNP48t8rVPM0ZPD0yp448Zg5+PLX+djwxWRu60C2PvGkuzzxF0KQ84fwzPG2iEjzcZPY69HM9vHs56rzNAUC9HqabO/KDZDxDTDo98S/yPCtV7zoF7+88gDGYvGieZjxCvNG8khg5PUSULjvkCoi7G27Ou5TMm7yjh2279FvBvKLb37yAGRy945iau6kDBr2BPRa9y33VPGdi8DyU2Jm9qH+bPd2g7LxUr/A8Hr4XvPKnXj0c/jY8prO8vJNIMbxSf3g8MJm6vLde57xA/PA7lWiCuqV3xjwDm/28CzWRPLXmerwe6JC8DJuAvKcfKz2PcFS9p1uhPESIsDtFAJ284nSgPM/9ljy8eg89vFCWvIzLAbxFGUE9WtofvQXOhjyUeA69z1g0vO1rS7smp0U9i2iNPQGMTbvEZR+9rANkvYxsHbyMT/A8LNRxO2PNczvtyq+8afKBO0J4ZLwyO7e8yS+YvKog0LzxzoC80NiUvIgFGb1WFLe7CjkbvOoEiDvCSPI8ei8vO+E2vrzHzCM88XNrvXQCA7087FM6Mn1uPIkq5Ds7xwi9UzEjvVMUdj0gXa27f7t+vHTI6TxUc1q9sOY4PObfurtNpZK8YKhnvJYdOrxPyh69ILwRvJJXUbxR65o86CGzuienhr2Y3xK7d0xavUERoTw9y5i9Zw+tvCqS+bthSUS3a/pgPIyqBb2+G4e8g5oEPRRNazpZvfI8R9/ovIkFGbw3Jms8p1rnO7mXVb2OTzG7xoorvBgT1DwmZY68qT08PTomLLx/u/48f9grPCPEMT2R+Ow7QFNYvSPEsbxEutw8N2CEO55vcjyWvlU9o9Z2vXWGMr0Fzga8v/6aPIkmFb3+ZkG7OwnAO1Itk72w5jg76sIPu6V307xodnC7qZygvOdj6jnAI+a8VJCHPPDvu7wCShY98IwIPbzZDjxy5VU8NUNXOdxsBjzcEfE8qT08PexGgDyw5ji93rLNu/T3W7yEP7A8YWYwPEWdcD1c/6s7Xf8rPeF4trzDp1Y9AWeCPLFN/DxBESE8HZcFvaZWGLxWmGa7ig14PEARIb02How6eI7SO0UZQbxZGIg8rN4YPWVqAT2i82K9ILwRPf/FJT3z84w581ZAvGVu0DzCowe9T63xPIE/b705x0e8Y+qgvL2f9TuMqoW80tykPG0XjjzWhSE8b3qCPb+ftrxcHJg9xitHvD9PibxB9DS9SQT1vI6RKbzFSDO52KpsPDfks7zf9EW8zDOoPVMU9rxPiKa88a0EvFraH7ySV1G9hgXYvL68IjxFGcE8lb7VPeWdwjwP4pc8qFoovXGj3TwhnyW9OqYMvN5PGj20rCE9SJ0xPa9FHbyEZHu8UesaPPaYuLsW7ke9qhyBvI/wjTzdLp68jIkJPdO/ODt/GmM9+0E1vO3KLz0lSGG8D+IXvehjKzz3XmC73EsKvZnjYTxC9LQ8KG3tu1f3yrwnpwY8Yw9svVSQB72q3le9F3L3vLlVnrynWme9khUaPQaxmjxQa7q9Sd+pOhnyGLyqnKA7oxCQvN1T6TyonN88zRY8PPj/+7zCIyc8oQyAvJaZijwYjyS9Mfk+vJZ8Hj2w5rg8FCggvYpHET239vi7iEfQu8YrRz2oPXs93HBVvehGfjwJGB+99PfbPJsI7jxQa7q8PaqcvONbyjyl86O6hGR7vNsu3br9g608CBjeOz0uTLtF14k8ubQCPWCo5zxUkIc87wwovR1VDbz6oNg8Dr2LuzK/5jzWx1i8DcHaurfRLT308wy9Yagou1ugRz0B67E8H3oZPc/1gLxr+mA83nAWPZ5nk7yWugY8edBKPSGfJb0W7sc8pPOjPRrymDxt3fQ735XhvMfMIzwXrJC95z4fPXervrsBLWm9E2aIu9EeXLxq1RW8POgEvDlkFL1uPJo9IOHcOsOnVr3THh07PEs4uwx7E74pr2W9fthquiBdLTtjKIk8/CTJPJWZijuaJVq9ZfL/vMWnFzuoWii9unaavaaUgDxLRu08ynVfPbDmuDv00hC941tKPHZpxrtCkQG9/MXku+WdQr1u3bU8p1rnO91T6bvWaPQ7yjNnPYgFGT1bQWO85z6fvEH0tL34WhG90PkQPHxxpztX98q6SWNZPSYGKrqgjJ+8ftjqPIP9tzwM3kY9vf7ZPOhG/rzVYJW8wqMHvTiFT70S5ie6YKhnPLf2eLsUTes8DT0ru+vjC71hxZS8g/23u5KZSb2RdL27a3axPPFzaz150Mo8ZW5QPL0bB7x0J069t1GOPKGx6jwYj6Q86+ebvbcwkjyEZPu8qX/zPHjtNr3ta8u63BFxvH0SBLvyMTS8WJgnvRDBGz1bOYQ8jvDMvKUY77zEZZ+9atUVvBs0kTz32rA80gHwPG0XjryonN+7YGYwPfJWf7xsFw48IOFcPq+HVD0g4Vy8vrwivVpagD3Wog29XEHjujxLODzbKg48XEHjOlDvab0jxDG8UgwXu7Pu2Dsn6T09V7WTPbs4Mr2cxrY8vbyiPZa+Vbxc/6s8HXrYvDI7Nz2lNZy8zbdXvMkvmDy3MBI9rkGNO7BqaLyOTzG91Sb8vLzZDj0b2Xu87QiYvOc+Hzxtmz09gj/vu9OizLuKR5E7rcEsu5IVGr1nNPi8jo0ZvVVWbjpveoI8LJI6vOE2vrt2yCq9V/dKPPd7zDyWfB49vLzhvEj8FTy+vCI80TuJPKxiSDwF74K9mgAPPOil4jwZcjg81IERvVItk7wgXa27HXYJvQNS9bxKwj07om+zuxvZ+7tf4gA9s2opPYzLgT0n6T094/xlvWm0mTy8eqo8Bc6GPMkOHD2U+K0906JMvEb81LwTalc6GLRvvYRkezyonF+8T4gmPVjWj7sqbS48CVpWPCC8ET1bvbM86KXivJERCrwgXa082aqtPAXz0bxbOYS8vf7ZuqDKhzvP3GO95t+6PI8yRb2ZoSq88jG0vJ9vcr1ewQQ9/0nVvD5wRDza7CW7cgLCvAStCjx6bZe8K/FdPXJhpjxbHBi8l3yePFaYZrz7g2y8ni16PTA79jtA9PM8UzGjvN1TaTys3pi8xsziuwgY3rwbtDC9hgXYPPY5VLxxwAq7rQOlPE2IZbsskrq8v582vVw9FD2omBC8XD2UPPHSTzv74tA8jnT8vOhG/rumlIC9fJZyvJtn0rt+2Oq8BfNRPHdMWj1y4QY7p7nLvL/+Gr2CuwC9ZW7QvBaskDyKaA09SyEivV3/Kz3nY2q9OAn/vJlCxjrAI+a7pfOjvIgFGT2Q0yG9jA25vFEpgzvj/OW7M7sXPVMxIz1t3XQ8GzSRPP2DrbzTosy84FOqvFkcV70vWGK6tNHsvIdkPDzheDa8761DOw5iN7qWHTo8RXilPD5wxLwIGF49Uu8qu3hMGz18lvI8Rlu5vNMeHbynGDA9HVUNvO+tQ7yIBZk9ulWeu2qTnbzdLp492Gg1vYgFmTytAyW8qZygPBQoIL0deli9y5KMOxWsTzyrwWs6hsMgvOqlI7y4tEE5XD0Uvewp07wCzsU8Fu5HPeG6bbzesk2981bAPIimtLxcJHe83C4ePXGfDj0AqTm9uFGOu15/jLvROwm9aTQ5vDxLuLzajUG9zdQEPX+7/ryj1va7hODLOyH+iTvA/pq62uylvDomLD0Hufm6ict/PCgrNj1wXZY8G9l7PFW10rz8QbW8reb3PGPqoLyOkSm9ubQCPd42fTyQdL28OmgkvO1ry7yxTXw6GVXMPI50fDyU+C2981ZAPYNcnDx4igM8OmikPABngjvCBjs8LnVOvUpfir0KPWq9dicPPVraHz2nuUu8iEOBvOIZUrzyc6w8b37RuTKam7zsiLe8wWGPvIQ/MDtlzbS7GjCBu3Pl1TwfG7W8gVgMPa8o8DxQKQO9wSOnu1ApA70sM1Y76wQIPIdkPDuNkWi9UGu6vGNJBT06S/c7CVaHu3Wrfby2ckk9Wb1yu1paAL3GK8c8TaUSvR96mTwYE1Q9Kg7Kuv/qcDvccFU8GhOVO4Tgyzq4tEG71yY9vcDhrry3UQ69rqTAOukER7xQDNY8dYYyvHAfLjsHlK69xacXPY7PkbkFzga9kBXZu2k0OT3r5xu9qj28OhEkEDy4E6a8oxCQvM75T71LgAY9tCwCPJ5KpzyFpnO8dCfOvPSYd7nm3zq9VbXSu16gCD3Pmiy9g/23OxlyOD0x2IM8zvnPO2MHDb1yRDo9YKhnPFiYJ72Q0yG9CyB+PZKZyTqUVxI97u/6PNQ/mbwnSCK8Bc6GPLAoMTxtWQY9uZMGvVaYZjzq44u8RXilvALORbyIiUg86cKPPB04IT2Jicg8NQHfu/FOoLsFUja88K2EvCOCubxiSUQ88JBXO9VDqb2zyY27t9GtPMtQFLxk6iA9Wv9qPVRzWr31NYW8o9Z2PPJWf7w9jTA8HXYJvZT4Lb1IgEU8a7ipvZAV2bzfsg47yVDTO248mrw0Hsu8UU5OPaocgT38QTU9LDNWu8SKajxa2p+7js8RvWub/L0P4pe8IJ/kud4RsjyU+C279pg4PAFnAr3i+JY8ZW7QvMdtP70i4Z28Q3SVvCCf5DzESLM8rGJIPDFYo7sUKCC9NWDDvKwD5Lsu1DI9XsEEu8IjJ7tEulw9p7nLO15BpDxX98q8Mn1uPHWr/byhseq8hSJEvada5zyVOia9MtzSO3GfDj3mgFY7s+5YPXqOE72xyUy7lh06vMLEwrwCLSo8qX/zO+vKbrtBNuy8fzcQPVZWrzu4Vd28A62KO7Bq6LzBBvq887EUOrKHFT1S0n27aZOdO4N9GL2mGDA8Sd8pvaDKB73Zqi29A1L1PDH5vrx9sx89q8Hru/xBNb2U+K077k7fPI8yRb1NRq48XKBHvK3md7rCBru8ovNiPbBFHT0mhoq79bUkPFjWDz1iLNg8i6oFPPwkSbweXew8fbOfPPqcCTzHr3a966WjPElj2TxbQWM8s2qpvFZWLzxClVC6jA05u56M3rvMMyi9HbxQvLPu2DuF4Aw6/wcePBNq17v4e408R9/oO5Q6pjti6l89PY0wPFp7O7xc4n45ZW5QvKzBLD12BpM9yK83PEV4pT3sRgA9OUOYPH7Y6rw25HK95t+6PONbyrwXzYw8Egvzu+dj6jt8lvI82yoOPFBruryg6wO9s2qpvDiBAL1zRDo8GA8FvHsSQz3Ms4i8P7I8u3UK4jwJWla7lV/xu2Co57w3hc88yMwjPR2XBT2vh1S98nOsPOWdQr3aS0m9K1DCvJsI7rzbjcG7miXavLXumTzfleE7Q3SVPNxLijzHKwg9qD17PJnjYbq0TT07hOBLvMSKaj22E+W7JoaKOxIkEL3/Bx69eEwbvWk0uTxTMSM9AEaGO7n2Ob0Sh8M84Ta+vMSK6jyaQge9z9gUPOc+H71EeKU5BZRtPWNJBT0Aqbk7YAdMvR28UDzpYys9XD0UPWk0OT2V20E9/EG1PPbaMD2WvlU8nQgvvNMenbqoPXs8lV9xOwc1yjyuKPC7kldRO8Vt/juOz5G8y5IMvaCMn7xn8kA8r4MFPVp7Oz3xc2u75T7ePN+yDrxs+uA82Gg1va+kgT1CeGS8ZrDIvLtdfTtMBLa86qWju0ARIb0gQMG8Wv/qvEWdcLzITAS9XEHjvDpoJD2yC0U9gT9vvZU6Jj3pBEc7cF2WPP/FJbzuTl89OiYsPA8DU7uKDXi8wkhyPNyNgrxp8oG8+V4hPJ5KJzyhDIA78xRIvYQ/sDuhDAC9rUGNvEff6Lwh4Vw9jK7UvOrCDzqeSqc83VPpvByXxDzZCZI8bFlFPVz/Kzz9jlg8h+lAPZusZ736KVY8I6JNvZtARb1jzys9ikcjPbTNcD0yw6q8nDklvehtZb1TeD29/LaTOzZXnjz0xL07xnuWvMbgDTxN62m7S4bnO2FCbrw4ho87sTJdvJSzcbyvOX28rGhYvMXnLbuR4kw8mNvCPLuCCjzAHam8RRovu8JMmr3Wox69QrzMO8xMxjtbapM8XgUnvH3pFL0Sqas836NKu/KVzLxoO+Q8R/LzvJjUFz23U468VwWGvJlH5bySGN68ElL/vHAturv9xGm7qZAIPUcTjzpB5Ie9oJcHvDuNRb2yJBK8YwW9vY2sJbyGR408eU4BvRepQTv+gA290QiAvH7B2TyiYQE9DkvJPDIvzbxC8l28wkyaOyuUozxJ61O9XNa1vAd6jryoMrE8nRFqPDA27TzkN747eiZGPdSqPjxgmY88c/5eu83n2bwFS527Lgd8PNqciTw7V7S8ibplPfBmW70ryjS95G1PvWn+sjwNcwS9oTm7O7e4hbv+Uae9z3SXO5ZArzxhDN28YdZLvPy2kzsP7fy7MJQ5vBJzmjziCM28MPKQPMJ7AD2y7gA9KNh0O8pTZjumOdE8IgAaPA+3az3XD0E6CBxCvaY50bw4hg88lkAvPaEDqrzSD6s87/q4vPfL8zzxWJC6S7x4PTwoWTzcCLe6Q7UsPGVqv7ymOVG7wB2pPOAP7TyipV28WxNnvCyNA73rnNa8KwDGPBB6Oj1Wf/M8hSZyvQd6Dj07jcU8ZMiLvNcPwbxP5Ek9CkuzvAPmGj1bSXi9gPDKvFFJTL3EsZw82w9Xu0lCAD2QH348eYuyPElCAD1rwYG7qgPWPAupCjyfCsq70g8rvdo3Er32X1G8LptZunGZ3DxyJpq8Wt3VvC35pT1Df5u8eIQHvSc2wTymb+K8risnvbm4EL0um9k8sp7/PCnR1D0zXj48v1ravPtf57yBkn48oW/MvJF2Kr3obWU8+MRTPD3yxzyaCrS78yIKPFs0gjyk1M48VaADvTMhAr2JERI8gbMZPJU5BD2s/LW85jAePRQHA7ysMsc8VK7OvElX9rwzm+88sr8aPcxMRr36hyK8u+cBPMH1bb1Wf3M8H0TrPHP+Xr0EegO9CoFEvc9TfL1DroG8CkuzvfuAAj2WQC88e7qjvaie0zySrDu9qQp2vCoogbyZaIA8ulpEPdYIljyanhG99PpOu9LZGT11LdA8c/5evJPUAbx9Tgw9PLw2PV/da70FWXM9C0STvBKigDyZaIA9iRiyPPq9M73W0oQ7V9YfvfYpQDuSGF49Ej2JvAS+3zxjBb26mtQiO5jbQrzl+gy9QrzMPJF2KrvGv/K8DHokPTi8IDxE6z0836PKOyDRqLxZ5PU6cpK8PG+LBrrD7k09dvCePCJsPDx4HxA9lbPxvDMhgryCVU09e/A0PcKxkTybrOe7FAeDPDA27Tt8yPm7OiGjPKP8CT0bmwG9hbrPPF2ZhD1Dfxs9PiG5PAwcWDyBGBE91UxyvW7+yDxOIXu8Ae06vQ9zj7xmkgW8D7fru2BqKb3nlSC9SUKAPW8mDzy4l3W9aAVTPLe4Bb3Iqge+lgoevcMk3zylb2K8V65kPC/yBT0T2Bw8WxNnvd6qarxYeFM67/o4vWJjib3gD+27lNusPPUilTx8yPm8Qijvux9EazxnmbA8ShpFvCsARru1kD+9OrUAPLdTjrzg2Vs79MQ9PY0YyDzd0iU9ibrlNwhS07xC8t29V6AOvbz11zv+Uac8MADcO5+eJz048rG7eP50vOvS5zzV4M86efdUPe/EpzznPvS8GBXkvJTUjLx+wdk7af4yOyUH0DxUrk68gZL+O3VjYT0nouO8V9YfvX9Ol7zSDyu991EGPDJXEz0klII9vIm1PMPuzTySGF69R7xivWU0LjxSf908u1OkPMYWH73Cgqs88fOYvMSxnDx9VTe9OPKxvLLuALvmnMC8DLC1OrnuIb15uhg9Iw7wvAiIZLzNdIy8T+TJvd+jSrx7uiM79b0dPZF2qjzylcy8Z8gWOzv5ZzwDUj28uCvTPG9qaz7jyxs91tkvvNoW97ysMkc9qJ5TvRSii7vbD9c6ZTSuOsWJ4TtC8l29VK5OOz8hOTtjBT07lH3gPPFfuz1eBSe8lTmEPNbShD2sxiS9iYTUPBHmXL1WE1G7LGzovMYWHzwDiE48dS3QPG+gfDwlB1C8UIb9vBEcbrxLvPg71KMTuyuUI73ZPrI80kW8PHVj4bs0KK25+CKgPBrREjzwZlu9fMj5vP2O2Dk2L2O8EqkrPLYyczol0T67veeMvaOXkrzYCCE95pxAPSmbw7w4vCA81w/BPE1/xzw4ho88tvxhvR4O2jytnum7X3HJPNhtmLyKR6M7I9hePPYpQLzhnKq8ReQdPLuCCjfrnNa82w/XPI3iNj0mL5Y8SUKAPW7IN70zIQI9rGjYPNk+MjzMglc9k6WbPeQBLb26WkS7LWVIPJWsUb0iZZE8ylNmPHuEEj0U2Jy7TkIWPffsjjwEvl88K5SjPJilsbziCE26EqkrO+APbTzA5xc8iOKgvPDSfTz4IqA8RoZRvawyRzyLs0W9C0QTvT5earv0xD296vqiPEFQKr2NrKU7mKWxPMzu+bw48jE8lgoevNujND0VDi48JC+LvFbdP7rxWJA71ggWvILpKj18kug7fvfqPFrd1bxUGnE7KwBGPGCZD7zxX7u8YQxdvSRlHD2kQPG8ZMiLPFwMxzyYOY+8gumqvAIVgb3ZdMM8fy18PCKiTTxBUKq7pcYDPQbt0Lx4H5A8SEkgvTkoQzzfARe9risnvOI+Xjx3JjA92XTDu28mD7yvl0m9OZTlvFbWn7sqPfc8XhN9Pb1MBL3a4OU8O41FvddFUryt1Hq8rPw1vT/rJ7xzNPA8QMNsO+QBLTsHeo68JZSNu4PB7zybQMU8Xs8VPZ8Kyjzj+gG9lkAvvXcmsLzAUzq9e7qjvApLszu1iRQ7XgWnvPEpqrp/Thc87m17PLm4kDs665G8MMrKPBEc7rmp1OQ8VzuXPL1MhLw7jcW8ENiGPbnuobxYDDE8B+awPQ4VuLyIRxi8cQV/PWvBAb066xE9CL71OlqnxLpDf5u88gHvvBpEVbsJ7eY8BiNiPP+HOLsm+QS9vPVXPEO1LLlV1pS8PfJHO/bzLj1dQli7xVNQvcEr/zrr0ue7upBVvXBjSzz/81o9QIY7vdQ+nDuIEYc8qGhCvZ0R6jmrOee8kH1Kve0BWTzKHdW8u+cBvaLb7rsLI3g7Axysu5Dp7Lz7lfg8smhuuyjY9Dng2Vs9OZRlvK4rpzzDuLy7otvuvMBTujwRsEu8eYsyvZTbLD3NdIw8GaIhvNSqvrzwZtu66QHDPJlHZTyDi167i+nWvGJjCT1laj88NF6+PPwbCz3FieE8O41FPL1MhL0P7Xy9fy18vRhLdT1rLSQ9JzbBvNSqvrzEFhS8SLXCPOwI+byjaCy8WHhTvOeVoDy5JDM459LRO5rUIjsdAAQ9qZAIvMy46DzYNwc9Ej2JPEIo77tz/l69L16oPF7PFT0xbP66D4FavSIAmrsXopY8g+IKPTwag7x1Y+G8ibrlPHnBw7x4yOO8o/wJPHX3vry3uIU82uBlPbK/mjxeBae7x0wwO/Zf0Tv2KUC8o5eSvFgMMb2hA6q8OShDvFbWnztXBQa8O43FPMSxnLzcZoM7i320vTL5uzzeqmq8fovIvFXdP7wlB1A9C0QTvdJFvLwxbP66aDvkupeehrqanhG9NPIbPeiVoLu3iZ863zeouknr07wSqau7PYalOx0AhLsXPR882XTDvOAP7TsP7fw8B7AfPILpKryNrKW8qpczPbcrUzwbmwG9vecMvRTYnD23v7C7N/nRPJfi4jwkc/K8o569vPuAArxOp408TBMlPa+/j720UwM88pXMvK8D7LtWSeK8pWEMPaEDqjxkYxQ9B3oOPeht5bxAjVu8tJdfvAJLErp9s4O7JsoePcWJYTyuv4S9020Cus3ZAz3Se027F6KWPKzGJD0wysq7CRUivfNYmzywkKk7clyrPAzmRr0Ftz+9v8b8PMJMmr2bdla9QYY7vKkrETw9hiW9rwNsvDaNLz2jaCw99+wOPTGNmTtBhrs8fJJovLCQqTtq1ve9+DB2vMl7ITuWCp48O1c0PI66e7sT37y8SEmgPHDBl7zzjiy9ZpKFvDy8Nr0nomM9SK4XPKE5uzzUoxM8ImURvUxCi7x+wVk8QI1bPQEjzDta3VW80OA5PdQ+HDvCFok8ShrFvIOL3jtI61O8JJSCvCRz8ryxMl09B3oOvWU0LjuqA1Y9D7frPAfmsDyzYU68Z8gWvPOOrLyr9Yo80nvNO2iSEDyFus+8hSbyvHTBLTxHE487oqXdvJJObzy57iG936NKvEDD7LwFFQw94tI7PZMKEzwVRD+8mWiAu8lFkLxtwQy9gCZcvfIB7zssNte8inaJPLe/MLyx/Mu8nM2CPJxoCz0Cj+68gRiRPDL5O7ykQHG8jk5ZvRlsED0o2HQ9ei3mvCGpbTz/Kew8droNvEkh5Ty1kD+9ybGyO4x2FL2n/J+8JQdQvdvZxTsA5g89+MTTOyMO8Lx3ktI7fsFZPBHm3Luwvw+8Q38bvdcPwbyvzdq898vzvIUm8jsCFQG8Ynh/O4PB7zxwLTq7ubiQPGJ4/zo2vBU6vPXXvL2CFb178LQ8ZMiLPZjbQryj/Ik9ynQBPApLMz2AJtw83205veyOCz3/Kew7pNTOPLnuITy8ibU7B98FPSI2Kz1p/jK9XZkEvBnYMr0h3/68+VGRvFNCrLzRCIA9ampVO1XWlLxyyE09qdRkvDYhDb1f3Wu8rDJHPcTgAj0JFSI9MDbtvCo9dzsYFWS9T+TJvH+EqLyP25a829lFvAbt0LxKriI7TXgnOp5Hezz4xNO72pwJPC0oDDzgo8q8T+TJO4FcbbyvA2w9I5utvKLbbjxUrk68viRJvUPkEr0A5o880OC5PO3LxzzY0o+8rr+EO8GJy7xsBWm8KdHUvFwMxzw1hgS8BHoDvDJl3jxacbM838uFPM9MXL3pAcM7SSFlPRQHAz15uhg9yCR1PRUOrrvS2Zk8cVWAu9BM3Dx78DS8pApgPREc7jw7V7Q7X93ruRc9H7wAgZi7I6LNvPCc7LxB5Ae9sTLdPMqJ9zyTCpM8glVNvPtf5zsNUmm8MVeIPNwBDL1fp1o9k9usu9wBDLs3+dG80aMIvaf8nzpISSC8JpSNvEK8TLw4IRi9FgcOvRAOGL1sBWk8nwrKPGYMc726kFU9B7AfvXrpCT3Oeze8usZmPRhL9Ty0UwO9i7NFuxyp1zxRE7s66F8PvJZ2wDzjy5s6bsg3OmVqv7z2X9G7JdE+vGPPqzsWbAU8kk7vPN0+SL0kZZw7g4tePNBM3LuQH/483Hv5PJJvCj0c32i8XcXouu51UD22CC+9tNi3PFK/P70aghW9n1ubPGyYPz1T/Ic91mTDvMohUr3W1Y29PNHYvEp0ODysmoE8csAgPHn+1ryih4c8tEC8vN0XzzvReaq8ORa3vOkvhLxMpK+7tzgmvZioD7zhTIE8a8P7O7IQxTxXQtS7HOaOvOp9ZryVFJ+9CiQUvVCPSDwcThM8U1c7PfbAV7z+SCe9i2kpPYtc2LxJ6Y28QymxPDnvBb1X56A8x1lfvN64kLySD2S8cSilu6FKP73O8gq7Wv11OglC/zy4w1C8JfDCvanSjruVb1K9Yu1Jus2Okb0QP6S8OglmPFJkDLxJREG7ulvMvP0L37znZxE9JuNxPPuNBT0TnxK9fV5FvM1aj7pIHZA7khw1vRb/gLzNgUC8vuuxPHCQqbsPp6g8SIUUPIvEXD3Uj/871czHPB5KCLzBrxm98D3DvBWF8Dyw7Z47KBNpuu+lRz0It1S9Sk0HvXarOb2OJEs7FAMMvQS/6jvCPs86nfehvRWF8DtSmI47lRSfvHR7QjqzqEC8I1hHvMz2lbyPVEK7KwvTuxqt0TryEoc8fC5OPKFXkDtmfa87mWe8PJpwgjzW1Y09shBFPGw9DL3Kxp683H/TPM6+CD1AJHa8zwzrPIdxvzsODy09lngYvPrBhz2TTKy6E/pFPO8A+7vznbG8iEaDvJ262TpikpY883YAvdDhLjvvpce8LtPFu05sojwua8E8SnQ4PZJ3aL30kOA8QgKAPS4DvTr5xZK8UPfMPONvJ71TlAM9IfhYvatdObwkZRi9CfARPGPg+LwODy09ZooAPZUUnzwBdRM92R/lu3LAID2ZZ7w8ZahrvEgdEL142zC8hEFIvMAbKTxF8SM84UyBvDEm47oxy689f4HrvCTAS739sKs7J8WGvN0K/rwEZDe99SjcPApYFj3UNMw98D1DPMFLoLyIrge9qP3KPIvE3Lxbdwa8Gq3RPC/cCz2bLy89hLYdO4yZoDux4E08ZxWrPGVNuLx8axa9K3PXO3ZucTwtln083LybvKKHBz0daPO7P4z6PAxHurvX7+28eQuoPAnnyzyXEBS9iwElPDoJZjzxegu92Cw2vPA9wzwTVXm9YL3SvFV6Yb2hSj+96Yq3vH25eL3X7+08d0M1PAfEpb1tMLs8t5NZvE2X3jsNOmm8HzDmPEO0Wz0ks3o8qFj+vNgsNjsmiL48jPTTPNb8vrw25j+8XcXoPG6hBT30kGC9zwxrPZK0MLxIB3k7L15wPZdEFj37jYW9HBqRPMohUr2gdfs7MAwDPcnx2rxoraY7gBnnOAxHujxEtFu8dOPGvJ5S1TwtO0o83VSXvKhlzzzyqgI9U1c7PBtFTTzOdO+8r7BWvPLIbTwwQIU73zr1PI+8RjsBBEk7FDcOPWitprzKxp4858JEPZ6PHT1Yf5w81XGUuyI1ITtuOQE9W0MEvaKHhzwHxCU9AN0XvW0JCj3xro09YfoaPQ2Egjyej508rY2wPJnYhr0F/DI9Oq4yvGmgVb37WQO8ED+kvMQGQjsF72G88qoCvRzQdz3e7JI5zdxzvVAnxDq0M2u8fTcUvgI0QL2IZO48OXFqOwTVgTzotfM8h0YDvAI0QL3wMHK88DByuw53Mb0vdIe9c/CXO8Y2uTyVfCM9BiyqvGBin7wz7lU7JZWPPKFKP7ywSNI6bqEFvda/9juGNHe89sBXvJCRijwI9Bw94ac0PYKGpryxa/i8Ctr6vb7EgLxRzJA7DVCAOw+a1zrzdoA9Y3h0O8ohUrwTkkE9zenEPDAMgz3wmHY8a1v3vJK0sLwcGhG9wUugvJPkJ7wuLvk8hxYMvKVCKTsIT9A7gBnnvMAbqbw2qfe6nbpZvXs7n7t0vBU9fc+PPRiKKz0QP6Q8xja5vNgsNr2lnVy6JP2TO8q5zbpq0Ey9JUv2PK9VI7369Qk9zYFAvfm4wbt8Ls68++g4u3wuzjtjwg29BNUBPXXsDLxLZ+e8XV3kvM+xt70UAwy8IQWqPOnyuzzfhA49HzDmvFOUAzvwmPY8l0SWvFCCdzykbWU+2R9lPb+zJLwks/q88Jh2PaB1e71DKTE82+fXPGWoazyStDA7DtJkvSBtrryaWms8JmGNPE2X3jzFNrk99sBXvHjbMDwW/4A952cRvduMpDyYkni9/CUBPdvn17tqaMi74NLwPKAayDyN/Zm7mnCCvM4ZvLy0M+u8TsfVO4+v9bhLZ+e8mv+3PFwtbT3722e88a6NOxWF8DwF7+G7E5JBvQp/x7yqagq8dIgTvGaKgDzNgUA7mi8vvA9qYL28Iz+8PplLPZh0DT3o/wy9ReRSPPHVvjxEWSg8G4IVPBWFcL0f1TI8G4IVO6QSsjvPpOa8HBoRvAPMuzysUOi8ZahrvG2L7jvdF0+81zmHvPm4wTzkByM967quPJc3RT2GshK9AQTJPGw9DD03TkQ8r7BWPbXLZj2aWmu8das5vAwgibv8c2O97YKhOqVCqTnNjhE9Is2cOM507zx3Q7U7sdN8PDHLLz2StLC87hodvJV8ozwnILo7ApzEvPQoXLxJz2s8dONGPAyibb0I9Jw81Sd7vZuK4rzXOYe8SURBvVHMED1Q6vu8vCO/vJ73oTxubQO9cOtcPDP7pjrCPk898D1DPLwWbrxX5yA8QTaCO0isxbyHSo49hEHIO22L7jzl+tG8852xPIiUZbxCAgA8iTmyuucdeL3KLiM9Bh/ZO/GujbrvDcw8M1bauxLKTrwIXCG9Yl6UPHKmfjwYiqs6e5bSuwDdFz2RKQa9IG0uPOPKWr13Q7U8rhjbvPLeBL1ZCkc8VqpYPY39mbtM1CY7+cUSvby7OryOf3683a/KPN0XTz2AvrO89v0fPWWoa71TV7u83CQgvFh/HL36q3C8ED8kPei1c7v7Q2y6l/p8Opovr7swDAM9d57oPKAaSDyqnow8I1jHvJefybw9DqG8HWhzvQ8C3Lyrxb28J3vtuRpSHjpQJ8S7Ktvbu/XNKDu0cLM7oQ13vJf6/DyxeEk89WUkPb27ujwq29u7R3zOvGJIfT0CNEC8/3iePJ1fpj09phy80XkqvKCLkj3WoQu9MdiAPGS1PDvt3dQ8EdcfveB3Pb2lQqm7fC7OPCKQ1LvxRom7U1c7vMu5zTvvpce8SnS4u5BHcTy3+109WnuRvE9fUb0DzLu6b1Phua69p7zI/is9zelEPVmvE72AvjO758JEPCDIYb1IB3m8Y/aPvI+8Rr2+xAA9QymxvHIb1Lu6Tnu8M/umu7F4ybsvXvC8EjuZPO4aHbwwQIU79JBgPSZhjTuIobY8Ykh9vMnxWrz/4KI8RomfvKotQr1ywKA98a6NPA3fNbwoKQC9gUnevGMQcDwnUDE8WRcYPFsTDb20M2s9jTEcPIayEj0DzLs8BAmEPI/sPTyblzO9QdKIvSOZmr0yYys9CYwYPekvBL2OyZe8+bjBvPOdMTzjylq8HOaOvAEESTsaUh68rhjbPOljBjtb34q8mM/APM8igrxrDRU9a1v3PDUezTy6mJS7IMhhvRzQdzxNl948oVeQPNx/U73dVBe8DOwGPSir5DwHxKW65irJvI/sPT0jKNC3p3KgvAaH3bu5NJu8qFh+PBu2lz1fyqM8NJOiO5paa7wjzZy7i8RcO9b8vrsF/DK9zYFAuzD2a7vYBYU86fK7vJkMCT3cvJu8i8TcuURZqL0KWJY8QuxovItpKbskZZi8H9UyPaz1NL0bgpW7blPhu8ang7sI9By8lzdFvb1TNj1IB3k7jPRTPMQGQjs3iwy9UhrzvGzzcrw4fju89/BOPNIRJr3OVgQ8/+AiPRu2Fzy3OCa8gL6zvG/4LT0DPQY8RfEjvS7Txbya/7c9AGzNu6iiFz1Q6vs8Li75vHEopbs2tkg75x34ulP8Bz0Lrz693Qr+u7XL5rxfyqM7SnQ4vD1p1Dw3TkQ8ZooAPeEC6DwBqRW87nXQvM9WhLzhgIO8zY6RvORi1jypBhE8HOaOvbVJgjvtgqE83CSgu3/p7zo3TkQ9AtkMvbnD0Lzpirc8UjCKvBSSwTzcf1O91cxHvXIb1DwoKYC9v4MtvRUd7Lv+SKe6+RP1vMLjm7wCNEA9NCsePaSqLT2w7R48OYcBPAWUrrtY2s+6ZkDnvY39mbxspRA8mlrrPFK/vzsUN448V+egvNQ0zDpq0Ey9YcYYvaKHh7zp5Wq92cQxPTh+Ozx+Z4s7+3NjPK4Y27yi1Wm8WmX6O3dDNT1dxeg5sdN8vGndHT2YN8W5pwocPN2ImbtHIRs8zKz8vBA/pLzp8ju9rSUsPXEoJb0rGCQ8zoqGPWKSFjxqQRc93qJ5vE8EnryVb9K8KoCoOo+v9bqx4M268a6NvHdDtby3OKY8m/LmOy5rwbxz8Bc8hxYMvexSqrzhgIO8csCgPKu4bDySd+i6Sc9rvH+OPDu8/A29O94pvQRkN736q/A8RyEbvVkKRz0KWJa8qW4VvY5hkzyDHqI8EmLKvHlm2zx7Ox+88Jj2Of2wK73FDwg9LngSPTQrHrwvA708PQ4hPcanAzsX8q88zvKKvPb9nzyLxFy8TKQvvF1qNb3Yh+k8OXFqPNU9Ejw/Cha9WmV6PFkKRzxRzJC88hIHvaz1NL0UAwy9ED8ku9SP/7sbOPw81mRDvM0mjTxaokI7J3ttO8dzAT0CDY+8DbgEvIdxP7xSv7+8R+0YPdUnez2+67G7gu6qPaKHhzznHfg87N1UvE5sIr3yqgI931CMvDHYADzybTo6U0pqvOYqyTyG2UM8tLEGvXNUEb35e/m8iTmyvL/eYDyruOy82IdpPYh6BbzN3PO8pZ1cPUFU7bvsrV29KKvkvPHVvjyiuwk9TKQvPcB23LzsrV067K1dvQzsBr1nFau8k0ysvAuvvrxTSuq8ddb1O0MpMbpNl1485zMPvH8muDxXQlQ8YL3SvK69pzzz+OQ7UPdMPYhk7rxHFEo8CxfDvCd77bzrui69qZXGPAnnyzxxg1g8UI/IvHaEiDwxM7S87nXQPOdnEb0uRJA8zY4RvaAayLs0Kx49OXHqPBYzgzz5kRC96iIzPKqIdT2o1pk8R+0YPeI/MD1T4mW6wUugPI8tkTxkjos8s00NvFqiwjzvpUc8uNAhPAS/6jgudAc8WnuRvG0wu7wxMzS9VhJdvM4ZvDyoWP481T0SPY/5jruRhDk8rY0wvKzOAzwoKYC8i1xYPcoh0juCSd66rr2nvAty9rxzS0u8KoCovNx/07wK2vq8jYzPvEtn57xrw/u8iK6HPFa3qTxAbo+9zvKKPfr1Cb3wmPY8Az0GvPtZgz3ADlg8/3geveYqyTtQNJU8j1TCvGmg1byYqI88qoh1O/uAtDxH7Ri9srURPPtD7Lzgdz28uNChvE3UJj3bjCS9lddWPFPiZbqStLC8AkGRPKdyoDysUOg8QdIIvYqMAbw+rGI9lC8UvSSs0zyksy69vJRAvU3q4Ty22lY98mGMPflOSLxe6mu9HRyKvW6zEL0Uy8Y8j5QnPAO/CDy9RgS9/mWkPAjTYrzVGGA6ZctzvPYjl7zgN2K8jnWqOtsvPL3mnPq7ZDccPIYYMzqlSog8cdINOwSV6Lz5hBw8temMveptu7xAN4g8suL3O6ttGD3Oo4C8KCAivfMQTj2pGMe8ISAdvG99vDwiZji9L8vVPLu7XrxMVoq8RPmSvB5uWbjnJyC9JSjDO6s3RLud0qY8gX3GuwaNx704NwO82DddvZT5P7zIp469lxg9vEhPdTxX+Rw8mhCcuoQ/0byBfca72y88PYFH8jwzjeA8WoXTvJmFdrzxlN67MAGqPIjaPb03HJm8pKR4vKs3xDy6aQ+8lz/bPN/lEjyTVjI9ZnEDPG31mDwGw5u8SHkVvZ51tLzyN+w8qT9lPGCNebs/1gI9OaQ8vfq+A71Zuye9w04qPBe077xMbnI8f9q4O53tkL3qEEk8pOmCO0xucrwUy8Y7AOKTOxrT7LsERyy8ol7duss/ebyMnMg706umPIqMAT0/hUQ8VVYPvKg/5TxarPE7brOQPS8oSDxeIEC9AV6DvBxP3DwRCTw9JtqGvJwvmTzW8UE8svEtPWLWFrwHZqk9SF4rPE8YlTzqN+c78RjvvP8vULwwy1W7P3kQPMJ1SL38ENO7ZyDFvKAMjrwBXgM9r9KwPCziLD1alIm9mje6PPDxUD0Dv4i7PJybvF3LbjyPu8W8LnkGPWoYJL3j6aW89Iw9vRwovrnz6a+82yMIPfTCkTyfnNI8dhAIPU7DQ7zALy09v1bLPMt1zbtow1K9YTMJvKYIAL26TqU6s8oPPNGzR7wwmIO8hpSiPToR9rwF6jm9BG5KvBmcB7zzEM68Yhgfvc+UyjzOXvY8p5zXPY+UJzwDpB68BRHYvNKMqTwmHA+9FhFivKJtkzxCy988oV5dPVR9rTlCpEG7+r6DPDmkvDshw6q8+UIUvW99vDphGJ88Djj7OxyFsLw0CdA8CNNivBTy5Dx5IE+8YrusvB7agTzB+dg8WD84vXHD1zrBCA88RbcKvQEZebzLdc089VZpvTL5CL0F6jm92cICveNWX7yfGEK96TfnPBrTbLxZu6e9aZAAPZHawrypu9S7QpiNvFtPfzy9N049EQk8PHTi1Lzr2vS7NqzdPAFeAz2ihfu8+U7IvKsB8DwBhSE9ARl5vQtPUj0R02e8zfE8PPBCjz3Q6Rs9wGWBvUkBuTx7P0y9C/JfPHYQCD2KpOm8rKR9u9PGkLvqbbs8flKVvKMri7xMILY8OjuWPBlmM7xLbvI84RDEPB8R5ztVVo88Chn+vKbDdbzrs9Y7fTMYPJZm+Tw7wzk8srtZPLvxMj1sKOu8M8O0PI+FcT36vgM9JwGlPKsrEDl/EA08R+K7PKDxo7yrbZg7eFYjPcZtJ73yN+w8Y5SOPQp28DwRZi48qzdEPFaN9DxpdZa9FMtGPRCNTLyWP1u9ty+ouyYoQ7wbrE68+QCMvA7qPr2+RoQ9bKz7O2woa739wpa7v1ZLOfTCEb71L0u9j4VxPGCcL7uenFI8fa8HPcI/dLxl2im91Jzwu+LppbtvpFq9FByFvfEY7zvFlMU8eKTfPDCkN7ysEKa8OaQ8PDvDOTy8Xmy8jNIcuh0cCr2I2r07sJzcvC6sWLwGwxs8b1YePM3xPD2EdaW8ET+QvJmF9r1GMHi8fOLZO/Taebs+Pyk8NRiGPcr5Xbi9N068WD84PXh9QTxFjWo94umlunzi2bwLAZa86kYdvfYjl7xvVh68LazYPAD6e7qcfVU4ULuiu4UJ/bx5L4W8CD8LPOFtNr3ndVy8h1IaPV+3mT2tjBU9zfG8PA/eCr2Hhey83+USO+7S0ztBATS8d8t9vSYcDz31Vum8vQH6PGxeP73W5Y27qsoKvc3Knrtn6nC8oPEjvcBKFz01MO46O0fKvAKFIbxUpMu9TBQCvIIvijw6VoA8P3kQPQFPzbycLxk7L8vVPLZ95LuU+b87NaxdPoIgVD0n2ga8k33QvDONYD2TjIa9oxChu1ecqjyCR3I7GI3RO3hxDb0KhSa7Kd4Zu6SkeDzzHwQ9R7udPWlm4LwrP587LruOPcrGC70jMOQ8l/EevXHD1zwqjVs5VLMBvELL3zxT2p882F57u0oo17zFXvG7m33VvBaV8jubzpO7xZTFvDtHyjwGjUc9ptKrvNblDTz3dWY8d9qzu0wgNr02T+u8/Ok0vD4wc7sleYE7FW5Uu2y7MbzGRom9dpQYvFzaJD05fR493YQNvauUNjzSI4M8AoWhPB+kLTy8Xmy9cEfoPGazizu0bZ07958GvZt91bsiP5o8Q0fPvPBCj7xvVp48TephvF/5Iby6TiU90LNHPW3L+DyYlCw9KBHsvKza0Txf+SE98wSaPB6kLT04y1o9QChSOjjy+Lwtu468hgl9vTbiMTxmVhk64sIHPeNllbtxw9c8/B8JuiqN2zy6TiU9EI3MvCMJRrzawgI8eFaju3J1m7yoThu8e3WgO/q+gzx7ToK9+ieqPOZ1XL3JL7K8zcoevIF9Rr3xu/w8D8MgveCU1LwVbtQ8yggUveBhgjyYlCw7wPlYPaSMkDsWfQq8NruTusEg9ztIXqu8MsO0PWcgxToKdvA86m27vEOkwTw+Pym8YJwvPLdWxro24jG9heLePN5Chbos/RY8P0/wPKM3P7wcT1y8owHrvOptuzwRPxA8VRQHOyhHwLzlqzA9ONqQvPY+ATzv4Ym9xPG3PGk/wrxyP8e8IcMqPGWkVT1cpNC7tekMO3WUGL2faYC8s/EtvEcYED3pN2c9cCDKvAa05TwflXe9VRSHvG6k2ruuIO28LxyUvAFDGT0lXpe8lWZ5u6/SsDsn2ga8cxgpPeNW3zyWdS88CXZwPKPazLwI0+K8vV7svCKcjL0lKMO8v4wfu+LCB7zxyjK7cPkrO9A3WLxUR9k7Q0fPOR6/l7xfw8085flsO1PaHz2rN8Q8EYGYvGEJ6bw8t4U9hzcwvLLi97r5J6o93Jx1vD2NZbz+wpY9Vvkcve7S0zyihfu7kyBePHJ1G710uza9etKSO411qjzis9G7bfWYuzQ/pLtOZlE7lxg9vJRWMrx5IM87PI1lPYycyLyVw2u9mJQsuy27jjvkL8G8QdoVPfAnJT2v0jC9DX0FO299vDsU8mS9m6RzvOva9LwHMFW9kyDePH6vh7xvcQi8SqTGOqfD9Ts7Efa75Zz6vOWrsDx8GC67tekMvG0BTT3hBBA7+sq3PGOsdrzUhIi8qrtUPBKsybxnFBG9hvGUPcLGBjylVjy8lZzNvGUByLw5mAg9/d2APMoIFLu2szi9Yqx2PVSkSzyEZm88Qn0jPZA3tTy5xoE8mJQsvVP1ib2+RoS9COIYPYOcQz0Gwxu9YRifvIFH8rz6lOM8EoUrvHYQCLxuNyE8eiBPO03q4TzRVlW7+21FvK8IBT1zZmW8g+0BPTmkvDzjZZU8ZQFIPEHLX72TjAY9JOKnPDcozTy8lEC9QLsYvEOkQT0hIB08MBwUvPiEHL06OxY9aZCAuGKs9rxeVhS8BSCOvGmQgDvjZZU9+fHVPE8/s7vC0jq868IMu9tWWjt7dSA8Uk/6vPMQTry0bR27V3WMPEWcoLwMy0E9PJybvF59MrpzGKm9vIgMPOLppbs0PyS88kYivHGcOT2lLx69tTdJO08/M7upP+U7vtrbu2NeOr01GAY92/lnu2baKTznddy7G6AavSUow7z6vgO8COKYvP3dgDyjECG9mK8WPDFHRT1m2ik8ySB8vJ8/4Lxow1I9wxhWPLVtHb14ViO9cZy5PWCNebsfOwc9PuI2PV4gwLwv2ou8JgGlO6AMjjv6yrc8jPk6vfEY77skhbW8BRHYOwkJt7wk4qc8/dr+PEXDPj3J+d08Ij+avIvD5rwwmIO8ZctzvBCNzLxhCek8VLOBPLo/b73Ip468JIW1POQII7tHrOc74sIHPTNmQr24+dO84UaYPIQ/0bwj0/E8sRhMvaMBa731s9s8hGZvvU35F72ndTk6VMvpuCg7jLxus5C8tW0dPaqUNj0gIB09g+0BPNHaZTwPw6C7GuKiOToR9r3KCJS8ETDaOmjSCD0Dleg6hD9RPFqUibzEyhm6B2YpvZgYPb2qlLa8GFd9vdDpGz2rAXA8m31VPMYQNbvoAAK91HVSvCduXjwvy1U9pIyQu08wfbyhXl09nH3VuQmsRDwGw5u7XUdePDcozbyWZvm8TcNDvVa3FD188Q+9TzB9PPb5dj2MnEg8djemPNqnmLxarHG8O+rXvGmQALt7dSA7RcM+PALyWry6GNG8ARl5PNkEizzlq7C8v1ZLO+yABL0e2gG95eGEvC/L1Tydw3A8xLtjO6nxqLxeIEA4r0oNvVPaH72qXmK94drvPGKs9rz+jEI9A6SevCneGb1DVoU860adPFecqryPrxE9W1KBvD+FxDtE+RK9rlZBPTpWAD0LHIC70vliPPfhDj26GNE7D5yCPFIoXLyFGLM8bFKLOjdPazrT0kS9rkqNPOd1XDyUL5Q72EYTvbGcXDwBrD881HXSvHnq+rwthTq9riDtvCI/GjuhygU7s4gHPaTOmLuCR3I8/BBTPOm7dztxnLk8mJSsvAn9grv5GHS8M43gvE6N7zzLdU09zU4vObU3yT2lL548p5xXPPf59ruuVkG9ttpWPQ4gE70/T/A77FZkOrl1wzpHu508JXmBPFVWD72yu9m8h20EvSfy7rwlXpc6G6zOvKUgaD19lB27zl72vLQBdT3qN2e78aMUvRFmrryNP9Y8L8vVPCneGT1hMwm9vG0iOhwoPr0thbq87VbkvAD6+7yAzoS83NLJvM6UyjsI4pi7suJ3PG/aLjpq4s88WeJFPPqUY7xydZs8BzDVu+XhhD3MTq+8qGkFvGjSCL2p8Si9zm0svQy/DT3rwgw9vIgMPIa7wLxQ1ow8PWZHvAVHrDwCKC+99tLYO/MfhLwa0+y75nXcPEAo0jyO8Rk8+Rj0vMxOLzy8Xmw95xjqPO7S0zyibRM9Ll6cu/EY7zxdswY89i9LPMBlgbueq4g8JhyPPGoYJDwBXgO7Cxl+O7Z9ZLwsCcu82y88vfefhrtJN4082n34PLLxLT3BCI+7qwFwPARuSryJzok8qT9lvJWcTT2lLx67HHZ6vAOVaLzjZZW8zeUIvCZP4bwe2gG9HfLpvHbLfbwKT9K8TxgVvYgB3DwZMN888QCHvcMnjD0UT9e8ri8jPZi7SrwFII49AKy/O/MQTrwzjWA7ncNwPJxWN7yGu8C86PFLPIqMAbt04tQ82yMIvfiEnDwjMOS8VsPIvI7iY7xGMPg8i0f3vADikzylIOg63XVXvEHalTzTq6Y8heLePCS7Cb1nMwS8hm99PZoRTr10lrE8RLcVvasme7xipzK8KLBzPSjsVD2nKJ+8Mu5EvRsRZb033KW8omMIPKV0ezwQ6UY88rzIvB8ldDxLjvG8/5e4O3JIi7yQ0/y8WhwzPOEv2bwAcgq9LLQHvLva6jxULlI8KLMPPZzqzbw1oZa8E+h0vLBQvb2crmy8JngAPIFeijzK8wU96TKbuyN2Nr2NriA9x/E7vMi1WrxNQcM8iJqRvAByCj0qATa885aavPAJ97yzsfq7MLM1vcLKFTz/+Uc7zMlpPBqv1bw+Z6W9rDwuu0ukJL3DP7w7kWCgvQdJ5jvD3Sw8bZaLO3mEkrrNZ9q8GxFlvKw8rjw1x8Q7NGU1Pb/Iy7yrJns7BegoO5c4zjyc6k29micBvERVhrtdMRQ8tj4evBQkVjudiL48RpCVPccX6jtBKnI8rqAHvKKyAL1yqpq8hsGROzcCVDuAD5K4WEMzPZ2xiL0kE1W9to0WveTPE7zPBxW9UvNCPJ3EH7xbuqO9FhMJPGULDDzYaHi8nOpNO4KGgjsyZoe8fPsCvZrrnzwaTUa8qMW9u2fhb7sC08c8Fv3VO/oLZzwEcOY8vsmdPIoRgj1EBg48tj4eveH2E7w7tFO8eUgxPU6j0rs3PrU8sXkHO2D0YD3Z4Dq8+oMpPayevbxapPA716UrvM1nWrwHwSi6yLXaO2LN4DxRViS9dFpQu5rV7LxBorS8FP6nO1b1DDyNcj89gFvuvO5GqjwexDY91MwrvLWKerxT88I8TmdxvePPEz3w40i95qgTvT/v4rzeMKs8i7/tvHJICz3/l7g8P2clPaJ2Hz2pxT07GThlPUlplTw5n3I5DPtlvanra7wWObe8+gtnPJWbrzy+yZ27FOsQvDzwtD0HhUe9OnlEvXb3brsZsKe6RtzxvLYCPb1euH88ga0CPe4KyT0Q6UY7Gk1Gu7HbFr0sntQ8LRaXvCvbh7w1Pwc9gpZ9PPpwEj0F1ZG5Syziu52IPjzr+AM8KIrFvGWm4Lxgu5s8GOwIPGbhbzwZdMa8JimIO9eP+Du7Uq08Fjk3vOuT2LxAZtM8VgikPA9MqLwY1tU6gJfPPNlCyrx8v6G8Oj3jPMx9jb1BBES9zWdavfMeWL3S86u8IwEQvSPYRT1YHYW8Xd9/vaQTvjyNrqC8vskdvEuOcTyGSU89P+9iPbs/FrzcQXi9gDVAPMgaBjssnlQ9uNu8vHT4wLwNctY7rrMePd8dlL1x4189N6BEuRDpxjvjamg9rjtcPeHzd73+W1e83Lk6vUuO8TiB+d48ewv+vOYdujvmRgQ9YkUjPArWibxLpCS8jZhtPIMOwDzUkMo79ZXIPDTt8jzmWZs8TrmFPLoWzLzwRVi82gmFPNdpSjvz+Kk8Nj41uxPo9DttRxM9onafvJSIGDwysuM8G+s2PYJwzzz/l7g8EOnGO9J76TzlHTq8mxB8PF0xFD18Dpq8KmPFPI39mD1B3pU8fpihPAHTRzwHrhE9SwY0vW1HEz2KEQK9cqqavB6eiDyO6oG8huc/u1hDs7wOcla9YFmMPYZfgrsWm0a9hl+CO90aeLy7Pxa+sXmHvSyeVDxduVG8GyeYPMjxOz018I66WH+UvcrzhbxEVQY8isKJvZDWmL0rnya7Hk8QPdziBD2D6JG8pLEuvQo4mTwy7kS7UEBxvJhhGDtlHiO9cR/Bu2cdUbypxT27iiQZPNRXhT24eS09b74DveTiqrydxJ+9jdROu3SA/juZEU66xRg8O5ongT0rjA+8b76DvHJbIj0JImY8rp1rPcAELT1fktG8uHmtugVzAr0Kmqi7aQwEPNTMqzypTXu8WuDRO3lIsTweJsa8d2+xvKzanrz6R0i9g5b9vHnQ7jzP3ko99W+aOwMOVzuiOr688KdnvXmqQDwDSjg8N9ylumdZMr2km/s8dPjAvD9UjjxxgVC9LWUPOlPNlLwKmqg7bUeTPAVzAr1lCPA8p+w9O2zPULy2KOu8W37CvQByCr1gqAQ9/foZPVNrBT0WdZi8BegoPM0ulTy9s2q7wGa8PDdkYz6SJD89UN7hu83fHL2QdIk9UhlxvbOLzDtBojQ7MiomPAWGGbysYly98ONIvBsUATz8IEg8kA/ePFZEhT3iCNm8c1pQPFgdhT129+68WqTwPJ+dH70UOgk9IzpVvCV15Lvnfvc8OtvTPGWm4Dv0Mzm85rsqvc9Wjbw07fI8QWbTu9y5Or0qAbY8/SBIPSXtJrwLXXU8BSQKPYs3sDw0x0S9N2TjvAWGmbzXMAW7pJ6XOzo9YztTVVK7kCWRvc8HFbuG5788/SDIPEffjbwZnRA8FMJGPKzHhzzoWMk8YuOTvTd6ljyD6BE8hiOhPMCMar15IoO84Wu6PLMDj7x8IbG8n8NNO1hp4bxYQ7O8pyifPDyOJT0wFUU9fpghPfAJ97xE3cM8uGP6PKMTPjz8+pk9I3a2PVFWJLzPGiy7ewt+vLbGW73XB7s8ERKROz/JtDzz+Ck8B0nmPIarXrw3oEQ7dB7vPBbXp7yVOSC88B+qOxWbRjwjOlW8UhlxvLagrTrMozs8tYp6vW6+AzsbxYi9BSSKvDBRJrwIhHW9CpooPWWm4LwZsKe8qyZ7PGmUwToK/Dc9lXUBvUR7ND27Fky7uRcevbNlnjxqHP85H//Fu+Hzdz22Kwc8ACMSPWVahLxJB4Y8Yi/wvHdJg7ze9Em7iOZtvXHjXz13+gq8wKKdPE1Bwzx5NRo7orKAvMi12rtb9gQ9GThlPJ+KiDyn7L26WMtwPfhuyLzUzCu7XX1wvdJ+BTwgKJC8I1CIvLYCvTudiD49v8hLvD9npTrIy428GbCnvDrbU7uXml08I9hFPRGHt7zeMCs9xxdqvXnmobw/ybS7sdj6vN30SbwyUFQ9jXK/O3nmoTw3GIc7rGLcu6LFlzyDN4o814/4PPeU9jw621O9foJuOsqOWrxlbRu9YM6yObOx+ryeOxC8n8NNvLYCPbtbpwy9LGLzujqijjy2K4e8xbYsPb7JHTz1Wec86dCLPH76sLysPK684qZJPXnmIby7jg68/UmSPXSWMbz8IEi83OKEPV3PBL03xvI8MsiWvIvCiTzc4oS8Z/civSXtprmL1aA87c5nvIvCiTsgw+S8DPvlu6x4DzzIGga9JdfzuSpjRT2xjB69BHDmvBGwgTs8eHK8YLsbvPK8SD1IB4Y9huc/vcwrebyGhTA8iPwgvU5BQ7syKqa8i5k/vZj/CD2pUJe8RtzxvL2z6ru5Fx67jf0YvDfcJb0rPZc8NQOmuxGHtzoDrEc9cYFQu119cDo0i+O8uD1MvDegxDvZQsq63pK6vA9MqD2DNG48goaCvJCHIL3wvZq8Qd6VPDCztTzwH6o8d0mDvC878zyLmT87ApdmPYvCiTxiMgw8iOkJPJSFfL0WwXS9L42HvT9nJT2x7i09cb2xvEtow7x8vyG8gV6KPIc4Arvp9rm8yVL5upXBXbzULrs8KcXUvHG9Mbx+mCE9fueZvBPodDz1XIM8O7RTPAKtGbsDrEe9hhAKvKljrjwWX2U8XYCMvLvwnbzhL9k8s09rPL62BrzHU8u8YqeyPLkEh7v1bxq9JwIIvCXX87y8jTw8PBZjPUEtDj2udz06LQBkvKnFvTq2xts8ewv+OzJmB71iCcK8MBXFu5U5oDxJtfG8AtPHPBgSNzt+NhI8SyxivXb3bjzFPmq8kIegO9lCSruQdAk9l5pdvRmdELyQSz+7mBKgO66gh7oM+2W984DnPP8fdrw1oRY7ZQuMu9lo+LzZHBy8uWaWvLm1jrwKmqg75rsqvaeKrjw3xvI81494PMksS7x2926885aaPXy/oTzUtvi8n4oIvea7qj0ZOwG7OqIOPQr8Nz2SYKC8ldeQOnJIC7mkdU28otguPXky/rwWdZg8pDnsvNLdeDxE3cO82aTZPHb37jyGwZE8CSLmPCuMj7wb67a8ZERRO1v2hLyCln283rhoPJ9hvjwRw5i9I9jFOJ8lXTxzcAO8Ohc1PP9bVz0M1be8pxJsvHaVXzzULju8AksKPY2Ybb34DDm97TD3PK47XL3ckwy9Q91DPCBh1bvCPzy8qSdNvHT4QD3Ftiw9LJ7UPEEExDsCl2Y7Je2mvGJFIzy3Aeu9mRHOvLNlnrz6v4o8b+QxPJBLP7vCx3m8LRaXOtkG6bxgWQy9BoVHutx9Wb2xFNw8qxYAPMWjlbx+5xm7FDoJvQ8QR7zHfBU8EelGPaQ8CLoyyBa8wxkOPUiPQzxm4W88Xd9/vM1n2jumTs28pHXNvCoBNr185U89eTL+vC2e1Dsjspc9RLcVu3ky/jz1XAO9E2C3vJkRzry2K4c8yVJ5vMXc2ju5BIe83lbZvPDjyDwP14G8vsmdvI023jtq0KK8pIuAvAf9CbuhnE08+DUDPNRqHLwDSri8s7H6u9dDnLwj2EW9ihECve+BOTzUahy96s85PaFgbLxlWgS9LJ5UPOHz9zsP1wG9pXT7PJonAb3MK3k7lYX8vGdZMj3UkEo9MVBUvOPM9zmidp88KCi2PBtNxjwRJSi8/b64PJvqTbx5qkC8N8kOvTzwtDzekro8Je2mu/P4Kb2aJ4E8w3udPM9A2rwqJ2S9Ohc1vW3lA71R9JS8sSoPvY2uoDx3+oq8S+CFO7h5LTwqJ2Q8BKzHPNIZ2rt0IQu8ZrtBvBb9Vbz/H/Y8SLiNPRZ1mLt8IbE9GeyIPGXiQTxlHqO8vbPqvL/IyzzDGY68pxLsPNkcHDstPEW8FpvGPIcizzuz7du8MmaHvG+CIr2aN/y8XFdCPGUI8Lwgw2Q9IzrVvLHurbxv0Zo9k6+YvFamFL0bxQi9WEOzPOII2TyIXjA9gzcKvRSGZTxdgIy9yI8svbjbvLyxjB69BeiovBBL1ryLXd48VqaUO6I6vrtvbO+8DF31PEQZJbwFJIq8RD/TOwRw5jpTzZQ9/ltXvEvK0jv/cQq8CpoovbvwHb1OuQU9XfWyPFWQYTzcRJS8LXgmPV2ADL1+mCE92eC6vDo9YzzuRiq9386bO+EJqzxEoWI8GXTGPOZZG71kgDI8l3QvPSon5DxE3UM96dCLPfOAZzpEe7Q8w8qVOoshfTvkbQS8O7TTPPBbizxq0KI8rJ49PKlQlzuBl0+8p2SAvLGMHr0bdpC8rDyuPNTyWT2DmRk9dIB+ujUp1DxOo9I7hl8CPax4D70gw2Q907Z4vIFxIbt4DFC8LJ7UvGcdUTs0ZTW9tiuHvEnLJL2VOaC8OrUlvRAP9byhYOw6RRhTPC0AZL2VwV095ICbu/WVyDyzx627gL19Pei62Dqk19y83jArvBZ1mDyD0t68xaD5vJJgoDw/72I8RHu0uP3nAr2unWs82RwcvQ7U5TvK84W8vistPSmJ87zUzKs6tmRMuzUpVLy2ino6fL8hPHJIizzmWZu8PhOYvI0VwTysm9e7QsaIvHBi6Lt+1y+9eMhJvGw4Lz158JE8XY86vNyvD726REy9snGWvKMuizzugj08HTYGPdKHz7tj3MG8w97aPHrrFz2V7fC8er7VPPP3DD3qK0K8FNWePEdCQzzRuQs815a1O0Fx/rt1pXu8ZgZ7vLe5o7yxSU685rH4Ow8irruJ/Ga8GeSEPLulO70dy6K86Aj0u0YfdbzHyvK7R+HTPAqoZL01DiY8qy6DvOS0gbz6Naa82DXGvGvXP71aCQw6jFPiPC7Vhj3eC4W8PB2Mvfg/Gjl3My29BfptvC/Lkr0y9Us8a3bQu2t2UD18QpO719TWOp0fJTw+heY8tdR2vN86OD38K7K7QcuCvRtHZbu0NeY8F8awvA6IFzofjYG87bbqPBaZ7ju5ewK9qUTcPLkQHz06wRa9TFudPEAJpDqV5gU8w6otvb++Fb1UM028oN76vOvAXjpew2e8nYWOu+H3HDsJfqu876z2u9n3pDs+bw09jRVBvOGRszx0PaE8BKNyvO7jLDynr7+6YUclPI/XH70enmA9FiwavTWtNj3msfg7n0lePXFYdLvj8qI8DZKLPNNJLjwVo2I9aoDEOymDhb3p/A48mTONvF3NWz2HmQY9X4VGvPORIz0w/788yxAPvWeyAD3D3tq8HHQnPbLSBT1hCYS8SQSiPM5nirzUEAc9cntCvRhbTT1L+q28+ghkOwaZ/rwGjRm8DTGcPEzwOb1cYAe7/f7vPDbQBL3xlp28g+GbuwpHdb0enuC8I63Gu8AmcLvGyIG8rxUhPYROcLw5wRY8RYrYPLBJzjxqtHE9RutHvE2PSj0xlNw70+i+vK1dtryWEL+8rSSPOyXVDj0CoQE9XS5LvVeyEL2wFaE9UHtivSwTqLzW1Fa81aCpvOdz17u+kdO8H40BPLUpgTuOPYk9txqTPMkaAzp8Sf68KfrNvMRzd7u8m0e8M+tXvQdbXb0a3wo9dBDfvCpRyTvMF3q8uRWZvHQQX7z4pQO9gxpDu/cczLuBJDc9sQstvVOesD0xlNy7x74NPRUsGjt1pfs7leYFPRzm9bswYK88E9oYvcBTMryd8uK8CtUmvdLF8Dt7tGG9phqjtVNlCb0nZTG9nZHzu0A9Ub0nOG89fUl+PN7ZSL1HQsM8PRgSvTIp+bzL40w93w12vPfeqrtGDhY8XvCpvB/BrroS35I8NEzHPLCHbzzJGgO8vDrYPATGQD2E3CG92PekPAaZ/rx1PSE8OWUhPSlbPbwYvLy8CX6rPDZvlb1BPdE7FmXBvHw9Gb0Yj/o8wRWRPChbPb1uzcu81zVGvdV9WzxZCQw8ISIevK7yUjxqFWE9UNzRvOlpY7l7Rw27PRMYvMNJPjwPVtu8ZinJPM6bN7nc47w8zaUrPSPfAro5+j087VV7PARlUT2rLoM9hBrDOkxbnbxzQhs9fUl+vBhbTb0PVls8hp4AvIQaQz35c0c91BAHPffeqrss5mW8T+ZFPKIBybxpgES7Yz0xvfVOiL3wOii7yRoDPDzwyTukKZE7ycB+vZCUhD0Uo+I8w3EGvTfLirwg9Vu8zvwmvle+9bzj8qK8lLnDvBJ5qTyeh/8727QJvcMQF7y5TkC9Lm+dOyJWS70COxi9p05QvRiP+jyW3JE8iSmpuznNezq5e4I9n6pNO58VsbxdYni92yFeOznNezzQMNQ78fyGOtZz5zzlr4c8Fjj/vGq08bxllCy9a0IjvVPS3bzveMk6MiIOPIuAJD3dF2o9zXhpvNyCzTy2JAc9p+1guylbPTw1DqY8DcuyPMU11jvOOsi8sOjePFP/n7v/gi085OguvXjISbstdJe6pfdUvVBHtbw4BDI9MWAvvVqjorxjEG89F8awPD3mVby8zQM9rjD0vLF2kL1B0u08XyTXvFXI6bzHWKS8OsEWPcVnkjxQRzW7CH4rvYiPEjyy0oU7NeHjuxUEUjxT/5+8XsNnPIxTYr3ObnU81meCuxQxlL0cdCc8bDivPBZlQTvHWKS8+tS2vE+ymLnn3jq7TubFvCm8rDw6Lms+1zVGPNyqlbztgj29iuuHPRC3SrwwM2092DXGPHj1i7xH4dO8xmKYu8mM0Twlo9K7K4X2PILDR7wr8Nk8HT3xutFYnDzEP0o9koqQuhY4/zyybBw9aIo4PZouEzz+TgC9PI9aPJDNKz3K7cA8kKBpvQF5uTqP15+7JzjvOzXh4zw95lW86palPFmonDx0EF+9yq+fvIrwAT0dPXE8M7eqvAC3WrsYW808axVhvBeNCTwFZdE5XmL4vCD1W72Qzas8jziPPFW3CjytXbY8vzDkO5MkJzyq0o086v5/O4ThG702dA89v10mPPigiTzkTpg7Hv9PuRuyyDx75h07W9dPvUMz3TwwYK+7iWfKPO0hTj2+kdM8iDOdPbX3xDykYjg80q8Xuxj63TuXED+6gfCJOzZvlT28Bqu7KbysvP5OgDs9dIe8GfDpvMQ/yjzGYhg9prkzPatnqrwWmW49hhDPPHDwGT0ZUdm7i77FvLkVGbzqlqU8U56wvO6lizs6zfu6JzjvvDKUXL3npRM9pozxvEFlmToGmf482yHeO0gJHD3mP6q8+KCJvYxTYjyzoMm8BvrtPC1HVbxnsgA9bDivvKwkj7o5+j28CX6rPcmMUT2X15c9Rh/1PO4XWjy6pbu79MVQPRm8vDu8Otg8eSk5vCCUbL3hkbM8X4VGvEYTkLtRBBo9/0kGPIwftbxqR508aUwXPb3ICT05ZSE8JgRCPQBM97tadmC9GLw8PGM9Mb2HmQa8Ew5GPIYQz7xv9RM8MDNtPTwdjLxh5jW8nb61vJ+0QTxzqAS9mDgHPRaZ7jzkTpg6tdR2vAMEYr1qQqM6poAMvNq0ibxFGIq8a0Kju0su27udHyU9HcuiPKfcgTx20r081j86PXBWAz0ATPe7WaicvLFJzjvS6D683KoVvT6F5rz61La7X4VGvSVCY7zBtCG5F/pdvEFgn7ssEyg9x8OHvRnkBD2Gr1+8bWzcPGrhs7zxDWY8eVEBvJhxrj3uqoW8x74NvX12wD2OFUG9HEdlvCYEwjyERwW9dzOtPdjKYr32SQ49hnG+vAvVprynGiO9CkCKPLQBOb1Cxgi92PyevE+yGDwoxiA98s9EvaT31DxovmU8LHkRvRZlwbzfBgs9EnkpvJyKCL1/Lqs8nnsaPfQmwDsARQy88s9EOxAirrzrjLG7MMuSvGKv/7wBebk8M4poPFPS3bw78Em96feUvNor0rvFASm7YqgUvSXVDr3HXR68MfVLPSAnGLxBy4I8KrwsvBf6XbscCUS8vAYrvZkGy7x7Rw09lRozvEkEoruWED+9GVFZPOg1Nj3Dqi0744e/vA9W2zw7IgY9jRXBvP7olrxCxgg8D8G+PK8am7wS35K8Jzhvvbl2iL0s5uU764yxO6+AhDnqliW8FsYwvaybVz0r8Nk8h0T8u3CFNr3uF9o7jeGTPMqvn7yGOBe7aFGRvDR+A7xQR7W8D+kGPMkh7jvmEmi7rlPCvLt4eTwKdDe7tlg0vITcIb2+z/S7vpFTPRRvtTz26J48Z7IAvadOUD1r1788sqo9vblOwDydgBS9fmxMPY8LzTyHcb67yu3APLViqDyOdrA7Yz2xPGdWi7sQ6QY9W5kuO+5JFrxOUak876x2vccrYj2jLou8JNqIPDWtNr1uAfk876WLPHkpOT0cCcQ6Lm+dPBXQJL25If47VSnZPEE9UbzJTjC8rTB0vJbcEb3/gq28tSkBPe4X2rwWmW69ksO3PO1V+7yZpVs8HEflvGIJBDzAuRu9P6i0O8ZiGD3VoKm85LtsvVCoJD0O/9+8F1vNu3w9mb0/R0U9xKA5vHG5Yz3/9Ps8ekwHPN6lG72HOBe8Rh91vIfSLTyQC027VPWrumw4L72RzSs8oT/qNmgf1TzCfes8LOblPDXh4zwGW928B4ifPKivP7wP7gA7SaMyvfhzRzxfJNc8vGwUvagQLzxcma68QtJtu1EQ/zyLXVY8jXawvKz8xrwS35I8o8MnvMC0IT08GJK4gM07vevA3jtYEwC9s6BJvViAVDwYvDy8vvy2vAlFBDsIfis98QEBPX7XL71Fiti8tlg0vOABEb21KYG8jknuvfv3BLwNnvC7SXbwPE8ac7uD5pU8+gjkvGUGe7k+qDS8JgTCvH0L3bx58BE9q9n4PAp0t7x9noi8BvrtPC5vHb0Wme670ug+PYJYZDuLvsW8Pw6eu55TUjtdLku99ugePEPBjrtRCZQ8Y56gu1E9wbw+R8W8mKVbPRNvtbsCO5g87FMKPY4VQb1EVqs7vl2mvMTe2jt+1y88xQGpvIdxPj2TJKc6p+1guy9qIzyUWNQ8pxojPYYQz7zyz0S8euuXu1Rner1nsgA7nxWxO6De+jz3sWg8hkR8O9or0jxknqC9prmzOtLoPjuH0i27UnFuvVBHNT3O/Ca9pCmRvAa8TD18QpM8D4gXvBkdrDw1DiY7vMgJPEkEIr19OJ88+/eEuv3Azjw5+j080+i+OzfQhLqxdhC9dtK9PCK3urxZ4UM8bwF5vB02hr14XeY8cualO5Eum7z6adO8mERsvPE6KD2fFbG8pCmRvZRY1Lz8K7I8+N4qvXOoBL2/kVO8zm51u3tHDT3XAZm8JQ62vOCbp7tLxgA99U4IO2EJhLxGgGQ5GVHZPNuCzTseyyI9C9WmPBaSgzsub508cVh0PFcfZb1T/585zm71vH7XL7zHWKS8bDgvvIvmjTyybBw8nrRBvc78Jr0QIq68b48qvDijQjwBTPe8VGCPPXJMj7zwOii7uU7AOyRMVzzpylK90odPvAeInzwG6Q49vGeaPC/QDL2bXcY8y0Q8vblOQL2+XaY8bs1LvQsJ1Dys/Ea9mQZLPIGPGjmfdiA8OcaQPJT35Lw+Exi9Jzjvu9KHz7qQbDy7JOFzPWjrJzqSjwo9GfDpvKcaI73rwF69elNyPdRJLjqSAdm8XVsNvKkQrzyK8AG96DU2PdC+hbwBebm6IMEuvE0k57riJlA9nnsaPYcGW7qL8nK9fmxMPegIdD1Cxgg9g+YVPYS50zwP7gC9VfWrO5c9AT3zxVC7wehOvasugzyLvsU7vM0Dvd/ZyDxoH9U8poxxO4GPGr2wh++8Vr51PelpYzxWtwo9pozxPEPBjjwZUVk9DiyiPIgznTyyqj29WaicvGfrJzyjAUm89n27vHNHlbwKqOS7Ovo9vUyPSrwOLKK8uhAfPKQpkTs3QtO8CLLYPC8sAj2am2e9OTjfPLKqvTySAdk8sz9avcAaCz1QR7U8u3EOvGmthjuybJy8BMZAvQ2NEb0uCTQ7EzaOvNK0ET3JwH69qNwBvFE9wbundhi9hHuyPL5dpjzFNVY7cPAZPV7wKT1qqAy7hHsyPKmly7y8bJQ8tNR2PbQhc7tbf3c7fbcAvbKo+js5YgW9P9MQvc1trTrn7pk9WwhKvAvWE7xSmk+9935bvWhj2bxnr4y81OADPHqz6riOhGG9vBUvvbNyAjsPR5+71tM6vTFp7Tylyz+8Fy9YvDlihT1ByyM89sqOPO8VvTt8NFA9f6jsOn+vE70mBvE7BVvQvTbpDL1CRy08tSiaPJZ4nbm1KJo7tac0vavAwTyV8lu8bd4cu7AxzTx8NNA7igvpO6oHmTritVE7A2gZu5vuhL36dm67Rv8PvCOS1DxnKxa88dWMOumpDb3byDy8DUhlveA0bLuQSY29cU3dvKs8S7k+SHM91OCDPAbX2bx4tvu8KgBPPbdnBL0JUNI8WwhKvCVXALz+9o081NbLPPYEHbyIkvC8gaXbvAxSHTxVlz68uRtRu78NwjuQAjY9WQ0mPNvIvLtKtSe8rbP4vIeScLt1Rzs98RIsvKbQmzyEne48KAg8vbUoGr2U9ey8yXNPvBHIhL3eu/M7B9w1PHo+CL39dag6Q0LRO04k6Lzn7hm9xf8yvRwrAT2eWOm8Vw7sPHJPKLzjrWS8HKU/vH/xDj26GMC8WJEcPX+obLzzD5s59oM3PDenkbwFVvS89JCAvBazzjtKtSc9ClUuPPxwTDxSHkY7EcOoPWle/bjRYi88P03PutoPlDx5gIM99Aq/vGTt8bzZUY88vZYUPZptH71oaDU80GBkupT17LwXtZm8SrBLPbCwZz1nr4y9a6QOPbodnD05pIC6s6rFu7wVrz2+Ep69P9MQPRqtLL32BJ280GBkvbUmTzzJ+ZC8oNTyOu8VPbvZR1c7aV59Pb2RuLqwrdY7RjwvuoMh5TucrAm7qIsPvNPbJ7yY6m48VZyaPAFwhrzvFT28WAb/PDtT8bxcChW9jYk9PSMYljtj96m6JY/DvAPi17sXNDQ9VhPIPbOl6TtVkuI7+3i5vOcrOb1rW2y85qrTvIEkdrvK6nw8oKELPZdu5byDp6a8K/vyO3MSCT2Bpdu8xIOpOp0okzwzso88qMNSPd43/bwU/wE9dUJfvJe3Bz3Gezy801+evBJEjjxqW+w87hoZvG9Vyjz3Rhg6cU3dvHHTnrw32ng7th7iOzA5lzr1DIq9pNiIvSSUH71LMbG96SNMPdTbp7rOrBe9uRtRO4QZ+LweHri8fbDZO3w2mzz5e8o8tayQPDRrOL0WuCo9iBgyPCER7zyQB5K78dUMveC44jyNDTQ8+/L3vClMgj0iGBa5jgqjOpD9WT1bf3c7dsggvR2g4zzEiAW9g6cmO7IzGD1ATxo8sLKyPEmzXDp5QRm9zTCOOrGt1rxXj1E9WYxAvDliBb2EGXg9xX5NPcq3lbu4n8e7aGPZvMEKMbwdHO08X4MNPbifRz0TAhM8sLBnPAlaijzdwE+9QcbHObVqFT2nQu0856yePK59ADya5128qsUdO659AL0YLEc7LUGEutPbp7xj8k08EEefPUXFgTxl7zw9mmjDPD3WIT21IfO8NOwdOqTTLL3G+la9QkctvDnhnzwC7I+6ZuyrO04kaL2CJkE9fDabPNKhmb27ngE9xXlxO4gdDr5i/AW9MWltO9TgA71feVU86p9VPKtGg7xSHka9DZEHvSrIC712B4u96R5wvczna7yZZvg8EAoAPNLeuLv3+mS8UprPPPeDNz0NkQe9fy6uvNjQKb1JOR49zOzHu3dEqrxG/4+8kn4/vCcNmDzvkUY8N+SwOegthL0a7Ja8SrUnPKZMJbkD4lc8PdYhPZhwsLxJuoO8Y3MzvL5UmTx9tbU8Y/cpPBc0tLxv1i88wQ8NvYKiSjta0AY9yfkQPZptn73J9DS9uh0cPZrsuTorfNg819O6O9lRD715u9e6mWb4PBmyiD3O6ba8wwLEu8xoUb07U/G8oKGLPDPqUroRvsw7SrDLvKXJ9Dxv2wu8gx7UPCQTOr0Z9AM87p6PPBwmJb2+jFw8IRFvPEiz3Dp+siS9B1i/vLwVL7wy6tK9BGM9vThlFj2X+QI8AOXoPKbQmztOKw89M3CUvOqfVbyGFuc80GBkPtNfHj02aCc8sSzxPFCivDxaDSa9PleHPNjLzTzKdRo9QkctvM9lwLxuUO67NOfBPNoPFL0OQPi53wGFPekjTLx5QRk89YZIPdpH17xAjoQ9VRPIO6DUcjvRWHc85DOmvP11qDyNiT09p0JtPCGV5byUdtK8mjCAO7D5ibxnrwy8rT4WveA5yDweI5Q99IFsvFaZCT2tgJE9qkS4vB+Y9rzlr6+7Dc4mPZvuhLwXNLQ8XgKoPBqtLLyNiT29TfGAuuIs/zvFeXE8ALKBPF79y7uWeJ26yPfFPGVwojzuXJS8lICKO5H4fbz2/fU84LotvAdT4ztTFtk7ZGn7OyiERb2K2IG8Mu+uPLyZpbz0iyQ9Q8iSPcf8IT2Sfj89sbIyvZvkzDwD4tc84rXRu5Q+Dz3Ffs09+IUCvWtgyDxOqik7ZvEHvWvc0bz5dm48nuE7PBcv2Dx/Lq48qzfvPClMAj2dZbI8PNRWur0QUzz+8bG8vFwGPQfeALzsnES9QwqOPPp27rvroaC8HemFPeA5SL0/SHM88g3QO9HcbbzCAHk9X3nVOa29MLxkNhS8JhApvUqwSz0rfNi8AuezPMBRCDwE5KK7z99+vCCawbvPahw9VBbZPEFKPrsWs848qgcZvHDMd7yEGfi8XABdPGZmajwdIUm9fC/0PGhjWbx6OSy8cMx3PKnD0rvUnoi8amoAvThbXj3ppDE8Lv8IPe0dKj0A76A7ZvGHvKTTLD0ngvq82Q+UO59dxbx8q3277JdoPEPIErznJt28L3a2vJL/JLwnBnG8nKyJvJ9dRbwnBvE866GgvPCRRruDKAy9QJEVvD2Zgrzrmnm9NWPLvNmTCjyZ8RU8sDapPDYriLwoCLw89oO3u9bOXjzAzZE87o/7PEwsVb26HRy9VB0AvCEgA70OQPi8mDMRvSON+DxqZSS9kEkNvEsxsTyuNF483MDPugbhkTzXSmi7UxZZPADqxDzIbvM85ys5vRqtrLxmM4M9Yfq6vGxdtzwmkY49woa6PJXtf7sqAM88lnPBvBQ3RT0BYXI7JVeAPKtGAzsf4Zi7ctMePX/xDj0jDt48fKt9O00uIL32iBO9x/whPfESrLxFOmQ9PlIrPbqSfrtj8s281VexvJSAirs5YgW9uOMNPbyP7TzSXVO8VZe+vBazTjxo4vO8DMf/uwZW9DtDvlq73ERGPTlihTtTlfO8LX4jvYkT1jxuWia7Yfo6PH6yJD0x7eO7DZEHPbWnND0MTUE8AWuqPOmpjbsBa6o4m2PnPIqPX73ePNk6Wg0mPVOfK7rHeCu7IZcwvfkBDD25l9o7BSMNPMUED7zR3O08HqeKO624VL2X+QI8B12bvD3M6TxcyJm8j4HQvA1IZb2dYNa8QsbHPM3ukjxegUK8PczpvPJRlr1rpA49kIYsPL8IZrz0i6S8neaXO/AQ4bz0kIC7iY9fvAzOprtBjoS7UCYzPTTsHT0kE7o8c0+ovEPIkr0BZs683rvzu/UHrrxm6mC9o1cjvGTt8Txi/IU9Xnzmu4mP37xBRWK7PFU8vfd+W72f4wa9dsigufCWIrzK79g8qsWdPCrIC73P4Um8sK3WOxylP7zY0Cm8i5EqvWO6Cr3OY3W8cs7COy15Rzw050E8UmKMvYsQxbsmC828freAPAdYvzwYq2E9olLHvGplJD0xcyW9JodWvL2ROLyb3/C75DOmvPII9LxqW+w85DOmvL8Snrt/rci7Mm7JvFrQBru3Z4S8Hh64vMb6Vjw14mW7RzyvPG5fgj0lFYW8SbPcPHLOQrxq32I9jwDrvB8jFL3J9DS9VRikPdNawrsfI5Q8aemavMCJS72GnCi8PdYhPEc8rzzmpfc8JoyyvNVXMTixqPq8SbPcPPMKP7xHN1O7hJ+5O0HLozwcJFo78YzqvCaH1rv/7NW8Fyp8vM3ukrwvcVo8tDCHuw4NEb3GduA8sylgPNpMM7zEiAU9Tq8FPU8mMzr1DAq9O1PxPMzsRzx3P867nljpvFoNprsnDRi8oN4qvYsLab2oyK67/TgJvCGawbyBpVu7k/8kPaLWvTzpHnA7z+FJPIoLaTzM7Me8Vw7svNVS1b02aKe8a+YJOdcXAT35e8o7ze6SuzL0iryabZ88HKqbvANjvTzePFm8kvh9Oyt82DzR3ji8mOpuvLsYQDoD4le8fzMKvbUmzzyvuh88KUwCvU0uoDlEvlo8NeJlvGoohbskE7q7+YAmO3WLATz+tBI8lu3/vLA2qbsUPCG9DkqwO3yrfT3oLQQ9frIkPTpdqbzHv4I78dWMvMtwvroyae07BVtQPH4sY733+mS8lfwTPQNjvbwHnxa9EUJDundJhjx4OvK8MPcbO4WfOT1v24s856fCO73Yj7uQBxI9BOQivV4CKL04W169m+koOxU5kL14PD08HemFvAVW9LwyaW08blVKO9NfHr0qAM880GDkOvv0QryCKx294bD1PKTYiDxOJGg8Y/LNPGRu17zfwhq8Mu+uPLce4rxBSj49ixIQvApVrjwu/4i9IBlcPIYW5zsCaJk8T6VNvYsQxTy6HRw7pE1rPLpfl7xdgUK9oB2Vu9xERr1oKxa95qrTPJRx9rxMJ3m7HSalOyeMMjsD4le7S7IWPbqXWrziOxO9BGO9u321tTuwMU09EkSOPGvhLT3aDxQ9wFGIPe0dKr1XEDe9lHZSvBwkWjt6s2o6fbBZvEFKPr2Y78o7ZvEHvZf0pr06XSm9W46LvNUakrwNycq7u56BvYjbkryLEMW70WeLPEHLoz0XL1i8xf8yvff/wLywsGc9Hh64PPl2bjwxcyW9ED3nPKdRgb2Wc0G8i5EqPOYwlbvFfs078gj0vJf5gjuTeWO8xf8yPdDmpTxvHYc8c0rMO76ROL2LloY9D8a5vK/5iT1IMne8xIMpPck7DL0+Uqu8ezmsvFoSgjw3Xm88DE1BvDzUVrs43MM8iY/fOzhgurwhIIO8L/XQPFQbtbxlcKK8lm5lvCCfHby3HuI8l25lvUS+2jzaw2A9k8KFPH+tyLxHe5k9RoMGPG3enDzU2yc9VhPIulYYJDzyjjU9updaPcpwvjwmECm8RsAlu++PezzERoq8SL0UvRI/sjww7WM8aG0RPUb/D71ah+Q5p0JtvDE2hjxxzsI8szCHvcvsRz24mmu8ntxfuBuj9LwZJ2u8AXAGvQDvoLv0kAC8sXUTvAVlCL05W968sSzxupP/pLu+DcK86WcSvXDR0zxObYq9JY9DPbQrK71i/IU8B1PjPCOUHzzCAHk8zqyXPA5PjLy9C/e89IskPfx6BD2xdZM7XgcEvVYTyLzXFwG92kyzu5S6mLpL9BG80OFJvTFzJT3umTM8FjmQvLEscbtdAF09vBWvPNjQKTspN1M8JE2Su4BPhL1nDCu8a62SvNENgrwD6L68q4a0PZh0rTvQKTC8gEJRvfoXh70QA9K7ePOrvA1VlDxz/Le8tp8ivZr3ZL1pO/u7MK9ZPAVAcL078808Az5LuzLNCbu9bbU8DYAavIe61zzrily7aTt7Pf1TCrzeRMO86Nweveqzvb2j8P28vGuQPA1VFD2TKdI7H8p9u4W4Mr1g6rA8PPNNvFz14TxIuNQ8suIMPAfdDby+JgG7ajt7vJ9txrnexdW8uczNvJy/CLiWVv06Nd6GPIoDjrwa7xS9PIGTPDgair1CQM46johqvfKDdby4oUe7Qs4TPfXMqzwaGpu8B14gvU6vyDw3/n688i3pPABlB73224M85un0O3jzqzwcndK8igOOvJUA8bwSr2o8yYYjvTb82TpVJ887bltQPbMA4DoShGQ8nZSCO/xvuLwoi7o7dVTpPNKOFLwDE8U8gkR2PBvGM705m5y8A2nRvGiclbxztQO9Z7hDuxNMiLzgnPS8gcNjPIO2DTxwXfW8ToTCvPyaPry9Fyk9j972vH9ArDy7QIq8BzMaPGrlbrwWJUw8AbuTvL0XqTxNgp08/sXEPGWLGDtC+Zm7XJ/Vu7XIg7xzJ747j13kPJmuizz8bzi4MYZ4PEsskT0hEzS6q4a0PEG/OzuJrYE8O3I7PTSkqLwDoQq9rIhZPCHorTw8yEe9jTJePAUV6rwK7oq8eUm4vJ/7Cz06R7U89fcxvVNQsDwccsw9fRMBPXJ7JTzfcW49WoGCvWYMKz1zUsS8NM8uvKxdU714yCU82M5huwoZETxt2r28IJKhvNsXGD00zy67uC8NvJUr97yQUI67cIh7uUY1nTzfb8m7R7avO7afIjwFQPC8HcjYu5R/Xj1ltp68qgWivLRWbD3Ec4G8klIzvPZNPr28wZw8t0s7PXmfxD2sB0c8Q8HgPMmxqbxhTxU571SlvMtdwrr3JN08jdzRPMXlOz0acCe9sVKiOxb6RTzXWoI8VSfPvM61c7zRDQI9uvn4PKZIDD0miRW9jIQgPDnvgzyuiv48hY0su1rINr013gY9phBTPKpbrrxl4aQ8QGmvPANpUbzLiMi8yNqKPF4TkjsxMGw8RoupvSlEBr3xgdC8N6hyvciT+TygURi7Q8HgvJZHgjwW+sW8ctGxvK80crzMNOE8UFvhPJ7BLbx+FSa90CkwPUKUNTwtV6g8KW8MuUqP87zEurU8dOAJu2GWSbz3XJY9gW3XO0ZgI7zL6wc9PfVyPJnZkb2Utxc93EIevcRzAbwvvAw7N/7+u7qjbDy699O8t/WuvJifMzwmMwm8sv46PT5L/7y7JP+81nYwPTweVD1GNR08hAwau0u6ebxoDtC8rGoGuzLNCT26+fg8NQmNvE3YqTtoZNw8ytwvvTnvgzy691M9/vBKPPMt6TvDDh28sziZux7zXrsZxI48jIQgPE9oFD2+mLu8VNFCO7IpwT1l4aQ8jwl9PS6CLj0eSes8o40bvCN4mDwWsxG9/UZXvbcgNbuXSac8m01xvJUrd7vtUoC9jQdYPTnGojyazF69k/7LPIpZmjyslQy+a1cGvYYOPzx38YY8pmS6PAmLyzzF9BO7AJCNva6K/rw78029GkWhvfArRL2/b1q7TK2jPG6xXDs0JTu8dSnjuw3/Bz2xUiI9JjMJvcDFZjve8Nu8CcMEPfArxLtR3PO8KrjlvEkOYbuC0BY9ToRCPKxd07yZIMa9W5/VvJL8pjr1zCu8IDyVPEgbFD0dAJK8JQiDvKblzDyYn7M8egIEPZOMET1CQM688ddcux0rmL1Te7a8B16gPP0bUT1nG4O9diljvQayBz1iQmI7CbQsPPAAvjzd7ja9w4+vOwMTRT1oOdY9Dywzu6zAEjzTAvS8JJZrvOuKXDvbwQu9ahD1vIDsxLxT+qM830bovAm0rDxfvyq9xOU7O/ck3TzXzLy82E3PPCgZgLxT+iM8w2QpvXMnPr3X98K8k4yRvRDYS73A0pk8kn25O3XT1jyBw+M8BL/dPEK/OzzCuBC76LEYPN6aTz6yKUE9ToTCPJJSszqWR4I8tnQcvbAnnDrMQRQ9N/7+PO0L77zqs728QD4pvLJ/zTzfRui8/0j8u7SseD1DQvO8XJ/Vu5WqZD1mDKu8lNXqPCHoLbzjOzc918w8PLGoLr3aevo77GH7PLKMgLx6AoS8S+X/uxgn8bsyooO8D6ugu+SRw7wdR8Y8oJjMPYYOvzsPLLM8zF9nPXJ7Jb0h6K28Iz46PKDD0jz9U4q8W5/VPLQrZjyHute8xj3tvDxJWjxsr7c8e/VQPJjKOTxuhtY7yge2PHjzqzxJDuE7kfwmvb6Yu7yF4zi70lbbu4EXSzyhURg8VajhPGW2nrylusa8IRO0vKzAEj0DvTi8L4RTPXoChD1C+Zk8YhdcPQq20bxVtRQ9KLbAPBmZiDz9KIQ9QxdtPUY1HbyaIms8kylSvKU5NLy5TWC8tyA1PBT4ID0fuwK8TdipuMuIyDy2nyI9cnulPLsVhDzSY448KrjlO7PV2TsDdgS9v5pgvX2Ukzu4BIe8z32XvGosgD1ePpi98FbKPCk3UzwVz7+7qgWiPcFGeTze8Fu9SwELvXJ7pbxg6rA8gm98ukq6+Tze/Q47SQ5hPJAlCLxO2k67X7+qOsxBlDzTLfq8uHbBPPV2H7ywfai7QGkvvfcxED18Ivw8jrNwvXidnzyhUZg8hpyEvAheoDoVz7+7us5yu3XT1rxN2Ck99k2+O51AmzzSgWE92+yRPNxtpLv19zE9lsgUvb7DwTz2Iji9J9+hvCQV2TxnYje8HSuYvAVr9rwPrUW8CTW/vDSkqLwFFeq7BrIHPXfxhjweyv27/UbXvMW6tTvxrNa8Df+HvWEkj7zFvNo7+dB1vM3gebsR2nC7d/GGPEi4VLyNscs8VF8IO9ApMD1brAi9eoMWOoViprvMX+e8fhUmPI9d5Lyaodg8tnQcvdR0i7oDdoQ89fcxPdciSbxxJZk80dXIuxoaG7zRfzw8U1CwPHfVe72XSae8+5iZPaVkuruSqL881kuqPWsDH7p7zO+7npYnPSmakry39S49xbq1u5dJpztwMm+8slRHvC4DQT1r2Jg87WF7uxZQ0rsgkqG8viYBvXjzKz2WVv08YcFPPWk7+zy1yIO8JGvlvAczmrzZT/S868IVvSYziT3R1cg8XEtuvOS8ybyKWZo8NPq0vBIw/TlU/Mi8YEA9vaZmXz05m5w8Zo09vfX3sby699M8HEfGu7dLu7seyv08ZzcxvOoJSjw9IPk8MYb4u39ALD1srzc7dNNWOkfhNTt7dmO9LKsPPHSoUD088028v2/auw5VlL3JMJc8eUk4vAfdjbwiv8w75wWAPN5EwzxQW+G85ZNovPuYmTy/b1o8yVudPIzpBL2oEvi8mqHYvKWPQD3nMIY8hY2svPRLmbxtBUS9AJANO/COAz1NWby8p5FlPMQQwrogZ5u8H7uCPJfzGryyqtO8Z+PJvFjxFz0iPro8Y8N0PFoew7zR1Ui9DNQBu1Ejhbz+cV28t0s7vfil77sUI6c8johqPUNCc7w/khC9OXCWu48J/bxusVy9ToRCvdnOYTyJrYE8bC6lPD48BLxnuEO8k2ELvXVUabzYsA48yxYOvGBpHr3cbSS9ADoBPNjO4TyB7uk7Zw5QPdPX7bwJi0u8v5pgvdZLqjzY25S7Z7jDPJZyCL3YsI49LgNBvQaHgbzkHwm9hDcgvDNOHLvnBYC9HknrPIrYB70vkQY7H+YIuya0GzxNWTy91yLJvEytI73F5bs8dX/vvLcgtTzDOaM9E0wIvOU93LkjPjo818w8Petf1juN3FG8AxNFvevClT0vWc05tkmWPGPD9DxmDCu9yL7/O+19hjxDF+27wWIEPe9/q7vlaOI7uyR/vJRU2Dy/RFS8jekEPNsXmDs6HK88OwCBOutBA7w2J+C8pp4YvfWhJb1Zciq9ouGCPN6az7sotsC8TzDbPJceIb0jFVm8KrjlPIZkSz1AaS88VF8IvVvXjjxU0cI7lSv3u2yvN7ypr5W8EJEXvAE8Jr1FiQS9ii6UPBpuAj3Q/im9BhVquucwBj3+8Eq8ThIIvGiclTt4yCU79MqGvPhPY7xPr8i9yVudvMmGI7vepwI9SBsUveiGkrxgFTe8A2lRvMWRVLyzK+Y6IxXZO0XfELwI37I79cwrPHbV+zvrQQM8c1JEPJWqZL0miZU8jdzRO+9UpbxIti88zbXzPAq20btoZFw8c/w3POpBA7qZ2RE9IvcFu9ENAr1gFbc7OZscvM/TI7k/vZY9P+gcuuo00Dw2Xxm89cwrvCNA37wb8Tk8/sfpO1Yp9LtagYK9sziZu97SCD2E4RM7KOFGvdDTo7ur3MA56rM9O8vcL7wUTi09r6YJu8oHNrpZcio8gEJRPNE4iL2fbUa9R+E1vS+EU7uZrou9YphuPC7YuryUf968yTCXPJuhWLwzIxa9ozePPLjZgLxfvyq8gW3XvNf3wjzR1Ug8I00SPUe2Lz0uAZy8gRdLvDfR0zty0TE8AmcsPdDTo7yENyA8qgWivQERIDzX90I21coXPZ5rIb1yeyU9aGTcu8gFEbzrbAm8bFkrvWutkjtClDW9ApIyvawyTT3dREO9WoGCvLKMALvIaPO8eUm4PFWKDj31zCu9uKHHvE3YqTydQBs9f5Y4PaNilTr+x2k93xtiPWH5iDywfSi9EgV3vDWzAL3/SHw8BRXqu0MXbbuelie9ybGpvLMAYL33JF29EdrwvPDVt7yx/rq81iAkPIHuab0AOoG8awOfvNNW2zwi6K09qVkJvMkwl71ocY+8Ea9qPQM+yzxsWas8KGA0vaxdUzyL2iy9PKwZvcAbczwAkI08+5iZOoyGRb31dp88NM8uvRbPPz26znI8CkQXPRvGMzxBvzu9aoKMPYJEdrxt2j09JokVvb8ZzjwSBXe9gKWQvDxJ2rwQOws9mXbSO0ZgI737mJk7klKzO5nZEbzkkcM5f5a4vDV7xzxxJRm9xBBCvdNW2zx7IFc8F94XPdvsEb3cbSQ8rt7lPDzIRzwVpDm9bK83PT48hDwvvIw80wL0PO+qsTz1IBM9I+rSPLLijDz7w588nhe6ueuKXLxZnTA8I+pSu5H8prz1IJO8dH3KPCa0Gz0U+CA8GkWhu6S4obzSYw47gE8EPXKmK72Hulc9O51BvLTX/ru9bTW9kFAOvEKUNb1LLBE8VKY8vA2AGjywJ5y8Ly5HvLHTtLs/vRY8KWJZvFWoYb0aGhs9n/uLvaxqBj06R7W8RG35PL0XqTz8bzg7f2uyPGhk3Dtfvyq8RG35vJH8Jj2f+4s7Nd6GPNX1nbyzAOC8nsEtvdl4VTusiNm8hg6/O7lNYL2Uf946h/IQPRrvFL1ClLU8ybEpPXzM7zyyVEe7BcipvEUrDjti3Q281fFRvJTQT7z0kHO9YcoGvbOxKj0yjOe771e1PBcAdr3+OQK91RdgOvIeSb2kG3o8vSx0vB6X6ryonz69xICZvFelEz0MhSy9qTf3O5dx1by3zSc880TXPB32ZDzeIP880jMLO6T1a7yBjza8+B2FO3dgCb35HYW9T9UJvQ7Hjjsae227cTGFOOP5LLsCJ6S8LSROPT2BEr3vfUM762oTPfaiDb1yapo84aTDPPMUj7ycXve7Z5v9vD7Nrry0BhQ9pPVrPL9RlTxsTh25v2QcvZEJvLvyrB69oV0zvUMG7bygCMq803+nvNdPCD3kH7u71ueXOwAe17xbm4I9Jbw0PBAApDsQAKS8ruqWPJJV2Dy0b3E9S1HFu+M8/DrH1QK9EqEpvSL1oLxI/Fs7G9BWOn3usDy+GIA83gO+vGkW9bu5NZi8FO1FvMdkbj3a8A098xQPPSCgtzwJ21m9TMNvvIVWyrwGHZO8UXaPu4Y5iboGCoy8u7pJvFBtQr0aOB68nI3SvJ5wET3dawW9V7gaPYgd3rsDC3k8vJ0IvXkeUD34hmK8PhD+PKnr2rza3QY9a2vevBp77TxKd9M8fHyGvLKxKjxsAoG80nbau7Rv8TtQR7S8vltPPUewv7pXpZM9emrsu8hHLT0iEmI8iB1ePSRKij2g4ru8Cr6YuwYURrwGHRM9cTu/vdSugj0ueTc8tCwiPfnS/jwVhf48kISKPaSyHL2sla28zYBrPRGY3DoKmAq9dlc8PXoUFr3pFao73ynMvGabfTy2eD69TtUJPOt9mrqvNrM8plOiPAsKNTzx+Do9qxo2PPdgVLzYPIG6v6drvJSqQbycz4u7vz4OO37uMDqLoaI8lNBPvBfaZ7yxUoc9lapBvciTSb1IuQw9+IZiPL+KKrwtlni8NG+mu1pZID3mt3M9v6fruIWFJT1m3bY8RRiHvA7RSLxm+Qq9wt+TvKe8/zwyNpE9NuodvGW3KLkRQgY98IaQO5hnG72W/yq9NG+mvBuEujx9C/I7guQfvUYFgDwaOJ48lISzO9HeIbwxzqC8MjYRO4uhojz4FLg7Ubneu6/EiDz/hR69jkIovYpVhrzjPHw8tVKwOlkzEr3RKj69PxlLvZxed73Dd0w8wgUivEJutLzt0gM9toGLuJYlObyRCbw8I2fLO82meT20UrA8Rqfyu9Oltbvd1GK8aAwSPKyM4DzXbMm8HI0HvYuhIj2pEem8BAv5PD/zvLv5j687M7L1PKJdM7xkawy9sahdu8c+YL2/ZBy9QwbtvNXx0by/URU9R2SjuzXEjzt8czm8avkzvZu8hD0CmU68tCwivdDLmj09gZI9Ae6OPJAA77si9SA8++SYvHoeULxp8Oa7dSjhPHonHT2jz907vjVBPYgd3ryp9Cc9QPyJPMhHLTzPkgU5XymBO1BHNL2a7Mw8kLTSu07oEL0WaL08grVEvGl+vDyYl2M96e+bO5p6IryNOdu8UwQOPeMWbrzHIZ+8y4mPvEkFqb0ArKw7Qm60vD14RTxDioi8RQ86vTdcSD226ug8RCx7vVuuCTtHijE8Q7AWvj/zPDyZxr46UQX7vHX4GDyPtFI8EzlivaZTorsLMEO8SSJqvdUXYL3HZG697nR2vNdGOzz9Cqc7BcipvNb6HjxZnG89fcgiPbzDlrv1v868KF26vExtmTx6FJa8/4WevFQ9I7tzkCg9afDmPFlZoLknxQG8Nja6vYgAnbw6/U27iUy5OqyybrpTDkg8yJPJO8IFIryQvR88tsTaO1lZoDzCBSK8NuodvLturbo3LIC9yWOBul4pAT1vDOQ72/ANuhZoPbsqg0g9tp7MOyv1crxiYj88IuzTvBnjtDzwyV88bZFsPWZPYTy1GZu8oVTmvDDrYb31v8488e9tvNSugrymQJu8qJWEPYLkH7xj1Gk7sniVvMSAmTytla27ynYIvB8bhjzOYyq8GxIQu/fuKb1g50e8YVlyPGw7lr1vMvK71iCtPC1TqbqIAB08H0EUPbturTqU0E888KPRPDiCVrwvN34+T0e0PXoUFr0XhBE9hqszO05k9byg4js8eicdPZb/Krt+Ok297FcMvd3UYjzlThY96Vh5vKPP3bzFR4Q9jTnbvHdzkDxFBYA9d6PYO6zY/Dxyrek7/QonPTDr4TyjeYe8++SYPEnfmrvnMmu7MRo9PF8pgbySEgm8DtHIPCLimTwoER68H3FcPLWeTD2WjYC7LUpcOjA3fj1N8so8o6nPvJdLx7vTwva73DwqPXZ9Sjujqc85nOKSOohpervdrlS7/18QPM5jKrzEUT47i6EivALbBzzlKAi94DIZvV+47Lw+lJm7tXg+O6tARLuQlxE8dOWRus09HL3jrZC8ehSWOq+xgTw6/c08vjXBPM/VVD2pN3c9HtmjPDtSNz2X2Ry9yJNJPRTtRTxy0/e8NzY6O4hDbD2aeiI8X5srvAsTAr3x7+27ypwWOkA/WTyjspw5S1oSOyqp1jx2V7w8GeO0PCqyIz22bgQ9HpfqPHTSCrzoDF08ruoWvURbVr0+lBk964dUvQx837wVQi89oTclvXBhTb2fcBG8qhq2vJqgsD3sti89SlFFvQDIgLyJAB29MhCDPOM8/Ls/za67PZ7TPCRKCrsysnW8B0MhPeTTnjyGqzM8YOfHu2S3KD35aaG8TfLKu+kVqrxTDkg83a5UPEtRxbsoXbo8DKJtPPsnaLxM6f084FinvHd9yrwRVQ29cq3pPGDnRz0qz+Q8AKwsPbqx/Dz2C+u8hKLmPHUo4bxumjk9cMkUPGSu27za3YY7GeyBu4qY1bxiPLG8ybnXvOP5rLx1Tm88Siu3O5fZHD0RVQ28tG9xOzIjir0LCrW7anSCvOjJjb3bf3m6l9mcO6ifvjzHDhg9CbXLPIFDmjzXbMk8F9pnPKH+DzunQBu8KmYHO/q1vTx3c5C7ygX0vC6fxbwcjQe9rxAlvGTUab23EHe71foePV+bKz1oWC49EXJOOW+jhruDvpG8keOtPH3IIj3720u9l5fju1GcnT13yea8x2TuPAJNsj0llqa7BhRGu8774jwkSgq97Pl+PePwXzzHIR89M5W0N26aOT25P9I8SLkMPW4ycjzBzIy8L8VTvUA/WbylJEc9ZLcovAsTAjoPQ/M7VYm/vHKHW729DzO8emrsvPvkGL06b/g8EZjcPAm1S7t8Tau1ri3mPC/FU7375Bg8/4WevAcwGrwRmFy7bsBHvIkmq7zJ32W8gtvSOhTjC7x+jw09k1XYu3onnTwsJM472hYcPaN5hzsxGr08T5NQvXmsJbx97rA8YvCUPCqyozwjzxI9YVlyPNbnFz2hN6W8wiLjPOQfuzuJckc8XymBuxn/CDxADxE9UxcVvX2PDTrzAQg9RmSjPCI48LuOaLa79+4pvVG5XrwjXv48KmYHPNt/+bzeIP+844eCvVMXFT1xMQU9k1VYO4pMubv1czK9hDC8vMJI8TwrU4A87QLMPD14xbzka9e6P80uPXTcxDzSfye9w3dMvWb5ijtj1Gm8YA3Wu+uQIbz/98i8iB3ePHDvIjzj+aw8jRwavcLyGjt3yea8UcIrvQN8DT2KaA091vqeuyRKCrymStU8nV2KvLzpJLyZZ5u8sajdu+AMCzzhpMO8XmKWvEs0hDyC5B+8eNKzvCv1cj2mlnG8tRmbPPNNpL1zkKi8QD/ZOw4dZT1UiT87vQ8zPT6UmbwU0IS8GzieuqtmUr0m4sK7nBuovLydCLvj+Sy9yt/lurPghb25IpG85B87vJeX47vnmjK9aB8ZvJWNAL3CK7A7pBt6PTr9zbz8MLU5X3WdvA73Vj3Aiiq91sGJvEBlZ71O+xc9y5yWvP+FnjsDTbK8liW5vPaiDb0Ij708uM2nu33uMD2LoSI8IvWgu2gyILwIjz08dXT9O/Gsnjwr2DG8NOFQPfg6xjypN/e7YsoGO+BPWr0n4sK8AETlvPtNdjxc1Be8q0kRvWMWo7oV44s8wgUiPIzHsDyIAB28CxMCPE3CAr1dkl678vi6vLQsIrtW1ds8l3FVvdw8qrt7Tau8feVjvegMXTxxFTE8IxuvvAXuN7zlRck8visHPUan8rtsH0K9vLAPPEUFAL1vo4a8bEXQvdhPCDx+tZu8Fmi9POnclLzRnOi7K9ixvOPAFzujjA69+ttLvFBtwjzskKG8Kc/ku7turbwN91Y7+wHaO8774rxRiZa8VPEGPQhpLzxst/q8pSTHuuMW7ryz/cY71ucXvH61mzz5rPC8nkoDvZyN0jp1+Bi9y4mPvAyibb1XKsW7d8lmPW6aOb2p9Cc9v4qqu6H+Dz0UHCG9J9gIPXZXvDplkZo8DHxfvRkvUTwBARY9oTclPaPPXb1tTp289+4pvefmzjzbYjg7ukifPXuQ+rw3EKw88ycWvVRa5DwOHWW9Fl4DvJoS27y2boQ86ju4vfGsnjxKUcW8HiVAvKyy7jt7kHo77ShavX3usDzu+JG8UwSOvF5sUL3K3+W7VpIMPLzppDz5aSE9zyFxvGqakLyI2g69vMOWPNi45Tu6SJ87QBlLu8IrML2Ahum8M4xnu0KUwjvIk8m8Q4qIPWkWdTsqZoc8aaRKvBQJmrxqdAK9ctN3vJyNUr0AROU8tZ7MvJP/gTwxGr28WXbhvOBP2jvwc4k8QwZtvfSZwLw0lTQ8vQ+zPPEV/DsP2pU8kLRSPWI8sTycvIS7661ivRp7bb0wEfC86MkNvAQL+Tvdfgy9WsJ9vc49nLyc4pI8X956va/Xj7wYL9E88h5JPPppoTqPaDa9rgdYPN63Ibwd9mQ8rLu7O3EVsTz+fFG9rJWturXE2jwFYGI8HLMVPephRrzcPCo9rLJuvbaeTLwXtNk8tEljPfhg1LvWwQm9wNZGO6xvH7r2C+s8EVUNPVMEjj0EaQY8GeM0vZYcbD1qFvW8/QonPdLC9rxphwk7NOFQvbE/gLtc1Je77nT2OjNJGL1TDki9kHEDOwx83zu1xNq80lBMPeCb9ryZxr48tPMMvEQs+7vqYUY9UQV7u3x8Bjy5P9K8z9VUPYO+kTzQy5o8KF06vCW8tDtpfjy9jRwaPQBE5TxFW1Y8lNDPPO/4ET2nU6I9IjjwvDdcyLvQyxq8K1OAvBFolLwuBw08xaanPOKkwzsvgoQ7ufwCvd2REzx7c7k8PXhFPanr2jzIbbu86ObOO8m51zzqOzi9JgjRvEUYB7z/hR69KTesu7PghbuuB1g7deWRvXFhzbtZwv26HLMVPfwn6LybGyi9zvviPL9Rlb3EWgs9uPM1vfg6Rj3D8ho9Q7pQu3EVsTyCAeE7kQm8vB7Zo7y3pxk94xbuPF1GQjxLWpK9vLrJunoBj73a50A8lKpBPGw7lryWJbm8WQ2EPFEFezyB29I8k6F0u+bAQD3x0iy6HI0HvRFF0Lt3cLQ6GFCjvG2qZ7t9gjW89eMcvRCDKL1z21Q94zHpOyzk27xY/nC9JHQlvSCh7bzzrPK8Kmc6O0/MErygz8+8oM9PvVTG1bzWUm071NVLvWuKCj2O16Q7GT0WvBZ2PT3r33c80vvlPHh8kzwgwNk8C/X2vMb2T7yYXxk7nFncvXuJY71hxL0726LGvBDBAL3/0HS8hRHYvNuiRj3MCFG9WP7wux9Plzz5WRC9CZfBPN18LDqWZse8+/UdvFzdB70ugOk8yO8hPWd5erzb4J48bUWEPN18LL2Jpje8RCxgvQVfJr2kZC+9vMufu4lJc7wkNk09tQqEvB9PF7x805q8e6hPPfPLXj0FIc66XHTkvDTvrjxti/s8oA0oPXeujLvZ50w8abCkvK7NtzuPxJe8MnKNvDlxAbzXqAM9TNpuvHbBGb2VbfU7iYdLu5Vt9buHFgk9gdm8vKKpNbwo6hg9cSBbvNWQRbzvNn+8osghvG1FBL2mXQG7g3VKPFasGr0SPiI7hU+wvIVPML1pcsw8gZtkvOERDD2mwmS7mUwMPPn8yztvZeE8KdeLOjTQQj0YEku8EIMoPa7sI72NoPo8HOWCPdgsU70gwNm8NO8uvcpNVzumH6k8kmyEPCLYlzzp3oY7k7J7PanHlbzbg1o8Y70PvNuDWj0+Gl89yk3XvEATMbyYQC28W9EoPS78mb3t2Mk8oM/Pu7h0GD3r3/c8oLBjPaSDmz0dswm9B73bvFNChj3vk0O6ypcOveBDhT3MRim9BX6SPOULT7qSbAQ9xkAHvY3eUju2XFo8CXjVu0SokLz3fyq7PH5RPWHjKT0g/jG87gOVuzoBsDxxAW+8rs03vap2MLwazUS82A3nPJAWbjwSPiI839rhPA0ZFL2HzFG98U69PMRawjxjYMu7osihvE0RGbw2Lvg893+qPS7dLTx/wf48Eh82PCYvH71jnqO8QlJ6vB9ug7z6Jxc9wEGTPZF/kbzrW6i8qjhYPBGPh7zo8ZO8OgGwvGVZHT3h8h89kmyEvI0oCr0cpyo9Uuzvu/XjHDyBNoG8kJKeOzCYpzvnp9w8aZG4O8PKk7rCYfA7GgudvK/ZFrvKi688W9GovCAdnrybBwa9h8xRvOcjjb20HRG9GfNePMQ71jsuvkG9IlxnvAfcR71I4Ku8n14NPRV96zwQwYA939rhuu01jrwuYX28hKCVPHGcCz0f5vM8fPKGPKo4WLuQkh496SR+vVdbtTwmL588JxySO6RFwzwgoe08JPj0vJMPQLrRWCq96qyNvGA0j7yf1n27iWjfPMouaznKbEO88W0pvUSokL17BZQ9DTiAvHNXhb2qtIg9fz2vPNL75btamn68Eh+2O3dwNDuGWw+94RGMvL6GGT000EI9GgsdPAteGjxfy+u8X0ecu19HHDuF0/87Z7dSPNXOHTzMJz29+Ru4PBoqibycl7Q79cQwvFhnlLtlG8U7hkiCPQVrhbzoYta8lavNu94A/DyUyjm98locvBlcgr3Ow0q9VBCNvNL7ZbwRJmQ7YcQ9vEbI7bxPrSY9ldaYPBgSy7xrDto8xP39OjGFGr7zrPK8nlIuPLzqC717qE88g3VKPFc8Sb0Bysa8+nltvInFI727HAW8hRFYvcxGqbxES0y8RiUyvHkMQrvxq4G8h+s9PQsUYz1EqJC7Lt2tvF0vXrwVnNc865mAOlMErrwBCB+7E8JxvCKavzxdTsq7W5NQu3P6wL3QQOy6+b7zO7Zc2jpZ90K8osihPDy8Kb1RSbS7A2ZUPKQHazwgHZ47FeYOPPlZEL3cZO4810u/vAsU47s2bNA7Tv4LuwmXQTrrmYC7s0+KPJlMjLxzvGi8ZKoCPZCSHr1rDlq7kHMyPV8oMD1wzgQ9L+kMPfu3RbvdPtS8/bAXPfQVFrz71jG93ogLvUiiUz0RcJs63oiLPDqk67zI+4A9ph+pvCQX4blhhuU8yk1Xu9GWAj3xqwG95lWGvMT9/TwU2q+9lMq5vBCDKD2Fbpy8BeP1PHvHuzzeiIs8kHMyvNFYKjvzy966AataPjGFmj2B+Ci8ruwjPbaaMjtZ90K9T8wSPO3YybtpNHQ73xg6vQGrWr2lcA68W7I8PRrsMLwNDbW8ay1GPU+tprzI3BS8utJNPRzlgjvzRw89fz0vPb6GGbwwmCc9yg//vC5h/bu7HAU7yJLdPIeOebujtZS8RWOKvGN/t7zaEpg7jtcku0ATsTsVfWs9UI46PFqafrywaUU8NLHWPCQX4bxhpVE775NDu5WrzTxhIQK9j3rgOrQdEb33A3q9lW11vOMx6TzG1+M592C+u+Hyn7xtB6y6bQcsPfdgvryLbRC9+b7zPHzyBjxWYmO8NmzQvF8osLkwmKe7F6EIvMKfSL1Rh4w7MvbcPF1ttryjtRQ9SboRPVIL3DzrmYA93M2RvQtemj2Vq008fURdvHbBmTw++3I92hKYusDF4rvfGDq9PH7RvEqbJb2WpJ86wS4GPMK+tDzr/uM87bndPKo4WD2bnuI89wP6O+NQ1TzAxWI8HGlSPD45S7zMRim8uWELPa6uy7xG59m8S3WLPXCvmL0c5YK83zemuzsND72Hjnk9n/VpPFzdh7pa2FY75yMNvTsNDz3GQIe7YYZlvKQH6zw46fG83XysPD6WjzwNz9w89YbYPLJDqzyu7KM9cSBbvIqAHTzhtMe8Qs6qPGECFrwun9W8fSVxPJPwU7umAD24ay3GO5y2ILtfZoi8hfLrvMEuBj04J8o828EyPYH4KD0oT3w8wMVivMbX4zy6s+G8tMBMO76GGTxt6D+9/0wlPCAdnjkT4d27FrQVvAGMbr0HGiC912qrO3sFFD2FEVg9DEsNvYXTf7xCUnq9YCECu155lTgHnm+9Iz17PDxAebwuG4Y8H0+XuvMJNzyDs6I8lyhvO8tllTzVr7E7I/h0PFzdB73EeS68Zd1suzhGtrxhxL28gbpQvVBvTjxUEI29NHN+PKDuuzusUBY9QR8QPVgWLzyJprc8g7OivNLceTwYMbc8AvWRvBGPh7wazcQ8W5NQvR9uAz3AIqc9barnvCQ2zTzlC089+d3fvJ2jkz3V7Qk7submPFq56jzayGC80tz5PGOeIz0YUCM6WVSHu6p2ML1LVh+8lsMLPV8JRLtnmOa8CZdBPKnHlbxD2gm9fURdvOfltDxZVAe9hY2IPFuT0DyavU46A8MYvZxZ3LuLQkW9jd5SvIXTfzs4CF48Z/WqOoLlGzv7t8W8wEGTvL24kjxzGS28g3XKvFc8ybzaEhg6hwoqPNjuej1Y/nA8GuywO0ZEnr3n5TS8b8IlvKbC5DwLFGM8Ji+fPOsdUDsmL587wMVivHuJ4zwP1A09oCwUPFrYVjuDlLY7hW4cPSVhGL0rkgU9uxwFPVsPgbp3roy7tQqEOwZMGb13cLS8OXGBPNFYqjzeH+i6IB0evciSXb3uAxU9pCZXPV/q17tqvIM7DEsNvQL1kby5lPU7B57vvJ5Srjy0oeC8GDG3PGq8gz2+hhk8Yu8IvXXUpr1XeiG8UYeMPLovkjm2e8a80F9YvQZMGT0rkgU6IP6xPBIfNr3KLmu8BQLivMiS3byDdco8v3OMPK/4ArwNDbU84ZXbPEQNdLz145y83XysvNMTJLt3j6A8BxogvSpITjv9U1M8Gq5YvSnXC70SXY4977IvvZdH27uonEq9TtPAvHmv/TwZ1PI8/p2KO9xk7rskNk29JxySO2eYZrzt9zU8OsPXO5MPwLwa7DA9XasOvYw7F72onMq73XwsvRJdjjzHIRs8naOTvMYVPLx7ane8VkP3uv9MJT046fG8JhAzvGk0dLvn5TQ9iaa3vJkCVb3dXUC8FzjlPEwYR7uwxok5H+bzOw/ILr3TMhC9KMssPet6FDuia109b4TNvLCnHTv/TKW8uNl7vBDBAL3dfKw8xYUNPJFNmD3f2mE9g9IOvCKaPzxAUYm7GFCjvGO9DzyV9QQ9Y2DLPDI0NbwDpCy8N7aHOw3PXDxXPMk82O56PM4NArwJeFW8IrmrO6uCj7xvRvU8UirIOwm2rbwI1Zk7FBgIvW/CJb02izw7W7I8u07TwLyDs6K76zy8O5XWGD3nIw091c4dvWd5+jwZPRY8yi5rPBPh3b1EiSQ8iwTtuzRz/jxVoDu6+5jZu6DuO70L9XY8pGQvO0tWn7x/ewc9icWjvBQYCL2YfoW8HUrmu7xu2zy165e8JDbNvLscBTwugGk7Eh82vY39vrwcpyq8GVwCu+PMhbyqtAg93zemu9ZS7byRVMa7n14NvXF9n7ttyVO931aSPIeOeT2iyCG8BLALPZE1WrzIc3E9dbW6vFFJND1G51k8Rx6EPCChbb2VbXW8F6GIPVrYVj2C5Ru9GgudvFasmrvAAzu8fWNJOl0vXj2uj988XS9ePbv9GL2YXxk9FNovvQtSu7uD0o69fSXxPANmVL1dq448Ji8fvCazbr3Apna8wr60O6BLgL2V1pg6youvu4O/gTvEWsK6JvFGPE6V6DyRVEY83GRuPLhVLL23phE73M2RvJy2IDo+d6M826JGvN1dwDuqtAi9BWsFvIthMTwNDbU8gTYBvRS7QzzMCNE848yFOigJhbzjzAW8FNovvaRFQ7wPila9vqWFvKbh0LzeH+i7m3/2usZTlLwobui8g9KOPP6dCr0y9ty865kAvcqqG7xCzqo8Yu8IPfuYWT3tud08W/CUu5dH27xTQoa9UirIPOERDL1xfZ88OOlxvLSC9LyTsvu8ph+pPPndX73PnbC7h8zRPBcxtzv3npa8SOCrOzGkBj2JaF+7vMufu389LzzXaqs6XnkVvUAynbz3vYI8qH1ePJzVDD0LXhq9QlL6PG+jOb0sIrQ7SOArPb5nLTzbokY6XFX4vJoaE70dSma8938qPW+jOTxvwiU9IP4xvERqOL11lk49kTXavKwSvj10JQw8WP5wu94faL1zOBm7BwcTvQsU47z5/Mu8CNUZvXXUprxnt1K7rNRlvK7sozvjjq27OgGwO5hArbzI0DU7yg//PDIVST17xzu8yosvvUD0xDzTMpA8D6lCPEbI7bzv0Zs9WBavvP3PgzwBCB89WB3dPO25XTy4NkA81a8xPeXs4ry2e8Y70XeWuxMASrwm8ca8nNUMvLJDKz0qKWK6c9vUPPWlxLxKmyU9D0z+vAOFwDzYdoo9C3GnvHOdfDwHGiC8BX4Sve/RGzsms+68Z5hmvTC3E7zXqAM8TvIsPPd/Kr2NoPq8gZvkvKRFwzzh8p+8A6QsuX97Bz2gDai9NmxQPfWlRL1YFi89T60mPTxAeTzkEn09duAFPQY5jDwLUju9tQqEPJy2IDwa7DA9H0+XvaRkL7xpsCS9siS/PC6+QTyoXnK8sMYJvRyIPjsMLKE8IN/FPHEgW7xQuYU93V3AOyRVuTvP0Z08fSGjPLLYQr2A7PS7W0aevTgz97x683I8GlvmPPyHzjsVmga9ApiovI7rXr1M2hW9276oO5fQfDynApA8AmX/O+nHhDyn5j49Qi/tPEhEQLxoSgE9N3oEPRd0Q71/8e08AWr4uxONIDxiFGS7y86pPM3JMLxQOMm8QVqpPEvfjr11+nA8XTwsvGLIj7yi/xu9gq2GvHYtmryPBzA8DY8lvY4MKb3OqGY9REFMOh9/pLszcpe85rqevOqhQbw6RVa9q8jovH6lmbzOnnS89L4BPeG8IzzJoPm8q81hvLDG47yS1/q8F1N5vTZCYjzazZO7qtfTPA1zVL266By9L28jPFdDKj3zgeY7iQm1PNrImrzrnEi9lORgPOucyDzhoNK7lvu4vNydXrwxRGc8CHrSPHIqJju646M88Hl5PTVjLL1cPKw8nQGhPOBPBT2q86Q76YrpvCVSY7wWlY28EiCCu/WTRbzznbe8CXVZvTn5gbwdTHu9ejUHvGUFebxLVh+9Fn41PAalDj36kUC80VoNOpLXej1oSgE9di2avH2vCz2+xU29EnZIPeqA9zyUADI9cB3AvEU3WjwTbNY7T1SaPPKsIj01TFS7bLqTva/xHzzLzqm8exS9PK7VTjzppjo77sCGOtSXdjz+ma27bz4KParuqzqHpog8JHimPChaULyXEpE8CZGquqP6ojwVXeu8Tz3CPCxLZb1sENq85UgHvDFEZz0Ejra6GIubvfilJLxxNJi7C2ZuvDdes7yX9j8926dQvZgNmDuACEa8WtQGO+a/F72w4rQ8bLqTPJQFK7tBOV+7teohPXYoIT3No+27nBCMPCZNajwNc1Q8ZT2bvLxnmrwPhbM8O2EnO+ZIhzzduS+8TkK7vJDhbD2PDCm8VBrzurv1Aj23uuy8cDmROzM1/LvEbYI75Yf1PAcphT0Skpk8qMV0O6WDEr2FBkG9k5MTuzZC4ju1xF69AJC7vI710Dzzhl86LEZsO5ebADwuXcQ8akAPvZ3vwbw+ZBu70VUUvIargT2JEye9IYyKPRZ+NbyH4H07lRyDvJebgLvsQQk7/KgYPFvPDb2ECzq8cMIAPCR4pr0jfZ+68qwiPcKxab2FBsG7PU3DurnHUr1cPKy8A5MvvUFaqT3U1BG8tM5QvURBTDwkfZ+97LMgvarzJD2DGiW9ZAryO28dQLu2bhi9aA3mOxWDLj0uXcQ8JVJju1UxyzzBZZW6z9GdPPKL2Lzwefk8Pk1DvczOKTs19g0938sOu9HHqzx0PIU8cr0HvTlmoDzroUE97LOguxGAOj36ljm8qdzMO7mw+rwVXWu9xKL+u4L+0zuw4jS9Pk1DPZfQ/Lu24C+85YL8OkNLPjwRZGm76ceEOY0Rory3umw9lvu4PCxG7Du89QK7LnScvJIPHb1yuA49UOKCPe+ktTu9s248fArLvLjRRDwlc6081qnVu3e2CT2wy1y8Jm40PW4GaD03XjM90cwkO44RIjys5Lk7uLXzvPMwmTtvIrm8sthCvQyZF7x6D0Q8rMPvvAaJPb39h868QjlfPdGmYTwwSWA6sOctPT9DUbwPGBW+zOAIvXU3jDwvbyM8uNY9u1FKqDxeTgu9Doosvan4Hb1nF1i8gQjGvHoZNr3BtuK7YSPPPMS+T7yp+B28TkI7PZQAMj3cnd48qddTu7rMy7zRq1q72s0TPAaljjqy2MK8dhFJPAebHLwQgLq7sXWWuxuTiLuc9Dq9JAYPvf6ZLTxEXZ08zahmPJvY6Tzlh/W8wbbiO73UOLzK06K6xtUnPQImET3HXhe7Q2cPvIULujsafDA9z9aWvL7PvzxxE069Ikp2vEpRpj0JkSq9fQBZvfeJUzw9Nmu91qnVu/qWOT2rBQQ9+pY5vOuXTz2/4R68kwqkvRyOjz0Tcc88ZxJfvI8jgTuo/RY99bSPPGy6kzzKvMq8evjrO7TlqLxDRkW8mvkzPVFKqDynApA8ElV+vVtGHrxrH8U8fSGjve08ED0VYmQ8YxRkODxSPDug1uS8PXMGvT1uDbxxGMc7MmA4PWbLgz5nHNE8qvOkO15OizxQOEk9rvYYvMXaoDuNpIO6GBmEuxuYAb3ZlXG8QD5YPAmRKjui7by6kwWrvHn95DwnZEK8C5kXPZ3qSD2J8ty8ZjgiPTVMVDsFiT28hgFIPFpQELz1tI+8s7f4PDN3ED3H0K66bDadu2saTLuJ8ty6s/STPL3PP7zE35k8+beDPAiWozsOHY67FljyOxd0Q7spX8m8AG9xvIT0Ybwr+he9TzhJvBZ+tTv2cnu818AtvWgpt7z5emg8JFzVPA1z1DsMXHy7jPpJPGMZXT0uAgW7LEbsu0ZYJD1SJGW8SlafPEtWHzz+lLQ8wWWVvDd6hLv1d3S9bz4KvKvIaLyAEri8ifLcPKvkOT11/2k90lAbPcndFL1ZVYm8GWVYPJr+rDqm5r465cSQPdCwU73krbi7PDbrO4ro6rxsxIW8pPWpvCJK9jyY8cY8SzDcPPkpGz2sBYQ8l5aHPDVjrLwlc628eLGQvIMVrDz4pSQ8VFIVPUnpgDxeEXC86LAsvbbgrzvakHg7hQZBvN2Y5TxNJmq821YDPe+kNb1KVp88YzC1PAgkjLwudBw9dvX3u/aTxTxa1Ia8TUc0vGwQWry1xF48iyCNPTphJz1x9/w8PmkUPY8HMDxSJGW8JHgmPB9/JLx5/eS8GnwwvcmgeTxa1Aa9ZxzRPFQ7vTyq8yS7pvAwvOXEkL1sGsw8B6CVu/R8bTuVjho9sthCPN+qRL2hzHI9RlgkvQCQu7xBWim9VTbEvOw8ELtuQwM9WMwZvQgkDL01Yyy9WS/GPKHM8jxHMmE96qHBPXoZNrw8XC48D4WzvKD3LrxcypS8C5kXvcTkErt1/+m7/pS0PLzwCT16Gba876Q1PC1dxLsogJM84bcqPY2kAz0+TcO8IHorvFVNnLwIetK8JoqFvAmRKju0c5G68503vT/tCjzNqOa7WTm4PPKsIj1xGMe8bx3Aud+vvbwLZu48I32fuvuoGL2dyf68LX6OPTlmIL03XjO8+ZuyPQkfE71wORG8SSP2PCpxKDug9649qfgdvW8iOTw+8gO8GlvmuzMAgLxLMNw8/njjPK3fwLx6NQe92ZVxPJTu0jzAu9u8h6aIPG0xpLyp11M7B2P6vI710DzzgeY840Cavf9z6jsbk4g7zFySOzP7BjxX0ZK71LhAvazDb7zDsWm7J4ATvcyt3zxtC+E6FV1rvaP6orwHoJW8kB4IvC79i7xWQ6o8EWRpu4sgDTy7vWA9u94qvMZeFz0HY/q8mt3ivDBlMb2GAUi8bicyvGfGirwcbcW7LTz6vI4Mqbz0uQg9JHgmPY2fCjyz9BO9U1yHvGMwNbw69Ii8hxigPNbArTzEon68+pa5vAeExLxiTIa9Q0s+ve9+cjz9ma082s0TvVFKKL3giXq9SuQHPQqoArysAAs7vq51vdGm4TzZtru4Qku+u6HMcrx0PAU9HG3FvGbLAz1rO5Y7VVIVPG8Bb70Re0G9VFIVPT/tCroeY1O8rb52vDw7ZDuEJ4s9H1nhPCVS4ztrH8W8+InTPFfRkrxZE3W884bfPAebnLxUVw48OGsZPZmRjrsoPn88KmwvPdmxwrtzILS8jBYbO0xHtLxwGEc6/7CFOzw267vDrPA7T1mTPWRCFL34idM8JoWMvSR9Hz1W1gs984ZfPDJWxrstWEs7dhFJvbronLsArIw8u2caPKzpsjxZE/W8cB3AvHAdQL3Jxrw8P2SbO0FaqbzBZRU9agjtOtGm4Tx0IDS8rN9AuxsKGb1sENo84ZtZvNap1TmAKZA8OmEnPWI6JztZL0a8VidZvRBk6TwriIA8o/qiO+KW4Dv9nia9tcTevKPeUT3DrPC7F3RDPQtmbrwQhTM7y86pvE8ceLxW1gu9EGliPStsrzu14C89ehm2PQdoczsoPv88Ry3ou2kI7buVjpq8lRwDPZXf5zzsrqe8UN2JPPaOTDz5mzI8YjUuPR96qzwNHQ479zgGvWE/IDx6NYc64Il6PMTfmbuz08m8ehk2PUBVML3GXpe9mPHGO/wxCDtcPCy9usJZvFkvRj2S+EQ984Hmu2A/oLw7XK68H15avea6njyHqwG+2dIMvHrzcryh6MM7UNgQPHoUvbseDQ29wNesPHYRybysw++8S0ytvDpFVjzOvz49lI4avB9e2ruX7M08SShvvZOdhbwcbcU8KHuaPAN33rwZgSm9NWglPbDiNL3e0Ie8BqUOu8lmBDrqhfC7GIsbvDNRTbxhPyA9ZxfYvDbxlDwkeCY9/nhjPBZYcrtQ4oK84rKxPB91Mjr8a328FRGXPSyDhzyKCbW7FpWNvOnHBDzmup49jRGivE4hcbzSvTm8N3oEvfMwGb2Xm4A9udFEPcjnhjwRlxK9nNNwPIIDzbwlARa984FmvEE0ZjwXdEO9iQm1PNy5L71qQA+9JXMtvOdDjjwaD5K96qY6PaIElTyV3+e7HRIGvUlgEb2UALI8lvY/PPKLWLwpdiG9+aArPH7737zcUYq8Gg8SvSFwOb08Nuu6WRjuvCZuNDt8Jhw93tAHPNJQG73F1ae8tLL/OoP+07wxgQK9jwcwvd6Y5ThcQSW9sthCvcndlLwSdsi8vc+/u53vwTwu/Qu9XRbpPNm2Oz35m7K876Q1vfKL2LwjYU48Tl4MPVxBJT0vU9I7YhRkvO2NXT3K2Js8st27vKP/mzzBtuK7XlOEPOSoPzv1d/S7/3PqPElgET1jTIa8uLXzvNuLf7z9fdy70MwkvZ/3rrzzhl89wbZivBJ2SL1KW5g82bHCO0kjdr2W+zi8sXUWPSKHETsTbFY9GYGpvD4s+Ty5sHq8ue0VvHYRSTyeASG9D2niPA6KrLz+niY7wdesu48HsDyc70E8EnFPu6ONBL13LRq9bgZoO/Gxm7wFjrY9IoeRPEbmjDwUZ927C4I/vVxBJb0ha0A8hRAzvL245zoGbew6jwewvDZC4rzIpXI8TiFxvJb2PzzXn2M7yd2UvFBPIT0fXlo9K2c2u86oZr298Ak8/Gv9PKrX0zywxmM8D4WzPQGnk7wrbK87bCyrvCRXXD1xDtW6hgFIPSyDBz0JH5O8r+ymvOt7fjxA4xg85YJ8vT1SvDu66By847IxPCZuND32cvu8bbUaPMilcjwvbyO8udFEPVoO/LzRzKS786KwvCBU6DvXqdW8gxolvZ78pzyNFhs8G1btvMBqjjtkKzy9qOFFvUYyYbs86pY85r+XOw9p4rzfjnM9R9wavX8NvzsXb0q8347zPOWH9TwoZEK9vbPuObHiNDwtQfO8JGHOvOGb2TsQZOm84rKxPD9DUb05+YG8XxHwOm0xpLzgTwU8ktf6uwegFbzMyTA98JVKPKYMAjx/9uY8sMbjPFMf7DyEFSw8+PpXvQsofjw9Aza8eITRvMtSorxkLyi9v6G/vKYmMD0DmUe8apIhPMC4bL0Ac+G82i/CvNcebL26Zkk8rXSZOmIFCL2PwDA7sMY8vcgXLD2A/Nq8fulnO+OlrrtSlgM9GuiZusQIczpd9s48kRTxvMcCnLw68t88fMHkvJlgvbs0pHY77UOevKUTPb3XM3w8s+4/PNgForxUVsK7rrNJPSFiwLyCD867JbRjPC3pgr1mg2g83W5yPB4OgLxHeSK7LygzvQ9hV70pw5w83mibu/sLrjy/CQS9uD5GvQr6I7xv5ES9u2QsvcLHpb3+sAW9zFIiu0WSbDzsXOg8o2gOvHZFIb3FG2Y9owJnvOTNsbzi0eu7KgTqvN5quDynO8A8O/DCO9LjdTvwmfu8jZaQvDE5Cb2ZjHo8Ghb0u6dS7btPMnk78/2Fu818wjyIRoq7fulnu6uNYz0+A7Y8XMyuPMoqHzx9qJq7URcSvRfucL3flNg7EV86PHBhmbw/L/M8gyJBPAbUPb2jAue7YzHFvMUIc7yA+j28nbLgPDFnY7vaW3880AyKvPY6mT2Ixxi8OsYiPKthJryg7/M7O/DCvEd3BT1HeSI9ous5vH/QnbrX8i48rIvGO3M0Szy+jC+93VUoPf9GJD1wDMg8qVBQvcXvqDzikB66qmNDPaHYxjyz15K8VYDivNxXxbztcfg8G+iZvRFfOj2YNp27DYwIPVZpNT1hcQY9q3hTPZQ89Lz/W7Q8s+6/PASuV7tQbgC9inAqPR5R6jsM+IY8MBGGvROFILzjur68ous5PEV93DymPV09WY+bPctpT7shNgM9f+fKPF70Mb0kikO7QagNvaaQkTw1YYy8CeWTPJEUcT3WXJA81fTLO5peILxQG8w95KMRvVXTFr3kuCE9wt5SPCKM4LyjFVq9kD0FPW3PtDzVyI49SQsHPRYXhTtzNEs8KMU5O0vLRTu7Zsm80I+1vFJY3zvAHhQ9vZBpO237cbyyxB88MWfju8LHJb3tcfi8J7ApvWhqHjz/WzQ9+yC+vOtHWLvC4G88Ka6MugBal7z00tS7OLOvu1y3Hj2XT+c8F+7wus18wruhwRm9RNAQvZpeoDwcEjq9S7QYPekIKLz54Q29eZdEvfo3a73OqP88QC1WvAWqHbpv4qc8KgRqPMPe0jvKa+w8ZcGMPB4QHT0iee08zFS/PGMti7zE8cW8UIMQvIlyRzvGG2a8ujqMOtfyLj10HZ68SbhSPZuIwLyA/Nq7UkPPPGFxhrwiyoS8EnItvJhgPb0KJmG9UpYDvdpGb70Ew+e7El2dO7PuPzxwDEi8LWqRvJ2y4DzLgHy8c0t4vAp5lTy+o1w9hzMXPObgJLsEl6q8q2GmvMmpELtRLKK8WL11vPKVQbwLJMQ6WKhlPTE7prwiYkA9XyDvPEqfCD1UP5W8pT/6O1VUJb2pOSM8zdGTvAWqHbwb/8Y8/8UVvd5TC7vPpuI83VUoO1mmSLwBbyc8Ro4yPIyYrTwgOCC9986aPNkDhb3U9mi7U21vvAa/rTs1jcm8nPAEvSRzFj0vKtA8LBddvUbjAz3NZ7I7ficMvq7Kdjt0Xmu8A5nHPMlBTDwI57A82RoyvSRzFryT+ya8QT4svVNBMr2mJjC9hjOXvH7pZzv2Opm8o+mcvMzRkzvcvwk9fdTXPJtxk7rAy9+87EU7OsCdhTzZGjK9RqVfvCsCTbtHeSI9eW2kPOTPzjsb/8a8HCfKvVJYX7wUhaA7jIMdPFvOyzyBJvs7Y1tlPML1/zvrMKu8qFBQux0nSj1Yegs6QC1WOx37jDt1Mi6970EBvQwkRD3WCdw7liOqvPnhDbxiM2I8wB4UPKcmMDz01HE8QlXZvMXaGDwuFcA8jyqSPRjXwzypY0M8BK5XvVCDkL1e3yE9L5IUvacmMDxZjxu9JbRjPT4v8zu6Oow760dYPObiwTyIifS77EfYvIU30TywsSw86kn1PGZVjrx+Jww8BdZaPKaQkb2RFHE8XvQxPeXNMTyk/iy8b+KnO3qZYbwbZws8HSUtPOqHmTw4CIE+JslzPQnlE72XNp08HP2pPFKWg70eJa28PxYpPJH9Qzz7C668NXg5vR0SOjyECxQ98YAxPMcCnLwzThk9VuaJvNXfO7sQSio9CmQFvY4Vgjz0kYe8Wb31PMtW3Ly8eTy8oe1WPAsNF7z3zhq9EnItPdLjdTuwxjy9iFsaPY/VQDqXIQ29M80KuzwHcD0zThm9gyRevJHTIz0wPUM8Y5kJvdy/CbsLJES5ySy8O0f4kzzAn6K8XsoRvJuIQL3tRTs7eITRPK+cHL1zHR49qFBQvB8jEDy4Psa8r8hZvQbUPb3my5S8nZmWvIU30Ttd9s48cQorvM6RUry0VgS9qDkjPRsU1zyy8Nw8jhWCuzWiWT0K+iM9JIrDPDSNST2B5a28TgjZPIuDHT1kcHW9+iJbO/0chD3HgQ08dRuBu7UBM7z35ce5hCJBO8TxxbvYMV+7w97SvJzwhDz+xZU8YB7SPM1lFT3D3tI8AYS3PDjKXLyjFdo8eJt+vG9MibzUyis9FsbtvO9rIbyvGw48geUtvacPg70YwBa9txQmu+Xk3jy6fXY9+Q/ovMgXLLxEZq+85baEvEBAyTw+7Ag8FpgTPKo3BjvKqZC8QEDJPGREuDx+0jq8/3Lhu6AtGDxQBB+9eJv+uwkTbjxznI88J9xmvBC0CzyWTUo8h7IIPW05Fj38MzE9ea7xvPJ+FL1uzRe950oGPXH1mjxEZi87h123PFEwXD1GkE+9u3tZPTV4ubxgCUK8W+X4uyvtPLzwl947ficMPahl4LwmnbY7NHpWvfoJEbxpltu3I2AjPUM8jz300lQ8Bb+tPCN3UL0tahG7jsJNvLdA47wwEYa80I0YPFEZLz15rnE9XvQxPdGiqDz69AA9K+ufPP90/rtg8pS7ml4gvDgdET11c3s76AxivU3cG7z54Y27zuSGvO+CzrzyqtE6M49mO6YozTw8B3A9UQKCvNxXRTvYBSK8jRUCPAwNlztlWci8fNb0ux8jkD1g8hS8VIL/u/kiWz1v97e7qnrwvL51gjxDU7y7W6IOPYtuDbtTq5M9zGnPPA0iJz3cKwg8cfUaOyJ57bzw1YK8JIrDvEvJqDxw4Ao9wMvfvCFNsDwARQe8Vb6GvPW7p70MIic8yENpveS4obwGwco8IE9NPA41mryb3ZG7RqVfPebiQb0PTEc8kD0FvbxkrLsF1to7cCP1O8PFiLs/AZk8mXXNvEBAybp0SVs8OAgBPAg8gjzbWWK8QT4sPRv/xrzqG5s8VD8VvR6PjrsuFUA8aZZbPUVmrzsVBBI90KTFO1aV8jzAy1+9PQXTvFQ/lTy7e9m7HyOQPPL9hTqWOLo8TghZvJl1zbyVJcc89LsnOvS7pzmB5a28zqh/vXavAr3GG2a8e6q3O6m4lLysdBm7jJgtvURmLz31u6c8Zm7YPDJlxrxhNf+8rF8Ju13hvrzsmgw8r565vDE7prymPd08TghZPWZuWD2qenC6hkxhvRGJ2jzkoxG91keAPLPuv7wFrDq82G8DPYiJdDwqQg469+Mqu8VZCj2ZSZC84ZAevIU1ND0htxE9rPMKPM6RUjzxfpQ8YzHFvMPz4jzylcG8gPzaO6UqajuPwLC8pP6svKc7wDx7FBk932ibvBoWdD1b5fi7WtBoO9LMSL1tJAa8lk3Kuw0ipz0OY3Q8+vYdPQ41mjveaBu89+Mqu/bQN70Y7FO8WaZIvA0ip7rP5Aa9+gmRPIiJdL1qEZO82Ae/vAFtijqsdra8hTU0vOkGi7wr1o+8R3eFPU/vjrwnssY75eRevV70MT3g54y7cwiOO8+mYr3F2pg9NHrWvEveODy/jC+8YQelPNpG77z2Ohk9HTzaPCaGCT335Ue8Gxb0ujizL7zGBLk8tWsUPbgSCT01iyy8M06ZPGqpTjyvnrm8qKOEvE7xK707xAW9kNXAvEmfiDy8eTy8HiUtvcYb5runPV08LhOjPHReazy5VXO8n8M2PYczF71d4T48HRCdvMsoAr2b8AQ8CiZhvH7UV7v6N2u8FIUgvcgsPDuDd5I8pj3dvBroGTyj1Aw9IKKBPUf4E7y1FsO8AFw0vKp68Lwhee27RGavvQBxxDxhhha9DaEYPF7KEb17gJc6b/lUOxB2Zzy1FkO8gyJBvTFn4zvMfl+8xe+oPIucZ7xGZBK80KRFPaijBL3KP686dF5rPZ0FFT3T4/W8YYaWul8L37y5poq8zWWVPKeQkTtBPiy932gbvUihpbwkiCa8uEBjvJ6Zlr2TELc7hSAkPR9R6rw/QuY8XM5LO4hyRzxc41u9t36HPMUI87tc5Xg7/0YkvcLeUj3gqeg8rompPQWVDb01otm8M04ZvWnAezsAb6c7NaJZPXhvQb2mKM06JYgmOh4lLT3V3zu9Yhw1OsYZyTzzwf48zFKivUv15TwJ0AO9tBp9u03HCzyO1126wLhsvfwzMT216oW8WaZIPEEpnL2i6zm80I+1vHJ0DD1f3YQ9TPPIO8CfIr1XfKi8MbqXuYIkXjpuuAc89rmKu4hbmrwPNRq9kRRxPID6PTyb3RG947o+PfFpBD2uyva6tQGzvO7CD73arBa9hJ+VPGVZSL3bLSU9dq8CvWFxBrwAhtS8PhpjvUiMlTw3iY+8+SJbvSSKQ72FnxW8AEWHPXqXxDp1RSE7o2gOPWAJQjxpwPs7i4MdvUe677yD9gO9k2WIOZMSVDwaFvS8S/XlvOfgJL2zGv08720+vVQ/Fb2R0yO885OkPN5TCzrNZZW9ssSfO7tRubxBPiw81VyQOkd5ojwJ5ZO8jK9avFIuPz1Fkmw9Vn5FPXBhmTwDrtc8hh6Hvf1K3rxALdY7lCfkPAnQg7ttz7S8eNcFuyKM4DyT+6Y8NGEMPb/N/DwzzYq7LWoRvXusVDxKIBe94ZK7PHIfO7yCD848AEWHvV5Jgzz7NU48epnhO2ZsOzsJ0IM8EnKtvIU1tDyQ1UC9fMFkPWmUvrxv+VS7rHQZu7DGPDn3/HQ9jsJNPLGvj7uvh4w8jhWCPYINMT2mkJE81glcPMGdBb3Soii9wsclPR46PTsONZo8OB2RPIU1tDxzH7s9eG9BveF7jrt0SVs8URcSvZISVL3C3lK7U6sTvMcw9rsa6jY8liOqvBaYEzwyfHM9axETPbtmyTx2cd67Zmw7PNgHPz0iee28sS6BvOPPzrx8v8e8LUH9O/5IwbzPjzW9KcOcvcqUgLxoq+s7CeUTPRk/CL0eEB29QmppvGjpj70H0qA832gbvXusVD2Khbo7z3olvC+SFDuoUFA85w7/vAJtiru+d587sfL5O95quDwXrSO9npuzvLMDUL1LMwq8bTmWO2DylLyehAY9X92EPQ05VDuB+CA5x+2LvHBhmbzNZRW8pXuBvRy2bzzGPeY8qcZYvf84ODy0ojO8VAHTvMmj7bs5N589uQg7PCUv2LvofW29UlCLuxpgNLyu2bm8/ohJOrKcCb1sFBW9iZYdvS0FCbsxaxC8RLlGvS8QBD2F0808WxrevCF5vzzo1yA8/jUjPWLjVzz+NSM9vG7CuzcqaLzXhXK8Z1aWvdylijvBMRI9F03TPPp16LucPoc87/gRvWZJ3zwwYW68gRqgPH0MED2G1uI8lBjFvIAQfryeQRy9UUilvBAkfL3QbOe7LAWJPPW8urvlF+Y8C27jvCz7Zrxvdcs8npmTvY1Mtjtk86O91+cLPHtUO7xQm8s8xuo/PfdvPrypI6E87D2oPInuFL3tRY48bcLHvILKDryel1e5rCsHPV16O7wj2Zy8YDPpvNBsZ7wKa068K0v4vLCRDj31X3I9Mb42vGJIBrx3mw07ZPOjvE3inTysKUs87pb4u9BsZzwZANe7ygWHvWwPRLw2enk8iInmu0uF1bwbDQ482OXPO0w1xLyshpM8WMENvFCYNry8EXq88vz/O6VdvDzVLze8ZUZKPS8QBL0KxQE89r/PvOALEj37eP27Wse3PCPcsbtTTs88dj7Fup5BnLqYK6a8Lq5qO4NzcLusKUs9FveXPFoa3rtN4p08Q1x+PXxXULzYOPa7Whpeur7WhTz5H6087eP0vHHVqLzKU9w7TohqPR0TOL19tJg8NdGXO0jMp7xKfyu9W3emPLLvLz18qva86NegPPly0z2BGiC76NegPPYZgz3MuIq9zmsOPTbckrz/O0280MkvvfFTHjzyVrO8qMAuO750bL2elMK8o63NPGX7CTvtRY48QQOuu119ULyf9J86I9wxPHGCgrwIuEq7RAxtPL0esbxO6oM83bCFPVkXSb1tFe68xZcZPe+jr7uAb4I8GlN9vS6uajyN+Q89ISaZPUd5gTymDSs99A4IvdFv/Luc4b47HxZNu+FhzTyTEps7VmEwPXsEqrwbs9q8bA9EPFvMiDvwSfy8+R8tvJjOXT0QJPw8Sy8aPZPCCb2fSYI7su+vPO9QCT33Ena87qAavWPwDj1rFJW8PZ2mvIXghLz3bz48PqNQvCulKzt7VDu7bGwMvfbBC7osBYm9nkSxvNDGmrwFpem8RWk1PVKogrw0ISm8rtxOvF19ULytfPG8Lq7qu8PaczyN/CQ92kUtvSz7Zr3W54s83au0O3TeZz3HSp28/5WAvW/FXDs0x/U7WRS0u9rreT3ivpU8OTcfvOmKpDzKsCQ937sAvTBh7jzJ/SC95dSLPB3AEb0pmPS7lWvrPPzVRbxd1wO9n+r9O6vJbbq1UiI9fl36u1Hucb0uYBU9ZvY4PbalSLzdsAW8FOpgvC9e2btjk0a8UVALO1cRHz3kF+a7EpEQO3yxAz0ETy69elmMPF1/jDuzp4Q84F44PS6r1Tnfrkm8vMHovGNIBj3QGcG8EpEQPZyOGLxL34i8XSqqPd9jibvvoy89m94pPeV0Lj3jcRm758ppPZ9HRr2qIyG9uA2MuwKfvzx6pMy8E0SUPE+YNr2wjD09QwnYu5zkU70PgUQ9xj1mO/nF+b3aSMK89V/yvAX1+jwIFZM8+9XFPEh8lryzn569vBscvZ6UQr0j2Zy9cytkvWDdLbt2PkU9+9eBPIBvAr1BA668nZEtPdTP2brkIQi96CpHvOndSr1ziCw9hIAnOYR9Eryz9xW9KZ+BPIg2wDyTEhu8gsoOvY9SYL0oQjm88KOvujiPFjw6jdo8/YoFPYXTTbwNIee8v3TsPGAz6bspohY8I3zUu30MELwlL9g7Ba+Lve7wK7yQsr08CyAOPeEWjb0CQve8kmXBOyJ5vzmocJ27sIy9uNFvfL0SNMi8fr+TPPS5pT0KGCi8/z2Ju5nbFL05OrS8gXIXPVkUtLyv3E69t1U3vARSQz0t/vs8huCEO5h+TL0U6mA83144Og9+L72oY+Y7I9yxu9MpDT1IzCe9b8jxvGb5TbwaXZ+94hE8vcSK4jsrSGM8tVIiuVhkRT0bYDQ9bsXcOx1jSTx/Dek8CLhKPin1PD2UGEU9b8Vcuwptijwnkkq9Y0O1u0hv3zwrqEA9W8c3vbeoXbuEfZK7pbDiPCF+EL0fy4y8QFM/PSpShbz0rO45W3cmPeALkrxWthI92eXPOoueAzynbQg9hCBKve1DUrvHSp08KfU8vJ6UwrxfgGU8gRqguySC/rvaTRO8HWPJvM22zjxAABk9j6+ovO3tFrkwYW48UZ7gPJsx0Lzp3co7rClLPQptirxe0PY7Q1x+PG1l/7xlmXC9fQyQOh/LDD3Xkqm8jZ/cPDIeFLypI6E8HcCRPOuSCjy9cxO9fKr2vNDGmju2+G48Rx9OvMhSg7wlPA89OIrFuyUvWLwC71C97/PAPJO1UrpoTHQ9LPtmPYmWHT1UAVM9OIrFvOXHVD3aRa08DyR8PIfjmT3GSp09EDEzPP+YlTv4dI+8nI4YvJyOGLyrGX+8iYnmPGlcQLsSN1279xwYPboL0DxweGA8n0kCOYaIjTk4isW7P/b2PNIcVrzkyRC9dYvBPBed5LwaA2y82eVPPe+jL735xXk80B4SPA+BRLz+2289IimuPEVuBr1VsUG9xJSEPIbTTT1xe3W8xkodPSIxlLw4Lf28gb3XPLI/wTsXqhs9wYS4OyaUBr2uNoI8ahGAOm13B71v0hO9O5DvO8GJiTs/82G9M8TgPJXFHj20UqI8XX8MPI1Pyzyg/IW8s0JWPHHVqDzX4ro8eU6RO78k2zzitHM8y7gKujiPFj0UnAu96YokPdubaLwfaXM8Rx/OO9AZQbzZQpi7Dn4vvLHi+Dxlo5K8aAmavNfiuruZi4M9iu4UOGVJX7zIncO8jfkPvNHOgLyXHu+8zFZxvJgrprs3Kui848GqPACPczti41e8YZWCO3xXULw4j5Y6u77TPFP+Pb0llAY7xj1mvBZKPrxL34g9t6jdvPoiwjwQhhW9Mx4UO9nyBrxYZEU8ahGAuePEv7yHNsA7aQkavCbfRrzz/H87Mm6lvdU0iDt693I9GQDXuemKJD2krU09DXuaO4YmdLpOi/88dj5FvU6VIT2SYqy8z7ljPB9p87ur04+8mouDuwWvizyKlp28OdrWPCUvWL34wuS8sT9BPY+i8TzMA0s9lBUwPWDdLTy+dGy8Dcsru+cnMr1sb6G8kFV1PYJtxjyQVXW8kmIsvBCGFb1rvJ08LxCEu/p1aL1nro28s/cVPX20mDzfC5K948S/vJVr6zxVVPm7FvcXvKOquLomPI+8PO03PEBTv7vtQ9I848EqPP2FtLyzpwS8ie4UvC+4DL3ULzc9FZpPPdDGGrwheb+8UJ2HvYg7ET2Klh27nkGcu6/phTziwSo9eKYIPOEWDb1lo5K81t+luwCZlbyhpyM8bA/EvIJtxrwBj3O8N4ewPAhlpDyKPGq8DXsavXB4YL0B7Lu7Lf57PFp0Ebxm+c07nJEtuxwQI70bYLS8amGRvCxVmjvxpsS7BPX6O8hSg7wZrTA9B1htPHukTL3Rb/y8B7oGvSMsw7vF7xA7svSAPFcRHz3EiuI8uWUDvGdZK72gSlu8XSqqvEzVZr1m+U28gm1GPP84uDsTRJS80sxEPOuNubyh/IW9T+vcu56ZEz3SeR687qCavCaUhr0HZSQ96X3tPL1xVzqqc7I8jUy2vLcNjLwybqW7QQbDO/2FtDsOgwA9pFqnvHdBWj3qLVy9QQMuvNeSqbzeW6O8KZj0O/Vfcr1ZGYU8QQMuvSY8j7xAABk8nkQxPA3OwLsybiW9skJWvTV35DznLAM7FvcXParTjz13keu5s/eVOpEPBj1Kh5E9QQMuPPdvvrynbQi9ovpJPWamp7qms3c8umiYu1hkRbyGJnQ8rtm5PDBh7rwdY8k8Vwd9PF7aGDxCWem8HnCAPCaUBr3jxL+79FzduzPE4DvMA8s78qnZvCPcsbuf6n28GrUWvMhNMr1YxKI80tGVPFYRn72aMVA8prP3vAT/nDvXNeE89bklPbwbHLufl9e8q9MPvARXFLwQ4SG8iYx7vLq7vjwgyVC7BfX6vMlQxzpoBgU9YN2tPH20GLxbzAi90W/8PIWAJ7y+dGy8ZvlNPCU8Dz2z95W8sI9SvCQv2L0uCB693PvFu1Ge4DxMNwC9s/eVvFa2EryFI9+5cSW6u1Dr3LpLh5G7bG+hPNMsojwC/Ic8SXJ0u5IIebvmd8O8pxURvbP3lTqRtw48ug7luwsbvTv5IkI9KO+SPBPnSztAABk8n0kCu2DdLT1YxKK8u75TvTydJjzBMRK9Q7uCPMOUhD1zLvk8zAbgOxWaT7xJIuO8iTnVvOjNfjyI4xm9xOequ56Zk728wei8ijlVPYzs2DuVHRa95yyDvK7cTjy5CLs8oweBu77WhTw8mhG9ovrJPITViTxprNE8+4KfvVYRn73CNCe9Cmi5u9aFcr3D2vM8KqKWvCv4UbyxPKw7c9vSvP41I71aau88gLrCu0BTvzmeRLG8DoOAPOIRvDw0x3U74LuAPEqCQL3SH+u7xkeIO+cqRzsJFRM9KfU8vKH3tDzKo229DHgFPTER3bsllAY8dItBvcbt1Dw4isW5KqUrvXQ4G73XPwO9V7TWO3yxA71xJbq9evdyPbRF67x2PkW9UJi2u8qwJL3oelg8oPQfPCSJC70ieb+7YuPXPBigeTxmU4E9JTLtOzbULD0HWG09aQyvOywFCb2J7pS8krXSuEMJWDviETw84m6EO+FhzbyStdK85nwUvfYZAzxbx7c7lLv8O+bUC70JFRM7FZpPvcGJCb0A6aa87O0WPTYn0z2LSaG8flplvK85l7xrvzI9XSqqPBA2hDxaGl69+9eBPEBTP70MHlK9DcurvH63rTyAFws7eaE3vb4hxjveq7S8/IKfPIYm9Lwpn4E90BnBupXFHr0WSj49QaZlvKBMlz1P69y8+iLCPDEOyL2dlEI8PkNzvFokAD3eq7Q8P/Z2vcI0JzzrMHE7q8ntuCPZHDu3DYy8VVR5PBqwRb3InUO9HLNaPUBTv7vjZ/c8kV8XvYjjmTxhkLE7kA8GvDXRl7yQAs88a7ydvLLvLz0LIA49e1Q7PZqBYT2el1c9jUy2PDZ6eTxECdg6eqRMvFRbBjvXNeE8nI4YvCF5P7y/fo48F53kPFe0Vj1AU7+6N4QbO9PPWT0210E99GmUvStL+DyQVXU7hogNvVHu8bzFmq67xeq/vNAZwTtvIqW6SXJ0PEJji7wB71C7Sn+rPLtrrblcJ5W8qSCMvRVPDz3dS9e8148UPaa9Gb3Z5c88Au/QPD7zYTuCHbW8ApwqPTBh7ruuORe8Z/lNPap4Aztoqbw8S4cRvEoiY7sYoPm88llIPZyOGL0GqP68/jg4vTZ6ebva8gY98lYzvdIc1jtucjY9dDgbPPa/TzwKOam8MNt3PGJglLx2UQ+97C6KvblJwbxMMVs8nR5aPdg9jzyL7BG9EMkNvTDb97zZHMe8e3i5PAD1CD2q6hM9dL3YO/XxNbwmTfy7vrCSPEaLpby3IC48f8pfPUIOA7zNZTi8e029vIcvyDuWD2q8H36zuzJvrrs4qwM9UW2wvFbUAb1xihE8i6zqu3rOMbsP9Ak8Ti9yvK5ntrxObxm8LV5VvOxjOjw6afM8w9c8vLhqCbx5Zfe7n53lvKP6grxYqQW9a0QIvVbUATvw4Fw9AlNMPeN/Rrzbxk69l3ikvEKjX70JDq28lo51vUfftDmQs4+8VmnePKVYRr2bwBa9WOjpO6TZOj0G0G68eHoiPbBlzbwkT+W81527u2tEiDyJmIK8S4dTuwJJmLzC+AQ8yP7mvEIOg7zPucc8cbUNPfluWL0ba/E8dL1YvImDVzwKjTi8Q40OvTGF/7zvNlW87eLFOFp8oLzqD6u8EF7qvHf7ljvZvBq9dL1YPCZNfDwPiea72xrePBwV+Twm45u8hXsMPLIkADxAT9A61527vB4eBz0LN0C9g7KlPJ+ykDxH3zQ9Sf4Tu6b4GTsnYqe7tOLvPM6EFz2+MYc8ItBZvToqD7owsPu8ikIKPccpY7sKuDS8j2m0uyoKRj0MYry8XqNKO3yXGL0U8Lc7ZDUYPa+GFbvXk4c82EfDPJATPDx8IkG9zuRDPYIIHr140Jq81Z8kvawTJz23wIG7trdzvTMZNjz6gwM9W3CDvEY1LbxRDQQ9Z7I6vQb76ruT5tY4yvx9un81g7tDImu8bQJ4PJ+yEDxaUaQ88V/oPIrX5jxoMca8N+xQPWj8FT3QONM8FkTHvPD1B711ktw7hlrEPFxFhzx3+5Y8PNKtvLARvj0RcxW9KmA+PETMcrs9R4U7eKUePPcQFb2kBDc7M0SyPFOWwzwz7rk85X1dPDSYwbyogdk6iS1fvFomKDy2Yfu8hlAQvQwCED2NFaU6i+wRvSZ4+DtYve06NJjBvHujNb0P9Ik8EXMVvJPmVj1890S99ecBPdGM4jsXw9I7TsWRu6es1bxB+dc8wFqavBXwNzxETWe8AlPMPDPuOb3hVrO8oZv8PB3Uq71eo0o7yRMSu2H3Wbyb9cY8uvPIvGovXT1Y/ZQ7K6oZvW/BKjtrbwS9lJBevSlWij2adju96SX8POwDDrysPqO9rjKGu+MfmjxKsk89JrgfvOzYkTxtAni8BSZnPf1WHr2MVvI7ikKKvTdr3DvvC1k9sQ/VPBS7Bz0pgYa6QflXveXTVToqCsY7uPUxvbW3czyvhpU8R6oEPFW/Vr24yrW8/RZ3vOtZBj3Kkp28qIHZPH2XmDrOD8C8a28EO8g+DrzNZTi7Z4c+vEH51ztDo987eSQqu/PznjtdxJI87GO6u21tm7wq1ZU86+SuPPAgBD0Vmj88LrLkvJvrEj0Sx6S8m8AWPKLbIzzBrim96+QuPZn3Lz1J05c8YvVwOVomqLxLXFc6nvPdvPW8hbtDYhK988iivGaoBrzopnA5TlruOsRWyLho/JW9BVFjPY0VpTmV5O25L8ePOwwMRLyXzhy+6fr/vPFf6LjSNmq9P3CYOwTS1zypQIy9C9cTvSX5bLtQ7iS8kZLHvAnjML1qWtm8l84cPd8toDzjf8Y7tSKXvLTi7zx6zjG8FpALvFNhk7zCLbU8pi1KPU+ufTzy3vO8tmH7usPXPD2adru8CQ4tvHHqPbwd1Cs8wlgxvMAEojnyCfC8O36ePJYklT35mVS9tcweOy1IhDztLgo8XHo3PZYklT1fTVK7uvNIPGTK9Doj5YQ7/VYevNH3hTxB+Ve9XSS/O9wvCbyT5la9WhF9vUNiEj1sg2y9SQjIvEHOWzxDjY68I+UEvNvGTj0WDxc8zWW4vYV7DD1Bztu8QyLrvEBP0Lv0cqo9vnBru4QxsTzh9oa96WUjPS1zALtyv0G8R38IPULjBjxrBOE80mFmvaTZujx3u++6/iuivYjZzzyO6ig8a28EPbdLKry195q8uXS9vDt+nry1zJ68djxkPb3GYz6cn049/Rb3vOu5Mr29xmM9DIEbvQiPoTxv7Ca8l2P5vIcvyLzxX+i7kjxPPVomKDqKAmM84IGvvGmw0TwUu4e8eKWePBZERz2eXgE9p6zVPL/vdj2lTpI8KbY2ulk8+bz9Fvc87NgRPWpaWT3LEam8wlixPGR0fDz1HDI9EDNuPFFCNDxtLXQ9/3+xPDXinLtMMVu9h88bPXEVujznUmG89J0mvM06vDyLrGo8bkKfvIjZT7wtM9m8vcZjvYoC47vX8zM8/KwWvIiuUz2xkEk8UO4kvM1luDzCLTU8jMEVvREI8jxLh9O83y0gPYB0Z7xmCLM7p9fROxoBETyRkke9AtRAu6tU9LtYve07arBRPUuHUz00OJU9mhYPPUShdjwKWAi9M7kJO19NUjpRQrQ88TRsPQQoUL2NQCG9YouQPBS7B72zY+S838L8u6rqEz3Doow6XHq3PPSdpjzMhgA9IVFOPZp2u7ze7fi8Co04vVlndbw+8Yw7hFytPFdTDb3nUmG8k7tavaiWBD1GiyW9LV5VvOCBrzyoVt281r4DPYZaRL1Yve28eU8mPXz3xLwcVSA9dOhUPDzSLT24agm9vBxcvXG1jTzlqNk8FOYDPT77QD1/NYO82HI/PZT7AT1lMy89+y0LO1K3Cz1PRB29DKyXvX81Az07E/s7wa6pPJ/dDD0d/ye7VtSBuwSn2zvUIJk8yzylO3HgCbsQyQ09YzWYvLR4j7zJvRk96bsbvUZgqbwlORS9DLZLPHWS3Dt9bBw9TxmhvBoBEb3SYWa8+5frPEVLfrzMhgA9EXMVPSoKRrw4q4M8+BrJvOkl/LsjEIE70A1Xvf3r+rvEVkg7lDrmPPaRCT0cFXk8eKWePO6MzbzOOjw8/3+xPCu0TTqmLcq8IXzKPGbdtjwCfki94gC7vC1IBL1oMcY7ZtMCvTHFprvsAw69kr1DPIOypTw0OJW9pAQ3PTeW2Lnam9K7cDaCO9N2kTzmkoi6U2GTPTPkBbznUmG9Mg+CPYus6rw86P67cr/BPEVL/jzK/H096SV8vQJTzDtS7Du9pAS3vCgMrzy5P408KDcrukd/CL3n0Wy8V1ONuspnoTxyXxW9Uhc4PMwRKbyvZza84fYGvFrSGD32Zo08E5wovcAEIj3Cgy08dZJcu3kkqrwQM+488V/ovNANV7zYR8O7/EHzvA/fXj2Fe4w8GiwNveXT1bz2Zo28bBmMvClWijuCnfq85ahZvGYIszxCo988eDp7vAe6HT39Vp69IXzKuz77wLyvEb47rxE+PFLsuzxwQDa7O34evcon+rzK/P083MRlPY8JCDrR4to8ai/dPPD1h7zegxi9WnygPJPmVj2PabQ8yid6vJVPEb2f3Yy9MLB7vYCf47ykBLc8wa6pvIxrHb31Ry69Sf6TOZuVGjwzmqo7/x+FvZzKSjzRIgI9fqFMvP4roryXeKQ8tfeavLXMnjs1Qkk8WKkFPVPBP72lWEa9s2NkO1DDKL3ydBO9yb2ZvG7Xe73F9ps9CQ6tuRmCBTw9fDW8BSZnPeNUSj3vC1m9gYkSPSvfybxnJ5K7M+65O3lPpjy66ZQ8JI8MPeHLijucysq8g7IlPNuFAbzDArm8YXblvPBLADyXY/m8FuQaPbZ2Jr0vMXA9aoVVvUd/CD3J6JU8BhCWPCFRzjxcT7u7tcyevTO5iTyGsDw7wdklPGeyOrs3a1y8pXkOPKVOEr1tWPC7LF7VvNA4U71tbRs9PCgmvCRPZTzzyCK9SLS4vKVOkrtRmKw83FoFPLC7xbsX7s47RMxyPfAL2TrT4HE8qFZdvRLyID14pZ47vUdYvIGJkjxk3x+8LTNZOGqF1TyU+wG9WlEkPSs1QjwGOxK8VGtHvZd4JLuHL8i8M7mJu0leQD3NOjw7E5woPc+Oyzs86H483licOylWCr1+dtC82BKTPO23ST1liSc7wASiuvOzd73T4HG81Z+kPYjZzzzwteC8O34evLC7xTzUIBm9S1zXPHZRDz2SEdO7iYPXPJn3r7zgrKu8PXw1u8L4BDysEye9f8rfu1twgzsmTfw7H1M3vK48urzpuxs9dhFove6MzTxDIuu9es6xvO6MzbzB2SU9m5WaOzz9qbpROIC8FcU7vBS7B72adju9SQjIvB3/pztBzls9+MTQvJd4pLwMApC8EDNuvYHz8rxRbbA8PP0pPSS6iLy688i82xpePbl0Pb0r38m8mSKsPNfItzwB/zw8TNviu6Nar7zWHjA9gfPyvMIttTxM22I9+O/MvGDMXTwZggW9WP0UPB3UqztROIA7lJBePY6UsDrErEC7+BpJPK3oKj25dD09NhdNvRiYVryNQKG7NJjBvAP9UzueMwU9zuRDO1waC7xezsa8WiaovBLddb0oDK86Uhc4vJejoDzVnyS9lKUJPRXFO73cxOW603aRPLty1Dz/fzG9Q03nPK29LjzMuzA7yxGpvPZmDT2i26M8UZisO2gxxjsuh+i8YiDtPI3VfbzAL567hy/IvCN64bxF4R28LTPZvIFeFr2pQAw9BSbnul6jyrx25mu8WP0UPIawPL3f16e9yVL2vJDeC73zyCK8fktUvWVeq7urFRA8ooWrPMon+jrqD6u8MYX/u2F25Ty9XIM70+Bxu2Of+DvMW4Q8APWIPGF2ZT0RCPI8a9nkPJnMs7svx4+8qIFZvNTKoDyrKfi8woOtPNKMYrzf16c6o1qvO2/spjxFS3687eJFvMb2G7y1t/O6yvz9vJzKyrzrjjY9Eseku/c7kbxxFbo8RczyOof6l7zc7+G8zoSXPL/v9jszGbY8ggievRbkmjx9bBy7CjmpvIawvLxwli69H/2+PPvC57xtwxO6zBEpPCo1wjyzzgc9dZLcvBKHfb3JfXI8YXblvDPuubzvYdE91MogvTm/azzDArm7M5oqvfysFr00mEE96jonvaw+ozxNG4q6XEUHvF6jSr0HevY8fnZQvCm2Njxceje8kOi/PDOaqjy/hRY9cl+VuqjBgL2n19E8+W7YPE5a7jvn0Ww9aNEZPfzXErxhoWE7Q03nOvysljzETBS9/0qBPLUiFzxAT9C8gp36PD4mvTlStws97bfJvE4vcrxtmBc9fO2QPBxVID3lfd08KKyCPJejoD2IrlM7VtQBPXYR6LzI02o8lGVivKsp+Lz+wP68LIlRvDVtRT2C83K8gp16vNBjTzwoNyu8Y5/4vI8+uLz1vAU9UO4kvI+/LL3VnyQ9X24avHujNT1RmCy9xKxAPcSBxDyzudw71PWcvLiVhbydHlq8IVFOu8Z/2zw2wdS7yNNqPON/Rr0X7k48yP7muMy7MLwKjbg78Z8PPXI0mbw/UTk8/0oBPVLsuzu+Bos7aAbKusqSHT1k3588lis+u2I/IT3jyOO89hnSugMkDr3ExTu99dvJPPK5Nz1LzCA9Y4skvJi1Sb38xW+9NP8hvdbmHLw8c1M8sBrPOyIqRL0mPtu81ySlvGZTOLwjHEm9ZlO4uxEJ47xog0W8AzWXvPbNTjxFTQI9GEuLPDchtDt+uL07XpMDvfe/U7wfvK69pg4XvfWByzsgVLU52BYqPdpGN7tFTQK98ccyPV0MBr076Ue8RU0CPROT7rw9v1Y8SJyTtwVzHzjpzIO8iB50vEIR9rwU0fY6fPCpulFqQzzAsSQ8xMW7vRUPf7uai1i9VhbhO4xagL1/Xr+8aXXKO3v+pLv0Q0O7UqhLvJ+R9LuwGk89HOafO1XY2DzjFOe8KqzwOsGjqbu+VJg8JMJKvTkFvrtBeW+8YvMdu13AgjwDNZc8zStyuy4HgT3YcKg8uowEO8xHaLtluzG9dSWIvOspED16WKM7r87LOoCcRz0zs569E9/xvCw2/LwKa0C7ezwtvXpYozxTTs08xvXIvYaU6LuqyK+5+UlfvJdpRjocjCG8CYe2PJWFPLroU4E8j+eZvDCRDDySFyc7igL+PMBXprs1l6g7b9XkuhR3eDz+T3s9OBO5OKbhF73NOe28Cnm7PJJjKj3bOLy8v78fPdJ4B7x0M4M9kmMqvLwWkD1OViw8hpRoPGefOzxMsCq9ATKJvG575jqUR7Q83mhJvcCxJDyCgFG7xMW7OwxPSjyjkgY9WKBsPYstgb16pKY8X8OQPYQKXbp5DKC8FcN7PXZEDL2g3Xc8Y4skvcHvLLwugIO9NKWjPBOT7rzW5pw8LgeBPCIqxDzZCC8997FYPN0cRj1SAso8z2n6uWpnT70qUnK8MWQNvEj2EbyYW8s8d9ySvO+JKrzBSas9cLnuvN60TL3FHzo8f2w6PIIm07ymtBi9U0DSPEraGz3Jcdk9MWSNOxBjYTyCgNG8nG9ivClu6LzPafq8i9OCPEiqDj2b11s9T4a5Om4vYzuu6kE8Qh9xPGVhs7wLt8O8dmMQu8TFuzw0paM8Fw2DvHh0GT2dYee5jB8GPVICSrzul6W8Z5+7O0IfcTwzDR29Cnk7uzHrijygg/m80kuIu/AvrDsOjVK9UgLKvDJ1Fr1aKni9DyVZvCyQer1Juxc8A7yUvE8su728vJE80kuIvLvYBzzXJKW8hu7mPCuscD1Hi4o8we8svbxRCrxspdc8MAoPPVcI5rwYLAe9Zvm5PAjvLz2Jtnq9sbJVPa5EwDtJQhW8UqhLPQxPyjwRr2S9MJGMPBBxXL2qyK88UNI8PLpAgbu65oI82HCoO6emnTt/qsI5SxikvK42xTxxX3A7ePsWvfK5Nz19ejU9mfNRPKPsBLm4Qv28r85LOFB4Pjw8J9C7Zvk5Pf2p+TzTEI47raw5PSFGOr3VIRc9q7o0Pf/GAT1OlDQ9Tu4yN4CcxzvxxzI9AECEvA2bzTuOqZE80SwEvYO+2TyjRoM9StqbPHa9DjyMTIU8l2lGPbltgL2WKz49lx3DvMVdQr1rs9K7rBQzvGl1yjtm+Tm87qWgvIhqdz1TTk08Ea9kvS3q+LszDZ05ATIJvqZoFb37H+478HsvuxTR9jzk+PA8M2cbOq42Rb1spde7jqmRvACagr2hz3y9jnwSPISw3jzq3Qw9MYORvIeG7bvibuU8yRdbPLa4cbxrs1K8BXMfvdr6szsu2gG8xGu9uolqdzxsl9w8B6MsPTGwkLyJEPm8z7X9vWl1yryizQA8XpMDvFNOzTtRxEE9Wd50OxAXXry92xU9dkSMPMTFOz3yx7I6GomTvMKVrjkaXBS93mjJvAp5OzwxKZM8ZMksvHS6ALxUMtc6JQ5OvMfnzTp3KJa7NKUjve89J7z+A/g8AkOSPacAHD2RyyM7GR4MvQjhNL05UUE8jgOQPK2ePryerWq9SMkSPRilCb1bdvs8kI0bvSI4vzr7eWy8nvntvGobzDvoJgK9LYJ/PLic+7wg+ra83lrOvPU1yL0cjKG87pelPLxRijvSeAc9ymPeu9WamTxUMtc8dmMQPPex2Dvh1l4+zd9uPSkU6rxvx2m8H2KwPKUcEr2aP1W8VSTcO0fXDT2YW8s7+uFlvSQOzryXaUY84xRnOn3Uszz3zc49zTltvE38LTlwX3A9vEOPvN9M0zyOqRG9EL1fPOco/jqen++7DPXLPAKdkDxCEfY56RgHvKmKp7vTxIq8BNsYvABtA7wb9Jq88rm3PKSxij05Bb68GNKIPHgamzwhRjo8nG9ivd12xLwI7687SCMRPD2/1jyc11s8p6advLXGbL1o3UO87+MoPet1Ez3jFGe91jIgvGkpxzy2IGs84PJUPF6yh723qnY7SFAQvCRoTDwy7hi9vOmQvMFJKzwuUwS9UB5AvLt+CTwAmoI7KmDtOwNiljxET3493CrBPMCxJD1P4De9zTltPVig7DxRxME6nWFnPb8Znj1qG0y80SwEuyus8LyioAG9Z587O0fXjbsbqJc8pN6Ju5rl1jzeWs473g7LPPrh5Tyq1iq8ZlO4OXpYozxTTk08b8dpvMb1yLzACyM9F4YFPD+jYL3tsxs9dheNvbZe87wdJKi8mAFNveoKDD3/xoG8ibb6vBH7ZzzChzO9lZO3PM0rcry8Qw89I3bHPKHPfLxynfi5XqQMuxcNAzvl6nU90VmDPCCuMz3xIbG8+TtkvKDd97xkMSY82a6wO8MtNb2+cxw9T+A3uxyMITx4Ghs9vxkevDkFvrzg5Fm9EfvnPCFGurqIeHI7gY5MvCY+2zwydZa8g8xUPDDMBr0lptQ8g77Zu3SNAb0zWaA7Ni8vPT+j4Dpm+bm842DqvPDVLby/vx+9asHNPGnPSD3sDRq9kI2bPI2Kjb2ukEO6jMWHvCpScr15sqG7dLoAPdSolLytRMC6MsGZO8N5OLgLEUI9l2nGPEV6ATynWpo8y71cvCRoTL2AUMS8sqRavVOa0LxtPd68D3/XPHaQD7zW5hw7L8wGOyIqxDta0Hk8Op1EvJCNGz3ClS48OLm6POm+CD3oJgK9khenvFrQeT0+/d68QEliPI3kiz3h1t67D3/Xuv2peT0lAFO9Yj8hPW3j37t4Gps8PHPTvGYHNb3+A3g8fIiwPDJIF7zRW388iB70vOo3i7uoTJ87wjuwuwYLpjwn5Fw9NP+hvPU1SL2ukEO8TAqpO/OdwbwN59A81D0NPT/v47yN5As7VIzVu0Nd+bwathK8W3b7vOHW3rx/qsI82zi8vBcNg7xIqo686/wQPBeUALwj0MW774kqPOwNGjzTEI67trhxPbv3izr8a3E8bPHavPwRc7wGZaQ8iXhyvOnrB71wuW49AkOSPJF/oDvKvdy86RgHO6cAHDtInJM8VX7au+NgaryjGQQ9qxSzPJTtNT3Pw/g8dSUIPfFttDuP55m8Qh9xvTlRQb1pz0g9BrEnPRM58LyvKEq95pD3vNmusDxzNf86IFQ1vOIiYjzIJda860iUOoRy1jip5CW5SiYfPQTbmLw8c9M8fsY4PWoN0TysBri89Y9GvfYZ0jtUMtc7DZtNPMjZUr1wX/C8G3uYPIKAUTx9ejW8uyQLvZZ3wTyEsN68vlQYvaBF8TrogIC8qsivPKDddz1JFRY98gU7vLxwDr3NK3K8IFQ1u9lUMruRyyO9B/2qvHFfcDtXruc7DUHPux8Isjxhp5q8EBfeuwxPyr3vlyU8gPZFOyfkXDximR+8wFemPeHWXr3S0gW90eAAvG/HabzZrjC6EftnvUdeCz0vNAC8PHPTu7Fm0rxET/68HnCrvPP3v7zS0gW9jgOQPOzuFb0GV6m7Ldx9PY/nGbzFt0C71U6WvOO66Dzw1S08WFRpvebc+rxOOrY9a1lUvBOF8zx8LjI90bMBvUvMILzG9Ug8oc/8O2UVMD2Vkze97VkdvE7usrw1l6i8ecCcuxFV5jxFTYI8QOHoPO5LojxJb5S8lTk5u0ZsBrxgPBM4nbtlvGnPyDwGsac7i9OCvau6NLySFyc8x0FMuMnL1ztRxEE9lw/IvBcNg7u6uQM8qD6kuzfHtTxVftq80qUGvY/IlTs+/V697MEWvUY/h7tgPJM5Y4ukvJdpxryP5xk9o+wEPWfrvjxi5SI8qPKgPJJjKrwEgRo7yCXWvbdQ+LyLWgA7dDMDPe1ZHTwCBQo8rpDDvELFcjztWR29AG2DvJo/1bvKr2G9rAa4PKu6NDzB7yw7cVH1OwwDx7wHSa68NEulO6kwKT3UqJS7vY8SvFhG7jz09z88E4XzO7oyhjq0LuY7ac9IvI8UGbzgmFa9AdgKPTH8E73H5807gsxUPV4rCju7qwg94YpbvDs1S7l3ghS9S8wgux9isLtZOHM8FWn9vE1WLL0bmhw9zJPruzrpR71IIxG7GgKWvP4D+LzGqUW8sMDQPGZhMzwsNnw8OunHvJIXpzu79wu9/vX8vF6FiL3w1a0897FYvQf9Kj26QIG860gUvXUlCLoDCJg8dNkEvTJ1Fj1hLpi8ld86vLV66bxzNf889dtJPT2/1rsEgZo83CrBPCGSPTwbmhw8MbCQvAg7szzRWYM7SiafuvOdQb2U7bU8Op1EPGkpRzut+Ly8oIP5PJQJLDxm+Tk7HOYfvY/nGb22EvC8dLqAvJF/oLxH5Yg8I3ZHvFSM1TvU1ZM7WEbuOnUlCDz2zU65B/2qvDzN0boc5p+8k1UvPLa4cT2tnj48H7yuPdwqQT3upSA95pD3vPexWL0xgxE9HTIjvHvwqTxpkcA7A4+VvPwRczwI4TQ8iB50vc057bz4o927L8yGvIsAAjwEgRq91IkQPcI7MDsOjVK8O9tMPQ1BT7swZA29RiCDvJmZ0zyoTB888ccyPWI/Ib0ikj06/BFzvZCNm7xYoOy8ALmGunWeCrxaKvi8NZcoPBrjEbwb9Jo82LwrOXM1/zwaXBQ9yq/hvHlmHj3vlyU7VdhYPUqAHb04Xzw7kr0ovTWXKL2oTB+9ecCcPMRrPTyURzS7TL6lvHWsBTzhilu848jjPI/IFb1RtsY83mjJvKhMn7ySY6o8jgOQPAwDxzxNoi+9OVHBPG8haD1YoOw8jeQLPeA+WD2wdM27IK6zPAO8FD3ZVDI8woezt7Kk2jzJF9s8znf1u5i1STyWKz67bKXXu17RC71j1ye9XiuKPCCguDywwNA8Ap0QPXfckrg6ncQ82vqzuNQCkzw8zdG88C8sPdaMnjvv4yi8JaZUuwYLpryb19u8jiIUvU38Lbz1Nci8qnwsvfEhsbxfwxC9w9O2OyPQxTxhp5q9QDtnPWOLJL1B0209ukCBvJ0HaT2Wd8E88seyuz+jYDyu6kE8RwQNOrq5g7xEqfw8xGu9uUbGhDx6pCa9qxSzPNTVE72a5Va81UAbvPUnzTwAQAS9jvUUO8LhsTwc5p+8LoJ/OnqkJj0728w8MVYSvf2BuTsMZaE8sudZvdQW9DpeUaO8+NlLvZoz8zz3xGo99ho2PWugTbzGsmi9xnIvvahsJr0mOIG71OubPHFdnLydHEu9VtU+vZYqDLxUFim8xPNSvT92cjx6w+68AcCrvC1qebt5btS7GcmsPPHnjDpluKY8CXzJPNgpDr3/K268Ue2XvVtoy7x4BNk868raOCj3Fj2Z/oK8A5QivYQeEz0bSAm9CNIUvOBFDz1zMZO8qQF6vID1Abz5Lua7jI8uvDk5sbydB+q8eATZu4/DCLhqSzM80MKKvASpg71ojJ26MueOvTXmXTtyx5e9S/APvA85mDwo1+w6AdWMPCWDA708bQu7oGUGPVfqH7y+4ek8t08OvexUALxjuu25Jy24OjqjLL3T1rq865+CvE5E+TtijxU8LqmcPDN8YrzqdUA97N+7PK8zjTzgRY8839BKvXTmkDlVKwo9G4jCO5EiOzzMbzc9gPWBvU4ZIb3keLi8JW6iulOsLb210DE8ZWOMPElxs70orBQ84rmiPFDDVbypAXq8VBYpvHGytjyWyqg7GpOLPEvwD71WwN072ihdO0Ue4DzE89K5CtFjuyj3FjyPYyU8gJUePRszKDzAdSe90MIKvaQutDwTzCQ9qQH6uwOUIj2VoGY7sJ2IPSvARLku1HQ9Jy24POkLxTw6jss8K4ALvZT2sbxDdCu7oc8BPWkh8bx+7H+7wHWnvCXOhTsDf0E8+lgoPcVdTj0OZHC9zdmyPPLcwz3RQn08Stuuu2qLbD2eMSy92333PFOsLb3a/YS81OubvS0/oTwp7M28f4uGPFJCsruzERw8RN4mPQrmxDvaKN08LT8hPBbL87up1iG9Amrgu6Blhrynl3476LYqPLGSv7x/KyO8+lioPdoTfLzzRj+97l6YPBKi4juKkXW8lx9DvQxlIT2v6Ao9a6DNPTxiQjym7Uk8Dg/WvN+7aTt4JAO96nVAvCprqrmUVhU9Ty6CPQ3PHLxH3XW7hSgrPA4PVjxlYwy94OWrvFVrwzz6mGE8yYbfPKz/sryK0Jg8p5d+vArmxDz7At27Nfu+vArR4zuDlG08lsoovU5ZWjw6oyw8IvoOvT7hHrvGh5A8V/+Avb0BlLwfxjS9HhyAvXNc6zk0kUO9yTHFPICAvbvLGp29NNH8PCMEp7xgELk6/Ff3vArR4zy/II08pkLkO6uVN71K2y48bomlPLFSBj1Sl0y9IBtPvfvt+zyx0vg8vHfuvGUYij2zZjY7JhhXu8+YSD000fw8om+evapr9TzdETW9IJATPNgpDjxhJRq84hmGPG1f47xgUHK56QvFPMgcZLwtf9o8a6BNvExaC73Pg+c8jvkpPWciIjz9QYA7pmIOvVdKAzxmTXo8ivvwO4q7Nz1ekVw7A5QiPE3a/TwzJ0i9u805PdnTQj0kmfo8JFlBPTW7hbxTDBE8HMh7PEeyHbxGnbw7d68+Pb2hML0fsVM85uKzPctF9TtdR4s8oPBBPV+mPT06jku9p1dFPQ16grxE3ia9gipyvC6Uu7rVgG+8aOwAvFOsrbxd/Ig95Y0ZPO2JcL2gRVw8uLkJO6Aw+72s/zK99i+XOiwA/juVoOY8tRDrPCwVX7lQ2Da9P3byu8OeOL1eUaO9wnR2vdpIBzwB1Yw8hj2MPNt997ygBaO7njEsPS1/WjuA9QG98zFevOE6Rr23j8c8/Zaauwf97LsNurs7YPvXO8yEGD1lOUo8ZbgmvclbB74Q48y8gJUePLMRHLwZKRA8oq9XPTU7+LtMmkS8v0vlPECgtDs/dvI8xV1OPPXFm7y0e5e8aSFxvfIc/bypAXo8US3RPBtICb1mTXq8NhCgvH7BJ7y0u1A70RclOyWuW71+IYu7nRzLPP2Wmj0bMyg9zi7NPASpA70mA/a8VeCHPFPBDrt+7P+8iyUzvfwsnzz2Gra8PGLCPCzqBr2sP+y7ZI5kOgCryrywaP07uPnCvDZQ2TwtKsC8KNfsu7UwFb1j5K+9vuHpvCuAiztRopU7gPUBPZI3nLpekdw8tjqtPIyPLjzmQhc81ZVQPtnTQj2JZh288vGkvLluhzxWlQW9LX9aPNxngDzPQy49md5Yu+R4OL0MkHm8m51uPCQZiLzmIm08R/LWPSL6jrwLWwm8dgWKPQ5k8Lx/a9w8qqAAvRzI+ztv86A8pG7tvI9jpTxiuu084PqMvHAz2rto7AA8RxKBvLp4H7y5DqS8Gt6NvOvqBD0DlKI90RelvII/UzzA1Yo88ZwKO3McMr1tX2O8+wLdOzk5sbsa3g09ZvhfPHaF/LwN+nS9T267vCKaKz000fw8rF8Wvf2WmroVNqA8qdahPMHfojxtX2O9oVo9OuqAibyaSNQ8BNRbvDM8qbw5eeo8XfwIvUxai7y8IlS77whNPM7ZsjuMOhQ9wd+iPQOUojx9l2U9K6vjvDOcjD2/S+U8JM6FPO6eUT3BCns9PA0ovFVrw7tnIiK8d6++vLXQMTw3epu8N3obPbFShrsMZaE84OWrPLLn2TxbKBI9zcRRu9aqMbzm95Q8zTmWOyprqryDVDS92N4LPZdffDyrlTe9j2MlPbXlkr1AS5q8zhnsO5J31bwE6Tw9nMewuwOUIr3iGYa8D+4VvRLCjDwlbqK8SFxSPWjsgDxgELm7yYZfu7jk4TulrRA84rkiPViUVLsGaBk9HJ2jvJ6GxrwmOAG9tjotPImmVjys6lG9/YE5PcB1JzwwaDI7g6nOPJdf/LtutP27HQcfvbkjBT0ZtEs8YXo0Ox9xGrvoock8JjgBu49jpTxBtRW9Bx0XPSY4gbxkro68aIydPNy8mjwQo5O7SYYUuw3PnLzKEIW8X7sevZmzgDzIx0k9CztfvA/ulTwsFV+9FqAbO2LPzryIPFu9bumIvAEgjzx3WiS9+NlLPOK5IjsmOIE8g6lOPbZ65jwNegK8DMUEPcJ0drzSgSC9WeluvDYQIL0dBx+8US3RvP8r7jymAiu8tdAxPCrLDbxLpY08ThkhvHgkA7xfu548zIQYPOpgXzwJkao8CBJOvTvjZbzsH3U9T4McuzpOEj3mQpc9hyf6OZ+bp7wkGYg9kLg/vRPMJD2K+3C8n8Z/PNANDb1unga9lWCtPElxszsAlmm8GSmQPE4ZobxXKtm88F1nO+BFjzxB9c48FCE/PU4EwLweXDm9++17vOz0nLwEqQO9EfgtPSLa5DzuszK9NFEKPL72SrxLMMm6koy2ui2fBL1JcTO9UNg2PX7s/7ux0vi8n8b/u9F3CD2ibx68Pza5O4mR9TzxXWe8SxtoO2AQOT1iuu07V/8APZD4+DpozNY7yHF+O4mR9bzhOsa8Dfp0PUyFY7tUFqm7TFoLvYUoKzyAQIQ7GbTLOsC14LvnN846zG83PY3kSDxJ0ZY8yvBaPKeX/jzHx8k8hvIJvZ0Har23BAy9kow2PdjeCz22mhC9/0BPvYVo5LwkWUE8L/42vPHHYrytVE08v2sPvDel8zlvHnm86Ut+OgrRYzw9t1y81xStPEO05DxPrvQ8nkYNvNQW9Lx+AWE84a8Ku210xDz6mGG9BpNxvKjBwDyjBHI8URhwvGn2GL3FSO070qz4vBuIQr2U9rG8YPtXvDxiwjz0sDo9WenuOuJkiLzm4jO9n9tgvIVoZDwRDY+7C/ulvLL8Or1qS7M7xrLoPKHPAbzy8SQ9DmRwvJiJvrxLG2i9L+nVOzjklrs8TWE84OUrvXjEnz0i2mS9dfAovY75qbmccpa6cxyyu26ehr0wExg9LtT0vAmRKrwlbqI5Z3e8ugIqp7w+DPe8ASAPvXevvjyGvf67PXejPCNkij2QLQQ60QLEu1EYcDp18Cg99JtZPATpPL2DVDS9StuuPfsih7xASxo9MGgyPa6+yLzVgG+65Hi4t4D1gTq2mhA9DGWhvLljPrwMkPm8VsDdu8xvN7zAdSc97B91PJHigTzCH1w8z0Ouuu/za7x2uge8lWAtu9jeC73m4rM8Bx0XPAyQeb2lmC+7t49HvJbKKLrBysE8QfVOPbGSv7vuE5a827KCOuvqBLzLBTw7SYYUvT13o7zipEG7/GxYvU+u9LxMhWM8m121PPLxpLy6uFi86nVAPWd3PDs8Dag8Y+SvPGMk6TwsFd+7LBVfvNf/y738LB+91qoxPBLCDD01u4W8vQGUu4sls7x5btQ7HTL3vME/BrznTK+7bPVnvbjk4Ty9jE88kWJ0PCislDsPORi8aeE3vZozczyGfcU8xPNSvHXbR7zc5/I8r9MpPOK5Ijw0kcM7mf6CPOFPJzz7wiO8vDc1vSbYHT2cx7C83VFuO4sQUj03utQ7w0mePNdUZrzB36K80uEDvU2vJbt4BFm8lioMO2Mk6bys6lG9LAD+PCFFETxAoDS9aotsPJ/Gf7ywfV68AQDlvL8LrDxXFfg7WygSO2/zIDzJm8C78cdivaDwQb3unlG96nVAPG60fb02ECA9pEOVvMSzmbwqFpA7PuEeO3jv97x0hi09BmiZvN+QEbuyvAG9eW7UPNcULT2zZjY8Yo+VPBhfMTxE3qa67N87PJmen7yqK7w89cUbu6btSTyLhZa9FOGFPLEHhDxOGaE7NhAgvUPUDj0CKqc6NmU6vOP527xePEK9DiQ3ugOUIr1Nr6W8gMD2PICVnrz3mRK82ZMJPGUYiry45GE8jI8uPKz/srz9lpq82z0+u+5eGD1ij5U9LDUJPCdCmT3K23k95CMePR9xmrym7cm8SsZNPF8bArsimis80oEgOxbg1LzPWI+8N6VzvNLhg72O+Sm7vvbKvBtz4bxB4G08TEUqvYaSpjyQLQS8lsqoOhrejT18LWq7X7sevaZijrw45BY9d5rdPOIZBj2cxzC9c1zruq6+SL3cpzm9CtHjvM6jkTso95Y7jvkpvekLxTwo95a8S/APPabtSby/aw89pkLkPH1sjbyYSQU9gj/TO5C4Pz1CX0q9vDe1O6k2hb274hq9GXQSvdLhAz0Aa5E8rD9svPeEsbs/IVg8QgowvIq7tzvrytq8drqHPH7sf7zMbze9PGLCPOFPpzzH3Co9RMlFvUxFqjtfZgQ9MMiVPPGHqTxZqTU9NAYIvBDjTDyMj648O/hGPO1JtzxZvhY968raPA16AjymAqs7bTSLvH1sjTu5Yz68jHpNvW/zoDuEvq88FYu6PE2vJT2xkr83knfVO7x3brs2cAM9UoJrvZiJPj22Oi08G0iJvFOsLbwtf9q8d28FvXNc67xrtS68/ZYauyFFEb3xnAq8oGUGvSrLDbsHHZc8vwusvUmxbD0VNiC9UMNVPRThhbxqNlI9xV3OPM3ZsjySjLY7yUYmPOuKITxGXQO9bx75PI4547vtSTc8wKB/vFbVPryQuD+9EsIMvMOeOLyMOpQ8KexNvfFd57sdBx89FJYDvcsFvDyowUA9gj9TPO5eGLzx+JW8v8AOPUSUAb1H22I8hIkAvSRaCL3RxGc8UNhQPT+xVz1HBue7rUc/vc3+kr3bZQK9o/KvO4f3MzwQ41E8Nq4eveJqVDktrxe9CLtfu9nop7y0Sni6rJ3HvPRqezvIE4W8RJSBuhsyljy+ne46fs/BPD+tJTwSCAu9mfOovBrgv70R3x+9GQtEPNlASTzs5rU8Y3ykvFH9Cb0ksik9rEe/vIS0hLtkU7k8rBw7veIY/jyHetk7I1yhutnqQLv+u1i8/zgzvcfBLrww7pQ7GmFMPP4+/jsQ49G95LwqvCQEgL0/gAi8DcmNvT7WkLz1toY8TZOIvK3tBDwshJO8UIThu3Z6Mj3iwnW72W//Oz+ACL1yjYu7fkycOyJg0zu/lyO9m3ADvAhn8Lp+pD08PtiputBu3zx1+aU6rB5UPRIIizz+D0g85GaivIen9rzZ7Nm8EDdBPZbdFjwQ5Wo8x5hDPZpLSr1HKyC9jbOLvZlLSrto5Ay9H5yXPEdUC7s22aK9/g2vu/WNGzyiovK8/+ARPKRIOLxsrHo8q6F5vFbolzx2U+C7nwWJPK3ISzxZWOQ8LdgCPFoCXDvV+wA8UK9lPDYCjj2tHLs5UFdEvZBO3LwZjNA7NAryPOj5Dr0QtBs9kEoqO6JKUT3o+Q682mebPRBixTsrteI8R9tiPPU7xbw6lxO8PtaQvLUZKTziQem8PwOuO4f3s7wsX9o6CIwpPRKyAj21x1I9xxc3vYdLozwQj2I90D8pPOxnwryk8i89EI/ivFnZ8DyZ91q9/uRDvFp/Nr1se6s8h3SOvD4J+Tx1fMs8hyRRPL+XIz0Z3iY8/7m/PNHtUjwtAwc7ftPzvHXQury/xtm7x5rcPBG4TTxrf128x+7LvEgtuT02WBa9EDtzvVn+qTy+bB+72W3mvC0wJL3f+gc9388DPaPJxD1Da5Y87JRfvOxnQry/QZs8Nl7hvK0e1LwQDD08LTAkPfW+aj3akIY8rMIAvEdWpDxaLWA8/jQBvZkk+LxZ1b68tXFKuxmO6TzZGfe7pBmCPCNcITzQlbE8WVhkvBKyAr0Zt9Q72hfePEisrLzZGXe4Wa5sPLbsC70+iGy87Oa1PLUdW73+iom8tW8xvVXol720Sni8x0CivSKN8Dy1G0I8NgbAvfYS2jxtpq+89D93PPuhlLmQI9g8fqQ9PaScJz0INiG9bCvuuxo4YTz1Dig8A/UKvWLUxbx1ziE9dFX5PKIhZr0H5mM9mvlzvL5Bmzt+03M9o8nEPNtlgr2sQw07NTNdvS0DhztQKqc8UQXuvGyoyDxHsF48NVzIOTJChLu/bJ+85BKzPH7NKDyZS0q8KG4BPdbSFT2WBgI8P4ZTPKdaGL3svUq8bHurPIS0hLtirfM8dFV5PFtQgLrHw0c9EF6TvFY8Bz0ZOGE9kckdPXUkqjwj3S27OkGLubVz4zw/giG9hybqPMfsMj11/Ve9P4bTPBm5bT3W0hU9kPhTu4fMLzztOiU9vhxivYdLozzskK28tRkpvRneJjwjXKG8f/gsPAg2Ib3D1Ae9rMx9PRnkcTwHYz692mUCu3YoXLtjJAO+W6ghvXZ+5DwZt1S7tcOgPL/EwDyw2BI8x20/vXRVebjQ7+u8tEp4vZ7ahL2/xMC70T+pPAg2IT0+MMu8Gd6mvNE/qTw+qww8lTGGvAgJhLyiy928bfy3uscXt7yQe3m6I7h0PH783jxRBW49kHt5vKTyL73aZQK+R4EovAeMqTuRH6a7EWJFPNnqQD110Lq79RLauz5bzzyygoo8WVQyPf7iqjtaqCG84xRMvDUvK72Wh468LYhFPNA/KTxigNa7PgMuvBZHCDvfexS9Ijfou3b5pTts+h690WxGOVlY5DyZzm894mpUPSwDBzxj/TC9ddRsvWzPmjx+UM474u15O6MfTb0ril49kR+mvNAUJT324Qq91lGJu61Fpry+m9W89Y0bPJnzKL3jaLs82mk0u5kk+LsbMha9B7etvd97lLwe8IY8vhziPMfBLj2HTTy8BzxsPK3GsjxigFY5lVwKOxBkXj5r1349VmcLvSfEibxHL1I9ETlavfJMBbw0CnI8v+9EPH4jMTpIVIu9UVUrvNEWPjwN9BE7CIypPL7G2T0+sde7WivHO3vggT1kJAO9K7XiPKsg7bw+LrI8kHlgu9BweLy/8d08/+TDPAfofLs1hbM6o8erunSA/bzrFew7h0sjvH/LD716YQ49UFt2PWKCb7wI4jE8o3fuPFEswDuRdS694+vgvO0NCLuZ8yi8a39dPNkX3jua+XO8vnBRvSOyKby1bzE9K4z3PLvVAL1j/TC87LuxPCIKSzz2OSy8IjdovaTHqztIf4+8op5APD6tJb3Qai287eIDOyyzSb1QA1W8COIxPH97Ujz2O0W8mR4tPNHrOT3raVs89WZJPaxFJr2IzC89bPw3PSfEiTybyCQ9iCCfPWOr2ruyV4a78iGBvP5lUL32ujg8pEafuod88jxZL3k7f3m5PP7iqjxspJY8PrPwPCth87ut7YS8f9FaO1CpmjyHSyO8FUcIvNFsRj11Ty48dShcvVDWtzykRp+9YqlBvWx7q7xjUSC9fs9BPcfyfbzQQ9u8x8d5PIw0GL3QlbE8LNobvBDhOD1a0yU8sAOXvNoVxbpQ1B47ZCQDPBk4YT2QHQ081XwNPcgTBb1jq9o7tW+xvOMSszsRuE27rUc/vZGgMj0sXcG7P4CIPHX/8DxWEQO8WlSyvJEdDb22mJw8PtxbPFbolztZAty7dk0VPX783ryEtAQ8qNkLvT5bTzxZLeC8q5/gvOPrYDytRz89ddA6OuwNCLzQxGe9tcOgvKPJxLwjib48/mM3PdGTmLzb5g49kEiRvayf4LsZYcw7vnBRvbbuJLxR1B4962nbuywJUjwQEG88EGRePMdtPz3j56480Jt8PHJiBz0Ht628a1ZyvLDYkrx+qG+9WVQyvf8R4bzRRXQ70emgOlkAwzv1ZDC8SCmHPK1wqjtMPYC8dc4hPaiuhzv16e480WgUPX7NqLyadLW81iaFPcgTBbyyLII8XpGWPSxdQbwjMZ28e+CBPSRaCL32iwI94xRMvDsWBz32Etq8NYnlvKsgbTuQUPU8vkM0vNGTGLw+2sK89Q4oO5l2zrvZbea7LLGwPL7EQD1aVsu8tfRvvdnsWbuHzC+8WtEMvX7PQT3RPyk9NbJQvWLY9zuHT1W8p1oYvSSJPryEiYC87BNTvW0lIz3+jru8bCe8u/Vqe7yHdie8h6f2u4ckUbuog4M80JfKONkZd7vrwXw9x8d5vGR+vTxMvoy8PjBLvCvifzyionK8vkVNvSLhXz2Q9CE8v5m8O+ejhrwNHxa8fqhvPKIj/ztHAJy6SP4CvfYOKD27AIU8GeLYPEey9zykb4o83lCQPMRVFL0QNai9e4ySvZrxDz3RcPg8qNkLveRoO71R/Qm9Y6vaPNEUJTvQws67MkKEu6OcJzq2Hds8siyCvCIO/Ttkfr08dvklvD4uMj1Zgc88RwbnPLorCbsQEG+9RL+FPGOnqDyZIl88B5BbveySRjs+Vx0933sUPcfDR7z/igm9GjSvPIf9fryan7m89uW8PFaSD7xyNwM6Tb6MPXZRRzw2WJa7WddXvFlafbu71YA77OpnOkcrIL2adLW8yOiAO17lhTy/bB+8B45CPSSHJbxR1B68h/ezvXX/cLunLxS8mcxWPL+Xo7xnjoQ9LVsoveM/0LwssTA8iKGrvOMUTLvjvCq90JnjPHXU7Dv2OSw8I92tvKtJWLwE9Yq8maNrvNDCzry+Gkk8UK3MvDauHjyrymQ9bH1EvMhEVLzEVRS9NgIOPQcR6DqM3g+9kPrsvHXQuj2Z86i8KBoSPdCb/DxjLGe8noYVvOS6ETwHvfg67LsxPaxFJr26AIW6rBy7vCKL17s1XMi6iJ8SPeMSszs+MMs8LNy0PL5DtLw/LJm8kE7cvL5uuLsHODq8x0K7PNG+HDxRfpa9LF1BvJrIpDxyjYs7270jPLUZKT0ICYS8RL+FvEgtOTx+SoO81fuAu1CG+rz1OSy9v+0rPIjzgb2inkC9KwvrO61FJjwR4bi8R7J3vLZtGD3jvCo9tXPjPP6Q1LvZ6Cc87A+hvBqzIjuR+NO9I92tvIjzgbviatQ8x5x1OdDt0jn2ZLC8yGumOyPfxryZTeO868F8vCwJUr31O8U80RIMPPJ3Cbw+2kI8h/vlvJFKqrxj0JM80es5PfVil7z+E3q8Y3ykPH+ipDuZ+fM84pdxuyzgZjzHcXG86xVsvPbnVb3aEyw9rZsuvdkX3jrIlJE92Zjqu79sHz2/Rc28h3hAO8dG7bzREgy5JIclvMdCOzxQAby8EDfBvOSPDT3ivkM7ewsGvf9lUDsRYkW9PjR9vDVgerxf5QU9mffaOppynLqRyR28pEg4OzbXCb1HqpO8pPIvvchE1DyZ91q9LdobPVCpmrwaije9X5GWO6xwqjzkOx69DXMFPSIOfbwbs6K8JAQAvVaSjzw7Fgc9dv3XORlj5TwoGhI9RwK1u0QVjjxrf1289pFNPNG+HDxIL9I6kE5cvdqUODy2xbk7iEujuy1bqLwHPGw8okzqPFD/ojsj2xS87Y4UvRrgv7ztE1M7JAaZvD8FxzwbiJ68NrC3O35MnDtRrcw7a4H2PFDY0LsZY+W8/uh1vKMfzbyHT1U8R1pWPa1wqrsQtJs9a4H2PHZPLj0+LrK8mSBGvfVoYjwss8k7UAG8PMx9hrsHkvS7LQe5O9AY1zuNs4u9NoMavZBMw7yReWC86E8XPNC+HL0j3S09maPrvHUkqrxI1zA9flDOuwc4Or0H4rG8PoQ6PVumCD26gRE9RL8FvZ4wDTxkT4e9/73xvHX9V7xbfR27LNiCvGus+rzZ6Cc8Plm2u5pLyjzHmlw7ddTsPGykljztvcq8I7TCPFF+lruiy109ZE8Hvetp2zmHdqe8UqcBvRA1KL1jLGc82ZS4PKPyLzzs5rW8VjyHPGfkjLxH3fs8dfu+vBuGhTyIeEC8h8wvvEcrID3rv2M8UQXuPO2OFL0ZOvo8onVVPcfw5Dzkjw09dShcPeKVWLxaVLI8PrNwPOIYfjyiy128OxYHPaJ11TwHOLo72einPFAw8jsEdpe7NIv+vD6tJb2HS6M8B45CPJD67DwZYcw8Nq4eu2IqTjwIucY7yEZtPOjOiryrn2A9W3sEPGvV5bvkPTe7ELQbvfWPtLzaRPu8maPrvHbMiLyZ8yi99bzRvBsHkrzbvSM8Wn2dPId0jr3skkY9Uf8ivfW6OD3rFey8tuyLPf4Tejx+e9K8PlvPu7Yd2zyZT/y8xxnQvJYGgjzfz4M8h3xyPAfmY731aOI7WtEMvZD2ury+6xK8iFHuPIfQ4bwe8IY70O3SPH7+d7xHBM47bH1EPD4JeTzjuhG9BlmTvE6YOj2YK8m8A1g2PDWNYL2lB7G8QM87PH7gTT1n3FQ9mmtqvF/CBb353Bq9QbzSvK176ztH8Ou5rkmMPNZWpbvGM7s8L1nHvOwNGDwSWvW8GrYavaBmQzwt0wA8j5ZjvR2wlryq4V48KN8IPBeo2DwSiIW7xNJuu5vFVbuz3ZS9oUz5vPloZbzlcq46wP8hPbaEBrzJIFK99zwKPTziJDtlSam851/FPETKlLz4u+88ocAuvHKx27v2dO28jgM4ulLF8rxPnxs7Jd6ruYMusTxyXlG8+YmQvV3Iibx78za9zm61vO/tyb0FmNe7zm61u1Ny6DvIc1y8D8DovPc8iryoWxg9lIpbPLgkFz0NgMe8hsi9O+gMu7vYlsa54bd2vZY+srun9Me8Tpg6PH2GYrw/Kac89SFjPFe5aj1Ueck7C/oAPbN2xLyLaau8gc1kvEn3zDwtbDA8+C+lO0/yJT2Mw5a9qztKvYCUJL316KI7GpXvvGeJSrvXj+W7KdKjvecmhTyuznU8nrJsvMsNabyx3De8eT/gu7TQr7w0M/W6uHGdvG9qWbuzIzo8mT+PPGzkkjyhegm7tdeQPLhxHT0h6rM9GgmlPDSnqry3F7K8vJf0u6hOMzyQ6W28IXb+PARfF7w1jWA9WnSivEoLEz1PrIC8I9fKPGb2nrvi2CG8W86Nux4Kgrk5gVg73eQpvbAVeLzM2wm9FqF3vMjG5jzh5QY9J3FXPaoCCr1D/PM8YwkIPbI9BLwUgoG85gXaPOkTHL3lLIk8y46DvamonrzQIoy8jrAtvNVpDrxWDPU824PdPJSrBj0Cq0A9MvPTO93D/jyc5gA9re+gOyCQSL3z4UG9Vl9/uzziJDzafHw81wMbO18VkDs7Na89yc1HvQMFLL3274M8txeyu8dHAb0khEC9tdeQPJwfwTw1p6o9xdJuPDnuLLziEeK8/dCSPBlcr7yqjtS8rKIaPdOb7Tys/AU9XAdOu/KH1rzdN7Q7+1X8PC1SZryKdhC9v6U2PDY6VrxPnxs84SusvB4Kgjw/44G8nHLLPP/KDrsxmWi81jX6O1/ChTzA/yG9Xrukuiklrjw3Qbe8P+MBO7I9BD34gq+9+IIvvQ3T0byhwC69dMyCvCQxNr2FbtI8aOO1vJdFk700+jQ9lDfRvA2AR7yS9y+6yiczPWToXD0nxGE8RKlpvXzZ7LvafPw8NjpWPdZWJb2UN1G7f+euPJJeAD0e/Zy9+xw8PR1JRrzyh1Y85f54PWToXD2COxa9CpOwux82Xb0urFE8ny0DPRMoFr2JtdQ7vr8APVDY2zxlnLO8JuWMu3VL6LkxuhM9uHGdvAGk3zwNgMc8Av7KPJkRfzym7ea8VSY/PITB3DtvF085EG3eO0urIzyMw5Y8zXsaPT1u77wAGJW7eFkqPSPXyjwUgoE8Fk5tPHAesLwjSwA82UO8vKrh3jxZGjc9Q8MzvVLzAj3LNJg9AqvAPJk/DzxEVl88XAfOPAORdr0UggE9z8igvCMq1bzTm+07apeMvJ4mIrzvQFS8iWJKvWzkkj0e/Zy7Q0/+vP9jPrqEiBy8oM0TvhlcL72RnUQ8HlCnvFg0gTyGdTM9DYDHvEDWnL2Mw5Y7y9Sou5GdRL1Tk5O9irw1vDzipDyB7o88I56KvGECJ71skYi7PRvlu0QdH7yOPPg5+RVbuZXkxjua3x+7BOthPDO0jzxFJIA9+xy8PJC3jrzV/Lm8h8+evVH5hroDkXY7sBV4Ow6UjbvxoaA9X0dvvJY+sryJtdQ8ekbBPJvshD3jMg09zigQvRlplLyQtw69LcYbvQTr4ToifV88tIoKN9swUzz71pY6HEnGvJq+9LyUitu7Z4lKvf+9qbyT3eU8Lv9bPbMjujqSsYo8IZepvO1anr3EoI881fw5OwD36buGdTO9xxnxPOv5Ub24xKc8aT0hvWp24TsNgMe8s92UPI48eDsVu8G8ABgVPcsNabzUFgS8koN6vDyPmr0YAsS7NjrWPHXx/DxFdwo97FO9vIq8NTzOGys8EBrUvE/ypTwb71o+WGZgPa4o4bytnBa9QLVxPSdxV73GM7u7IVGEu0WwyrrQrta7OCdtvYtpqzuooT27U3JoPAD36TySg3o9jwqZvC3GGzrhOJE9AwWsvLij/DzcRBm9E3ugPJOxijrJc1y66MYVPRqV7zz8MII8aT0hvNpKHb3fcPS7TtH6PJFKurvZ8LG8MGAoPfKHVj3wgPW7d7mZO4I7Fj1Ueck79yhEvRxJxryx3Le8v1KsO269YzyfLQM8PRvluZZ3cr2sQiu8SrgIPbTQLz19VIO83N1IO4KBO7oalW87gtTFPDlImL0RLho8ZdVzuxKIhTzvVBq9X6Hau3xNIrvLDWm8IVEEu0xYGTyZkpm8E7TgvFpTdzyFG0g9VjqFPVLfPD2ltCa9ugTJPKaa3DziEWI7WMBLPYAgbz211xC7kzBwuqRTWrxonZC9PnXQO9SiTjy/X5E81lalukCDEj3/Y747db+dO0e3Kz2xwu27owBQu7oEybwxDR68L8CXu7xEarxaxyy74zKNO3jldL2vL8I83KSIvTiborxItyu6Fk5tveIRYj1uatm8mjKqvBTVizwzB5q8MbqTPEMqhDhM5GM9RKlpOqRTWr1MsoQ8BwYJOS/Al7yqAoo9TkUwPNiWRj3d5Km8DCbcPN3D/ryLaas7fYZivAORdr39CVM9YwmIPMtg8zwE6+E8RFZfvCYXbLyeJqK8k93lPDuIOTz16CI8pVo7PH0zWD084qS8X8IFPJgrSb1tKrg64TiRvCHqs7wM7Rs8YeF7PeR/k7zUok68nB/BvEIWvrw+dVA8vMUEPaXBCz3CphO9xH9kPTHscr0g95i8nB9BPBYVLb3L1Ci8A78GPYKBu7twHrA8zcG/O/D0qrsTzio8K2XPPA3T0TzGM7s8R7crvfToojmICN+89XRtvbTQr7v06KK8xH/kO+umR7x+4E28475XvDAaAzw3lEE8NGEFvW2EIz2++EA8+sLQPNNIYzwWz4e8apeMvJQ3UT2GyD07OYHYvFLzgj0SIbW8fVSDvO+0iT0pXu68vRILPSdx17z7HDw8Lwa9vE6YurwgPT48WgDtPOVyLjuS9y8775o/vD8pJ7ttMZm8crHbvEe3K7xRMkc9L1lHvBF0P7yaMqq6ztUFvTAag7uAIG8938pfPfmJEL1eu6S8KiwPPXAeML0hkMg6+jYGvRtCZb2YK0k9ig9AvHQfDb1rfcI6+9aWuxIhNby4xCe9bt6OPA15ZrwwYCg8l8r8PJ4zBzwMmhE80K5WveDRQLw/z7s8om0kvE6Yurw3+5E9fzq5PFEyR7zMZ9S8vMWEvNFbzDwPE3M8RsQQPfePFLyaa+o8C0AmvHjldD0Ohyg92zBTPODRwDxtMZm9bxdPveLlhr3uQNQ8OHr3PI4DuLwiRJ+8GMmDvEgRl7qEiJy8IXZ+vHW/nboL5jq8mmvqPMbtFbxTH1688k4WPfgOerxT5h08Q30OPNqdJzxMkdm7CDJkveYFWrwOQYO7scLtPDENnry7GA+9xSzaPH86OTxzC0e8Yo5xvOYF2jzSHAg7mZIZvWBiFjvnss+8XHuDO4MuMT0TtOA8KbH4uI6wrTtNPk87/FV8vKmoHrxK/i29ySDSvPXoIryp+6g8HV2MvJSrBj1ORbC7u+p+O0TKlL0TB+s85nmPvHCFALxzuDy8GMkDPa7VVr3rpse6R/DrO9NI47u++MC7KDITvQhTDz2GyL28Vl//u30z2DpWgCq9bCo4PKpVFLxql4y7ismaOzHscr02WwE9NlsBPb6/AD3kGEO7A5H2vO+0iT1wHrA8ccslvSosD73C7Lg9lUsXvCMqVTyvgkw9nHLLvMsNabxw2Ao899W5vD0b5Twhlym9kUq6OwafOL3uk967s3ZEugW5Aj07iDk9MQ2eO1RACTycH8E7YQ8Mvconszv5Fdu8GMmDvLPdlDw0p6o87TlzvUtYGbtwqvq7Guj5u4CUJD0RdD89MbqTvFPmnbycH8E8Q8OzvCosDz1xyyW9T58bvV67pDxLUTi9NufLvG2EIzyH3AM9ocCuvPNIkjsH+SM9KDITPTNNvzyOVsI7wQYDPdK1N7xw2Io7WlP3vebMGb0/KSe8h8+ePCNLgDyGgpg6f/STvHk/YLwVu8G8h88evdFvErwLH3u9vRILPTnUYjzGhkU70hyIuOdfxbyJtVS8wThiu9uDXT0Gnzi8tHZEvCy/Oj13Zo88anZhPCPXSjyoob08ZUmpvMjnkbwL+gC9hIgcPam1A72vgkw8UPmGPUuK+LmzdsQ8gSfQvN03tLyD6Au9pRQWPE7/irooy0I7/lxdvDSGf7zlHyQ9hoKYvPgO+ryY8gg8T/IlvVCFUbzOG6u8pbQmPRLOqjqptYO8HonnvI69Erznsk+8SWsCvVe5ar1wqvo8qYfzvLTQLz0r2YS8EcfJvHAesDulwYs8p/RHvUuK+DzVtpS8leRGOsjG5ryyPYQ9IypVPfWVmLw+ddA7NVQgPS1S5jxk6Nw8QmnIuj8ppzxVJr+8bOSSvFXTtLxk6Fw8DdNRPN6eBLwe3PG8EyiWPGqXDLz/d4S800hjvdFbTL0y81O9nOaAvCXeq7xTH148e/O2OcvUqLvBWY08+xy8PGp2YTyd5gA8AcUKvIciqbzAOOK8mCtJPUVWXz2GyD27om2kPQAYFT0SITW8I/EUvETKFL2eJiI9a31Cva3voDzbpAg8A7+Guw0tvbnnJgW76m2HvCq4WbwCq0C9BbkCvTyPGjx1bJO88S1rPWUo/rvTvBi9I56KPXTx/LuZhTS8KV7uvN3D/jwgPb48MGAoPVhmYL19pw08OJsivfABEL36wtC86WYmvSF2/rt08Xy86kzcPDrbQzwCZZs8jmqIu4En0DxeuyQ6NKcqO8hsezzXj2W8yuGNPQ6UjbxZGjc8hIgcOr5LS723FzK9Fk5tPHnldDzQAWE8TJHZvKna/TxeYTm9hMHcPCGXqbzXNXo8dUvovFbTtDs/Ngw92inyPNiWRjxo4zW9rXtrPFp0Ij3DJfk8SBGXPamHcz0x7HK75R8kPb74QDs2Ola8bJEIvIOVgTzS7vc8cnibPF1hubtBtfE6u+p+PFRACb06Lk69jmqIvN6RnztWgCo9CN/ZPMNGJLwX++I8wP8hPAL+yjwqXm68DCZcPejGlbzIc1y8XWG5vJxyy7zPVOs80mItvS8GvbwbYxC9X6FavP8QNL2oob28ohqaPK5JjDseCoK9uldTPZmSGbycH8E8b2pZvI2pTD2GL4488k4WvD7IWryHrnM8MmeJvJEEFb3WVqU8iry1PN03NLvLNBi9NPq0PDUBlrzLDWk8u+r+uxgCRD35Fdu8S1G4vF0OrzvekZ+8rPwFPN3kqTvtrSg86p/mvHxPb7ulJfw8XFMGvc0yGb1Jwbi8n1P4vBckLb2+mCI9MHkpPagrtLzRHYO9W1EevfQfJD1gMI+8sPDKvPf4XDtfLqe8EVKpvPn+lDo7KDY7kcuyvGcDBzyJ9V489B+kvOV3TDz1A2K8l5vOu6VDpryK6PE79vb0vFCTvDugcwq8K5ygvdPlfr3HYYk70wMpuyDcVr2JEhW9IdHRvALHBz3QG5u7t7VhvPrT/bquC5m9OibOO9ftHr1K0QG9EVIpOzVJRbxSl4y8nYoIPDZZDrwzcAw9auyIu/USt7y/fOC5/eiKvZqUGb28lFK9cpP1vGXv7Tto1/s8SsMgvVhLZrxdOSy7PgFvPX9WGz2rIws928onvZPODry9lro8U4qfPU+gKbxC7cw81uu2O2227Dw3TZW82sbXOqNcDLw9LAY9r/+fu3h0zrvKK+08xk5kOh7nW73PF8s8SrJjvM8ZszokyDQ7GCaVvOCY27xJ0A06IsRkvOd7HL0QUEG8pkWOPKFIc7wNZks7wmRuvDJupLz92TW8A6y5vIYLaTxG10K953scvTNS4jorjcs8vnr4O4YL6TyDI1u7M3EAPYQWbrz1Ejc9BaG0PDkkZr15hYu8m3bvvMpJl7wNdhQ8nl59POSSmjykTqs8ArmmPFF3+rxvyZG72rnqvC6TgzyhZ5E8r/03PJ9iTTxkGgW9vLEIvIQ1jL2L+a48at0zPFCTPDvU9js8KqgZPVVyrTzQCl68Are+O/3oijxZPnk8Sb/QvFtCST0e9rC93bDNPDBq1LsLgCU8rgsZPNzNAzz64lI8yFQcPV1IAb329nS8Z+RoPbLnrbz85iK8pTJpvbaz+Txyk/U8/Mj4vNjRXDyIHwI6crMHPdbrNry/fOA7vZa6PFhau7yy9gK8zTIZPehf2rkrnCC9Qt73O9zMj7z68ac8T5FUPelhwjz92bU8+v8IvHttmbzsSVC9L2jsu7Hj3bwJiyo9W1GePTFdZ7zOJiC9gUwKPDFsPDxUfxo7m3bvu6silzypLpA7Xiw/PT8D17zsOns9r+7iu+xajTpjGRE85oeVvINBhbzne5w8zTKZPJaouzwGpBA9hCVDvHGxn7zTAyk85YahvMGAMLyVplO9lLPAvH5jiL0XE3C9dZuVPQK3Pj1iFrW9JaxyvPj6RLwg3Na8Mm8YPTBbfzy7n1c9xGqmPb6YIr1txUE9c5VdvO8xXrtwrU87Mm4kPLyS6jssnZQ8ReSvO+C2hTpqzl68gFiDvG/JET1D/om8Qfq5vJx6v7t5hYs7up1vvMVM/Dz78pu8oGQ1PcKEAD1Tip+8caBivNusfb2vDYE9Ny/rug13CL2Xm048U4yHPRFD1LyGGj47V0n+u6FmHbu+mKK8pE4rO0IKAzzRDi683MubPGExA7xgEH28x2EJvWvB8bs1WBo93sEKPHl2trsPXS69n3GiPJDYHzp9UVe8fVHXPCm0Er0tgsY8DGRjPWrO3jytGAY8rRgGvb56eDy8hf28gS7gvB0Dnr3OJqC9iALMvAOqUbwPXS49sOF1u8ZBd708G0k9vIX9PGT8Wr0Kfr08/szIu6ZEGr4XIkW9SrTLPH9IOr3NMaU7woKYO4QW7jzsWg29moNcPEi9aLzwRIM87j7LvEfKVbwZCtO6r/03PLPaQLz9ymA8LJ4IPbfEtj0tc3G8Z/UlvXKyEzxUbl09gCz4O0jbEr0BxCs7UKIRPPMdPD0kud+8yDbyvAuApbwLgRk8flUnO7AAlDtE8pC8uarcPC2RGzxbQsk8w3WrPO1NIDzAb/M88yyRPcB+yLwNdwg8eXY2vJ9xorxWZcC8DGTjPOaHlbwc8uA74JjbPH1TP7xtxUG8H9puPGMJSL3CZG48rQi9PGzgDz3EWWm5lbWoPEvFCLxQhGe8ivdGPcw/BrvMPpK81AaFvS1z8Txo5lC8BqMcPZ5efby/fOA8YgfgOyDtkzsGlMc8/NdNvOaIiT1aXgu9c5XdvHKyEz0A04C9iQQ0vJTDiTwj4wK7ifVePIf++zt1jMC80hGKvD0dsbpdKO87v3xgPnpa9DzUBZE8ZwMHvRckLT1xrze9w3UrvIYcpjxttuy8ZQ0YvVCEZ71NuoO8LJ4IPclHL7yYjuG7+e8/PQHEq7yGKoc8KZboPNu70ruu+888XUeNuVN9Mj2v/be7uarcvBU9E702WgI8d4G7O677zziwAYi8WFq7vETix7zJOFq8Ohf5vDY8WDxLtjM9NGOfPEq0y7xiJQo9gEoivFd1ibsHh1q7vaQbvUXkLzx1m5W7Gw8XOjNhNzx4Zfm85XdMvGAQ/TwmzIS80hAWPPMdvLw0Yx+8C4EZPfQfJL3qY6q8AqjpunOVXbdJv1A6r/03PIBYAzwMZOM8zC89vfYVE72FNgC80Q6uPJ9iTb2hSHM8fE/vPBzyYD1nAhM9LoSuvYYcJj0VHnU9ivdGO8wg6DupLZw9hTaAukfZqrxxsR87sthYu0bXwru7n9c6dKeOPAyDAT2JEhU7ttEjPfvVZTy8sYg7197JvNP0Uzy0zVM9ykqLvBsPF71Te8o85Yahu2j3Db0CqGk7qhHaPK0Ivb1uxym9/OaiO3eQkLyef4M9o0xDPY/FejzHYYm8SdANuxknCTzDdau8qiCvu6FmnTzlhqE88CbZPCLhGj0mva87/twRPd2wTbyvDYE9C2L7vBwQizyrIpe7FiBdvJmBdDx5Z2G9Gw6jPCyPM7y8sYi8QBWIO7bCzjpnAhO98DUuveGqDD26riw9QvyhPAaFcj1vygW8KLIqvZ1r6rtJ0I29iBGhu2QLsLzFXTm9L3fBOpx6vzzBcdu7oVdIvSyAXr0UOje9sthYvKJZMD1LpfY8b8qFvZDYn7zsSVC9KaU9vNP0Uzy1zzu862WSOvEowTxWVus8DVf2vP/dhTwcEIs8engevGEUTT2TwC09a98bPdTnZjoybiQ9kNifPIkENLyefg88xGg+vaga97xOroq962aGuwCz7ryfYk09/79bPSW7Rzx3cmY8sdhYPc0TezvR/1g8LZEbPD4QxLypHsc8/dm1vAWSX7x9Udc9MV1nvEqyY7xSiLc9C2L7u2rOXj1jCUg7HufbPOGaQ7vKOkK8BJ9MPAxk4zy4yAY82OAxvNX4I70zYTe7uMiGuf7bnbzbyic9JazyPB/abjtgMA+9nXynvGvfGzz71WW9R9kqPVdY0zyYnbY8DXcIvcKCmDw7Nwu9WVyjvJmfnjyy5y29e2uxO1R/Grs/A9c7TKnGvErDILzSAcG7wnNDObbSF7xmACu8f0g6PUAHJz0XIsW8t8S2PHeQEL0watS83qNguw1XdjzIVBy7nn2bPINBBT3MIGi8hx8CvcGAsDx5djY8OUOEPNMDKbvHYJU84pwrPeGaQ7zBgLC8YBLlOPAm2TtdRhm8XirXPOORJr1dOay8w2ZWvAiZCz1AFYi8WT75vBcyjr0ptJI8nIkUPCyPMzxn9SW9TauuvCeh7by4t8k77j5Lvd6j4LyIAky8H/kMPQDCwzutFxK9FEmMvJaZZr3EWWk8+PpEPBobELoybxi9qS4QvYMjWz0yX888N00VPSLC/LzpcJe6WU1Ou60IvbefU/g8ziagO0Pg37yPxXq8wnNDvFVjWLxcNdw8igacPJW1qLtkGgU7+uLSvKQ/1rwCuSa82dNEvVVj2Lwlu0c944BpvaNcjLvMIGi9/sxIOpmBdDyR2RM90gFBPC6ELrxnApO8/79bPNPlfryz6gm7iujxvBBBbLzV6c48BaG0vMor7bwGo5w8H/oAvT8D17zV+Ze8ETT/PJG69bzgmNu7ZwKTvNftnjsdBBK9/NfNvCHevrw1SUU9s8trvOtlEr3T5X68zwj2PP6987zxGWw9xFnpPDhOCb2mRY67pkUOPADCQztE8Zw8mI7hO9jR3DsJi6q8Fi+yvLySarw8DHS8A6w5vHxgrD1Tip+7KLKqvN7BCj0OW8a844DpvFw13Lv9ymA9Wk82PJmhhjtOrgo9JcocPFhauzzbyic9k8+COyTItLznexy9Tq4KPYgRIb2eXv07s8vruvEZbLt0ma07ETR/vVWBAr1zl8U8DXcIPHOmGr1jGZE7R9mqPAObfD2O8BE9eYWLveZ5NLrkhLm8cLwku6/u4r2WmWY8qhFau11HDTxIzL253M2DPCDcVr17bZm8ArkmvaZEGr3mhxU9ALNuOyLEZDv4+kS9wI2du7qsxDzrVj29V3UJveZ5tDy+evg89CAYvchVkLvDdxO9QQmPvJWXfrvX7hK9pydkvPIMf72Q5gC8BK6hPM8nlLzgpzC9WkBhOxFDVDyUpOs8fE9vPQG11jw9Dtw8QPZpvAWvFT1aXos9XFOGPGzgj7vONAG8nmBlPd2wTT1Rd3q9TbkPvZmhhrvCgpi8T6ApPeZqXz0XJC091txhPFpPtrzT9FM9/crgvFk+ebw3TZW8cpN1PNjiGb0c8mA8458HvZ2KiL0tgsa6rPlnPI7xBb0GhXK8xHgHPCqnJb1+RGq8JNeJPBwBNj24qPQ7omgFPW+6PL1s4I883M2DvFtSkjslypy8PiANvFGWmDtRlSS90f9YPMdStLkOTPE8RtdCvK//nzuK98Y8Sc4luud8kLyalBm7pTJpvF1Gmby8o6e8QAenOtX4ozpJ0I079SGMPP7MyLvlhqG7Oxnhuudsx7zCgpi84p4TvBBB7Dw1SUU9j9TPurAAlD2O8QW8kdqHu0m/ULxC3ne91+0ePFOKH704In67Gfv9vHOI8LtD/ZU8VXKtPKogL703L+u8FEmMPCewQjyv7uI81OdmumEFeD3QCt67L3dBPMVduTw/BT88RucLvbfTizzX3sk8suctPZuWATzQCl69iQQ0PEmwe7368ae78ShBPcZQzLzhi268GBfAvLPaQDvuL3Y8n3IWPBFSqTwJi6o8xVvRvCbMBL3V6c682eQBvTY68D2YjmE8UJO8POV3zLwA0wA8k6/wvGIHYLvoX9q8KaW9vHSnDr2digi9fG6Nu4v5Lj1Oroq8DXYUPI/lDLus+Wc8pjRRPUmwezxVYfC8bMPZvM0yGTxG5hc9UKMFPSXKHLu4yAY9TZzZPADCwzwRUik9ReQvPEvEFL2O0me8WGmQPbABiDzPCHY68iopPRcyDrtvq2e79RI3vNjgsTz68Sc8PhBEPdIQljqhZp08/szIvPA1rjyVplM9n2LNvD4Bbz0SVBG9uLdJvfzXzTs3L2u9L3fBvCLiDru7n9e74YtuPDVHXb0snRS9n3IWu4QW7jzAb3O7E0ckvMZtAj3wJtm8KpjQPHGvN73+2x09XTksPeVo97znbEc96H0EPfYFSrwGhXK8suctPZ59mzxttuw8up1vvVhaOzw4Tgm9B5avvAxk47z+vfM8s+mVO1GVJD1LtrM8PQ7cu0nOpbuda+o8KaW9O5eqozrLYaQ8rrbJPBHPvLy5wl48JkLFvEb4bb2rLMq81oBxPb2DaTzLzzo8TWdLvNK/Zr3FbYM8mMz5vBmVg7wQmDE9hyMtvFxBkTwAi9W8hfCWPCETJLyfthM9GMwOPXLnr7wAi9U8MBfPvD/RNjw3K068zrQYvOBCw7zVEts7a/eDvFt4nL0pJyO8s7sFvb2D6bwRdF691m25u1+H37zLYaQ8Wli+u2vTsLtQX+E8B9bfvHPDXDxQFZ68vseavO6hTLx+80S9M1eLvEJbtjt3OqQ85ahvPcvi8rzLq+e8SabAPLzeR738JCm729wWvWUtyLtb6qe7tm9qPW8mJbvBMTy6YRHfu1MxBz3dJto8h1q4PGabXrzBRHQ7Ck0nvGyvXT0tH7m7AQaSvElvNbxQluy5U7LVu1Kfnbxe9XW8r5L2PMSEML3q4EG7xPJGO9jkgDzyB3m83O/OvPEYlLwOs1M6uh09vHrXWzuBDy66cCYlvIG0T7sl+AG9GQMavVpYPrwIRPa8us8EPAfWX7x6+y68G9tRPLN31DvnH7c8cUaDvVTWqLwQmDG9iDZlPWTjBLw+reM8CinUuthSlzxzVca6d4TnO0KleT3/weC7yPcCvUJECTxJOKo8+eTsPOzJlLxvy0a8lvBMPV4ZSbsZAxq8kKVCvFOyVb14WoI8LegtPdZJZrw7kfo8cCYlvYGhl7yoNLS9BMccPdxKrbydcuI6O35CPTK88Dw/miu8e3x9vaIJiLxoEqY8Wuonu2YWm7xRbAc9Pj9NvfIrzDxrCjy8ZIgmO433b7vwhiq8RvjtPMfXJD1Nwim9JtSuPBZCDz1Pp4e7CagFvXr7rjuPNyw8dsyNPK8k4LxQzfe7GZUDPXaoOjxXtxE9TTDAvLwVUz07opW83G4APWlJMT2lvWy8MAQXvYEiZruTQvq8vrr0PBDPvD3dlPA8KpW5vFvG1LybVnm9cgsDvUV3n7w3mWS945U3vANwsz1MHQg7Q8nMPApNJzyWpgk9z6P9PEJu7rzn6Ks7Cd8QPYS9AD0yyZa99jAIPVW7hjzMq2c7O7XNPKWTB72g6Sk9DupePBGBBDxGU0y8DdemPPu2Er3v2Ne8BmjJu+rNiTsqqHG8aG0EuxlRUjvVHwG9VbuGvdaAcT2QE9m87PP5vDy1zTo8tU08xg6wvAnySD2WgrY4YFkFPZaV7juKpPu8ovzhu3oyOjxibL08FEaEvCknozxm34+886aIO9KI27uWgja9FqN/vCqVuTyoNLQ8wPqwO2ikj7vcSq08Up8dvOM62Tz1kfi7xzKDu65shj3HIeg8c0IOvPk/y7wURoS9TcIpPfYwiLxy5y87ThmTPXkyujxsCjy9hqzlu7c4XzxN+TQ84LBZvI/JlTxFriq7ShRXPH/clzz1fsA78IYqvR9SGb0EkBE9PGeVPBHi9Duef4g8/4pVvJBKZDx4u3I8rJpgvCe9gTzWSWa9y+JyPWglXjms3pE80nUjPc8LAr1Qlmy80D4Yu6gQYbzU/yK9H0F+veALOLv1ZxM8NNjZvGNIajxMHYi9alxpPXACUjxjjBu9AOYzPVqznDxXKR2+WKprvNA+GD3cbgC9BcOnOy2Nz7xPTKk8tQFUvPCGqrrYUhe9140XvXsbDb1+KlC97vyqO7sw9buzQMm73YG4OxesMD2uo5E9IJzcuqviBjxGrio8Jgs6PfUjYr1ibD29LtGAvJPU47yZsVe8+eRsvP/B4LtpgDy8SAEfvC0fuToqtZe7hNC4PH3zxDxQzXc7COMFvaXhPzxXBcq83F3lPM6QRT2wW2u8QgBYPJClQr1k4wQ97sWfvL1wMTx+KtC85kMKvb6Qjzw5poq8tcpIvbpUyDuF43C9aUkxPIl6lj1Fdx89iP/Zu95qCzzTiFu8YRFfu3jIGD3SUdC8rAh3vOMnIb072SA9JtQuPY+SijzNIq+8T4M0PbTykDvH6ty8bJylPPgIwLxIkwg95rEgvTcrTr0XdaU8wB6EvbbKyDwCy5G8aUmxvC2xojyZeky8+CwTvW0ddLyvW2u9EJgxPZYnWD4jJtw8xc5zPJcn2Dvu/Ko4A6e+vKjGnbn1tUs97qHMvALLEb1mZFO9RRxBPJwoHz053RU9pDyevPRHNTyEB0S89SPiPM41Zz1R8Uo8+PUHPOTferkNRT08p2u/PBd1pbsm1C693EqtPGLaUzyrhyg8vae8vAE9HbsJu728mlZ5PHnEI7vEKdI7c1VGO+9TlLxio8i7G6RGPbvLD7xi/qa645U3vDQP5TuG8BY8inoWPBc+Gjx+TqM8uXgbvTSOlry+x5o8yj3RvEyLHj0+P028RlPMPCKljTyARjm9AgKdPHMx87w1ffu8+JopOzsj5LvV2887nSgfPBX+3bydX6q8ryRgPKThP72Wle68G/+kPbZcsjwfUpk95rEgPWZkU71zQo48lvBMPYL4gDs7R7e8QwBYPVCW7Lt0VcY7LTJxvFr9X7wuPxe74zrZOSLv0Dyy0jI8CFEcu9WkxDxpyn89miwUPfxu7Ly9FdM839SsuEWK17wH44U8aYA8PFiq6zys3pG8RwWUulpYvrsykgu9BBXVvCvf/Dw72aA8yWWZPFpYvjyN92+7lhSgPK+SdjzB4wM95noVvTf0wjxzw9y8mbFXvCX4gTxb/d86qDS0OA3qXj1s5mg8yI9+PXvX27wwzYu6GzYwvGN/dbw/dli8ay4PvQnfED12zI08rKcGPasZkryh6Sk8KSejvHvXWzwDFVU90GxyPBd1pTxhNTI9yj3RPFFshzvsyRQ9hZktvSCc3Dxca/a8VzxVvTQzuLxevuo7I7jFvJwoH72rLMq8sFtrvH8G/Tzr4ME8Zfa8PXPDXL0H1t+80r9mvU+6v7yBRrm6nSgfvJfM+bstaXw8aKQPPVHNdzwT6yU9pfR3PDzs2DzHfMY8aTKEPcvPOjyI7KE7KTrbPDCFZbwqlTm94ELDvABUSrxwXbC8JlX9u4nITrxs0zC9fvNEPfbs1jxGile7Sbl4PLezmzy9cDE8oVfAPMcyA71QbIe8i4lZPVZgKLx6+y68j8mVPUZTzLyPgW+8ZBqQPULJTLuFma08f26BPAZoSTwWo3+7xduZu0pLYrz/dx0979hXvaGOS73PCwK9XXSnPDu1zTw3Ylk8UJbsu7UBVDrDKVI8W8bUvEXB4ru3b2o7zIGCvcWX6DsORb28AT0dPWbfj70yvHA80dABvQ0haryZsVc86+BBvL2nPD2o2dU7LfvluWKjyLzeaou7sDGGvBGrab0pA9A7f89xvB9B/jyf4Hg8RhzBusF7fzwc29G81xsMui7EWr1X4Xa7Qu2furBokT2dX6o7AQaSvOgIir0VbHQ9whoPPX2pgTwY9vO8C22FO9KsrrtqXOm8bfOOvHbMDT3zB3k9mGeUvJOd2DyFB0S9iDZlOwpNp7ukPJ48z6N9u3dxLzzf1Ky8eJENPXrXW73gVXu7FcdSuxUisbzR4zk47n35OxCYsbzHfEY80nWjvOLwFTwKl+q7SktivAcxPrv/rii9POxYPVMNtLrdM4A8qEdsvHt8/bwogoE9eFqCPB9l0Tx3Tdy8DerevNT/ory2kz06YdrTu+pyqzwzakO85kMKvKuHKD35rWG8oQkIPR8Kczxmm968TJ7Wu05DeLudX6q8k+EJPMMpUrus9b68njtXPWQakLykT1a6iUOLveK5CryDZhc9WIAGPdjkgLvmsSC8YRHfvHMeuzw72aC8Srl4t9B5GL39pXc7iwgLPcezUb03T6E8AzkoPNpBfL2SiqC8BcOnOzfhCjyge5O8jzcsvVcFSr21yki7V3Ngvd/ULLwQKpu81P+iPZ+2Ez2IbfC88eGIvIXjcD0gqQK86jugPGIRXz3EhDC9xLs7PDDNiz1ibD28wA1pPcllGT3EBf+88vTAujdi2TxdPRy9pOG/PDJbgDtDN2M8W1i+uJaVbryM9+87F3UlvT8IQrsHaMm8bR30PARMYDxuKpo8DiFqPT4/Tbzv2Fc84As4PLWTvbwJu728UCjWvIytLD2h/OG8QrYUu6uHKLyEYqK8mtUqPcsZfrytFZ29HY2ZPN95TrznMm+90uM5PPh21jw/G3o92cAtuoHrWr0o8Je80lFQvcSEMD1a/d+9bJwlPToQLDsK8kg8LWn8vF09HDwtMnG8F3WlvMdpDr14kQ29sdKyuusXTTzQeZg8dzokvejEWDtLVJM6d01cvSawW7zPkEU8o3MpO6ssyrz5dlY8hCsXvCxDDL1Gile8Kl4uOs5GAr0eG467+GOevMSEsLyQpcI8qVSSOhZCj7m17hs9fvNEPOj7Yz0wTto7+GOePPrkbLtmFps8NytOPYWZLTwQvAS95+grvVGjEj0Dp748EXRevZZLq7x4u3K8wPowvZEcCrx+80Q8TFQTPS0fOTxCthS9oVfAPFTWKL2GggC9VmCoOjTFIbyaLBS9WAVKPDJbgL0ClIa9VNaoPCpxZjoDp768lyfYOlBMKbtibL28HNvRvMENabw/dtg8C20FPeMnoTzWt3y9u8sPPJoMtryl4T+7ScoTPN/ULL08Z5W6LEOMu/K9tTwmsFu8i1LOO0k4Kry+x5q8G8iZutakxDvVkQy9hRr8vIHrWrwKl+q8fRcYvSk62zxJgu28r+3Uu4zAZDxa/V+7G5GOu+K5Cj3lfoq8FtCDva6jET1bNGs7jzcsPW/LRjzjlbc9A7p2PP9AEr0ZA5q87jM2vSqocTwwhWU83YE4vDj0wrtfyxA8ADD3PAmEMjxTe8q8iZHDvNT/orzh9Iq7gn1EuVfykTzHDjA9KPCXvPS1yzxxCwO8BzE+PVdz4L2LP5a7+PWHPc9ZOrvcgbg8a/eDvUuLnjw3hiw8Hi5GPBxJ6DwAi1W9B0R2O4cjLby2XLI8wPqwvDHgQ7rZZc87P5orPFr9X72WuUG8j6XCu4K0z7xXc+A9+GMevDSOFj2n/ai9yioZvMegmTtysKS7x9ckvQNMYDrgec68STgqvTcrTr3o+2M9J+dmvGzmaDvOx9C85LWVvMmPfjxY4fY8OPTCu4g2Zb04meS7rJpgPN2BODw+9Qk92S5EPdqpAD3y9EA9MXItPdnALTyIfgu865IJPW+4Dj36ugc72gpxvPGGqrgbSei74ELDvOSVN7tEQJS7nJY1vBwSXT0tHzk8BIPrPMdFOzxXc+A7k4ogPUnKk7yhxdY8J3lQvS7RAL38AFa96+DBvdmJorwYv+g8u5SEvYa5C7xDexS99SPivFEoVrqoEGE8UF9hPM5ZOjxFilc9KIIBvaRzqTx0aH67xzIDvYx2ITsExxy9wPowPXoO5zwqXi47zkaCO6XKEj1qk/Q8QiSrPE+6P71wcGg8+8lKPHc6JL1Jufi8zrSYPJkwiTruocw5HEnoPC0fObtb6ie8O5H6PCbULj2cljW8CCmcPIn8brxHOIC9eRlIvJRiHb13baQ7RLHMvPkbBz2ckLc8U2Fdutjlkr0fFay8DY/IPJXy9jzXiA685Sq6O9gY6DoAdA+9uf69vDg0Ur2zA7q88CDCu/uPVzsNCFa94MQNPXo1Er3fPRs8YrSqujC3mDwKDZM7m/tfvK25Fruziiy9vD85u9RHkzvCSKI32OUSvX+pI72AOf28HcZLPbnwWDwHlMS8xzXBPGvwKb0FzFY8smD9vGehybzZrb+8dZcSvX+bPr0W2Sw6IlanvHiSVT27I2+81DkuOzwKJT1/qSO9c90JPIn8br1RPCy8/BZKvXiEcLwecu87vMarvNTAoDxjwg89fgbnO66PKDxY49O8xXs4vR7GjDsJufU8Bv/svGehyTy+ZOq8pL7RPBfnkbuvJIA7Ed6oOprISTw48xe99htGPRdgHz1xciC7OXqKvB+AVDw8g7K8ydP/u9Z6Kbw4rV+93Yz5uw0Wuzys7Os6eITwvPc3EL1ZeCs82OUSvVy5JjuI5aK80h3kvPPor7u2NtA607I7PZyQt7xfqwI9wSzYvAm5dT1Eo+c8i8kZPbJXFrwKx9o7+dVOvLlp5jzcda087nQePFHRA71DfjY8V8wHvdsmjjwW2Sw9hQ9QPLg2Eb3ZNDK9ml0hvcD5wbzudJ682TSyPKZq9TzwWJW7Rc0WvNId5DugZgq84vcjvWxpNz1FvzE8JwKMu4SWQrxhEW49u/CZu3zFa72O4KY86iW+PDPAQDwF2ju8ZxrXPI1LT71Z8bg8FtksvRbLR7lwZDs9/CQvO+L3Iz351U48JhAwPM0wxTzTK8k9Ke9pvVxqhz0yK2m98S6nPP/eN7ow+FI6rQi2PAM3/zzLCxQ9fgbnvCd7mbz5XME9sMI+u2eT5DylUyk8yLwzvbHQI705yak7ceutvAiiKTtZ49M9ahoYPX+bvjtxciC9aL0TOWTL9rwdaYg8rYHDvE2sEbyBwG89pEXEO2qhCr28uMY8PnWOu6hFBb01bGS8nawBPRs/WbwCmUA9MLeYvOLpPj2oDbK8UlP4ObHQo7z1/3s8AqclOVJT+Ly5NhE8tREfvBW94jyXrP87GcsIvW6qsjtWsL28bRXbO0fkYru1KGu7zWgYPK0INr197xo9z9OBO1WiWL1FOL+8pDdfu9J/Jb1Z1W49pTdfPLy4Rj2YuuQ8xyfcvKXaGz0Vpha95So6PNytgDtGVIk8a2k3u/iUlDze4BY8WVxhvLP1VLyziqy7SqxQOxVEVT3z2sq8tB+EvD2a/rwiz7Q8E3xnvEDb+bx0LCk9NgE8PYgPkbwPwt68tBEfvVdFFT1bj/c7TFh0OzTOpbwFYS49J3uZvK25ljzLC5S8DzKFPBbZLLwR3qi8rGV5vAlAaLyIXjA8Nw+hPHHrLb0ULQm9NgG8vJEhIj32Kas8fo1ZPPAgwjsTEb88UTwsu1hO/LwHlEQ9Ol4BvXKJ7DwJQGg9rUCJO+EhkjwjbXO9ApnAvP9XRb0vceA8OcmpvIWkp70/xC29OXoKO/NhPb0KTk09yEOmvChfkD0qQ4c8bIUBvUszQzyCYyw8EmUbvie8U712Q/W8Yd6YO9J/Jbwe+eE8iF6wPD9LoLw8gzK9ZKaGvMcnXLtUb0K9ICORu6+m9LqC3Lk8OckpOroaiLt/mz499H0HPXbKZ7yvJAC905Zxu0bW/TsnpQe8APsBvaHDjryTOO485r+Ru7n+vbwK1T+8aK+uuwXM1rz8q6E7+ED3PGTZ2zt6NZK8QFmFO3dtJLsc1LA89G8iPEmeaz1KJV49fhTMPJXy9jtKM8O8duYxvRHeqLus4wQ9mdYuvASZAT0cWyO9noITvWTZW73Tsrs8ZfWlvcTmYLuKGDk82Bjou7uqYbxO+7A8fGioPCwwZb2VeWk8jmcZuwM3/7s//IC9q1ySPNOk1rzZuyQ7FhEAvVsW6jw5eoo8UKdUvC0+yjwWio28Pz07PS2EgrqolCS9lxwmPLN8R70X55E8OK3fuoJjLD2At4g88JnPPOLpPr2jEq4885mQOxxNvjz7CGU+B8wXPRVE1TuO7gu91w+BPbJgfbni6T49FKaWutGNirz8XIK8AH12vcJIIruREz283y+2O9M5rjypDTI8dcpnvUkX+TldQJk91aQXPcAVjDyFHbU8ioNhPRdgn7wFYS691w8BvVUb5jwsqfI7A75xvD9LILw+dY68Huv8PCaubjp+05G6MiICPcEs2Dy8MdQ7MX9FvfydPDyRISI8DzvsulC1ubzFAiu9rexrPNz8nzzko8e8+4/XO4yfq7sOna07PrZIPJXydjvkYg09szuNPBkMwzzfqMM8mQ6CvJyQt7wTmDG7zWiYO5wJRT0vY3s9H5yevL/5QTzIvDO8P/yAvCau7jwcWyO9Pu6bvJK/4DwgqoO7M8BAPZnIST26k5W9lfJ2PLJu4roliT086QANPO+Laj0/7hu8BczWvMKl5bxraTc6PrbIPEVGJL2J84c8n0pAvAgpHL2XlTM9ifMHPfVTmbvW8za9xpcCvRdgHz3n1l28erwEvYSWQjxcq0E7k1S4vAFYBr3vBPg8dCypvLN8x7vd7ro7kIzKu7wxVDzs0eE882G9PHVDdbwc1DA7nAlFPGehybyoG5c9Ol4BPObI+DzZuyQ9XLkmPEozw7xUi4w9W+OUOx+OOT09kZe86Ql0PfX/e7vKNYK76Gu1vGcaV72lzLY8YWULvcAe87tKJd4803GBPJtBGLzbn5u88Kc0PU4JFr2h6P68juCmPAtcsrr+0NK8LT7KPPkbh71T6E+9dKU2vSI6Xby+ck+8duYxPccn3Dxpxnq9IcFPvZATvbxmDHK8G7hmu+xBiD1hH1O9EElRPGK0qrtK8gi9zBT7u8LBL7yUYh286Ql0O+oX2TyElsK8OUK3PKpASLztZrk81VB6PTt1zTxzHsQ8xObgOoQB6zwiVqc8lfL2vORijTyEiF08yDVBPH9ahL07NJM8MivpNzNHMz0FYS496l2RvF3HCz2kBAo9bRXbPGK0KrnpkOY7s4qsu8Nfbj2ew028fGiovHYehT3z6C+9E5gxvSpDhz29TR69GRqoPCV7WLzudB48GcsIvG4/irx8xes803EBOw4koLyKCtQ8zanSvEiHHz1Woli8DPEJvdbzNjys44Q8ifOHOptBGL17TN484+k+vMcnXLys44Q9nMiKPNzuujxLurW8yVGLvBWv/btsjui7jQoVOLg2kb16rh89QNKSuzy7hbyNS8+7RTi/vEDSEjq19RW9QVkFPYdCZjw181Y9Is80PFBmmjuGu/M71M4FvRduBL3DzxS8PIOyPLBJMbuU26q8PIMyvKS+Ub1OCZa8pcy2uysLND0181Y8JXvYvDrJKbwQ0EM9C2qXu4R6+LyMPeo8EnznOcKl5bt7NRK8VZTzvBHeKL37COW7Qn62OTt1zbwTSRK9ro+ovDAGODyolKS8ENDDvNNxgb1eZcq8CUBovD/Erbz/ZSq9ZFLpvNiR9byHUEu8f1qEPOJwsb2Mn6s8oGYKvW/B/jrDX+67NbIcPNJ/Jb01Xv+83PwfPcZ7OLzz2so8x67OvDDq7TtbJM889ikrvZRwAj2C6p686hdZPKKLO7zCpeW8lg7BPFfMBz33sJ074vejOjwKJbyq/w07+9WPPNmtv7zQqZO7t8unvJIFmTwuTK+86ZBmPOL3o723y6c9ifxuPLn+PTurxzo8aTYhvKMp+rylN987mQ4CPV0ytLwCLpi8sMK+vL5bg7tAxC28E5ixO5AFWDz1DWG90n8lPZTpj71wIwE80zmuvKJ9VrxS2uq8kJqvvI1LT7uJ/G46/o8YvZnIyT1W6BA9gY2avMeuTr20mJE881NYPJwXKj22NtA7/+ycvAgbt7waKA09vwenvDlCNz1Q7Qw9zSJgPCc1YbvDX+68ZGDOu6BvcbwsMOU8OtcOPRVE1TtyAno7wqXlPBNJEj1FRqS8dZeSvPydvLzBchA9UcMevYjlojyz9VS8FQObvAtcsj1Votg8ZKYGvRVE1byAMJY7MPhSvc0wxbxZaka8gFoEvFHDnjwbuGa9Ke/pvKKZoDzAFYy83WfIvOWjR7ztngw9ynY8PYNxETyr1R+9ODTSPC23V72olKS89f/7vdeIjju2vUK81vO2vI3E3LyP7gs8sIEEvV/svDuhw468zbc3vaboADtLujU8FC0JPc/c6LvSfyU9E3znvOfWXb1LyBq98N+HPA0WuzxH5OK89htGPMT0Rbx/mz69ToIjPY3SQb0485e6rp2NvIdQS72GpCe8C2oXPbHeiLyoGxc8okqBOzYBvDx6NZI8eITwvHPdCTzhIRI9vVsDvbhpZj3Ge7i7auJEO7w/ubuaawY92kKXPaXMtryEiN28HE0+vM0wRb3nXVC4lyoLPRnLCL0q/U67Ed4ouxQRP7z61U693preu38iMbsaoZo8513Qu1YpSzxDmgC9nayBvRkMQz1zEF88SACtvbX1lby0EZ88wI6ZOsGzyrtXRRU9zbe3PPhA97u5d8s8ryQAvfWG7rvSY5y80h1kPCq8FLtQp9Q7s3zHuQtcsrzDzxQ97Wa5O3bYzLZVG2a85H6Wu/YN4btuMaW8DPrwu/YN4by1KGu7c5dRO8Szi7zpkGa7xObgPF7Q8rt+f/Q7vmTqu9k0Mj0UH6S8oxIuvLHeCD25aeY8YIp7PFyPdz1FRiQ856OIPYw96jzCSKI8AFjFOzt1zbxNrBG8FURVvC5Mr7tnKLy8S7q1POL3IzuckLe8ihi5PHwZibwkSIO7ofbju7HQozyjIBM9uf49PY0KlTpQp9Q8Nl5/vPYpqzsQCBe9bRXbvMf0Bj1Q7Qw9dLMbPSLPtL0gLPg8RPcEvV9zL71H5GI7uhoIva6djbwVppa8b0jxPIl1/DvbJo68Z2APPRkMw7zNImC8sMK+vOBLgLxWN7C8PbuFPXZD9bzz2so8Kv1Ovb1bA71GVAk8+WomOkprFj3icLG72bskvcjKmLygb3G8CTeBPY1LT7w189a7mshJvK6dDb3wp7Q9pL7RPI7ui7wjbfO8lekPPMGzyjuWzYY8Rc0WPXvTUDxXviI90FX2PD4h8Tzi9yO8w0giPQ6dLT3cWeO7D7T5Oyrv6bvlsaw8yu/JPNxZY7yRIaK8511QN/NhPTwNFjs9YR9TPXquHzyYM/I8Y0mCPOzDfD1pTW29ZMt2PWRJAr3Weim93xPsO5AFWL2/61w9T5nvvL3Gq7vBchC88kXzvGCBFL2QBdi81M4FPW6qsjyqx7q88BLdOxmTtbx03Yk6SqxQvG4/Cj1RShE9szsNvEtPjbvqF1k8DdWAvKMp+rsIKRy8HvnhPJTpjzwQ0EO9zJttu1yrwTv5Gwe9hSsavaf/TD1Ih5+7VinLO+fkwjzYkXW81l7fPI2RhzyRISI9q04tPeujVLy2kja6dI1yvLJ25rzvvyS9Q33fvJBvmTzCH2I9EogRPeHRo7wuqRi92MlovY/JPjylGaA7sOvQPHNjMjy0HMG6n3I6vP7CxbukQ+A8b2KnvDSVAz3hy/48/gATvBHNFrzhob68+3y1PBxForwbtOe8hoIjvc41hbzNnZI7ciuKvcmch7yGrOO8otOPvGimIbxFONq850gkvdF7lTykGSC8m8QcvSdc2DwBHna9L/yFPMgLzbwWiRy8jQ7EvEA3T7xUTwi9yLEnvALflTwBJJs9oqMqvabOdb0zQha8I+wHvexJL724oJ69sKZLvEokRTzrjjQ9cHAPvT9M7znoQn86/cJFPau6YDzD4AE9JA+QvHRjMr301U+88HofPa1gu7tlRUy6kIS5vP99QDxEUx+8mkHKvNUpMzzq6Fk9oBiVvMJPxzzYnyg8K11juziWDr2P3l68EBIcOwBO2zrdi5O8jNYbvQbgIDyVVV+8QpgkvRr/Eb2E3Mi85CzUO4NRs7xK3788mkFKvHHYnLz/aCC7qgWLPN3K8zzHUFK9BRCGPG61FL2ouVU9DmzBPPIaVT2Lre663CMGPZPlDjyExyg8L45TPWl2vLsXnjy95PzuvKmynTrB0hk9SiTFOxVmlLtU/Bo9brUUPSWhXbw6S+Q8tNc7vVac0Dz/fcA8B+Cgu4g3eTxyKwq8qm2YvHBHYr0sLf48ovYXvQVVizyzMeG61zcbPGfQYT1hKXy9R37quzlmKTz56/q8/pgFvVri4DoTPWe9iwaBPAvMC7yydmY708hdvAEJVrz2e6q60XuVPIRfG72RP7Q85qJJPRezXDxazcA7FROnO3AIAryRwgY6K13jO77EMbsDr7A8lsMRPfPwlLtrb4S8nOekPY/JvrxBwmS8id3TO8wMWDtRhiW9kFTUvEv0X7t7xZI8lVXfPdhvwzwSWKw8n/UMvUoPJb1AN0879mBlPIHUhb0nygq9DTSZPalE67x+oxW7C/bLOx4AHTweU4o8zeIXvb0eV7yPrvm6JFQVPb7EMb09rLk9O/G+uwycJjwicG08jD6pu7an1jwwNK48r8GQPNqtkLpCfd87+3w1vZj7ubwQDPc5szFhvTNCFrwAVIC8NiAZvR4VPb1i5Ha9t9CDPUPrkTzYb8O8/q2lOy+jc7z3IQW9XFjWPNLd/bwQJ7w7+7oCPS+OU725Hcw8aaD8PLJMJjyqGqs80Q1jPK4wVryw61A9CyaxvKcnCD1rFvK8YVnhPJBvGT0ltn08F1m3vOhIJDszv0O9X57mu+vMAbyWKx+9IYsyPRvkTD1SQaC8hAwuveC8g71NQJU8Pay5uu/p5Dtmg5k8Vcw1PZVwpLw9kfQ65r0OPAfgoDuDj4C89ktFvJE/ND0k0cI71+QtPZ8ttTwvjlO8cr1XvOxz7zwbz6w8Yf+7PDpLZDwL4au8RFMfPVn9Jb3IIG27hpfDOmM9Cb2HUj49v0eEPUKSfz258ws9WrL7vA2BYTv+wkW7/Bzru7x4fL2n1Jq9Oxt/PEKS/zurwAW8JbZ9O7+vkb0rXWM9G7TnPNfkLb0lvKI8F0QXPP6tJb7CjRS9hRqWPPpnFbwa+Ww8GCnSO8psIjnOWI28NUrZvLfQgzuIIlm9EeK2vAfae713LJW7b2KnPLnYxrzJbKI8pRN7Pe+/pD1dgYO8Ff4GvYQhzjudt788Jrb9OAY6RryGfH48JYw9u+dIJL3TyF28mOYZvGPP1rwwZBO8NY/eu/nr+rlcxgg9etoyPekYP7y0HMG7rXsAPVtt9jqlGSA9ybEnPRr5bLtNOvC7yOEMvY+EOTzM4pe8KUCAPAlQcTqBGYu7bpKMvBM9Z70Daiu9j8k+PVJBIL3KgcI8B8VbPdLjoj1hRMG8FKsZPb70lrznjSm8KqiNPPjxn7w+fNS89XuqvKzABT1bLha9W3MbPZ6H2rwl0cI89XsqPJIqlDvv6eQ8G8+svOMXND2E8Wi9y7+PvAfLgDxvYqe9SiTFPMFkZzxmAMe89maKPBduV7xfzss87r8kvM7HUrxSO/s8n4daPubSLj1gGoE71awFvcjGRz2ykSu9Of4bPPZ7qrtxqDe9z4JNvdiKCL2wWYM8udjGPDYadDzdi5O779TEPGjQYbqPyT48C/ZLPSQPEDw5kOk8cDJCvJSFRD2y5Bg9MQTJOukYP7yL1ps8iCJZPZbDEb3JnIc8iphOPE8QMDsgDgU9NnOGvN8BCbx5ogo9jNYbvV7pEL0TQww9tAehu+gzBL0TWCy7xJVXvL7EsTy4TbE8o/aXvM6CTbyxkSu88I+/vJ6H2jygQlW8MF7uPNjJaLy/2dE8RA4avHl5Xby+7nG8lYVEOwvMi7wPqo66ZWCRO4DA+Dtt0Ww8JlzYu4WsY7xQm8W78KRfu+gt37xpoPw8zDw9PaOIZT2uMNY8Kr2tvFMm27oNxuY8d6nCPG6M5zupRGs9Qd2pvM33N7yi6K88UB6YvLTyAL08dJE8VgoDPZpByjxs7DE8qi9LPb2MCT13LJU8cBd9PIuDrry9Hte7NUpZvMRIj7lopqE8+dbaOxez3LvlVQG9wH+sPG6M57z98qq8fwX+PONHGTv0pWo9CIBWPGsW8rzDH+I8J0e4vNTxijwY3Im6YSl8PZSgCb2w1rC7C8wLPHYDaD0TQ4w7VbeVPQ883Lo2Slk9MDSuvLVaDj0BOTs8SSRFO5OgCbygEnC9xzsyPUuaOjyO8/47AGkgPYryc7ypShC8Ko1IPKUuQD17v209lisfPN7eAD0sGN48npx6vYaCozxpu0G9maEUPUfsHLyQhDm9id3Tu6YT+zzOgk28oLCHvD2XGb1vYic7m8QcO/B6Hz1rAVI9EoJsvNifqLy6rga9OJYOvMpsIjryX1q9DlF8vAZ4EzzPba28LQO+PLdiUTxMHQ08GiIavW2nLD09rDk9SFQqPbdNMbs38DM9R5mvOytIQ71+UCi9iksGvDvxPrxrMTe75qJJvalE67zJbCI9B9r7PMBk57xAB+o7fXroPEhUqjyCUTM7sjcGOsc7MrxCgwQ9CqmDPIry87yfcro9E21MvdTxirwhtXI92G/DvIF78zwcRaK8faMVPcP1obxDfd+8gJa4vJ8ttTwBObu80Q1jvIsGgb25CCw9t5I2PKBC1byezN88uHdxPNi0SLwgoNK8UR4YPJCEuTy7FhS9e+9SPWmRAT3uBCq9m0FKvSjSzTxtpyy9dtmnO0dpyjoG9UC9fXroPMwheLy/2dG8jCmJvWV1sTvOgs27W212O4DA+Lsy76i8/AdLPbTXOz2iO527GSnSPDYF1LsLJrG7+cE6vCV3nbxCMBe9s2FGPc6XbTuj9pe8Rq5PvSdHODwIazY9WrL7u3IrCr3Af6w8K8sVPeQsVL1ETfq8iq1uPNz62DxFI7q8KNJNvDvcHr1ud0e9OmYpOkvE+joDmhC8r9YwO6jigr1Z6AU9K11jPEXetLu2vHa9eR84vKAYlTz4BkA8SFQqvUKtxLxFOFq840eZPPCqhDseP/08gBkLvM9SaL1qYRw9498LPJng9LzCjRS9Jbb9vBmXhD1NQBU7rjBWPJVAP71Gw286mctUPFiVGL08l5k63itJvD0vDD2WK588LYaQO1FxhTwLEZE8yLEnPEx/9btM2Ie8OJaOO7quBrwWziG9p6S1u26SDL0qeKg9xZXXvFW3FTzyX1q94CQRPaE7HTzbaAs99kvFO0UjurwkD5C8gtQFPRJtTDxVzLW7gRkLvRmXhLz7YfA7XMYIvUyaujytivs6kFRUvdi0yDv2Zgq9kG8ZPd9A6byQafQ8dpSivA00mbv+mAW8JdFCvXHtPL1CmCQ96F3EvAYlprxvYie91+QtPYbVELx6BPM8qS/LPPjxH73ZhGO7/IqdPJznJLthFFw8wx/iPLYVCbzkLNS89s4XPG9iJ71wF/277pwcPfthcD3ziAc9S/TfOn8Ffrsltv076F1EvBIgBL1qRtc87I60PKWxEjy6w6Y8TWrVvL+pbLsDAh49UOBKPGS6trwJ7oi8rMCFPHraMr0O7xM89jalvHeO/bzFa5c83aAzvQiVdr0QZQk7Em3MuzVf+bwNgWG8wWoMPdifKD1LxHq8ST8KvYvWmzonygq9zfe3PK2K+73q/fm65VWBvO7viTzKvw+8CWs2PNLjIjz01U+8Dye8vOd4Cb1hKfw5Rgh1uxKy0Tw6NkS8CMVbu4NRMzwv/IW9MQTJvF+e5jzu7wk5rwDxvDW4C7x7xRI7R4SPvTR6vjohizK7seQYO8ixJ7ytSxu9zAzYvEJoPz2SD0+9gF4QPOK23jxmAEe8w9rcPGO6Nrw7G388kAeMuyW2fbsbz6w9QPJJu+eNqbtk+AM6Rgj1PFZCKzwY3Am9rKVAvXyVLbwo0k29GCnSuwjuCDyh/U89R5mvvF+kC7yzNwY9xr4EvSiFBbth6hu9tQH8PL7EsbwBOTs92g95vTsb/7wIsLs8F4N3ux0qXbwjAag8NHq+PJvEnLzMIfi8gzbuuzLU4zzhy348kGn0PJtWar2mbI07UJvFvAvhqzyf9Qy9WqOAvFwo8bvH9iy95CzUPPt8tTu117u7fegavWB0Jrthgg49Fs4hu0HCZL0j5uK8/GFwPGEU3LuDPBO99NXPOyW2fbyQVNQ8WrJ7vIdSPryUykk7nofaPB76d7xVzDU7X57muVAemDz7TNA8X57mOzbbkz1h6hs8tezbuDiQ6Tsb5My8Rd40vIF78zvnjam82LTIvDlmqbzkApQ8hpfDPIWyCL3+RRi9iD0evZtW6rtQy6q6bzLCvEHdqT3oA5+871cXvAnuiDzaD3k8hAwuvVpzG7zMIfg8xWXyPONcOTwElGu95efOuhNDDL3ZhOO82FojPfiJEr27qGE7p6Q1vLx4/DyY5hk8fXpoPMPaXLoZlwS8KNJNvVT29bptpyy8OZDpvMVl8j1yK4q8udhGPe6/pLxgdCa9n0JVvbDr0DxrW/e82g95PBoimjxldTG81Jj4vF3+MD3S46K8Ujv7PFFBILvwEhI62/pYPZSgCT1WCgM8XRNRvbtpATyVcKQ8rksbPIqYTj14f4I7q+pFPO4ZSjzz8BQ9Ce4IPZ3nJL2UoAk95OfOPLzRDrzObS087F5PPJYrnzwqoui8xYA3u0KSfz10Y7I8/q0lPeu+mbypSpA8B9r7PPqmdTzb+lg9w8W8vF7OS7yRfQG8SfoEPOMXNL0xGWm9a9eRPPxhcLzX5C293ivJO6NzxTtRa2C8T2OdvIqt7jwXbtc8ce08vXUerTyjiOW8oqOqPOHRI73S46I7wgpCPCRUlbw9L4w8Qd2pPMFqDL18qk29pem6PMP1obw6e0m8hDZuvefgFr2pROs3X85LvVCGpTs73J48o7jKvBAMdz12xAc9+AbAvIaCo7uCUTM7Yz2JPB769ztywDw714Mwu6ZSD71TZsS8r1wwva1Es735RAs7eCAxPdaoTDyMD1e8KeotvZYlE7350Ik8jq0hvegFQ71peQI7NFUAvUjj9Lo6kdy6uKNqvMPRozzVU7Y8xCY6PUBGZ7xiDfM8ww49uoOLg7z+DGa8rpOYvNmbLbwadP08rUSzPM/Opb2DsB+8Y9BZvNJ4Ur13gma97hChO4t9J73Ge1A9CNptvEZjEb1C5LG6BcLwvKEKmLyJZSq9w5SKvGpCGrzl1Ui9IVq/OBifAz2v1mI8akhLPYNCTzzcRdq7nRGGvHQVU70pJ8e83V1XvYBP7jz49aU8b81bPR5CwruyT5G80akJOya6Mz3mKt88JJwFPYWX5byNzAy9R2nCuwdguzw0yQE8I02gvICYoryfKQO7ZG4kPAja7bwa+sq7UhGuPBq9Mb1Kmby8dFJsvPagjzyF4Bk8FCCkvE2MHb0mfRo9ZJNAvKch2LwwmQe93MunPHeOgby7kJq8VPjzvDz+7zwpZOC7RywpPBWy07vSeNI83eOkOFlA6zwHIyI8JjTmvMwY3rz3rPG8AlXdPMo9+juM91k7BPMnu9dGlzzfsu27Df1IPHyfkD1bZIO8bJ1hvUoTb7ubqqM8LzIlPfWIkrwTmlY72ZstPT5foTwO/ci8Kq0UvGoFgb21+b070amJPC/E1LxmhiE9/+dJvVsbTzqTrGS9XGQDPYASVbwqJ0c84HXUurgpODqenYQ89ldbvTTJAb025688L4GKvI2VpLw3JEk9d8uavTRVAD1qC7I8HbCSPFkD0roKFoO8/HQFPM5t9DynXvG7ocHjOkDGAz1Cj5u7otlgu5vnvDxhPqo8gnMGPRDwqbyLfSc714OwO6j2Cj08/u88FfsHPfmH1TxqSMu8rpMYPFsbTzxYrru63l1XuqqahrzEY9O8/Hq2PDKxhD08R6Q80eYivduC87vEY1O9LzIlvYtAjry4ZlG9CNrtvPkNoz2AgCU8XDPMvKOuEzuzHlo9dF4HvB0qRb3K6GM8lAH7PKum6Dx4mmO9miTWPNnYxrzBuSY8y4YuPOvgJrt5b5Y8jPfZOvx6trsprRS9TMMFPX1oqLvTeFK8Bki+vOO3Gr22TtS7pyFYvBAnkrzgUDi9ntodvZCIBT3IGZs6g8icvL5AeDydEQa9cSLyvDHcUT1sI6+8m20KPSME7DzlEuK86/ijO8U4Bj3HuGk8jZUkPEZjET3osCw7wBvcPBGzkLwrfF29plIPvBK/8jsI2u08LqzXOhsSyLrjgDK8g0LPvLA3FD1eDrC8x7jpvMmrSj2O0j08P3cePOOAsjuCZ2u9sx5aPRmltLxYKO68jidUPcYBHrwCwy29JkCBvOO3mjxx5di78ECbvKJfrrq5fk49Q7N6uu3TBz0HYDu8vXEvu5v5CLw6bEA7N7b4O1D5sLoknIU84crquyTHUjzcCEE8mmHvvBjizTyjlha9FCAkPZQBez0rP0Q8rQcaPRJFwLxmSQg9860uvTbnrzwHWoq9SHsOveZneDwZpbQ86qONvHjjl7r7Yjm9QuQxPQ3ly7uDBTa8IzWjPUUUrLzJGRu+L/ULOtwIQTywdK08FbLTO8xVdzz5h1U77qLQPGltZ7o/XyG8bXhFvf8k47x3Rc29k6zkvBsSyLwg1PG608GGPJnPPz1rzpg9FbLTO7Er+bsjx1K7IjUjPeJoNb1ZA1K9JWUduruWy7yWGfi8A56RuxdQHrvSOzm8uscCPaR3KztWWSW8l/RbPAfmiDxHLKk82IOwuo1McDs3/yy9fWioPA9SXz1q87S7rx8XPY/8hrwub748Py5qO/tiOTtgXZU8PAoLvfQCRT3KvRa9tTZXvRmlNLzi7oK9X4jiPP6Mgj0aN+Q8HSpFPJMysryRlGe724LzuxuYFT0rfN28GnT9vGW9Cb26xwI9HaR3PPWIEjz+DOa8pC73PNHmoryQiIW56EJcPEHegLwzPYM9++iGvbCrlbzR5iI9/D2dvQ9SXzy7HBm7EPCpvJECODwrP8S8Dv3IvIKwH72odm68B51UPT/xUD5NjJ085M8XO50RBj1KE2+8zrYovXRehzz8ejY9e43Eu9a6mLyXt8K8GwyXvB3tqzyNlaQ8CHIHvYVazDsavbG79hpCPA33lzwN/Ug8nhc3OlhxorxQvBe8862uPJRKL73D0SO9/Ho2PLX5PTxjVic8uWZRvDFin7zlmK87n7UBPWZJiLz3b9g78Y8APS8yJTyiXy48ze0QPU6Yfzw8wVa8wfY/Oya6s7qa4Qs9Y9DZvNwIQTyw7l+8QqcYvc62qLyFl+U7eJrjvPB9tDxVu1q8w5SKPAIYRD0+X6G88yfhuuO3GrxxqL87csA8PIIqUj15b5a7PEckvIhNLTxqhWS9FOOKvKFHsbvPC7+8oP58PUrWVT0HI6I9GoAYPU8eTb3u3+k89CdhPd+y7bw7qVm8QEZnPSY05rwMLoA5GnR9vDFiHzz3rPG83V1XvOvgJj3XwMk8kD/RPKKWljt6suA8xqwHPG/N27ztTbq7KEzjO8RjUzxLK+w8j3zqPN0ajTwUbwm9QMaDOz/xULxYNAm62BVgvQsKaDzGPrc7eF1KuxV1ujzpBcO7Cf6FPBNXDDwYE4U9uxwZPEurCDv5Sjw8kIgFvYASVTzPkQy99CfhPEQ5SD0bmJU8xKBsPU4G0LxVfkG7TO7SvFBz47yUSq+4QEZnvcvDRz1OW+a7VfhzO/lKPLvGe9A76ZdyvIav4jwU4wq8+dAJPdXlZTwL35o9+lyIOyBaPzobT+E8z84lvaxpTzz2GkK9/D2dvd0gPrzqWtk8z86lOuv4ozw356+67l+GPMroYzw6qVk9wGSQPYIqUr2w7t+87mU3vf4M5rtUZkS8WCjuvKW0RLylj6i73RqNPYOwHzzxzJk8uK+FPLNnjjxZiZ88Lt2OPeZn+DxS1JS6HgWpPLCrlTyJZSq9qYIJvWE+qrzJMZi8XbkZPLfUIbyN0j29fMrdPG47LD13Rc07SHsOPJMysryNWIu8YWPGvCknx7zXLhq8d0VNPX+AJbuDQk887t9pPah2bjyC7bi7g0JPPekXD7tKXCM9fR90vCOKOTy702Q8zwUOPEEJzrs0kpk8lhl4vQWq87zgEx+9T+EzPXKDozzt0we98PdmO4nfXDnwus0863JWvaenJby9NBY8qlFSvRsMF73jaLU6ejiuO8o9er1mPe27TtuCvEWO3rq+cS88QRuau+2K0zwlZZ08RVHFvCeJ/LwrP0Q8z84lvNwCkL1Yrru7I00gvQdaij3KPfo7QVICu6qaBj3a8EO9dJsgPbOkJ70/OgU9TUPpPILtOD1y/dW7/D2dvOty1rzVops9B2A7POhC3DxeS8m8Hrx0PVwzTDxzOu+8WDQJu0t0ID3r4CY9jA/XvLjsHjyO6jq8ewd3vBtP4by47J48PtlTO5GgArtuihG94mi1POKlzrylRvQ86lpZva+ZSb1Y69S8hjUwPMHwjr0YEwU9cS4NPO6i0DwQ8Km76Mipu3c/nLzhjdG82wKQPKS0xDymCVu8NyRJvVT487yUgZc9dgKDPGFjxjy/iSy9z86lvPEPZLxeDrC8L8TUvHKDozz8dAW8erLgvO2KUz2f8ho8iWUqu0yrCDypDgi9i7rAO2xgyDttchS9cv3VPFUED71uipG8Z1VqPeT6ZLz8Yjm8hVpMvV7F+7ttchQ9CXi4PCZ9Grwu6fC8B9ptvXo4rjzXwEm8g39oPCu5dr0x3NE7r9biPG1yFL0avTG8nMKgPN++CL3/bZe8fFCrPLuWyzwzt7W86LAsPDQMTL0l3088Rsv3vKXMwbzzJ+G7669vPUEbmjy7kBq9pcaQNgEARz29rsi5eOOXPI5k7TzEJjq9ShNvvKbejT3PC7+8sHStPC+BijyP6rq8bv6SuRPX7zwpZOC8/owCPJexET1Xlj484iucPAuiAb2b+Qg9oKnmvBfK0DwW+we8HIz6PHwHdz2GNTC89cUrPYZsGL0Q8Ck9feJavMwY3rz4uIw7Tcm2O5+pZj2Zzz+9eF3KPGtaFzwDnpE82FJ5OwqQNb1PW2a9U2bEOT6uhjz4rHG8VxyMO6ghWD1ygyM9wN7Cu5SHSL2lzMG7IdRxvf/nyTzHk829SL7YPF18gLzPkQy8GOLNu4mckrrHUIM8B1qKvIVazLy7EP68g3/oPPlEizuZSXI8u1kyvVOjXTz9yRu7ababvShM47x4GgA9zws/PLtZMrxb3rW7opzHO8tJFb2tvuW8lKzkOlJOR73SNYi78ZUxvOy7iryDQk884FC4vNWiGzyp/Ds9CgrouvQCxTtuipG8WxtPPHL91Tz7JSA9sHQtPSiVlzykdyu9WxvPvDBKIj1RyHk9NZ57vbLJQ73+jAK8xCAJvfwABDuh/nw8WxvPPL7r4TxkJfA88dLKPFzwAb0ZtwC9n6lmvX3iWrx3AoO9JwmZu55UUL2fKYO9aoXkPEDGgzsA+hW8B51Uu7tTgTxmANS8nG0KOjlUQ72tyoA8yatKO0UULLtFS5S9y4auPCHUcb2lxpC7nZFpPCwaqLxSTse8DV9+PCY05jyP/AY92wKQPNbxADy6u+e7TQbQuwQwwTubbYq8hVrMu4P/BDxNT4S8ZkkIvXTYuTwQLcO7s9uPvEUUrDvDiO+8OHnfPD9foTp3Rc07iigRvW14RbxeS0m9gBJVPY/qujz2lHQ9yFY0Pb5AeL2zpKe8xj63vGeenjv/50m7OVTDvCGX2LwCVd27v8bFuxSa1rvObfS8i30nPcmryjsxYh+8OReqvM9t9Lvd46Q90v4fvbo7BL07fow8S9bVPOO3Gr0fVI687DU9Pa/WYj3xzBk9MJmHvWoLsjwysYS8soyqu8DeQrwCwy29FTghOfy3z7y2Ntc8VPhzPK2+ZTxMN4e7kiyBOGvOmLx7dce8tX+LvEvW1bxnGNE9LWkNvTIZ6zzLw0e92ZutuiVlHbwFQo08ZKUMvWdVarwDKpC8A9sqvRNXDLyvXDA9I02gO6l2brsd7Su9w0vWvHVq6TyDyBw9PzoFu63KgLxgY8a6vCj7ujFiHzzY0hU9coOjPHKDIz2KKJE8L/ULPfNwlboU4wq86lpZvIVaTD1F/C46Z2GFu/QCxTw0VYA7DcCvvHvK3btmAFQ8Y5NAuyXxmz3dXdc88ZUxPeCN0TsdpPc8DfeXPZmSJj1mhiG8kmmavD4iCL0pofm8W961vfpcCL1eS8k8thE7vb4D37uT6X28ZejWvK1EMzvkQ5k8LjKlu9VlgjuGNTA9tbykvZzCID0mojY8P3eevAk7Hzt8yt2883CVPE4ezbv8dAW7zws/vI3SPT3BuSY8NyRJPDfCk7hdrX48SAcNOxm3AL3Mnqu8bjusO3jjlzzP80G8cS6NPKB+mbx9K4887LuKPW47LDyZVY075+ZQPUBKojxhDIm8OL3DOp94Jr3DiqW958E6uW+DxDwX3LK8B1yVvBroCr2H13a90eI2vSID1jvjRqA7HkEFPZuLeDwpQxK8Qd56vZOVQ7x/4cG8vQmfO+5IrTwYJt+8mdIJPegwfbx/4cE6kiYBvGKa9bgXuhK8URfiux2n5TzwmEW946/2vF4f2zy/nXe8yltEvatbibwkxYG8zD+QPDARO7knX8a8XbMOPGJWtbx/4cE87ykDvfZj+LwyFye9Zcvju2jXO71Ka1m7PF30PADSLD0ECQe8W89CvPZjeD0FU7M7E8ruu0fUCr2r6fW7uyLdvO+S2by40sS83xUyujIaHTwWkgY9F7oSPVvPwrx6que8lHYZvSlDEjvTDTk92bNVvRsyN7waUeG8PvqJPG0zrLw9Psq8ej4bvZFFKzyY8bO81j4nPSTCiz2IuEw60Sb3PD8iFr1ytLK8D09UvOwdK7x7RAe9RH4GPTvMEb3wvds8vOESvZn3n7ydcrq6T4ATO8YkajzxVAU9fttVPO1n1ztci4I6P2lMPPf9l7xU/iO7P2lMvX8GWD0Ho0s9Z7KlPW+DRLp6YDs8/4eAPGWHozyFHog8DEN8vE/sX7zRvaC8t2OCvEN7ED3KNq48AiLFvJxsTr11KeE84orgO3tmp7ugDH+9SpBvPDAROz2rgB+9Lua4vBoNoTv2PuK8Z/ZlvSPkqzvt/oC93sgPvRWPEDuAwhc9pD3tPDh5g71DCf26krTtu9PoIjkYS/W8Ujx4O8s8Gr0yF6c8gzfGvFL4tzt6YDs8je+mPLiIGD1Nd7E8RKCmvJBkVT01SBU9UrEBvfbVCz1aYIC90NxKPQUunTuv1qM8VCM6vXk7pT1ZpMA8aJCFvMYkajwpQ5I9ylvEvLiLDryfeKY83uqvvCBsh7slU+68Kq9evA9P1DyRRas92m8VPaAMf737Uxy9SyqPuwdclbsYvQg9Chh6vaTUFrz96mo9vi41vHGuxrveD8Y83xWyO/Bzrzt/4UG9f+HBvHtBkbywINA8akzqvBAOCj0PT1Q7TcHdvH4A7DxNVRG9oaOoPPQT4Dz3RM48wDeXvNG9ILzg85G98VSFvLsiXTzKFA69WmCAvCZZ2rzP+/S8mBZKO6HIPr1Cv1A9Bp3fvDE20by8KEk8PT7Ku0n8Fr0+HyA8GEv1u3+aizypMAc9NrdXveIelDsZB7U6nGzOPIrjTjz1GUy8aUb+u9LAljxxaoa8QZROvJocNr3DaAU9Chj6PKvp9Tyk1Ba9l6cHu/xWkryTutk8DwsUPXmk+7y40kQ9Lir5On6XFb0Y4p47gcWNvW88Dj3uJo06wV+jPIPzBTtZf6o7yOYVvZuLeDyTTg08r/u5PEBKIjtLTK87SpDvPICdAb1J/BY9eRkFvKHIPr2Z9x88CF+LvCUPrjxYw2o8awiqPF3VLryzLCg9Cx7mOq/WozvZ2Os8//DWvN3FmTy8Td88h24gPDi9QzxkOgG94F/ePM7WXr3p7Dy7mdKJvf6ECr1gK7O8ZmWDO9RX5bzvktk8yOaVvdmzVT0w75o78eJxvIzHmjwbV826MOwkvsJlj7yH13Y8mhy2uwrz4zvLgFo8s1E+POd6hLwmNMS8gMIXuxAOCr03mC29pdeMvNMNOT3vktk8K7XKu9RXZTwPCB49yDBCPRFbrDy0V6q7rdA3vOGEdDyt0Le8H2mRvCK5qTpIG8G890TOvOfmUL1e2xo7bqJuvdY+Jz1AKIK8AyixPGeyJT3Swwy7HkEFPKOvgLsyGh09RH4Gu1CoHz2HsmA94mVKvI3KkLsqr968KkaIPDeYLb1c9Ni7auCdu6Q97TzVODu9oaMovHA/hL2feCY8Cak3vVuqrDuMxxo9lN/vvCBsBz3xnjE8Vk68unBkmjt81Wm7d+sMvXTftLwbMre89j5iPOgwfbuTTg09zGEwve5twzyPPz88SBtBPIQ9Mj16YLu9ERGAPcXaPbw5oQ+9+CWkPEFNmL2D84W81Ti7vBnlFDyho6g8H9JnO1jD6rpO5vO7PT7Ku6Zobz3CqU8+pv8YvNveVzupVZ07aUb+PGXw+bxOWIc9oYEIvIuiBDpPx8m87kitvV8lR7zoxyY8AbOCPF7bGr2Pg/+6FiBzu8Yk6jzUfHs9KUOSvEHe+jt+AOy6ineCPb4utTyQIBW8bzwOvXXAijyWoRs94iEKu2XL47tCeBq9rRR4O4duID3lcSK8k7rZPFvPQjws/3a9DSRSvcFimTwPT9S5eTulvDVtqzv07sm7OL3DthX18DyN7ya7LwvPvD+O4rwJhxe9Zqw5O++3b7rqzZI8mPEzu9pvlTxc9Fi9EHrWPM6Msrwzq/+6ipyYvIoIZT3Afs08oaMovBpRYT1Eo5w8qCobvYey4DzE+ee8vnjhPHtmJz2JAvk886cTPTnDLz08OF69VNyDPCu1SjvNq1w9OaGPOmIxHz3JVdi8rKW1vMWTh7yx3wW9EjkMPOjHJr2NFL04pPksPTa31zr3Hzg92wNuPbSbajv+hIq8aJCFvOk26TyHbiC8Co0DPDgHcDtTHc47CMjhuqOvgLys7+E8KUMSvXTftLxqAj495ncOvLveHD2zdlQ9yhSOvPgAjjsrtcq810GdO32RKbzUfHs9E8ruu1ConzxCUwQ9qHTHPPpQJr3oopA9ZYcjPZsiIj0Rn2y9DNqlPOk2aTzI6Yu8Kq9evG0zrLySJgE9sywovSqQNLsM2qU8hkYUOnpguzvPt7S7MfIQPfY+4jxje0u9RaaSPEn8Fj273hw9Z/blPGvjE71uFAI9hWJIvQqKDTwjKGy8crSyPGRcIbz+piq9KITcvNmOv7wjKOw5YjEfPVARdj2Y8TO8K7XKu+5ILTu2XRa9HKH5uzDKBL2thgu8ghKwvGjXOzwaDaG746/2PKh0xzwYS3U875JZPBt8Yz1hCZM8t/Huu+DzkTzrYWs8bVhCvN2ggzoETUc8vChJu5siIrxpIei7KBsGvdPrmD3q8qg7bHdsPMGEuTxPgBM9UM21PA906jwZLEs8+CWku50rhD3kkEy8Mx0TvMFimT00jFW9tDKUvM6xyD0YJl+8wT2DOxWxsDpQzbU8F9wyvaB+Er3uJo08aLUbPPcfODnubUM8IpeJvO2M7TuTUQO6H61RPGDhhjsmNMQ6BjSJvP1+Hr0PCxQ9m4t4O5JLl7w/aUw9kUUrPAhfizysgxW9fLDTPHbDALzSB008oMLSPIQ9Mr0BswI9KtR0u5Bk1bw1sWu9DuMHvUPk5rvhGx69hYfevIUeiDyBDEQ9TC0FPD0+SjytiQE9EzwCPLIHEr0zQim8mBbKPD4fID1ayVa8kSMLvEFQDr1lYg29cvhyO4iTtj3NZ5w88JhFvbaCLLz/h4A9/cVUvF9K3bt9+n87k5VDPYhMALu/NCE7GlHhvF/eEL2oT7E8l8wdvN7qL72v1qO8sQEmvbNRPjzppQa8LwtPu8w/kL1P7F88yXruu+D2h7xZWpS9oe1UvKOsirxf3pA8NGe/uYVoNLxbz8K8pdcMvdeIUz2BDES7l6eHPPC9W7ybZuK8MBG7PQ5u/rvZjr88LzDlvNq5Qbrpyhw9c5UIvVqFFrwyPD28RTT/uz+OYrtpRv48CO33O1uqrDwCR1s8uIiYPFYsHLxJ/4w8aNe7vLwoybxO5vM7IrkpvYHFjTyUmy+9o6+APFTcg71z2cg7+5rSvAMosTu84RI84PORvMo2LrxSsYG7lcDFvC/EmLzYaak7NCAJvOd6hLxfJUe9u7mGPEpr2bsvx469vOGSPJuL+Lw+H6A83L8tvA0kUjwJzk28YQmTvKvp9bzsQkG9N3aNvHGuxj3LF4Q9i8QkvZOVQ70g9308fGyTu4QYHD2kPe0858G6vL+dd7tz/l48lcDFvMYkaj3e6q88kGRVumViDb2eUJo8KKlyvdPoojyIuEy7+AAOPWIxHzwKr6M7+CWkO37bVToSgEK8nEc4vJ+dvDx5pHs8o/PAPPxZiLsW1ka9iy37vH22vzyMDtE7py0RvbJw6LsJqTe8iuNOvc7W3jsyPL28ZmUDPKYCjzxkpk29dgo3vWN7S7s/acy7RKMcvcOKJb3md448W89CPWon1Dz6UKa9tFcqvE13MbxJ/ww9ztbevaAMfzxq4B28GL2Iu6UeQ7yWoRs8kGTVvN7Ijzyxavy86McmvdQTJT1lhyO8uyJdPS6fAr2Qies8ALAMvBTQ2rwgsz29fwbYPH22vzzlT4K81fGEPPY+Yr0K82O9UtOhvFZz0rwoqXK7nU0kvNXxBL2Z95+8+ACOPZ5TkDo3mK087EJBPMOKJT396mo8Jn5wuyyWoLyho6g58eLxuzmhDz2+DBW8YjGfvJbGsbylQ9k7xuApPd/wm72QZNW8YG/zvEK/ULwfZhu8hWg0PG+DRDsX3DI8lXyFvHk7pTzO1l68Z42PuzZLCzx/vKs8uK2uu2Xw+TsUZA69JjTEvVcvEj0JYoE81hkRvXS6nru8AzM97SMXvLzhkryzLCg9rauhPGFQyTsL1Dk8qZldu9nY67xxrkY877fvusGEObwaDaG8qp/JvKvKS7xjoOG8p0nFPO5ILb1ZpEC9JxiQvLzhkjxSPPi8/xVtvMLz+7xKa1m8n1YGPWSmzbyLxCQ9mhy2PJImATySSxe8Zqy5vBERAD2BDES85JDMPHFqhryCyAO8SGXtvAMosTyoT7E71BOlPX7b1Tz5KJo6WDIIvOrNErzWp/07id3iPLU4AL0DKDG93/AbPBvrgDzmdw49NpJBvOIhirvrYWs8j4N/u9hEkzzZs1U7pgIPPeJlyjxbqiw9K7VKvYQ9sjyP+Ii9VCO6u1/eED0qax48bVjCPOTaeL0HfjU8mWB2vJgWyrwgkZ06+Uo6vUwthTyqn8m8JQ+uPGXLY7yLxCS8d+sMO+NGoLx2Cje9v533vPPJszz7v+i8FbGwPTIXJ73YaSk9RcsovRxdOTxsUtY7di/NOoQbEj3RvaC6sWp8vLMKCL1CU4S7Sf+MPdnY67tO5vM81Fflu2vjk7zhQDQ9ej4bPSbtjTpU3IO9fLBTvME9A711Tnc8G1dNPQ906rpLKg+8KITcPJ68Zj2vP/o8NksLPIvEJDwNJNI7HmMlPMFfozz6UKY6UfLLvLdjAr3OahK9SfwWuxkHtTw89B09PkQ2PbN21DyScC09WslWPLV8wDx/mgu9co8cOvlvUDnHvom8Ypr1vCTFgb10vRQ9/FkIPUTFPLziHhQ9rdA3vSK5qbxlYg28WVqUPHtEB7r8eyi9q+n1PGxS1ru5joQ8qVUdvWDhhryRj9c8SUZDvR2n5TzOsci7mfefvI71krw1ses8hR6IPNnY6zy3p0K8qHRHuqKpFDuylX68eqpnu+2MbT1YeT68zGEwPegw/TwPT9Q7If3pPCTCCz1QEXY8f5qLPI8dXjiMgCe8Z/EWvTtllDySKRu9KHORvRXLPbyF4QI9sFf5PIhzc72dHqy8eTO8vDUF2TugIJq8KQ9RPJLWkzxg9Zs8HBlJPLFiP7o4Y6Y8ADQjO4+DDD0zX0o9kczEvISNhLysXmO8ul+xPB3RB715Mzy86TVjvd6bujvDpOQ8uQyqvWHidDs5Wk68CjKMPC1uFb1/LsC8KWswvRAtED03WOC80kB7vQ1y7DzQSVO97fCGu2VLCL03EB+9yfvHu9ykEr07Ufa8TEtaPC7BnDwtwCU8PGYLvBsiIbyXfwe70O3zvAuFE72mG569dd5GPB3RhzvY/Yw98TutvMqqrrzl6cW8l2tpPfDoJT3n6zM884XcvML1/by/T2+8MmiiPDoJtTvckHQ76ohqvPc2MT1sPTS8J2lCvKxyAT2RKCQ9YetMva8YEL1/LkA7pRDYPOqIajxXSjo8f9s4vKvDGrzUnki7kYSDvY0kSLynbqW806egu0EEOb2INYG8nHkUPEteAb20ZC09a+osvf+EPLxd6d67vwcuOyq+t7k+Xiq9sQZgvNjzPb26upk9vQVAPTKw4zzekmI8ksNsPM7/IzxLsBE97jk/PYXN5Lwqs3G7fy5AvCDKnTyE1jw710TXuwKIIbpwkik9V0o6PB9j+Lt/ip+6UkZevVCgzzzsQSA8UvNWvVJG3jyntua8Ze+oOWY3aryMLpc82Dv/vLtfMbyZvnA8rWkpPT6maz13MU69FtaDvFyfrztm8J+8PgJLvUf/vDxeRT69n7l0PImICDwqvjc8mcm2PFufLzslFjs8nBy+OyIdJb3sk7C8D9A5PfsvxzwT0547cUEQPZ4V1Dt46gM8cYnRvNn+Az1wkqk7UPwuPU8Fhzw/X6G8CnB+PMVekbxsMm68knsrPKVst7voPru8eOqDvKNqybzFSvM7B94NPXkzvDwzu6k8400GvdDt87vDChO9ybMGPc2sHDumG5672vUrPXSLv7z246m7InmEPKBoWz0KcH68joIVvTykfbzekmI8H79XPVemGb0oc5E9ZopxvDHDCjqjYXE85vQLvL9jDTxq3+a7wP5VPQ7ZEbl90HK8oAz8vDKw4zuUafu8a5gcvWCPbbsstd87XJbXvCfFob3j8h29Q05oPfjllzyjYXG7f9LguzVqkL2vvLC800vBPMRTy7wuEy09OlF2vM1QPbycJ4Q8Bi+nPISNhDxXkns7UasVvKduJTtqO0Y9PqbrumnovjymyY064kO3PIyAJz3in5Y8SQGrvBXLvbx05568+YDgvJxvxbzw6CW93+XpPLFsjjxGUNa78YPuvJnJtr14PJQ8ANhDPHXeRr09ZwI9osaoPLXBg7zt8Ia8+H5yPMFatTpimrM6eCj2PAaAQD3ymIM7o2rJPBYeRbzjTQa8in45vWyF9TwnaUI9vlhHvGeVt7zDXKO87uY3PKLGqLzd4/u89NjjPC+u9byvYFE9tf91PRGAFz14PJQ8J8WhvFY/dDshZea8OhKNu/BEhb0ZfJK9Fcs9vId8yzvmPM27Uv6cu0SqR70Fig89mcm2PFStg7sBz2s9wwBEO+k+O76mv748bzTcPNJA+7yvvDA86DP1O5Fw5bumv768joKVO54VVDy6uxC9RFkuvT66ibwFgMC8aUQevO0ueTsAfOQ8hYUjPSQfkz3ohny7PgJLPD+xsTxTor084Z6fPNKcWryNG3C8PGaLOygYqbzaUQs78Oilu7ddw7x+I/o80vi5u/gt2bve7sE84/IdPQoovbzBrby8mBrQu9hPHTwuEy09a+osPSkZoLz91dU8rwTyvGHrTDxWAYK8OWQdPKjBLLw+DBo8lhjiPC+udb3EC4q9BdyfPE9NSL0axNM8KHORPWHidD2Eg7U6cYnRPLFsDjxn8Ra9W02fO1VSG72waxe9KGDqvFP1RD335KA8AiLzPMmzBrw9XLw8nMskPNo97TxOqSc9XUW+u4namD33fnK9VaSru8KtPDyUfZm9NA4xPc1aDLuJc/O8iCsyuz1ngryEel28WVUAvORFpbxrRgw99NhjPv7MfT3OrZM8TwWHPCh0CLzQARK9sLNYu3vZyrwjcKy8AOISvQSJGL3GptI7HyUGPFxOFj29qeC8qWXNvN6bOryXf4c8q2c7PavDmjy9YR+7Qg6IPHU6JjuEg7W6ezWqvD+xMb1dRb48BoBAPSBuPjwpa7A7xFPLvHXoFTz1NEM9sFd5PHkzPLwbxkE8Yu26vJklFr1MsYg7GcRTPE/xaLzBUV087NtxvVxOFj2ybQW9JbrbvPTY47zjlj69ktcKvZLWkzzQARK9McOKO2fxljz9jZQ7kcxEPFrwSDzu3d+800vBPCq+tzzGDAE7vwcuvFinEDwIedY65enFvMFaNb02awc8N74OvCFl5ryWfpA8SQErPTn+bj21tzQ9OWQdvXDuCDycyyQ9zVC9vPvcv7zaUQs9hCfWO2xHg7x519w7KLzJvOKL+LwtbhW88yn9PGzhVD2haNs8vGGfPBLJzzzx300900B7PJIfzDyYJJ87R0d+O02nOTx/0uA8mHYvPFqoh7wNxfO8itFAPBOBDrwwcAO92Tt/POE4cbwbamI9KHSIvEgKAz2Kfjk96ZoaPC/CEzzY8z299ZAiPWvqrLyFhSO9JAt1Pa9gUT2+WMc86T47PUSqR7wU1BU9BC05PIPLdjyhzok8VptTulVSG72SH8y80+/hPHnX3Du0wAw9eT2LPPfaUbvFArK8Ogk1vYc0Cj16kJI91vFPPP4o3TzEU8s7Sl2KvIPL9jyTfCK9mtMFPSNwLL3hlNC8eXv9u4PfFD1LVLK7zkflO1OZZb1pRJ686ojqPM+jxDw0ahA9w7iCuyBuPrwMzsu8g3hvvHbVbrx+f1m9UKoeu8WwobxEqsc8B3fouzIMwzygxDq8Ze8ovdClMj121W49X5hFPYAl6Lw0DjE8KgZ5vEiuI71NViC98EQFvH2SgDz9efa8eyrkvCTDs7ybeJ09KGDqPA8sGb1Rl3e8xQKyPJFw5TvqNWM88zLVvJYsgLw5ZB08hDKcvOqI6rwpa7A9Dxj7vLYKPDouHIU9HSOYvD0LIz07ZRQ8XUW+PIvbj7wkC3W86+6Yu3o+grsaczo8QldAvWsybr1VSMw83ezTu7RkLb1bn6+8XkU+uhkgMzvVTS+9IBJfPBF2yDzNmP68tcEDPRMlL7sWHsW8FBxXvd3s0zylbLe7cuUwvAWKjzszaRk7zluDPAnfhLoiy5S8j3k9vS5kxjxikdu7Kgb5vEtUMjzhnh+91vHPPF+YRT1mQrA7vrQmPf15dr0LH+W7fYgxvZ659LzY/Yw8oWjbPO1CFz1DBie9oAz8vKFo2zwSbfA801QZvP3V1bt+I/o84fCvOjHDir370+c6cOPCPK9g0bt72Uq8yk5PvE8Fh7wD2rG8U5llvF885jv3QAA8DCorPOiG/LzEXRo6XE4Wu/fkIDqmyY28Fh7FuzZrh7txk6A8mBpQvWyZkzulbLe8bpqKO1VIzDy6uxC8JyGBulalor36OJ88z6NEPaIiCLwieQS95pisOichgT1U/5M6H2zQO/KOtLyRhAM8xgyBPKEhEb0lFru8Ac/rO/yCTj1MS9q87ORJPOJDtzze7sE7jS8OPDJoIrxH9HY8shGmvK6xarwnxaG8nR6svBB/IL2jvdA9fy5Avbu8B7tlk8m884XcPJLXCj0/Xio8Bt0WvNj9jLwOKyK9o2rJPNSeSDvY87082UbFvOXgbbyyYj89Yu06vRLJzzzoSAq7azJuvaVsN7y7A9K8PQDdunriIrzKTs88dZWOvI2BnjxGtoS7V5J7PNJA+7s1slE9+y9HPF9QBL3ECwq9wq28O5klFrsut008O1H2PJRyU732K+u7XEPQPF+Yxbytaak8j9UcO54VVLtv7ZG8j8H+vHk9i726p3I8eOC0PJzLpD1W9zI9ZEDCO3CSKTwnaUI8QWCYuVqohzw3vg497JMwPCoP0brV+548qnATvaLGqLxfopQ9Nr2XOtDtczzdpYm8EHTaPAcwHry0CE47SK6ju1L+HLy0wAw8MAH9vADYQ71A+XK8KxE/vLFsjrw/sbG8KLxJO2g52DwZxNO7XJ+vu/GD7jy/tR299pEZPSN5BL5q3+a8nG9Fu+2K2Dz0Kf245EWlPIYpxLwBhyq8C9ejPIKMjbzulR49q8MaPRoX2zzgOPG8yKjAPAbTxzv5k4e9H3eWvJYsAD1NBBC6kSikvFLq/rvAovY81J5IvRSCBbyMgKe74p+WvAPaMbycHD68PaT9usS4gj0LH+W8y/JvPFpMKD0Gi4Y6iDUBPXiEVbx+N5g8WEHivGmMXzwovEk9+9y/O6cclbwtCOe6ezWqPOiPVD3Kqi69t11DvSNwrLxEBx693ps6uzIMwzycHL48ByZPPbkMqru/T+88D3Rau8b52byoZU29liwAPdxIs7zO9N08fdDyvPHfTb0ncxG8oc8Aun3Q8rwI3o26cO4IPVrwyLyPg4y86ZHCuv159jyCjI08L671uychAb3qiGq8XE4WvW+bAb0P0Lm8avINvePnV7zs7w+9GM0rO2w9NDwWwuU8Q07ovC3AJbwCflI8Y+06u6q4VL0JMRW9b4djvJvA3jwC5IC9N1hgvBEaabwvwpM8VkhMOiAS37yGKUS8KcePPD0Lo7zeSiG9AYcqvTyk/TwaxNM8SFLEPGsybj2ezRI8ul+xvN/labtumgo7rBaiu3ngNDzZRsW7QlfAOgWAQLvhlNC816C2PJ7NkrwKhJy7WJ3BvN5KobxsRwO910RXPRUnnT2MLpe78o60uzm2LT3LB4U8KHSIvBpzOr3l4G09S14BPUteAT2RzMS9Pa/DPLcUi7wSyU+8m2T/O/vTZ73U+qc6qhQ0u/vcP7tWm9M84Z4fPPM9m7yWLAC9MgxDvS9wA7zhlFC8HdEHveFMDz6TfCK83PYiPWKas7wgY3g7++eFvK0NSjuqHgO9knsrO9NLQTw3WOC8vwcuvB+/VzzoPru8xV6RPPuLJrsHd2g8+4smPef1gj0uwZy8QwanvZm+cDwqvjc8tmabPAcwnjyNG/A7vvznPCoG+TxO8Wg9h9gqPYIwrrvcUgI9AI+LvHaNLTx9iDG8GiCzuyDKnTx5PQu9EHRavHWCZ7yyESY8JbpbPV88Zry+/Oc8rLpCPGL3ibsJeVY9N2uHvT1ngjxVUhs7jICnPKAM/LyA3aa9dukMvVOivTzjlr68zfTdu7sOmLvx6Zy8qG+cvOk+Oz0oYOo87UIXvZLXCj3p7SG9djsdPTn+7ry0CM68hHpdPWfdeLyXx0g8l8fIPK3FiLzxg+6895IQPVz8hbsyFZs7yAQgvYQe/rwYe5s78IxGuVrwSL2nbiU88z2bvMvybzyC1M48gDgPvd6bujsbu3s8+ZOHvGg52DsOyZw8s/rsuvZTO73BmhK8cI4YvdErrr1lzGK8AJ4+PTHuPj1GEGm9gW8AvfN1S71GEOk7rxx9vGLu8judJSQ98A8OPfIlf7yTZlm8pbyIPBVxibySi9Q8uT8HPZGwTzt5sLW8zcKFvIiOMj0GvfC8ovILvEc4T71UiKi8eou6O/xIib0EVzM8OjhCvOVyUzqJthi9eIhPvAGhKb3lDwE9/jcBvYzP9Ly2sPY8nzwCvXQfJ7w5hSO9WvS7vDgNcTvASka91+cNvamw6ToyFqU8ScZyPPOdsbxEgkW9KrsZPLezYb3oUEO8CTiOvbBEYztGrRa8FRA1PfsMsLwf5XC8+rxjvNGMgj2H2xM91LlRPUo+Jbwrgqu8qF6fu8bePzopV1q6Dt0PvMcaGbzzdcs8KKQ7PL+XJ72ZR7Q8JqFQPaPNEL0+FrK8PJwBvHQzGjxH62085OcaPFgZN7yXHOO6IA1XvBDMB720Srm8VIiovAXi67yRAJy8HKSuvHP3QDzguV69LV0wPdMGM73IRP07aapSPMcujLwiOKg7H1o4vebWEroyFiW9dB8nPbwJBD2vkcQ8rGZzPFwLmjy+b8E8CpvgPGRBKj3hlOO7AixivDPxKbr6lH07CkyBPFsLGjya+tI8kbBPPTXMLjtzz9o7O3QbPEatFr3Yv6c8H4IevGvVI7y+b8E8kovUvESCxbxjPj+95iXyOwa98LwsXbA7qbDpu2lHAD1WFkw9ReYEvaZvJ72428e8ANoXO+BCmbzEs248oxxwvRAHdDyBbwC8pPd0PNklZTyC+jg8v5cnvDfjjDwpV1q96itIuxlRdz3oUEO8R2C1O4FbjTrBmpK7bIjCPBJaK73KR2g8OpmWPMAlSz3YSmA8UTXxvNxQNj1OMIi7/DQWvWgzDT3PiRe82SVlvUvxw7y8bNa8BLiHPHHMbz23AEM8ym9OPPH7Gr1YGbe6V8nqvNeXwTzPnQq9hz5mPKphij08E8e8oBeHPFLBFj0oL/Q80LN7vNJnB71l9Mg7FXGJPCd8VT3WvDy9KfSHPbwJBL12Dh8615fBOyikO71IE1Q8JXnqPN57hz1ZzNU7GXndO+oryLwmyTa8N1rSvIiOsrylqJW7RL6eueNv6LysK4e9ZaT8vFSIKD1r1aM8wf3ku3aF5Lu3s+G8L+tTvemgDz2pJbG8Ew1KPXhg6Tx+HEm8nzyCPeBWjDwjw2A4IhDCu7PVcTxZzFU7129bPfQo6jvpeCk9CDWjvDPxqTuVGfg8tnUKvFmk77wp9Ae7UzjcvCJMG71kehg4STu6vLP6bD03z5k8c4J5vAeCBL2eAKm9TEEQPT6harxT1Qm9wf3kPP7COT36vOO8THx8vJ0lpDyPXgW812/bOwAp9zzmwh89WBm3vADGpDy5jma89MWXvLreMr3O2PY8vyLgPMsi7bq3PBy80QPIvKooHLwN7he9De6XvN0rOz1zz9q80wYzPQQvTT0X6zk9kovUPOwuM7zU4be7/Q+bvEqhd7yfPIK97Qm4vV3SKztuFma8wErGO65p3rvvDKO9C+ssPajV5Dy/lye88OcnPeMMljxVYy2+G+AHPY1HJz2bXpK7brOTOgCePrs3grg8Y2alvCR2/zv4ahm86ChdvaWoFb3Z/X69zErTvCxdMLybIrm8xY7zPBQ1MD0FWp498ZpGvA7JHDyLuQM8jUenuaooHLxaf/S8M8nDu9cierz4LkC9h9sTvemgD70C3YK9GVH3PJRmWbsDB2e8aoVXPEaFsDwuOLW6RzhPPM5NvjxN9C67ZVUdPRfrOT2dJaS8eou6PMCGH72NR6c8+jErO/ePlLpgE2687rzWvALdgjzxcmC9wyg2vVXGfzxJOzq90HiPPD3uSz1uFmY9xy6MPCy+BD1xQbe7j14FvU4wCLy/ciy9QQiVvGoOEr2/ciw98sIsO0vJ3TyE/SO8jUenPCjMoTyJQdE84FYMPYqlkLw+Ppg97rxWvXPP2rxJxvI8eP2WvRAvWro4Ndc7CRAoPHPPWrs6OEK87uS8vAN8LjxU6/q8bdgOPfJNZT6ZRzQ9wSXLO2ywKLzZrh88ZcxivfePlDznAPe7ptL5vBsFA70xxli9qgC2Oy6ZCT1oguw8RILFvFIQdrzxmsa7L3QOPHetSj1KPqW8poOau11dZLpxaZ087Qm4u6bS+bxEgkW9CSQbPD/J0DzEUJw6Vcb/uoT9o7tt2A68IV0jPWen5zsRV0A7KjJfPYHSUr1ApNW82ErgPNlyRjy7kdG6bxlRPHNYlb0QpCE8Sj4lvIQRF720ch+9trD2vDX0FL1vZrI7fn0dvZSOvzzYv6c8qtjPPBMNyjwC3YK8GJ7YupzV1zvgVgw8zk2+PA5UVbyUA4c7rI5ZvNTht7wSpwy9DqG2PJut8bwWYAG9DJ7LOyPrRjwyoV092SVlPUk7urwaySk8cWkdPQ98Ozxbz8C8gB80PUMLAD1OHJW7+UUePOcoXbyPIqy88Ocnu6zbujzbdTE9pPf0PJD9sDyOgwA8KeAUPZxyBTs0GZA8+7/OOYYUgryYlBW7CxMTPVc+sjzASsa8Br1wvF36kbpOp007c2wIvUmLBj2Hsy08LYUWPc7Y9jyk4YO8fbYLPYzP9Lu5KxQ9pOGDvL7QFT3VlNY6sm+0vH70Yj0NeVA97GoMvPvkST131bA7WPFQPToQXLuLHNY8JqFQPBPlYzxQH4A7TC0dvU30Lj2MgJU7IDW9PL8iYDylvIi8hbDCvLWahbwzycM8g9U9PT/J0DvW5CI9fGa/PECk1bwkTwY9aV1xvGj3Mz3mTdi8EKShvNhKYDwrgis7KMwhvf91WLsVEDW9xQO7Ozg11zsLJwY9IXGWPTPJw7vRjAK80GScvCFxlrt1R4281OG3vI5vDTu8CYS7hCUKPEju2Lyw9YM8qHISvP7CubsviIE9LA1kPW4WZj1np+e8uAOuPObqhTv3owe9wnUXvccujLyDNpK7DMYxvQZanrwSp4y8tk2kPcu/mjx2Dh+88XLgu4OtVzxsiMI8cWkdu05/57ynrf68YosgPcsi7bxXyWq7T/eZPZIoAr36lP26RzjPPcElS7w9TyA9iqUQvLWaBT39Dxu82yjQu957h7tBCJU89ChqOnSCeb2zIlO9HX8zPfkJxbzrBk29LehoPPL+BTxwjpi8Q/cMvSdU7zv0xZc8bmPHvOTnGj201XG7ZhyvvID3Tb2IZsw8/EiJvGX0yLqTPvM7paiVvGCwmzyyb7S8TVUDvWvVI71gsBu8TVUDuiAN17xKoXc7x2n4vCikOzxWFkw9qbBpvNx4HD2qYQq9u7k3vNDb4bz0xRe9xGQPO57YQj3f4UQ8k7O6vA0Ci716izo827EKPQN8rjofgp68FRC1POgo3TzAroW9lAOHvBF/pjtZaYM8xGSPvAo4DjzOdaS8EVdAvc3ChbhUiKg8F3byO+7kPDxLyV29dVuAO05/Z7pF5oS74uQvO1M43Lyw9QM7cUG3O6W8iL0O3Y+8RA3+vAUKUjzvDCM9ybyvO90D1TsG5Va9xt6/PC6ZCT1MGao7bTvhvG3YjjxOz7M9rGZzPA9U1Tzm6gW9wf3kOw6htjl9aSq9iRnrvBrxDzzSUxQ9EqcMvKaDmrwWOBs9YIi1OyahUDvjDJY8wyi2Oz4WMrx/RK87vm/BvGvVo7zJCZG8C/+fPSuCK72eAKm7/prTvIqlELkn8Zy7ngApPcTb1DqKabe8gvq4u+ZNWDze3tk7qU2XPFCC0rzvNIm8j0oSPYU7+7x8Zr87JXlqu1p/dL0cL2e6BLiHvCFdozyPreS8bostPD4Wsryj4QM8ebA1vTcybLyFY2G8AsmPPcKJCjyF2Ci9FxMgvRGTGTzPnYq7XdIrPECkVTwBBPy8yvgIvEwZqjzBJcu8jVsaPce5RLukRNa7hIhcvDfjjLy1moW9lAMHPRDMhzwO3Y89XIJfPdJTlDwim/q7jGyiujCecrzsLrM8I+vGPIGq7Dpqhde6UAsNPd0D1bz8NBa92XJGPVM4XDsUwOg4aV1xvN8upjzhlGO8d61KvLbYXLwEVzO8myI5PKORN71GrZa9FDWwO+7kvLynSqy7T88zO8qXNDyWkSo9S8ldvBRdlry89RC8Er19vX9Erzwvw+29ZBnEPCikuzkhcZY89QNvvDATOjukRNa8DXlQu4c+5jkjYI68129bPMxK0zyw4RA9cBnRvLUlvjxogmw8q7NUvUdgtbzivEk9oBeHPPV4trxDCwC9pJQivL/6eb2m0vm8bmPHu7O/gLz6RR69lAOHvLkrlLtShT09jyIsvenb+zpPWmw9adK4PD6haj19QUS6DXlQPCUWmLzHLow6t1CPPaiGBTwfWri8g0qFuzCe8jts/Qk9cI4YvUVdyrxXeos7G90cvZ+L4bwAUd08b2YyPb+rGj0VEDU80lMUPTtgqLyGAA+9fUHEvB6nGT2EERe90lMUPUAZHb1R+oS9qrNUPIGFcTz+wrm8Sj4lPBl5XT3vDKO8UAsNvQWTDDwcV008UsGWPP8Shjz8SAm94OHEu58oD71d+hG9tk0kvWXM4rxQgtK8JqHQOzHuPjxlpHw8G+AHPZfNg7z0xZe73lMhPdJTlDxeDoW90YwCvcMotrsYJ5M6KfQHvQyeSzwKTIG7/JfoPCqnprwEL029GDsGOwpMgTwaLPy8ag4SveedpLxCf1o8ebA1PHQfpzzBmpI9Me6+O7yUPLz5CcU8SLABvDHuvrwz8Sk7NcyuvHPP2re5P4e8pJSivKb6Xzy0ch+9IV0jvYppN72fPAK8zEpTusa22TwJJJs9zf3xu7bYXDzivMk7poMaPCKb+ry7kVG9hbBCPRnuJD3eUyE9S1IYvZxyhTxSEPa87uQ8vCqnJj0Rfya9qthPvLBE47wvw+06zOeAO8BKxjveUyG8K4IrvGlHAL0DL8270y4ZPIiOsrwLduU9dUeNPPpZET2/l6e8tHKfOaRE1rwEVzM8F3ZyvBDi+LpjZiW7ZVUdvda8vLy2sHY9CxOTvAyeyzz/dVi8ShY/upUZeD2LuYM9F+u5vCSeZb1IY6A7WhwiPUiIGz3YIvo83aCCPPptBDyab5o87pRwPZTvEz1t2I68vETwO3nYGz1zz9q8cvTVO+MgCTzgbH08YhbZuzmFo7zVMQQ8t7PhudLezDxHYLW8o5G3PCOe5Ts0fGK8vr8NPXNYFb0gNb08Me6+PAv/HzwumQm9lbalvYM2krzlctM7QfQhve5FkbzMcrm8BeLrvJZpRDvMcrk8DMaxvKDbrbzPnQo9aB8avR9aOD3xTWW893shvEH0IT3VMQS9gvq4PI8iLD0V6M68c0SivCah0Dxnp+c7XoVKPEP3DL0YeV28VLCOvDtgKL3JlMm8zHK5PNB4jzxHYDU93HgcPfznNLxfYE+8s78APScFELwVcQk7jkSfO2QlNbsil5y8S6EHvAuIC70My5O8ufEvPLyD4TwQSEY9j/xDveOBK732vw29Dq02uzjlKr3oAuk75jnQPGLeoTwOaq48lI51PJGw3TzjVy27kyHvPDbECj0Pgzi5PfVWPGjl77wRUFw9Y0soPCC5BLu4MK28NwuePHd4Fj22fJO9i76OvemubLwR41W9ig4AvaEykDk4eCS9Yp+kPD39bL27kEq9kT/MPExRFry3ax88jcakvEw8l7xhm5m84B2DvQtejbu5STc7kFRLPJ+XALy7ElC9PlV0vGX/wbtoY2q9IecNvaEdkb0PsUE9uMOmPMpqBD2LUYi8ZdXDvBHfyrwKRQM9OU6mPEofAj2gBIe8dUaCvDtax7znquE8vbHquxRHfjvpb2+85tBUPBBZOj3khba8O1pHvOIpJD25iDS9OsPCvAz5HD0P8D49N0obvePEMzyRglS95J7AvIvoDDsP2z+9SkkAvT8Wdzy+cu285k5PvHYLEL0T0mE8ODmnuzeJGD0g+AG9oO+HvA/sszw5UjE9OJ4XujrYwbwLXo28aap9vOBcAD33b5y7aaJnPBJUZ7w1QoW7k3n2POeA4zsPscE8jBaWOgpagr2Qk8g6Ne6IvHd4ljzknsC8teGDPEyQkzzldEI9YH4EvDh4JDx1RgK9jBYWPeVGOTwL3Ie85Y1MPLZ8E70Pbrm8TZCTvY6gMT2RxVy9j2W/O7dWoLtMjAi8aErgPAsfkL1m8lg8ylWFu4uUED3nkVe7YzapPOk0fb32VpI8ESJTPemd+DwOVa+84Y6UOg2loLwfIgA9DDgaO2gPbru6YkE9ILkEvbvkxrsQyss7NsQKPT5q87s39h67jfCiO2fhZD0/bn47YFQGPA2lID29mGA96SxnvCFUFLw5PTI94uIQvOKSn7xj4iy95J7Au+VwtzzMBZQ9jqCxPDy22bwNZiO9PrrkvGiN6Lz15QA9Y6MvvQ17ojvLQIY9Er3iPAwGhjsU62s8Or83PbX2grw8Cta7Ej/ouz7s+LshkxE9ZUJKvYw8iT1M+Y684rydvGQpQD3pCn88ODWcPBIAazq59To5FKxuvDhjJT2/ynS7uxLQPGm/fDwTEV+9O0G9PBIAazxiXBw9Y0sovb5hebwNe6I9kNbQuxGLzrw7Bks8ExFfvWE/h71lOjQ9Sh+CvDwKVjzohG484wMxvSG9D7y9QFk84LQHPPXQAT2gBAe8oNoIvZFpyrviaCG8tj2WPCGTEb2Sm968YD8HPWbETzzoWnC6Dq02vOBgi7w2B5M8EvzfPD++77znY049kPg4PCCkBT1lq8W8lCFvvTWBgjw6mcQ7EF3FvHUHBT2OoDE96OnevCG9D7w7MEk8kbDdPL1A2bzmoku7k2DsPI2cJroN6Cg8kLm7vBQyf7xpkXO8TWaVu+eA4zwMtpS8tXgIPDg5JzlpY+o8tj2WPGn++bxmFEE8uk1CvQpaAj1gVAY9IiqWPOkG9DcRZdu66OnevIoOgLu4Wqu7Z8havaIhHL2922i8lHVrvBRc/byN26O8oMUJvZGXUz2V0X275yhcPLdWoD2OCa27YYYavpPicbwL3Ae84tEcPbk0ODlMPBc9Y82tvLeAHr1lq8W8Pq17POL/Jb220A+95Y1MvD31VryQqMc7d1+MO2VTvjsS52A9EgDrPOQxOjy6Cjq8lKN0ume3ZjwR38o8ClqCvcpVhbyUo/S8Hw2BvI4iN7vi4pC8zAUUvbeVHT12RgI8YD8Hveam1jyjNhs8PejtvA2+Kj252CW8uBcjvDmNIz1hhpo99lKHPI0zK7vpruy8P1X0Og08pTwOVS88NWwDvYtRCL0SvWI8D9s/vRBIRr07SdM7dTGDvQ/wvjyUo/Q852NOPGYUQbvpruy7IQCYPLhBoTsOlKw8jTMrvY2xpbxh2ha9O51PPeAdgzyS8+U86jT9vOFPFz22u5C85J7APMqpgT06b8Y7aA9uPWWBx7yRbdW8DDiau3XIh73knsA8DOSdPA/wvjsUR3689oCQvPZrEb3hJRk8OJGuvJFpSj0Tl28+oUsavLYPDT1itCM8kL3GPLlJN73n/t25jMKZuuYgRrwOwjU6iycKvTsGS7yMmBs9ZDq0OunH9rxgVAa6jYenvA0Spzu2+g094wMxPOFPF7w6b0a8NZaBPJO0aLq6uki8Phb3vJKK6roNZiM9j+O5PDqExbu6d8C8jEAUu+MDMTvgMoK8ESbevOW3SjwKGwW8dreTvGn++TsgZYi7dw+bundjl7u6Xja9aSj4OyKoELyQfsk7oS4FvSHnjb32Ugc8jUiqPGOjrzro2Go9aE5rvGW8uTy7UU08FIJwvWTRuDuflwA8C8eIu74zcLsOf608Dtc0uxCDOLxkaD28zNuVvA/wPr1h1gs8C14NvTcgnT3pc3o8kUPXPegsZz2R60+9t6ocPCFpEz1pu/E7IeeNu44JrT3KVQW9vnLtueFkFroRtUw8wM7/vDavC71l/8E8kyHvO+UcOz0KRYO8jIMcPbULgjzjbCy94uomvbkKOj2/Inw8PTxqPPVnBj2UvH486NRfuuc5ULySht+7vrFqvI6gMbzmZ9k7udywO+A2jbwRi848ZyDivApagrxlq0U5NzUcPZMM8Ds/mHw9D4dDOwv1Eb2RKk08NUKFPDezFj0RN9I85Qc8u/YTij1AWX88EGFQPDquwztk5jc8kdrbvItmh733hBs84y0vPWB+BLwQYdA84biSPBAavbrgYAs74fcPPbdWoDwOai69dguQPY96PjuhYJm8Y7QjPbmINLw+K/Y8aE5rvbgwrbxjIao840KuPCCkhbzhJRk8DGKYvOiZ7TvjVy27aYD/PLtRzT2MUQi8d+ERvGcg4ryPpLy4uqG+O+U1xbxm1UO8j98uvBTadz28atc831yAuuF5FbySrNK8tjkLvTzLWD28J088EaTYu+nD6zxMjIi8Sh+CvRDKS7w4eKQ7SyONOz7X+byOoDG9jFmevcpqhD13Y5c8OwbLO3ZfjLxjuC666Qr/u45MtbyNhye8aVL2vMsWCD2PJsI8DpChPGmmcj0g/Iy8TKUSOzyhWj017oi7uUm3PJNL7by4G648tywiPQ/wPjphFQm8n5cAPWQQtjshjwa94xQlvUofgjwOFrI8YyGqOztBPbw5qrg84xQlPbhaK72UJXq8YkedPGZG1Tti3iG89umLOeb60rw8d9y8IBGMPDe3obyMbh29OHwvPaFLGjwS52A8kI89vIrkgb1jS6i8O1rHvBQZdbtkpzq8af75u2QQNr2R2ls9u1HNPJOjdLyOHiw9uG8qvb2x6rwhKpa9lGT3PJMh7zy5Hzm6uCiXPMutDL12iQq9EgBrPWjQcD0TqOM7j846vJMh7zn2VhI95LM/vbtRTbxNZhU8EgBrO+U1xbxqfPQ7Z7PbOrflDr084Fe9FJv6PJXRfby919285Rw7vYxunbvoQWa7Dysxu8wvEr3KlIK8YrSjuz4WdzvnquG8N3SZPOd82LvMLxI94AgEO7q2PT31kQS9P4N9vTpaRzp18oU89buCvOBHATzLK4e75Zq1PYv9i7xiHR88Dn8tvBPBbbw6lbk65eHIvJCTSDw7G0q6dswSO2oTeTy6jD89tlKVPLfpGbwOqSu85onBvDjlqry47aS8EHLEvMzwlLy4MK28jOyXOeeAYz0N0ym9OgJAPA3oKL1mRlW7NwuevOeA4zzpXvu7S/kOvOKSn7129hA99gIWPJDWUDzLrYy7vqB2vJKK6jnmjUy94n2gvDtaR7y/Iny8kjLju7xqV7u6d8A84uomvI5hNL315YC8IT8Vuw5mo7zgtAe9OVKxvHdjFz3heRU9PsL6u2dwU7yQUEA86CjcvGoT+TuSXOG8ZnBTvWaa0TsTl+88Zfs2vEr1AzxnzOU8Yp8kvDmVubwP2788YdoWvWAViTwgEQw9ZwtjPGLJojs7c9G65V/DPA3PHjvjliq7DIyWO+VbOD3pBnQ7jybCPKGKFz0+anO95qbWPOFPl7x2swi95uFIvBHOVr28buI8DOSdvI3bozw+0+66TWaVPLtmzDq1NQC9jrElvZCoRzy8Fts7kljWvPcTCrzM7Ik9aLNbPY/OOj31Z4a9IKSFvJUQe7w4Oac9EbnXvZGX07xlfTy99ukLOw+HQ7yRwVE84mghPOAIBLv3w5i8v99zvejU3zwOQLA8IesYPQ+cwrxpY2q8EMrLu3Vbgb1iHZ+5t0EhPba7kDz3rhm9ixILvXd4ljvgtAe9DkAwvGYtSzw73My8C3MMvebl07xp+m67YkcdPbeVnbwNkKE74uKQPeVfQ7wTLvQ75Qc8u3azCL0OrTY994SbOw4rMT27J885vS9lPLuQSjzjgas8DPmcPeK8Hb2Tdeu8NUIFOmRovby+8Oc7DCMbPeiEbj26c7U7N1sPPLrkRjvk8ry8PwF4vTnpNb2RaUq86gZ0vTyMWz09z2O9FcX4vJS4czzpNH284qcevLyU1Tzk8jw9EudgvA8vPLyN7Be8ZerCuhSC8DwT73Y6NnCOvWOOsDy7PM68EB7IPJJD1zshFZe84EuMvIzCmbwPRLu7OiizPAvxBrx1WwG9jFEIPBAFvry14QO9t4AevRJQXLzh9w+8uAavvLwBXL3qXns8ZFO+Oo/juTvM25U8tpESvWYtyzthWJE8O9xMOee/4LyRglS5y0AGvWrpej07MMk8vkhvPWJ1pryNBaK848SzvBBZurxm1UM8E2lmO2c14TtgFYm8ofOSvJPicbw5v7c5YgigPLyU1byV+/u7ZPu2OpLvWr26usi8oJsLPUoKA7tjuK686fV/O0vPELy5iLS8EWVbvWQ+Pz2gWAM9YBUJPeMUJb1joy89TBIZu+VfQ7yTtOi75yhcvY9lPzzlBzw84B2DPBFdRTxn7k28YS6TvBGk2DvlX0O9DIyWvDqExTwR41W84eIQPiHrGL0g44I9DLYUvZPi8TtAWf+8eDmZuzrDQjtLI4089XyFvGmqfb3ioxO8aPpuPUtNi7wLSY68oFgDvQvxBjy6+UU9oFgDPTg5p7zkB7y7N4kYPeOBKzzi6iY85fbHPOMUJT09/ew6SjSBPPeZmju/4/48t5WdvOVGOTw40Ks8aKbyPL3G6TuSXOE7kh1kO2AVCb2RWFa7Cx8QPWNgp7wRCUk9jBYWPIxZnjyPO8G8ZepCPApFgz21oga8jiK3PAv1kTy57SS9jK0avQ1mI7265Ea95V/DvGTmN72Mwpk8taIGvMq+gDyOCa08Zt1ZOxBMUTu+33O7OY2jPWO4rrwSfuU6i9ONvIu+DrxgPwe9i74OPLoOxTw3IB08TMsFvA1mIztjjjA94uIQvEv5Dj090269zBoTvZII5bxnRlW8u6G+vPYCFjuSxVw8DWYjPQ5AsDs7SdO8oHGNOemd+Dy9nOs8ZhxXvE8yuLzOs6m84w0Pva9ah7z43qS8oIDIvdxDHD1KqFg9uuITvCDKjLx94Dy9YYsNvZV2wjxlTRq9tZsqvWhOKrzwWgu9OKOIvA54jTyHa6y8+yWOPNwEmTyggEg9S6X1vHLWtjzyTe86aUvHvJdCiDvjTBK9DGrhPCH88zzoURU9nMWRvWrQo7wfhLO8UbuHvdQs+rub/b67G3X3vApwJz1JNIu8K445vbUZsbuT7XK9nXzVu0UsJb2HcgK9sFoHvDEcjL0zD3C8/+eaPPYgi7zfRCw9yCytPNK0ObzfioW8JQc9vbuZV716U3q9Lg3QPH9iNjzHJVc9/FrYO8Kb9zqG3/m5vyYaPeM+5jyEZ7k8W763vPtWZb3Zs3Y8MRyMvKgLODwvCu27P+uBvEEdaTzii5U7rxSuvPPSy7wKadE7p88XvbMO6LyAWP28IwqgPFu+t7voQ+k791VVvEAgTD1GoHK8W7vUvA76Br1+4Dw8LxHDu+iQmLvLLT29adAjPRH3ozwVeq26SyrSuysJ3Twb+tO8rhA7OrUZMTyPamm8rAnlvBh057zZxAU9/dxRO02zobumib68pIVLPJqCmzxK9Qc91ryfPT6X/LyuFxG96Uo/OzuW7LpNLsU8MVsPvcMrHbxplIM8yLGJPOTHNb1rzUA8CmlRvTMPcLzfRCw8+dvBvLKMbrwnhlO9hmssPI9xP70FaME8cs9gPNH6EjwaxYk84EsCPFU3uzoV7vq8/WEuvAhzCjxkRkS9v6G9vPBMXz2pUZG9D2txPBz38Dsy3Qg9nIaOvLQcFDxSOh472jXwPPdjAT2jBjW8FHotPU01G7w3ldy7W763PL6kILxWNFg8ASsRvZ7+zjz32rE5m4IbPVcDAT1WwAo999D4PMen0Ly3kXG77U9CPKCHHr332jG6Q26LvFiz7rzWvJ88ht95PYhoSTwKcCe9OCGPvA5nfr04nDK9wZv3vAVha71945+8J4ZTPaiNsbuW/xG9/dxRvPjeJD3eRw+9nUcLvTYauTqqVQQ9mMSBPWXLIL1MsyE9rRA7vONMEjxnkJA8W763PPdcqzucAbK8wm0DO+pHXL0W/KY8SS01PMAcYTw/Gfa86dOOvQhl3jxXQoS8SvWHvBp1d72tVhS9fFdtO2lVgDuPaum8OSWCPLCP0bxduHG8gFh9PC2Zgjw4nDI927pMPSiNKbxfOms8HPfwPDydwjyojbE8xCRHPHIckLuFLww9WgSRvC6Ic7x6owy85MBfONo18DwgBi08PCaSO/DVLr3YwJK8wCoNPaaC6LzxnQG9b85QPbbhgzxIpGU83Ldpu5wBMr2EYGM9l0IIvf3jJ706mU89bsf6uxqGBr1yW5O8huZPPHpTeru13RC9xqPdO7RbFz0KadG8e9+sPOfPmzxctH67yTAgPMqk7btnxdo85b38PBT4szxJq7u8xaNducyo4DyhhDu9v5pnvKyH67yceOI8lv+RPS4NUDwcfE08qgVyvEci7DwUei29jLaIPFE9gb1oR1S9u5lXPNS1yTx009O8yCwtvIXiXLzeRw89QSQ/u+/K5bwReZ09Nh2cvAErEb520HA7uqMQvApwpzyjDQs9kmt5PPzmijxky6A8P6WovOM+ZjvFo928JQ6TvOhKv73lSS+961WIvI10ojrWsuY8A+JUPSaJNj3xztg7LwptvKSPhLwzElM9k3klvcClML2HaMk8OJwyuxrz/bybQxi8FnD0u1g4y7vWvB890Cvqu9Y3Q7xUtUE9Npi/vEGpmzx8V+08EfejPEoj/Lw4IQ89GvN9PHzZ5jtuTNc8CnCnvPzmCj171fM899oxu0Ed6Tty1jY7oIcePSeG07xu0TO9TbA+veVJL72mB8U8lnq1PZnydT0J59c7sxU+vQlie7zu0Tu8J4ZTPfNbm7ymiT69g2DjvP3jJz0Q96M6qgjVPH5lGbw0m6I8vZZ0vDgerDxRsU68iOrCugx0mj3iw0K9NJuivI/2Gz1lDpe9xSi6OzKehTwCbge9CHOKu3jiD70X8u28SKs7vXrmgjzqwn89OplPPlO1QTxx0kO71jfDPJNvbLzXsma9AOHEO9A5Fj3eyYi80nwMu/fQeLxXAwG9pIXLPA45ijxlDpe8MpBZvPdcq7vqR1w8z7DGPPrbQTxBqRu8b0n0u8ig+jwH6jo8/N80va0QO70KcCe7l3dSvAhzijtq0KO7IXp6vEojfDnCJyo9bZWTvPfQeDxctP48nvd4O0ysyzxMrEs9poyhPCRNlrwUeq08KYfjujklAj0h/HO9cdmZPFvFjbxNqei8E29kuskpyjvxVyi9TbOhPPpgHr1XA4E8MBgZPYdoybx82Wa8RJx/vB+Hljxux/o8/eOnPXbeHLwaQxC8j+ziPOLDwrytVpS8BjAUOq1WFL0ulh89zjiGPcVukz3as/Y8CvIgvTQPcD3Kq0M9XsYdvT+eUrzG8Iw9HwK6vPxhrjovEUO8KQzAvA23EL1iTIq7UbHOPDuWbDwjjBk9uqOQPG0XDbzx3IS8YcDXvNa5vDyQ+g49heLcPIJjxjw8JhI92TF9u1tAsbxWuTS8CeT0uuM+ZjtxTee8LQ3QuLefnTwXd8q8gF/TPMmrwzxuzlA8jHeFOwxtRD0bdXc496KEuwhl3js4IQ+9zXcJPLynA71x2Rk9QyFcPf5loTxfQUE9SLIRvZ0BMjqae8W8i2nZvMOpozoNamG9GQQNPWEJlLwnhtM86cViPIJc8DvZMf28alKdPDdgkjwE6ao8OqAlPHzjnz3s0Cs8TTWbvBx8zTztxvK8u5nXPATmx7szGam9GcEWvIHa9jwhi4k8LpYfPXROd7xz3Yw6PBjmu+ZGTD1nxVo9l/wuvbiVZLwFYWu9XT3OvK6L3rx5XTO9xyVXvLUgh7t+W2A9spNEu109zjwXABo8IYHQPHDSQz10zH09rBOePDQZqTvCrAY8hmRWO4ZkVr0K5PS8XsYdvcGb97z0Wxu82UIMPFU3O706Ip876kdcPWVD4Tuphts8kW7cvNYw7byeg6u8IwNKvLEKdbtLMag8gOuFOyiNKTzEKx09PiqFOQjxkLpWr/s8gOsFuTCTPD1nQH681zu2PLxoAD0vEcM7rBOevEGf4jsmkIy90LecvHdS6rwdxhk9lXPfPMOizbzYQow8/15LuVs52zyT7XK9Gn+wO+7KZTsHbDS92jhTvXdSajx1Vc07MBFDvX9iNjz1npG7vyM3O/WeEbz1X467g2qcPLWN/jzdQDk77U9CvRjBFj15ZAm7hGBjvd1AOTsKZm69PyMvPdwEmTyeCIi8zDQTPb2W9LzBm/c8w6kjvAfqOj2mjCE9sxU+PbERy7sBYFs85UkvvZh+KD0uFCY7VzuuPESc/7yHcoI9Ad5hu1e20bwWfiC82jjTPCiNqTyuFxG9QSQ/PDecMrzmEQK9vKeDu9a5vDxbvrc8XEcHPfGdgb0dBZ087BaFvEq2BD3kj4i9CmZuvTSborwK68o8I4VDvYRnOTyB4cw7RCiyvEkmXzwpBeq7+9+0vEiykbuWwI47pgDvPM44hjolz4+9KI0pvbgTaz31nhE7ZU0aPCWC4LyBZqk7hmssu9o18LxzHBC9KQxAPEeuHj3aNfC8zqxTPe3GcrsQckc6IogmO2lLx7yX9Vi5SS01vAMvBL0J7q074ouVvFa5NL2eyYQ9r5mKvArrSrxuFw29RzCYvBL0QD2hfeU8NF+Cu5zFETzqR1y9KA+jPDYdnDzBINS7vyYavXrYVjwJ51c8VH2UvKwJ5bzas/Y8OJwyvaTOB73Bm/c8cluTPPFJ/LwK9YM5xvCMvTwmEj0K8qC8AamXvAm2AL08mt88tpRUPNo18LzYA4m6R6dIPTNfgrxmyL08h+ZPO3bQ8LxeRCS9SS01PTEcDDwpisY78k1vOo/2m7wkBz276EPpPNYw7bxLd4E7QCDMPHnijzvWubw8CfUDvWhHVD1EJU+8inMSPbYdJLvJq8M8iu41PTklAr0Tb2Q9D3UqvRT/CT0xHAy9rovevEkmXzwB3mE8qlWEPbMVPr0oDyM8Vrk0PGzK3TzWPhm769CrvOY/9rwUwAa8fWUZPaMNizyXgQs861WIPbygLT3Ruw+8aEfUvPPZobypjTG9jfKoPB6AwL0zEtM7iO0lvESj1btuTFc84osVPDydwjzdOeO6VwMBvQvrSr1Jcw49/lf1PHhW3Tw/pSi9IYuJPEQlTzvCJ6q9i/WLu+FIHz0bdXc8GHRnOxp42jt9ZZk8ZxIKvQbtHb0s2AW8/WEuvR7747xDpri7qQ+rvM0xMD0FaEG98sv1u+hD6Tycf7i8gdp2u8Wj3bzXO7a8vqQgPO1SJT2ddX88moIbPK2VF72jTI68MpBZPIs0jz1bxQ29iGVmvU4rYruP7OK8bFaQO7efHTyxEUs8OhtJPWZD4Tw5knk8JYJgvIdoybwJc4q93YYSvQMvhL3gQck8PqE1vQppUb3tzci7HgUdPKoWgbxhPt67gGYpOyJ+bbzOJ3c7L4xmvK1WFLwDZE46zTgGPO3Gcr194Lw8GQSNvU0uRbsfSJO6qdMKPJLw1by7mdc8spNEPeZGzDy9GG48k3JPPF+HmrwF5sc5uZXkuxp4Wry/Ize77khsvICsAjxVst68mfJ1PNm9r7xMJ++8IH3dO+ZNIr2oBGI8VH2UPLmcujt65gK9zLYMvQ7s2rzfPVY9WTw+PTKXLz3Ptxw9qhYBvffQ+Lxu2Im8bkxXPK2Owby5leS8LpafvGUOF7ybf7g7GHRnvK0Qu7xixy09DWrhOzEVtru9Iqe8pIguu9OxVj0dBZ28Y48AvakPqzsIZd48CWL7u5T7Hr10Tnc8TDGoPd2+vzzz0ku9UjoePfZOf7xcu9Q6U65rvHBXoLyD7BU8GfbgvJFuXD192eY8zid3PL+oE7wK68q8aMwwPNY3w7xavrc68cv1vE32lz2ui169PeeOPLUgh7wuiHM8xCRHvCoTFjsC5be8DvoGvYMrGb3kxzW9TS7FO+KLFT2jBjW8EXJHu7KTRL1XO668geiiPONMkjxgwzq8qYbbPOrJVTz9Ya48nvd4O4+3GD33XCs8lv+RPOhD6TyZ+Us9dNPTPGVD4budxZG8a81APf9eyzsfygw7/FpYPR156rvULHq8qorOO6qDeDznwe87UbuHPY3vxTx4Vl09P55SPPdV1TxFqqs9owY1PXzjH70O7Fo8SvUHvUAgzLuoCzi9h+ZPvVq3YTxiDQe9YsDXu0MhXLyB2na8KYpGPFu+tzx9ZZm8CmZuPLKTxDxxz2C9ZMRKOwRrpDtQL1W8LZKsO6gE4rx7WlA8b0n0vDQWRjuqCFU7t58dPQNdeLzgxiW8pPz7O8AqDbyIb5+7l/wuvMYvkLu7HrS77VIlPaqD+DvfPdY7YcDXvCRNFj361Gs9R66euqOIrjrfhQU9wjC4OxylAr1ZHW474sLJvNL5QL3X8FE92ZyJPbA0bTvNwVg8TDi7vLvllL2Bima92OK8vFchgbzPQwc9Re0XvUX7rLxO8ge9Hj9IPJ5mvry1u8E8fFJ+PHP0nzvdGiW8c6Uzu8OS3ztFPIS86ewcPWciKDxWL5Y8yntbvftYJLw90Vm85WVIvBa8BrwcpYI8gGkWO/fDOr1XWR89FmRhOxuzl7xVJt08qEZLPIy0gzxXeu+8NDIkPIHiC7z8uku825j2vH8/DT0kaRu9TSomPascjLxfVVa9CqB+uzobILz8Sg+9puQjvV+WLbywNG27wP11POVlSDw2hja9z/Qavdc/vjwaW3K8tWzVPL2p47wKcRm9ydMAvbpj5jzDoHQ80G2QuksFebw48Ra8adO7OmD41LyOTsm8PG8yPW9ty7wwnbo89ZD4PIIMFbuwg9m8FvQkPV67kLv9+yK7uqQ9Pd7LuLwvSSi8QGZDvfVvqDyQotu8TIenPGgUkzoid7C71v5mu6x+M7xXWZ+8l8wuty3nAL2TThM9/g7evGyJ9bzC+Jm8LMd5vKB5ebz1IDw7SUEqvN3ZzTzHaCA9uA9UPaxGFT3d4oa8gHervNjiPLxsGbk7+9GZPDbVojqctSo964+bvF67kD26uws8zcFYPYJ80buctao82oW7O0tGUL1CF1c8jo+gvI1cXjx0Vke9R7HmPEeQFjxI8j28Jgyau4y0Az1T24M9tVmavZWZ7Dz6F009qDg2PUiCAb1/FYQ9NFN0vf6sNj1Hniu9+MM6PJHjMr0L4VW8qYeivCSKazyagug89d9kPIBplj1n6ok8I9lXvDlqjLwihcU6GJcjvdY/Pr36pxC9y8/tPNvGkjxiegM8PDcUPW9fNj0AkQy9a9jhvK0vxzx68Fa8ZKQMPEqVvLx3iYm8a9hhPFm7xj3KC588aITPu0IJwrxUNHI5Qliuu5y1qjwoH1U8pqPMPMVD8zzjJPG8tnWOPOdJHjtJQao8fHIFu1MTorzn+rE8AuUePPQNgT2QU2+9c/QfPZmQfbxDeX474sJJPKujFjy8R7w8X1XWO8J/pLsmDBo7OEADPUpUZb17+Y+73YphO4cDprzymee7igjMvLVsVb2sfjO9uwZlvVYYSD1tLHS7wT7NvOzxwrvNwVg8x2ggvJ/I5bsF6kS81SyDPXfrsDu5wGc81FtovB6AHz1VdUk9xoTKvBRfu7uJpiQ9YaloPQrABb2M7CE9MLSIPLDEsDxiWnw9BEdGO3+Y+7ziwsk8EAupvX8VhDx1lx4814AVvZfMLj3gbrc7RPssu9IQj7xsWhC9cXLxPJYpMDtGZo07mC5WPE7bOT1uvDe8qfdePFCVBjzVnL+7gjt6vPklYrzCf6Q9OtrIu/7tjTwKfy68kIELvemdMLwZ+Uo8dBXwPJqCaD3hYCK8HN2gvDqUFbxWZzS81z++vP37Ij3CR4a8Zn8pPLIvkT0047c8ucDnPPl9h7z7WCQ9W58cvULI6jziwkm93dnNvJtTgzw1Rd87lSmwOyYt6jr/v3G9AuUePTFc4zuGwk69Iz8Su2uJ9TrpZRK++hfNvOtArzys7m87qYeiPOKB8jxROAW9QglCvbtjZry0K368BPhZvRQQT71pjQg7FFEmPfA3QD3gLWA7FbPNvKFdTz2JpiQ8FcHiO/rW9byKV7i8ikmjvFFwIzsIPte7A1VbPC/6Oz1DmQU9dAfbvImmpLxGTz+9HvBbvXb5RbyDbjw8eVYROSEVCT2nlbe8AFA1vGk1Y7utv4q83pMaPSLGHD342gi8PSBGOjraSL10B1s8lhubOwUBkzylMxC99zP3uyUaLzyYfcK8b3aEvNAV6zzqTkS9gRqqvN8MED2A2VI9jU5JPWCWrbweSIG8IsacvcSbmDyE0GO9CjDCvDfHDb2cfQw9yryyu10BxDwk4pC9jp21vAEKAj0/dNg8jOyhPOdJHr1QlQY91Y4qvb34T73ySvu7+xfNvU7bubuPsHA85whHPDL/YTyFgfe7ZCuXvOQkcTsTrie86Q3tPBazTT7uRVU9GJejvHP0H7yDfFE8+WY5ve4khTxQfjg9x7cMuwTXCb2AuIK9KB/Vu1sP2btzvAG8cB7fOw3m+zzKC5+7lWoHOzhAgz3+Xcq7wP31PGiET7xxyhY9gjv6OzFOzrxo07s8RV3UPG+uojwuSai8r5FuvG+EGTx5r3+7j0C0O3wjmbvD4Us8zXLsPHW4bjuWPGu83eIGPSgf1bsEXhS90QfWu8cnSbuLud88PIaAuURKmTzRB1a9L6tPvaNPujuytpu6ipgPO1E4hTxim9O7nMM/PEyHpzpTE6K8GltyvRRfO7z61vW8AvOzPO1T6rzkJHG7GUi3O6+RbjtM92O9lw0GPcxfsTydJee8ursLPfXf5Du/K5I9cBDKPU7yB72XzC49PhKxPNiTUDz6pxA9/hzzPE7bubzJ0wA7RKxAOiMoRL2lQSW8Jx/VOiokezx43Ru7areRvIkfGj0AGBc9OtpIPf9mA73wN8A8cmTcu8laCz1+9fy8EAupPCGFxTxvdoQ8FaCSvdWOqjym8ri8qTi2vLJnL7pT2wO95PWLPU5L9jx05gq9VDTyPFyRB7xJo1E9LQjRvOYfFT1ScCM89xKnvKBKlDyOnbU8ZUcLvdvGEj0yVwc8pboaPZogQb2cdNM8RBx9u+IRtjzgbre7O31HvR5IAT1Bpxq8Eh7kvKzNn7vgvaM8m9oNvbDEML11SDI9RazAPOYfFTzY+Qo91696PC6YFLzIykc8TEbQO71HPD17MS67nmY+ve+GLLtflq07mzN8vJoSrLvWVoy8mH3CPKUzkDxaXsW8smevPMdooLytlYE87eMtvf6sNr06lBU9c7wBvQCfITwo3v07F6U4PYck9jtBF1c6CO/qvIkfGj3HaKA8KCgOPbMYwzsumJQ81k3TvE7yB7zOs0O9FrwGPf10mLzZI5Q8aNM7vImmJLzZROQ8+IJjPTMIm7tlzhW9Eq6nPLPXa7v4BBI8AjSLPNhS+bz7IAa9riEyPfEpK739w4Q8s6iGPTaGNruS9u28PhKxPMD9db2CO3o9d7OSvDDspjxgR0E8mtFUvFDudLukQaU8/fuiuxG8PL3oq8U6Re2XOx9yCjxmwIC8dbhuvLIvkT32Nwq8rb8KvXWXHr3iUg08RLpVPNuYdj2ZLtY8hwOmu2gUk7zEkl+8WNKUvPJqgruAaZa8YYgYvcGNuTzfhYW7Q7rVvP3DhL2TThO9wY05vG68t7x4LAg9+hfNOyRpGz0MYwQ9KK8YPRQQzzzdaZG8tnWOvGwZOTs9IMa8607EOuuPmzwMFBi8Ybd9vbxeir3z7fk8QiAQPU3pTjzyi1K8zVGcO0Nr6TuuIbK8kvbtu+irRT1g+FQ9AFA1vBDKUb3PFWu9fZPVvFYvlrsmvS08DreWu/rWdbzWTdO8HlaWujNAubwCY/C82UTkvB/ixrueyGU6TxyRu/DHg7yWG5u862H/PLF1xDxHseY7IJNaPE/NJDyjAE69YYgYOzs8cDs4mfG7IsacvPJqAj0+2hI9qQCYPZk3j7zoq8W8aifOPCBE7jskaRu9A0fGOT1hHTw8N5Q8eCwIPf+eoT2QgQu8dZceuw12vzzQFeu5I8acOn/n57w5mfG8DTVoPDKPpTx84sG8WNIUPWnmdr1bD1m8cK6ivQw16Dz5taW8dV+APEkJDL2CDJW8KCiOvVfJWzyQsPC83nxMu0ZmDT2CO3q9s7YbPTrjAbz3M3c9vgEJvSU7f71BZkM8uvOpvL45p7yohyI76DsJvTobIL1WL5Y9ViZdvPsJOLqszZ+8w5JfPQG7FT0xXOO84YHyO5/IZT2X7X68UeBfPOuwazx5VpG7VcQ1PI7ejDtIgoE8ZsCAPXlNWLxbdZO8C9NAuxHTijwW9CS9Ttu5PDjxFj0mLeo7p10ZvGEBjrsHTOy7JIrrvPkl4ryAPw08owBOuoTQY7xxArW8sXXEvG0sdDvsgYa8umNmPXBftjs/w0S9lSmwvGKbUzxycnE8aY0IPXwxrrxUEyK8SAmMO+reB71g+FS9NvbyPDg3yjzXgJW9Zc4VvaxGlT3XP7483Sg6vG68t7uoODa8fdSsPCbLwjtRL8y93Ci6vHr+azyAd6s8mN9pvPCGrLvNoIi8x9jcvLDEsDuMOw69ana6Okz3Yz370Zk7hN74u9IQj7zYk9A8DDVouiMoRLwW9KQ8tWzVPMp7W7tn4VA78IYsPIWB97sj2Vc81Zw/vI1c3ru0Ci68Eby8O6uMSL3tolY9IdQxvQXqxLxNmmI9jOyhPHqv/zybUwO9tMnWPGEBDj0ZSLc8lHicPNkjFDwUoJK8DITUvEw4Oz3Os8M6l+1+vX31fLucdFO8REqZPPQNAbzBjbm7PDcUug3m+7v6pxC93Ci6PDraSL0C5R69qts0vQabWLxHAFO98DfAOx1N3bx9RGm97LBrPS/6uzy2zny9zsFYu+LZl7pXqAu8CP3/vCwWZjwuEYo923emPMGNOT04KbW7cB5fPP0c8zuga+Q71LONPM4CMDwAn6E7P3RYvYe0ubwAn6G8A62AvMTTNrz5taU8tNIPvVSD3rz9a9+6/qw2veamH7yHAyY8G+s1vVFwo7vbPwg9gjv6vGU+0rv/XUo7Re2XvMPhSzu75ZQ7UeBfvGnFpru+AQk8TKj3O4u5XzxIgoE9N4a2PLIvEb200g+8eN2bvfoXTTnhYKK8evDWvK1GFTwbs5e8J25Bu6BKFL08NxS90OYFvdG4aTwkGq+7A0fGvEhBKrvnEQA9V2e0uizHeTzq3gc9ri9Hut58TL2i7RK9ODdKPO6UwTu6Y2Y9iPWQvRJMgDrYUnm9wkeGu2+EGTwcTd2601tovUIX17z70Zk7t60svNNb6DvrYX88NZRLPCoDqzxRv4+96FzZPG9ftrzMrp09yVqLvVYYSD14Oh28uwZlvW9tS7xO8oc6tbvBPF0BxLxHsea8d+uwvAZ6CL3w9ug8UH64vFZnNDxiOSy9MkA5vDy+Hj00U3Q7Hj9IPEDWf70Uz/c8P8NEPbPJVjz51vU6mbAEPZqC6DyeZr4800gtu0IXVzzU66s8fxUEPdqFuzxQL0y7NzfKuensnLpa7gg7lfERvd58zLzs8cI7nQQXvGwZOT2jTzq8iaakvIvCGDxS0ko9VIwXPFpsWr1sWhA9uAG/O9hyALwjuIe89C7Ru3lN2DuIJHa9IRWJvKs9XLwyV4c86Z2wO4LLPTxXWZ+8xyfJvJogwb0VcvY8R54rvZ+6ULyszZ+8wY05Pa+Rbj1bD1k8cCcYPXQH2zsPMIy8Zu/lvBSgEj2rPdw8V6iLPNM6mLwn/gS9r2IJvBuJjrpR4F+8S+QoO71HPL1DyGq7Rk8/PZXawzu5AT85GFbMPFUmXT0QCym9ag0HPekkAj0PNri7VaHfvBJLabxNN529n7s9PBOHgjxJhJ88k9E6vXXbYL3KPS69B6FGPLqkdLwnCr68zA44O3ufSLxWQ3M6leKkvFXQVTwiE5m8x9mWvArhpjvyrjS8CD+TvHb3Cb1mK5M8mwhAPMjKELz8gwa9b+Q7vAoQHbyRXp29dDlNvROHgrxQGRG91YWdvFNh/7zWVqe8aE/KPOmmJb1MZhO9QSJrPHNow72KGBI9oFkKvTIjN70vQcO87LtWuzU0obwXz3A8mCbMvODRUz2h+528oswnvW6glLtG8ZG9ki8nvR9Rlb3CBim9HMJOPLqkdLqLaz+8NgWruzU0oTu6pPQ8sceUPezqTLtDxP68HgIvvNBjyTynITk9kn6NvRyT2DoGA3q8uc8jPYwNUztp8d27RQTfvBSLST2TokS7z18CvWIpLzzAxki8XdQdvBF2mDzVuFq7yMoQOg2UpDwHoca8N3hIvey71rypMqO8BLsLvAS/Ur3pJAK8/FhXvdAwDDyH57e8yruKu5Iz7jtYskk818nEO1ZD87uaNza9bM+KvIrJKz3LjBS82TziPDq8bzspeZQ8L0FDPNiWBz203MU9YOUHvbe+ubwOZS69IhOZuzenvjyh/+S8+kOmPJRE2Du+0Qc8ejDyvEZzNT0wEs27pAwIvM/F/LzoZkW960g5vdHW5rxuQqg8ZJiFveOzx7ylf6W8ft+oOr5Tqzyui3s82GvYPKEu27zcSQW8FfqfPBbLKb1KVSm9qTZqPSa3EL2Nr+Y8KXkUvX6wMjwjV8C80GPJPCobKDwLVEQ9mcQYOsjKED2KmrU87vu2PGFYpbzoN0+6azG+vEsqervtWSO9+NCIPFNduLyUbwc9GvwDvCEXYLsQOn89bkbvvIOyFr3dvCI9Aa7oPME1H70TOBy8P4uWOvpDJj1cMoo9oS5bPILhDDz4pdm8rylIOjhFC70yVvS80dKfvK3pZzzs5oU9ZJiFPEPE/rx6X2g8998OvKvY/brRARa9qlKTPIJndzxGoqu7c2jDvIHFYz2cO3283pHzu6Th2LtRuyS9viQ1vA/jijuLOIK8J+YGvLnPozy/9b68YOWHO54dcTwxsBm9KUqevFY/LL1MmdC88uHxvGU+YL1d1B28nUggvEbxkb1R6po8wteyvMLXsjxNatq8jlH6PKoDrT3Zh4E9YVglvbbx9rvC23k8ZtysPLc8Fj1EYks8XDZRu3LGLz111xm9ab6gPJIz7ryVFeI8relnPbR6Ej0ADFW9GyC7u6V/Jb3fL0A79zK8PP0p4bxBTRo9BgP6PDBwOTzLDji9LF9PvW2kWz0uo/a6HjXsvOdCjjpkaQ89WkEQPJrkCLySL6e8ZG3WPDASTTu+KHy7cFMSPc4/EjxeI4Q8MBLNPMvfwbwJctC8Lp+vPOGiXT1vtcU7UB3YOqX9Ab3QY0k9sucEvYDwEj0afqe78RBovMLXsjuT0To9VdDVO7HHlDwdYBs8vqIRPRClDr3wnUo9RdEhvRZJhr0uo3a9L3C5vFthADx6/bS8IhOZvEomMz1e9A07BWHmvPEMIT0ck9g8I9UcvmU+4Lxi1gE9Z/ycu8zfQTxIEYI8/sv0uu55k7wUi8m79mGyPPN/PrwCeyu9pN0RvJbm67zSIQY98iwRvJIE+DsdMSU9/2nBPVAZkTz75bm8jDzJPG1xHj1wgoi8xyxEvJURGz2DNLo7thymPE8ol7x6/bS8Lp+vvZJ+DT01NKE6nNnJPFNdOLziQCq6Gn6nOzZUkTsmaCo9TPc8PAHZFz39+mo9l4h/vNiazroZseS7kgT4vM1SXzzsu9Y7DPbXu60Y3rqE0oY6WvKpvNKn8LzGCI25+KVZvTU0oTzzUEg9q6VAPW5CKD3Pkr+7BqyFu6H/ZL1m3Cw9rrYqO9t8Qr3s6ky9NMGDPIYa9bsdZGI99g6FvPN/Pj1qDQe9wtcyPQlD2jwNwxq96AjZPL2GaLwTOBy7+2MWPcq7ir03pz4881DIO9xNTLuRXh09QK/Nuf5Fijpg6c68zN9BPFpwBrztjGA+OeeePXFzgrtuQii9IrUsPI6AcL0PtBS9z1+Cum1xHrtO2bC8hNKGvccsRL3ZCSU9uc+jPPLdKryCkqY9/5x+PIn4oTz+RQo9KKxROl4jBLy0ftm8pyE5PZs7fTqyOjK7kn6NvOgI2bu+JDW71iexO8OoPLwMJc68sz55PLR6EjwPB0K92GcRvGgg1DyvKci7QHyQvGqTcTxqjyo8Ga2dvGgcjTlSv+u8bXEePLkxV7pax/o8w6g8u1IKi70lxpa8/sctPa40B71IFUm9bdPRvL7RhzweBvY7ipq1PGU6Gb2yaSi86xlDPJbm6zpxV9m7IUZWvOPiPT2Eo5C8+hQwPHQKV7wpfVu8ZToZvQS/Uj29giE9Pw26PMLbeT23j0O9RnM1PYD0WT1+3yi8YOWHPJ1IID1guli7zIHVO9hr2LzC17K8Aa5oOx41bLtSv+u7/5z+PDnnHj1HRL87NTQhO1E5gbx8mwG8RF6EPByTWD2rAy28OrzvvKIbDrw6ibI8op2xuzSW1LxTLsI8BL9SvfE7F709mpy8xyzEvHXXGT0OmOs67LePOxbP8Dsbnpe8HTGlvKNuOzyQwNA87nkTPX4uD7uui/s8EXpfPErTBTye7vo8lG+HPHBTEj1cMgq96DdPuzTFyrybhpy8INd/PIs4gr2VERs9xEYJPIYa9Tvg0dM8LqP2Ow3H4bzmcYS9+KXZPH+BPD2q1DY8bsAEPMpBdT1rr5q8DsdhvK6Le72PHr270qMpvByPkb0eAq+7wtcyPdxJhTxWjpI8J9tHvUCrBr2JJxi8tH5ZPaPslz3khFG9IrWsvAYuKb0B3d679t+Ou4trP72pZeA76SQCOgEIDj2RXp28ghCDPOg3z7ukbjs9RvERPT5rJjuatRI9NPTAu4ha1TzNTpi7hNbNvLD6Ub0iE5m8ft+oOzoHD7zC23m8kq2DvFkl5zt2eS09/SnhPBUt3Txd1B09ORaVPNalDbykDIg8LUwCvXlfaD2gWYq8xgiNu2/kuz0eBna8O1o8vOt3rz3vzEA897AYPdaFHbwwEs08+7bDvJUV4rx+Lg+9H6TCPD8NuryOTbO72JYHvQPqAT3jRPG7Khuou5XipDw55548ZGkPPBLpNb3oN08808MZPK3lIL3PXwI8NglyPbStz7y85NS800W9PN3A6bx0Cle9+kftu9S0k7seAi88TTtkvIJn9zxqj6q8aCBUu0JRYbw82Bi9joDwvOSE0bxzFRa8wgrwO37j77zLDrg8SiazvPIMIbwfUZU8JspdPT2eY7xepac9y99BPbYcpjxjeBW9oswnvZyq0zxVcmm7kwAxPC/ulbxa9nA9gcXjuzq4KD2Rkdq6V+E/PVNh/zxbEpo7iSvfvCHo6bxUzA49TTedPAA3BLs+PDA8Mlb0vCBCjzuV4iS9HL6HPPewGLzIzte8Myf+u/jQiDyOTTO9gmOwu7TcxbwbU3g7SiazPNIhhjw6iTK9N3SBvYKSprsmbPE8WsOzPMYIDb09mpy8X8UXPTIjN7zkgAo9+XIcvWpgtDryrjQ85IRRvOmmpTz/acE71lpuO7wTyzsPtBQ9SojmOhDUBL0bIDu5TygXvWKni7s0llS9RDPVO4fnN7xm3Ky7reWgvC7OJT28DwS71icxvCUkg73tjOC8MYVqPPxUkLqL6Rs81iexOk03nbx294k8YikvPCB1zLuSALG8wWSVvP/LdDxqDYe74hV7vAA7SzxJiGa92g3svMMmGTxjeJU8SYhmvK8pyLzDqDy8FfofvJyqUzsFjJW8sZievE7ZMD16LKs67OpMvY3aFb2fOZo9nXcWvUZ3fD341E89eiwrvbwPBL2t5aA8TJWJPIwN0zwk+dO8gPCSPISnV7z6kgy8z1+CvLnPIz3su9a6N6c+PebzJzydSCC8JspdPGSYBT32DgW7amC0vJYxiz1pHI08FSkWvZYxCzw22nu8ORaVPCis0bxeIwQ9mwhAvN3v37puQqg881BIvfu2wzz7R228AvmHvCobKDz2ZXm9UEgHvST5U7xtcZ48BV0fvXxwUrwhdUw8OetlPXmOXj3frRy9CuEmPGIt9js21jQ8V+G/vbtCwTxa8qm8JCjKPPFuVDxGIIg7GeBavNiaTjvhc2e83e9fvU1q2jwANwS9gB8JPSITmbw8/E88zxCcPLwTS70H0Dy8dxtBvISnVz3p2eI781BIu5+IALxNNx28DPKQPBbLKbxPqjq87nmTvWDlh7zdwGm7Euk1PVT7hL3LEv+7WxIaPVlQljzijxA9FpwzPAYy8Lqxy1u9/IfNPMuMFD0mbPE76AjZu0aiq7xF0aE8Dza4PL6ikTnj4r28DuMKvRJnEryIVg68998OPBRcUz2A8BI9YYcbO1lQFryUc068RQRfu6X9Ab1FBN88iskrvQz2Vz3gzQy7I4p9vVfhvzwZrR07JuYGuwYycLssW4i6S1lwvOOvgLxDwLc8ghADPR1kYrwyUq08TleNOpuGHD2f6rM6QR6kvOhmRbyDBUS9OeeevM7wKzyYJsw8Lf0bPCwsEr1oT8q8hhp1PMo9Lj1sz4q8pX+lvGRt1ryFRSS9zj8SvdmHAb1QTM48YLpYO9raLjxfxZc8KX3buyEXYDzfL8A7JuYGvWPLwjvCCnC8n7u9PISnVz0V+h88Lp+vPTIjtzwDHb87Kuyxu4SjkLyyuA499pCovByT2LvUtBO9cSjjO4TSBj1kmAU9XnaxvB0xpTza2i68Q8T+O8ywyzxPe8S7qTZqPTIjtztqYDS8+pKMu/Pdqrr+9iO90DTTu1pU3TsPNjg8A5sbPUQvjrwjiv07EhgsvWbcrLy6pPS7DPbXu5Iz7rwyI7e8JrcQu66HNDwWSQa8+KGSOvKutLusdsq8ADeEPIYWrrxqjyq9xBeTPT+LFrxLdZk6eiwrvV52MTotW4i9U104PNFjybvuiBm8KhsovEmEn7zWK/i8J9eAPWreEL0QpQ49CUNavME55rwoqIo9SqQPPYYWLrzzfz68qTKjPDKBIz2SYuQ6mmYsPdd2Fz1Gc7W8SlnwPCBGVj0GYWY9EhxzO1dfHDzjr4A8PmumvLgtEDzV59A8frAyvCbK3bw1NKG8SlWpu6Z/JTy+ohE9jvoFPUyVCT2ui3u86QQSvFOMLj2ziRg8w6i8PKZQr7z6Qya9izgCvByTWL0Wy6m8pn8lvP366rsaTzG7eiyrvWU+4Ly2IO28tu0vPHJEjDtTjC69fRJmPbTcRb2ovwU9kI2TvAHdXj1hi2I8N3hIvf+YtzzGjnc8ckQMPLtCQb2HuEE9OeeePEZ3fDxEXgS9BWHmu0Riy7zEG9q8mmrzuxIccz2pYZm8uqCtPCeImrsPB0I7nNnJPMXoHD0UXNM8/frqu4D6cjxDNdk8Tm33vJkvEr0aJaC8XlKYvfw6nTyTjn88QzXZPIq3FL31wFa99L1avUMv4TwnP2a8YCtMvK69Jjx+BmO8nOptPJDTo7wwiew8BZ0DvTj3wrwuqkA8pGqsu6+lRrwy8Be9wzbXPHLpoLtKvou8k47/vIhxPbwGiB+8kNmbvV89NL2nsAO9zXrlvEu7D7xhEPC8nefxvOA1PjxdZAC91AYUvZDHszykcKS9//X4PGmEPr12IAy9VA6KvN5fhju57NC8f/1uPM136bySrFc9MInsvGp7Sr0FlA88dx2QvbnmWL28O5y9LNoAvS+tPDxW6jm8L5XcvKZAZLzAdYM8pjfwPM2JUT3MmD08rNgCvTtGDrwJSfM8VfwhPWpvWr3P2xi8uebYu5OO/zzV+qM7j+KPuwlG97w632I9//5sO+p5TLw3D6M81uJDvMyYPbx0y8g8z9sYvNb3p7pgK8w8nWOBvKKLgL3qkSy9RCD1vMJLO7zKthW9EM+pvKNzIL3iBf47neF5vEuvn7yP35M8WTONu5k4BrqaGq68wks7vX4S07zz1bo8LNSIvFXzrTwQ2J071ACcPDnr0jxW6jk9iHe1PU5z77zEJ+u8lBMDvdfW07v2Ho48AWMcvBQGlTx+Fc88hn2tPAdzO7zhHV49tw2lvOpw2LvpiDi9wzPbvI/oB71qeE68h3oxPDCJbL3/+/C8ircUvZQQhztYwPE8X0aoPDni3jwxjOi8JzB6u0aNmDwHc7u8ENIlvUQpaT3Flwq9S6mnPOp8yLzMlUE8qKqLvFbeyTxz8hQ8G/5TPROQ/TuRu8M8wlGzPJSabzz0wNa8kb4/vOpz1LxV/CG7pHYcvcyVwTwc8mO8KKCZPMybObwFnYO8SruPPdX0q7xV+SW9hoYhPRG6RTylW0C93l8GvSctfjstvyQ9TnBzPfH5Cjy55tg7wVcrvXTCVDsmSNq8WMBxvBQGFb0ZNAw9fgZjPbF++jueYIW8LrwoPAq8DrzorAi6uP44vTcPozzhF2Y8/wdhO02RR7wuqkA9HexrvNX6I7ztzg88OAMzvSN7ljscDUA8z+GQvJG1SzukcKQ8/DGpvGmTKrlX1dU8D9sZvV5bjLsQzC29xZESvZk1Cr3EJG+9MIlsPC2/pDqP5Yu9zJg9PLJ+erwx/Ac96KkMvVk2CT1V+aU9u0eMPV5SGL1W3kk8iU1tO4B2gjwUBpU8CUZ3PE5td7vBYB89wzDfvHL1ED0aFjS9sIH2PH0eQz03DKc8JkVeveApzjvplCi9HlwLvJsLwjzYwe+8I4EOPf0fwTwTk/k7/DQlveEgWr18PBs9YomDuTCJ7LyuvSY8mwJOPRzvZzwiigK8h27BvFfGaTz+E9E66ZGsuxG9wTz0xk68rreuPOevhDyc9t28pG2ovBOfaTzpiDg9fDMnPIFnFrw61u68mxE6PYaGIb38NyE9diAMPCzXBL3LpC08mhQ2PdbiQzxph7o8sYfuOxQPCT2iiAS9MvYPPTH/A72KvYy99cBWvU1/37wmOW48OeXavP/7cLzCRUM9RpkIu/tDEb24Fhk9znRtPLcTHb7V/R+9h3oxPe3Oj7yt0oo8wks7PAlM7zoiioK8fSG/O3/68jzrbVy8QlA1vRofqLwTkP28BoKnPOILdrwTmXE8VAgSPWE0wD3XyuM7mTiGvA/tAT2FkhE9J0jau0umK7xz2jQ9LrC4OyY57jyyfvq8h3G9vC6ztL2UAZs8X0kkOy+tPDyHiR28MIZwPB5fhzxhGWQ6Nh4PPZDQpzzophA9V8xhPU6I07zzz8I7c9e4vHWn+LwUBhU8Z66GPFfGabs8Q5K8txYZOpDKr7yy8ZW8YC5Iu34MW72mPeg843gZPWA3PD3UCRA9/RzFO8Fap7sSomW9HlAbPS68KLvMoTG9iGVNveEsSjy56VS8CF5XPWmKtrx/AOs8bcqVvBDSJT1Abg09EcA9vaY96DxpjbK8kqBnvK66qjxUDoq9LciYPGp4zjykXjw7894uPaKLALzEG3u8M/AXvLGHbjx0xdA6/wFpPlX5pT10zkS86ZQovXS/2Dzy8Ja9c9HAvNbfR7x00UC8aJyevHL1kL18Mye9mDuCPTrTcjzzz0K8VfmlPSN7ljyc/FU8Qy/hPBKiZbxEJm28G/5TvSVaQj38Oh286Y4wuiRmsrzP54i8QVmpOq3AIjykXjy7fS2vvMM50zvEJ+s71uU/vcQwX7x8QhM9TYhTu/TAVrzgNb484DLCu+twWLxNfOM64wX+vDtGjrj8Mak8FQAdPAWaBzsd43e9nt79vK6xNj2GiR29JVFOvXLmpLzqdlA8nAVKuY/lizyxe/68sJBivJ5UlTqmQGS8kNOjOoaGIbz/BGU9MIbwvDgANzxNi8+8wkXDuwhtQ71omSI9SrsPPfS63jxs2YE98+0avdblPz3rZGg9ENWhO2p4zjwvuSw9HlaTuM16ZTweXAu8j+iHu9bfxztz1Dy8j+KPOy3CoDyHa8U8aZOqPOKKATzqeUy8uPs8vMM8TzwmRV49Nw8jvIWeAb0IZM+7Eq5VPAWXi7tplqa8r5nWPBOQfb2GjBm9f/ryvLw+mLzqgkA962FsPGpvWrtLoy+7o3+Qu0M+Tbw4Bi88JkXePPLkJj2fVBU8cvKUPBzyYzxGkBS7f/3uPPWubjzV/R89oosAvZsLwrue3n28RCB1vB5QmzxUDoq9VfAxPU52azv3GxI8RoqcPAaIn7t9G8e8VuFFva63Lj0kciI9HuN3O99KIjxEKWk91RKEvId0Obxjhoe9QzjVO/0iPbz/8ny9Bn+ru0JTMT10zkQ8OeXaO/0oNb31q/K8gHCKvPLnIj2FkpE9rckWvaikkzz0vVq9QV+hu5G1y7tXyeW8gHYCPA/tATzNhtU8B2fLuxQSBT07TAa8h3oxPWN6Fz31q3I7h3oxPWIfXLzMmD09RCZtO0aQlLw4AzO9XWEEvcQk77pGihy8m/9RvFQOirws1Ig89OEqPdkukzzW5b88nlEZPZG7Qzxjepe8bNOJPFfJ5bx+BmM9r5ZavLLuGbw59MY91uJDvCc/ZrzDP8s9I36SOwaFIz3CSD851AMYPYlQ6bxjfZO8p7ADvUQp6TybCMa8pHacvC62sLzV+qM8r5xSvHYjiDz3FZo8diYEPSVXRjvCUTO9bNMJPP4otbp9LS+9H1mPPH/9bj2SoOe84ocFvXTOxDx2Iwi9HA1AvRoTOLz/9fi8zYDdPBKx0byc7ek8X0ygvBG6RbxpkC68neT1vGilEr0ZNAy94TU+ulX5pTwnM/a8iUH9PEyUQ7yHbsE7uuxQPF9AMD07TAa9FAOZPYduQT1z4Cw8QztRvaVJ2Lz0yco8E5Z1uSimETyeYIW8JU5SPYlB/buHd7U8zJs5ummWJj0lTtI89bfiO/Lqnrzt0Qu9kp3rPLng4DxV8y2830emO8q2Fb1gN7w7rsYavdi4+ztBX6G86n/EvBG6xTvoo5Q86nxIvfcbEryJSvG843uVPFg8gTwZOoQ8wG8LvWN6F71V/x07aKsKPa3PjjyGjBm9fDMnvIq6ED3BXaM7BnwvPZsIRr066NY7BoifPJzz4TpdZAA9znHxOxOc7TtNkcc7O0yGPDH/g7r+E1G8LrA4u3w5n7zDOVO8QztRvWmTKjyJSnG8o3yUPPYnAr1jfRM9SsSDuyVO0rsurTy9JGayvHTCVDxnroY8YCtMPFQFljtgLsi8/DSlPDGDdDy3DaU7rrSyvB3sa7yy8RU8iF/Vu9UShLy7Sog82SsXvY/lC70wpMg74ClOPEQa/bsjfpK8D+qFvF9GKLsaJaC8EqvZvCN4mrw8PRo9JGYyO9fQW71/AOu8OAOzPS2/JL0mNnI9wkJHPS6wOL1hHOC8dMvIPB3g+zzEJ+s8/RxFvBUAnTyeUZm8oosAvFbqubtz0UA9OBIfvGp+Rj1z1zi7O0+Cu1QRBjxQ2po8mhouvLCT3rwLuZI9xZeKOyOBDr1YvfU8Z7GCvIq3FDz7SQm9wzbXPBG0zbuonpu7iUF9PFfVVb0P6oU8miaevG1adryRu0M8lBCHvfPVOr0RyTG89LrePIlQab0Qzyk6aJmiPB3pbz3+HEU91AYUvRHAPTpX1dU79MxGuqVVyL3CVK88D+qFvIB2Aj3fRyY8AXUEPAlA/7zomqC6fDajvOAmUr0d6e88EbpFvcukLT1BVq28QztRPIhZ3TwurTy9h4mdu6Y9aLx0wlQ9QWKdu1bqubpeWwy8k5H7uqRktDveVpK8i7GcvDECgL3Ls5m8dcjMOwhbWz0vp0S9j+gHvK63Lj10v9g8QV8hPZQElzxOc287Oe5OvVXttTwvm9Q8RCzlO9DYHLx8NqO8mw4+PFbquTwZNAy8bFd6vCzaAL2IU+W7WSqZvFkqGTwHcD891AkQPXTORDpUCBK8wWObuyVawrqurrq82ToDPR5cC71CTTk9fi0vvE/phr0c8uM8eBScOzgAN7utyZY7D+ERPGqBQrxYw+28wz/LPBKr2TyKwAi89qX6PCN+ErwTnO08cu+Yu/XMRrziCHq8L6FMvf4WTbwTk3m7Qz7NPAWRE7xjB/y8kbXLvOER7jx8Myc9j+IPvUuvH71Yw+28z+oEvfTD0rz8QJW8BoWjPOOBjbsaGTA82MdnPGilkrtplqY819ZTuycw+rwFnYM4VAWWvId3NT2aFzI9GiWgOt5Qmj0kY7Y8+0yFPMaOFrulT9C8fSe3PNm+c7xiDXS8X0aovEFolbsTk/k86Z0cPSY28rybC0I7RZOQvP/+7Dv/ENU8fSozvKzVhj3XymM8c9c4vH4P1zoGfys8pkBkvSct/rt2KYA82Lh7PLxBFD0y8Je8dMtIOn0eQ71P6Qa91uu3u3W25Lvz2zK8hoOlvBHAvTv+Fs08HebzOsWXCrhsY2q8nPDlvNUSBDwQ2B28TnPvvEu4kz1Oanu8RCB1PLnj3Lyy8ZU7oouAvUaQFDs7SYq8nmCFvMFXq7pV9qm8RB35vI/rgz3FkRK99aj2PE5267v0ycq8Mf+DPQdwvzxgMcS7iHE9vNk0izxV+SU9nudxPPPPQj0cDUA9B2fLvAhb2zwGgic9kqZfPfw6nbuGgyW7sYfuO5kvErxqfkY7bVp2PAdzO7z/+/C8c9HAvEuvn7ujgow8lA0LPZz23TwTmfE8ut3kvJg7gruQxzM9Ygp4u2ilEj3y6h68iFzZvLCQYrxYunm9bFd6vFX5JbwfWY+8LrmsO63Mkr2IXNm8aYS+vGIfXDwUEoW8889CvUMsZT3W4kO9/hPRPCzagLwc9V89dap0PLngYL3+Fs08utfsPCc/Zjwvp0S9V9VVPZz52TwHcL87I3gavVkzjbwVCRG9rreuvHTLyLtrZmY9rcAivP0ivTy5BLE7+0+BO63GmjwmNvI819BbPEWZCL2jVOY88a0nPTgvXbw6yNa8Vq2GvPXqjb1Qer08xvmPPEAGEz3e2ue8ADfivO0ddb295587RCy9uwlKqLxi+4Y8R3SWvEkYgzx/vbG8wmozPIq45TrP/uC8bZnRO3nzmrwCfzu81YOgvHIpBD3LK4M7UxSNvG5JB70bHJK8wHN6uowMiL2oe2a9ZYkNvY5TC73+nei7vEOzvDHCr7xaL8Q8ww4gvFLNCb0I99s77nGXvc8LAD1nw/G8fsgkvUD6ybwCf7u8FunIvPSYlztrUfi7wSSGPciRs7zUjhO97cxUO+Rqmr0lI4+8eJ94vfaBW72Y8H874S4KvHaqa7yFkxG8rGesux5YIj2zgzk9Zs7kumRCCr2Q32W8hEyOPPYxET01oVa9FP8uvBu9fLx5lrE8+xGOOtbVlrtebQC9wgx0PUtUk7suKba8SbrDPMoqLb3F+Lm81yeNPAZT77u11oW8q8O/PN6gg7xoFj69HwcCvciRs7o0ULa8pZ0VvZDf5Tt3CYG9eUURPMVJWjsXMSK8bF6XPAo/NTzU3zM6jAwIvfYxEb0xcQ+8fYBLPcgzdLwpAww9zmeTussqLTxHxow8m5YYPeawxz1KUz28t8CfvLvw5rwRZjU8AOcXPVCGhrzOWnQ8lBzMPH0wAT2Q6li8QkIjPRcxory78Ga8eedRvZDfZbyLaJu8RDiGvDZGGTxLVJO964anvBAI9rx7Op45owQcPd38ljx0cIc8oMgLvWYsJLwUro48mv0evYkhGL2zMpk9ELdVvT8Rhjz1Oy69GOABOw7ZhLyMAL886O2tugmbSD2Jcji7lBzMPGM1azwiQxI8MwjdvMdLhry78Oa8kjIyvAAsb73uHyE8QzewvNuqoDxVt6O8V5bKO938lj14/be8HwcCvTp3Nj2fxt88OYB9vUi6Q7yZ8H+8I9BCPVMUjT2gyIs7/+VBPPSYF70HsS69vUMzvczB+rw500m9yx+6PIlyOD2WtcW7GSYvvIWTETy/fm08s48CPfAJO705gim8dgkBPEYhyjttSDG9UCkdPeCJxztb07A51206ugA3Yr1w4So8etxePAcCz7w+YdC8xQQDPVreI72Bsr68NzrQPBts3Lxdav67URz+vJ6BiLwZJq+8+cqKvUgL5LsXMaK8xu1GvVIeKj0WmCi75F37O7V4xrwe+uI8XNSGPdxMYT3OZxO92WLHvIwAvzzaqPQ7nSJzPKg2D7wxZHC7QU2WPAIuG72pe+a6vThAvdv7wDxHxgw9PrQcPMrXYL3eoIM8isWEvSvszzzbqHQ8DYcOu5KDUj0B55c8kY7FO+jtLb3Ikgm926ogPSUjDzu+i4y81YMgOzT96Tx651G72cAGPGnFnbylnZU8F4JCPCOKFTz16o08rq3ZPAvjoTwA5xc9cidYvU0917zbqHQ8IixWPdxM4TyZ8P86VFlkvAvhdT2BA9+8AIouPMSyDDzBdSa9LTL9PJj78jyurdk8XmwqPTJZfbtrr7c8UxM3vTxsQz1dDuu8eKGkvUD6Sb3aBrS8vYnguwuQVbysZ6y8iM5LPfOjCjzoVQq9oLvsPN6ggzyPSBi+gbK+vL7cLD3IQBM8SGmjOpLJf7onXsm7Wjo3vAKAkbwj3Is8Q9nwvE+FML0xHsO74S20u0+FMD0muty8c3qkPNKX2jynNbk9PxGGOye8iLxHZ/c7rqJmPeel1LzPrcC8Uh8APaB1v7wzZpw83pS6vOGAALyvXY+9YLSDPBwFVjulVhI8N+mvO5TLqzw7eAw8HgeCvF8QFz2rwz86GSYvPX0kOD2WwLi78lEUu9YnjbuWBua8pu3fOzVRjDy2HQm8Yp6dO0SI0DzG7ca8c8vEvG1TpLot44i9mpRsPGdyUT1hnHE9og45PK4AJjzxXAe8JXQvvZURWT1vjl48RX8JvSFDkr1c1IY8P/pJuyybLz3Wyc28so4sPZYG5rx+yKQ8Vq0GPDoZd71dDms80+qmvOUOB7yb84E8f2yRveMXzjyalOy7Wt6jO3Vkvjy3wJ+8F9Piuj60nLyPpYG8bFOkPMrMbT7wq3s9+Mk0vPoP4rz+QVU8L9gVvbD1MrwI99s7PrQcvDRQtrzwCTu99zC7vHzR6zxb07A8UHq9vLfAnz0r+Bg8FzEiPTLDBT1YopM81nitvIwMCL3+8DQ9lBzMu5hZsjtWW5C8q3KfO61oAjz06OE7QUD3uyJ9drx651E721dUPIOc2Ly3y5K82/vAuiDxm7yG2T67Gxu8PEqkXTxUCMS81yeNvI+kq7yG2T48c8vEPJmf3zx+05c805mGvcp7zbxoZ948KqaivOelVL1CQqO86zUHPbYdCTxtSLE7j0bsvCR/orw2RcM71dTAOr/RObub8wE5c8waPZqUbLz+knU7YBCXvE2mCb1/Ghu9LZGSPU3stjyd3Rs9SgIdPfq/F71dvUo9KAI2PSJ9drxUCRo83J8tPdXgibwyWf07Qk0WvR/8jrv9TMg7OtNJO/JP6DsuelY8JBbwPACKrjwnvAg8cHj4uy7WabyUy6s8Its1PTWW47uETI67QZ+MuycLfTy5qrm7EBUVvTnfkjwxHxm9j0bsvPnKCrzwCpG87xQuPdFSg7v+8DQ8puLsO/EJu7s6yFY8XhuKu9xODT34ybQ856eAPBeNtTyu/vk8/FiRPE2blj1mfcQ8DdguPXj+Dbwaypu8lhFZvLD1Mrwr7M87IOR8vUqkXT0IpxE8gWGePN2UOj0xHxk89d3uvLE7YL3S6Po8/Fc7PedVijujYYU8SAtkPWJL0bzT6ia77rZuvWgiB7weqpi8PMqCvSycBbx7jBQ9PRAwuETbHLxy1w29YAWkvN+Jx7xcyD09ggWLPfwGG72BVP+7d7eKveO7Ort8L6u7wBfnvEuZajvDX0C7arqqPGuvN7yPmTg87CjoPJ3cRT0jffY8xKXtPFeWyjxKAHE83+eGPBDCyLxebQC9VlAdvfAJu7yrcp+7RNucO1Apnbw608m8r5dzPGuvtzydi6U8vThAPDWWYz38qNs8sfWyvHQTnjz7BO+8ef6NPdQw1Ltu7J264hfOPfG4GrxgBaS8zCCQPWGn5Du9OMA8/AYbO1swmjvoScG8ja8evQvjobzIM3Q8HL+ovJA9pbwFvCG9OTEJPTf0IjucOoW8+m2hPJyLpTvflRA8BRmLvd42ezrMFEe8mZ9fvbkGTbxzbzE9I9s1uwVp1bwyZPA8fXXYvHnyRL0Ip5G8KaT2vECeNjyhGoK7jAyIPP6SdTtW8l07McIvvNoGNL0dqcK8Y5F+vGgWPrp63F485Azbu5znuDyDS7i8E1DPu69RRjzcny094nNhvLR4xj1WrDA9NzrQOpe2G700/em8QJ42PP6daDx+auU7An+7vCgNKT3CGRO8ZTcXPcJqszvEYJY9c3qkPFLAajrp4rq8lmSlu0oCHT2Z/Z48AtBbPKmIhTwayhu9kY8bPHDhqr1a3iM8l1kyune3Cr2qzrI7QPrJPE+FML2WZCW87cHhvKNhhTxXQ3489eqNunrcXryPpCu9UMvdPCZpvDzEX8A83UHuvFzUBrzHSwY9RNucu8twWjzInCa9QU2WO7Ycs7wh5ii8B2COPDoZdzyisHm8oGrMO7LfTD1tSDG7v9E5uz6n/TvuH6G8MwqJvI9GbL0SrOI7arsAvfptIbou1mm8G24IPX8ZxTuIH2w7dHCHvSw/HL1cdx09mf2ePLHrlbt4/o08ggULvdKX2jsKm8i7xQQDu0SI0LxNmxa8ZYkNPaEZrLweBwK8aGfeO9Ya7rx3/Te9I4oVPA7NOzq9OMC3Od+SvHDiAL3hIkG82/vAvFeWSrzMFMe8Zn3EPBbe1Tyt/nm9VlAdvYbZvj2iD4+8+g9iPT5hUD2PSBi9lHqLvIwLMj3PrcA8XQ5rPOntrbyNr567fXXYvKacP7wK+Qc8KfdCPQmbyDwK7Og8zrizOlQTt7xCQqO41dRAPKOnMjwFGYu8PlZdPZ8kHzzQUS29zlp0PBkmr7xO7Yw886MKvKRJ8zxC8YI7e9FrO5PJ/zz7YwS9/UzIO6AZLLs600m8YafkPNXUQL34yTS9Z9AQvI+ZuDwJSii95WoavCQhYzxu95A9bo5ePRsbvLzrhqc8V0UqvEdn9zsFadW9An87PRJQz7z6bSE9kzOIOhEKojxKXrC8nIslvL/dAr3r10e98LiauoOc2Lyzgzk9veefvKMEnDsI91s8kd9lvVB6vbxP1lC9tm1TPScYnDwMNRg8bFMkugUYNbtXlso8rRYMvbr72bxNjne9YLSDvNWDILqC+Gs9xklavfhr9bs2RcM8HqoYPEgLZD2o1/k8O71jvAQYNb2LaJs8ADfiPG2ZUTwbYWm8c8wavSKI6bo7eIw8Jw2pvBSujryNov+8s9TZvFqA5LyP9Us7hEBFPSV0Lz00rEm89jERPLlX7byHKl87XWwqvKlwczshQry8VVsQPXHWt7xSHiq9suo/PB1WdjxajYM7PGzDvO5lzrpJXjC9yYbAvBcxIj1N7DY9RX+JOuf4oDwVOmm8f3cEPVApnbuFk5G81I4TvB2pQr1PMuS7ytkMOvptoTwjffY6Itu1vMIMdLxKXjA8hZMRPbXJZrzBdSa9ndHSvA3YrrxIaSO8NKzJvMIkhjzCa4m8jAuyPOniujxfYg067MxUPIVAxTtjNeu8jQEVOz6n/btaL8Q8BmuBPCcNKTzEVM09acUdPZR6izy8QzO8RSy9vDHCLz1Z3He8rBYMvMzBerxOkKM8GmxcPZbBjjzn9vS8rf55u2M167sq98K72ByaPNFRLbziLoo9k9YePX9sETxwg+s52ga0PPoP4ryjBBw8yJymPKNhBTpgtAM9xu3GvFsk0Tp3rJe8yDP0OREKorrCDHS8TpCju/OXwbzGmnq8irhlO6NU5rzQ8+275rBHu3MR8rxC8YI6LeMIvRsbPL1zb7E99eqNvOb2dDsW6Ui92hGnvBSuDr0thUk7b45evAqbyDty1428tb7zvMRUTb0Uo5s9vUMzvZDq2DxgBaQ6FTppvPeDBz2yPQw8i2dFOwwpz7wqPfC7efMaPeLGrTs+YVA9vtwsPSdqkryPpCs9YfowPQj3Wz2H5Qc8amkKPSycBT3mVDS8AJWhO2d+Gj10E567BccUvf6flLzCarO8eKEkO/XqDTxP1lA9EBUVPF3JE7v0mJe8mFoIPYnOSzxZO408Fo01vXnyxLzbWQC8JSOPvbdiYLyDSzi7hnv/vAj32zuFk5G9GsqbvP9BVb3yojQ8cIPrO6+X87zG7UY9G78ovcUEAz0FGQu84iMXPZw4WTyurVm9p0ECPfnKijseB4I8tCcmvU2Odz3rNYc72A/7ukLxAr3elLo8aCGxvGL7Br2ADtK8EWY1PQxAi7y8lNM8nOe4PCqmIjw3RUM8Ds27PHf9Nz1mfcS8pQLsPBCh2zwwKra8eQfFvHUSbbzLokW9pU8xO4z/fDwOaVU9NkG1vOorIL0qpEq9SDntPI+apzx/jbC8uJSuO9ti97tEOE278dMyvD75grx4gnm6BmcVvQqK3DsJ4+m8hp4LvQc897zKETI8KI5rPF2qKDyxDsO8XRmVvAnj6TyJgyi9qJ0WvQrXobweB+C8pxjLvCqkSr3qmoy82pldPY3ztDmMTEK9VEVEPG1Is73hV888A8zqvBTvQL0rxnG8nN6EvL3v+7w3xoA89EO/vNW6ZD1XAha85t26vNYdCTzFrW29gaOPOq60lb1GAWe96IStvAgOCLwSlZO62xgFvEiADjo1Hw49CMFCPXBeErvY5iK9j03ivAf4qDxxBQU9xRxavdWYPTxdiIG8kwo0PQPM6rxU1lc89wxZveHAFz1uSDO8w+TTuyCMKz16KWy9hcbWu8GsTTwaBkC88EKfPGlpujxEpzm9p6leve6brDtGSIg8ijZjvEIAR71Urow6KWxEvU6/2DsWkI+8WcsvvB5OAbsKaLW7xRxaPNti97xnoKC8WEZkvP++gj3BhAI8iX2EPPRDPzwqEzc8pL4dPH7gGT0ka6Q9tQ/jOZcL1Lx/r1e8s2jwu99BcDzw0zK6SuBfPXCiYDu5zDQ8JPYTvUpPTD0MfhS6iI/wO2cPDb3cVi+9s68RvWMwFLzueYU8KoIjvY2EyLypKIa8UQ2+uxV0jDw20sg8GPBgPLclQr1sMtQ7g45QPNR2Fr2wWwi9eXYxPSqCI73v3/o7g2wpvXUGJTxbciI8+w35PGBRGzyDZgU9Wn5qu0SnubpxJyw9odkAvUQQAj2be+C8R/WevKRb+bzs9Dm99WVmPBjOubwrKRY9771TvRLZYTy64pM9vTzBvPxwHbwJwUI8onA4PDN4m73KgJ670CixvGfzCT1JnJE9Pf+mPMCKJj1/r1e92QhKOzJiPL3hV88619DDuqeBkzzbqRg90mC3u3EFBb0e3xS6Vn1KvGOfgLzjZwq9N1eUPDKEY7zn/+E8TF+HOhg9pj1YJD28yWq/PKM5UrzhwBe9oxcrOwirY7yZIbO8KI5rvBg3Aj2X6ay7GM45veDGu7vCwiy9j5qnvKVxWL0SJqe7WsWLvApoNb1PRCQ7dQalO4K/kr3FHFo85BQhvEyHUrpkuwO9nziyPDibYj12SvM8FXSMvAbyBDsHPHe8p/YjOrnuWzwtYRy8axCtO+VYbzws3NC8sX2vO+jzGb3LC448t7bVPDgsdj3fsFy9oQHMOxg9Jr19xBY9PFi0OlF8qrwU78C5uDshPRhfzboRMu+8c/DFvJ/r7DwXrJI8IlXFvDvHoLmSFvw8JqOqPGVMF7z1PRu9MCSSPJ84MjyZska7hTXDPADhqTpttx86LuwLPWPBJ73YVQ+9PiFOPDSaQj3deNY8XTs8vARRtruFH2Q9c84eu3c+qzszeBs8Ere6vGS7Az0rmII9pxhLPFKe0TxQ9169LuwLPHPOHr2cDHQ9unOnvEiAjr3vLEC9Vew2vIFWyrwU78A7uwS7vHLaZj1AMYk7n6ceva0vSj00msI8oWoUvgwPKL25XUg8HnZMPKtmMLt8P0s7Wjocu/mzy7wVdAy9FXQMPXBeErtKcXO9uuKTPCe5ibzMSTg9eeWdPOQ2SDseVKU8IK5SPcvEbLzpyHu8w+RTOuVYbz0s/vc76BVBvCbn+Dxjwac8mS17PK3A3btP1Te8MoRjvbO1tbt7Kew7VuaSPPiRpDpG3z+7UVqDOqOoPryhI/M8ZEyXPJH0VD3SzyM9OY8avNY/MDtpRxO8WNd3vam5mbpTtLA8YYkhvH/8HD14gnk8l3pAvW9eEr2Rhei7UVqDvbDsmzxkdOI8vKstPXEFhTufRHo8FIDUPMEbOr2w7Bs94BMBPXlUiry8q629qSgGvLmqDb2VsSY9QiLuvP206zyakJ+8DA8oPSbneLsDO1e90xPyPF/udjwQEEi8R/WePEB7e70In5s8pDlSumCV6TvT8co7jRXcOdsYBbt9xJY82XGSOv7KyjuW9XQ+TF+HPT8VBjwMDyi9LoPDPPKczLyLKpu8CePpOm0yVLzgE4G8JjQ+vTs2Db2X6aw8RU6sPPGG7Tv5RF89vBqavDxYND1ZqYg9o6i+PE2dMbzn/+G8eK2XPQDbhbx5VIq7GVOFvBw+RjutL8o8CDAvvLttA70OadW8cbg/PXmYWLqrGeu8haSvvHl2sTsz5wc8dZe4vARz3bu9PME7YCZ9vL5eaDvnkHW9Wg/+PDDd8DvTWpM7cKLguoZXar0ixDE8tDoBPcyiRbyhahS9Of4GvEeGsjoEc108XYgBPbXnF7335A28lasCPQIZsDzK7wo842cKvJVk4Tyi9YO8WVzDuyCuUrzwZMa8adimvDmPmj0vCI88x5uBPZMKND3x9Vm9amOWPPWsBz28q628X+KuPGR0Yj1ku4O8R/WevGOfgLwAUJa8v3RHPNzFm7xfc0I8XCVdPOzSkjvQKLE8DkGKPCz+97w1sKG8jWIhPEIibj1jUjs8AOGpvCj917rSzyO88LGLvNoeKb1+COU8xqGlvDSawruQlAO9F6wSvSAdvzyL3VU7JPw3PWcPDbx7Key7PHpbvLyrLTvzvnM9iYMoPV0ZFTruChk9enCNOyy6qblwM3Q9NAmvPJvIpTw6QtW8s0ZJvM+Bvrw0Ca+8g9uVvPySRL1B3h89CMHCuj3/pjtVWyM9drlfPEW9GL2zaHC9GVMFPdqNlTwgrtI7CtehPC4UVz0Nmhe9yhGyvMebgb3cxRu9Vew2PARzXb1OUGw7jWIhPWUFdjzUByq84KQUvTmPGr3vTue86BVBPRjwYD07xyC9yEiYu8CKJr0UEWi801oTvFBmS7wsbeS74cCXvNvRY7urZrC8TPCaO2EatbtHhjI9tyVCPViNBbsFBPE8P6aZOo7tkDzc50K8lvX0vHa537ulcdi7RKc5OhrkmLyWPJa8t7ZVvL3v+zxoU1s9wRWWu00MHj1axQs9Z6AgPaHfpLwiVcU73DQIvBoGQD2xDsO7yR36vF07vD2eFou8FFiJvG/vpT21oPa8EiCDPFSuDLwZgfQ7nbPmvBB/NL0uNv68nQCsu7ldSLqWx4W7RnDTvFINPj3Fre28/CPYvJ2z5jzP6oY8fx5EPDIVd71dqig9OJvivB5UJb1Zy688zEk4PaFwOL2FE5y89lmePBTNGbwzeBu9mSEzvMvE7LzlnxC75ioAvdAGirudkb88/spKO3PwRbtxuD+9v5buu3jx5by15xc8BMAiPOiQdTz5s0s87RbhvJH0VLzjZwo9BFG2PG5Cj7zgxjs9OApPPcuixbxGAee6HnZMvcYQkrvRStg7bFT7POmm1LwQEEg9GF9NOpfprLsdwxG8xqElPRa42jyyJKK8773TvKPK5by/4zM9pL6dPD3/pjuPK7s8xqGlvE0MnrtCAEe9CCqLOlDPE70abwi9+3zlvPX2+TzvTme934iRvGOfAL2N8zQ8ve/7ujvHIL0+kLq8te27vGAE1rvR22s86BVBO43zNL3dxRu8TKn5PNAosbxglWk8Jud4vFp+6jwK+Ug8KP3XvC6DwzxTI528tyXCPKEBTDrwQp87wPkSPHPOnrusDSM7g/28vMkderwqxnG9FpYzPK/4Y73LxOy5nhaLvI7tkDyQJZc8FIDUOyT2k70OQYq7oWoUPMLCrLxf4q47vwXbO+l+ibw0Tf07RBCCPNznQr3sYya90AYKvUB7ezwOQQq7707nO0tlq7t0Eu28m3tgvOL+wbzOzoM8LqVqPPBkxrzpN+i8z4E+vCAdPzwy0Si8Bw4IvXWXOD044gM9JlZlvWOfgL3nkHU93v0hvIdLIj3w0zI9DA8ovWrSAr0YyBU9nhaLPHjxZTy8iYa6PFi0PHM9C7zjj9W8Jfw3vGjk7jzdUAs9LbSFPax8Dzz26rG7l3rAPFT4/jzzLeA75ioAvYxMQj2dAKw8sTBqvX8exLr0Q7+8Zj38OzLRqDugWlk9CtchvTIV9zvz6RE8+CI4vVo6HDyTBJC5mSGzvODGOzwCiJy9uX9vvDQJrzuFxtY82h4pvPzfCb3/7PE8ciGIPW77bT0s/ne82FUPPd5sDjrn/+G8BQTxvUShFT0yhOO8l3rAPNfQw7tCAMc8h23JvHa5XzwWJ8e7J7mJvaGS3zun9qO7gaMPPQ76aDrdCeo8GnUsu141mL29Xui8+jgXvQM7Vz14yZo8pL6dO2AE1jxIqFm8JI3LPCHQ+bzJaj+8dxyEvdLPI71qi+G8HlQlPdHba73oYoa7OtNoOhQRaDyPTWI9U7SwO3uMEDtEOM28err/uynxDz2+UiA8RBYmvP60a7zpN2i7jRXcPA2alzuv1ry8pzryvAQvD7w44oO83Zr9O0otJTzejjU9Up7RvKOovrt55R291j8wvIaeC71o5G47r9CYuvySRD00mkK8mdRtvf/scTzdeNY8LuwLvU17irwYX008Zfmtu0xfh7wz54c9Ti5FPe0WYbx0gdm4AjvXO9MTcj3bQNC86IQtvI6mbzxvXhK9BhpQvPtUmrwobMQ8fea9PDfop7srKRa8s7U1PGX5LTwInxu875WIvEZICL1sCgm8OHk7O+fXlrx7HaQ8UfdePFCIcjxK4F88NLxpvMN1Zz3ohK08GD2mvGXXBj0biwu8TQwePf7KSj0HDog8lbGmPbwaGj0gHT88BHNdvDAkEr2fOLI8s2jwvBZJbrzbQNC8UIjyPOpNRz2N8zQ8excAPIUTHDv6OBe8bbefvCo13jwNU3Y86GKGPTgs9jwAA1E8D10NvNFK2Du7/hY8vlKgurl/bzz2WZ48KNUMPQEleL3HLJU8m1MVvRB/tLx1BqW8D4t8vAHhKbyjF6u8JRIXO+bdujzRbP+72QhKPDPzTzx5djG8fuCZPK2etrzoFUG9SPWePaVx2Lr7DXk7i7WKvSz+d7xA6me9/JJEPEZICDvUdha7MssEvUJvs7sQeRC9wT1hPd6ONb0SIAM8huj9vB6Yc7wZU4U9bmraPEQWJrzhV8+86IQtPJ5E+jxU1lc8XCVdPaeBEz0HPHc7PrJhPf1wHT17rjc94Ma7PFsDtjzDvAg7YfiNuggqCzv19vk8/74CvBynjrzoFUG8IK7SvM1DFDxp+s08mdRtPbQ6ATyR0q278wWVvIU1Qz0bufq8r9AYPbwaGr3LxOy8v3RHPNWSGb3qplQ7WTqcvCCGB73LosW7PpA6vUBZ1Lzumyy9EiYnPYXG1jyJFDy9s7U1PV5dY7zZCEo8q2YwO5cLVD1SnlE7HByfvM5flzyRhWi7HD5GPDogrryxfS89GD2mPAgwrzpQPgC9yzNZu+z0ubwo1Yy8lUI6vYsqmz1B3h+820BQu+Nnijvhefa7TPa+PKep3jw+ihY96abUPO4HZDwhVz09yHioPNkLBr0gSA29ZWV1vZlCLjw0w5o8n6YtPZ/Kzbxz+zK9HmJ+vaq27DqjVU08fTVSvDGDuzq++8m8flnyu+8mg7u9ZYk8JlF9u3/n0by3vko8NYoKvPqo4ryFb/G787ECPSEzHTtgAfa79WOCvD39ubzHw8i6NgtbvQuH4LzZxWa7JZccvQ/rXzxxEwO9rK6LvE1x+DxA09m8HBo+vUXsuDzlXoS9Wwe2PGZdlLyHLgC9VJSGvDBfm7z4q0K9qtWLPKMKLbwCt4A9+PbivDeZOr2gyk2894eiva32S71WRoa9fIDyvAdmIDwwzlu5ciKzvGddlLryIyM8Wi42Pc/ZxzzGnyg8E84Ova32S70uHNw7qyAsPXeGMr0B3oC8+6ABvK3Sqzweb426AwIhvOQbRbxo8HQ9RBO5vAkYILxCFpk8dEbTvDiZurwTdt87FnN/O5lpLjtA09k89NUivTWcGr111LK8xRHJOjGDu7zcqJW7tOgqPCIwPb39xKE8DMqfPIPKALwj5Zw785LjO5sbrjsv9Vu8w4NpuObNxLxhIBU9MREbvIVIcT17xhE8yt+HPMctiDwW3T48FQS/Pfw2Qrt3hjK94gyVvLGoSznanmY9MVw7vPP8Ij2ucps8p0oMPdGLx7x5FJI90fUGvG8t9DuLOlC8ZXIEvbOl67zl9MS75fTEPOL6hL3Lype7ZPa0vDOA27t+P4E794eivBu9DT0ALIG9FAQ/vIs6UDwXTP+8asn0vIHxAD3UYWe98m5DPAEFAb0Pao88+e6BvMrfBz1CFpm86PHkPGVldTuGZxA9L0D8PCrpC7xGENk8dzsSPD9kGb18nxG9KG08vUxNWDw1nJq8CzzAPPQgQ73qWES8alq0PQxgYL3Zeka9tk+KPBAcjzxNcXi9xg7pvBN2X7wkvhw9ES6fPfx5gTtMJlg8qLlMvRBVn7y7Jaq8vWWJvMSiCL1hRLW7hUjxPO+8wzojn3053bolOz76Wbz6geI7JOUcvXGU07wGI+G7pgfNPLm76rxdlZU9HL2NvEReWbve3kW8QWE5vXZQgjzXfSa7tpqqvDoAmrwdb408dzsSvRw+3rw0Drs7XFJWvbVX67wX2l69ihYwvRrX/rs9eYm97YYTu3XUsji++0m9Vx8GPRtBvrsqtfy67ePDvF/d1Tt3KYI9qbZsPELQ+by16Kq8GR2ePFuqhTyeW408ltvOvBCgPzo5Szo9K9QbvSIwPTz+6EG9HJYNPUMTOT3CFCk9pVJtvbUwazzR9Ya9IjC9PBUEP7sCtwC98m5DPVAJBz27lGo8/wzivHXUMr2ucps7GGuePIFOsTuiVc27z2cnPXLsgjzhkEW7lmwOvbtJyjzgbCW8fniRvHBwMz2cP847M9gKPJ0YTj1sDLS8O8eJu5STjjzB8Ig9edsBPfiEwrrMcui8+e6BPUrzB72h7u05AVAhvCS+HL2dzS09Qt2IPcYO6Twt0Ts9eapSvPX5wjzcBUa9by10PZhprrzcqJW9TE3YvAICIbsNox872DIGvX9REb1OSng96fuTOwmu4Ly2mio9mmZOPE2QF75hRDW9ASkhPOubA7zbz5U7UeIGOtrkhbwk5Zw80UAnvVoutjyIizC9JS1dvczcJ7uxXSs8De6/PLBLm7usREw8uklKPegQhD1ronQ740JFvShtPDzB0ek8X26VO4GZUbzoIhQ9WMfWPM9nJzutQWy8UhuXvES2iL1fRxW773EjPBLo/zvudAM8cv6SPFOud7wsm4u8K8KLPMPbGLyH+nA9LhzcPKQKrTr+UoG8xINpvIkZkLy5Exo8Qzo5POhbJLoleP084EWlutSABr3Exqi8FacOvCkDfb3CO6k8KQP9PJCeTz1tvrM7IBT+PL5G6jq/UBm9WHw2Pb6JqTywXau8uZdKvWvWgzzb9hW9FQQ/PXIis7yXRY48Ca7gvB1i/jz3hyK8KSIcvYYh8TwfzL27br6zN2NBVbt3hrK93OGlPAEpoTs+IVq8es7yPF5Pdrx4hjI7vNcpvH2fkTumlSw9y5loPiz4uz0DAqG84R4lveTQJD3qo+S8i6xwPN9IBTxz+zK8C/GfvBrX/rzVy6a8dR9TPI8Q8DyvhCs7PkV6PWx7dDzxERM9j3ovPbwiyrtwcDO85IUEvfT5Qj1uLXQ82OxmPDfAuruwSxs8Jl6MPJ3NrbwTzg481RZHu6i5zDy5cMo8+V1CvCm4XDy9Iko8vZ4ZvR6BHbxBBIk8CRigPBw+Xr1sMFS7CT+gvEy3Fzxga7U86g0kPBglfzuzM0u9B40gO4bWUD3Yoca7zEvovAqu4LiZQi48p0oMPN8C5jxoF/W80z3Hu98hBbqciu66yZxIvMuZaLpJm1g9SXc4PPScErx+WXI8C4fgvOc3hLsS6H89VW2GPVVthj3dUGY93HdmvLToKjyPei895nAUvLPECjzQskc9aqL0vIfW0Lzr5qO84DOVvPDg4zuhWC08CjzAuodAED3GVAg9RMgYPKOg7Tuoucy654Kkubz+qTvl9EQ8+xIiPJpmTrzo8WQ7whSpPDxIWjuTUE+9BdjAPK6rq7zMS+i8fcOxu1ajNr0/Hno994eivFn4BbsS6P87qrbsvKR57TuHLgA8G2VePQ9Dj7plhJS8UdV3PL+tyTySCA89U82WPasgLD1VPNc8wK1JvOubgzwbZd68dLASvP4M4jsK34+9QPd5PUXsuDwcGr460S4XPfx5Abw2L/u8wqrpvCv7mzzoymQ8xFxpu34OUrtOSng90ohnvZlpLrzf3kW9ArcAuwC/YTxfAXa9U653uwPbID3tCsQ7ihYwPG1hg7wNyh88NFnbvAkGkD2nlaw9IjC9vI7sT7xgDoW94FqVuxyw/jqxJJu8y8qXu2LAhLsk5Zw8GY8+PNd9pjkfSI05FQQ/PZw/Tj2wXas8uEwqPQ9Vn7seO348FZIevK6rK71pWjS9xp8ovFy8lbxDhdk8XLyVvES2iLyrj2w8nzQNPSPTjLwlCb08XwH2PGEgFT0GjaC80z3HOlNj17ylUm09V1iWu6xEzLs/iLk9nWPuvHV3grx6ODI9g0tRvMd4KD2HsjC8TzAHPWL5FL1zuHO9Ep3fvIbWUDtg3dW84/ckPH010rzIeKg85NAkvB3zvbyr+as8BKIQPIzLD7x3HHO96+ajPFsHNjwrH7y8K0Y8PG2+Mz0diX698ZXDuw/r3zvf3kW9aww0vTV9+7xcUta8nluNPBtl3rzzwxK7LWd8vE5KeDplZfW7eYNSvNSAhrxyIrO8O7p6u3yNAT10ngI7zQBIPKduLLzaCCY8Iu19PBv2nTyTBS+9vx9qPT+vOT2zDyu8BP9AvU1xeL0Y/v48gFERvNehxjyzpeu83KgVPRwavrvfAuY8ueJqvG8tdD18NdI79GvjvMyRB70Q61+9Ktz8PKyuizwTzg46Iu19uuHb5bwrwos8PWx6ve9xozsfWp28CzzAvNTyJrzfbKU8qtWLvCcq/TvLJ8i8SpvYuy10C7w0pPs8kpvvvO6YI726JSo8M4DbO7+JqTt6zvK8fwvyvNl6Rj1Nfoe7O7r6O1CNN712rTK8RqGYPFyddrwcGj48rWjsvLVX6zvU8iY8EsF/PP89kTzExqi8X5I1u+IMFbzgRaW7I8b9u3WJEj1IDfm86CKUPLzXKb1B9/k8cAb0O9oIJjx8jYG9xDhJu3V3gjxXozY8ScLYO2EgFbs/ZBm98bnjO+y/IzybGy68FAS/vAQmwbxkZfU6DMqfvLe+yrqGsrC7cAZ0vXw1UrpsDDS8ckmzPOgQBDvh22W8w9sYvfbSQrxKBZg8KN/cvDM1u7wZaD49130mvNwFRr2G/VC9MRGbPRUo37w0Mls92/YVPeTQJL2ase685fTEPDfk2rpyIjM8zKMXu+emxDuygUu8P0V6O8rxl7zAF4k9TlcHPehbJD0y6ho9sTarvM/ZRzroWyQ9rvZLPF129rwGI2E9XlwFPcuZaL0bZV67a6J0vC7ROzzW78a87S7kPAC/Ybxd4LW7SXe4uwquYL0db408ASkhvM4k6LyyJBs9YmhVvRbdPr0iDJ26R1OYO5UpTzrlP2W8F7Y+PeONZT3CFCk8zZEHvLyMiTz8eYE6gJlROU//172M76+5ZB21vHLFAj0keH08aTYUPIfW0LzHw8g7dlACvZw/Tr3RQKe8s6XrvJObbz3Jdci7wRcJPGP5FDpcg4W9IBR+vPgVgrx86jE9/uhBPHrOcrt1iRI8IH49vDlyujzwlUM7pVLtu8V7iL0BBQG9c56CvEt0WD0OfB+9RhDZuwexwDxIQQi8B2YgPU5plzph54S8dxzzvKHubbvNAMg8iK9QPPqoYjyX2867NnUaPHLsAj1Jwti7+V3CvNU657xfbpW8hACxvFI/t7u2mio96qPkO8D4abxILBg7ZGX1vM0AyLvc4aW82h0WPOaCJL0Wkp49IVe9vBrkDb1oJAQ9OpZaPDfAOrx0ngI85YUEPFZgd7k2wLq8Qfd5PIVVAD3EtJi8iK9QPIhksDsczx09WXy2vIeLsLliaNW8YvkUveTQpLsAv+G8e7QBPbN+azw7uvq8Ep3fvBzPnTyifE08hkhxvOQbRb0jDB29EwcfvEnCWLzw4OO8Ji3dPMrAaDyAwNE8znwXuyPTDLxmSwQ9M+oaPKW8LLwpEIw7qtULvCS+HD00Mls9nKmNPBS5nj1ij1U8pOOsPPqoYrxkHbW8FlkOPUhBCL2+nhm70z3HvLlMKrs9/Tk9KkY8PcNfybzExqi8SnTYvOBFpbyJGZA8Sik4vdvhpT1ZCpY8MoBbvNKv5zt6FBI87oaTvI0TULsS6P87fTVSPEOp+TxBYTm9vP6pO/sSIr3w4GO8JQk9vNOIZ7zkG0W86sKDvNUWxzuciu482FamOroTmrxUGLe7jhPQvFfu1jtWFde7CS2QvJTerj0fzL28M7EKPG3lM71qyfS8Ep1fvSV4/TwR9Y68tAxLPEQ3Wbw/iLk8fsMxvSr7mz2ajU69eAICPSdwHLuuh4u8130mPfzroTpuYQM8+PbivEQ32bl0kXM94GylO2JEtT0zy/s83inmvB2oHT262gk8dzsSPfBKI7xwcDM9iYjQuhdMf7vaCKa7EKC/PMW0GL2IZDC90ojnvMQRyTxkjHU8geTxO1ZGBj37EiI7kelvPEl3ODyDlnE81PKmvHoUErw1Mlu8JJ/9u4B1sTsdF968CRigOjA4G72816m8b+LTvPdOEr0uHNy7LPg7vTFcOzwyXLs8l0WOvQgtkD30RGO83JYFPVoutryEADE9lmyOu5W3Lr1Yx1Y8Oku6u2tXVLw5Szq9hv1QPXyAcroxEZu7NFnbvJBTr7ujv4y88DgTvYbW0DsCmGE9tsGqvDgVCj0dPt47WQoWO7zXKTxgkrU8bTDUPGbPtLomH3c8qE4WPBi2nLwRy8S8otyyvCjnsL0qGGY94lqxPJrApTxEChi9uzBavTIRSr3ETGc8mTIUO81M0by+cYi8MB/hvOCZfbyjBmK8blAHu4PH4rtEfAa9AXcHPKnOkLzrYaG8o7mJvElXZbyAlq08YzsLvYcPl7xIUN86Yl60u3vOfr1lwgu9ZLuFvJXHNr2AudY7zVNXvFVJuLyd/+Y8kA8BvZTcU71nyRE88m+ivbkizjl9nT69q9wcvdVo3rzeRZ+8Eu7tvPmn0rrnzBS9c5ZOPZvOsTwAkyq99qfdu0ZCU72144y8kySTvT8KI71DUGo8PgMdO6YbdLtjXjS842i9OqzjIj1oiFg9pBTuu58U+bx1iDe9cdeHPCwKzzyrKfW8cWWZvGKB3bwr4B892IT2O67qKL2Tuaq8PUJpPfKSS7yHCBG9KtkZu/doEb26TH07ZjuAPKHcMjqHpK488dOEPB/LI70Oryy9eogsvDD8tzrRTEa76W84vVVJuDyg1Sy9MNkOPDsRNLusDVI8PTvjuqr4vzw/JkY8De54umqWZL34dh28yVroPN9oyDvAN1U8pfhKvNt2Xzw/CiM8pDkEPeJ92j3NU1e8IMujvMc+0LyT1c057NMPPZqkAr002YM8yje/O+RvQzyrBsy8sVUGPZurCL3jaD28mAZ4ve2u+bziWrG8p8CEvMs+xTwl7kG9WV7KvPtoBr00/Cy7cKRlPGWd9TyX1UI8jc5SvbopVLxqwoA8R/wAvfmn0rzKhoQ9V3ptvZTcUzx5ncm8yz7FPEERKb2l+Mo8LtIIulRlWz0u9bE8qRvpO43HzLvdPhk72DeeOz4fwDzMaHS8F6+WuzFSA73ji+Y8f7JQvGVXIz0fLwa8o8CPPD4DnT2lQAq9b51fvXBXjTxjiGM7UJGCuyYf97xMQki8EtJKPbljhz1spHA6KfW8ubT/L70Q4GG8MOAUvUMmu7wHmqW87ZJWPL0iQz1Xn4M78YvFvCDSKTvpbzg86WgyO3y5Yb2z1YA8LANJPJrHKzzlU6C8Bb1OPXuPsrxSV8+6p+OtO8f/A73qfUS7f6REu2KB3byIx9e8STS8PJv4YLyBc4S77GinukpXZb3GYXk7dHorveW+CL3TWtK8JD0HvVk7obwUvS27X62Evar4Pz0oEeC8GsQoPA3ueLzlb8M8Eq+hPWlzOz2g1ay8FaGKvC3LAj2v1Ys8CtlmO1pJrTq9IsM6HLYRPf7vBr2OHZi3murUvMgGCj32izo9eoisPHGIQr3Nmxa96ItbvSbgKj2TJJM7JBHrvJKyJD2Rx0E8DKEgO5zVt7wGmiW9f/oPPRqoBTtweja8kcdBPBSahDzNMK47tSJZuwF3B7wR52c8QvwLu8AULLtLO0I9Xl6/PGJlujyBudY6+7Veu96pATwexJ08lepfPWOI4zphNIU69FqFvBchhT1xgby8g6Q5PPyZO7xy3o28BwyUPHTAfT3OWl08zZsWPUWDjDtcVzk9K+CfvW3emD2RFge9laSNvYKdM72tFFi6EL24vCnLDbyOHZi6a14ePZO5KryrBsy8fvOJPc5aXTzqTA++6EWJvO6ZXDwF2fE7+qdSPNA+ujxEV3C86ZlnvDTZgztELUE9KdITvTFZCb3Nmxa9OucEvQ3ueDwgPZI7qeqzPB7EHT2IpK49S15rPF9sS7wxJmc8WkKnPGiP3rxFGCS9KhhmPY+yL7u+IkM8ThEIvFGYiDszYI+9tSnfPNJTTDpFCpg8F68WOzM7+TsuGFu5qvi/O6jHCj3hUyu7xRQhPVYmDz0r/MK7JyZ9PA+2sjrpTA+9BwyUPFFQSTsz9aa6AIykvOJ9Wjwj57u8krKkvNAil7xwpGW9uPgePZXqXz33vO88sQ3HPGdCBrvMaHQ7lepfva0NUj3gmX08C71DvcsbHL0RxD677W+tvAm2PT3IRda8DpMJPWS7Bb0S0ko9/eiAPLNcDL3iYbc803Z1vU5Q1DyL6vU7WDuhvfyZO7wtWRQ9aGw1vKvcnDzfi/G8eYGmu107Fr3roO08dKTaPDAmZz6Q6mo932/OO9GUBb0D0ms88adovf2Zu7p0gbE7aZZkvHayZrwayy69gLlWvRrLrjzOU9c88tqKvA6TiT38mbs8zg2FPBrLrjwHExq7W2zWvL0+Zr1GHyo9r/+6O+iSYbvFFKG8wj7bvHJzJTwgRJg78rV0vCdSmbw7Ldc8VR8JPXqBJr0/CqO5tw28PPGEPzy/MM+6KfW8PIqWlzwyO/m8rNycumlstbyo4y08VlA+PLPVgDzGPtC785JLvStLiLy6TH08gLnWvL34E72QubW8ZVejPOOEYDyFucs805sLvYOrPzxlnfU7PDvjO67xLj3Xm4C7kOPkPHe57DyIqzS8Wy2KvL0iw7xTOyy9d96CPTAfYT1aQic9FL0tPbhjB729IkM9jc7SPLLxI70r/MI8mqQCPS4Y27w14Am7n84mva7OhbxRUEm8jOr1uhfZRTweA+o856f+PEMtwbsk9Ue8laSNvOhFibw/dQs8OiZRPedaprv/iyS8dmUOuxfZRTqd3L27zCIivdFFwDz6ynu7cHo2vRLubbw37pW8qvi/OwvEybzfkne7xDBEPGxeHrl6iKw8+mEAPJarkzxAgxc9Tzu3ufp9ozy+THI7laSNPGY7gD03O+48Dq8sPWyk8LzeRZ+8uSLOvNxavLxwpOU7bGWkvQ31fj2g+FU8cmwfumRQHT3RlIU7bpbZvLoGK71hVy48krIkPW5zMDyDgRA9XHpiPQmMDr1+84m7pyJ6vQgTGry7MNq8pdWhvXFek7uNiAA9ugYrPAKhtjzUPq+82kUqvPnK+7sCmjA968yJPfnvEb2e6km8R2V8vV9z0btrq/a8ndw9vUhJWbtxiEK806IRPdxaPLwoCtq6hZaiPDsRND1Lioc8TQqCPPO19DzrfUQ8qkcFuehosrvaIgG9229ZvbXjDLzQaOk7+mEAPddTwbyZMhS9uXETOjoKLj33vG88owZiPNOikTyRx8E8P3wRvc8bkTxRUMm8wPGCPYOrv7sYA3W7qOOtPYqWFzyapIK84loxPaH4Vbv/9gw9whuyup7Amjy2DTy8G9K0vKtOC724FMI7sjf2vLsw2jodKAC9hw+XPYTV7rvyvHq8/G+MPOp9xDsRqJs8t+qSvQa9TjyrIu87yVpovRngy7zFMEQ983YovT4mxrzDKT47gXMEvZ4yCb28FDe8Jh/3vCjutjrai3w7Xq2EO+52s7xwVw08bY9TvKkbab3GPlC7NhE/vRGoGzu76ge7K/xCvMB/FD1bbNa892iRPKgNXTyz1YA9aNCXuyID3z3eRR89zUzRPMYbJ71/+g+8ugYrPIW5yzxoSQw78YS/PIq5QD3kb0O8seodPZKypLuKAYA9JPXHPNZ2arxpc7u85ZLsvBL18zyHgQU9wH8UPFQYgzwcthG96UwPNtdvZL2M6nU83WHCvEcmML1pUBK82WjTPF6Ibr3AWn47/X2YukwfH7uRpJg8ufiePPuuWL08GLq8Fb2tuz9XezyuzoW7CKErvbfxmLuAstA8zz46u3TsmTzdPpm8+osvPISIFrp8stu8FL0tO9GUhTuxBkE8Py3MutcwGD09O2M6whuyvBvStDvoRQm9Da+su+ZaJr2a6tQ6kRaHvAbg97rlkuy8/aBBPd4+GTx+gRu78+iWvVpJrbwZ59E8s2OSPN9vTrxwXpM8xRQhvV07lrpFgww8ERMEO/uu2LwTKJa8tWqYO2lzu7tpczu58KDiPBMoFr1jQhG9zCIiPDEKxDy/U/i8Eq+hu8R4A70RxL68uv8kO4TOaLwS9fO8CwwJPURQ6jyqFGO915sAvX+ryj1XV0S8Kx9sPZncSD3lUyC9zjAuvdVFtTwIqDE8xHgDu2RQHb1QXmA7dYg3vA+aD7qaDX68OR9LPVFQyTyoBtc8wFr+PH56lbyMwEY8F/XoPJ3/5jy/TPK8GQN1PanqMz3roG29ZFCdPBy2Eb1nXik82VpHveNovTzudjM8s/ipPJ3/5jxlVyO9Xl6/PCzgH7sn57C8cKTlOwHZfL0rA8m8CKixvIekrjyw/7q8m/FavJrHKz3aPiQ9OucEPfnDdbyq1RY8i8DGu4SIFjrGPtC9bF4ePITO6LwcthE7irnAPJ7qSTy38Ri5EctEvHeWw7xaiHm9tzDlPILA3LzGPlA9IuC1vKtOizx2iDc7nPhgvddTQbyfzia8bY9TPVBs7Dx6iCy8NQOzPPFonLuo4y08hZYivAjS4LvhN4i9RyYwvFk7obwHfoI9RTtNvfKSS7tQZeY8bUmBu0eRmDznhNU758yUvGKI47wAk6o8ySkzPWpXmDtXV8S8F/XovD78ljoGvU48eoEmvLzxDb1qesG8SjS8uyVEDb145Qi86XY+PSLgNT1UQrI8G68LvURXcLxrq3a7tBtTvXurVbwFtki9NNkDPSPEErwwLW29I8QSPdM3qTtoZS8815uAu2lzOzvwoGK8oPhVvMcirTzuby09PBg6vMgirTtZrY+8K+AfPWlzu7wIqDG8H8ujOkI7WL1UgX68EcS+PHBeEz0S0ko8l/jrvIOBkLzAMM880UXAPOuEyrw/UPW8HuDAvAX3gbyZBni84HbUvKrVFj3JMDm7d3OaO7oiTjywIuS8R2X8PJoNfjua4068JuCqPMcbp7wQvbg6g4EQPT98ET31hLQ9+67YPJ65lDzumVy7tilfvC/ZDj3kmfK8xVPtu+dapryfx6A7JUQNPVM0pjyj6r68GLYcPb4GoDxsXh681H37O7BOALv56Is93TcTPZ7AGr2kzhs8De54PFM7rDtGXna78WGWOxXg1jz4kkA9AXcHvRf87ju/eA69L/w3uybgqrwkGHG8+u8RvEWDDL3Rb288G68LPTEtbbz/yvC8Z14pvCMDX7wYvaK5aWy1vLs34LxBGC89jMdMvRKvobq+/xm9/Jk7vC1ZFL2e6sk8cdcHvQGasLpWbOG78YvFvJ3jw7zYhHY90UXAvFVJuDx0VwK9ERMEvWfQFz1hNAU9uuOBPInVY7x1VwI8MS1tPHWkWjsFvU49yhQWPaUb9Duw3JE8ukx9PSfnMD2axyu7jR0YPL4pyTypG+m84L6TObYNPD2n/1C8NB/WvEgDB7z5fSM7JUSNPCG2Bj0N0lU9q04LPQ62sjxnXqm7wVp+Pcwiojxflvq7RhEevRqoBb1Wc2c6C71Dvb5xiLu9Gz089afdvF2B6Lu7DTG9bpbZvBXEM70m4Ko8vkVsvJT//Lyq+D89JD2HvST1xzwW0r87oNUsPUA00jzMKSi9vinJPJOWAbxjbEA8JfVHvTomUT0V51w8v0xyvKob6Tow4JQ83jeTvKpHhbzxhD+8nw1zPWJlurxqwgA8bpZZO9IwIztOV9o8vRQ3PdM3qTz2izo8RQlOPGPYQj1Via272DqtvMflCL07F6m9P3qoukm9nzyyKEE8S4cEvdUJY71fTyy9hQq3vIUKt7oeDAq96z5/PNWxFrw6aeY7ZC8kvUH9L7t34Tg8rvYLvXsYkjwQ04e82ZJ5vFvsrLxUWOM8lFnMO2k7wrwcxay84PocvEzvVD0GoBS9xTE3vfUJortscpu852OrvL1xx7yyq8i8ZC+kPI+kD71PTEW9okCRPEoqlL1schs9wfrdvMIVFb0n4gy9mP0Zu3xw3rzl2/87qhaUuU53gD1Yu2K8zknzvKDO+Dy5rIa8bO8Tvfnkdb0FX0a9IHrpOyuXSbz5Z/28w5icOxvrwzzM2xM9IqszPS4gYLwzLP68HyKdvKSzlDzkgzM9EdOHvVbgDrzqEtm8OX6OPLJU57y9yCg81rclvUQv5Txhlgm8zR3Nuw+iPT1tR+C8SxqQvHe2fbs98vw7ANAguhi6+TwDWTe9o8MYvc84BL1p6QQ9/XKwvCVa4bz8Rgo7VmMWvVpDDjuDrUY8kxeTPMVyhTwrw288Gr+du7fMjjpcGFO960OjvCNvCT3smoQ8hIcvPdOs8jvHY+w6ZjUzPdj+gjzO97U9L8l+vHuWdby4Txa9PPGRvJtwHT3B+l28mJAluxJWD7zo5jI93UbLvCAoLD2OTS69zyPcOq1zBL08mjC9bZ5BvbIoQbxMhwQ7e+1WvZ1F4rySUz29vh+KvGoVKz2VdAO8A1k3PTsXqbyQEQS7Q6zdOULXmLyvYwC9vRrmPI7KJr2Sqh48kqoevTKYh7zvddi8aOTgPMYLoDylIAk9DPMPvGY1Mz1dMwo96SeBvMxuH7wigPi8yI6nu8d4FL0i7AG9OOZevHBNbzyDBCg9Sb0fvU0KjDxlNbM9olYkvXEn2Lzh6pg8FDHjO74fCr3WtyW9+TvXuJrtFT1O9WM9OgGWPG71ojp34Ti9DR82vDOumrysHCM8L/pIvRKCNTw7bgo9zENkPD7hDb2ba3k7DsjUO07JvTzHeBS9oDoCvHoTbrruIxs8OsBHvGpBUT2iViQ8bXIbO4g7AT1hp3i9H6WkOPGmIjs77G2636M7vXwZfbyKFlW9CoCMvAm8NjwJvDa9yubzvKBQFb0AJwK8WOadvI72TL24ZSk86LoMvKDOeL0pFEI986yxu5ll6rwYaLy8SGa+O5sZPD2fS3E9qb8yveYMyrxyAcE7BR0NPXcN3zy9yCi9/O+ovFppJT0cxSy96T2Uu254Kr3K5nM9XJtaPbfiIT0A/Ea9ljO1uq6fKr2CKj88oNOcPEUJzrx6wTA9zzgEPXUz9rr3uE+8SKcMvT1ehjzwe2c8+laOO02dlzrIuk08VAamPEVgLztr2QC94VLpPPtsoTo8Q8+85QY7PaWIWbu2i8A8HJpxOpaKFr0P4wu8qLmjvOYMSj0T2ZY8PUneO/xB5rwiVFI9ho0+vCQuuzzvzLm7kPzbvOXgozxRfQ89RFqgPLrCGTwGi+y8vXFHPRRGi73IES89kPxbvdzvab0BUyi9Q0SNOPB757stndi7d7b9vAB5Pz13u6E7HJrxvL1xRz2gOgK8XUkdvsiOp7wAPZU8vbIVPEoVbDx3Dd88OD3Au8qUNr1EL+W8cE3vPDIrk7ydnEO9vBrmOpClejxRfvo8DyVFvHc4Gj2On+s8TneAPfhhbjyE3pC8U4MevPOsMT1A0Yk8r05YPG1MBD2I5J88RIZGPPvDAr13uyE8R+O2vYuuhD2j2au7WFMSPG9NbzuMxBe8KeibPJsZPDxnYVk9EM5jPN9MWj1cxhU9vh8KvUyY87qDW4m8P8zlvELBBbzFMbe77fLQO0rDrjxedUO8ymn7vCg62bwwO5c8MgBYvUB6KDyZ/Rk9aA8cPdXdvDzsb0k7WLtiPEbjtry9yCg9waigPGxcCL1uyme9iUEQPP1Hdbop6Bs9G0IlvSxFDD16lvW8WBJEPYSHr7pA/a+9t+IhPXKq37v7mMe8+DvXPPeMqb1h/tm8OuuCuuRdHLtwpNA8oKJSvKOCSjwLa2S8mP0ZPFvsLD1982U+a5gyPYWHLztigWG8MFEqPUNEDb1O9eM6M9rAvBmUYjzdydK8XBhTveUGu7yuSMk8pojZPIg7Ab2OTS49o65wPFFS1Dy8GmY9sNFfuyEorLw/zOW81QljPezGqjz13uY76aoIvRsX6juCKr88d+E4vCc6WTtw+7G7+GFuPF62kTyPpA+97g0IPNahEryveRO9ctWavM8j3LyLQns8sKU5vXtEuDs+4Q29Vgw1PP2e1jxcSZ087MYqvMCooL2w/Jq8dbBuPD9kFby6PxK9hASovMiOpzwhfw29/iFePQ/jC73ZZtO84tVwPJn9GT1edUM8gegFvMGoID3hJkM8mGXqu8KCCbyyAqq7DJyuvLk/kj16E+48sX8iPNC7Cz0/9yC9ej4pPb3IqDzlBru7uegwPIQwTjwcHA69N/uGvHWw7rxmdoG8cE1vPPwbz7zUL3q87R0MPTKpdjxsxNg8cSfYPKe0f7suS5u8R+O2OuUyYT3NdK68zve1PCH9cLyEBKi8wwBtPOotEL3N8SY9LUb3vDxv9bsnDjM8aWfovNZgxDzGBvw8kBGEOiNvCTvHjie9VmMWvdiRDjwOHzY9BYXdPE+Nk7tge9I82ZL5PDMA2DrEcoU9AHk/PaL/wjwbQiW9gPn0O0GAt7wZv528DsjUO/IpKr1VXnI9pbMUvL1xR7tMGhA93vSNvC/6yLwvziK9HByOPFF9Dz3O97W8fBn9PO0djD17lnW8WuysuzvAR71mdoG8Omnmu9n+gr1PjRO8Ho8Ru9EogDwCwBy7tdySvGVbSr0LGae8MtQxPfi4Tz0Bf86894wpvG2eQb3hJkO8l/eKvDxDT72hqGG7YKaNvHAnWDuB6IW8ZTUzPJh6kjx458c5ANAgPd3v6TxUWOM8cND2u810rjzxKSq8n/kzvJGUC7yjrnC8GRFbO5cNHjwJvLa8zyPcvIrUGz2JZ6c8d7shvLqsBj3CV848+GYSPYoWVTvGtL48v0uwvFdNgz1GNXS814zqOisa0T0DWTe9g1sJvLfioT334wq8D/mevOm797pLmHM8L3dBvUDRib3eyVK775CPPMnmczrsmoQ7CDkvvQYIZTz7mEe8Cby2u3J+ObtBKdY7SRSBvM96Pb3ccQY9G+vDvOLqGL0qwoQ8iRBGPZItprzqQyO9fQgOPTIVgLxm3lG8ypS2ujTaQLxdHuI8RFogvG3fD7yd3ZG8odMcvPXzjrvcbOK8M5gHveUyYbz34wo7eKUOPV8jBjyN8L086uxBO9uXHbz3Ncg8KcKEPZwZvDsiAhU9uTruPBsXarx+8+W7f6EovQsDFD2S1kQ8ChmnutoUFrxs8H49Ls4iO7CluTwCAta73GxiPZpqDj0/zGW8CROYvA8lRbwLRc081g4HvGTYQry9GmY8P3oovdXdPDz0hhq9LvS5PGrq77yliFm8tLFXvID59DumC2G9HyKdO5o/U7wVTJo7F7mOvD9kFbmoEAW9xNpVvdUJ4zwwUSo9q4MIPYsW1by9Gua8uJFPPbJUZ7wtRve6Kb3gvHNYorqr69g8VFhjvAcOdLxyWCK8mtcCPJnocTyk2Ss9qb8yPG/Pi7xzr4O8mJAlumH+2bzZ/gK9EqjMPJjnBr2/JRk8X08svZD82zwFM6C7CsJFPMAPhr2VdIO8F45TOfXeZrvlBjs8CoAMvNg6Lbz8xO28AX/OvOi6DL3jV426x2NsuAIC1ruTLSa81C96vFjQCrwtRne9FDHjuwKrdDvrGOg8f3uRO483m7sR6Zq8UCauuwFTqDxY0Aq9S+/UOl4jhj3XDgc9zsuPvTtuCr1DrF09tIWxvKloUT3UHos9RLEBvT1v9by6rAY9AaoJPB1ItDygfDs8jXNFPGuYMr0o0oi8ljM1vXfhOD1eOZk8uA5IPZMXEzs8mjC8dziaPA8lRTyKv3M8RbeQuwW2Jz0A0CA8J08BvXzHv7wVTBq8DvR6O1zyu7xyAcE8Cmvkuw6iPTw7Fyk7Vgw1vcUxtzwpkbq8yeuXukEp1jyiViS9iBDGuzsXqbz4D7E86I/RvNoUFr3TKes8dyIHPW4hST0gpSS9Vgy1PIAksDxxUhM9vJfevYB7kTy4ZSm8AaXlPHe7oTx6E+48oUARvPjThjwhVNK8BQhlvZrtFT2XDR695dt/PRZMmryDrUY9/jYGPG4hSb0A0CC9GBHbvKAlWj1uIck8Y4HhPKTZK70A0KC8f81OOkkUAbyiQJG8zklzvf42Br32YIO7jsqmPfuYR72OIYg76i0QPZvC2jyqFhQ9EGaTPPwbT73fozu9mHoSO/QvuTy34qG7kPzbvHJT/rzrGOi8Bdw+PZfiYrxOIB+9fR4hvaeO6LvRpmO8U20LPIc23TzZ6do8yj1VO9LXLbvl4KO75zeFvFzGlTuVCPo8ov/CubClOT0XN/I7ZC+kvYjkHz01npY81d28vFODHrzlBrs860Oju7BO2LwyFYA9YoFhPe+QD7y3OYO8OxcpPP7JET1bQw46QNGJvFpppbzAzje9bUfgvG0bujyKk826uLwKPXi7Ib0KwsW8ryIyPMYLID1FYK+806zyvKDO+Lz18w69q25gPKajkLyvYwA9EXwmvEB6qDwAPZU8hIevvE714zxdthE8/EYKvFtvNDkpa6O8WsFxPMtYDD3TWrU77aCTPRMr1DwZlOI8XUkdvGVbyrsP+R49nh/LvPvDAr0vo+e8XnVDPANZNz38cjA9ZIaFvID59DvJES88zknzu/1HdT1G47a8kKV6PXkSgz0EWbe79nYWvfxGijxuIUk7RySFO8xIiDsTBb275zjwPN2dLL0i19k7BYXdvBRGCzwrw++72b20uxRGC7ybcJ28zqBUO41HH7vqleC8DvT6vHaK17zR0R69RFqgvPe4TzvCKyi9M5iHPYQEqLxh0jM7LyBgvXmQ5jkbQiW9SmzNuxSIxDzh1AW74SbDvEm9H73lBju9hNlsPRRGC73aQLw8IdFKvLpA/buh0xw9u2s4PN53lboAPRW9ElaPvHFSEzwvzqK7LciTPbzuvzsY5bS8QE/tPHDPiz3jWHg9tIUxPP1HdbvYkY66cSfYvPSBdjy4TxY9EqjMvAtFzbxaPuq8VoktvDnrAj0rRYw8RglOPZa2vDzcnSw7EtkWOZEnFz32Nci7/3i/u+EmQ7xtTAS9lTO1O+IALL0O9Po8WBJEPOMsUryuy9C74qlKvSF/jbyUWcy85K/ZPLtruLsCf0699WCDPcfliLzfd5U8KVWQvGq+yTwHDYk8mJAlvdiRjjwd8VK8iZPNu592rLwRfCY9ByOcPILTXTzC/4E7LnfBPEWGxrzGXV28rstQu1o+aj3R0R68dAfQPA4ftjyQedQ7YwRpPdSG2zzAUb87g61GvNMc4DwhJwU9MCmouw4HsbtylIq8k3FcvVd4cDwQkYC8AzfoPAa8Lr0GvC69wXxJvbWY3Dy2HSM8+MgmvJmoOrvCBhm8/Xo+PLrAH7pjV9S6ijX1OuYyIr1+wio8q0hRvO99JL2NP4K8ovhFPeSeQDx5pHm8u8oxvcYpWLx+PWQ8h41vvS8kH71kpou8bTGvvKWRMLz4yCa9f8y8vJP2ojziTwS9XKCzvVZu3jyg5KG9N+/jPCRKxLzpWmq9tt0BvcKBUrxQdxy9zWC2POrVHr2q+RQ9vuNevHmf8Ly0jso7nTwcvQEUKb0zx5u9T7I0vQnf7bpfPic8LySfvNtdULs9HLC7SgovPSoBZT3XutO7bCwmvYor47y7xag8KffSPHkaJb2xdR28FUihvMUfRj1pjjK8SxTBu+5zErwfnTU9bCymvAtuxrzCgVI8wDIWvY9OHTv1NEU80xfXuyjtQDwdiRE9WYeGvRKvNr1BuqO8GvCmPIx1kbzIuDC9SQAdPMPLgL1/0cU8/n9HvKMCWLwsQYE7Red0PJBiwTuqOba85jcrvXHPIjunoEs9211QPNOSCz26SnQ8AA8gPMvW5jx7H648zm/RPXHPorykghW89CozvXmkeTzvfSQ9sPVfvA34FT3QiH480xxgPO89g7y6RWs9j1OmvJNxXLuu1ym9OwiMvcKQ7bxPchO8zFutPDApKL2VCse89OoRvaGpibxV34A8DxFDPB2ECD1j3Bq9UkufvML8hjyxdR29f8IqvYJgHj1gSDm9wHK3uyP7B73mMqK7ULxGPOpk/Dwb8Ka6mzcTPU0eUzmu1ym86VpqO2gJbLzHKdg85wEcPEE65rxS0Oq8QLWavDyc8jwW0nW8qu8CPUYnEb0eGG88z35sPVLQ6rxOrSu9gVsVPFC8xjx9sw+9RmeyvI7EzblsJx09thiaPcBytzzuAnA80HljvSxGirxnfxe9SQAdO0CwkTxcIHY8YQgYPeAF1rptMa+7JEpEPPCMPzyCYB48snomvfzwbju/7fA7ey7JPNe1yry7hYc91JcUu4cIpLsRpSS8sjqFvBrwpjz65tw770KMvO1uCbx85JU8wpDtvAa8rrx/jJs8AR67vCZe6LyCZSe9yHiPvNe1yrx62gO9ZOYsvH5Mf7oisVm9c2MEPa3SIL3DCyI72s73vPIWDz2ZaJk9IsB0PLWd5byXmR+9QoSUPBl18jvZSaw82UksvLF1HTxjZu88+FL7vJhehztGbDu9xy5hPJqyTD14mmc9RE6FvVobbTxWc2e9J+OuPLYYGryRbNO88qVsPDgvAD0WDYk8d0EZvcB3QL2ZY5A8qSCJPNMc4LwqAWU8bfENPYaS+Dx2N4e81WEFveKZtzyJnIW6GNyCO8vbbz38dbU7wHK3PFsg9jxsJx29OjmSvAbGwDvrmoY9DsyYPGsdC7znPDQ6lAA1PaaWObyIEja7hX5UvNlJrLwjxf08bTEvPV40lTx6JLc8oq4SvKkvpDxqola9GWFOPZYUWb3jVI291SFpve4HebuO0+i73XF0vJ3G8LxKBSY9/PX3OxAl57xWeHA9Hh34Ox6OGr6yOgW9mKMxPM5gNjzufSQ7sfBWPPz197s8DZW8MkdevEoKLz2k/U68eIZDvaegSzxg/gW9iSbaPPphkTwRmxI8ZfXHPMi4sD1GJ5E8LAZuvO343TxnBOM8fr0hPDTMpDsejho9u0p0OxKvtjw6ORK8Eq+2O7WTU721ExE93wBNu1fzpDux8NY7alMau55QQLy9WQo8aqJWPEXndDy+VIE9lAA1PY7OX7xttno7ukXrur/tcLzgBdY7W5uqPIHgYLt+R/Y7iSbaPM/0F72nm0K9k3HcOvhSe70vGg081aYvPYR+VD0kAJE8fUJtux9TAjxn/1m9jsnWPLjiCrjNIBW9s4lBvbaYXDw+ITm8oGltPezpwry1neU8nMv5u7g2UD0ZdfI5/oRQvaJz/zzkqFK8yX0YOy6az7vd55+9XioDPQbGQLvJuLC83nb9O9i/XLx09+o4bCymvDNH3rpTWro7RuJrPgAPoD2/8vm7sf9xvPfDnTxsJx295/cJvLcnNbwhrNA61CHpvMnHS73IuDC9hX7UPDI9zDyU+6u82lM+PfdIaTxLyg09zWA2PVNVsTwm2Zy8AA8gvQlfKz0DqIq8Nts/OzPCEryEKg8670KMPDCzfLzChtu8Qb+svNzdDT0VSKE8CNpkvQ194TgKJBO7Y1dUPMi9ubs914U8RmIpPI/d+ryNxE08C3PPvEPEtTzzoGM8j9PoPHhBGboErZO9cE9lvDXWNj2Dbzm8gmUnvWBIubouUJw8XzSVOzp5Mz1fPie9DPOMOxwESzxOMne8gmAevDJC1TtIgF89G7WOOyUFGjxneg66pP1OvF6+6byxdZ09nUs3PWf/WT1RvEY9UUYWvX2zjzz7ayM97v1mvObygDwQkQA9MjhDvJ9aUrw1Vvm8M8ebvCxGCruUADU8+YgFPNONAj1ZEds8doE6u8F3QDsDqIq85zerOi2VxjzJx0s9KwbuulBtirwfXRQ8foKJuhrwprsPFky9qvSLPBXS9by2p/e8ZfXHvOvkubyLtbI89bSCvHgLCj0FvK47beyEOF8+p7saa2A7rVdsPXV3KDzQ/im84YocPYomWjyIF788PtyOPXVynzxwVO48Yk3CvOB7ATt8OFu8/wQOvZ5QwLx5C4q9dPdqPbrAnzvjVI08NdY2PTl+vDwvHxa9SfuTvQbLyTxTVTE99C88OlPa/DuYmZ89nlXJvGD+hbxfOZ69eZXevPnSuLsuFYS9LIaru4uwKT3SyJo8nlrSPFezA731NMW8DILquysG7jzvPYM9pIKVvKeWuTrhjyW9RmcyO8p9mLzK0d28ABkyvBp6+7xeueA8owLYu5wBhDy5QOK6U1WxPFtWAD3ZBII8UkENPR4d+LtTS587Dgy6vFi9Fb1T2vy8F1KzPM1bLTmNxE07OG8hvQEeu7zym9o8bkBKPfmSFzu2Dog7jkQLPQaBljyFecu8o32MPJFs07wADyA9JcoBvCbZnLtMFME9HAnUvHBKXLwyvYk9PiE5PML8hjyYnqg8iM2LPD7cDr14Cwq9ISwOvX7CqrsRoBu7v+hnu3HUK7034Eg98Zvau0csmrz4iAU6LySfPG9AyjwyvYm9T6iiPBVIobsGy0m9pRZ8PKQRcz0FfI29plGPvKrvAj3azne874c2vWXrNbzddv28K3yZOX/MvLxyWfc4idKUOyLA9DuvnBG8IrFZvRAg3rzMFgO9lgU+vMakjDwzTOc7bbb6PKxDyLxzYwS8N2WPvG22ejyJnIU77XOSPe+HNj3FH0a8B9BSvVxgEr0Bnn06ARQpPEXn9DxRwU+87fhdPXma57xKxQQ9VumSvPTliD034Mg8M8KSvJaPDb2fX9u8sXUdPT4huTxRxti6PI1XPKilVLy+XpO6BsZAvRKqrTslVNa7/oTQvBdXPLxE2Nk8NuVRvUoFJjtLyg2890hpOoJgHjxFWJe8C+4DvbWdZb3Wa5c8W5uqPLvKMbzCARC9ukp0POAK3zxj15G7dXeoPHGPAb21jko8ECBePMByt7yQEwW8KneQuyXKAT18rga8mq1DPSeehDubNxO9b0XTu7J6prpqjrK6wXxJvYorYzxj3Bq9UxAHvO5pAL07iE49qS8kO7YdIzzd5x+921jHu+NZFjzBfEk7wXdAu9e607vDywC90f4pO6UW/DtoiSm62k61vDPHG71m+tA8lhRZvKSHHjxUVTE8C3NPvYqrIL1j15G63ecfuxAb1burOTa8OwiMvJwBhLzYyW48f8czu3BU7ryaLQE9xy5hPCRFO70372O9I0CyPYDb17zL0V09ZGt4PQQ8cb1TVTG9Cun/PAMozTug35g8BLelvH1CbTypIIm8PaF7vK3SIL2w9V890b4IPZqyTD2eUMA8ey5Juyn30jvihRM9v16TPKrvAr3yllE9s4S4PC+par2Ue+47sjoFvQhVGTx63wy7OC8APXGPATsfWIs758H/O6UR87zoQb08iBc/vMQVtLyLOn485rJkvREv+bzJuDC8Xa/OPNzilryq+RS9V3jwPIR5Sz0yR1493GLZO+NZljylTAa8bKzoOXBP5b3zr/63ZGv4vMwWAz3u/WY8qvSLPACUa7yC7/u6pP3Ou7DwVr037+M6PA2VvN+shz1E2Nm76EG9POY3q7tNKGW9tqf3vO+CrbxuO0E9Red0PEG/LLznRsY8yHMGutGDdTzuAvC8iiZaOYy6O70JZLS8SsWEvFFGlj2KqyC9KfdSPPrhUzx1dyi8KffSPND5oDvt6cI7mzIKvSNAsjzNViQ9xBo9PMKL5LsZa2A6J54EvDdgBj2KNfW7SfYKvRdcRb1z7di76l/zvJvBZzmkhx49ZfVHPXPtWLw+3I67E77Rur3ZTLyx/3G9QbojPB6Omrx08mE9zVaku4/der2Mepo790hpPOjGA7wtRgq5+FL7u9D5ILwxOMO83rEQPYR+VD0sSxO8sjqFOgM3aLzaUz49gmCevFNVsbypr+a5nUs3vRr1L7x9uJi8qKrdPDTMpDxF7P28LZXGvDhqGDu94948PibCvFLQ6rxFYim917XKvJBYrzvTDcW8+ddBPCI2IDyfX9s8pUwGPJ1BpbwJ3+08Ti3ut3iGw7wrBm47Rl0gvVxgEj0JXys9HpOjPG3shD1UGpk8k4D3PDh0Krw7kmC8gNvXPEG/rLxRwU87jT+CvGys6DsGgRY9c969PAEPoLocBEs8qCUSvT4hubxt7AQ8ZGv4PNOSiz3r37A8rMiOvEsPODxKBSa7kBiOvAAPoLu23QE9o3gDO14vDD0FfA29OXSquhhhzrzs7ku8vePevBGlpLxtMS+8nlBAvMvWZrs0jAM9jLo7vJ1Lt7yEeUu8/v+EvETdYjwxOMO8VGRMvX6CiT2ZYxC8nlXJPC+uc71rp187FLlIvcwWgzyYHuu7dPdqPMmzp7yNxE07j04dvRl1cj3oUFi9Q9PQPHiGw7xJinG8uDZQPYfNCzzimTe8UlAovZ5VSTydxvA8JVTWutxdUD3WK/s81rDBPCbZHD2Ozl897W6JPYWDXTyt0iA9tESXOp3GcLx+wiq8ayKUPJQAtbxg/gW90Hnju/xwrLyDb7k8d0EZPeykGD3cXdA8VBqZvAM3aLx/wio9hggkva1X7Dw00a28IsD0uwV3hLwa8Ca93qyHvG02uLt9R/a8ysJCvJxBJb09F6e8U9r8vIaN7zxLD7g8bLZ6veykGD2vYf68m7JMPOzfMLzmN6s8E2+VPMMQK70skD09UUYWPK3SoLsNAii9XrRXPVoMUjwKbkY8xBq9vC4VhLx7H668fsKqvPIbGL1F3WI917rTvJxBJboCLVY8tye1vM9+7DwIWqI8k+eHPM9+bLzbfHQ8UP8CPbr1ZDtY2AK8bHHxvAGsBL07dIM8IXE3O/cpQz3BtUm9P6RBvboAEb2deMo7rREvvDizZ7wUsgk8xDpEPNW6DT3T1Gm7BPXdPPuhjzxJ6uG8yNeYOogFJTvhhmm8hJnFvAerTT2xTdo8FkSyvEzEGL0kDow7hwbmPIWAqr3bfHS93xnJvIY3W73+Mzi8iaR7vIdCh7z59ww9wOd/vVYugL0M2Yk8R0uLvTHxAD0bZ8K8V+UwvXUZ/Ly13QC9Tm6bvKEhDDvO4Y28X478PBt/HL1nNIW8+q/+u4ZPNb0Cb6K8ieyJva751Lx2C408pJtavAbbgbxIZKa8NJuDvFDbOz1DKTw9B3pYvIqjurwIeRe9vXmeu/8BAj3xB/S8V8yVvJzyDr2sThE9PR/HPAfPlLwUsgm9H6NtPVjYArz9G968/ExTPCiHGbyFjBe8HE6nPFDbO73dbgU8X407PbeHg70qMZy9vKtUvJ14yjtGlRu8eWxAva/Hnjy/GHW9FV3NPAJXSLkf06G7Wzp3POv9/jz/6Se8y0V6u5oXF72yTJk8qdUDPTVqjrzI44U7r8cevF6+MDySS8U8KgCnPMpEuT1AowC8tqwLvSu3V7w2OZk7wrXJPLS6+rvXWKM8ALkyPIAsJT1BWrG8sjQ/PdFmiLy13YA8jFprvSyG4rwGq828QIsmvNhAyTwQXoS9GOJHO67IX71Zm6A75hYQPeJtzrv/0Aw9McFMvaU58LuTAvY8y2iAuyyffbxlrwo9m8JavX9FwDwHetg7gCwlPNIQC73hnkM8xV4LvNuUTj1TqQU9BCbTu1zvJTxtQHy8fr+EuwMOeTwLI5o7QHNMvUnq4bwFxOg8Zk2gvPZC3jwnfO2887yiO7v0oz132he99Vo4vYxyxTyDsmA8drZQvQI/7rw7UDy8Huw8PfcQqD3+Gh08ZzVGPAd6WL0cTie8xVIevdI1E7znkF68kX17PMimIz3Ijsk8J2NSvKOmBjwF3EI8mFZ7uwUNuLzA5/+77CAFPOGewzuldZG8FUVzPaqlT7wlrWK8xSJqPEkCPLyXnok7OLKmum7267zHCA69ObKmPIZPNb0vC926lAG1O/4mir2jyw68Ni7tvL15njxK6SC8OzchvdEe+jsZsdK83JONvcssXz3xH868oeVqvIujOrwQOr05Dzo9PbrcyTxFlly8guIUvZsLqjxaggW8i4tgPY0Q27xTYfe8UP+CPNFaG73Ijsk8/upovSesITzith09KwwUPTKQV72cqb+6BPVdvTxDDj0zj5Y81yhvvI/3vzydeEo8bSdhPAsXrbwoYhG9kwJ2PDOosTwk9rG8jt9lvILKujxj+Zo8Zk5hu63h+rzbrek8fNngOoqWjLzLLF899MgPPez8PTy3hwM9UZLsvH3ARbzN+qi73G6FPUkzMbx3zio8OZpMOvO8oj1D4Oy709RpuXvxOrxHSwu9Zk7hPLW5OT3Btcm6P4umPCasobuQlBQ8kmMfvYmkez37rj29/9FNvR01DL2Cyrq8kxrQvMcIDrwk3le8JN5XPTRGx7uh5Km8cbeHPbvbiDwk3Ra+XCFcvDHBzDxHfAA99Vq4OlLCID0vC127tqHfvOHPuLwgilI9nJHlvF+NO73Pi5C66XaCvOUKIz0qAeg7arrAPIdCBz2c23U9AKCXuzYVUrxtJ+E8ossOPXKTQDvus+68yKfkPLFNWrsIeZc8mFU6PPSMbrxc76W96/1+PU4N8jt0GDs7RZZcPA5T2DwwCpy8piuBPOYWED2uxx67KhlCPbPrbz0SwHg7HtOhvP4BgrxAlxO9NF9iPCg9ibtHcJO8BCbTu+flGrmlauW8egrWvKwScLuaI4S9HGYBPSCKUj2wfs88JA9NPKEVHzy1od87ldC/vDYu7TwAunM8OYGxvCoZQr1JArw8w2u5vBVFcz1Rqsa8FUXzPI4oNb1TSFw9fAkVPUxv3LxhKhA8LwvdOxV1pztFlly8zQaWvbhvKT0nY9I8LLfXOl6+MDwcNs28ALkyvGdmOzymUIk8l4fwPPSMbj6qpc88InE3PD0Hbbz+M7g82DMbvYq7lLySY5+8defFO5I+F7yeXy+9xwgOvQCJ/jw2Law8aes1vKtDZT1UUwi8Zk7hOweTcz0pMl08fo9QvNZxPr2ZVTo9hYCqO16mVjzB/pi7FhR+u6wRrzwHz5Q8+t+yvGaKAr0Iqgw8V/2KupMyKr0F3MK8trm5PF3Wijy8et+7bwEYvBOn3TuFgWu8ZMglvCQOjL21od87YURsPDfk3DxtJ2G8byagvTtR/ToRCcg8P4umPGkE0buqpU+823z0PKU5cLuCyro8EvwZvQQm0zv/6ac8Iyjou/ZCXjxnNca7U6kFPRYs2Dr7laI8piDVvMcIjrxd+xK9iqO6PXD1Kj3hzzg9hWhQPTi+E70kDow8o5oZPb2Fi7xSwqA8lQE1Pdgnrrx0PIK8M3j9vNI1E7zNEgO8jEAPvPmvfjsl6QM9eiIwPW4mILsZyaw84m3OO7TqrrxTYLa7NhVSPVDDYblgQyu7IHJ4u4nsibxsV5U7YHQgvW0nYTzblM684OjTvL1hRLwqMZy8hLGfPLrE77uo7p675CR/vLah37yo+gu8IYrSu/ZCXj2yND89i4vgvJ14yjwfu8c8ES0PPd4Bbz23hwM9x9hZPSg9Cb3xH868zcp0vF91YbqCy/u827iVvf/pJz3vgTg9902KPFJ5UT1Mn5A8ovyDvOGew7yTSgQ9z5g+PTOPlrzy1v48/GVuPbk+NL0M/hE6xiJqvUkCPDyJ7Am90TZUvcOomzsHhYQ9PR/HOwChWDwQO/68GbHSvMUJT7x9j1A91bqNPRnJrLxRqka76/w9vVNhd7vH2Nm8pWrlvMssX7vrFVm89xHpPBqLiTxksMs7VRdnOF3vpTw6aVc8rBGvOrn15Dw6aVe8DrQBPFo5Nr3YD1S97CAFveDQeTzN+qg8lp/Ku0TfK72McYS9BsOnPHbP6zzPmX88tqFfPLJMGT3Psdk8KjEcvSJAwjwVRfO8FV1NPQNvorv0jG48JsW8PUFzTLy+ME+8P4xnPVD/Ajyt4fo60hALvfnGFzup1YO8w7QIvZ5fL72Ko7o8aQRROya4DrwS/Bm9LbaWPHXnxTquBAG8YICNvHi1jzrRHvo8x9hZvZF9ezx+v4S7xvH0vJ2ckbtnHCs9kWRgvXk7y7yhzM88qqXPvDmyJr1lrwq8XPuSOlNhdzzh5xK96XaCvPE3KDx158W7ZNQSvHwJFb1VIpO7nKk/vYq7lLsvJHg8DOY3uyQnpzzkVLO8wrVJvCC6hruvxx4959puvI/qkT1ZUlE97bKtuwJXyLyZbRS9hL2MPK4EgTmvyF88Qip9vBjiRz1Mb9y8FI7CPOfB07tjyCU9EFKXPOHnErz+AYK8sxskvX2P0Dw6aVc89Izuu6+WqbtzMda8CKoMPLJMGb1vDQU8QIsmvdaVBb2Wn8q7QFvyPPFPAr1Za+w7C/9SvIPugTw0mwO8jii1PMpEOb1XzBW9GrCRvJ9g8DzRHTm6c0mwO+pqlTp6IjA9e/J7vJsLqjy6JRm8K9ByupJLRbv+9RS8QFqxu33Yn7q/GPU76l6oPPcRaT11GXw8GZn4vGV/1rqMWSq9g7LgvJCVVb2pvak7WacNvRw2zbs5sia9FKYcPYtZqjuCyro8QFtyvQF7j7nVu0680jUTu9ndnTt5U6U8yI5JvbMnETz8cJo7gBTLvEFNA7wgrpm8Dp1ou4VPtbx1z2u8yKYjvEyHtryTGtC8RmVnOyvPsTs3FJG723z0vBBSl7yD7gG9HE6nPNgP1LyJvNW8hVD2PPj4zTzn2S29Wjk2vZ5gcD3PgOS8KtByPVmnjTvU7EO94bfevCTG/TwEAIo6KgHou0WWXDtv3VA8/9AMvboAETs9H0e8V7Q7Pc0GljxqouY8LoUhPGnrNbxxxLU7q38GPUP4xjxJAry8piBVPVYX5zzG8XS9OO+IOzVGR70xChw9hVB2vR4F2Dyt4fq7rBGvvKm9qTylaSS9X427PNBnybxUR5u8pgc6PFKdGL1TqYW8mQxrvOl2gjwY4se8N+TcvOOFKD3l8kg9kjNrPaxCJL0Lzt08LyM3ulqCBT36luO9SgK8uvuVIr2uyN88uTEGvILL+zs9H0c8hYyXO2BbhbyPxYm9gBTLPNysKL2uyF89yxNEu4c2mrwsnry7X4CNvaLwFriXh3C8OcoAPdI1kzyh5Km825TOPCoZwjt8wMU8mG2UN2IT97we1GK9Ni0svf8Cw7wuVW09lp9KvdreXrl2/x89zDeLvJyR5TwWFP47j9/lvMRserwagF27kxrQPDizZ7vjVXS6mFU6vJUBtbzOyTM9YUTsOuNV9Lsoeyy9IlgcPHOGEr3B/pg8P7ybPVYiEz2SS8U7+BCovAbDJ7ytES+8jFkqvYLL+zuV9Aa9YFxGPbFltLzpmwq9E45COwJ7D7rB5j67ieyJPPn3DDrpX2m8miMEvVo69zyTPhc9HGaBuyQnpzvRNlQ7ezqKPduUTrxLoFE8yNjZO3KrGr1CKv28XdaKvFfYgjzVcv88S9AFveKdAr2Ko7o8tqAeuvS947z63zK9RPcFvYxa67w9H0e8eZAHvbXSVD0VRfM6gTiSPBf6oTyuBAG9WWorPSoYgTxIJgO8p9bEO0IQIby6xO871btOPXee9jw8Bqw9Q/jGO1sgmzuo+ou8km+MvETfKz0fo+28Z2a7PCXFvLx5hJo7OcoAPZMaUDy0Agk8n2BwPETHUbtUR5u8SRtXvJTpWrz60oQ9KjEcPf1M07y9eZ68KgyUOztDjrtgdWG83jGjPOJtzrvl8kg9jii1vHoK1jzSBV+8wc5kvF+Nu7xJA/28FXWnO80Sg7sTppy7ioqfPAhJY7xfpRW9ILqGvI7eJL1c10s8S4h3PAsjGr1+p6o9McFMvdZZ5Dyb80+90TbUubI0P73od8M73GPZPO9oHbu10tQ7kJSUvDHa57xmioI9rgQBvestMzuKlgy9YHQgvNFaGz04vhM9LlVtOMpEubvbuJU8LYWhPHXnxTpRqkY9JPYxPc6Z/7y10ZM8nPIOPXwVgj16IjC8DOf4PNEduTz6rr28P7wbPNMEHj0Gw6e8mVU6vbXdgLw+vVw8KHssO+fB0zs0ao49BsOnPNWiM7xRkmy85DzZPKLkKTtAlxO7S4h3u/cR6buCE4q7U3lRvFwhXLxJM7G8/HwHve6CebuIBSW9yadkvDOoMb09H8c8y2iAPEvQBb2ZSIw97oJ5vBf6oTwvIze5OOMbPcOPALxZnOG83jGjPIH7rzstnjw70R05vZbDET1q3gc8L2AZu/SLLb1xk8C8c3olvQJvIjt/jo+8N+RcPQvmt7q//1k8taAevPqVIrxgdWE8cqsaPb5IKT3A53+8uyv9PGYzBz0snye9fFNWvJj3x7xzI2W9SAEsPaky2Tyb0S09rdwVvZc5Nb1kiIG9Or7luWsYRbwvlqk7hxtAPJbbdLyoFT08z8OFvG9u0Lv+fTe9PlbevBdIQ7xJHki8xXfBvC446bxfr+Q8c2XSPPVyFztZfiq9etewvH7OsrmV23S9M+39vMU11Lscns68byxjPGhb+7xofwO9DSAHPVPn+rx/jEW95VQivPfuPL1YHyE97aEvvVFOubxyuQO7qq7+uzIv67z6hjU8PZjLvMkPOj2Klpy8BZGMvZ4KHbznTG29r+YkvLybgb3+fTe9ToYXu7QMB70zLqK8afuovIRB2ruoJwE9cgbJPLPdpjvg/ha9MLNFvI8JRDuLEsI8blE0vbW41boMPmy80eChPK8oErz4KHW7+Cj1vJZ7oj0csJK78vc6vF1FAzz27ry8rkb3vHo2Oj0GDbI7Oh3vuUWYEz0g9Nm81TYtvYODR70PWr+7OaHJvNBAdLw2CVG86+RlvXj8ATxzd5a7A+aGvHPE2zuKVK87pDtXPNR4mrxiKsG8cuksvMWJhTw9CZm8iVV4PJRfzzuhAug72lwPPVDw+DwHbLs94jjPO3/rzryt3JW8gsZ9PF6kDD17sl+7xbkuPZc5tTzOI9g8976TvPF7lT2srTW7mdJ2vEgBLL2EJL68JiwAvR66Ibx2nkE8IKcUvS83oLzQQHS95bMrvL5k7Dz2j7M7SGC1PK3cFb2rTqw8D2wDPVa2CLxtkyG9gkmPPfMUV71gTxI9oIZCvWVjsDx7BhG9Hf1XPLHTl7wpg1Q9A5JVPISgYzzNZcU87tAPvHh5cLwYijC8K0CevI3Pi7xuUbS8jUz6PAszFLvy97o8Mo70vFHvLzwsXbo9vJsBvV6kDL2PaM084RuzOqqufr00qke9CaZzvKvvIj1ct5k9W5vGO1sXbDuH2VK9w/ubPJNCs7xNJ4480f29O0t8CD0JKQU9eja6OwPUwjoLYz08LLxDO0nRAru7rg69ZgSnOvjJazz3C9k803ljvD2YyzyK9aW8o2AoPJ3tgLvRnjS9VeYxPDIvazxHYX68h3pJvHRkiTy1F1+8Bq4ouhdIwzxjBXC9r0Wuu/ZNRr3QQPS8LF26vNxnZ70XWoc8RGkzvC4ahL0/tJ48rcpRvFcDzjsdGvS8A6QZPfQTjj3Jzcw8UR4QvW3yKjy/Rgc9IVNjPPxWDDzABBq82G8cO+VUojy7rg69wz0JPchRJ72n+CA9Q0wXPYa9/zzLSXK91rLSPIHGfb1L+fY8ZQSnPFPKXrx7U9Y8dj84PE7TXDx+bym9WMAXvcvMAz1iy7c6EtUbvbmSOzwr/jA9vwSaPL+lkLysfQy92W+cOQYNsjyOLhW5IpQHPbpt6rvTuoc8fj8APYsSQr2/ZOy6UBQBPTKOdD1OVzc88Jn6uy3Z37sm61s9XvFRvedM7TxX3nw85oMCvfgL2TsJpnM98pgxPd0kMT2nt3w8OOM2PROTLr1Syl494P6WvHMjZb0H3Qi9wCG2vIzQVDsLwka8LpfyvIODRz2pkeK7juwnvewlCj1WYtc81BkRvppyJL27DRg9deH3PLcWFjxFyLw7WgyUPGOm5ryhYXG8fVINPVWkRL2g5Uu9vIm9vF1FA7yr76I8D7nIvMO6dzyiQwy8IVNjPVjAl7xxSX+8w5ySOskPOj0RNW68S3yIvK3KUT0HbDu8K//5PHbgLryacqS8aVqyveRVazxlpR06vgVjPJS+WDy7DRg9D7nIu2QFcLzZ/QU9My6iPLYXXz0du+o8vfqKvClmOLyPqrq8ERcJvddwZTwHy0Q8LowavPNz4Lu0PLA8+Cj1vE6GFzvFRxg8R2F+vZlVCD2kO9c8EnaSPY+qujwNf5C8ji6VO1cgar0jEK08YwVwu5ShPLyZVYi9fM/7O3dumLwMgFk9MLPFvDWqxzsuOGm8CabzPEiiIj0gNke9cYqjPBPCjryVHeK84rypu5OEoL3RXEc8HbASPFzVfjzzx5E8geoFvFcgajuLEsI87KJ4PMP8ZDw2hXY+bZOhPYSg4zsXWge9siDdPJoTm73/mtO8kGjNOi72+7tsUv277l9CvTONK7310SA92G+cPAeuKDx+zrI9tWuQPPUwqjz1MCo9c3eWvMBjozoYuZC9y0lyPbZ2aLyQx9Y7Wq2Ku9dwZTp8U1Y8D7nIOzu9nLwpQee8e5XDPL7D9TvlVCK9BQ57O1CQJj0qI4K72M4lvFgfoTxIAay8q9IGvZoTm7v7tZW8iVV4OulLpDykHjs8bsKBvCQtSb0A+ly81lNJPbybgbqM4hi9N8aau/kKED0GT5+8CzMUPVMMzLyN7fC8Mi/rukXIvDsgldA7WvrPOq2IZD37tZW87tCPu10zv7xqubu6h9lSvcL8ZD15uhQ9KYPUPJ5Mij2AqeG8L9gWPY3QVD0rQB46byxjPSxdOj0JiI688doeO9M3drwDpBm94V0gvLN+HbrYb5w8TJmkPH9KWDxNFUo8YPAIO6dXqrs6oAC8SKIiPL1ZFD3iSpO7XqSMvBbMHbxFyLy5eLtdPDzaOL3bSks8DpwsvYn27rwbIim9a5TqvG/NWT3zFFe8tDywty7ZXzwDklW8uAMJPLbV8TuoFT09IlIaPcqAB7hT53o8FYt5uzJwD7y6zHM9XBYjPbHB0zycMDe9E5Ouu7jxxLxO01w8kAnEO3+eib1VRTs9lhyZO/+slzvYbxw9JUplPKf4oLxVpES9f/0SPM/hajxr1te7StzaunWCbj23dR+97MaAPHNlUr3ls6s79wvZvOuFXL3NxE672yX6PC72+zukjwi8mdJ2vYuzuLzV9D+8jI7nPKqufj2ywIq8gAjrO6jTT73oq/a8owGfvG5RNL0QKpa73iQxvCjXhTxiKkG8OqCAPFN9GbyCxTQ9HFEJPVpZWTygVhk9FSxwvEWGzzpvLGO8yLAwvfesT71yp7+8WxdsPBWLeTsQ1uS85RK1OsBjozzFd8E7oIbCO1zV/jy0DAc9m9GtPMiwMDsx0GE8H+kBvfe+kz0w9TK8n2kmO7Pdpj3tQqa7yotfvIa9fz1CC3O811KAPHCL7DsxEs87A5JVvIJmK73hejy9AxawPNn9hbsF8JW81rLSvDjGGj1Dany8My6iOz5WXjyhAug8LnmNO1cChb1kZHm7j0uxOxEXCb0RGFI7DD5sPa7nbb28mwG811IAPRYrp7zpqq28RqNrvLrM87wcsBI9qBW9vB5bGLy+w3W8blE0vJ8nubt2Pzi9UwsDPKyttbw1XQK8ngodPdtnZ7wGDbI8KiMCPDu9HDwZgvs8E5OuO5uPQL0i85A9uWISPfPHEbzRnrS84bwpvcQYuDvXslK8w5ySPM2nsjtM+C09diKcvNN54zxL+fY49BTXPENq/Dxp+6i8RobPvPgo9bw6X1w918/uPMFjIzyqT3U6zoLhvNEPgrxhDSW9YG13u6BWGbz6J6y82Yw4POVUIjzlVCK9SAEsPC3Z37swZgA9Dfx+PKmR4jzklg+9ifZuva/mJDvrx8k80VxHO37OMr3Ybxy7vJsBPR/XPTwVi3k6Z9/VvKKiFT0Yp8w7vIk9u3uVw7q9R9C6osB6PKrw6zzvfF46eHlwvDHQ4byd7YC7ngqdvD/2i7zTeWO922dnPIskBr3eQc08MnFYvCYI+DxzI+W7i7M4vNtJgr1XYte6ssFTPHNlUjyJeYC8CkYhPbLACr1x6nU7AK2XuvHanrryVsS8xBg4vQBZ5jytKds8Y0fdOzfGmjukjwi9xBg4vaDly7whU+M7M40rPA6crLyjYKi8cYojPSVK5bxhy7e8xFolvHbgLj3NxE48W7hivU3IhLyE/+w9jxuIvOVUIj2NTPo8hZ8avcXWyrxddaw83cUnPHkaZzwuGoS8brA9u0iiorwvN6C8m49AOylBZz1JMIw8hl52PMP7G7xoW3u8/h6uvL8EmjwgNke8mPfHvEz4LT2ShKA80rtQvRojcjwvlim7j0uxO49ozbyeyXg9QTBEvNWVtjvBUJY8K0CevO/b5zsOnCy9tbjVvOBdoDwiEXa90rtQvUU5iryNcAI9G+A7vU5007t7BhE9vMsqPU3IBD2Uvti6/h4uPGCuGzu0DAc8GGXfvRyeTjwHy0S8tPrCPLlQzjslSmU8NgnRvCv/ebyN7fC7Bg0yvawegzq5r9e8lzk1PSYIeDx/6068afuoPErcWr0oJEu8+icsvF+vZD36hjU7ENbku9A/K7qwYsq6r+dtPJ4Knbx9ECC8ArcmvUDRuryCB6K8ECqWPe4AOb1AcrG7YpsOPe2hLz1PkW89jXCCN3uy37w2hfa8S/l2PG4hizwFkQy8/FaMvC6MmrwQbAO89tEgvLwqtDuQhWk5rH0Mvd9AhLw5X9y8h3rJvH2xFj3ucQY9XqSMO+vkZbxJj5W8blE0vf6/JL0sG808XXWsvMkPOj035P+8PlZevaTczTwT8je7diKcvOiNETzyOSg8/WAbOzRdAr0Pucg8ENbkPLiSuzs8HCY9ssFTPAszlDyIl2U7x9WBvKiGijujAZ+8wT7SvI9ozbwsn6c8j0sxPGYhQ7wJBf28xtZKPNhvnDz8Vgy9RGkzvTONK70SNKW8SdECPMos1rwqIwI9rsrRupwADjyD9JQ8pX3Eu3JINj2lO1c5zdaSvJZ7ojz0E468w/sbPVJrVT0LMxS7fm+pPW4hizx1wxI9yovfO3zPe7w2Ju08Bg57PC046bg07LS6PTlCOwqlKj3QPyu7GGXfvIHqBb0Hy8S8VsFgu5xNU7zBPtK8Onx4PX9K2Dwknha8Bg0yPX7OMrt3/Uq9P7Seu+mqrTwilAc8UU45Parw67wg9Fm8QNE6vQyA2byPehG9O/8JOini3bzTlv+8RuVYPI96ETzaSks7u64OvP4eLrzcqAu8yPIdO9ktL7weWxi9o7+xPcuKFr2xf+a7WB8hvWuU6ju2F1+9Z51oPOwlCjzeQc07rGtIvNO6B7yqT/W8P1UVPQWRDL114fc82G8cvIlV+LwN/H49vwSaPEgBLDwDklW86S6IPP6/JD3NpzI713BlPdoIXj0FMoO62Yy4PA2d9TxmIUM9Mi9rPNbEFj2Nzwu6YG13vM/DBbzdg7o86Uuku1DSE70nBy+9afsouI6NnjyYqgI9zOkfPRAqFjxUKJ+8c0g2vAXx3jwZxOg5S/n2PAhHajsF8BW80D+rvEiiIr0roHA8+uW+uqVY87yzfh28IKeUvSOxo7wFMgO9oaNePBvDH7y6T4W9M8+YPVFOOb1H5A8985gxPFbBYD1VRTu8gkkPvRi5kDxRrUI8kUP8Ouvk5byntjM9wMIsPM0YADy1axC9I7EjvC161ryCxbS8Qqzpu8xIKT0lSuW8gaiYPFy44riFn5q8d/1KOnrXsDxxKxo9eRkevRHGljxHmjk8VZO7O/qzrLyTgEa8vMahvbPfJT1mXPI8xxn6PJB3Q7xoMei8TkuHvUs/5LzSPgU8xeEqu4r9orsq3MK87ve6u/tP1LxHzkY6P09lvLspe7ytMHm7egKAuZToYLx5y9K5u5IUPdAA9jzTDjq8rwXvvJTrgLxBvEC84WuUvcJAQr1DkTa8AmebvJcl8Tx5AgC9aTapvKERLj1deJa8WdBLvUTFwzz1DoK9jJ4LPYkvj7x7BKG817PkvAqCpLznFYC7HOiBPDec9rxIbY49KKaUvPH7fL3/9P47McM+varEHLzkQIq9+BJEveHRjbqPQZW8dVX0O7MTMzti61S7vMYhPeIC+zzko2O8wGvMvC64Gr0m0z87jz71PBL8RL1Siji8BAgEvcZJRTyD5ls89NWzvPCTYr3QAHY9NgBPO9/Kq7xgSuw7oKRSvW2nRrvuj6C75+DzvFG6gzz3F4U99T1OveLTLr3T1eu83V3QO1icPrtud3u8oUB6uUtEpb3YG3+8JZpxu/iu67tCW4g8/iTKO7/PpDz7hoG7V2YQvaWCS7wAxrI8s0L/u7qN0zxPgTW8zI9YPCuvFzy5vZ48ZfTXPSZrpbuqxJy8RMXDvN4uBDyakkw9yVLIvBSdLT301bO8FaHvPJOAxjsdUJw96U3POxvjwDrfZtO8rMheved9mrzDRYO8NwUQPWUoZb0JFck7pYJLvP+RJTssGVM93/yXPNcXPT3+JEq935aevO3DLT3mRMy8sxMzvQqCpD28Ljy9zwMWPEHwTb2hQPo7H/EEvY8+9TxkWDC853jZPCH1xjzC2Cc7/LfuPI8K6DxDXSk8mzGUPA2GZruNBia9BDdQvQh5oTzXS8q8hB8qPXeTA724IHg87cOtPV+uRL2+AZG99962POE3Bz3xmCO9NzkdvVnQSzuCfkE9KXSoPdBpjzoAxjI8lOjgvDnaBby69e28lOjgvI1uwLwe7MM8i81XPcA8gDzPZM47xN8JPBCPaTuMAeW74p8hvbEO8jq4VQQ8gBSGPEg24bzMw2U9izVyvLSADjzeyIq8EWAdvX3U1Tt9CwM8teYHvPcXBbw4oTc8Nm0qva41OjtvsMk7DrrzvOvut7xUJuC8GnumvDGKcLy3UEO9Rf4Rvf5Y17x3k4O96rXpPPQJQTx4+508YE0MvTwSVTxGZqw9VV8uPU589LvJumK9pOajPA+SiTwhxXs6XuLRvLzGIbuxPj092lRNvbPfpTzQA5a6kXdDPaon9jyoI7Q8sXJKvcqLFjvuj6C97CLFPJuXDTxkWDC8crlMPAeo7brcwSg8yu7vvIoxML0n2AA9VI76O7m9Hr3flp48Zl+SPD+D8jzvK0i7UlarvIYmDDwBMw684zvJvLzGIT1+QTE9X+JRPLMTszxyHSW9DYZmPH+pSzzy0HI9FM+ZPKa2WLz4EsS7Fj4WPUJbCL1pAhy8vgERO1KKOLyb/yc9X+JRPZlev7vtw608POOIvJZVPD09em+9yb2CPb7+cLwCynS9eZdFvUk7oryw1iI8HYQpPA9b3LzxmCM96uwWPOqBXL1v4BQ9FgqJPMEKFL5r0lC83PD0PNV21DoLgiQ4IfXGPLFySrwSyDe9yu7vu6/UgTxrBt68vf5wvfeqKTvflh685hA/PVtxtLyJYHw7NJYTPXOFPz3We5U8dIqAvNV21LyEH6o8N2jpvHUmqDsduDY9Lh6UPLtehzzROcS8I2Kiu/I0y73jB7y7N20qut1d0Dthg7o65Qt+PC+6u7oWcAK7lVD7PJOARjs+s708DounPLMTs7zCqNw79T1Ou15Gqry0e008YlNvPLklOTx9PxA4OaV5O6UasbyZKrK8NDCavPnieL3HGXo8uFUEPclSSD2rLDc9vZbWOvCT4rzOz4i94we8PMyPWDyeA+q89KEmvbm9HjwHEYe8FAVIPfqzLL01mLQ8strkvOmBXDyj5II8Il1hvRjaPTwe7MO8wtinvJlePzvi0669gUo0PFs9pzyvCA881EJHPCWdEbz1cds8mvpmvPWlaDw0lpM8he9ePkqjvD2+/vC7gxrpvEORtrtkjD298jRLvHoEITyuacc8LFCAvOTXcL3qUhC9ezguPdfjr7m4IPi7y/OwPWsGXjyeA+o8V5d9PdZ7lbv657k5sxMzvZpjAD2EHyo8//T+OR7xBLovuru8ULXCOyQyV7zOMMG8xxl6vCBZnzxAt/+6bNcRvVb71TtAVCY8pEl9vF119jvhaxQ9oQztPLzGIb0vIla8zFvLvNDRqTxo/do8RJE2PR9U3rtf4lG9Q4z1vPrnuTx6BCG8ta9avcBrzLx3k4M8Q10pugYMRjza7DK9WJf9O10SnTyBSrQ7ZfRXvHFPkbySShg9nDO1u1fMCTw0MBo8ThRavIJ+wbxGZiw9LrgaPVkE2TzynGU971/VvOuGHT3cjZs8bxSivCcMDj0gwTk9FdG6vIf0n7oWbeK8SDmBvA66czwb40A7DB5Mu9PV6ztLQgQ9Jp8yvJxnQjy8Ykk8yr+ju4J+wTwJ4Ts9shGSPDc5nbzGfdK8lyXxPEVhazzaWY69tHvNPO9f1bwb48C8Asr0vARrXb0gjSw9TrGAPPgSxLua/QY9/ozkvAvlfTsCmyg7PRcWPZNMOT30oSa8FdG6PJAPqbtx5NY775aCPevutzwdUBw9r6IVvVo45rtrPQu9UVSKu2DnkrsyjzG9pYJLPS3lRTxO5Q08FAVIPXHk1jxs1xG9cRuEvYyeCz3dXVA9W3G0PAnhOzxN4Ew9ImIivY/bmzyWIS+9ap7DOFc0JDxGmJi9KkRdO6lcAj3GTgY8NDAaOlRa7bzkpgO8vC68vKGpEz09F5Y9ZsULvZZVvLsDA0O9oN0gvMXhqrzp6Xa9hbvRO74BEbzO/LM8SqM8PPy37juPCui7qyw3PbKrmDyhEa47pU6+PG4P4Tsbs3W8jtZavAVwHr3MxgW93POUvA66czwuhI078QC+vP/AcTv+JEo8GXmFPDvex7tUKyE82lmOPCafsjyVH468u/XtO4+nDr2pkI89VsfIvC5SoTy8xqE9thy2O6VOPrwBYlo9CNz6vFc0JD21TIE8zMYFPY9BlTu5vZ67Zi2mvGdhMzzeyAq8vMYhu5XtIb3SPgU9PX8wO4jE1LytAa08aMnNPE4U2jwNhma9HLi2OyWdEbwECAS9YBugvGBK7DxbPae8IcV7vC64GjwA+r+8t4RQvZuXDb3S1Wu80AMWOyl0KL3ekd26jWl/vOwiRbuTGCy8g7cPvT+Dcry3hNC74DJGOtMMmTypv9s8z2TOPA2G5rzvX9W7Af8APYJ+QT2O1lq8ApuoPUUt3jw+s707STsivBMBhrxLP+Q7liGvPKTmozyrYES8jTozPYkvj7wkMlc9II0sO6rEnD1AhpI8LrV6vKFA+rxbcTS9Tnx0PYYj7DwxjRC7KuEDvNLYi7xFYWs8J9iAvS/uSLrE3Gm8P+wLvZTrgDuPCug6HuxDvSH6BzyIxNS8ifjhPLssmzySE+s8IsX7vBxL27wVBci7xk4GPWOHfDzEEPe8ch0lvDc5nTwNUlm7lIWHPPShJr2uaUe60NGpvH91vrybl408ta/ausm9AjyyEZI8AwiEPSt46rvYf9e8EI9pO8jqrbw5CdK8ceRWvS1QADpbcbS5LLE4PPd63ryvBe872Bv/u8boDLtyhb+9dPIavM81gjyiecg8G+NAvLxiSTx7BCG9yu5vu2meQ7sgWZ+8b+CUvPmu67zIHrs8HIIIvDpx7LtxGGQ8gxrpvLDWojrDRQM8S9wKuyCNrDsP88G8t1DDvBU51bmHKK28ZpVAvIf0H701mDQ9ThTaPKqUUb1W+9W8az2LPb8y/rwKgAM9ZsULPegZQr301TO9uO+KPMccmjyAEeY8HuzDvL83P7xmxYu8wkDCvK0webs1mDQ9II2sPLNHwDxMeLI8AzdQvIDimTxHzsY8yyc+PNnn8bsrrxc9iS8PPOesZr2mtli8s9+lvMEKlDzwx++838qrPN0pw7zQaQ+8d5ODuuSj47zIHrs8msZZvHIdJb1SIp48Sz9kvaJFO73pGcK8CeE7vBdyI73ruiq9Tnz0PNpUTT0pqDU9KtxCu4lgfDygpFI8faUJPMtby73xAD48pu2FvPShJj16nAY82efxO3SKALzI6i07lbkUu+73Or0VBUg83mIRvXpn+jwFn+q7OqgZu9hQizyieUi9j9ubu8338rwXpjA9KKP0PCIuFbzO/LO67VsTu8Tc6TwDN1C89twVvJrGWb0MtrG8MfOJvQ69kz0fi4u9JtM/u+d42TySShi8fAjjPDXMQbyeoJA8oREuvba0mzzZuCU9t1DDPGDnkrxJby+8EWAdPfhG0Tx+cP28ApuovMxby7xKo7y72FCLvPhGUTvGTgY9AS5NPftP1LzWe5U70j4FvTRkpztYnD69sXJKPJJH+LyuNTo9i5nKvPd6Xr1mlcA8oN2gPNzwdLyDt488JzvaO1FR6jtAhhK9tePnPGjJTT1Qhfe8mCgRPbz6Ljy5JTk9CK0uvIjE1Lzk13A8LH2rvOLTLrsDA0O8SAcVPY1pfzznfRq8PufKvBZt4jwiXeE8Vy/ju6rEHL3cwSi9V2PwvOwixTpExcO8liGvPE3gzDxzhT87UykAPIlgfLyqxBw8jQamuxy2lbyUtNM7XEHpvDpx7Ds2AM88CrSQPB4g0T2vbgg9822ZPPnnOTxtp0a9D1vcPH08cLzsVlK8ePudvFiXfbwi+gc9cYB+PNParLypv1s8yu7vOwd3ADqZKrI8NwWQvA1SWT301TM9Nm0qvChv5zvquIm7jAQFve0nBrwMHky8qSoWvNpUTT32pei8dlq1O+LTLr2lTr45ULXCvMyP2Dz+jOS8AzfQvAqAg7zNyCY6v88ku2b5mLx/dT48xn1SPCWdkbvZIMA7rc0fve2+bD3cwSi9ch0lPKPh4rw2AE+80AU3vX0NJLzHgpO8J29nuvAwCbztJwY76oHcvCfYAD2qJ/a8SNMHPd7Farx/qUs7VJEaPQiobTxlwMo7tYAOvZUc7jw6DhM9DSMNPFfMiT20e808khaLvDRkJz3ROUQ9RPlQPXj7nTwixXs9t4RQPFVfLr12jkK8DVLZO8HT5rwoo/S84P44vEORNjzt8nk7XXgWPJW5lDyYKBE3VCmAPHs4LjxIam487ytIO7E+PTu/N7+6T02ovKRJfbumhwy9iCzvux+/mLyYWf67H1RePFT3k72xckq8Y7wIvS61+rob48A4m8uavaXqZT1lKGW9oRGuPMsnvryyDnI9KkTdPA9b3LyvohU9zcimO1TDhjzNlBm9DLYxPagjNDyxPr089AnBvN7ICjwrrxe9ev/fvFJWK7zVrQE9u14HveULfrus/Os8s0fAPESRtrw5dAw9Hbi2PNyNm7w="} \ No newline at end of file